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Abstract. This paper investigates the possibility of kinematic interfacial insta-
bilities occurring during the industrial process of primary cementing of oil and gas
wells. This process involves to flows in narrow eccentric annuli that are modelled
via a Hele-Shaw approach. The fluids present in primary cementing are strongly
non-Newtonian, usually exhibiting shear-thinning behaviour and often with a yield
stress. The study is a sequel to [1] in which the base analysis has been developed for
the case of 2 Newtonian fluids. The occurrence of static mud channels in primary
cementing has been known of since the 1960’s, [2], and is a major cause of process
failure. We quantify this phenomenon, providing a simple semi-analytic expression
for the maximal volume of residual fluid left behind in the annulus, fstatic, and
illustrate the dependency of fsiqtic On its five dimensionless parameters. We show
that 3 of the 4 different types of static channel flows are linearly stable.

Via dimensional analysis, we show that the base flows depend on a minimal set
of 8 dimensionless parameters and the stability problem depends on an additional
3 dimensionless parameters. This large dimensional parameter space precludes use
of the full numerical solution to the stability problem as a predictive tool or for
studying the various stability regimes. Instead we have developed a semi-analytical
approach based on solution of the long wavelength limit. This stability results can
be evaluated via simple quadrature from the base flow and is suitable for use in
process optimisation.

Keywords: Primary cementing, multi-layer flow stability, Hele-Shaw flow, interfa-
cial instability, kinematic instability, shear-thinning, yield stress

1. Introduction

This paper investigates the possibility of kinematic interfacial instabil-
ities occurring during the industrial process of primary cementing of
oil and gas wells. This process involves displacement flows of multiple
fluids in narrow eccentric annuli, see Fig. 1, with the eventual aim
of placing a cement slurry in uncontaminated state within the well,
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Figure 1. Cementing geometries: a) schematic of fluid stages pumped during a
primary cementing operation; b) uniform section of eccentric annulus; ¢) eccentric
annular cross-section; d) periodic eccentric annular Hele-Shaw cell; e) final compu-
tational domain, assuming symmetry at wide and narrow sides of the annulus; f)
unsteady and static mud channel displacements that evolve into parallel flows.

between casing and formation where it may solidify to form a hydraulic
seal. The process, its importance and some of the process problems
that may occur are discussed in [3, 4, 5], as well as more widely in the
technical literature.

Of relevance to us is a process of unsteady fingering that occurs
when the displacement front advances faster along the wide side of
the eccentric annulus than the narrow side, possibly leaving behind a
channel of drilling mud on the narrow (lower) side of the annulus, see
e.g. [2, 6, 7]. Since sections of oil and gas wells that are cemented tend
to be very long, by comparison with their azimuthal length-scale, the
process of unsteady fingering and channeling results in flow regimes
that are pseudo-parallel with the axis of the well, see Fig. 1f. The
onset of this type of unsteady fingering is predicted by the analysis
in [8] which is based on a Hele-Shaw modeling approach developed in
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[9, 10, 11]. Although the approach is a Hele-Shaw approach, it is worth
commenting that the occurrence of unsteady interfaces that lead to
pseudo-parallel flows (Fig. 1f) is not controlled by local mobility ratios
as in classical Hele-Shaw instabilities. Here there is a global imbalance
caused by the annular eccentricity, i.e. fluids flow faster in the wider
part of the annulus, and also the annular flow rate is fixed, which
constrains the local flow dynamics in a non-local fashion.

The aim of this paper is to study the stability of the parallel flows
that evolve during displacements. Experimental evidence for such in-
stabilities may be found in [12, 13]. To study these flows we consider
perturbations about a parallel steady state, aligned in the direction
of the annulus. The base flows are thus steady solutions of a steady
Darcy-flow problem with 2 fluids. In such flows, in the absence of
surface tension the interface is simply advected with the flow. Al-
though instability can be studied using a steady Darcy model and
with time evolution confined to the kinematic equation, this approach
assumes that any interfacial instability grows initially on the advective
timescale. This may however not be true when the instabilities are in-
stigated by either viscosity or density differences, or perhaps by a forced
temporal perturbation, e.g. pulsation of a pump, (this latter possibility
is not studied here). Therefore, in [14, 15] we have used a modified Hele-
Shaw approach in which the linear acceleration terms are retained in
the momentum balance. Evidently, should a linear instability grow then
eventually the nonlinear inertial terms are also important. However, for
predicting the onset of stability this approach suffices.

The study is a sequel to [1] (part 1) in which the base analysis has
been developed for the case of 2 Newtonian fluids. The fluids present
in primary cementing are however strongly non-Newtonian, usually
exhibiting shear-thinning behaviour and often with a yield stress. This
paper studies this practical reality, by extending the methodology of [1]
to Herschel-Buckley fluids, which incorporate the simpler Bingham and
power law fluid models. For brevity we refer the reader to part 1 for
a proper introduction to the industrial problem area and a motivation
for our study.

