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ABSTRACT

The availability of high speed and high power switching devices, such as the IGBT, has opened

the opportunity for an increasing number of grid-connected inverter applications that have his-

torically been unachievable. Recently, the number of inverter applications has surged, with now

the focus being on increasing the relative performance and power capability. Such applications

include UPSs, dynamic voltage restorers, STATCOMs, frequency converters and distributed grid

sources such as solar panels.

The inverter switching frequency limits its associated bandwidth and hence performance. Every

application can benefit by reduction of the extent of this limitation. While state of the art

devices like IGBTs enable such applications, the onus is now on developing high bandwidth

digital controllers; the ability to connect multiple devices together to achieve power scaling; and

having the confidence that the applications will work with other systems on a grid.

Constraints and limitations imposed by the hardware and traditional continuous-time derived

controllers are identified. A discrete-time direct design controller is then developed specifically

for digital controllers, that for the same inverter configuration, achieves twice the bandwidth of

a well-tuned traditional controller. An important feature of a controller is having the configura-

bility of being able to choose inverter bandwidth over stability margin.

To provide power scaling above that of a single switching module, investigations are performed

on the suitability of actively paralleling inverter modules. Both the use of the developed discrete

direct design controller and the identification of potential inter-module instabilities for a par-

ticular configuration enables the application of paralleled inverters. The operation is confirmed
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through the application of a sixteen paralleled module inverter system.

Finally, a graphical analysis technique is introduced for analysing complex grids that may include

inverter systems. The graphical technique demonstrates stability constraints with a range of

sources and loads, including both inverters and rotating machines, which historical analysis

techniques have been unable to do.
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Chapter 1

INTRODUCTION

Since the advent of both the digital processor and fast switching high power transistors, invert-

ers for converting between AC and DC have been increasingly moving into applications that

demand higher performance, higher power, the ability to change operational modes, and greater

reliability. The availability of transistors that can both control hundreds of kilowatts and do so

faster than the waveform being generated, is opening up the possibility of creating high power

grid-connected inverters that offer unprecedented response rates.

The flexibility of inverter systems has increasingly seen them being used in a vast range of

different applications. The increasing number of applications stems from different grid types,

ranging from small grids that power only a single load, up to large interconnected international

grids. As power usage increases, so too does the number of different load types that are connected

to grid systems. At the same time as the number of different loads are increasing, so too is

the number of different types of power source, recently including wind turbines, photovoltaic

installations, and battery-energy storage systems. Due to their control flexibility and high

efficiency, inverters are increasingly being used to either improve or enable different sources and

loads.

As sources, the flexibility and control offered by inverters has seen them integrated into ap-

plications where they had not previously been required. The two most common applications

for inverters have been Variable Speed Drives (VSD) and a component of DC power supplies.

With the increasing focus on sustainable energy sources, inverters are often a key component for
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interfacing the power source (AC or DC) to grid systems, operating as either a load or a source,

or both.

As the number of different inverter load and source applications has increased, so too has the

requirement for increased power capability and control performance. Emerging state of the art

grid connected applications require both the performance typically achieved with low power

systems, and the high power capability of traditional SCR converters. Modern switching devices

like the IGBT provide a crossover by offering both relatively high switching frequencies with

high voltage and current capabilities.

Although modern switching devices like the IGBT offer high switching frequencies and mod-

erately high power capabilities, the possibility of further increasing the performance and/or

power can only be achieved by using multiple interconnected devices. Through the use of re-

programmable digital processors generic inverters can be mass-produced, with specific software

loaded for a given application. Digital processors with high speed networks also permit arrays

of inverters and overriding controllers to be connected together to produce a large distributed

system. Large distributed systems allow smaller but higher performance blocks to be intercon-

nected to produce a larger high power system, meeting both the requirement of high power and

high performance. An example would be a number of parallel-connected small inverters that all

receive the same control reference, effectively operating as one high power inverter. Figure 1.1

shows an example break-down of a grid connected inverter system made up of multiple parallel

inverter modules.

1.1 INVERTER REQUIREMENTS

The use of multiple connected inverters has several key requirements that must be addressed

either by hardware or software.

• High performance. The inverter controller must achieve a relatively high performance
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Module
Controller

Module
Controller

Module
Controller

Parallel
Control

Grid
ControlGrid

Figure 1.1: Parallel grid-connected inverter system.

within the switching frequency constraint imposed by the transistors. For grid connected

applications the inverter typically uses an inductor-capacitor filter to reduce the voltage

and current ripple. In the absence of passive damping, the controller has to manage the

filter to prevent resonance.

• Ability to power share with other inverters. To achieve power scaling by connecting to-

gether multiple inverters, the controllers need to be not only capable of power sharing,

but also to ensure that there are no high frequency effects such as resonances between

inverters.

• Operate with other grid connected sources and loads. The controllers in emerging grid

connected applications need to be designed with the intention of not disturbing other

sources and loads, and there should be a method for evaluating if they will.

1.2 AIM OF RESEARCH

The focus of this research is to develop control methods for parallel grid connected inverter

systems that satisfy the requirements listed in the previous section: high performance, power
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scaling and grid-connectibility. The control methods and analysis should not only be effective

at meeting the requirements, but also address the implications of applicability, reliability and

reasonable cost. The controllers should be applicable using existing readily available state of

the art hardware for the inverter platform; should be as reliable as a single smaller inverter; and

have comparable cost to large inverter systems of similar ratings.

1.3 STRUCTURE OF THESIS

The thesis is broken into six sections. Chapters 2 through 4 review the application inverter

requirements, the constraints imposed by the hardware, and the current methods for inverter

control. Chapter 5 introduces a high performance discrete-time inverter controller for use with

high power inverters, and includes proof of design. Chapter 6 provides in depth stability analysis

of parallel connected inverters, uncovering stability constraints as a result of the control algo-

rithms used and how to prevent them. Chapter 7 then continues by looking at the implications

of grid connected inverter systems, such as how they are controlled, and more importantly, how

to analyse high complexity systems with multiple sources and loads.



Chapter 2

INVERTER REQUIREMENTS

2.1 INTRODUCTION

Inverters are increasingly being applied to a wide range of different applications, and the per-

formance and power requirements are continually increasing. This chapter first investigates the

various applications inverters are being applied to. Having defined the performance and power

requirements, the capabilities of the state of the art devices are reviewed and suitable devices

are chosen to meet the application requirements.

2.2 INVERTER CONTROL MODES

Whether or not an inverter system consists of a single inverter module or an array of connected

modules, at the Point of Common Coupling (PCC) to a grid an inverter system operates in

one of two main modes, a current source inverter (CSI) or voltage source inverter (VSI). While

most inverter systems operate in either one of these modes, typically the hardware for both is

similar and it is possible to operate in a mixed mode. Both CSIs and VSIs exhibit some form

of impedance, as shown in Figure 2.1. Low impedance systems are considered voltage sources,

while high impedance systems act as current sources.

A voltage sourcing inverter is usefully described by the equivalent circuit shown in Figure 2.1b.

Ideal voltage sourcing inverters are immune to loading, and would therefore have zero output

impedance. In defining the voltage, voltage sources also define the frequency. Voltage sourcing
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(a) Current Source (b) Voltage Source

Figure 2.1: Current and voltage sources.

systems are capable of acting as standalone grid sources as they can be used to define the grid

voltage and fundamental frequency. As a result, most of the large power sources in grid systems

are voltage sources and align their voltage and phase for power-sharing compliance.

A current sourcing inverter is usefully described by the equivalent circuit shown in Figure 2.1a.

Ideal current sourcing inverters are immune to the external voltage, and would therefore have

an infinite output impedance. Without any additional grid impedance current sourcing systems

are unable to directly control the grid voltage and frequency, and are therefore most often used

in applications where they are coupled to a load or source with a back emf. Typical appli-

cations include VSDs, static synchronous compensators, regenerative rectifiers and harmonic

compensators.

2.3 APPLICATIONS

The two fundamental inverter modes are used to implement application specific systems. In each

case a higher level control function is wrapped around the underlying CSI or VSI mode. Different

applications have different requirements of the inverters response to an input reference and its

output impedance. Often different applications are available that trade off certain features. For

instance in some applications perfect response may be traded off against its operating efficiency.

2.3.1 Power Quality

Inverter systems are used in many power quality applications. Common applications are dual

conversion systems, series-connected voltage sourcing system and shunt-connected current sourc-
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ing systems.

Uninterruptible power supplies (UPS) are full conversion systems which use batteries to supply

the load when the input supply sags or disappears. A CSI is used as the grid-connected rectifier

that under normal operation charges the batteries, and a VSI is used to create a local grid for

the load. The VSI is expected to have a low output impedance but does not need a fast reference

(setpoint) response as it runs at a constant output voltage and frequency.

Series connected voltage sourcing systems, also known as Dynamic Voltage Restorers (DVR),

are typically used in sag (and swell) mitigation and voltage regulation applications. A VSI is

connected in series with the grid (transformer coupled) to provide active voltage adjustments.

For voltage regulation applications the inverter is rated to the amount of regulation required.

For instance a voltage regulator with a ±10% adjustment only needs to be rated at 10% of

the load. The same applies to sag mitigation applications. For sag mitigation applications

the reference response must be fast enough to respond to sudden voltage sags, typically in the

millisecond range. The DC bus supply for series connected systems may be either via external

storage or an additional supply. Although sag mitigation systems do not provide the same level

of power security as UPSs, they have a lower operating cost footprint. Statistical analysis is

often performed on the voltage quality history for a given application to determine if sub-perfect

sag correction provided by series connected systems is acceptable due to the lower operating

cost.

Shunt connected applications typically include Static Compensators (STATCOM), harmonic

correction and power sourcing. STATCOMs typically source and sink VArs to provide voltage

or power factor regulation at a common point of coupling in large grid systems. The STATCOM

or power sourcing reference response is typically in the range of several milliseconds. Harmonic

correction applications require a reference frequency response at least as high as the harmonics

that are to be corrected. Where similar response rates are required VAr compensation, power



8 CHAPTER 2 INVERTER REQUIREMENTS

sourcing and low-order harmonic correction functionality may be incorporated into the same

unit.

2.3.2 Frequency Converters

Frequency converter applications can contain a mix of fast and slow responding CSIs and VSIs.

In applications where voltage and frequency support is not required CSIs are predominantly

used as they can also provide other current sourcing functionality listed in the previous section.

If voltage and/or frequency regulation is required voltage sourcing systems are required. These

include applications where one of the inverters may be the only voltage source, or where multiple

voltage sources are present and voltage/frequency droop is used (refer to Chapter 7).

In back-to-back applications where little or no DC storage is present, at least one of the inverters

is required to regulate the DC bus. Typically at least one CSI is used as it provides a rapid

response. The DC bus regulator provides power flow by either sourcing or sinking current from

the DC bus to maintain its level.

Frequency converter applications have mixed range of response and impedance requirements,

which are dependent on the different modes used. Current sourcing modes need a relatively

fast response to ensure the DC bus is controlled in the presence of any load changes. Voltage

sourcing systems have either a fixed output reference (standalone operation) or must provide

voltage/frequency droop, which is an intrinsically slow response (similar to generator mechanical

time constants). Standalone systems require a low output impedance to ensure low voltage dis-

tortion, whereas voltage/frequency droop applications require a relatively high inductive output

impedance (refer to Chapter 7).
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2.3.3 Distributed power

Examples of distributed power sources are large photovoltaic installations, fuel-cell systems,

and battery energy storage systems. The inverter is typically used to couple DC sources or

loads to a grid. The control response speed requirement for distributed power applications is

similar to frequency converters. Distributed sources are often sparsely connected with little or

no intercommunication aside from through the grid itself. They can either utilise CSIs where

simple current sourcing is required, or VSIs can provide islanded grid operation.

In distributed power applications, depending on the geographical locations and the compatibility

of different equipment, multiple inverters may be either coupled using high speed communication

links or may only have the grid itself for power balancing. High speed communication links allow

multiple separate systems to accurately balance their load, effectively operating as a large single

system. Systems that provide power balancing using the traditional voltage/frequency droop

method are subject to any associated stability implications.

2.4 DEVICE CONSTRAINTS

The applications discussed illustrate the requirement for high power inverters, and sometimes

with high bandwidth as well. The various switching devices available for construction of inverters

impose physical constraints that force a trade-off between power and bandwidth.

To produce high power inverters power electronic switching devices are used as they are the most

efficient way of electronically controlling a voltage or current. In low power and high fidelity

systems, such as audio amplifiers, linearly controlled devices are often used, but have a low

efficiency due to dissipation in the devices. The bandwidth constraint that switching devices

impose is the rate at how fast and often they can transition between the on and off states. The

rate at which a device can transition is typically related to the inverse of how much power it can

switch.
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Figure 2.2: Modern power semiconductor device operating voltages and currents vs switching
frequency. Information compiled from ABB [1] and Semikron [2] product catalogs.

For a given device there is an associated energy dissipation each time the device transitions

between the on and off states. The greater the rate of transitions, the greater the switching

energy dissipation, and how much energy a device can dissipate is determined by the physical

structure of the device. The on-state losses, switching losses and the device package’s ability to

dissipate the losses are used to back-calculate a tolerable switching frequency.

Over the last 50 years a wide and mature range of power electronic switching devices have become

available. They range from the high power but slow thyristor, invented in 1957; to high speed

devices such as the MOSFET, invented in late 1970’s. While the design and construction of the

different devices varies, each provides a trade-off in terms of specification such as forward current

capability, blocking voltage and switching frequency. Figure 2.2 shows the common voltage and

current ranges against switching frequency for modern switching devices (at time of writing).

Figure 2.3 shows more generally the switching power rating of modern devices versus switching

frequency and where particular devices typically operate. While the development of new devices

and the improvement of existing devices has in no way ceased or declined, new devices tend to

offer finer granularity in Figure 2.3, while improved devices make incremental improvements by

increasing the safe operating area boundary upwards.
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Figure 2.3: Modern power semiconductor device power vs switching frequency.

For the applications considered in the previous chapter, control bandwidths up to and above

the the tenth harmonic are required. Of course to achieve a particular bandwidth, the switching

device must switch at least twice as fast (Nyquist limit). In practice, the switching ‘noise’ created

by switching devices must be filtered which at the same time hinders the available bandwidth.

To achieve the bandwidths required in the previous chapter, from Figure 2.2 the only suitable

devices for medium power applications are MOSFETs and IGBTs. While MOSFETs easily

achieve the bandwidth requirements, it is simply impractical to scale them in parallel or series

configurations to achieve megawatt power levels. IGBTs meet the bandwidth requirements and

can also achieve high power levels, and as a result are often the switching device of choice for

high power and high bandwidth applications. The control methods developed here in this thesis

have been targeted at IGBT inverters that have switching frequencies around the ten kilohertz

range.

The frequency calculation formula given in Appendix A can theoretically determine the max-

imum switching frequency and output power for a particular device. The results for a range

of IGBT devices from various manufacturers are shown in Figure 2.4. The light blue line in

Figure 2.3 that stands out in front of the rest of the data is from the original device power vs

frequency plots presented in literature [4]. The distance between the literature quoted maxi-

mums for devices clearly highlights that although there are devices that can hit one of the limits
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Figure 2.4: Actual modern device power vs switching frequency. (Note log scales)

such as current, voltage or frequency, there are no single devices that can simultaneously achieve

all of these as suggested.

Given the channel bandwidth constraint for devices in Figure 2.3, to achieve greater power levels

for a given device bandwidth multiple devices must be used. Naturally, device manufacturers

package larger device dies into larger packages to achieve greater power ratings. Unfortunately

however, devices can only be scaled up to a certain size before they geographically become too

large to operate effectively. This is already employed by manufacturers of different device types.

Majority carrier devices such as MOSFET intrinsically lend themselves to being paralleled,

however, they lower on-state performance at higher voltages (¿200V). Minority carrier devices

however, such as IGBTs, are are not easy to parallel and must be geographically close and have

very similar characteristics (eg from the same manufacturing batch) to ensure current sharing [4].
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2.5 CONTROL REQUIREMENTS

As the switching devices in an inverter are the only controllable power device, the device’s band-

width defines the inverter’s maximum achievable control bandwidth. So for a given application

that requires a minimum controllable bandwidth, either a device with a sufficient switching fre-

quency is required, or multiple interleaved slower devices are required. While PWM-modulated

devices provide an accurate voltage (on or off with a definable duty cycle), the output filters,

which are low-loss inductors and capacitors, must be included in the control algorithm in order

to prevent undesired resonance. As a result, high performance controllers must be used that

offer the best inverter bandwidth for a given device switching frequency. For low power inverters

(less than ∼ 1kW) high speed devices are often used that switch often well in excess of the

required control bandwidth. However, for higher powered inverters the switching frequency of

the devices can become a constraint.

In addition to achieving the greatest bandwidth for a given switching frequency, modern con-

trollers are often required to be realisable in discrete-time so they can be used with digital proces-

sors. Digital processing devices such as Digital Signal Processors (DSP) and Field Programmable

Gate Arrays (FPGA) are invaluable due to their ability to be reconfigurable. Being reconfig-

urable permits high complexity controllers that can be modified during run-time, however, due

to the sampling nature of digital processors the controllers must be designed accordingly.

The design and implementation of existing inverter controllers is discussed in detail in Chapter 3.

Later in Chapter 5 a high performance discrete-time controller is derived.

Herein an inverter’s bandwidth is defined as its forward response: its output as a function of

its input reference. An ideal forward response is a 0dB attenuation with no phase lag for all

frequencies, but this is rarely achievable. Most forward responses roll off with a -3dB bandwidth

defining frequency.

A controller’s bandwidth is typically a linear transfer function in either continuous or discrete-
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time. However, all inverters have actuator limits imposed by their bus voltage. These concepts

and implications are further explored in Chapter 3.

Given the switching frequency constraints imposed by high power devices, the inverter power is

traded off against its achievable bandwidth (a function of its switching frequency). To increase

the power beyond that of a single device while still maintaining a certain switching frequency,

devices have to be connected in parallel (or series).

This thesis is primarily concerned with actively paralleled inverter configurations to achieve

an increase in inverter power while maintaining a control high bandwidth. In Chapter 6 the

outcomes regarding actively paralleled inverters in [5] are further investigated.

Actively paralleling inverters not only enables higher powered inverter systems for a given control

bandwidth. By using distinct modules of a fixed size, inverter systems of a wide range of powers

can be constructed by simply adding more modules, whilst maintaining a high control bandwidth.

This has significant manufacturing advantages as it means that a wide range of products can be

made using the same module. The maximum power limitation is only constrained by how many

modules can be connected in parallel. The limitation on the number of modules that can be

connected in parallel is related to how they are connected together and their control strategy.

In Chapter 6 investigations uncover stability constraints that are a based on the interconnecting

impedance between a given type of actively paralleled inverter. If the stability constraints are

appropriately managed then the maximum number of parallel modules is only constrained by

size and by the mechanism for propagating reference signals to the modules.

A key consideration when developing a modular system is the individual module size. Again this

decision comes back to the availability of devices, their power rating and switching frequency.

The available device packages dictate how much power a device can dissipate and therefore what

power and switching frequency can be used for a given enclosure’s ability to dissipate heat.

Conceptually, implementing parallel or series configurations is quite simple. If ideal sources are
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used, in the case of parallel configurations current sources (Zo =∞) must be used, whereas for

series configurations voltage sources (Zo = 0) must be used. In practice however, it will be later

shown that ideal sources are not achievable. In certain applications it may be advantageous

to implement parallel configurations using voltage sources, in particular this is useful if the

inverter array will be used as a voltage source. In a parallel configuration where the input

voltage references are the same (or similar) it is possible to use voltage sources with low output

impedances without large current imbalances. If two voltage sources similar to that shown in

Figure 2.1b are connected in parallel and assuming Zo,1 = Zo,2, the unbalanced current ∆I from

one module to the other module is simply:

∆I =
V1 − V2

Zo
(2.1)

Later in Chapter 4 the derivation of a continuous-time VSI is discussed and in particular how the

controller implementation lends itself to being used in parallel configurations. The advantages

and disadvantages of different parallel VSI implementations are further discussed in Chapter 6.

2.6 RELIABILITY

When producing industrial equipment one of the key considerations is reliability. For the often

high-uptime applications and the 20+ year life cycles expected of industrial equipment, inverter

manufacturers must be able to ensure a high reliability product. The reliability of an inverter

configuration is the probability of the system—which may include many inverters in a single

system—being operational.

Many different characteristics contribute to a product’s reliability. Each individual component

used in a product, the way in which they are assembled, and the manner in which they are

enclosed and the environment they are in, all contribute to the system’s reliability. A common

misconception is that individual, one-off, hand-made products are of the best quality, and that
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therefore they have a high reliability. On the contrary, products manufactured in high volume

where continued refinements can be made typically offer a much higher reliability. This is evident

in the consumer electronics and automotive industries. For many high power electrical systems

however, each scenario is often quite different and it may be hard to standardise on one product.

Inverter systems that can be connected in parallel or series to offer power scalability have the

advantage of being able to be used in many different applications, especially if the common

inverter modes (CSI and VSI) are easily configurable.

While large arrays of inverters (parallel or series) lend themselves to manufacturing in high

volumes, unfortunately they also present a high degree of complexity. Increased complexity

can, if not appropriately managed, lead to reduced product reliability. If the complexity of

a component can be abstracted, such that a well-defined simplified model can be used, then

the increased complexity may be potentially mitigated. A good example is of parallel inverter

modules. While each inverter may include many components including the power electronic

devices, the controller, transducers, communications links, etc, the complexity can be abstracted

by setting up the module to do a single defined task, such as a VSI or CSI. In this manner the

complexity of all the different components is abstracted to the module’s output impedance and

its forward response. The abstraction also allows the components, controllers and algorithms to

be different between different inverters as long as they all behave in the same manner.

The ability to abstract complexity is further discussed in Chapter 6 and [5] regarding actively

and passively balanced parallel inverters. The actively controlled configuration, where each

module has its own controller and transducers, despite being intrinsically more complex is able to

sufficiently abstract the component complexities, allowing the modules to be paralleled without

any power derating. The passively balanced parallel system, however, not only has to be derated,

but the implemented systems exhibit a higher rate of failures. At time of writing, the test

hardware in Appendix G which uses actively paralleled inverter modules has demonstrated zero
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Figure 2.5: Unit reliability “Bathtub” curve.

module failures in the field, with a range of systems from single to up to 32 parallel modules.

The previous generation of passively paralleled systems, with a similar number of products in the

field, have demonstrated a greater level of failures where multiple parallel devices are used, while

still using similar manufacturing techniques. Due to the tight coupling between devices in the

passively paralleled system, when they did fail, the initial failure of one device would inevitably

destroy the remaining paralleled devices, whereas during testing failures in the actively paralleled

system were confined to a single failed module.

The reliability for equipment is often defined by its Mean Time Between Failures (MTBF).

MTBF figures represent the average lifetime of a unit, where a ‘unit’ is a single piece of hardware

such as an inverter module). For most equipment where the failure distribution is exponential,

the MTBF is simply the reciprocal of the failure rate λ. Most units typically have a failure

rate that follows the “bathtub” curve, as shown in Figure 2.5. The area of the bathtub curve

that MTBFs typically refer to is the flat area in the middle where the failure rate is constant.

MTBF calculations in Appendix B show that inverter arrays with redundant modules can deliver

MTBFs that are proportion to the square of monolithic inverter MTBFs.

Industrial equipment can have life cycles that are decades long. In this time however, components

required for constructing new or maintaining existing equipment may become obsolete and may

no longer be available. This commonly happens with emerging technology devices which are
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constantly being improved. Unfortunately for high reliability industrial systems not only do

replacement components need to be rigorously tested, there simply may no longer be suitable

replacements. For industrial systems with life cycles of thirty-plus years, obsolete components

is not only a risk, they are inevitable.

As introduced in Section 2.5 in large inverter systems it is common to parallel multiple devices to

achieve a greater current capacity. In passively controlled systems (detailed in Section 3.5) the

similarity of devices is exploited to ensure current sharing. The paralleled devices are matched,

often from the same production run, to ensure current balance. However, when these systems

fail catastrophically, even if they do not destroy every paralleled device (which they commonly

do), every device has to be replaced to ensure current sharing. If one of the devices becomes

obsolete the entire system may have to be replaced.

2.7 SUMMARY AND DISCUSSIONS

Different inverter applications have different performance and power requirements. Common

applications such as STATCOMs, distributed generation and frequency converters have sub-

cyclic response requirements requiring both high performance semiconductor devices and high

power capability. Grid connection and frequency converter applications can have continuously

varying power requirements stipulated by the grid conditions. Power quality applications have

to respond in sudden transients in often under a millisecond.

An inverter with a fast response rate requires a switching devices with a fast switching frequency.

The study of various power electronic devices indicates an inverse relationship between device

switching frequencies and power switching capability. While power requirements can be met

with low power devices by parallel or series connection, increasing the switching frequency is

limited by the device. As a result, devices which can achieve the minimum switching frequency

are chosen, and for the applications addressed herein the IGBT is the optimum device.
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If device power sharing is controlled in parallel or series connected systems, another advantage

of having multiple identical hardware units emerges which is manufacturability and reliability.

Continued manufacturing of identical items leads to increased reliability, manufacturability and,

as a roll-on effect, cost.