In part 1 we showed that the Newtonian stability problem depended
on 7 dimensionless parameters and analysed this parametric depen-
dency. Analytic solutions were developed for most of the limiting sim-
plifications, e.g. concentric annuli, long wavelength limits. With such a
high-dimensional parameter space the results in [1] contain significant
complexity. Some effects on stability, such as the effect of including
a positive or negative density difference in an inclined annulus, were
physically intuitive but not all.
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Much of the complexity in the results arises from the competing
effects of inertial accelerations and viscous dissipation. This is cap-
tured in the long wavelength analysis in [1], where the controlling
parameter that switches from stable to unstable involves a product
of the difference in interfacial velocities and a (weighted) difference
in the Reynolds numbers, i.e. the kinematic viscosity difference. The
interfacial velocities (capturing inertial effects) depend essentially on
the viscosity difference. Thus, transitions between stable and unstable
regimes show a strong dependency on the relative ratios of kinematic
and dynamic viscosities, modulated by buoyancy. Part of the goal of
the current paper is to see if the same overall picture is true once
shear-thinning and yield stress effects are included.

The physical expectations of including shear-thinning are unclear.
In general shear-thinning will reduce the effective viscosity, but here we
work with an imposed flow rate so that the effects on the mean velocity
are less apparent and will depend on the effective viscosity ratio. This is
further complicated by the fact that at the same imposed mean velocity,
the shear rate will be higher and the viscosity consequently lower in a
narrower part of the annulus for a fluid that shear-thins. Global effects
on the stability of the multi-layer flow are therefore difficult to predict.

For yield stress effects, to some extent physical intuition is easier.
Increasing the yield stress will unequivocally increase the effective vis-
cosity. However a new phenomena arises: that of the fluids becoming
“stuck” in the narrow annulus. This problematic phenomenon has been
recognised in the cementing industry for at least 40 years, [2], and
is a major cause of failure of primary cementing. In the context of
our problem, we have multi-layer flows that contain a static unyielded
channel, running axially along the well axis. Here we look at the effects
of these channels on stability.

An outline of the paper and the chief results are as follows. Section
2 describes the extension of the model from part 1 to non-Newtonian
fluids, and an analysis of the base flows. In particular in §2.2 we anal-
yse the static mud channel phenomenon, clarifying its dependency on
dimensionless parameters and giving predictions of the maximal static
residual annular volume. Section 3 presents the linear stability prob-
lem and reduces the dependency of the problem to a minimal set of
dimensionless numbers. A number of simplified analyses, leading to an-
alytic and semi-analytical results are presented in §4. Section 5 presents
numerical results, focusing in two subsections on shear-thinning and
yield stress effects. For the shear-thinning fluids for vertical annuli the
results are ambiguous. For horizontal annuli the flow is stabilised by
positive buoyancy and slightly destabilised by shear-thinning effects.
The yield stress has the general effect of suppressing short wavelength
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instabilities. For sufficiently large yield stress part of the annulus can
become static. In cases where the static channel abuts the interface
these flows are shown to be stable. We also show two new type of
transition in our results: from stable to static channel and direct from
unstable to static channel.

2. Non-Newtonian displacement flows

In this paper we shall consider the stability of base flows of two non-
Newtonian fluids in a narrow eccentric annulus. The underlying Hele-
Shaw model is derived in [14, 15], see also Fig. 1 for a schematic of the
geometry. In [1] we have considered the simpler problem of stability
of the parallel flow of two Newtonian fluids. Therefore, we keep our
description minimalist to avoid undue repetition. As in part 1 we work
in an unwrapped half-annular domain Q : (¢,&) € [0,1] x [—o0, 0],
which we assume is divided into two fluid domains, 21 and €29, by a
smooth curve C' that is defined by a level set function:

F(¢,6,1) =0. (1)
The function F'(¢,&,t) satisfies the gap-averaged kinematic equation:

HOF O0OVOF 0VoOF
A )
€ Ot 0 0p  0¢ O&
where H(¢) = 1+e cos m¢ denotes the gap width, € is the ratio of advec-
tive and viscous timescales, and ¥(¢,&,t) is the gap-averaged stream
function. The annular eccentricity is e and the annulus is inclined at
angle 3 to the vertical: see Fig. 1b & c. In general all variables we use
will be dimensionless. When dimensional variables are defined they will
be denoted with a * symbol.

The physical properties of each fluid are assumed constant in each
domain, and the stream function formulation of the Darcy-like equa-
tions gives us that

VU,

pkv'[H

in each fluid domain. The vectorfield S; contains the components of
modified pressure gradient in fluid k. As the Hele-Shaw approach is
taken, the modified pressure gradient is related to mean velocity by
an hydraulic relation that can be calculated locally by considering the
flow of the fluid between parallel plates, see e.g. [9]. In general, Sy will
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have form:

S, — (Xk(‘V\I/D + Tky/H
g VY|

)V\IJ & S| > 1y /H, (4)
VU =0 & |S| <7y /H. (5)

Here 74, y denotes the yield stress of fluid k. We assume that our fluids
are shear-thinning yield stress fluids, modeled for simplicity by the
Herschel-Bulkley model, each characterised by 7y, a dimensionless
consistency ki and a power-law index ny. The function y is a positive
increasing function of |VW|, which represents the purely viscous part
of the frictional pressure gradient. The exact form of x depends on H,
and on the rheological parameters that characterise the fluid. For the
Herschel-Bulkley model, x is defined implicitly by the relation:

0 Xk S 07
HMet2 kak'f'l (mk + 2)Tk’y

VY| = y e T RY
VU= T e 7D o+ e D2 Y et DH

Xk > 0,

(6)
where my = 1/ny.