Following the investigation of achieving a high performance inverter from parallel or series con-

nected systems, the next chapter investigates how current state of the art inverter controllers

are designed and explores their associated constraints.





Chapter 3

INVERTER DESIGN

3.1 INTRODUCTION

Having defined the key requirements for different inverter applications, the components for

implementation of an inverter are now defined and developed. As expected, over time improved

components have allowed not only more powerful and more compact designs (for a relative

power rating), but have also permitted different topologies and control techniques which may

have been previously restricted to theoretical analysis. New components and techniques also

present different constraints to control design.

State of the art inverter implementation requires detailed design which considers the power

electronic components, the digital controller, and the interfaces between them. This chapter

details the various processes and components involved, and the associated constraints imposed

by each of these. Firstly the fundamental principles for inverter design are discussed, and then

how the designs are extended, for example to three-phase or parallel systems. Individual key

components which must be addressed when designing digital controllers are reviewed and their

associated constraints are presented. Performance indices for benchmarking controllers are then

discussed.

3.2 DESIGN AND IMPLEMENTATION

The inverter design follows an iterative process which typically involves the following steps:
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Figure 3.1: Closed-loop system in negative feedback.

• Theoretical design and analysis.

• Numerical testing.

• Physical implementation.

• Roundtrip verification to test and confirm the operation against numerical investigations.

While inverter hardware topologies can be configured to be either a voltage source or current

source, by closing the loop (controlling) the output filter can produce either a voltage or current

sourcing output. For instance, current sourcing operation from a voltage sourcing topology

can be achieved by implementing it with a current control loop. Multiple voltage and current

control loops can be cascaded in applications consisting of multiple filter elements, such as an LC

filter. Herein this thesis the hardware topology is assumed to be a standard three-phase voltage

configuration, although the concepts are equally applicable to current sourcing topologies.

3.3 CONTROL FUNDAMENTALS

In this section the key concepts of linear control systems are reviewed [6]. Primarily all linear

control systems stem from the closed-loop negative feedback system as shown in Figure 3.1,

which is trivially simple. Beyond a simple linear closed-loop system, practical realities introduce

complexity and non-linearity. This section deals with differing techniques common in analysing

control systems, specifically continuous-time and discrete-time systems, and also the delays

inherent in both of these. Often an additional cause of delays are the parasitic elements typically
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present in inverter systems, such as computational delays, sampling delays and those introduced

by the modulation process. Finally the methods for dealing with multi-phase systems are detailed

in Section 3.3.4.

In three-phase AC systems the voltage and current vectors are often represented in a rotating

reference frame (Section 3.3.4) allowing the signals to be treated as DC signals. An exception is

discussed in Section 4.2 where integrators and resonators are used for eliminating steady-state

errors.

The controllers discussed and developed in this thesis are primarily concerned with Linear Time

Invariant (LTI) systems which can be expressed and analysed using transfer functions. Non-

linear control systems such as hysteretic systems are beyond the scope of this thesis. In addition

to LTI systems, pure delays in continuous-time are also examined.

3.3.1 Continuous-time systems

Continuous-time systems are herein modelled in the frequency domain using the Laplace dif-

ferential notation, where s is the Laplace operator. Continuous-time systems and control loops

have historically been the most common representation of systems as they are the easiest to

comprehend. They provide simple models for practical systems, including electrical and me-

chanical components. Frequency response is found by using the conventional Laplace evaluation

of F (s) at s = jω.

To briefly review, when analysing continuous-time systems the poles and zeros determine the

response of the system, while the poles alone govern the stability of the system. For continuous-

time systems a pole or zero has a natural frequency ω0, and if it is a complex pole-pair it also

has a damping ratio ζ. For real poles and zeros the natural frequency is its magnitude, whereas

for a complex pole-pair the natural frequency and damping ratio are given by:

s2 + 2ζω0s+ ω2
0 = 0 (3.1)
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Figure 3.2: Example of a mixed discrete and continuous-time sampled system.

While Laplace operators are ideal for modelling linear continuous-time systems, non-linear com-

ponents common in inverter controls, such as transport delays, cause these systems to become

computationally complex. In the Laplace domain a transport delay τ is represented as e−sτ .

Frequency responses for systems with delays may still be evaluated, allowing the use of Bode

and Nyquist diagrams, but the non-linear nature makes analysis difficult.

Despite their non-linear nature, there are several methods for dealing with delays in systems. In

the Laplace domain a common method is by means of a Padé approximation which approximates

the delay with an n-order linear system. Second or third order approximations typically achieve

results to within 1% at low frequencies, but with the disadvantage that the system order is

significantly increased.

Despite its non-linear nature, the Lambert W function can be used to solve non-linear equations

which involve exponentials. The Lambert W function is the multivalued inverse function of

y = W (x)eW (x). Its exponential relationship allows analytical solutions to be found for simple

systems with delays. Unfortunately application of the Lambert W function becomes non-trivial

as the system order increases. Several examples provided in the literature [7, 8] document the

use of the Lambert W function with higher order systems.

The application of the Lambert W Function to closed-loop control systems is given in Ap-

pendix C.
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3.3.2 Discrete-time systems

Discrete-time sampled systems are herein modelled and analysed in the Z domain, using the Z

discrete notation, where z is the Z operator and z−1 is a unit delay. When analysing mixed

continuous and discrete-time systems, discrete-time analysis is used. Figure 3.2 illustrates the

typical scenario of a discrete-time system, where Gc(z) is a discrete-time transfer function and

Gp(s) is a continuous-time transfer function. To analyse mixed continuous and discrete-time

systems, the continuous-time system is first discretised. The complete closed-loop system in

Figure 3.2, including all appropriate delays, may then be analysed in discrete-time.

Due to the sampling process, discrete-time systems are often less intuitive than similar continuous-

time systems, although thankfully most LTI systems in nature are fundamentally continuous-

time based. This of course includes electric components. When analysing mixed continuous

and discrete-time systems, the simplest approach is to design discrete-time systems which oper-

ate in a similar manner as continuous-time systems. For this reason transforms which provide

mappings between continuous and discrete-time are employed.

For transitions between continuous and discrete-time systems, the Analog to Digial Converter

(ADC) and Pulse Width Modulation (PWM) transitions in inverter systems insert Zero Order

Hold (ZOH) sampling delays. ZOH discretisation is performed using the common process:

Gp,ZOH(z) = Z

[
L−1

{
1− e−sTs
sTs

Gp(s)

}∣∣∣∣
t=kTs

]
(3.2)

=
(
1− z−1

)
Z
{
Gp(s)

s

}
(3.3)

Where Z{} and L−1{} are the Z and inverse Laplace transforms respectively. Ts is the discrete

sample period. Delays which are an integer multiple of the sample period are simply added as

z−n, whereas fractional delays can be converted using the Advanced Z transform.
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3.3.3 Parasitics

In practical systems all components have some form of parasitic effect. Most parasitic effects

are trivial and although they may be considered during the physical design, most have little or

no effect on a system’s overall closed-loop control. There are however, some parasitic effects

which do have significant effects on control systems and must be considered. The most com-

mon parasitic effects which can affect inverter control systems are device deadtimes, parasitic

inductances, inductance non-linearity (due to saturation), and transducer errors.

During the design phase each parasitic effect is evaluated and design choices are made in order

to minimise the effect on the overall control response. In all practical systems however, it is

not possible to eliminate all parasitic effects, and therefore robust controller designs which have

a high immunity to parasitics are required. The most significant parasitic effects which affect

control systems are transducer errors. Both voltage and current transducers are often exposed

to large common-mode dV
dt and dI

dt relative to the differential signals they are sensing. Current

transducers with a sufficiently high common-mode rejection ratio, suitable to be used in inverter

control systems have only become available in the last decade as a result of the development

of high quality Hall Effect sensors. Even with improved transducers, inductor current signals

intrinsically have a high ripple as a result of being directly connected to the switching devices.

One method of improving control robustness to transducer errors is to simply reduce the number

of transducers required and to ensure that the ones which are used have a high immunity to

disturbances. An example of only using voltage feedback is the controller designed in Chapter 5.

Inductor current feedback is used only to to provide current limiting.

3.3.4 Multiphase systems

With the exception of a few applications, such as locomotive traction applications, above a few

kilowatts most electrical systems are typically three-phase. At a national grid level all loads
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Figure 3.3: Three-phase stationary and rotating reference frame coordinate relationships.

and sources are strictly three-phase. Given that the inverter systems described in this thesis are

designed for application to high power grid-connected systems, their implementation is based

on three-phase hardware. When dealing with three phase systems where the three-phases each

have a 120 degree separation rotating at a fundamental frequency (usually 50 or 60Hz), vector

notation is used to describe the trajectory of each phase.

Herein, for the stationary reference frame the three individual phases (abc frame) are projected

onto two axes denoted αβ (alpha-beta) with a separate zero sequence axis. This thesis is only

concerned with three wire systems where the zero sequence component is uncontrolled and

therefore neglected. In many applications the αβ stationary axis is projected onto the two

rotating axes, denoted the dq axis (direct-quadrature). The convention used in this thesis is

that the q-axis is aligned to the real component and the d-axis lags by 90 degrees (and is on

the imaginary axis), the same as the convention used in machine modelling where the d-axis

is aligned to the synchronous machine salient rotor. Figure 3.3 shows the relationship between

these three reference frames. The reference frame transforms for three-phase variables are the
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Clarke (eqns 3.4 and 3.5) and Park transforms (eqns 3.6 and 3.7), respectively, defined as:
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Often when using two-axis models for the stationary (αβ ) and rotating (dq ) reference frames,

complex vector notation is used. This further simplifies the αβ to dq projection which is inher-

ently a frequency shift. The transformation equations 3.6 and 3.7 can then be written:

vdq = e−jθvαβ (3.8)

vαβ = ejθvdq (3.9)

Where θ = ωt (3.10)

When referring to three-phase systems in the stationary reference frame, unless specifically

mentioned the αβ frame is used rather than the abc frame. In digital systems the use of the

Clarke transform is often assumed and may not be explicitly mentioned. As the Park transform

performs a frequency shift and requires knowledge of the fundamental frequency, the use of a

Phase Locked Loop (PLL) will either be implied or specifically mentioned.
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Figure 3.4: PLL model.

A PLL is typically used to lock to a reference voltage (often the grid voltage). The PLL imple-

ments a proportional-integral (PI) controller which seeks to zero the d-axis component, synchro-

nising to a given frequency, usually the fundamental. In most power electronic applications the

fundamental frequency is positive sequence 50 or 60Hz. The PLL form is shown in Figure 3.4

and the effects of PLLs in grid-connected inverter applications are explored in Chapter 7.

When designing multiphase controllers a decision has to be made as to which parts of the con-

troller will be implemented in each reference frame, specifically the αβ and dq reference frames.

In some applications it is often advantageous to implement different parts of the controller in

different reference frames. The use of a particular reference frame is specific to different applica-

tions. There are several applications where the choice of a particular reference frame is obvious,

and other applications where there may be cases for using either.

Due to the mathematical relationship between reference frames, representations of electrical

components, for example in simulation or a state observer, may be implemented in either refer-

ence frame. Usually a particular reference frame may have a simpler representation. Electrical

components modelled in the αβ frame are independent on each axis (no cross coupling), but

have cross coupling terms in the dq frame. For example an inductor with admittance 1
sL has no

cross coupling in the αβ frame, but when frequency shifted to the dq frame the admittance is

1
L(s−jω) , where the imaginary component becomes a cross coupling term.

Mechanical machines couple torque and flux to the individual electrical rotating axes d and

q respectively, which results in an asymmetric model in the d and q-axis. In electrical sys-
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tems real and reactive currents relate to the q and d axes respectively, favouring the dq frame

representation.

Often there is a tendency to implement a controller in the dq frame as the frequency shifting effect

allows the fundamental AC signals to be treated as DC signals, thereby permitting the use of

easier to understand components such as integrators and differentiators. The use of a resonator

in the αβ frame is inherently more complex than an integrator. In systems where only positive

sequence is of interest, such as machines, integrators in the dq frame are an appropriate choice.

If both positive and negative sequence components are of interest the αβ frame is well suited as

simple uncoupled resonators operate on both the positive and negative frequency components.

When implementing three-phase systems, modulation schemes such as Space Vector PWM

(SVPWM) or Third Harmonic Injection PWM (THIPWM) achieve a greater line to line modu-

lation index by effectively injecting a zero sequence component. Both SVPWM and THIPWM

inject a triplen-frequency component [6]. SVPWM injects a triangular component whereas

THIPWM injects a sinusoidal component. Both methods have the effect of increasing the max-

imum modulation depth from 1.0 to 1.15
(

2√
3

)
.

3.4 INVERTER ELEMENTS

This section details the core hardware elements which combine with the control concepts to

complete an inverter. To control any system the control system provides actuator references

to the core elements. In the case of an inverter the actuator is the PWM controlled switching

stack, and the core elements are the filter components and the load. The three main parts of an

inverter are the PWM switching converter stack, the output filter and load, and the controller

interface.
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3.4.1 PWM

Fundamentally PWM modulators provide an almost perfect voltage amplifier, where the output

voltage is a defined ratio of the input voltage (typically a DC bus). For digital modulutors, the

resolution and accuracy are defined by the carrier resolution, and any switching parasitics such

as deadtimes. In systems with stiff DC bus voltages PWM provides an almost perfect voltage

source. Unfortunately the almost perfect amplifier characteristic is polluted with both common-

mode and differential-mode switching noise. While the common-mode noise can be referred to

either the AC or DC side, the differential-mode ripple must be filtered to achieve the underlying

reference waveform.

Aside from producing a signal with a modulated signal where the pulse width is relative to the

reference signal, PWM modulators come in several different varieties. The key differences are

the carrier wave shape (triangular or sawtooth) and the sampling method (natural or regular).

Without loss of generality the analysis in this thesis only deals with triangular (symmetric)

carrier wave shape for use in generating three-phase voltage references, and generated PWM

signals are typically used to directly control the gate drive signals driving the switching stack.

The difference between natural and regular PWM is that for natural PWM the input reference

is sampled in continuous-time, whereas the regular sampled PWM is only sampled either once

or twice per switching period (each half of the triangular carrier wave). In practice due to

the discrete-time nature of digital controllers, true natural digitally controlled PWM is not

achievable. That said, it is possible to implement PWM modulators which calculate and update

at rates greater than the carrier frequency. Herein the convention of a nomalised PWM carrier

top and bottom is +1 and -1 respectively, therefore a reference signal of 0 produces a 50% duty

cycle.

Theoretically, due to their continuous-time nature and lack of delays (apart from propagation

delays), natural PWM modulators have an infinitely wide bandwidth for any single chosen carrier
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Figure 3.5: Current controller with naturally sampled PWM.

frequency. Unfortunately, to achieve this a natural PWM modulator has no limitation which

restricts the switching frequency to the carrier frequency. If the reference signal intersects the

carrier more than twice in one carrier period then the switching frequency will go beyond that

of the carrier, therefore natural modulation only imposes a minimum switching frequency equal

to the carrier frequency (or lower during over-modulation).

To constrain the switching frequency to the carrier frequency, the reference and carrier signals

must only intersect twice per carrier period (once for the rising edge and once for the falling).

This is achieved by constraining the slope of the reference signal to be less than that of the

carrier. For a closed-loop control system the slope constraint can be used to constrain the

control variable (typically its bandwidth). Figure 3.5 shows a simple continuous-time, naturally

sampled current controller operating into a short circuit. Given that the carrier triangle wave

has one rising and one falling slope per period between the top and bottom values, the carrier

slope
∆Vpwm,carrier

∆t is:

∆Vpwm,carrier
∆t

= ± 4

Ts
= ±4fs (3.11)

The slope of the PWM reference signal
∆Vpwm,ref

∆t is:

∆Vpwm,ref
∆t

= KI

(
∆Iref

∆t
− ∆IL

∆t

)
(3.12)

The slope of the inductor current ∆IL
∆t in this scenario is governed by the PWM modulator
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Figure 3.6: Natural PWM mid-period update.

output voltage VL, which is either +1pu or -1pu, resulting in the slope:

∆IL
∆t

= ± 1

L
(3.13)

Constraining the PWM reference signal slope to be less than or equal to the carrier slope gives

the following relationship for the rising edge:

∆Vpwm,carrier
∆t

≥
∆Vpwm,ref

∆t
(3.14)

4fs ≥ ωiL

(
∆Iref

∆t
− 1

L

)
(3.15)

∴ ωi ≤
4fs

L
∆Iref

∆t − 1
(3.16)

Where ωi is the controller bandwidth.

From equation 3.16, for a DC system where the controller input reference signal remains un-

changed
(

∆Iref
∆t = 0

)
the switching frequency will not exceed the carrier frequency as long as

the controller bandwidth ωi is less than four times the carrier frequency. It is worth noting that

equation 3.16 is only the worst case scenario as small input reference changes may not necessarily

cause a switch to occur. This simple naturally sampled PWM scenario, with no delays, gives an

indication of the likely best-case scenario upper limit for a CSI bandwidth.
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In practice only analog systems can realistically achieve almost zero-delay continuous-time feed-

back systems. Digital systems with close to this performance can be achieved by sampling at a

greater rate than the carrier frequency, known as oversampling. In digital applications further

complications arise as a result of how the PWM modulator is implemented. Most if not all

PWM peripheral modules in microcontrollers and DSPs use equality comparators rather than

magnitude comparators. In most applications a PWM reference signal is only updated once or

twice per period and at the top or bottom carrier values (regular sampled PWM), so as the

PWM carrier counter increments (or decrements on the falling slope) it is guaranteed to at some

point be equal to the reference value and cause a PWM switch event. In naturally sampled

systems the reference is updated more than twice per switching period and if the reference value

is again updated during the same carrier period the updated value may be on the other side of

the carrier waveform causing an immediate switching event. If an equality comparator is used

this type of event would be missed or would have to be performed in software. Figure 3.6 is an

example of a mid-period reference update at time 0.991 which causes an immediate switching

event. If an equality comparator was used in the PWM module this switching event would have

been missed. Figure 3.6 also illustrates a reference change which doubles the switching frequency

for one period.

By only updating once or twice per period the reference signal is effectively zero order held, as

proven in [9]. Frequency response expressions for a ZOH are given in Appendix D. As a regular

sampled PWM has the same small-signal response as a ZOH module, it is sufficient to use the

ZOH discretising method when analysing mixed sample time systems which use PWM. This

assumption only applies to small-signal analysis and is further discussed in Section 3.4.2.

3.4.2 Filter

As mentioned in Section 3.4.1, PWM modulators provide an almost perfect voltage source,

except their output voltage is polluted with common-mode switching noise. The use of a filter
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Figure 3.7: Common filter configurations.

on the output of the PWM voltage source allows the differential switching noise to be removed

or minimised at the cost of additional output impedance. These filters comprise inductors in

series to filter voltage ripple and capacitors in shunt to filter current ripple. The sizing of filter

components directly relates to the voltage and current ripple and also directly relates to the

large-signal bandwidth. While usually intended to filter only switching ripple, the filter will also

inadvertently filter the modulation reference.

LC filters are also intrinsically resonant and must be actively or passively damped to prevent

ringing. Passive damping is typically achieved with resistors. In high power systems, losses at

levels of even a few percent may be unacceptable. Active damping methods are able to dampen

resonances without dissipating energy, and instead return all filter energy to the system.

For continuous-time systems a filter’s impedance is relatively easy to derive. The two most

common filters in use today are the LC and LCL filters shown in Figure 3.7. The LC filter

output voltage (voltage across the capacitor Vc) as a function of the PWM voltage Vpwm and

output current Iout is given as

Vc(s) =
Vpwm(s)− Iout(s)sL

LCs2 + 1
(3.17)
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The LCL output current as a function of the PWM voltage and output voltage Vout is given as

Iout(s) =
Vpwm(s)− Vout(s)(1 + LCs2)

s(LCLcs2 + L+ Lc)
(3.18)

When analysing converters in discrete-time the filter must first be discretised using the ZOH

method. Due to its prominent use in later chapters, the discretised LC filter voltage, using

equation 3.3, is provided here as:

Vc(z)

Vpwm(z)
= ZZOH

{
1

LCs2 + 1

}
(3.19)

= Z
{

1− e−sTs
sTs

1

LCs2 + 1

}
(3.20)

= (1− z−1)Z
{

1

s(LCs2 + 1)

}
(3.21)

=
(z + 1)(1− cos(ωnTs))

z2 − 2z cos(ωnTs) + 1
(3.22)

Where ωn =
1√
LC

(3.23)

Delays that are integer multiples of the sample period (Ts) are added as z−1, and ratio delays

can be incorporated when the filter is discretised, using the Advanced Z Transform.

3.5 INVERTER TOPOLOGIES

While different inverter topologies are regularly developed, they all fundamentally operate by

transforming voltages and currents using devices which can be actively switched from an off state

to an on state, and vice versa. This thesis concerns itself with the control of AC/DC converters,

either as current sources or voltage sources. In each case a DC bus is chopped and then filtered

using at least a second-order LC filter.

Without lack of generality the control analysis derivations are not particular to a fixed switch

stack. In Section 3.4.1 the PWM analysis referred to two-level systems, but any stack which

provides a ZOH response is applicable to the control analysis in the later chapters. Applicable
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Figure 3.8: Parallel monolithic IGBT topology [3].

systems are multi-level stacks which can produce the reference voltage at the next sample point.

For example, interleaved systems which have the same sample rate as the PWM period exhibit

a moving average response based on the number of interleaved modulators. Due to the effects

of the switching ripple, the modulator has to be taken into account when performing control

analysis.

When scaling inverter systems to increase the power output there are two methods for connecting

inverters. In Section 2.5 the fundamental methods of paralleling or series connecting current

or voltage sourcing inverters was introduced. In practice inverters are not perfect voltage or

current sources, but are a combination of switching devices and ripple filter components. The

point at which multiple inverters are connected defines how they interact and what constraints

the systems will have.
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3.5.1 Monolithic

Monolithic inverter topologies achieve power scaling at the device level, and a large single filter

is used. Parallel monolithic systems connect switching devices in separate packages in parallel

as shown in Figure 3.8. Series monolithic systems connect the switching devices in series. In

parallel configurations, monolithic systems require that each of the parallel devices (IGBT etc) is

identical to ensure current sharing, as discussed in Section 2.6 and [5]. Both device manufacturing

tolerances and thermal effects impose limits on the size of large monolithic-paralleled systems.

3.5.2 Independent Control

To ensure device balancing over a large number of subtly different devices, an active balancing

method must be used.

In parallel configurations it is difficult to achieve balancing for hard-connected devices, such as

shown in Figure 3.8, as each device can be modelled as a voltage source with a low impedance,

so any small voltage change results in a large current imbalance. The practical alternative to

paralleling at the device level is to parallel individual inverters, where each inverter has its own

ripple filter. This is known as active paralleling and is employed in the test hardware detailed

in Appendix G and is further analysed in Chapters 4 and 6.

3.6 CONTROLLER

The section details several of the key components which must be used when constructing closed-

loop digital control systems. Each of the components mentioned are unavoidable and also have

their own associated constraints.

The controller contains all devices relevant to implementing the control algorithm. For digital

systems this would typically include a Digital Signal Processor (DSP) and/or a Field Pro-

grammable Gate Array (FPGA). In addition to the main processor, the controller also includes



3.6 CONTROLLER 39

all relevant interfaces, such as ADCs, signal conditioning, PWM generation and gate drivers.

Deciding whether a DSP and/or FPGA is required for implementing the controller depends

entirely on the application. Modern DSPs typically include ADCs, PWM modulators, and are

often optimised for high speed calculations. Despite there being a wide range of DSPs available,

for some applications one or more of the built-in peripherals may not be suitable. Common

limitations are in the resolution, accuracy or sample rate of the ADC; the PWM modulator

may not support natural sampling; or the processing speed may not be fast enough. If any of

these requirements are unable to be met by a given DSP, external ADCs may be used; a PWM

modulator could be implemented in a FPGA; or the control algorithm could be implemented in

a FPGA.

Each of the development stages requires a different set of engineering skills and resources. At

the theoretical and numerical testing stages simulation tools such as Matlab, SimulinkTMand

PSIMTMare commonly used to confirm the suitability of the approach and algorithms. The simu-

lation models include both the designed inverter controller targeted for the embedded processor,

an accurate model of the the inverter hardware and one or more usage scenarios.

In discrete-time LTI controllers the operations consist of basic arithmetic operations including

summation, multiplication, division and sample period delays; each of which are implemented

in the control processor. At the time of writing there are typically two families of devices

which are used to implement discrete controllers: Digital Signal Processors (DSP) and Field

Programmable Gate Arrays (FPGA). DSPs are microcontroller devices which are optimised

for digital signal processing. As the performance of general purpose microprocessors increases,

the distinction between a DSP and a microcontroller has become increasingly blurred. FPGAs

provide a matrix of reconfigurable logic blocks to implement complex custom logic circuits.

Many common FPGAs allow the synthesis of DSP cores and/or provide DSP cores alongside

the reconfigurable logic.
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DSPs are often the most popular choice for implementing controllers as they often include both

peripherals used in control systems, such as ADCs and PWM modulators, but also because

they can be used for additional functionality such as running communication stacks and more

general processing functions. Where FPGAs dominate is in applications where low latency

and/or specialist functionality is required. Due to the flexibility of microprocessors and the

real-time aspect of FPGAs, many power electronics systems may incorporate both devices. The

microprocessor is commonly used for communications and control tasks, whereas the FPGA

may be used for high speed tasks such as device protection, critical control tasks and PWM

generation.

For the test hardware described in Appendix G a 150MHz DSP processor with builtin ADC and

PWM is used for the main controller, while a separate FPGA provides high speed protection

functions.

3.6.1 Hardware Interfaces

The interfacing components between a controller and the hardware are a critical part of the

system design, as they are the sole method which the controller has for both measuring external

conditions and to control actuators (inverter switching stack). Despite being common to all

control system designs, in each scenario they deserve particular attention due to their associated

side effects. This thesis assumes that the resolutions of ADCs and PWM modulators available

in digital microcontrollers are adequate for the given application.

Assuming a sufficient resolution, the key consideration for an ADC is the sample delay. Similar

to regular PWM as described in Section 3.4.1, ADCs have a ZOH response. Figure 3.9 shows the

effect of sampling inductor current twice per switching period with two different sample points.

Despite the ripple in the second figure of Figure 3.9, if the sample period is the same as the

switching period (half the sample period shown in the figure) the samples will be on either the
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Figure 3.9: Example of inductor current sampling aliasing effect. The top picture shows how the
switching ripple can be removed by sampling at integer-multiple delays of the sample period.
The bottom figure illustrates the effect of not sampling at integer-multiple delays of the sample
period.

rising or falling edge and will result in an offset error, causing distortion.

Common to any sampled system, frequencies above the Nyquist limit must be filtered to prevent

aliasing in ADCs. Alias filtering also changes the response of a discretised system above the

Nyquist frequency. By filtering any high frequency components above the Nyquist frequency,

the impedance of an inverter above the cutoff frequency is determined by the output filter. This

condition is later used to convert discrete-time systems to continuous-time.

3.6.2 Developing test inverter

A graphical simulation model is commonly used as the design document for controller imple-

mentations. At the implementation stage the simulation controller sections are translated into

a form appropriate for the given controller hardware and software language. At this stage ad-

ditional changes to the controller form may be made to suit the target platform. Such changes
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Figure 3.10: Example control diagram for code generation.

may include translating floating-point signal paths to fixed-point representations.

The process of reformatting the controller design and then writing the controller code is relatively

labour intensive. As a consequence of being both a tedious mechanical process and of having to

reformat the graphical design, the process is highly prone to human errors. The time required

to perform the conversion, identify and fix human errors, and to confirm the suitability of

performed translations (ie choice of fixed-point locations) can be significantly reduced if these

processes are automated. Modern simulation tools such as Simulink now include toolboxes aimed

at embedded controller development. Mathworks’ Fixed Point toolboxes allow the designer to

choose and simulate with appropriate data types for each signal. The Real-Time Workshop R©

toolbox generates C code directly from a simulation model, and the Simulink HDL Coder R©

generates VHDL for an FPGA.

Automating the controller implementation process offers a greater degree of confidence that

the controller will perform as expected when tested in hardware. A strong correlation between

simulation and the implementation was achieved when developing and testing the new control

designs in this thesis. Both the Fixed Point and Real-Time Workshop toolboxes were used when

developing control models to rapidly confirm their operation in hardware, as the time taken to

generate the control code from a model, compile it, download it into the target hardware and to

run it was in the order of several minutes. A typical simulation layout is shown in Figure 3.10.

The model is colour coded to represent different sample times, in this case red is discrete-time,

black is continuous-time and blue is a combination of sample times. Signal data types are shown
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at the output of each block, in this case ‘q13’ refers to a fixed-point data type and ‘double’ is

a double precision floating data type. When testing in hardware, the control code is generated

from the ‘Discrete Controller’ block.

The laboratory test setup consisted of a scaled production inverter, detailed in Appendix G.

The inverter current and voltage ratings were scaled down accordingly to allow the inverter to

be safe in an office environment, but still representative of a full power system. By including

key characteristics of the inverter hardware such as voltage and current sample points, digital

delays and anti-aliasing filters, not surprisingly the inverter responses over a range of tests closely

matched the simulation results. In Chapters 4 to 6 the use of the code generation tools provided

rapid confirmation of the simulations. With discrete-time control models for code generation

and continuous-time electrical models matching the electrical hardware, the hardware tests were

predominantly quick confirmation tests. The simulations were able to quickly test many different

usage cases so that when it came to hardware testing, an efficient setup and test procedure could

be used.
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3.6.3 Reference propagation

With the paralleled inverter configuration, a master controller was used to propagate voltage or

current references to each of the parallel modules. Herein a ‘master’ device propagates a reference

to one or more ‘slave’ inverters. The act of reference propagation requires particular attention,

as the channel bandwidth and propagation delay between master and slave devices can severely

affect the response and achievable bandwidth of closed-loop systems. An example closed-loop

system is where the master controls the slave device(s) to control a sensed signal (such as

output voltage), as shown in Figure 3.11. When used in closed-loop control, the master to slave

propagation delay is included in the analysis. The minimum introduced delay in master/slave

systems is the sum of the master reference calculation time, the reference propagation delay and

the slave calculation time. The master-slave configuration which is used for the test hardware

in Appendix G is shown in Figure 3.11.

In some applications there may be more than one propagation channel. For example, in the case

of arrays of inverter arrays, a global controller may propagate references to local masters which

then propagate further references to individual slave modules.

3.7 INVERTER PERFORMANCE EVALUATION

When evaluating inverter controllers, performance measures give an idea of the performance of

a system for a given set of constraints. One such performance measure is an inverter’s output

impedance for a given switching frequency. All performance measures are only useful when the

system is stable. Both continuous and discrete-time systems can be analysed using the following

methods by mapping discrete-time poles via the relationship esTs .

An inverter’s forward bandwidth is by far the most commonly used and referenced performance

measure. By definition the bandwidth of an inverter is the frequency range which it can repro-

duce, with the cutoff point being when the upper and lower bound is -3dB (half of the input
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signal). Most inverters, by design, are capable of operating down to DC, thereby making the

bandwidth the first (lowest) frequency where the forward attenuation is -3dB. When evaluat-

ing forward bandwidth and impedance responses, both the magnitude and phase response is

important. For forward responses both a unity magnitude and low phase shift are preferred.

The forward transfer frequency response is by far and away the most common inverter perfor-

mance indicator. Unfortunately in applications where the load is unknown and not incorporated

into the control loop transfer function, the inverter’s output impedance affects its ability to repro-

duce the reference signal. When comparing the performance of developed controllers, a perfect

current source would have an infinite output impedance whereas a perfect voltage source has an

impedance of zero. There has recently been a large surge in publications for deriving impedance

(or admittance) expressions for high-order electronic inverters as sources or loads [10–14].

Performance indicators such as Integral Squared Error (ISE) and Integral Absolute Error (IAE)

are often used in control design. They provide measures for determining a relative least amount

of error for a reference step. In addition to traditional performance measures such as overshoot

and settling time, different controller responses can be traded off to determine the best for a

given application. By squaring the error term, ISE puts emphasis on large error deviations such

as overshoots and slow rise times. The IAE is similar to the ISE but without the squaring

component it reduces the emphasis on large error components. Calculations for ISE and IAE as

applied to transfer functions are given in Appendix E.

A controller’s robustness is defined as its ability to be tolerant to electrical effects which are a

side-effect of practical implementation. These include component parasitic effects as discussed

in Section 3.3.3, component value variations, and external loads. In grid-connected applications

often the load and its associated response may be either well defined (such as a motor) or may be

completely undefined (aside from voltage and current rating). Large industrial plants typically

consist of a wide range of linear and non-linear loads.
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Designing controllers that are robust is discussed in Section 4.4, and a robust discrete-time

controller is derived in Chapter 5.

3.8 SUMMARY AND DISCUSSIONS

This chapter has covered the primary constraints and modelling paradigms encountered when

implementing high performance inverter controllers. The constraints and modelling paradigms

consist of a mix of control theory, hardware implications imposed by the power switching devices,

the output filter required to resolve the underlying control signal, the ability to scale inverters

to achieve a greater power capability, and how the performance for an inverter can be gauged.

The primary constraint in the control analysis is dealing with delays, as they are intrinsically non-

linear elements in the continuous-time domain. While analysis techniques such as the Padé ap-

proximation or the Lambert W function can be of assistance, they are still not without their

complications.

One of the primary sources of system delays is often the use of regular-sampled PWM. While

naturally-sampled PWM inherently has no ZOH delay, in practice in modern Digital Signal

Processors it is often not implementable.

The inverter topology and associated PWM filter impose practical constraints that must be

addressed when designing controllers. The undamped resonant response of the PWM LC filter,

and ensuring power sharing parallel inverter configurations must both be considered.

Finally, performance indices such as inverter bandwidth, output impedance, Integral Squared

Error, and Integral Absolute Error are industry standard ways of evaluating inverter perfor-

mance.

All of the associated control and hardware constraints, and the analysis and performance

paradigms set the benchmark for designing inverter controllers. All of these are considered in the

following chapters when state of the art controllers are examined and new ones are developed.



Chapter 4

INVERTER CONTROLLER FORMS

4.1 INTRODUCTION

In this chapter the fundamental concepts used for designing and implementing digital controllers

are introduced. The chapter begins by first introducing the traditional methods of implement-

ing current and voltage controllers in continuous-time. The continuous-time designs are then

discretised and evaluated to determine their suitability in discrete controllers. As fundamental

concepts, they provide the basis for all advanced controller designs.

For the remainder of the thesis per unit terms are used for all values, including voltage, current

and time. In doing so, numerical units are often omitted unless specified.

4.2 TRADITIONAL FORMS

Fundamentally controllers implement current and voltage source converters in the following two

ways:

• Voltage is applied across an inductor to cause a change in current.

• Current is injected into a capacitor to cause a change in voltage.

A particular type (current or voltage sourcing) is implemented by cascading each of the different

forms, for instance a voltage source converter has an LC filter and operates as a cascaded current

and then voltage source.
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Figure 4.1: First-order current controller.

Figure 4.1 shows a first-order current controller. In continuous-time and with no delays from

the PWM or ADC blocks, the forward transfer function can be shown to be

HCSI(s) =
Iout(s)

Iref (s)
=

ωi
s+ ωi

(4.1)

Where ωi is the converter forward bandwidth. Note that the current bandwidth is independent

of the load. The output admittance is

YCSI,out(s) =
Iout(s)

Vout(s)
= 0 (4.2)

Being first-order the system is critically damped. In this ideal scenario where there are no

loop delays the current bandwidth ωi is not limited by any stability constraints (assuming

the bandwidth is positive) and can therefore be infinite. As the dominant pole dictates the

frequency at which a transfer functions response begins to roll off, for controllers the dominant

pole is effectively the control bandwidth.

A current and voltage controller are often cascaded, as shown in Figure 4.2a. Figure 4.2b shows

a simplified model of the controller by eliminating the inductor current feedback term IL. The

capacitor current feedback can also be eliminated by calculating IC from VC . In continuous-time
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(a) Cascaded current-voltage controller

(b) Cascaded current-voltage controller after simplification

Figure 4.2: Second-order voltage controller.

the forward transfer function can be shown to be

HV SI(s) =
Vc(s)

Vc,ref (s)
=

ωiωv
s2 + sωi + ωiωv

(4.3)

And the output impedance is

ZV SI,out(s) =
Vc(s)

Iout(s)
=

s

C(s2 + sωi + ωiωv)
(4.4)

Figure 4.3 shows a typical VSI output impedance frequency response. From the figure the VSI

has an inductive response up to the natural frequency and then above that is capacitive. The

inductive portion of the curve can be shown to be s
ωiωvC

and the capacitive portion is 1
sC . The

inductive response indicates that to achieve a low output impedance, high gains are required.
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Figure 4.3: Example of continuous-time VSI output impedance frequency response. ωi = 10,
ωv = 3

4ωi.

Inverters are commonly assumed “perfect” and VSIs are therefore expected to have a zero

output impedance. As this is not the case, an impedance at or below a typical grid impedance

(below 10% inductive) is typically desired. For high power systems an impedance below 5%

at the fundamental is typical. To achieve a 5% impedance for a continuous-time VSI, with a

10% capacitor would require an ωiωv product of 200, which corresponds to a natural frequency

(
√
ωiωv) of 14.

The second-order voltage controller has a corner (natural) frequency of
√
ωiωv and a damping

ratio ζ of

ζ =
1

2

√
ωi
ωv

(4.5)

Although there is no strict requirement that the voltage gain ωv is less than the current gain

ωi, it would produce a lightly damped system. The voltage controller is critically damped when

ωi = 4ωv. In practice damping ratios between 0.5 and 1 are typically chosen.

The ISE of equation 4.3 can be shown to be

ISE =
ωi + ωv
2ωiωv

=
1

2

(
1

ωi
+

1

ωv

)
(4.6)

This indicates that increasing either of the controller gains will lower the ISE.
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The formulation of the second-order VSI by using an inductor current controller to control the

voltage across the capacitor can lend itself to implementing a parallel VSI. The ideal method of

creating parallel inverter arrays is to use high impedance current sources. Using the cascaded cur-

rent/voltage controller a parallel configuration can be created by implementing multiple current

controllers (one per module) and then controlling the total current into the parallel capacitors

(the combined bulk capacitance). Unfortunately this method assumes the parallel capacitors act

as one large capacitor, and if the capacitors are geographically quite far apart there is no means

of controlling any inter-module current flows. The consequences of this are further explored in

Chapter 6.

So far both the current and voltage controllers have only had to be proportional controllers to

achieve zero steady-state error. In practical systems however, every component has parasitic

resistive losses which result in a steady-state error. The non-zero VSI output impedance intrin-

sically shows that for a non-DC signal, when loaded the output voltage will not exactly equal

the reference. To compensate for steady state errors, integrators (in DC or rotating reference

frames) or resonators (AC systems in stationary reference frame) can be used. The resonator

transfer function is

Hresonator(s) =
sωr

s2 + ω2
n

(4.7)

Where ωr is the resonator gain and ωn is the fundamental frequency.

4.2.1 Discretised traditional forms

So far continuous-time current and voltage controllers have been demonstrated that have both

well defined first and second-order responses (both forward response and impedance), and theo-

retically have no upper bandwidth limitation. In practice, however, perfect continuous-time sys-

tems are not achievable. Systems using naturally-sampled PWM, as described in Section 3.4.1,

impose a signal slew rate limitation that limits the maximum bandwidth. Discrete-time imple-
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mentations impose sampling and calculation time delays. This section demonstrates the effect

of discretising continuous-time controllers. Particular attention is applied to the effect of the

converter’s response as the controller bandwidth approaches the discrete-time sample rate.

When discretised the PWM and ADC blocks in Figure 4.1 define ZOH boundaries for the

continuous-time filter. The ZOH discretised inductor is

PL(z) =
Ts

L(z − 1)
(4.8)

As there are no dynamic elements in the CSI controller, the discrete form remains unchanged. In

all practical discrete systems there is a delay between sampling continuous-time inputs and the

PWM output. Often ADC sampling points are synchronised with the PWM sample point (as

mentioned in Section 3.6.1), resulting in a whole sample period delay. The CSI discrete forward

transfer function with a single sample period delay is

HCSI(z) =
zTsωi

z2 − z + Tsωi
(4.9)

The continuous-time system had a single pole with a natural frequency equal to the bandwidth.

The discrete-time system has the following two poles:

z =
1±
√

1− 4Tsωi
2

(4.10)

The two poles are critically damped when ωi <
1

4Ts
and are unstable when ωi >

1
Ts

. To put

the critical damping and stability conditions into perspective, for a 50Hz system with an 8kHz

sample rate Ts = 2π
160 = 0.0393, the system would be unstable with a bandwidth of ωi = 25.5,

and just critically damped when ωi = 6.4.

For the continuous-time system the gain ωi is the cutoff frequency, but with the discrete system

ωi only corresponds to the cutoff frequency as the frequency tends to zero (low bandwidths).
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Figure 4.4: Example of discretised CSI output admittance frequency response. ωi = 10pu,
Ts = 2π

160 , L = 4%.

The natural frequency of the dominant pole (pole with the lowest natural frequency) is greater

than ωi. When critically damped the natural frequency of the dominant pole is a non-linear

function of Ts and ωi, given by:

ωn =
ln(2)− ln(1 +

√
1− 4Tsωi)

Ts
(4.11)

For example, an ωi of 6.4 has a natural frequency of 17.7, which is more than double the cutoff

frequency for the same ωi gain in a continuous-time system. For a 50Hz system with an 8kHz

sampling frequency, a cutoff frequency of 17.7 corresponds to 885Hz, which is a sample frequency

to bandwidth ratio of 9.

The admittance of the discretised current controller is also no longer zero. With a single sample

period delay the admittance can be shown to be:

YCSI,out(z) =
Ts(z − 1)

L(z2 − z + Tsωi)
(4.12)

Figure 4.4 shows an example discretised CSI output admittance. Similar to the forward response,

the discretised admittance approaches the continuous-time admittance of zero (equation 4.2) for

low frequencies. Above the Nyquist limit the admittance drops away like the continuous-time
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Figure 4.5: VSI controller and filter blocks.

system, however, with an admittance greater than zero the discretised CSI in not immune to

deviations in the supply voltage.

Equation 3.22 is the ZOH discretised LC filter in Figure 4.2. The proportional VSI controller

in Figure 4.2b is easily discretised with a single sample period delay:

Vpwm =
((
Vc,ref − Vcz−1

)
ωvC − Icz−1

)
ωiL+ Vcz

−1 (4.13)

For analysis purposes the controller is separated into a feed-forward path CFf (z), and the ca-

pacitor voltage and current feedback paths, CFb,Vc(z) and CFb,Ic(z) respectively:

Vpwm = Vc,refCFf + VcCFb,Vc + IcCFb,Ic (4.14)

Figure 4.5 shows the closed loop connection of the controller and filter components. In practice

the capacitor current may be approximated by differentiating the sampled voltage, removing the

need for a capacitor current sensor. The closed loop forward transfer function is:

Vc(z)

Vc,ref (z)
=

CFfCFb,VcGVc,Vpwm

1− (CFb,VcGVc,Vpwm + CFb,IcGIc,Vpwm)
(4.15)

Substituting the discretised filter and controller expressions produces a third-order system. The

full third-order equations are given in Appendix F. Solving for the discrete poles of the sys-
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Figure 4.6: Pole contour of discretised VSI gain sweep. ωi sweep from 5 to 20, ωv = 3
4ωi, L = 4%,

C = 10%, Ts = 2π
160 (50Hz fundamental, 8kHz sample rate).

tem produces incomprehensible expressions. Whereas the continuous-time system closed-loop

forward transfer function was not dependent on the resonant frequency of the LC filter, the

discretised response is, as indicated by the ‘cos(Tsωn)’ components in the transfer function.

Figure 4.6 shows pole contours for a gain sweep of ωi = 5 to 20. Unlike the continuous-time VSI

which had two poles and was unconditionally stable, the discretised version becomes unstable

with a gain of ωi = 17.7. Even with a relatively low gains of ωi = 5 and ωv = 3.75, the dominant

real pole has a natural frequency of 1.03 while the complex pole-pair has a natural frequency of

28.2 with a damping ratio of 0.45. Unlike the discretised CSI which achieved a greater natural

frequency for the dominant pole than the gain ωi, the discretised VSI dominant pole not only

has a much lower natural frequency (1.03pu) than the continuous-time VSI
(√
ωiωv

)
, it is also

has a lower damping ratio.

Figure 4.7 shows the effect of the two gains ωi and ωv on the dominant pole natural frequency and

the complex pole-pair damping ratio. Figure 4.7a indicates that for a high ωi the bandwidth is

largely dominated by ωv, while Figure 4.7b indicates that the damping ratio is mainly dominated

by ωi. Based on these observations, provided ωi is not too low (ωi > 8), the bandwidth and
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Figure 4.7: Discretised VSI natural frequencies and damping ratios for gains ωi and ωv. L = 4%,
C = 10%, Ts = 2π

160 .

damping ratio can be selected almost independently of each other. However, the damping ratio

for practical gains is bounded to below 0.5.

Previously the discretised CSI demonstrated a critically damped bandwidth as high as one ninth

of the sample frequency. With a damping ratio of 0.3 the discretised VSI can only support a

cutoff frequency of 11.4 (ωi = 8, ωv = 18), put into perspective this corresponds to 570Hz

for a 50Hz system and one fourteenth (7%) of an 8kHz sample frequency. At these gains the

response has a -45 degree phase shift by the 7th harmonic. As with the discretised CSI, for gains

approaching the sample frequency the discretised VSI gains no longer correspond to the natural

frequency or damping ratios derived for the continuous-time system.

The output impedance of the discretised VSI also changes. For the continuous-time system the

output impedance for frequencies below the bandwidth frequency is proportional to the inverse

of ωiωv. The full third-order output impedance expression is given in Appendix F. The output

impedance expression has the same poles as the forward transfer function.

Using the gains mentioned in the previous paragraph (ωi = 8, ωv = 18), which are the best

achievable gains before the damping ratio becomes intolerably low, the output impedance re-

sponse is shown in Figure 4.8. At the fundamental the inductive output impedance is 5.7%. As
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Figure 4.8: Discretised VSI example output impedance. ωi = 8, ωv = 18, L = 4%, C = 10%,
Ts = 2π

160 .

expected, for high frequencies above the Nyquist ( 1
2Ts

), the impedance is purely capacitive like

the continuous-time system.

In high power systems with low switching frequencies, and therefore sampling frequencies when

using regular sampled systems, the bandwidths required quickly approach the Nyquist limit of

the controller. Discretised continuous-time controllers only achieve the continuous-time response

when the Nyquist limit is high relative to the required bandwidths. As demonstrated in this

section as the controller gains are increased the response of discretised controllers no longer match

that of the continuous-time systems. The limitations of discretised continuous-time controllers

as the sampling frequency is reduced provides motivation for better performing controllers that

are specifically designed for discrete-time systems.

The primary issue with the discretised continuous-time controller is that the response of the

system is dominated by the low frequency dominant pole, while the damping, and hence stability,

of the system is dominated by the high frequency complex pole-pair.

In Section 4.2 it was concluded that the cascaded inductor current controller and capacitor volt-

age controller is an effective way of implementing a parallel VSI configuration. However, using

current sourcing modules in parallel requires that the master module controlling the capacitor

voltage propagates inductor current references to each slave module. In the continuous-time
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Figure 4.9: Pole contour of discretised VSI gain sweep with internal controller propagation delay.
ωi sweep from 5 to 20, ωv = 3

4ωi, L = 4%, C = 10%, Ts = 2π
160 .

scenario this does not pose any issues, but in discrete-time systems a master module would need

to propagate the reference to the slave modules in the same sample period to prevent additional

loop delays affecting the response. Figure 4.9 shows the gain sweep from Figure 4.6 but with a

sample period delay between the voltage control loop and the current control loop representing

a propagation delay from a master voltage controller to a slave current controller. Compared

to the Figure 4.6, Figure 4.9 has an additional pole, but more significantly, the lightly damped

complex pole-pair has a lower stability margin. Further reasoning against paralleling modules

in this manner is also detailed in [5] and discussed in Chapter 6.

Of course the discretised continuous-time controller detailed so far is by no means the only

discretised continuous-time controller form. Due to the more intuitive nature of continuous-time

systems many discretised controllers presented in literature are presented in continuous-time

forms. Several methods for producing VSI systems are presented in the literature [15–21].

Common control elements such as PID controllers are often presented and analysed in closed

loop as their continuous-time forms. Delays are also often approximated using first-order [18] or

higher-order (Padé) continuous-time approximations.
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4.3 DISCRETE DESIGNED CONTROLLERS

To overcome the limitations of discretised continuous-time control systems and due to the abun-

dance of DSPs, discrete designed controllers have gained in popularity in recent decades. Direct

discrete designs do not necessarily suffer from the performance issues associated with discretised

continuous-time systems as the gains approach the Nyquist limit. Fundamentally discrete con-

trollers are still controlling the output filter components. By incorporating the system delays

in the controller design process, the controller may be able to offer greater performance over a

continuous-time derived one.

Aside from mixed continuous and discrete systems mentioned in Section 4.2.1, the most common

form of discrete designed controller is the Deadbeat form [22–30]. While deadbeat offers the best

possible response achieveable with a discrete-time system, it does have some inherent limitations

in practical applications, such as:

• Tight coupling to component values. While all controller responses have a dependency

on component values, as confirmed in the literature, deadbeat has the tighest dependency

on component values, limiting its applicability in practical applications where multiple

components are used, such as LC filters.

• In applications where one or more of the component measured states is not available, such

as the inductor current, the deadbeat realization can result in undesirable actuator ringing.

• By definition deadbeat respones is the fastest possible response for a discrete-time system,

and therefore inherently does not offer the ability to tune the system which would otherwise

allow the ability to forgo converter response for robustness.

Due to the practical limitations imposed by deadbeat control, this thesis focuses on high perfor-

mance discretised controllers that offer configurable performance and robustness.
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4.4 ROBUSTNESS

Creating a controller that is both robust to component variations while also achieving a high

bandwidth is intrinsically difficult to achieve. High bandwidth controllers are typically designed

for a specific output filter and load. When designing and evaluating high performance controllers

the ability to trade off performance for robustness is a key requirement.