To give a brief physical explanation of the above model (2)-(6), first
note that the gap-averaged velocity field in directions (¢, §) is simply
(=W, Uy)/H, and so (2) simply says that the interface is advected with
the mean flow. In deriving (3) the usual Hele-Shaw steps have been
followed except that we have chosen to work with the viscous timescale
instead of the advective timescale. Typically one assumes the process
is steady and discards all the inertial terms with the argument that
the Reynolds number times the aspect ratio (gap/length) of the duct
is small. As discussed in the introduction, here we look for instabilities
that may arise from a combination of density & viscosity differences, or
(later) from flow oscillation. In these cases it is not clear that the only
timescale is the advective timescale and hence we have retained also
the time derivatives. If instabilities grow then of course neglect of the
nonlinear inertial terms is questionable, but for now the objective is
to predict onset. The other difference with some Hele-Shaw treatments
is that we have chosen to work with the stream function formulation
rather than the pressure formulation. This is because for yield stress
fluids the pressure gradient is indeterminate in unyielded flow regions.
To return to something familiar for the reader, if we set 7v = 0, then
(6) becomes explicit:

Xk =

?

(my, + 2)| V|11 m*
Kk Hmk+2
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which leads to the familiar linear relation for my = 1, (i.e. for Newto-
nian fluids: see part 1), and on neglecting the time derivatives in (3)
we have a linear elliptic equation familiar form 2D porous media flows.

Equation (3) is supplemented with the following 2 boundary condi-
tions:

U(0,&,t) =0. (7)
U(1,6,8) =1, (8)

on the wide (¢ = 0) and narrow (¢ = 1) sides of the annulus, respec-
tively. The physical interpretation is simply that the flow rate through
the annulus is fixed, with ¥(1,¢,¢) = 1 in (8) arising from the scaling
of the velocity with the mean velocity. At the interface between fluids
the following two jump/continuity conditions are satisfied,

=0 (9

[(pk cos B pgsinFsinme

Pk VF]? =
et )+Hv\11t+sk VF[ = 0. (10)

The first of these is simply continuity of V¥, i.e. of the normal velocity,
whereas (10) defines the jump in normal derivative of ¥. Condition
(10) comes from continuity of the pressure, see [14, 1] for further
explanation.

For a given interface, we observe that these unsteady displacement
flows are characterised by 12 dimensionless parameters. These parame-
ters are: two dynamic parameters, € and St*; two geometric parameters,
e and (; four dimensionless physical parameters for each fluid, px, s,
Try, Nk, k = 1,2. Although complex, we shall see later that there is
some redundancy in the parameter space, when considering specific
aspects of the flow. We shall discuss the dimensionless parameters in
more detail in §3.2.

2.1. BASE TWO-LAYER FLOWS

We study the stability of steady multi-layer flows, that arise as one
fluid fingers past another during an annular displacement at unit flow
rate. These steady base flows satisfy (2)-(10) and are parallel to the &-
axis, hence ¥ = W(¢). We assume that the annulus is occupied by two
fluids: fluid 1 occupying ¢ € [0, ¢;) and fluid 2 occupying ¢ € (¢;, 1].
The interface level set is thus F' = ¢ — ¢;. Our solutions are steady
parallel solutions of (3), which implies S = (Sk,¢, Sk¢) = (Sk,4,0),
and

0
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Since we also have:

dp  prcosf
Sk,(b = 5. — ¥
0z St
with (10) this implies that the axial pressure gradient is continuous at
the interface. Therefore the fluid layers are acted on by a constant pres-
sure gradient, modified by an axial hydrostatic pressure that is different
in each fluid layer, due to the density jump. Since Sj 4 is independent
of ¢ and &, (by definition, we look for solutions independent of ), we
write:

(12)

St =A, So.p =A—0, (13)
where b is a buoyancy parameter, given by:
b= p2S_t*p1 cos 3. (14)

Typically, in a cementing scenario where fingering occurs, b is negative:
the heavier cement channels past the more viscous drilling mud that is
left behind on the narrow side. The constant A represents the modified
pressure gradient in the axial direction, within fluid 1, and must be
found as part of the base solution. In order to find A we use (8):

¢i OU L ow
1=U(1 :/ — do + — do. 15
(1) 0 8¢k:1¢ ¢ia¢k‘:2¢ (15)
where,
ov o A TLY
% b1 - T</ﬁ}17 K1 7H7m1>7 (16)
(‘3\11 o A—b T2,Y
% - - T< Ko ) Ko 7H7m2) (17)
0, lwly < x,
2 z+1
T(w,z,y,2) = { sgn(w y~(lwly = ) (1—1— v ),
B )y + ) Wl + 1)
lwly > x, (18)

c.f. equation (6). Note that ¢-dependency enters through H(¢).
Equation (15) can be interpreted is a nonlinear equation for A/k;.
It is straightforward to show that the function Y(w,z,y, z) increases
monotonically with w, and from this we find that (15) has a unique
solution A/k1 = A(¢i)/k1. Once A(¢;)/k1 is determined, the base
solution can be computed via integration. More precisely, we have that
the base solution will depend parametrically on ¢;, e, K1/k2, b/ka,
T1y /K1, M1, T2y /K2, ma. By comparison with part 1, where we con-
sidered Newtonian fluids, m; = 1, we see that we have 4 additional
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dimensionless parameters to consider, i.e. 71y /K1, mi, T2y /K2, ma.
The ratios 73y /K will be denoted By, and are the Bingham numbers
for each fluid, which represent the balance of yield and viscous stresses.