The discretised continuous-time VSI in Section 4.2.1, despite having a low stability margin,

is relatively robust to component variations. Component variations of 10% have a less than

5% effect on the damping ratio, while the variations have a proportional effect on the forward

bandwidth.

Although deadbeat controllers achieve the best response possible for a discrete-time controller,

some of the literature shows that the controllers are not robust to component sensitivities [30].

The focus of the next chapter is to design a discrete-time controller that specifies the controller

stability margin as part of the design process, allowing the designer to trade off performance for

robustness.

4.5 SUMMARY AND DISCUSSIONS

This chapter started by introducing the fundamental ways of controlling voltage and current

source inverters in continuous-time, and then continued by analysing the effects of discretising

the same controllers as would be done in a digital control system.

The continuous-time controller forms displayed the characteristic responses, where both the con-

trol bandwidth and damping ratios are directly controllable. Both the CSI and VSI continuous-

time configurations have no theoretical stability limits.

After discretisation, for low bandwidths the controllers exhibit a similar response to the continuous-

time implementations, however, as the control bandwidth gains approach the discrete-time

Nyquist limit, higher-order poles become lightly damped and eventually go unstable. The lightly
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damped poles (and instability) impose undesirable bandwidth limitations. For instance, one of

the examples demonstrated that a discrete-time VSI with a sampling frequency of 8kHz could

only achieve a cut-off frequency of the 11th harmonic with a damping ratio of 0.3.

Given the constraint of discretised traditional controllers, the following chapter investigates a

controller specifically designed for discrete-time that not only achieves a high bandwidth relative

to the sample frequency, but is also robust to parameter and component variations.





Chapter 5

DISCRETE DIRECT DESIGN CONTROLLER

In Chapter 4 discrete-time controllers were introduced and as the bandwidth was increased the

traditional, well known continuous-time derived approaches demonstrated stability limitations

resulting in unacceptably low achievable response rates. The discretised VSI controller in Sec-

tion 3.22 is flawed in that the response of the system is dominated by a low frequency dominant

pole, while the damping is defined by a high frequency complex pole-pair. Later in Section 4.3,

discrete designed controllers were introduced that have been purpose designed for discrete-time

systems. Of these controllers, deadbeat control offers the optimal performance for a discrete-

time controller, achieving the reference signal in the same number of sample delays as the order

of the system being controlled (usually an output filter). Despite achieving the best performance

possible, the controller’s robustness is both sensitive to the actual filter component values and

requires feedback of both the inductor current and capacitor voltage filter states. For many

control systems robustness is of higher priority than response, and for each given application

the ability to trade off response for robustness offers the greatest flexibility.

In this chapter a discrete direct design VSI controller is developed that through common design

parameters allows the trade-off between the forward response bandwidth and the damping ratio

of the complex poles (originally detailed in [31]). The controller is shown to achieve a high

bandwidth to sample frequency ratio and is robust against component sensitivities. To aid in

implementation the controller only requires capacitor voltage feedback and has a simple first-

order form resulting in a third-order closed loop inverter. By automating the calculation of the
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controller gains, either a bandwidth frequency or damping ratio is used as the primary design

parameter for the controller, while the other is available as an output from the design process.

5.1 DESIGN CHOICES

For the controllers in Chapter 4 several key design requirements were defined that were based

on the analysis and conclusions of the discretised VSI in Section 4.2.1. These included:

• Single-state feedback. Both the discretised VSI in Section 4.2.1 and the deadbeat controller

in Section 4.3 have two state feedbacks. Given that the values of the output filter are known

sufficiently well (within component value tolerances) each of the states can be derived using

an observer on the output capacitor voltage. In power electronic systems, accurate, noise-

free current sensors which operate over a wide frequency range are difficult to achieve.

Therefore only the output capacitor voltage will be assumed to be available.

• Response specified by using the common response parameters, bandwidth (related to

the dominant pole natural frequency) and the damping ratio. Previously the discretised

continuous-time controller had used design parameters ωi and ωv to specify the response of

the system, but the relationship of these parameters to the natural frequency and damping

ratio was lost as the gains were pushed closer to the Nyquist frequency.

• Achieve a greater bandwidth and lower output impedance than the benchmark discretised

continuous-time VSI controller in Section 4.2.1.

• No assumptions are made about the load. The inverter impedance alone defines the com-

patibility with different loads. The inverter impedance must be able to operate against

common linear loads, including low impedance systems such as grids or machines, and

non-linear loads.
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Figure 5.1: Discrete closed loop controller form.

• The controller should be relatively simple to implement in practical hardware. Sampling

and processing delays and regular PWM are assumed.

5.2 POLE PLACEMENT DESIGN

The discrete controller uses constrained pole placement to achieve a high performance and

robust voltage controller. Figure 5.1 shows the closed-loop controller with a single capacitor

voltage feedback. GVc,Vpwm represents the LC filter, and CFf and CFb,Vc represent the controller

reference feed-forward and capacitor voltage feedback components respectively. Loop delays are

included in the output filter discretisation process. The closed-loop forward transfer function is:

Vc(z)

Vc,ref (z)
= H(z) =

CFf (z)GVc,Vpwm(z)

1− CFb,Vc(z)GVc,Vpwm(z)
(5.1)

where GVc,Vpwm(z) is the ZOH discretised LC filter given in equation 3.22, and for clarity shown

again below without any delays:

Vc(z)

Vpwm(z)
=

(z + 1)(1− cos(ωnTs))

z2 − 2z cos(ωnTs) + 1
(5.2)

where ωn =
1√
LC

(5.3)
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Broken into their respective numerator and denominator parts, equation 5.1 becomes:

Hnum(z)

Hden(z)
=

CFf (z)GVc,Vpwm,num(z)CFb,Vc,den(z)

GVc,Vpwm,num(z)CFb,Vc,num(z)−GVc,Vpwm,den(z)CFb,Vc,den(z)
(5.4)

where the numerator and denominator parts are denoted by subscripts num and den respectively.

Using pole placement, the numerator and denominator of the controller components CFf and

CFb,Vc are chosen to achieve the desired response. The first step in designing the controller is

to specify the closed-loop poles of the system. The poles of the system affect both the forward

response of the system and the output impedance. For this reason the controller feed-forward

component CFf (z) is assumed to not have any poles or zeroes that assist in stabilising the

system. As expected, by examination of equation 5.4 the closed loop poles are determined by

the filter and the controller feedback components.

As mentioned in Section 4.4 the most robust controller in regards to component sensitivities is one

that would be entirely independent of the component values. Upon examination of equation 5.2,

the zero (z + 1) is independent of the filter component values. The first form of the controller

feedback component CFb,Vc has a pole that cancels the (z + 1) zero in the filter. With a single

pole, the controller is first order, with the format as shown:

CFb,Vc(z) =
k2z + k1

z + 1
(5.5)

Substituting equations 5.2 and 5.5 into 5.1 with a single sample period delay (z−1), the closed-

loop third-order system is:

H(z) =
z(z + 1) (1− cos (ωnTs))CFf (z)

z (z2 − 2z cos (ωnTs) + 1) + (k2z + k1) (1− cos (ωnTs))
(5.6)
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5.2.1 Gain selection

The three poles in equation 5.6 consist of one real pole p0 and a complex pole-pair p1,< and p1,=,

such that:

0 = z
(
z2 − 2z cos (ωnTs) + 1

)
+ (k2z + k1) (1− cos (ωnTs)) (5.7)

= (z − p0)(z − p1,< − jp1,=)(z − p1,< + jp1,=) (5.8)

The three poles are functions of the gains k1 and k2 and the filter components. Of the three

poles there is one relationship between the poles from equation 5.7 that is independent of k1 and

k2:

p0 = 2( p1,< − cos(ωnTs)) (5.9)

Given that the filter component variables L and C are typically fixed for a given application, a

relationship between k1 and k2 and the three poles is required. The pole locations are chosen to

achieve typical controller parameters such as the system’s closed loop natural frequency ω0 or

damping ratio ζ.

The discretised VSI controller in Section 4.2.1 had a low frequency dominant real pole that

limited the controller bandwidth, and a high frequency complex pole-pair that determined the

damping ratio of the system. By equating the natural frequency of all three poles (ω0), none of

the poles’ natural frequencies dominate and limit the controller bandwidth. Either the natural

frequency or the damping ratio is chosen as the design parameter from which the remaining

parameters and gains are derived.

The natural frequency and damping ratio are both parameters of continuous-time systems. The

mapping z = esTs maps continuous-time poles and zeros to their discrete-time equivalents.

Mapping the continuous-time expression for a complex pole-pair or zero-pair in equation 3.1 to
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discrete-time gives:

z = e−Tsζω0

(
cos
(
ω0Ts

√
1− ζ2

)
±j sin

(
ω0Ts

√
1− ζ2

))
(5.10)

Equating each pole of equation 5.8 with 5.10 results in the discrete VSI poles:

p0 = e−ω0Ts (5.11)

p1,< = e−ω0Tsζ cos(ω0Ts
√

1− ζ2) (5.12)

p1,= = e−ω0Tsζ sin(ω0Ts
√

1− ζ2) (5.13)

The natural frequency to damping ratio relationship can be found numerically from the rela-

tionships in equation 5.11, 5.12 and 5.13 and the pole-pole relationship 5.9, to give:

e−ω0Tsζ cos(ω0Ts
√

1− ζ2) = cos(ωnTs)− e−ω0Ts

2 (5.14)

where Ts is the sample period, ωn is the LC filter resonant frequency defined in equation 5.2,

ω0 is the closed loop natural frequency of all the poles and ζ is the closed loop damping ratio of

the complex pole-pair. Equation 5.14 indicates that the relationship between ω0 and ζ is solely

based on the filter natural frequency ωn and the sample period Ts, and is independent of the

controller gains k1 and k2.

The poles in equations 5.11, 5.12 and 5.13 are found by numerically solving 5.14, then the gains

k1 and k2 are derived from equation 5.8 as:

k1 =
p0(4cos(ωnTs)

2−4 cos(ωnTs)a0+p0
2 + 4p1,=

2)

4(1− cos(ωnTs))
(5.15)

k2 =
4−4 cos(ωnTs)p0+3p0

2−4cos(ωnTs)
2−4p1,=

2

4(1− cos(ωnTs))
(5.16)
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The steps for the calculating the controller gains can be easily automated, allowing a damping

ratio or natural frequency to be used as the controller design parameter.

5.2.2 Feed-forward response

To complete the controller the feed-forward component CFf (z) must also be found. The feed-

forward component can be any realisable transfer function, but unnecessary forward response

delays should be minimised. The simplest approach is to define CFf (z) as the gain that results

in a closed-loop DC gain of 0dB:

CFf (z) = 1− k1 + k2

2
(5.17)

Feed-forward transfer functions other than pure gains will affect the forward response so that it

no longer matches the design parameters. The feed-forward transfer function allows a controller

to have a different forward response from its output impedance. In certain applications it may be

preferable to have a faster responding forward response at the expense of additional overshoot,

while having a heavier damped and more stable output impedance.

5.2.3 Theoretical performance

From equation 5.14 the relationship between the attainable pole frequency and damping ratio

can be found for a given filter natural frequency and sampling frequency.

Figure 5.2 shows the achievable cutoff frequency bandwidth for a given damping ratio and filter

resonant frequency, normalised to the sample frequency. This plot shows that the achievable

bandwidth decreases for both an increasing damping ratio and as the filter resonant frequency

approaches the Nyquist frequency. In practical applications a low damping ratio and high filter

resonant frequency (relative to the sample frequency) are not preferred. Low damping ratios

result in greater overshoot and ringing, and high filter resonant frequencies result in greater
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Figure 5.2: Plot of achievable bandwidth as a ratio of the sampling frequency, for a given
damping ratio and filter resonant frequency (relative to the sampling frequency).
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Figure 5.3: Plot of achievable bandwidth for a given damping ratio. Ts = 2π
160 , L = 4%, C = 10%.

output ripple.

As an example, an inverter with an 8kHz sampling frequency, 50Hz fundamental, 4% filter

inductor and 10% filter capactior has a sampling to resonant frequency ratio of 5. Figure 5.3

shows the achieveable cutoff frequency for a given damping ratio and Figure 5.4 shows the

actual poles for a damping ratio sweep for -0.1 to 1.0. For the discretised continuous-time

VSI in Section 4.2.1 with the same filter components, and a damping ratio of 0.3, the ‘best’

achieveable cutoff-frequency was 11.4pu using gains ωi = 8 and ωv = 18. From Figure 5.3

a damping ratio of 0.3 results in a cutoff-frequency of 19.8pu, which is an increase of 74%.
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Figure 5.4: Pole contour for unloaded system, damping ratio ζ sweep from 1.0 to -0.1. Ts = 2π
160 ,

L = 4%, C = 10%.
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continuous-time controller. Both systems have a complex pole-pair damping ratio of 0.4. Ts =
2π
160 , L = 4%pu, C = 10%pu, ωi = 6.1, ωv = 3

4ωi, damping ratio used as design parameter for
direct design controller.

Previously the discretised continuous-time VSI could not achieve a dominant natural frequency

above the fundamental with damping ratios greater than 0.5, whereas the direct design controller

critically damped bandwidth (ζ = 1) is still relatively high with a cutoff-frequency of 15.6pu.

Figure 5.5 shows the step response of the direct design controller compared to the discretised

continuous-time-derived controller in Section 4.2.1. Given that the two controllers have signifi-

cantly different bandwidths, the damping ratios of the complex pole-pair of each controller was
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Figure 5.6: Direct design controller output impedance example. Ts = 2π
160 , L = 4%, C = 10%,

damping ratio of 0.3 used as design parameter. Time scale is normalised frequency where a
frequency of one corresponds to the fundamental.

equated. A damping ratio of 0.4 was chosen as it achieved adequate overshoot (less than 20%)

and ringing for both controllers. Clearly visible in Figure 5.5 is that the direct design controller

has a signifcantly faster response than the benchmark controller. The high frequency lightly

damped complex pole-pair (ζ = 0.4) is clearly visible in the direct design controller, evident as

the ringing frequency. The lightly damped complex pole-pair in the benchmark controller is less

evident as a result of the low frequency real pole that dominates the system response.

5.2.4 Output impedance

The discrete VSI output impedance is found in a similar manner to that of the discretised VSI

in Section 4.2.1, and is derived in author’s paper [31].

Using a damping ratio of 0.3 as the design parameter, Figure 5.6 shows an example output

impedance. The output impedance has a typical inductive response up to the cutoff frequency,

and a capacitive response as the frequency tends to infinity. From the figure the inductive

impedance at the fundamental frequency is -24.5dB or 5.9%. The discretised VSI example with

the same damping ratio had a similar output impedance. With a damping ratio of 0.5 the direct

design controller has an impedance of 8%, while the discretised VSI has an output impedance

of 16%, twice that of the direct design controller. This clearly indicates that for a poorly tuned



5.2 POLE PLACEMENT DESIGN 73

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.9

0.8
0.7
0.6
0.5
0.4
0.3

0.2

0.1

π/T

0.9π/T

0.8π/T

0.7π/T

0.6π/T
0.5π/T

0.4π/T

0.3π/T

0.2π/T

0.1π/T

π/T

0.9π/T

0.8π/T

0.7π/T

0.6π/T
0.5π/T

0.4π/T

0.3π/T

0.2π/T

0.1π/T

Pole contour

Figure 5.7: Pole contour for resistive load. Resistor impedance varied from 20pu down to 0.5.
Ts = 2π

160 , L = 4%, C = 10%, designed with damping ratio of 0.7.
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Figure 5.8: Pole contour for low impedance inductive load. Impedance varied from open circuit
down to 0.5%. Ts = 2π

160 , L = 4%, C = 10%, designed with damping ratio of 0.7.

discretised VSI the output impedance will be significantly higher than that of the discrete direct

design VSI.

Figures 5.7 and 5.8 show the effect on the system poles for purely resistive and inductive loads,

respectively. The resistive loads figure illustrates that as the load increases the single real pole’s

natural frequency is reduced, lowering the system bandwidth, a common side-effect of controllers
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that do not exhibit load compensation. The damping ratio of the complex pole remains relatively

constant, dropping only slightly for large loads.

The inductive load pole contour is useful in determining how the controller performs under low

impedance loads, including short circuit conditions, starting direct online (DOL) motors, or

when coupled to a grid. Inductive loads have the effect of increasing the resonant frequency

of the combined filter and load, which can lead to controller instability. From Figure 5.8 the

controller becomes unstable for load impedances below 0.74%. In Figure 5.8 the unloaded filter

has a natural frequency of 15.8pu, whereas the marginally stable combined filter and load has

a natural frequency of 40pu. In grid-connected applications the use of a coupling impedance

between the inverter and the grid provides an adequate minimum impedance to ensure stability.

Of particular importance when addressing robustness to loads is how the system performs with

high-order loads. High-order systems typically have a response dominated by a single complex

pole-pair, the worst are resonant loads with little or no damping. A common example is a power

factor corrected induction machine. Power factor capacitors are sized according to the machine’s

magnetising inductance. The power factor capacitors then have the potential to resonate with

both the magnetising inductance (at the fundamental) and the leakage inductance (at a high

frequency). The low frequency resonance at the fundamental is well inside the controller band-

width, but the high frequency resonance can be an issue. In an example setup where a motor has

a 3pu magnetising inductance, the power factor capacitors will be 33%. The power factor capac-

itors and the series motor leakage and inverter impedance form a resonant pole-pair. Driven by

the controller with a designed damping ratio of 0.4, the resonant pole-pair is sufficiently damped

to a damping ratio of 0.24.

The issue of connecting to low impedance systems is further discussed in Chapter 6 where

parallel-connected inverters are investigated.
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5.3 PRACTICAL IMPLICATIONS

In Chapter 4 each of the controllers discussed exhibited characteristics that reduced their suit-

ability in certain practical applications. Such limitations include robustness to component value

sensitivities, inadequate output impedance, ability to limit currents and voltages for system

protection, and the ability to accommodate delays. This section details some of the practical

implications of the proposed controller and how they have been addressed.

5.3.1 Robustness

One of the key considerations when developing the discrete direct design VSI controller was for

it to be robust. In practical applications the primary robustness considerations are the ability to

be immune to component variations and to tolerate some level of noise in the feedback signals,

including switching ripple.

Component value sensitivities

The effect of component variations depends solely on system poles as a function of the component

values. System poles are a function of the resonant frequency ωn of the LC filter. By definition

of ωn in equation 5.3, the inductor and capacitor have the same effect on the resonant frequency.

Figure 5.9 illustrates the robustness of the controller with a ±10% filter inductor or capacitor

variation. Typical component variations for inductors and capacitors are between 5 and 20%.

As illustrated in the figure, the natural frequency of the poles vary between 12 and 24pu, while

the damping ratio has a considerably lower deviation of 10%. From the figure a 10% lower LC

product results in a lower natural frequency for the real pole of 12.4pu (originally 17pu), but a

greater natural frequency of the complex pole-pair of 20.6pu. For a 10% greater LC product the

real pole natural frequency is greater at 24pu, while the complex pole-pair natural frequency is

12.6pu. In each case the lower pole natural frequency becomes the dominant pole, effectively
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Figure 5.9: Pole contour for unloaded system illustrating component sensitivity. The LC product
is varied by ±10%. Nominal L = 4%, C = 10%. Ts = 2π

160 , designed with damping ratio of 0.7.

lowering the controller bandwidth. Fortunately, although component value variations result in

a lower natural frequency for the dominant pole, due to the increasing separation of the pole

natural frequencies, the bandwidth does not drop at a rate proportional to the natural frequency

of the dominant pole.

Feedback sampling

In any practical application any signal in an industrial environment is likely to be exposed to

noise. In the case of inverters the switching devices themselves are a source of noise, including the

PWM switching frequency and high frequency noise from the high dV
dt switching edges and high

semiconductor dI
dt . Unfortunately it must be assumed that noise will couple into any feedback

path.

Despite the apparent robustness of the proposed inverter, in its present form the controller has

an incredibly high gain at the Nyquist frequency as a result of the pole at z = −1 in equation 5.5.

Any high frequency noise in the capacitor voltage feedback signal will be amplified, resulting in

an even noisier PWM reference signal. The severity of the high-gain high-frequency pole can be
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Figure 5.10: Step response of direct design controller with dual-edge sampled PWM with a whole
sample period delay. Blue and red traces are actual and sampled capacitor voltages, respectively.
Ts = 2π

160 , L = 4%, C = 10%, designed with damping ratio of 0.4, k1 = 1, k2 = −0.23, k3 = 0.65,
pole natural frequency ωn = 18.3pu. 1pu PWM reference corresponds to a 90% duty cycle.

reduced by sacrificing a small amount of bandwidth/stability margin by moving the z = −1 pole

towards the origin. This is achieved by an additional control parameter k3, changing equation 5.5

to:

CFb,Vc(z) =
k2z + k1

z + k3
(5.18)

With the addition of k3, the z = −1 zero in equation 5.2 is no longer cancelled and the system

becomes fourth-order. When specifying the response of the controller, gains k1 and k2 are most

conveniently derived by first assuming k3 = 1 and calculating the gains as usual. A value for

k3 is then chosen that reduces the effect of noise amplification to a suitable level for a given

application. Alternatively, mathematical solvers can also be used to solve the fourth-order

system for the gains. By reducing k3 from 1 to 0.65 the reduction in the cutoff frequency is less

than 10% (< 2 for a system with a bandwidth of 20).

An unavoidable example of high frequency noise is in systems that sample the filter states at

twice the switching frequency (regular PWM updating both the rising and falling edge). In fact

without having a k3 gain below 1 the controller with a dual-edge sampled PWM and a single

sample period delay is not stable. Figure 5.10 shows a 1pu step response of the VSI with a k3

gain of 0.65. Although stable the output shows excessive ripple. There is also a ±22% oscilation
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Figure 5.11: Step response of direct design controller with dual-edge sampled PWM with a half
sample period delay. Blue and red traces are actual and sampled capacitor voltages, respectively.
Ts = 2π

160 , L = 4%, C = 10%, designed with damping ratio of 0.4, k1 = 1.9, k2 = −1.5, k3 = 0.65,
pole natural frequency ωn = 23pu. 1pu PWM reference corresponds to a 90% duty cycle.

in the PWM reference signal at steady-state for an input reference of zero. Unfortunately the

capacitor voltage ripple peaks align with the sample point when the sample delays are integer

multiples of the sample period. By making the sample points 180 degrees out of phase with the

PWM update points the switching ripple is eliminated in a similar manner to that of sampling

inductor current as previously discussed in Section 3.6.1. Sampling 180 degrees out of phase

with the PWM update points implies non-integer multiple delays of the sample period, therefore

the original design assumption of a single sample period delay no longer holds and the gains

must be modified to accommodate the different delay. The discretised LC filter with a fractional

delay is:

H(s) = e−sTd
1

s2LC + 1
(5.19)

HZOH(z) = ZZOH
{

1

s2LC + 1
, Td

}
(5.20)

=
(z2 − 2z cos(ωnTs) + 1) + (z − 1)(cos(ωnTd)− z cos(ωn(Ts − Td)))

z(z2 − 2z cos(ωnTs) + 1)
(5.21)

where Td is the fractional delay of Ts and the ZOH operator takes the fractional delay as the

second argument for the extended “Advanced Z transform”.
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Figure 5.11 again shows the step response of the controller with an actual PWM modulator,

but with a half sample period delay rather than a whole sample period delay. In contrast to

the example with a whole sample period delay shown in Figure 5.10, at steady-state there is no

sampled output ripple and consequently the PWM reference signal has no oscillation either. In

addition to the reduction in ripple, the small delay permits a greater natural frequency of the

system poles, with an increase from 18.3pu to 23pu for this example.

5.3.2 Protection limits

As mentioned in Chapter 2 implementation hardware is constrained in many ways including the

current each component can carry and the voltage it can tolerate. In addition to this PWM

modulators can only generate ±1pu of the DC bus voltage. To ensure that the constraints for

each component are not exceeded, control limits must be incorporated. Thankfully the discrete

controller has no natural integrating effect which makes output voltage limiting as simple as a

saturation block.

In the previous chapter the continuous-time VSI due to its cascaded nature of a capacitor voltage

controller controlling an inductor current controller, current limits can be simply implemented

by limiting the inductor current reference from the voltage controller. Unfortunately the pro-

posed discrete controller does not have an intrinsic inductor current reference signal upon which

inductor current limits can be implemented. A current limit however requires knowledge of the

actual inductor current, which implies an additional sensor feedback. Despite the addition of an

additional feedback signal, the current signal will only be used to compare against a saturation

limit function. By only using the current feedback for saturation, any noise in the signal only

affects the output when the current is outside the limits.

To provide current limiting an inductor current limiting function was added to the output of

the discrete voltage controller before the PWM modulator as shown in Figure 5.12. Signals
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Figure 5.12: Discrete controller inductor current saturation.
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Figure 5.13: Example of uncontrolled filter oscillations during current limit. 1pu fundamental
reference signal with a 1pu resistive load, inductor current limits set at ±0.5pu, current limit
ω = 35pu.

with a hat indicate calculated values for the next time step, while signals with a star indicate

reference values for the present time step. The limiting function calculates what effect the

controller reference signal will have on the inductor current ∆ÎL in the next time step which is

then added to the measured inductor current to calculate the current in the next time step ÎL.

The calculated current for the next time step is then saturated to the required limit. The output

signal to the PWM module is then reconstructed from the saturated inductor current signal I∗L.

The key consideration for the current limiting function in Figure 5.12 is the selection of the

gain Ki, specifically its design parameter ωi. The current limiting function effectively acts as

an observer by calculating what the inductor current will be in the next time step. V̂L is the

calculated inductor voltage for the next time step and ∆ÎL is the expected inductor current

change. To correctly calculate ∆ÎL, Ki should accurately represent the inductor integrating

effect 1
sL , so for one time step ωi should be 1

Ts
.

Although selecting ωi to be 1
Ts

accurately calculates the change in the inductor current over the
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Figure 5.14: Example of clean operation during current limit. 1pu fundamental reference signal
with a 1pu resistive load, inductor current limits set at ±0.5pu, current limit ω = 15pu.

next time step, if the saturation block acts to limit the inductor current the PWM reference

will be hard limited and the output filter will no longer be controlled. Figure 5.13 shows the

effect of uncontrolled filter oscillations when ωi = 1
Ts

. In the figure the current limit is set at

±0.5pu while a 1pu resistive load attempts to draw close to 1pu current. Clearly evident are

the uncontrolled filter oscillations when the current limit is in operation.

By choosing a lower value for ωi than 1
Ts

the response of the current limit is lowered slightly

and the filter oscillations that were evident in Figure 5.13 are completely removed. Figure 5.14

shows the same example again but with ωi = 15pu. Clearly evident in this example, the filter

oscillations have completely gone and the current is cleanly limited to 0.5pu. Unfortunately if

the limit response ωi is set too low relative to the sample rate the observer over-estimates the

inductor current and the limit function may prematurely limit the current before the actual limit

is reached.

5.3.3 Elimination of steady-state errors

In Section 4.2 integrators for DC systems and resonators for AC systems were discussed as a

means of eliminating steady-state errors at chosen frequencies of interest (usually the funda-

mental). Steady-state errors can be removed by adding the output of an integrator or resonator

operating on the voltage error to the control reference input. Anti-windup feedback is recom-
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1

Figure 5.15: Complete discrete controller with resonator and current limiting.

mended in applications where the PWM reference may be limited.

5.4 PRACTICAL APPLICATION

The responses of both the proposed direct discrete controller and the discretised continuous-

time controller have been confirmed both numerically in simulation and in practice on the test

hardware platform. MATLAB Simulink confirmed the analytical results both in the simulation

results and also through the use of the Simulink Linearization Analysis Toolbox. Details of the

test hardware platforms are in Appendix G.

Figure 5.15 shows the complete controller used for testing, including the resonator, current

limiting, and anti-windup feedback. Each signal represents an αβ pair for three phase systems.

When performing step and load responses the resonator was disabled to accurately represent

the inverter output impedance.

To ensure current sharing between parallel modules conventional voltage droop that operates on

the individual module’s output current is used. In both simulation and hardware a droop of 1%

is used. Simulations demonstrated negligible effect on the response of any of the control systems

due to voltage droop. In hardware tests, tight component tolerances meant that the 1% droop

provided adequate current sharing.

In both simulation and hardware a whole sample time delay was used with sampling at 8kHz
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Figure 5.16: Open circuit 3φ voltage step response of discrete direct design controller. Step from
Vref = 0% to Vref = 100% on sixteen module, 2MVA system. Ts = 2π

160 , L = 4%, C = 10%,
k1 = 1, k2 = −0.2, k3 = 0.65, damping ratio of 0.4 used as design parameter. Vc: 100V/div;
time: 5ms/div.

Figure 5.17: Open circuit 3φ voltage step response of discrete direct design controller. Step from
Vref = 100% to Vref = 0% on sixteen module, 2MVA system. Ts = 2π

160 , L = 4%, C = 10%,
k1 = 1, k2 = −0.2, k3 = 0.65, damping ratio of 0.4 used as design parameter. Vc: 100V/div;
time: 5ms/div. Note: the DC offset is due to the differential VTs used.

(4kHz dual-edge update PWM). To improve noise immunity a k3 gain of 0.65 was used. The k1

and k2 gains were calculated for a damping ratio of 0.4.

Figures 5.16 and 5.17 show the open circuit step responses of the discrete direct design controller,

for a 0 to 100% voltage reference step and a 100 to 0% reference step respectively. The tests

were conducted on the largest test system of 1MVA, and a damping ratio of 0.4 was used as the
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Figure 5.18: Open circuit 3φ voltage step response of discretised continuous-time controller.
Step from Vref = 0% to Vref = 100% on a sixteen module, 2MVA system. Ts = 2π

160 , L = 4%,
C = 10%, ωi = 8, ωv = 6. Vc: 100V/div; time: 5ms/div.

Figure 5.19: Open circuit 3φ voltage step response of discretised continuous-time controller.
Step from Vref = 100% to Vref = 0% on a sixteen module, 2MVA system. Ts = 2π

160 , L = 4%,
C = 10%, ωi = 8, ωv = 6. Vc: 100V/div; time: 5ms/div. Note: the DC offset is due to the
differential VTs used.

control design parameter. The two responses exhibit a fast response with little overshoot, closely

matching the 0.4 damping ratio design parameter. The small overshoot and ripple apparent in

the step responses are approximately one third smaller than simulations predicted, attributed

to resistive damping provided by the filter components.

Figures 5.18 and 5.19 show the same two step responses with the discretised continuous-time-

derived controller. Compared to the discrete direct design step responses, the discretised continuous-
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Figure 5.20: Step response of 3φ discrete direct design controller with 1pu resistive load, showing
output voltage (top) and output current (bottom). Step from Vref = 0% to Vref = 100% on a
three module, 125kVA system. Ts = 2π

160 , L = 4%, C = 10%, k1 = 1, k2 = −0.2, k3 = 0.65,
damping ratio of 0.4 used as design parameter. Vc: 200V/div; Io: 50A/div; time: 5ms/div.

Figure 5.21: Step response of 3φ discrete direct design controller with 1pu resistive load, showing
output voltage (top) and output current (bottom). Step from Vref = 100% to Vref = 0% on a
three module, 125kVA system. Ts = 2π

160 , L = 4%, C = 10%, k1 = 1, k2 = −0.2, k3 = 0.65,
damping ratio of 0.4 used as design parameter. Vc: 200V/div; Io: 50A/div; time: 5ms/div.

time controller step responses have a slower rolloff, matching the calculated 6pu dominant pole.

Figures 5.20 and 5.21 show the step responses of the discrete direct design controller with a 1pu

resistive load, for a 0 to 100% voltage reference step and a 100 to 0% reference step respectively.
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Figure 5.22: Voltage and current waveforms of 3φ discrete direct design controller with resistive
and nonlinear load, showing line to line output voltage (top) and output current (bottom). 50%
(RMS) resistive and 50% nonlinear load on a single 42kVA inverter module. Diode rectifier,
cap and resistor with 3% line reactor used as nonlinear load. Ts = 2π

160 , L = 4%, C = 10%,
k1 = 1, k2 = −0.2, k3 = 0.65, damping ratio of 0.4 used as design parameter. Vc: 200V/div; Io:
20A/div; time: 5ms/div.

The tests were conducted on the 125kVA hardware platform. The figures show a fast, clean

response with no overshoot or ringing. The loaded system exhibited a 0.6% droop in output

voltage, which correlates perfectly with the predicted fundamental output impedance calculation.

Figure 5.22 shows steady-state voltage and current waveforms of the discrete direct design con-

troller with a diode rectifier nonlinear load. The voltage waveform (line to line) exhibits the

increasingly common flat-top characteristic, often observed on low voltage distribution grid net-

works. The inverter impedance was calculated to be 7%.

5.5 SUMMARY AND DISCUSSIONS

When constructing high performance power inverter configurations which have a constrained

switching frequency, achieving the best possible forward response and output impedance requires

high performance controllers. As more control systems use discrete-time controllers, as the de-

mand for performance increases in Chapter 4 discretised traditional continuous-time controllers
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demonstrated non-ideal characteristics, resulting in reduced stability margins and reduced per-

formance. Discrete-time controllers such as deadbeat control offer a high performance controller

but inherently are not overly robust to component variations.

This chapter details a relatively simple to implement discrete-time controller using constrained

pole-placement that offers the ability to trade off the response against the damping ratio.

Through the use of an offline calculation the controller gains can be derived that achieve ei-

ther a desired system-pole natural frequency or damping ratio. The controller demonstrates a

high robustness to both component value variation and low impedance loads. Component value

variations result in a shift of the system poles’ natural frequency but have little effect on their

damping ratio. The simple first order discrete design is not only relatively simple to implement

in hardware, it only requires a single capacitor voltage feedback.

Further analysis of the controller uncovered potential issues that may arise in practical appli-

cations. Methods for reducing ripple, removing steady state errors and enforcing current limits

are provided which are often required in practical applications. The controller performance and

robustness has been confirmed on both monolithic and parallel configurations of up to 2MVA.

The high performance controller is the first component in constructing a high performance and

high power grid-connected inverter system. Following the investigation of a high performance

controller, the next chapter details the implications of paralleling inverters to achieve a scalable

high power system.





Chapter 6

PARALLEL CONFIGURATIONS

6.1 INTRODUCTION

In Chapter 2 it was concluded that due to semiconductor device limitations the only practical way

to increase an inverter’s current capacity without sacrificing bandwidth is to parallel individual

devices. In addition to the redundancy advantages discussed in Section 2.6, the various methods

of paralleling individual inverters are numerous, and many different approaches have received

significant attention in recent years.

In [5] regarding parallel system topologies, the definition of what constitutes a parallel system

defines the paralleling mechanism as either passive or active. Passively paralleled systems are

those in which load balancing relies entirely on the characteristics of the physical implementation,

such as inter-module filter impedances and dead-times. In passive systems there is no differential

change in the control reference as a result of module imbalance. Actively paralleled systems have

some form of active balancing in the control loop. The control loop makes active adjustments

for each parallel module to correct any imbalance.

This thesis expands on the work in [5] regarding actively controlled parallel inverter configu-

rations. Specifically, active parallel inverters, each with their own separate controller, where

each module receives the same output voltage reference signal from a master controller. In this

manner the master controller treats the combined parallel modules as a single voltage source

inverter. Each module is assumed to actively reduce or eliminate imbalance thus yielding a total
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rated current equal to the sum of the individual module current ratings. In this manner any

number of modules can be connected in parallel while the master module is only concerned with

the total system current.

To ensure adequate current sharing between modules the resistive droop method has been em-

ployed in the parallel test hardware (Appendix G). This simple method is shown in Figure 6.2.

Each module estimates its output current by subtracting the calculated filter capacitor cur-

rent from the measured filter inductor current. In [5] the controller used was the benchmark

discretised continuous-time controller described in Section 4.2.1.

In this chapter, the first section describes an analytical investigation into the instabilities that

can occur with parallel arrays of inverters in a grid-connected configuration. First, the stability

implications of parallel modules with LC filters are addressed, followed by the additional effects

of using LCL filters. Both simulation and experimental results on the test hardware setup

(Appendix G) confirm the findings. Having investigated the cause of the instabilities, methods

to ensure stability are provided (originally detailed in [32]). The discrete direct design controller

described in Chapter 5 is also examined and is shown to offer stability improvements over the

discretised continuous-time controller.

Throughout the chapter the following convention with respect to indices is adhered to: for an

n-module system an index i implies the subject module, and an index j implies each of the

remaining n− 1 identical modules. As an example Figure 6.1 shows the use of indexing for one

module in a multi-module configuration. As suggested in Figure 6.1, for module one GVc,iVpwm,i

is the component of the module one capacitor voltage (Vc,1) contributed by its own PWM voltage

(Vpwm,1), and GVc,iVpwm,j is the component of Vc,1 contributed by the sum of the other PWM

voltages (
∑n

k=2 Vpwm,k).
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Figure 6.1: Indexing example for a n-module system showing module 1 capacitor voltage Vc,1 as
a function of each PWM voltage

Figure 6.2: Resistive droop current sharing.

6.2 STABILITY ANALYSIS

Figure 6.3 shows the single-wire connection diagram for an actively paralleled, grid-connected, 2-

level VSI. In practical applications there exists some form of coupling impedance Lc between each

module. The coupling impedance may be purely a side effect of the geographical location of the

inverters, or may be dominated by a deliberately inserted impedance. A parallel configuration is

herein defined to be hard-coupled when the coupling impedance (line reactor) is zero (Lc = 0, LC

filter with capacitors all tied together) and soft-coupled when there is a real coupling impedance

(Lc 6= 0, LCL filter with independent capacitor voltages). Not shown is the master module

which propagates the same output voltage reference signal to each module.

Small-signal stability is first investigated for a theoretical hard-coupled parallel configuration

and then is expanded to the more practical soft-coupled configuration. A large amount of work

has been done in the area of the stability of parallel grid-connected inverters [10,33–46], but due
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Figure 6.3: Soft-coupled Parallel VSIs.

to the complexity of parallel-connected systems they have only been investigated in continuous-

time. To uncover the cause of the observed instability a small-signal analysis is performed in

discrete-time. However, the complexity of analysing discrete-time inverters with low impedance

loads is compounded when independently controlled inverters are connected in parallel [44–46].

The use of additional integrators (or AC resonators) is neglected for the stability analysis. For the

small-signal stability analysis of the grid-connected VSI, the grid is treated as a low impedance

(inductive) load. Typical grid-connect impedances range from a stiff grid scenario of less than

1% up to a weak grid of 20%. To achieve results independent of the number of modules, the

grid load impedance Lg in Figure 6.3 is scaled by n such that Lg =
Lg,per module

n .

The small-signal stability of an n-module system is defined by the pole locations of the closed-

loop system. To determine the closed-loop system poles, the expression for the first module’s

capacitor voltage Vc,1 with respect to the voltage reference Vc,ref is derived. In the following

sections where non-identical modules are examined, the systems are disturbed by altering only

the first module’s parameters while using the specified nominal values for the remaining modules.

For the discretised continuous-time VSI in Section 4.2.1, the inverter is broken up into separate

blocks for the controller and output filter, as shown in Figure 4.5. So far in this thesis only single



6.2 STABILITY ANALYSIS 93

module inverters have been analysed and only a single module output filter and load has been

discretised. For modular systems where the filter outputs are connected together, the entire

combination of filters and loads must be discretised as a whole. In the hard-coupled scenario all

the module capacitors are connected in parallel and therefore each controller senses the common

capacitor voltage. The sensed capacitor currents are identical for identical capacitor values.

6.2.1 Hard-coupled parallel configuration

Firstly the output filter expressions as a function the PWM voltages must be obtained. Equating

the capacitor and load currents in Figure 6.3 where n−1 of the modules have identical inductors

Lj and module one has filter inductance L1:

Vpwm,1 − Vc
sL1

+

∑n
k=2 Vpwm,k − Vc

sL
= Vc

(
nsC +

1

sLg

)
(6.1)

Solving for Vc:

Vc(s) =
(Vpwm,1(s)L+

∑n
k=2 Vpwm,k(s)L1)Lg

s2LL1LgCn+ Lg(L+ L1(n− 1)) + LL1n
(6.2)

Vc(s) = GVc,Vpwm,iVpwm,i +GVc,Vpwm,iVpwm,j (6.3)

The capacitor currents are derived as:

Ic,i(s) =
Vc,i(s)

Zc
= sCVc,i(s) (6.4)

For an identical module system where L1 to Lj = L and Vpwm,1 = Vpwm,i, substituting into

equation 6.2 produces:

Vc(s) =

∑n
k=1 Vpwm,k(s)Lg

n(s2LLgC + Lg + L)
(6.5)

As each controller samples the same common capacitor voltage each controller produces the
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1

Figure 6.4: Identical 3 module hard-coupled parallel configuration. Module 1 controller un-
masked.

same PWM reference Vpwm, and therefore Vpwm,i = Vpwm,j .

The discretised PWM to capacitor voltage transfer function (demonstrated in Section 3.4.2) for

identical parallel filters in equation 6.5 is:

GVc,Vpwm(z) =
Lg(z + 1)

(
1− cos

(
Ts

√
Lg+L
LLgC

))
n(Lg + L)

(
z2 − 2z cos

(
Ts

√
Lg+L
LLgC

)
+ 1
) (6.6)

Compared to the discretised LC filter in Section 3.4.2 which has a single resonant frequency of

1√
LC

, the parallel grid-coupled filters also have a single resonant frequency of
√

Lg+L
LLgC

. Although

the natural frequency is dependent on the grid impedance Lg, the system order remains the

same.

Combining the discretised filter components and closing the loop produces the capacitor voltage
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Figure 6.5: Pole contour of hard-coupled system with ωi gain sweep from 5 to 20pu. Ts = 2π
160pu,

L = 4%pu, C = 10%pu, Lg = 5%pu, ωv = 3
4ωi, identical module system.

as a function of the input reference:

GVc,Vpwm = GVc,Vpwm,i(z) +GVc,Vpwm,j(z) (6.7)

GIc,Vpwm = GIc,Vpwm,i(z) +GIc,Vpwm,j(z) (6.8)

Vc(z)

Vc,ref (z)
=

CFfCFb,VcGVc,Vpwm

1− (CFb,VcGVc,Vpwm + CFb,IcGIc,Vpwm)
(6.9)

From equation 6.9 it can be seen that for a hard-coupled parallel configuration of identical

inverters there is no longer any dependency on the number of parallel modules, n. This pro-

vides the likely conclusion that n perfectly identical modules with the same input reference are

mathematically equivalent to one large inverter, n times the size of an individual module.

A controller gain frequency ratio of ωv = 3
4ωi was chosen as a benchmark gain ratio as it

results in a damping ratio of 0.6 for the continuous-time controller (Section 4.2, equation 4.5).

Figure 6.5 shows the discretised hard-coupled VSI for a gain sweep of ωi from 5pu to 20pu. The

hard-coupled configuration becomes unstable at ωi = 14.6pu. This sets a benchmark for the

discretised continuous-time controller parallel configuration.
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The system expression is now expanded to accommodate non-identical modules, where the in-

dividual filter component values are subtly different due to practical tolerances.

For a non-identical system L1 is unique. The capacitor voltage functions in equation 6.3 become:

GVc,Vpwm,1(s) =
LLg

s2LL1LgCn+ Lg(L+ L1(n− 1)) + LL1n
(6.10)

GVc,Vpwm,j (s) =
(n− 1)L1Lg

s2LL1LgCn+ Lg(L+ L1(n− 1)) + LL1n
(6.11)

with respective capacitor currents:

GIc,Vpwm,1(s) = sCGVc,Vpwm,1(s) (6.12)

GIc,Vpwm,j (s) = sCGVc,Vpwm,j (s) (6.13)

Discretising the capacitor and current functions produces:

GVc,Vpwm,1(z) = ZZOH(GVc,Vpwm,1(s)) (6.14)

GVc,Vpwm,j (z) = ZZOH(GVc,Vpwm,j (s)) (6.15)

GIc,Vpwm,1(z) = ZZOH(GIc,Vpwm,1(s)) (6.16)

GIc,Vpwm,j (z) = ZZOH(GIc,Vpwm,j (s)) (6.17)

Closing the loop, the non-identical module expressions are:

GVc,Vpwm = GVc,Vpwm,1 +GVc,Vpwm,j (6.18)

GIc,Vpwm = GIc,Vpwm,1 +GIc,Vpwm,j (6.19)

Vpwm,1
Vc,ref

=
CFf

1− CFb,VcGVc,Vpwm + CFb,IcGIc,Vpwm

(6.20)

Vc,1
Vc,ref

=
Vpwm,1
Vc,ref

GVc,Vpwm (6.21)
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Pole Map for Hard Coupled System

Figure 6.6: Pole map of hard-coupled system demonstrating component sensitivities by varying
module one inductor. Ts = 2π

160pu, L = 4%, C = 10%, Lg = 5%, L1 = L ± 10%, ωi = 11pu,
ωv = 3

4ωi = 8.25, three module system.

The poles of the non-identical system are defined by the denominator of equation 6.20. From

equations 6.10 and 6.11 the filter equations are still only second order like the single module

system (equation 3.17).

Figure 6.6 illustrates the effect of component sensitivities in a three module system by varying

L1. Increasing the number of modules reduces the effect of component variations. Hard-coupled

configurations do not pose any additional stability implications compared with an individual

module. In fact, more modules helps to average out component sensitivities.

6.2.2 Soft-coupled parallel configuration

The soft-coupled configuration assumes a non-zero coupling impedance Lc 6= 0 in Figure 6.3.

With the addition of Lc equations 6.7 and 6.8 are no longer valid, and the individual module

capacitor voltages and currents must be resolved. Figure 6.7 shows the closed-loop configuration

for a three module soft-coupled parallel configuration where each module is identical. Note that

Figure 6.7 does not show the blocks for the respective capacitor current feedbacks.

The module capacitor voltages are derived in a similar manner to the hard-coupled configuration,
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1

Figure 6.7: Soft-coupled parallel system with three modules. Note that the functions for the
capacitor currents are not shown but are of the same form as the capacitor voltage functions.

except that there is no longer one common capacitor voltage, and, as a result, each controller

no longer produces the same PWM reference Vpwm,i. For a configuration where each filter is

identical, the continuous-time transfer function for the module capacitor voltage as a function

of its own PWM voltage GVc,iVpwm,i(s) is:

GVc,iVpwm,i(s) =
Vc,i(s)

Vpwm,i(s)
=

s2nLcLC(Lc + Lg) + nLc(L+ Lc + Lg) + LLg
n(s2LCLc + L+ Lc)(s2LC(Lc + Lg) + L+ Lc+ Lg)

(6.22)

and the module capacitor voltage as a function of every other PWM voltage GVc,iVpwm,j (s) is:

GVc,iVpwm,j (s) =
Vc,i(s)

Vpwm,j(s)
=

LLg
n(s2LCLc + L+ Lc)(s2LC(Lc + Lg) + L+ Lc+ Lg)

(6.23)

Respective capacitor current expressions are obtained with equation 6.4.

Closing the loops in Figure 6.7 for an n-module parallel configuration produces the module one
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capacitor voltage Vc,1 as a function of the reference voltage. Defining

H1 = GVc,iVpwm,i(z) (6.24)

H2 = GVc,iVpwm,j (z) (6.25)

H1I = GIc,iVpwm,i(z) (6.26)

H2I = GIc,iVpwm,j (z) (6.27)

The complete closed-loop transfer function for an individual module Vc,i(z) as a function of

Vc,ref (z) is given as:

Vc,i(z)

Vc,ref (z)
=

−CFf (H1 + (n− 1)H2)(CFb,Vc(H1 −H2) + CFb,Ic(H1I −H2I)− 1)

(CFb,Vc(H1−H2)+CFb,Ic(H1I−H2I)−1)(CFb,Vc(H1−H2)+CFb,Ic(H1I−H2I)−1+n(CFb,VcH2+CFb,IcH2I)

(6.28)

The first observation to be made for a perfectly identical system is that further pole-zero cancel-

lations can be made in equation 6.28. The two factors in the denominator that each contribute

a pole-pair are:

Factor1 = (CFb,Vc(H1 −H2) + CFb,Ic(H1I −H2I)− 1) (6.29)

Factor2 = (CFb,Vc(H1 −H2) + CFb,Ic(H1I −H2I)− 1 + n(CFb,VcH2 + CFb,IcH2I)(6.30)

A further cancellation of the first factor produces:

Vc,i(z)

Vc,ref (z)
=

−CFf (H1 + (n− 1)H2)

(CFb,Vc(H1 −H2) + CFb,Ic(H1I −H2I)− 1 + n(CFb,VcH2 + CFb,IcH2I)
(6.31)

Worth noting is that for a perfectly identical hard-coupled system where the load Lg,load is the

sum of the coupling impedance and load of a soft-coupled system (Lg,hard = Lg,soft + Lc), the
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response expressions are the same.

For the non-identical configuration, module one has a unique coupling impedance Lc,1. Unlike

the identical module scenario, the expressions for each capacitor voltage (and respective capacitor

current) shown in Figure 6.7 must be further expanded to take into account the effect of Lc,1. As

only module one is unique, the capacitor voltage expressions are expanded to be with respect to

that module’s PWM voltage, module one’s PWM voltage and then every other module’s PWM

voltage. The index notation given at the start of the chapter in Figure 6.1 is again used, but

as module one is not identical to the remaining modules its specific index is used. Subscript j

refers to the remaining (n − 2) modules and i 6= 1. The non-identical configuration capacitor

voltage expressions are:

H1 = GVc,1Vpwm,1(z) (6.32)

H2 = GVc,1Vpwm,j (z) (6.33)

H3 = GVc,iVpwm,1(z) (6.34)

H4 = GVc,iVpwm,i(z) (6.35)

H5 = GVc,iVpwm,j (z) (6.36)

The full equations for each of the capacitor output voltage transfer functions for equations 6.32

to 6.36 are given in Appendix H.