Some example of base solution are shown below in Fig. 2. In Fig. 2a
we have no buoyancy force; ¥(¢) increases from 0 to 1 with ¢, but there
is a discontinuity in the gradient at the interface, ¢ = ¢;. Recall that the
derivative of ¥(¢) divided by H(¢) gives the axial velocity. In a Hele-
Shaw cell at an interface between fluids, only the pressure and normal
velocity are conserved. Fig. 2b shows a base solution for which fluid 2 is
static in a region close to ¢ = 1 and Fig. 2c shows a base flow for which
the entire layer of fluid 2 is static. This phenomena results from the
yield stress in fluid 2 being too large. In the context of the industrial
displacement flow, this would correspond to the drilling mud being left
behind in a static channel on the narrow side of the annulus, which is
detrimental to the process effectiveness. We study these static channels
in the section immediately following. Finally, Fig. 2d illustrates that
with significant buoyancy, the base flow velocity can be in the negative
direction, i.e. the flow can be counter-current.

2.2. STATIC FLUID LAYERS

We have seen in Fig. 2b & c that it is possible for fluid 2 to be stationary,
in all or part of (¢;,1]. It is also possible for all or part of the fluid 1
layer to be static. In the context of flow stability, we shall later see
that certain of these base flows are linearly stable and therefore it is of
interest to define where these flows can be found. From the practical
perspective, it is however the fluid 2 static layers that are of interest
and which we therefore focus on.

Physically, a static channel occurs when the modified pressure gra-
dient is not large enough to overcome the yield stress of the fluid. Since
the modified pressure gradient is constant in each fluid layer and since
H(¢) decreases, yield stress fluids become static at the largest values
of ¢ in each layer. For the mud, fluid 2, the minimal annular gap is
at ¢ = 1, where H = 1 — e, and so there can only be a static “mud”
channel in fluid 2 if

-
A() — bl < 7. (19)
If (19) is satisfied, the entire layer will be static if
A1) ~ bl < Frr (20)

H(¢i)’
and otherwise [¢s, 1] C (¢, 1] is static, where |A(¢;) —b| = 1o,y /H (¢s).
The fully static channels are of industrial relevance, since they repre-
sent the residual mud that may possibly remain in the wellbore after
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Figure 2. Example base solutions: a) ¢; = 0.5, e = 0.3, k1/k2 = 1, b/k2 = 0,
B = 1, mi = 2, B = 1, mo = 1; b) ¢1 = 025, e = 0757 Ii1/l‘€2 = 2, b/KQ = —1.25,
B1 = 0.257 my = 2, BQ = 5, ma = 5; C) qu, = 0.75, e = 0.75, Ii1/l€2 = 2,
b/ke = —1.25, B1 = 025, m1 = 2, Bo = 5, ma = 5;d) ¢; = 0.5, ¢ = 0.5,
ki/k2 = 0.5, b/ke = =5, B1 = 0.25, m1 = 2, By = 1, ma = 5. Interface position is
marked by the vertical broken line.

cementing. Suppose now that (20) is satisfied for some ¢;. We now ask
what is the maximal azimuthal width of fully static mud channel that
can exist?

First of all, if the mud is static, then the modified pressure gradient
is determined wholly from the fluid 1 layer, via:

26
From our previous discussion, we see that the modified pressure gradi-
ent A(¢;)/k1 will depend on ¢4, e, 71y /k1 and m;. Evidently as ¢; — 0,
if the mud remains static, then A(¢;)/k1 — oo since the unit flow rate

is forced through an increasingly narrow azimuthal gap. It follows that
for some ¢;, there will be a value of A(¢;) for which:

|A(¢i) — b] = Tj;) (22)

de. (21)

k=1
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Figure 3. Variations in maximal displaced fluid volume left static in the annulus,
fstatic With b = 0: a) B1 = O, TQ’Y/Hl = 1; b) B1 = O, TQ’Y/Hl = 2; C) B1 = 0,
T2yy/l€1 = 5; d) Bl = 0.5, T2yy/l€1 = ].; e) Bl = 0.5, Tgyy/lil = 2; f) Bl = 0.5,
TQ’Y/Hl = 5; g) Bl = 1, TQ,Y/Hl = 1; h) Bl = 1, Tz,y/li1 = 2; 1) B1 = 1, TQ’Y/Hl =5.
Shaded contours are spaced at intervals of A fsiqtic = 0.05.

which defines the smallest interface position for which the mud layer
remains fully static. We denote this interface position by ¢; = ¢ min,
and the maximal azimuthal width of mud channel is therefore 1—@; yin.
Dividing through by k1, we see that ¢; ,n:m depends parametrically on:
e, By, my, b/k1 and 7oy /k1. More useful practically is to know the
maximal volume of the annulus occupied by static mud, say fsatic:

1
fstatic = / H(¢) d¢ =1- ¢i,min - %Sin 7I-(lsi,min-
In Figs. 3 & 4 we explore some of this parametric variation.