Figure 6.8 shows the poles of a non-identical configuration scenario. The coupling impedance

and load impedance sum are the same as Figure 6.6. When the modules are not exactly identical

Factor1 (equation 6.29) of equation 6.28 no longer cancels, and in the present example manifests

as the pole-zero pairs just outside of the unit circle. Not only do the pole-zero pairs not cancel,

but the same gains used in a hard-coupled system have a higher stability margin than in a

soft-coupled system. Figure 6.8 shows the additional pole-zero pairs are outside the unit circle
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Figure 6.8: Pole-zero map of soft-coupled system varying module one coupling impedance Lc,1.
Ts = 2π

160 , L = 4%, C = 10%, Lc = 2%, Lc,1 = 0.95Lc, Lg = 3%, ωi = 11, ωv = 3
4ωi = 8.25, three

module system.

Table 6.1: Hard and soft-coupled parallel stability margin

Hard-coupled Soft-coupled

ωi = 14.6pu, ωv = 10.9pu ωi = 10.6pu, ωv = 7.9pu
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Figure 6.9: Pole contour of soft-coupled system with ωi gain sweep from 5 to 20pu. Ts = 2π
160 ,

L = 4%, C = 10%, Lc = 2%, Lc,1 = 0.95Lc, Lg = 3%, ωv = 3
4ωi, three module system.

causing instability. For the parameters in Figure 6.8, the soft-coupled system is unstable with

the same gains as the stable hard-coupled system example in Figure 6.6.
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Figure 6.9 shows the pole contour of a non-identical parallel configuration with a load impedance.

The same contours exist that are in the hard-coupled system example in Figure 6.5, but the

additional complex pole-pair Factor1 lowers the soft-coupled system’s stability margin. Table 6.1

shows the stability margin gains for a hard-coupled system against a soft-coupled system. The

hard-coupled system achieves a 37% greater maximum gain than the soft-coupled system.

The soft-coupled instability, by definition, requires a minimum of two parallel modules. The

greatest change in gain margin is between a system with two modules and three modules. Dis-

playing the effect of varying the number of modules is difficult as the stability margin only

varies by approximately 3% (between two and an infinite number of modules and with module

parameters specified in Figure 6.9).

The unstable poles in Figure 6.8 correspond to Factor1 that numerically cancel when all of the

modules are perfectly identical. Algebraic simplification of Factor1, and with the continuous-

time components for analysis clarity produces the following expression:

Factor1 =
(CFb,Vc + CFb,IcsC)Lc − (s2LCLc + L+ Lc)

s2LCLc + L+ Lc
(6.37)

Upon inspection of Factor1 above it is evident that the unstable poles are only dependent on the

LCL filter values and the controller, not the load. This key finding suggests that the stability

of soft-coupled parallel configurations is entirely specified by the inverter components and is,

thankfully, immune to customer loads, as this means that it can be prevented at implementation.

The stability findings have so far shown that as the coupling impedance Lc decreases, so too

does the system damping ratio, lowering the stability margin to the point where it becomes

unstable. Furthermore, as the coupling impedance decreases the natural frequency of the poles

increases, tending to infinity.

To determine the effect of filter component damping it is introduced into the capacitor voltage

and current expressions in equations 6.22 and 6.23. Figure 6.10 shows the effect on the unstable
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Figure 6.10: Pole contour of soft-coupled system varying coupling impedance Lc Q-factor from
infinite down to 1. Ts = 2π

160 , L = 4%, C = 10%, Lc = 1%, ωi = 11, ωv = 3
4ωi = 8.25, three

module system.

pole-pair of a low coupling impedance with a decreasing Q-factor. This confirms the practical

findings that parallel configurations with negligible coupling impedances (well below 1%) are

unlikely to become unstable.

To prevent instability in parallel configurations there is a minimum or maximum coupling

impedance between parallel modules that prevents instability for a given controller. This imposes

the following limitations:

• Firstly stability is dependent on the controller and its associated response. For a given

system defining the coupling impedance to be a particular value requires that the controller

response does not vary over the lifetime of that hardware. This may limit responses

required for certain load types, limiting against theoretical use of the system with certain

loads.

• Secondly, the impedance value that ensures stability for the parallel configuration may be

unsuitable as a coupling impedance with certain loads. For example, an application may

require a certain coupling impedance between the load and the inverter, but the impedance

value required may conflict with the stability requirements. The previous unstable pole-
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Figure 6.11: Pole-zero map of soft-coupled system varying module one coupling impedance Lc,1.
Ts = 2π

160 , L = 4%, C = 10%, Lc = 2%, Lc,1 = 0.95Lc, Lg = 3%, ωi = 11, ωv = 3
4ωi = 8.25, three

module system.

contour figures in this section are examples of this. The 2% coupling impedance is required

to prevent resonance with grid capacitors (such as power factor correction) but in the

scenario presented the system is unstable.

In applications where the load requires a minimum coupling impedance it may be logistically

impractical to use a large bulk coupling impedance instead of a distributed, modular coupling

impedance.

6.2.3 Experimental results

In addition to instabilities experienced on hard-coupled parallel configurations with two to 16

module configurations, the stability implications of soft-coupled parallel configurations were

confirmed against the theoretical predictions on the three module 100kVA test system (Ap-

pendix G). Due to hardware constraints, the capacitor current state feedback is approximated

using an observer (discrete-time lead filter) on the capacitor voltage, rather than sensing the

actual current. An additional real pole is created, but stability effects are similar to actual

current sensing. Figure 6.11 shows the poles and zeros of the system in Figure 6.8 but with a
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Figure 6.12: Marginally unstable soft-coupled output current. ωi = 10.5, ωv = 7.9.

Table 6.2: Soft-coupled stability margin

ωi (pu) ωv (pu) Oscillation frequency (pu)

Theoretical 10.6 7.9 29.6
Simulation 10.4 7.8 29
Practical 10.5 7.9 28

capacitor current observer. In all scenarios, a lead filter cutoff frequency of 25pu is used as it

provides a similar stability margin as the actual capacitor current feedback method, with the

additional poles and zeros created shown in Figure 6.11.

To provide current balancing in both simulation and hardware tests a resistive droop of 1%

is used. Simulations demonstrated that the droop has almost no effect on the parallel mod-

ule stability margin. Both the simulation and hardware have internal current limits of ±2pu,

implemented in the controller inductor current loop.

The grid impedance was measured to be approximately 4% relative to a single module current

rating. The inverter nominal passive component values are within tolerance of measurement

error of the values used in simulation: Ts = 2π
160 , L = 4%, C = 10%, and Lc = 2.3%. Component

tolerance variations of up to 10% provided adequate variation between module inductances to

induce soft-coupled instability.

Figure 6.12 shows the soft-coupled output current for marginally unstable gains and that the

instability point matches the expected gains as derived in Section 6.2.2. Table 6.2 illustrates the
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Figure 6.13: Marginally unstable hard-coupled configuration output voltage. ωi = 14.4, ωv =
10.8.

predicted and measured gains at the point of instability. The measured results demonstrate a

close correlation to within 2% of the predicted unstable gains.

Figure 6.13 shows the hard-coupled output voltage for marginally unstable gains. Similar to the

soft-coupled configuration, the hard-coupled stability margin gains match the theoretical and

simulation results to within 2%.

Although systems with no coupling impedance do not suffer from the parallel connection sta-

bility issue at all, any modular system with separate capacitors (rather than one n-times bulk

capacitor) will have some coupling impedance. Of the hard-coupled systems tested, none exhib-

ited any stability margin limitations as suggested by the findings. The likely reason being that

low-valued impedances such as cabling and bus-bars typically have a decreasing Q-factor (qual-

ity factor) for increasing frequency. Typically for inductors with iron laminations the Q-factor

would be expected to decrease significantly with frequencies in the kilohertz range.

6.3 DIRECT DESIGN CONTROLLER

The initial motivation to investigate the stability implications of parallel connected inverters was

from instabilities experienced on the parallel experimental configuration in Appendix G with the

discretised continuous-time controller in Section 4.2.1. In the previous section the cause of soft-
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Figure 6.14: Soft-coupled pole-contour of stability-governing poles, for a coupling impedance Lc
sweep from 10% down to 0.5%. Green contours are for the discretised continuous-time controller,
and blue contours are for the discrete direct design controller. Ts = 2π

160 , L = 4%, C = 10%,
discretised controller parameters: ωi = 11pu, ωv = ωi

3
4pu. Direct discrete controller parameters:

k3 = 0.65, 0.4 damping ratio design parameter.

coupled parallel module instability was determined to be governed purely by the LCL filter

and the controller. The response of a given controller directly relates to the maximum and

minimum coupling impedance that will cause instability in soft-coupled parallel systems. This

section details the use of the discrete direct design controller detailed in Chapter 5, and how its

response affects the stability of soft-coupled systems.

The discrete direct design controller in the previous chapter demonstrated improved performance

as a stand-alone monolithic controller, so a key consideration is the impact the controller has on

the soft-coupled instabilities. Figure 6.14 shows a theoretical pole-contour of only the poles that

govern the soft-coupled stability (equation 6.29), for both controllers with a coupling impedance

sweep. From the figure, the direct design controller demonstrates a greater stability margin for

a given coupling impedance. This finding is consistent with the experimental results.
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6.4 SUMMARY AND DISCUSSIONS

Parallel and series inverter configurations allow high power and performance inverter configura-

tions that exceed the individual device constraints presented in Chapter 2. Actively paralleled

VSI configurations individually control each inverter to ensure that it current-shares appropri-

ately, avoiding the need for derating. Due to the actively paralleled nature, each module looks

like an independent low impedance load to the other modules. In applications where a discrete-

time controller is used, the low impedance interconnections can be a source of instability.

This chapter described the potential instabilities observed in soft-coupled parallel VSIs. The

instability is shown to be independent of the external load connected, and by choosing appro-

priate filter values and controller types the instability can be adequately prevented. In scenarios

where the filter component values are fixed, only the controller can prevent instability. However,

the primary reason for using parallel configurations is so that high bandwidth controllers and

devices can be used, therefore sacrificing any performance in the controller to ensure stability is

undesirable.

As the soft-coupled instability is directly related to the filter components and the controller,

several implementation recommendations can be made. Soft-coupled systems that have either

close to zero coupling impedance or a relatively high coupling impedance (typically greater than

10%) have been demonstrated to be stable with sub-optimal controllers. Given that in most

applications where LCL filters are used the secondary L coupling impedance is typically to

prevent potential high frequency resonance between the load (often a grid) and the filter capacitor

C, and for this reason the inductance can be quite low (a few percent). To prevent possible

soft-coupled instability it is recommended to use a bulk monolithic coupling impedance rather

than modular ones. Despite violating the redundancy aspect of individual coupling impedances,

inductors (like transformers) seldom fail. In applications where the parallel system is connected

to the load via a transformer, the transformer may be able to provide sufficient impedance, such
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that a separate coupling impedance is not necessary.

The discrete direct design controller developed in Chapter 5 has been tested against the bench-

mark discretised continuous-time controller and has demonstrated an improved stability margin.

The direct design controller has been shown to ensure stability over a wider range of coupling

impedance values than that achievable with the benchmark controller. Future research into de-

signing a controller that specifically targets the cause of the instabilities shown in this chapter

has the potential to offer a greater level of stability than just standard VSI designs.

By following the recommended implementation recommendations concluded in this chapter, a

scalable grid-connectible inverter system can be constructed that offers the high bandwidth

response of a single lower-power inverter, but at higher power levels. The next chapter follows

on from this one by looking at how high power inverter configurations interact with other sources

and loads on grids.





Chapter 7

GRID CONNECTION

7.1 INTRODUCTION

The flexibility and availability of inverters has resulted in a rapidly increasing number of grid-

connected applications. Half a century ago thyristor inverters began being used in grid-connected

applications for DC power transmission. Since then inverters are now used in grid-connected

applications as loads and sources ranging from watts to gigawatts. Not surprisingly, as the num-

ber of grid-connected applications and systems grows, so too does the complexity of analysing

interconnected systems. With the number of publications regarding grid stability risks due to an

increasing penetration becoming commonplace [47, 48], there is a strong desire to find methods

for analysing complex systems. This chapter investigates methods of controlling and analysing

sources and loads in grid-connected applications.

Herein a ‘grid-connected’ inverter is defined as any inverter that forms part of a network of

sources and loads. Any source or load output impedance is a linearisation of how it interacts

with the grid. A grid’s apparent size, regarding the number of connected sources and loads and

their power, is arbitrary. Stiff grids represent a low impedance to source or load, whereas weak

grids may have a relatively large impedance.

The grid impedance determines how a connected load or source is able to influence the voltage

at the common point of coupling. Depending on the application, from a source or load point-

of-view a grid may have little or no back EMF, in which case the device connected is likely to
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be the source responsible for the frequency and voltage of the grid. A grid impedance also has

no bounds on its complexity, herein referred to as its system order (the number of poles for a

linear system). A ‘simple’ grid may be a nominal resistive load, whereas a complex grid may be

a high-order combination of linear and non-linear impedances.

This chapter first examines the control methods commonly used with grid-connected devices

and how they apply to grid-connected inverter systems. Having introduced how inverters can

connect to grids and how power is transferred to or from a grid, the common historical an-

alytical techniques used to gauge grid stability and robustness are reviewed and applied to

grid-connected inverter applications. Due to the limitations found with existing traditional an-

alytical techniques when applied to grid-connected inverters, a graphically-assisted application

of the Nyquist stability criterion is introduced that indicates how individual loads and sources

contribute to closed-loop system poles, and therefore stability and robustness. The graphical

analysis technique is not limited to loads and sources of a particular order, and can also be used

with systems that have delays.

Two examples of the graphical technique for determining the stability of complex source and

load types are provided. The first example identifies the cause of instability for a cascaded

VSI and CSI micro-grid system. The analysis technique is further expanded to multiple-input

multiple-output (MIMO) systems and identifies potential instability for a VSI running an in-

duction machine. Both examples are confirmed on the parallel module test system described in

Appendix G.

7.2 COMMON METHODS

Grid-connected systems, including inverters, can operate in either voltage sourcing or current

sourcing modes. System designers can choose either voltage sourcing systems to provide a low

impedance to setup a nominal grid voltage and frequency, or current sourcing systems where a
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stiff grid already exists. In addition to sourcing either a fixed voltage or current, either scheme

may receive a reference from a real or reactive power controller.

To analyse grid-connected systems the common methods of power sharing between sources are

briefly reviewed. Voltage sourcing systems typically use the voltage and frequency droop method

to control their power flow. A brief review of the commonly used voltage and frequency droop

method is given in [49] and Appendix I. For a predominantly reactive grid impedance the voltage

sourcing device frequency and voltage are defined as:

ω = ωrated −mω(Prated − P ) (7.1)

Vout = Vout,rated −mV (Qrated −Q) (7.2)

where the m coefficients represent the droop factors, and each device is defined as having similar

ω and V ratings.

The voltage and frequency droop methods are used by all synchronous generators to provide

real and reactive power sharing. Grid-connected inverter systems often use the same principles

to provide PQ control and comply with other voltage sources on a grid. Most rotating machine

loads and sources appear as voltage sources behind a transient impedance.

Unlike voltage-sourcing systems, current-sourcing inverters can only change the voltage or fre-

quency by sourcing or sinking current against an impedance or inertia, respectively. In appli-

cations where the size of the inverter is no longer tiny in comparison to the voltage sourcing

devices, current sourcing systems can have adverse effects on grid sources. On grids where the

voltage and frequency are predominantly controlled by synchronous machines, it is imaginable

that exceptionally large current sourcing loads or sources could destabilise the generators, re-

sulting in grid instability or collapse. This is one of the areas of analysis that is useful. Current

controllers require additional control loops to offer voltage and frequency support. On the con-

trary, if the voltage collapses a constant power CSI will draw more current, further collapsing
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the voltage. This is further explored in the following section regarding grid synchronisation.

7.2.1 Inverter Impedance

As detailed in Chapter 2, a perfect VSI would have zero output impedance. In micro-grid

applications where frequency and voltage droop are not used, ‘ideal’ inverter impedances are

typically preferred. These are usually applications with single sources or where other sharing

mechanisms are employed, however, if frequency and voltage droop is used for load sharing on

a grid not only must the inverter be compliant in order to share, the droop mechanisms also

require a particular grid impedance and inertia to work with (refer Appendix I). In Chapter 5

the high performance direct design controller achieved an output impedance as low as 6% at

the fundamental, whereas a typical generator impedance ranges between 20 to 150%. In order

to achieve the same characteristics as generators on a common grid, an additional grid-coupling

impedance may need to be added to the inverter.

In grid-connected inverter applications a fixed coupling impedance is typically used to reduce

ripple and to prevent high frequency currents being sourced by the inverter’s filter capacitors

(LCL filters) in the presence of grid voltage distortion. The coupling impedance is typically in

the range of a few percent, commonly implemented as either a small inductor or as part of the

connection transformer.

When additional impedance is required a ‘synthetic’ impedance can be emulated in the inverter

controller that is effective up to its cutoff frequency (bandwidth). This can be implemented in

a similar manner to the resistive droop method shown in Figure 6.2 in Chapter 6. In the case

of a VSI, an inductive impedance sL is implemented as a lead term since a pure derivative is

impractical. An inverter can therefore effectively create a synthetic impedance if its bandwidth

is sufficiently greater than the fundamental.

Figure 7.1 shows the effect on the output impedance of the direct design controller in Chap-
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Figure 7.1: Bode plot of Direct Design controller in Chapter 5 with and without virtual 10%
inductive impedance. Ts = 2π

160pu, L = 4%pu, C = 10%pu, controller designed with damping
ratio of 0.4, bilinear lead filter cutoff frequency of 10pu.

ter 5 with a virtual 10% inductive impedance. A bilinear-lead filter is used to approximate the

inductive response based on the inverter output current. From the figure there is an evident

impedance increase for frequencies below the 20pu cutoff frequency. At the fundamental the

output impedance magnitude is exactly 10% greater with only a 5 degree phase shift.

7.3 GRID SYNCHRONISATION

In grid-connected applications control of individual d and q components are required as they

directly correspond to real and reactive power. The rotating reference frame transformations

(detailed in Section 3.3.4) require a Phase Locked Loop (PLL) synchronised to the grid voltage

in order to align to the real and imaginary components. In a grid-connected system where

frequency droop is used as a sharing mechanism, the response of the PLL to frequency changes

will affect how the inverter performs dynamically. If the PLL phase leads or lags the actual grid

voltage phase then the controller’s observed real and imaginary components will be incorrect.

The PLL model is detailed in Section 3.3.4 and shown in Figure 3.4. In an inverter application

the PLL is typically synchronised to the voltage at the inverter terminals. To determine the

effect of the PLL on an inverter its response must be derived. In Figure 3.4 the input reference

is a signal in the αβ frame, however, it is desirable to model everything in either the αβ frame
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or the dq frame. To analyse the dynamic effect of the PLL on an inverter, an expression of the

inverter’s observed voltage as a function of the sensed voltage is derived.

An expression for the PLL is achieved by linearising its feedback loop. The PI controller and

frequency integrator are simple linear blocks, but the e−jθ coordinate transform is non-linear

and is linearised around the nominal operating frequency. To linearise the e−jθ transform the

sin and cos components are eliminated by assuming that for small ∆θ that sin(∆θ) = θ and

cos(∆θ) = 1. In the αβ frame the voltage vector angle θ will be revolving at a rate of the

fundamental frequency (during steady state) and will thus violate the requirement that ∆θ is

close to zero. Modelling the PLL in dq frame results in a ∆θ that only varies with transients,

satisfying the linearisation requirements.

The PLL voltage expression is defined as a multiple-input multiple-output (MIMO) transfer

function matrix that results in the inverter voltage Ec as a function of the actual line voltage E,

both in the dq frame. To achieve this, an expression for ∆θ as a function of E is first derived.

The relationship between the actual line voltage and the PLL inverter reference voltage is:

Ec = e−j∆θE = (cos(∆θ)− j sin(∆θ))E (7.3)

∼= (1− j∆θ)(E0 + ∆E) (7.4)

∼= E0 − j∆θE0 + ∆E (7.5)

The nominal grid voltage by definition has no imaginary part, so E0 is a real scalar.

The PLL aligns to the real component of the voltage by zeroing the imaginary part. Therefore

the PLL PI controller output is:

∆ω = (0−={∆Ec})FPLL(s) (7.6)

where FPLL(s) is the PI controller transfer function and is typically FPLL(s) = kpp

(
1 +

kpi
s

)
.
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The imaginary component of ∆Ec is:

={∆Ec} = ={∆E} −∆θE0 (7.7)

The angle ∆θ is found by integrating ∆ω in equation 7.6. Closing the loop and solving for ∆θ:

∆θ = GPLL(s)={∆E} (7.8)

where GPLL(s) is:

GPLL(s) =
kpp(s+ kpi)

s2 + E0kpps+ E0kppkpi
(7.9)

Substituting into the inverter voltage expression in equation 7.4 results in the inverter voltage

as a function of the grid voltage, expressed as a matrix:

∆E c =

 1− E0GPLL(s) 0

0 1

∆E (7.10)

The result above indicates that the PLL angle is only affected by changes in the out-of-phase (d

axis) voltage component, as result of a dynamic voltage phase shift.

Measured currents are also affected by the PLL synchronisation to the grid voltage. However,

the nominal current I0 is not strictly real. In matrix form, a measured current ∆Ic as a function

of the actual current ∆I is:

∆Ic = ∆I −

 −I0,qGPLL(s) 0

I0,dGPLL(s) 0

∆E (7.11)

where I0 is the nominal dq current.

Inspection of GPLL(s) in equation 7.9 indicates that the PLL has a simple second order low-pass
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response. If the linearisation assumptions are not met (∆θ close to zero) then the response may

deviate from GPLL(s).

The PLL is an example of a unsymmetrical function in the dq axis that can affect a grid-

connected inverter’s response. It will act to increase the system order when included in the

inverter response.

7.4 STABILITY ANALYSIS OF COMPLEX SYSTEMS

As the interconnection of different sources and loads on power grids increases, so too does the

complexity of analysing the stability and the response of grids. The complexity of analysing

a particular grid is increased by the type of source or load that is connected, and also by the

location and associated connection impedance. When analysing an interconnected system the

first and foremost concern is stability, which is governed by the poles of the system. When

determining the stability and response of a system, a trade-off is made between the use of

different analysis techniques against the level of detail in which the system is described.

To analyse the stability and response of a system, simulation with a given set of parameters is

often the most popular approach. Simulations can often accommodate the greatest complexity

of any analytical technique, but in addition to the large computational effort required, each

simulation iteration results only in the response of the system with a fixed set of parameters.

For this reason simulation is often used prior to the final implementation. With systems that can

be appropriately linearised, eigenvalue analysis for a set of system parameters is also applicable.

Although simulation and more detailed approaches [50] can suitably determine the stability of a

system, they only do so using the closed-loop expression. Closed-loop analysis can offer insight

into how each closed-loop pole affects the system stability, but they do not provide information

about the detail that each separate component of a system (sources and loads) contributes, and

in what way it affects system stability and response.
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Ideally when analysing interconnected systems, it is preferable to get a sense of which part of

each source and load contributes to each eigenvalue. The complexity of the system is defined as

the order of the closed-loop system (the sum of the orders of the sources and loads). In earlier

chapters low order systems (typically less than three) have been analysed using traditional pole-

zero analysis. Typically most interconnected systems, such as grids, include sources and loads

that are quite complex, resulting in a closed-loop system that is too complex (typically fourth

order or greater) to be comprehensible. Discrete-time systems further reduce the ability to

intuitively analyse systems.

To analyse systems with a high complexity there are several traditional methods that can be

used for certain scenarios. To date, the complex torque coefficients and passivity theory methods

attempt to provide a means of evaluating high-complexity systems by deriving expressions for

the system damping over a given frequency range. These methods have been used for decades to

analyse subsynchronous torsional oscillations of machines [51] and HVDC systems [52]. Recent

publications [53, 54] that have looked at issues of grid-connected inverter systems have looked

at an inverter’s impedance effective damping to predict potential instability. Although these

approaches present methods for determining undamped or lightly damped regions, not only

do they not work for some common systems (as documented in [54]), they are still unable to

separately show how each source and load in a system contributes to the closed-loop response.

This section first demonstrates and collates existing work regarding the short-comings of the

complex torque coefficients and passivity methods for both analysing the closed-loop response

and how individual components contribute to the overall response of power electronic systems

(originally detailed in [55]). Having established limitations of existing techniques, an intuitive

Nyquist Stability Criterion application is presented that, using only the individual frequency re-

sponse plots of the two components (sources and/or loads) to be interconnected, shows how each

component contributes to the final closed-loop system poles. By using the frequency response
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(common Bode responses), the graphical application is capable of handling some nonlinear el-

ements, such as delays, that affect the phase. The technique is used to demonstrate stability

implications with a VSI acting as a local grid with a CSI load. The technique is then expanded

to multiple-input multiple-output (MIMO) systems, such as asymmetric three-phase systems.

An example with a VSI acting as a local grid which includes an induction machine as a load is

then given.

7.4.1 Complex loads and sources

For the inverters analysed in Chapters 4 and 5, the highest order system was a third-order

discrete VSI. The continuous-time expressions for the closed-loop inverters are one order lower

due to the lack of delays. This was also without the effect of integrators (or resonators), a virtual

output impedance (Section 7.2.1), or any other practical implications such as anti-aliasing filters.