In general we see that the maximal residual mud fraction, fsatic,
increases with the ratio oy /k1 and decreases with By and with n.
The former is a simple increase in the stress level required to mobilise
fluid 2, and therefore is wholly intuitive. The decrease with By and with
n1 is also unsurprising, as these increase the viscous stress generated in
fluid 1, which is transmitted to fluid 2 via the axial pressure gradient.
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Figure 4. Variations in maximal displaced fluid volume left static in the annulus,
fstatic with b = —1: a) By =0, 7o,y /k1 = 1; b) B1 =0, 72,y /k1 = 2; ¢) B1 = 0,
szy/lﬂ = 5; d) Bl = 0.5, Tgyy/l‘ﬂ = 1; e) Bl = 0.57 Tgyy/lﬁl = 2; f) Bl = 0.5,
Tgﬂy/lil = 5; g) Bl = 1, TQ,Y/K/l = 1; h) Bl = 1, TQ,Y//{J = 2; 1) Bl = 1, TQ’Y/K/l = 5.
Shaded contours are spaced at intervals of A fsiqtic = 0.05.

Usually we find that fgac increases with the eccentricity e, and it
is only at low n; that some non-monotone behaviour is found. The
precise reasons for the non-monotone behaviour are unclear. Finally,
comparing Figs. 3 & 4 directly, we see that reducing b has the effect
of decreasing fstatic. In summary, most of these effects are physically
intuitive.

A similar analysis can be carried out for the possibility of fluid 1
static layers. The only difference to note is that if fluid 1 is static
anywhere in the fluid layer, it is static at the interface which is the
narrowest part of the annulus occupied by fluid 1.

3. Stability of parallel two-layer flows

As in part 1, [1], we consider linear perturbation of the base flows from
§2.1, which we denote by ¥ = U o(¢) & S = (Ske,0,0), k = 1,2,
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with interface position ¢; = ¢;0. We linearise, assume normal mode
expansions and transform to an eigenvalue problem, in the usual way.
More formally, for § < 1 we assume the expansions:

U, = \I/k70 + (S\If]ﬁl + 52\Ifk72 + ..,

Sk = (Sk,¢,0,0) + Sk 1+ 6°Sp2 + ...

¢i = ¢io+Ooh+ ..,

substitute into (2)-(10), expand in powers of 4.

VU, = (\I/k707¢ + 5\I/k717¢ + .., 5\111,37175 + ) (23)
1
VO = (Vo6 + 0Tkt + )% + (0T 16+ ...)%)2
~ |\I/k,0’¢‘ + 5Sgn(\1’k,07¢)\11k71,¢ + 0(52) (24)
When the fluid is yielded we find:
Ty Vi1,
Sk1 = [ (IWk0.61) Wr,10: O (1Wro,0]) + =) £, (25)
H W00l
but otherwise S;, is indeterminate. The linearised equation for Wy is
V- [Sp1+ %V\Pk,l,,t] =0,  inQ (26)
The kinematic equation and boundary conditions are:
H
?ht + \I’k,l,ﬁ + \Ilk70’¢h5 = 0, at ¢ = ¢i,0 (27)
\Ijl,l(ovat) = 07 (28)
lII2,l(]-7£at) = Oa (29)

The jump conditions (9) & (10) are linearised, first about the basic
flow and secondly onto the basic flow interface position. Thus, at O(6),
condition (9) becomes

(Upg + h¥po0)li=s = 0, at ¢ = @i, (30)

and we note that it is the derivative of this quantity with respect to &
that appears in (27), i.e. it is irrelevant which fluid is considered for the
kinematic condition. Expanding (S + (or/H)V¥}) -1, about ¢ = ¢; g
we have:

0
[Sk + %V\Pk,t] ‘n o~ Spoet 5ha—¢5k70,¢ +05k1,0

k
+%[‘Pk,0,¢>t + 0h Wk 0,60t + 0k 1 6t]

at ¢ = ¢io
(1,tanBsinmg;) -n ~ 1 — 0he tan Ssinme; o
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14 Miguel Moyers-Gonzalez and lan Frigaard

Noting that S} .4 is independent of ¢ and ¥y independent of ¢, at

O(9), condition (10) becomes

k=2

k
p*‘l’k,mt)

Sk,1,6 +
(Sk,10 + 77 -

= bhe tan Bsin e, o,

at ¢ = ¢;,

(31)

We now assume a normal mode expansion of the linear perturbation,

with modes of form:

Uy~ fr(p)el@s—sh),

which we substitute into (26)-(31) to give:

0 = DX1(|¥1,0,6

2
~isp) (D(g) - ?;) i

0 = D4(|Wa04)Df2] — a?

2
—isp2 (D(g) - O&) f2,
f1(0) =0,
fé(l) = 0,
and at ¢ = ¢; o:

H
—?Sho + a(fi + ¥ko,0h0)
(hoWors+ fi)li

k=2
(G (Wokg]) = isTDA]

)Dfi] — a®

h ~ hoei(aﬁ—st)’

Ty
X1(|%1,0,0]) +
H f17
[W1,0,6]
¢ € (0,i0)
T2y
x2([W20,0]) + =
H f27
(20,6
¢ € (¢io,1)

=0,

0,

iabhg tan Bsinwe; o,

(38)

Assuming for the moment that both fluid layers are fully mobile,
linear stability of this flow is governed by the system (32)-(38), which
is an an eigenvalue problem for s = sg + is; € C. Linear instability
is found if for any & € R we have an eigenvalue with s; > 0. We
may observe that, including specification of a and ¢; g, this eigenvalue
problem for s depends upon 14 dimensionless parameters.
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Kinematic instabilities in two-layer eccentric annular flows 15

3.1. REDUCTION TO A MINIMAL SET OF DIMENSIONLESS
PARAMETERS

We are able to simplify the stability problem by dividing through (32)
by k1, (33) by k2 and (38) by ka. With the following definitions:

Bi=X,  By=2T (39)
1 2
Rei="Z  Rey= %, (40)
1 2
K1 b
Pr = ;2 b = ;2 (41)

eigenvalues A € C are found from the solution to:

!
0 — D |:X1(‘\111707¢|)Df1:| . Oé2 |A/K/1| 1
K1 U106l
. D a?
—z)\Rel (D(H) - H> 1, ¢ € (0’ ¢i,0) (43)
! —
0 — D |:X2(|\I’170’¢|)Df2 _ 042 ’SONA/Kl ng‘ f27
) W .0,6
D 2
—iARes (D(H) - H> f2, ¢ € (dio,1) (44)
f1(0) =0, (45)
and at ¢ = ¢; o:
—HMho + o fr + ¥p0¢h0) = 0, (47)
(hoWore + fu)li = 0, (48)
! !
X2(|¥1,0,6) _i)\Rez} Dfy = o0 {X1(|‘I’L0,¢) _ARer] g
K2 H K1 H
Hovpphg tan Fsin w; o, (49)

Recall that the base solution ¥y, g is fully determined by the 8 parame-
ters: ¢io, €, Y, P, B1, m1, B2, ma, which also determine A/k; above.
Note also from the base solution that:

Al = xa([¥10.6

T1,Y

72,
)+ A= b = el Ta0g)) +

I
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16 Miguel Moyers-Gonzalez and lan Frigaard

We must add to this set of 8 parameters the two reduced Reynolds
numbers, Re; & Res. Finally, we may note from (6) that x},(|¥x.0,6|)
is defined via implicit differentiation of (6):

= it (me + 2) (xk + 7y /H)®
k — )
H™E4 2™ 2 mg(mg + 2)XkTk,y Thy
K (my + 1) H (my +1)H?

(50)
from which we observe that x}./kr depends on ¢;o, e, By and my,
plus xx/ki. Now we have that x1/k1 = |A/k1| — B1/H and x2/ke =
loxA/Kk1 — wp| — Ba/H, and these depend also on the parameters of
the base solution. Thus including «, we have reduced from 14 to 11
dimensionless parameters.

3.2. DIMENSIONLESS NUMBERS

Our final stability problem remains formidable in terms of the 11-
dimensional parameter space that we must consider. However, first we
discuss the dimensionless parameters in relation to the dimensional
physical parameters of the process. The reader is also referred to part
1, where much of this is explained. First of all, we consider a two-fluid
flow through a narrow eccentric annulus of eccentricity e and angle of
inclination 3; ¢; o has a similarly simple geometric interpretation.

The mean axial speed of the fluids (recall the flow rate is imposed)
is denoted w* and p* denotes the maximum of the two fluid densities,
(recall our convention of denoting dimensional quantities with the *
symbol). A shear rate scale §* is defined by

ok w

To — 7A’i ’

where 7, & 7; are the outer and inner radii of the annulus, respectively.
This is used to define a shear stress scale:

# = max {ﬁc,y + /%k(’?y*)”’“} :
and from this a viscosity scale i* = 7*/ ’Ay* These are used to scale the
dimensional rheological parameters: ki = /%k('y*)"k /T Ty = Thy /T5,
and hence we have that

ThY
By = —%—

g (3 )
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Kinematic instabilities in two-layer eccentric annular flows 17

The Bingham numbers thus denote the ratio of yield stress to purely
viscous stress in each fluid. The power law indices, ny = 1/my, de-
scribe the shear-thinning properties of the fluids; typically ny < 1. The
viscosity ratio ¢, = k1/k2 is seen to be the ratio of purely viscous
shear stresses in the two fluids. With respect to part 1, where we
have considered only Newtonian fluids, the above definitions collapse
to the Newtonian definitions in the case that the yield stresses are zero
(Br = 0) and ng = 1. Thus, essentially we have only 4 additional
parameters to consider.

The two Reynolds numbers, Rex, k = 1,2 are the non-Newtonian
counterparts of those defined in part 1:

Rey = —[)kw*(f?: 721.)2’

Thakr(y )1
where 7, = 0.5(7, — ;) is the mean radius. These are reduced Reynolds
numbers, relevant to the Hele-Shaw scaling, (i.e. the usual Reynolds
number multiplied by the aspect ratio). Typically we would expect
that Reg < 1.

The buoyancy parameter ¢, is defined by:

[p2 — p1]g(70 — 73) cos B
W k(Y )m2

which is a ratio between the axial buoyancy stresses and the viscous
stresses in fluid 2. Use of the axial buoyancy stresses above results in
the tan # term appearing in (49), which becomes singular for horizontal
wells, 5 = /2. Therefore, at times it will be convenient to work instead
with
o P2 — P1g(Fo — 74)
Pp = .o~ X .
0l

Regarding the wavenumber «, note that the lengthscale used in
the dimensionless model is 7#,, and thus wavelengths of instabilities,
27 /a, need to be scaled appropriately. Using the eigenvalue A will give
an equivalent stability characterization to that using ¢, but time is
measured in terms of the advective timescale, 77, /w*.