In Chapter 6 soft-coupled parallel inverters were analysed which were fourth-order, and adding

a resonator would further increase the system complexity to sixth-order.

A further assumption was made that both axes in three-phase systems (dq or αβ ) were sym-

metric, and therefore invertible. In real/reactive power controllers the individual dq axes can

be controlled separately, requiring that the MIMO system be analysed using transfer function

matrices, further increasing the complexity. The PLL in Section 7.3 is an asymmetric MIMO

system. When analysing grid-connected sources and loads, their impedance may be modelled in

either continuous or discrete-time.

7.4.2 Traditional analysis techniques

Since 1982 the complex torque coefficients method [56, 57] has been employed to find potential

oscillation frequencies in power grids, and previous to 1982 similar concepts defining damping

torque had been in use [52]. The method has been attractive for both its simplicity in application
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and its extension from the original application with rotating machines to HVDC systems and

others [52,58].

Application of the complex torque coefficients method to generalised systems expressed in terms

of transfer functions is relatively straight forward. In an example multi-mass shaft scenario (as

detailed in [54], Section II) for a closed-loop system, where km(s) and ke(s) are mechanical and

electrical transfer functions respectively, defined as:

∆Te = −km(s)∆δ (7.12)

∆Te = ke(s)∆δ (7.13)

and where ∆δ and ∆Te are the perturbations in the generator rotor angle and electrical torque

respectively.

The closed-loop system becomes

(km(s) + ke(s))∆δ = 0 (7.14)

and the system is therefore stable if all the roots of km(s) + ke(s) = 0 are on the left hand

side of the complex plane. The complex torque coefficients method then defines stability based

on the frequency response of km(s) and ke(s) by substituting s = jω and separating the real

and imaginary parts, as shown in [54], such that

km(jω) = Km(ω) + jωDm(ω) (7.15)

ke(jω) = Ke(ω) + jωDe(ω) (7.16)

Km(Ke) and Dm(De) are called the mechanical (electrical) spring and damping constants re-

spectively. The complex torque coefficients method defines the frequencies of the oscillatory
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modes as the roots of K(ω) = Km(ω) + Ke(ω) = 0, and an oscillatory mode of frequency ω

is stable if D(ω) = Dm(ω) + De(ω) is positive [54].

In [59] a technical proof for the complex torque coefficients method was presented. The technical

proof provides a important insight into the stability conditions that the complex torque coeffi-

cients method provides, in that the theorem does not account for instances where the Nyquist

curve crosses the negative real axis to the left of -1 but yet not encircle -1, and that the method

will not perfectly identify torsional resonant frequencies. The issues with the complex torque co-

efficients method were initially demonstrated in [54] which show that the method only deals with

roots that appear in complex conjugate form (not real ones), and [58] shows that the method is

not valid for a multi-machine power system (rather than a single machine on an infinite bus).

Although [59] justifiably states that the issues presented are unusual scenarios, in applications

with electronic inverters these scenarios may well be encountered.

In the previous chapters, discretising and/or adding a coupling impedance will introduce real

roots, preventing effective use of the complex torque coefficients method. Regardless of this,

the investigation of inverters on an infinite bus is trivial. Practical scenarios are concerned with

the stability of these systems with grid-type loads, such as rotating machines. Examples of

the shortcomings are given in [54], where the method fails when applied to the standard IEEE

Benchmark System [60].

A similar approach to the complex torque coefficients method is the use of passivity and dissipa-

tive systems analysis as applied to continuous-time systems (sources and loads) [61,62]. Passivity

defines a conservative requirement for the stability of a system [63]. The conditions for a system

to be passive is that the system must have no unstable poles (positive real in continuous-time).

Marginally stable systems with all poles on the imaginary axis are acceptable. Passivity de-

termines an effective electrical damping frequency response for any system, including power

electronic systems [53]. Unfortunately the damping frequency response is not able to predict
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the poles of a closed-loop system, rendering it suitable only as a guide when determining how a

source or load will behave when it is incorporated into a larger system (effectively closing the

impedance/admittance loop).

Despite their advantages in certain applications, the complex torque coefficients method and

passivity are unable to be used to predict how two systems will interact and how each one will

contribute to the closed-loop stability for more general scenarios.

7.4.3 Graphical analysis technique

Given the limitations of existing analytical techniques to examine how two systems will interact

and whether the closed-loop system is stable, a Nyquist application technique which is derived

from fundamental principles, is proposed that overcomes these shortcomings. The technique is a

variation on the Middlebrook criterion [64] as it separately examines the respective impedances.

The graphical technique is based on the Bode/Nyquist stability criteria for determining closed-

loop stability from an open-loop system. To review; for an open-loop stable scenario a system

(G(s)) will be stable in closed-loop negative feedback (H(s)) if the open-loop gain is less than

one (0dB) for any frequency where the phase is -180 degrees. For more complex systems the

system is only unstable if the Nyquist curve encircles the -1 point (0dB, -180 degrees).

In the following analysis it is assumed that the two systems being analysed are open-loop stable.

In grid applications this is typically an acceptable assumption to make, however the Nyquist

stability criterion used herein works with open-loop unstable systems.

The closed-loop response of two cascaded systems, such as an impedance followed by an admit-

tance, is:

G(s) = Yload(s)Zsource(s) (7.17)

The Bode magnitude and phase responses are found by evaluating the open-loop system at



124 CHAPTER 7 GRID CONNECTION

s = jω, such that:

|G(jω)| =
√
<{G(jω)}2 + ={G(jω)}2 (7.18)

∠G(jω) = tan−1

(
={G(jω)}
<{G(jω)}

)
(7.19)

The magnitude and phase responses for the complete open-loop system G(s) can be rewritten

as functions of the individual responses of Yload(s) and Zsource(s):

|G(jω)| = |Yload(jω)||Zsource(jω)| (7.20)

∠G(jω) = ∠Zload(jω) + ∠Ysource(jω) (7.21)

The stability of two cascaded systems in closed-loop negative feedback can be determined by

superimposing the two individual magnitude and phase responses, search for critical frequencies

where the phase responses sum to -180 degrees, and finally check if any of the magnitudes at the

critical frequencies sum (in dB) to be greater than 0dB. In addition to absolute stability, gain

and phase margins can be intuitively found. The process of finding frequencies with a phase shift

of -180 degrees and then checking the gain at those frequencies may be automated using scripting

languages such as MATLAB. Although the method is relatively simple, it clearly illustrates how

two cascaded systems each contribute to the closed-loop stability. In the presented scenarios to

follow it is worth noting that each of the open-loop systems are stable, which is typically a valid

assumption for grid-connected systems.

By using traditional Bode frequency responses the technique is not strictly limited to simple

linear continuous-time transfer functions. Responses may be a mix of continuous and discrete-

time. Non-linear elements that can be characterised by magnitude and phase responses, such as

delays in both continuous (e−sτ ) and discrete (z−n) time may also be used.
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Figure 7.2: Discrete CSI admittance and VSI impedance responses. VSI: Ts = 2π
160pu, L = 4%pu,

C = 10%pu, ωi = 6pu, ωv = 3
4ωi. CSI: Ts = 2π

160pu, L = 4%pu, C = 10%pu, Lc = 2%pu,
ωi = 6pu, Rdamping = 5%.

Application Example

To illustrate the analysis technique, the first example is of the benchmark discretised VSI detailed

in Section 4.2.1 acting as an AC grid source, with a CSI as a load. Both of the inverters are

modelled in the stationary reference frame and are symmetric in the αβ paths with no cross-

coupling components. The superimposed Bode responses of the discretised VSI impedance and

CSI admittance with a typical set of parameters are shown in Figure 7.2.

For the responses in Figure 7.2, the vertical dashed line shows the single frequency (40.8pu)

where the responses have a combined phase shift of -180 degrees. The total gain margin is 2.4dB

(0− (6.6− 9.0)) so the closed-loop system is stable for the specified parameters.

Figure 7.3 again shows the system from Figure 7.2, but the voltage controller has a two-thirds

higher bandwidth parameter (ωi = 10 rather than 6). By again examining the frequencies

where the responses have a combined phase shift of -180 degrees, the closed-loop stability can

be determined. The vertical solid red line in the figure indicates frequencies where there is a

-180 degrees phase shift and the closed-loop system is unstable.

At the frequency where the system is unstable in Figure 7.3 it is observed that the cause of the

instability is the significant phase lags and the high gains of the two systems that occur around
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Figure 7.3: Discrete CSI admittance and VSI impedance responses. VSI: Ts = 2π
160pu, L = 4%pu,

C = 10%pu, ωi = 10pu, ωv = 3
4ωi. CSI: Ts = 2π

160pu, L = 4%pu, C = 10%pu, Lc = 2%pu,
ωi = 6pu, Rdamping = 5%.
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Figure 7.4: Discrete CSI admittance and VSI impedance responses with PR VSI controller.
VSI: Ts = 2π

160pu, L = 4%pu, C = 10%pu, Kr = 2pu, ωi = 6pu, ωv = 3
4ωi. CSI: Ts = 2π

160pu,
L = 4%pu, C = 10%pu, Lc = 2%pu, ωi = 6pu, Rdamping = 5%.

the fortieth harmonic, which in turn are a side-effect of the controller delays and the inverter

filter resonances. This is an important observation as the ωi bandwidth of 10 and 6pu for the VSI

and CSI respectively, are relatively low compared to the sampling frequency of 8kHz. Had the

system been modelled in continuous-time, as is often done for power inverters (as demonstrated

in [12, 13, 51, 53]), the cause and gain limitations would not have been identified as the poles

in question would not be present. The graphical technique allows complex systems in both

continuous and discrete-time to be analysed without having to make simplifications that may

hide potential instabilities.
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Figure 7.5: Discrete CSI admittance and VSI impedance responses with PR VSI controller.
VSI: Ts = 2π

160pu, L = 4%pu, C = 10%pu, Kr = 2pu, ωi = 7pu, ωv = 3
4ωi. CSI: Ts = 2π

160pu,
L = 4%pu, C = 10%pu, Lc = 2%pu, ωi = 6pu, Rdamping = 5%.

In the next example a resonator is added to the VSI capacitor voltage controller. Figures 7.4 and

7.5 show the responses of the cascaded VSI and CSI microgrid with the addition of a resonator at

the fundamental frequency. The system without a resonator in Figure 7.2 is stable, but becomes

unstable with the addition of a resonator in Figure 7.4. Figure 7.5 illustrates that the system is

stable when the VSI parameter ωi is increased from 6 to 7pu.

7.4.4 MIMO systems

So far the analysis has focused on single wire or single input single output (SISO) systems. As a

result, three-phase analysis has been restricted to systems where both the source impedance and

load admittance are symmetric and independent (no cross-coupling) in both axes (dq or αβ).

In addition to real and reactive power control, electrical machines are asymmetric in the dq axis

due to the electrical torque being perpendicular to the magnetic flux. As a result of separate

d and q axes in controllers, linearised transfer functions for asymmetric systems are typically

expressed as complex transfer functions or expanded to transfer function matrices [12,65]. Three

phase electrical systems typically have two axes and therefore have 2 × 2 transfer function

matrices. These systems are therefore multiple input multiple output (MIMO) and the proposed

single closed-loop analysis technique is no longer applicable.
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The proposed technique can be extended to MIMO systems by the use of the Generalised Nyquist

criterion [66]. The Nyquist stability criterion is often extended to MIMO systems through the

use of Gershgorin bands, which assist in finding critical gains which govern gain and phase

margins for closed-loop systems [67]. The generalised Nyquist stability criterion approach to

MIMO systems is achieved via inspection of the transfer function matrix eigen values.

In the general MIMO case where the input and output have N -channels, G(s) is a N×N transfer

function matrix such that

G(s) =



G11(s) G12(s) · · · G1N (s)

G21(s) G22(s) · · · G2N (s)

· · · · · · . . . · · ·

GN1(s) GN2(s) . . . GNN (s)


(7.22)

For space vector variables as input and output signals (a special case where N = 2), the notation

for a transfer function matrix in dq is defined as

G(s) =

 Gdd(s) −Gqd(s)

Gdq(s) Gqq(s)

 (7.23)

where the negative sign of element (1,2) is chosen to conform with the complex vector definition.

Similar expressions are valid for αβ systems. Although specified as continuous-time systems,

the same approach also applies to discrete systems.

The generalised Nyquist theorem for MIMO systems compared to SISO systems defines multiple

complex contours, where each contour is an eigen value λi(s) of G(s), evaluated at s = jω. The

eigen values λi(s) are often not linear, but are still functions of s, calculated as:

0 = det(λIN −G(s)) (7.24)
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As expected the generalised Nyquist theorem simplifies for SISO systems, as the eigen value for

a single transfer function G1(s) is itself. For space vector systems where N = 2 there are two

eigen values. The Nyquist criterion for stability requires Z = P + N , where P is the number

of open-loop unstable poles of G(s), N is the combined number of times the Nyquist contours

encircle −1 clockwise, and Z is the number of positive real poles of the closed-loop system.

Examples of automating MIMO Nyquist analysis techniques are given in [68].

The open-loop transfer function matrix G(s) for an electrical system consists of an impedance

and admittance transfer function matrix in equation 7.17. Therefore, to determine how each

impedance and admittance contributes to the closed-loop stability, it must be possible to isolate

the two eigenvalues λ1(s) and λ2(s) as functions of the respective impedance and admittance.

It is case of isolating the various parts from each source and load that influence each eigenvalue.

Substituting equation 7.17 into 7.24, where G(s) is a 2 × 2 transfer function matrix, in order

to be able to separate the eigenvalues one of the transfer function matrices (either Yload(s)

or Zsource(s)) must have zero entries for both Gdd(s) and Gqq(s) or both Gdq(s) and Gqd(s)

(diagonal or antidiagonal). Despite the limitation, simplified systems that satisfy this condition

can often be found.

Application Example

An example MIMO configuration is an induction machine with an appropriate source. Without

loss of generality, the analysis of induction machines is limited to machines with a shorted

rotor, primarily squirrel cage machines (SCIMs). Induction machines commonly have lightly

damped subsynchronous poles which have been observed to become unstable at certain operating

frequencies [69].

Induction machines have a symmetric electric component and an asymmetric torque producing

component. Despite their non-linear nature, mature linearised transfer functions give reliable
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results at given operating points as initially described in [65]. Linearised admittance expressions

for an induction machine in the rotating reference frame from [65] are:

∆V = Q∆I + S∆ω (7.25)

where

∆V = [∆Vs, 0]T (7.26)

∆I = [∆Is,∆Ir]
T (7.27)

∆ω = [∆ω,∆ωs]
T (7.28)

Q =

 Ls(s+ jω0) +Rs Lm(s+ jω0)

Lm(s+ jωs0) Lr(s+ jωs0) +Rr

 (7.29)

S =

 j(LsIs0 + LmIr0) 0

0 j(LrIr0) + LmIs0)

 (7.30)

and mechanical expressions:

∆me = Lm={Is0∆I∗s + I∗r0∆Is} (7.31)

me = m1 + J
Np
sωr (7.32)

Variables are defined in Table 7.1 and subscript “0” denotes operating point values.

From the above expressions a 2×2 transfer function matrix for the dq motor admittance Yload(s)

can be obtained. Due to the asymmetric torque coupling in equation 7.31, all four of the elements

in Yload(s) are unique.

Due to the vastly different time constants of the electrical and the mechanical components
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of the machine, the frequencies of the poles and zeros of the transfer function matrix can be

treated as being relatively independent, and the stability can be analysed in two parts. For high

frequency analysis (above the fundamental) of the machine with an inverter, the high frequency

response of the machine is governed purely by the electrical components. By neglecting the

mechanical response the machine transfer function matrix becomes symmetric and the simpler

SISO analysis technique can be used. For responses at and below the fundamental, such as

inverter integrators (or resonators at the fundamental), the electrical and mechanical responses

must both be considered.

As the full electrical and mechanical admittance transfer function matrix of an induction machine

is asymmetric, the analysis method constrains the controller impedance to be either diagonal

or antidiagonal. The discretised VSI is again used as the grid source. For the low frequency

stability only the low frequency (subsynchronous) response of the VSI is required, which is

inductive (Section 4.2). The continuous-time low frequency impedance of the VSI in Section 4.2

is s
Cωiωv

. Frequency shifted to the rotating frame, s is substituted with s − jω0, and as only

the low frequency response is of interest, the dynamic element s is dropped, simplifying the

inverter response to −jω0

Cωiωv
. Provided the inverter gains (and therefore bandwidth) are above the

fundamental frequency, the only low frequency response of the VSI is an integrating component

Table 7.1: Induction machine variables

Lm Magnetising inductance
Ls Stator leakage
Lr Rotor leakage
Rs Stator resistance
Rr Rotor resistance
ω Synchronous frequency
ωs Slip frequency
ωr Rotor frequency
Np Number of pole pairs
J Rotor inertia
me Electrical torque
m1 Load torque
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Figure 7.6: Induction machine with simplified VSI model. Induction machine: ω = 1pu, ωs = 0
(no load), Lm = 5pu, Ls = Lr = 5.075pu, Rs = Rr = 15%, J = 47 (∼100ms response for 50Hz
machine), Np = 1 pole-pair. VSI: L = 4%pu, C = 10%pu, ωi = 10pu, ωv = 3

4ωi, Kint=4.
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Figure 7.7: Induction machine with simplified VSI model. Induction machine: ω = 1pu, ωs = 0,
Lm = 5pu, Ls = Lr = 5.075pu, Rs = Rr = 15%, J = 47pu, Np = 1 pole-pair. VSI: L = 4%pu,
C = 10%pu, ωi = 10pu, ωv = 3

4ωi, Kint=2.

on the output voltage to eliminate steady-state errors. The VSI output impedance with an

integrator in dq becomes:

ZV SI(s) =

 0 − ω0s
Cωiωv(s+Kint)

ω0s
Cωiωv(s+Kint)

0

 (7.33)

where Kint is the integrator gain.

Figures 7.6 and 7.7 show the transfer function matrix eigenvalue Bode plots of a typical induction

machine connected to the simplified VSI model with integrator. The 2 × 2 transfer function
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(a) Stable with VSI ωi = 7pu. (b) Unstable with VSI ωi = 6pu.

Figure 7.8: Onset of VSI and CSI voltage instability. VSI PR controller parameters: ωv = 3
4ωipu

and Kr = 2pu. CSI ωi = 6pu.

matrix for the induction machine is in Appendix J. In Figure 7.6 the system with a VSI

integrator gain Kint of 4pu is stable, whereas Figure 7.7 shows the system with an integrator

gain of 2pu is unstable at a frequency of 0.4pu. It is worth noting that the system with an

integrator gain of 0 (no integrator) is also stable. These results illustrate that the interactions

from VSI integrators have the potential to excite low frequency lightly damped poles and result

in instability.

In addition to the graphical technique, eigen value analysis has numerically confirmed the sta-

bility conditions found for Figures 7.6 and 7.7.

7.4.5 Hardware Results

The 125kVA parallel test hardware described in Appendix G has been used to confirm the

findings for the VSI/CSI instability and VSI/SCIM instability.

The test system was first configured as a cascaded VSI and CSI as detailed in Section 7.4.3.

One of the modules was configured as a VSI creating a three phase microgrid, while another was

configured as a CSI with a DC bus voltage controller to maintain the DC bus. An additional

module was configured as a rectifier to provide a DC bus for the VSI. The stability bounds for

the simplified integral controller in Section 7.4.3 matched the gains found in Figures 7.4 and

7.5 to within 10% of the specified stable/unstable gains. Figure 7.8b shows the system voltage
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Figure 7.9: VSI and induction machine instability on test system. VSI PR controller gains:
ωi = 5pu, ωv = 3

4ωipu and Kr = 2pu. Measured machine parameters: ω = 1pu, ωs = 0,
Lm = 3pu, Ls = Lr = 3.08pu, Rs = Rr = 3.3%, J = 180pu (∼400ms).

becoming unstable when the VSI current gain ωi is 6pu, where before it had been stable with a

gain of 7pu in Figure 7.8a. The waveform in Figure 7.8b shows the fundamental 50Hz with the

unstable 2.6pu frequency superimposed, as predicted in Figure 7.4.

For the MIMO analysis a 40A squirrel cage induction machine was connected to a VSI module.

The transfer function matrix for the induction machine is provided in Appendix. J. Given the

machine parameters, the stability of a VSI with a proportional-resonant controller running the

motor was examined using the proposed graphical technique. The analysis predicted that the

VSI running the motor at 50Hz would be unstable with a resonator gain below 0.2pu. When

tested the system became unstable with a resonator gain below 0.3pu. Figure 7.9 shows the

onset of the instability shortly before the system tripped on overcurrent. The graphical analysis

specified the unstable frequency to be 0.14pu which is within 10% of the observed oscillation

period in Figure 7.9.

7.5 SUMMARY AND DISCUSSIONS

As the number of different types of grid-connected devices increases so too does the complexity

of analysing complex grids. From small micro-grids with only one source and one load, up to

complex combinations, analysing grids has become increasingly difficult. Until recent years the
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grid size problem has been manageable as the dominant devices have been of a particular type,

typically large synchronous machines. While traditional synchronous machines have an intrinsic

power sharing mechanism, power electronic systems do not.

In applications where grid-connected devices are capable of having an influence on the grid

stability, system analysis must be performed. For traditional scenarios, such as rotating machines

and infinite grids, the complex torque coefficients method and passivity analysis are adequate

for determining system stability, however, for other complex scenarios they have been shown to

be inadequate.

A graphical Nyquist stability criterion application that illustrates how the individual responses

of interconnected complex sources and loads affect the total closed-loop stability has been devel-

oped. The graphical technique is used to indicate how individual impedance responses contribute

to the closed-loop system poles. It provides insight as to how each of the two systems contribute

to a given pole’s gain or phase margin, allowing conclusions to be drawn as to how either one

or both of the systems may be modified (for example changing gains or configuration) to affect

the damping of particular poles.

The chapter concluded by further expanding the graphical technique to asymmetric multiphase

systems, such as machines and complex electronic systems commonly found in grid-connect

scenarios. An example is provided that successfully identified an instability for an induction

machine driven by a VSI operating at full speed (50Hz). The analysis identified instability if

the VSI integral gain was below 0.2pu. Experimentally the system became unstable with a gain

of 0.3pu, showing a close correlation to the theoretical analysis.





Chapter 8

DISCUSSION AND CONCLUSION

The use of inverters in industry and grid-connect applications is growing at a rapid rate due

to the availability of high performance and high power switching devices. Applications such as

UPSs, dynamic voltage restorers, STATCOMs, frequency converters, and grid-connect resources

all require both high performance and high power inverters. The IGBT is currently the state of

the art device for achieving the inverter performance for particular applications, and in parallel

or series configurations can provide the required power scaling. Mass-manufacture of massively-

paralleled systems also has the inherent advantage of high system reliability.

The IGBT alone, however, is not the only bottleneck to achieving a high performance inverter.

The choice of inverter controller is crucial in achieving the required performance given the

associated inverter constraints. Unavoidable delays introduced by PWM and digital controller

processing and sampling delays impose performance and stability limits. The use of PWM output

filters and the paralleling of multiple power devices also has implications on the controller.

Unfortunately, as the inverter bandwidth requirements approach the inverter switching and

sampling frequency, traditional continuous-time derived controllers are only able to support a

relatively low bandwidth.

Conflicting with the requirement of increasing the controller bandwidth is the controller sample

frequency and delays. For low bandwidth to sample frequency ratios, discretised traditional

continuous-time controllers exhibit a characteristic response, but as the controller bandwidth

gains approach the discrete-time Nyquist limit, the stability margin rapidly decreases. For
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example, down to a minimally-operable damping ratio of 0.3, a discretised continuous-time VSI

controller sampling at 8kHz had a bandwidth to sample frequency ratio of 15 (bandwidth of the

11th harmonic). The limited achievable bandwidth becomes the primary driver for improved

discrete-time controllers that can potentially offer greater bandwidth.

In Chapter 5 a discrete direct-design VSI controller is developed to overcome the limitations of

traditional continuous-time derived controllers. The design uses constrained pole-placement that

offers design-time ability to trade off the converter bandwidth against the respective damping

ratio. The controller implementation is inherently simple, requiring only the capacitor voltage

feedback, while also being robust to component value variations. A practical example on a

2MW system with an 8kHz sample frequency demonstrated a significantly improved controller

bandwidth up to the 23rd harmonic while maintaining a damping ratio of 0.4.

The second part of developing a high performance controller for high power systems is ensuring

suitability when paralleling multiple inverter modules to achieve a greater output power than

individual device limits. Actively paralleling ensures that each module current-shares, however,

potential instabilities were shown to exist depending on the controller and inverter filter. In

applications where the filter values are fixed, different controller types can be used to ensure

the prevention of instability. The source of the instability was shown to be related to the

inter-module coupling impedance, either as a parasitic impedance between modules, or from

intentional coupling inductances.

The worse case scenario is when the inter-module coupling impedance is around a few percent.