4. Simplified analyses

A number of simplified cases may be treated, for which analytical
progress is possible.
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18 Miguel Moyers-Gonzalez and lan Frigaard
4.1. STABILITY OF SINGLE FLUID FLOWS

First of all, let us suppose that we have the flow of a single fluid in the
annulus. The stability problem is as above, but setting e.g. ¢;0 = 1,
suppressing the interface conditions, fluid 2 layer and subscripts. This

leaves:

K [Wo,0l
D a?
—i)Re (D(H) . H) f, ¢ € (0,1) (51)
f(0) =0, (52)
f(1) = 0. (53)

On multiplying by the complex conjugate f* and integrating over [0, 1],
it is straightforward to show that A; < 0 and therefore the single fluid
flow is linearly stable.

4.2. STABILITY OF 2 LAYER FLOWS WITH STATIC CHANNELS

In considering 2-fluid flows, in which one or both fluids have a static
channel, we may also simplify things. First note that there are 4 differ-
ent types of flow: (i) fluid 1 is fully static; (ii) fluid 1 is partly static;
(iii) fluid 2 is fully static; (iv) fluid 2 is partly static. In addition there
are combinations of these 4 possibilities.

Suppose that fluid k contains a static channel. If the entire fluid
layer is static, then due to the eccentricity of the annulus this implies
that the stress is below the yield stress by a finite amount everywhere in
the layer (except perhaps at the widest part of the fluid layer, where it
may be at exactly the yield stress). In this case, the infinitesimal linear
perturbation cannot generate a finite stress perturbation and hence
the velocity and stream function perturbation is zero: f = Df, = 0.
According to the kinematic condition, either hy = 0 or A = 0, implying
neutral stability. However with hy = 0, the interface is not perturbed
and the stability problem in the other fluid layer becomes that of a
single fluid, i.e. linearly stable by the method in §4.1 above. Therefore,
the flows (i) & (iii) are linearly stable.

Let us consider (ii), where fluid 1 is partly static. Due to eccentricity,
the mobile region is the wider part of the annulus so that we have mobile
fluid 1 for ¢ € [0, ¢s) and static fluid for ¢ € [¢s, @;), for some ¢4. In
considering perturbation of the solution and a possible perturbation to
the yield surface, ¢, after carefully linearising about ¢ we find that

Dfi(¢s) = afi(¢s) = 0. (54)
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Kinematic instabilities in two-layer eccentric annular flows 19

We now multiply (43) by f; and integrate across [0, ¢s] in the manner
of §4.1. This gives that either f; = 0 or A\; < 0. Taking f; = 0, we may
note that the interface is not perturbed. Therefore, fa(¢;) = 0, we may
multiply (44) by f5 and integrate across [¢;, 1], to show that fo =0 or
Ar < 0. This establishes that any flow of partially yielded fluid 1 will
also be linearly stable. Physically, this occurs because the interface is
static and cannot deform, which means that the stability problems in
the yielded fluid layers are completely decoupled & treatable as single
fluid problems.

Finally consider situation (iv), where fluid 2 is partially yielded.
Instability can only arise if fluid 1 is fully mobile in [0, ¢; ), and since
the fluid layer is widest at ¢ = ¢; o, fluid 2 is also mobile at the interface.
The static fluid channel is now say [¢s, 1]. As before the static fluid
channel is not perturbed, but now interfacial perturbations are possible.
The full stability problem must be solved, but the domain for (44) is
the mobile fluid layer: ¢ € (¢; 0, ¢s), and (46) is replaced by

D f2(¢s) = afa(ds) = 0. (55)

Note that an additional boundary condition is required to resolve the
singular behaviour in (44) as ¢ — ¢s.

4.3. CONCENTRIC ANNULI

For concentric annuli, (H = 1), the base solution will have constant
velocity in each fluid layer, so that (43) & (44) reduce to constant
coefficient equations. After long but straightforward manipulations, A
is found to satisfy:

/
0 = iapptan Ssinme; o + @x {Xl - i)\Rel} A — aW; 1] vy cothviagi
R1

!
+ BQ - i)\ReQ} [A = aWis]va cothvaa(l — ¢ip) (56)
2
where
|A/ka| . oA/ = ol
—iARe T ARe
vy = 7 ? - ! ’
& . 1)\Rel & — 1)\Re2
K1 2

and where the W; ;. are the interfacial velocities of the base flow:

1 d
Wi,k: = m@‘l’k,o(@,o)a k= 17 2. (57)
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20 Miguel Moyers-Gonzalez and lan Frigaard

For a concentric annulus, H = 1 and these are also the constant
velocities of each fluid layer.

Although we have been able to write down the above algebraic
expression, it cannot be directly solved for A, since A appears also in
V. For the Newtonian fluids in part 1, the pressure gradient-flow rate
relation is linear, which leads to v, = 1 and a quadratic equation for
A. Here the only practical use appears to be as a test condition for
numerical solutions.