To prevent the potential instability two options are offered: sacrifice the redundancy aspect

of inter-modular coupling impedances and use a bulk monolithic coupling impedance, or use

a controller that offers greater stability. Pole contours demonstrated that the discrete direct

design controller developed in Chapter 5 offers an improved stability margin over the traditional

continuous-time derived controllers.
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Following the development of a high bandwidth and high power inverter system suitable for

the applications introduced in the introduction, techniques for controlling and analysing grid-

connected systems were reviewed and developed. As a the number of grid-connected applications

and systems grows, so too does the complexity of analysing the numerous permutations. Whereas

traditional grid-connected sources and loads were typically sub-cyclic systems such as rotating

machines, large inverter systems with sub-millisecond performance are increasingly being coupled

to the grid.

The method for analysing grid-connected systems is via their effective impedance. A grid

impedance has no bounds on its complexity, its frequency response, and may possibly be non-

linear, however, it is still important to be able to perform system analysis to ensure grid stability.

When analysing grid-connected inverter systems, traditional analysis methods such as as the

complex torque coefficients methods and passivity analysis no longer work when the underlying

assumptions they were built on are invalidated. The assumptions made in these traditional

analysis techniques are often valid for traditional sources and loads, such as rotating machines,

but inverter systems are often not constrained in the same way.

A graphical Nyquist stability criterion application has been developed that illustrates how the

individual responses of interconnected complex sources and loads affect the total closed-loop

stability, as required for grid-connected systems. The application focuses on identifying how in-

dividual impedance responses contribute to the closed-loop system gain margin or phase margin,

and in effect, stability. This allows the designer to identify incompatibilities with certain source

or load combinations, and for conclusions to be drawn as to how either of the interconnected

systems may be modified to affect the stability. The graphical application is demonstrated to be

effective at analysing asymmetric multiphase systems, such as motors, operating with inverters.

The combination of high performance inverter controller development, the ability to parallel

inverters to achieve power scaling, and analysis techniques for grid-connected systems achieves
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the overarching goal of developing high performance and high power grid-connected inverter

systems.

8.1 FUTURE WORK

A number of areas have been identified to progress this research further, specifically in the high

performance inverter design and grid analysis.

Many grid-connect applications make use of either VSI or CSI modes, and may even have to

transition between the two. Such an example may be a distributed storage system that at

times may need to be a rectifier (CSI) and at other times a voltage and frequency source (VSI).

Following the development of a high performance discrete direct-design VSI controller, either

a CSI controller could be developed using similar techniques, or even more useful may be the

development of a unified VSI and CSI controller. Such controller would be configurable to be a

VSI with a source impedance or a CSI with a shunt admittance, and the ability to seamlessly

transition between the two.

Upon applying the graphical analysis technique developed in Chapter 7 a potential subcyclic

incompatibility between inverters and induction machines was identified that raised questions

as to other potential incompatibilities with other inverter applications. At present the industry-

practice method for analysing grids is through the use of time-domain simulations that show

binary stability, however, by applying the graphical analysis technique to ensure stability then

gain margins and potential instabilities could be uncovered.



Appendix A

DEVICE THERMAL RATING

To compare devices a set of typical operating conditions are defined. A fixed heatsink tempera-

ture will be assumed that maintains a device case temperature of 90◦C. This value is has been

chosen as a typical value for a moderate cost air-forced heatsink. The junction temperature is

taken as 125◦C as this is the typical maximum operating temperature for a Silicon power device.

For determining the switching and conduction losses the voltage across the device will be taken

at the manufacturers recommended switching voltage. This provides a typical voltage headroom

for the device to operate within its maximum blocking voltage. The RMS device current will be

taken as the device rating.

The conduction loss is fixed for a given device current rating and its respective parameters. For

IGBTs and Thyristors it consists of a I2 ·R and Vce,sat · I loss. For MOSFET devices it is simply

an I2 ·R loss. The modulation depth will be assumed for a maximum sine wave (1/
√

2 = 0.707).

Given the conduction losses the switching losses and hence maximum switching frequency can

be calculated. For a given device the following calculations are used to determine the maximum

switching frequency:
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Ploss,max =
125◦C− 90◦C

Rth(j−c)
(A.1)

Vbus = 0.7Vrated (A.2)

Ploss = Ploss,igbt,conduction + Ploss,diode,conduction + Ploss,igbt,switch + Ploss,diode,switch

(A.3)

Ploss,igbt,conduction = Vce,satIrated
√

2(
1

2π
+

1

8
√

2
) + 2Rterminal−chipI

2
rated(
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8
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1
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√
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) (A.4)

Ploss,diode,conduction = VceIrated
√

2(
1

2π
− 1
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√
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) + 2Rterminal−chipI
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rated(
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− 1
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) (A.5)

Ploss,igbt,switch = fswitchEsw

√
2

π
(A.6)

Ploss,diode,switch = fswitchErr

√
2

π
(A.7)

(A.8)

where Rth(j−c) is the junction-case thermal resistance.
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MTBF OF REDUNDANT INVERTER SYSTEMS

In inverter array configurations the MTBF is typically derived for the individual modules. The

final system MTBF depends on the ability to provide redundancy in the event of a module

failure. Without module redundancy where the failure of one module is a failure of the entire

array, the MTBF of N modules, each with an MTBF of MTBFm, is:

MTBFsys =
MTBFm

N
(B.1)

The decrease in the system MTBF with N immediately exceeds any reliability gains achievable

with mass-manufacturing. In fact, the it provides a strong argument against inverter arrays. The

only way to improve the MTBF is to provide module redundancy. Redundancy can be provided

by either installing additional capacity, or if possible, reduce the system capacity. In some

applications, such as Statcoms and frequency converters, a reduced capacity is often preferred

over complete failure.

For systems that a constant failure rate, the system failure rate for redundant systems can be

P0

μ1

λ1

λ2P1 P2

Figure B.1: Markov state transition diagram.
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calculated using Markov chains. The Markov assumption implies that a system is memoryless

(constant failure rate with time). The failure of individual modules is defined as a change of

state. States that result in system failure are known as absorbing states, while ones that allow

the system to continue operating are non-absorbing. The Markov transfer matrix for determining

the system failure is:

P =

 I 0

R Q

 (B.2)

where I is the identity matrix, 0 is the zero matrix, R is the non-absorbing to absorbing transi-

tions, and Q is the non-absorbing to non-absorbing transitions.

The system MTBF is found by first computing the fundamental matrix Φ = (I − Q)−1, then

summing the elements of the row corresponding to state zero.

For an inverter array configuration with one redundant module the state diagram for the Markov

chain is shown in Figure B.1. State P0 is when all modules are operational (zero failures), P1

is when one of the modules has failed, and P2 is when two or more modules have failed and the

system is no longer operational. The state transitions λ1 and λ2 are the failure rates from the

respective states, while µ1 is the repair rate (if applicable). The system MTBF depends on if a

failed module can be repaired (µ1), preventing system outages. MTBFs for systems with and

without module repair will be investigated.

B.1 MTBF OF SYSTEMS WITHOUT MODULE REPAIR

For systems without module repair µ1 in Figure B.1 is zero. For a system in state k (k failures),

the probability of moving from state k to k + 1 is the probability of a single failure among the

remaining N − k units:

P (Sk → Sk+1) = (N − k)λ(1− λ)N−k−1 (B.3)
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Given that λ� 1:

P (Sk → Sk+1) ' (N − k)λ (B.4)

Therefore in Figure B.1 from P0 to P1 k = 0 so λ1 = Nλ, and from P1 to P2 k = 1 so

λ2 = (N−1)λ. Without module repairs there is no way of going back to states with less failures.

The Markov matrix is constructed as defined in equation B.2 as:

P =


1 0 0

(N − 1)λ 1− (N − 1)λ 0

0 Nλ 1−Nλ

 (B.5)

The fundamental matrix is then found by computing Φ = (I −Q)−1:

Φ =

 1
(N−1)λ 0

1
(N−1)λ

1
Nλ

 (B.6)

Summing the elements of the row corresponding to the state zero and substituting λ for the

reciprocal of the MTBF 1
Mm

:

MTBFsys =
1∑

k=0

Φ0,k =
1

(N − 1)λ
+

1

Nλ
(B.7)

=
2N − 1

N(N − 1)
Mm (B.8)

From equation B.8, for a large N system the MTBF converges to 2MTBFm
N , effectively only

doubling the MTBF of a non-redundant system.
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B.2 MTBF OF SYSTEMS WITH MODULE REPAIR

For systems where failed modules can be repaired, the repair rate µ1 in Figure B.1 is defined as

the reciprocal of the repair time Rm. In this instance the Markov matrix is:

P =


1 0 0

(N − 1)λ 1− ((N − 1)λ+ µ1) µ1

0 Nλ 1−Nλ

 (B.9)

The fundamental matrix is:

Φ =

 1
(N−1)λ

µ1
N(N−1)λ2

1
(N−1)λ

(N−1)λ+µ1
N(N−1)λ2

 (B.10)

The system MTBF is again found by summing the elements of the row corresponding to zero,

substituting λ for the reciprocal of the MTBF 1
Mm

, and substituting µ1 for 1
Rm

:

MTBFsys =
1∑

k=0

Φ0,k =
1

(N − 1)λ
+

(N − 1)λ+ µ1

N(N − 1)λ2
(B.11)

=
((2N − 1)Rm +Mm)Mm

N(N − 1)Rm
(B.12)

Mm � Rm ⇒ MTBFsys '
Mm

2

N(N − 1)Rm
(B.13)

Equation B.13 suggests that regardless of N , a repairable redundant system has a system MTBF

that is proportional to the square of a system without repairable redundancy. For module MTBF

figures in the hundreds of thousands of hours—as is common with industrial equipment—this

results in an MTBF in the tens of millions of hours! Of course to achieve this the rest of the

system (power supplies, high level controllers etc) must also have an MTBF this high, and

secondly that in every instance of a module failure that it did not result in a coupled failure,

such as an explosion in one module taking out a second. In practice these conditions are not

achievable, however, it does emphasise the fact that redundant repairable modules do offer an
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exceptionally high MTBF.
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APPLICATION OF Padé APPROXIMATIONS AND THE
LAMBERT W FUNCTION

Figure C.1 shows a continuous-time closed-looped system with a feedback transport delay. The

closed-loop transfer function for the system H(s) is given as:

H(s) =
G(s)

1 +G(s)e−sτ
(C.1)

Figure C.2 shows a Nyquist plot of equation C.1 where G(s) = 1
s and τ = 1.5, where:

H(s) =
1

s+ e−1.5s
(C.2)

Figure C.2 indicates the system is stable with a gain margin of 0.401dB. A second and third

order Padé approximation results in a gain margin of 0.47dB and 0.402dB respectively, con-

firming the close correlation claimed. The expression for equation C.1 with a second-order

Padé approximation is:

H(s) =
s2 + 4s+ 5.33

(s+ 4.95)(s2 + 0.0516s+ 1.08)
(C.3)

And a third order Padé:

H(s) =
(s+ 3.10)(s2 + 4.90s+ 11.5)

(s2 + 0.0439s+ 1.07)(s2 + 6.96s+ 33.3)
(C.4)

Evaluating the closed-loop system H(s) using the Lambert W function, the poles of equation C.2
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Figure C.1: Continuous-time closed-loop system with feedback delay.
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Figure C.2: Nyquist plot of system with G(s) = 1
s open loop response and propagation delay of

τ = 1.5.

are:

s =
W (−τ)

τ
(C.5)

The Lambert W is a multivalued function and each pole of equation C.2 can be found by

choosing the appropriate Lambert W index. The dominant pole of equation C.5 where τ = 1.5

is s = −0.2186±j1.033 which has a damping ratio of ζ = 0.021.
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ZERO ORDER HOLD RESPONSE

The continuous-time ZOH response is defined as

HZOH(s) =
1− e−sTs
sTs

(D.1)

The ZOH phase response is

∠HZOH(s) = ∠

(
1− e−sTs
sTs

)
(D.2)

substituting s = jω ⇒ = ∠

(
1− cos(ωTs) + j sin(ωTs)

sTs

)
(D.3)

= tan−1

(
sin(ωTs)

1− cos(ωTs)

)
− π

2
(D.4)

= tan−1

(
1

tan(ωTs2 )

)
− π

2
(D.5)

= −ωTs
2

(D.6)

This is in contrast to a single unit delay which has a phase response of −ωTs.
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The ZOH magnitude is

|HZOH(s)| =

∣∣∣∣1− e−sTssTs

∣∣∣∣ (D.7)

substituting s = jω ⇒ =

√
(1− cos(ωTs))2 + sin2(ωTs)

ωTs
(D.8)

=

√
2

ωTs

√
1− cos(ωTs) (D.9)

=
2

ωTs
sin

(
ωTs

2

)
(D.10)

= sinc

(
ωTs
2π

)
(D.11)

In (D.11) the sinc function is the normalised sinc function where sinc(θ) = sin(πθ)
πθ .



Appendix E

INTEGRAL SQUARED ERROR AND INTEGRAL ERROR
SQUARED

ISE is calculated as:

ISE =

∫ ∞
0
{e(t)}2 dt (E.1)

Analytic solutions for low-order systems are easily attainable, but rapidly become difficult to

find for systems above the second-order. Applied to a first-order system ωi
s+ωi

with a unit step(
L{u(t)} = 1

s

)
, the ISE is

ISE =

∫ ∞
0

{
1− L−1

{
ωi

s+ ωi

1

s

}}2

dt (E.2)

=

∫ ∞
0

{
e−ωit

}2
dt (E.3)

=
1

2ωi
(E.4)

As expected, the ISE decreases for a higher gain ωi.

The ISE for an arbitrary second-order system H(s) can be shown to be

H(s) =
ω2
n

s2 + 2sωnζ + ω2
n

(E.5)

ISE(H(s)) =
4ζ2 + 1

4ωnζ
(E.6)

Where ωn is the natural frequency and ζ is the damping ratio.
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IAE is calculated as

IAE =

∫ ∞
0
|e(t)| dt (E.7)

For the same example first-order system used above, the IAE can be shown to be IAE = 1
ωi

.



Appendix F

DISCRETISED CONTINUOUS-TIME VSI EXPRESSIONS

Discretised continuous-time VSI controller as shown in Figure 4.5. The controller and filter

blocks are:

GVc,Vpwm(z) =
(z + 1)(1− cos(ωnTs))

z2 − 2z cos(ωnTs) + 1
(F.1)

GIc,Vpwm(z) =
C(z − 1)ωn sin(ωnTs)

z2 − 2z cos(ωnTs) + 1
(F.2)

CFf (z) = ωiωvLC (F.3)

CFb,Vc(z) = 1− ωiωvLC (F.4)

CFb,Ic(z) = −ωiL (F.5)

Substituting these into (4.15) and inserting a single sample period delay to the feedback paths,

the closed loop forward transfer function is:

Vc(z)

Vc,ref (z)
=

ωiωvLC(z + 1)(1− cos(ωnTs))z

(z2−2z cos(ωnTs)+1)− (1−ωiωvLC)(z+1)(1− cos(ωnTs)) + ωiLCωn sin(ωnTs)(z−1)

(F.6)

The expression for the output impedance transfer function is:

Vc(z)

Iout(z)
=
GVc,Iout + CFb,Ic(GVc,VpwmGIc,Iout −GIc,VpwmGVc,Iout)

1− (CFb,VcGVc,Vpwm + CFb,IcGIc,Vpwm)
(F.7)
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The two filter expressions for Vc and Ic with respect to Iout are:

GVc,Iout(z) =
L(z − 1)ωn sin(ωnTs)

z2 − 2z cos(ωnTs) + 1
(F.8)

GIc,Iout(z) =
LC(z − 1)ω2

n(z − cos(ωnTs))

z2 − 2z cos(ωnTs) + 1
(F.9)

Substituting into (F.7) and inserting a single sample period delay to the feedback paths, the

closed loop output impedance transfer function is:

Vc(z)

Iout(z)
=

Lωnz(z − 1)(sin(ωnTs)− ωiLCωn + ωiLCωn cos(ωnTs))

(z2−2z cos(ωnTs)+1)− (1−ωiωvLC)(z+1)(1− cos(ωnTs)) + ωiLCωn sin(ωnTs)(z−1)

(F.10)



Appendix G

TEST HARDWARE

Three parallel-connected inverter configurations were used for evaluation and validation of con-

trol models developed. Each of the hardware configurations were built up using either full rating

or scaled 480V, 150A, 125kVA 3-phase inverter modules. Each module has configurable LC or

LCL output filters; inductor current, capacitor voltage and output current feedback; 4kHz IGBT

switch stack; and an 8kHz-sampling DSP controller. The modules receive voltage or current ref-

erences from a master DSP once per sampling period. The master DSP has its own set of point

of common coupling voltage and current sensors. Rapid testing was achieved by using code

generation tools as detailed in Section 3.6.2.

Two selectable operating modes are available for each module. A typical application is a current

controlled rectifier which controls the DC bus in one set of modules, and an output inverter

in the other set of modules. The modules can have paralleled or independent DC buses and

outputs.

Three hardware configurations were used with modules of different ratings. When a module was

scaled from the original 125kVA rating, the filter components and feedback scaling was adjusted

accordingly. The configurations used were:

• A single low power (1% power, 48V, 15A) module to allow rapid testing in an office

environment. Connected to high current DC supply and various load configurations.

• Three pairs of one third current modules (50A) fed from 100kVA 480V supply, shown in
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(a) 125kVA system made up of three pairs of
50A modules

(b) 2MVA system made up of sixteen pairs of 150A modules

Figure G.1: Test hardware.

Figure G.1a. A wide range of loads were available including inductive, capacitive and

resistive combinations. Partially rated induction machine and diode rectifier loads were

also available.

• Sixteen pairs of 150A modules fed from a 1MVA supply, shown in Figure G.1b. Due

practical constraints it was not possible to provide full resistive loading.



Appendix H

NON-IDENTICAL SOFT-COUPLED PARALLEL EXPRESSIONS

The continuous-time expressions for the capacitor voltage transfer functions in equations 6.32

to 6.36 are:

H1 = GVc,1Vpwm,1(s) =
Lc,1(Eb− (n− 1)LLgLc,1)

EE1b− LLg(ELc − (n− 1)E1Lc,1)
(H.1)

H2 = GVc,1Vpwm,j (s) =
Lc,1LLcLg

EE1b− LLg(ELc − (n− 1)E1Lc,1)
(H.2)

H3 = GVc,iVpwm,1(s) = GVc,1Vpwm,j (s) (H.3)

H4 = GVc,iVpwm,i(s) =
Lc(EE1b− ELgLcL− (n− 2)LlLc,1LE1)

E(EE1b− LLg(ELc − (n− 1)E1Lc,1))
(H.4)

H5 = GVc,iVpwm,j (s) =
LcLLgLc,1E1

E(EE1b− LLg(ELc − (n− 1)E1Lc,1))
(H.5)

where E and E1 are the identical and unique filter expressions respectively, and b determines

the output current sharing, given as:

E = s2LCLc + Lc + L (H.6)

E1 = s2LCLc,1 + Lc,1 + L (H.7)

b = nLc,1Lc + Lg(Lc + (n− 1)Lc,1) (H.8)

Expressions for the individual capacitor currents are are found by applying equation 6.4 in

Section 6.2.1. Each of the expressions for the capacitor voltages and currents are discretised

using either the regular Z-transform for integer feedback delays or the Advanced Z-transform
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when fractional feedback delays are used. The discretised capacitor voltage expressions are

labelled H1(z) through to H5(z), with a subscript i to denote the respective discretised capacitor

current expressions.

The closed-loop expressions for the module PWM voltages as a function of the input reference

voltage GVpwm,1Vc,ref and GVpwm,iVc,ref are given below. Without loss of generality the equivalent

capacitor current expressions are left out for clarity.

GVpwm,1Vc,ref =
CFf (CFb(H4 + (n− 2)H5 − (n− 1)H2)− 1)

CFb
2((n−1)H2H3 −H1H4 − (n−2)H1H5) + CFb(H4 +H1 + (n−2)H5)− 1

(H.9)

GVpwm,iVc,ref =
CFf (CFb(H1 −H3)− 1)

CFb
2((n−1)H2H3 −H1H4 − (n−2)H1H5) + CFb(H4 +H1 + (n−2)H5)− 1

(H.10)

In the interest of stability the above expressions provide the closed-loop system poles. More

appropriate system outputs such as capacitor voltages or output currents can be obtained via

substitution with the filter expressions H1 through to H5.



Appendix I

POWER SHARING BETWEEN GRID-CONNECTED SOURCES

As a result of the predominantly inductive coupling between grid-connected sources, real and

reactive power sharing is achieved by actively drooping the frequency in response to increased

power flow, and drooping the voltage in response to increased reactive power flow, respectively.

For a single complex EMF source U s and operating into a grid with voltage Ug and impedance

Z, the power flowing into the grid is described as:

P + jQ = S = U sI
∗ = U s

(
U s − Ug

Z

)∗
(I.1)

= Us

(
Us − Ugejδ

Ze−jθ

)
(I.2)

=
U2
s

Z
ejθ − UsUg

Z
ej(θ+δ) (I.3)

where δ is known as the power angle.

Therefore the real and reactive power flowing into the grid (out of the source) are:

P =
U2
s

Z
cos(θ)− UsUg

Z
cos(θ + δ) (I.4)

Q =
U2
s

Z
sin(θ)− UsUg

Z
sin(θ + δ) (I.5)
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Substituting Zejθ = R+ jX into equations I.4 and I.5, and rearranging results in:

Us sin(δ) =
XP −RQ

Us
(I.6)

Us − Ug cos(δ) =
RP +XQ

Us
(I.7)

For grid impedances where X � R, R may be eliminated. Also, if the power angle δ is small,

then sin(δ) = δ and cos(δ) = 1. Equations I.6 and I.7 become:

δ ∼=
XP

UgUs
(I.8)

Ug − Us ∼=
XQ

Ug
(I.9)

These two relationships confirm that for predominantly inductive grid and small power angles,

that the power angle depends on P , whereas the voltage difference depends on Q.

In all modern power grids this technique is exploited by the synchronous rotating machines used

for generation. An increased power flow demands an increased electromechanical torque, which

causes the rotor to decelerate. This effect propagates through all the sources on a grid, resulting

in load sharing. The mechanical torque may then be increased to restore any effective frequency

droop. Grid voltage regulation works in a similar manner by actively controlling the amount

of VARs sourced or sunk by a generator (its excitation) the voltage at the common point of

coupling can be controlled.



Appendix J

INDUCTION MACHINE TRANSFER FUNCTION MATRICES

Example induction machine transfer function matrix elements for motor in Chapter 7, Figures 7.6

and 7.7:

G1(s) =
6.72(s− 0.033)(s− 0.00023)(s2 + 0.24s+ 0.063)

(s+ 0.10)(s2 + 0.094s+ 0.055)(s2 + 0.21s+ 0.99)
(J.1)

G2(s) =
6.72(s+ 0.0030)(s2 + 0.10s+ 0.054)

(s+ 0.10)(s2 + 0.094s+ 0.055)(s2 + 0.21s+ 0.99)
(J.2)

G3(s) =
−6.72(s+ 0.098)(s2 + 0.0037s+ 0.0016)

(s+ 0.10)(s2 + 0.094s+ 0.055)(s2 + 0.21s+ 0.99)
(J.3)

G4(s) =
6.72(s+ 0.24)(s+ 0.00017)(s2 − 0.036s+ 0.011)

(s+ 0.10)(s2 + 0.094s+ 0.055)(s2 + 0.21s+ 0.99)
(J.4)

where machine transfer function matrix is:

G(s) =

 G1(s) G2(s)

G3(s) G4(s)

 (J.5)

Transfer function matrix elements for example motor in Figure 7.9:

G1(s) =
6.33(s+ 0.34)(s+ 0.068)(s+ 0.012)(s+ 0.011)

(s+ 0.20)(s2 + 0.21s+ 0.028)(s2 + 0.42s+ 0.96)
(J.6)

G2(s) =
6.33(s+ 0.011)(s2 + 0.21s+ 0.026)

(s+ 0.20)(s2 + 0.21s+ 0.028)(s2 + 0.42s+ 0.96)
(J.7)

G3(s) =
−6.33(s+ 0.21)(s2 + 0.011s+ 0.0013)

(s+ 0.20)(s2 + 0.21s+ 0.028)(s2 + 0.42s+ 0.96)
(J.8)
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G4(s) =
6.33(s+ 0.41)(s+ 0.0054)(s2 + 0.011s+ 0.0013)

(s+ 0.20)(s2 + 0.21s+ 0.028)(s2 + 0.42s+ 0.96)
(J.9)
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tive control for UPS to compensate unbalance and harmonic distortion using a combined

capacitor/load current sensing. IEEE Trans. Ind. Electron., 54(2):839–847, April 2007.

[21] P. C. Loh, M. J. Newman, D. N. Zmood, and D. G. Holmes. A comparative analysis

of multiloop voltage regulation strategies for single and three-phase UPS systems. IEEE

Trans. Power Electron., 18(5):1176–1185, September 2003.

[22] M. Wang, F. Li, Y. Liu, L. Huang, and M. Sakane. Distributed parallel operation of modified

deadbeat controlled UPS inverter. In Proc. IEEE Power Electronics Specialists Conference

(PESC’07), pages 1727–1732, Orlando, Florida, June 2007.

[23] E. Oyarbide, J. Galarza, S. Aurtenechea, and M. Á. Rodrǵuez. Second-order predictive
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