4.4. LONG WAVELENGTH ANALYSIS

The long wavelength limit, « — 0, is studied by assuming a regular
perturbation expansion in « for both A and the solution to (43)-(49).
After considerable algebra we find the following expressions:

A~ aX +a’\ +0(a?) (58)
MiW; o + MaW; 1
N 7 : 59
! My + Mo (59)
. cpbtanﬁsinwgbio |: M1M2 }
o = — ’ 60
2 { 37T(,0,€H(¢i?0) My + M, ( )
(Wio — Wi1) [RetN1 My — Rea No M,y
+A1 ! ! 5
3 (M + M)
where
®i,0 K1
M, = 3x / M g,
! o X1(¥104l(0))
1 Ko
My = 37“%/ — = do,
®i,0 XIQ(‘\I/2,07¢‘(¢))
M= or [T i do
1 = JI7 )
o H(@)X1(1%1,06/(¢)]
1 K2
Ny = 9mp, 5do.

si0 H() X2 (1W2,0.4/(¢))]

These expressions reduce to those for two Newtonian fluids, (as given
in part 1), in the limit m; = 1 and By = 0.

It is interesting to observe that the same structure persists for the
non-Newtonian fluid combinations as for the Newtonian fluids. The first
order eigenvalue is advective (i.e. real), and propagates at a weighted
average interfacial speed without growth or decay. The second order
eigenvalue is complex and controls the stability. As in part 1 we can
see that pa > p1 (= b > 0) tends to stabilise the flow. Typically we
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Kinematic instabilities in two-layer eccentric annular flows 21

will have A; > 0 and then the second term in (60) is governed by the
sign of:
(WLQ — Wi,l)(RelNlMQ — RegNng),

so that we can expect some form of checker-boarding when viewed in
terms of interfacial velocity differences and Reynolds number differ-
ences.

5. Numerical results

For the remainder of the paper we consider parametric variations in
the stability of the system of (43)-(49). Two tools are used for this.
First, we solve numerically the full problem. Second, we consider the
long wavelength limit, & — 0. The long wavelength limit gives sufficient
conditions for linear instability, which is what we typically would like
to predict. However, there are also some restrictions to the method,
which we illustrate below.

The main part of our results we shall group in §5.2 & §5.3, exploring
shear-thinning and yield stress effects, respectively. Evidently, with an
11-dimensional parameter space to explore it is not possible to give a
complete description of the stability. Our approach is to highlight the
main qualitative features and illustrate this with concrete examples.

5.1. NUMERICAL SOLUTION OF THE EIGENVALUE PROBLEM

The system (43)-(49) is solved using a spectral method. These are
global methods that use the fully discretized stability operator, which
is supplied to a matrix eigenvalue solver to give the spectrum. We have
chosen a Chebyshev polynomial expansion to discretize our problem.
The use of Chebyshev polynomials, especially in bounded domains, has
proven very effective and accurate for such problems. The implementa-
tion of the method for our problem is fairly standard, as described in
[1]. The boundary conditions are handled via the method described in
[16], which maps spurious eigenvalues to a fixed point in the complex
plane, outside of the domain of interest. As in [1] the numerical spectra
consist of two interfacial modes and two viscous spectra (each centered
on the imaginary axis). Typically we have used N = 51 polynomials for
each fluid layer, which is adequate since usually the most unstable mode
is one of the interfacial modes, i.e. increasing N adds further viscous
modes but does not significantly change the position of the interfacial
modes or the largest viscous modes.

Numerically, 2 eigenvalues are mapped spuriously with the boundary
condition implementation, which leaves 2 interfacial modes and N — 2
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22 Miguel Moyers-Gonzalez and lan Frigaard

viscous modes for each layer. Note that the viscous spectra are discrete
and the eigenfunctions regular. The problem is thus quite different to
some non-Newtonian stability problems, (e.g. with visco-elastic fluids),
where continuous spectra/singular eigenfunctions are found. Here the
non-Newtonian effects simply manifest in (parametrically) different
data functions within the linear equations and boundary conditions.
The underlying mathematical problem is not qualitatively changed
from the Newtonian problem. An exception to this might be thought to
occur when we have a yield stress fluid in the annulus. In this case x},
and 1/|VU| become singular at the yield surface. However, in the case
that we have a yield surface, additional compatibility conditions are
also satisfied by the stream function perturbation there, which render
the perturbation equations regular. Details regarding this are given in
[14] and a similar example of such problems is found in the study of
shear instabilities for visco-plastic fluids, where again the inclusion of
a yield stress does not bring about continuous spectra, see e.g. [17].

As a test problem for our numerical method, we use the analytic
expression for the eigenvalues in a concentric annulus, (56). We denote
the least stable eigenvalue by Apaz = ARmaz + iA1maz, i-€. that for
which A = Ar + i\ has maximal imaginary part. A typical computed
spectrum for a concentric annulus is shown in Fig. ba, for parameters
B=0,0,=25¢; =—1,0¢;0=05,e=0.0,m =1, By =2, By =1,
Re; = 1 and Rey = 0.5. For the concentric annulus the N-1 viscous
modes have coalesced/collapsed for each fluid into a single point, (with
slight spreading of the spectra). For comparison, Fig. 5b shows the
spectrum for the same parameters with a small eccentricity, e = 0.1,
where we observe that the viscous spectra have expanded. As a further
test for our numerical method we substitute the numerical eigenvalues
for the concentric annulus into (56) and take the absolute value of the
residual, denoted |\.|?. Table I shows these values for the parameters
of Fig. 5. We may observe that, relative to the size of the eigenvalues,
the errors are very small. These results are quite typical.

5.2. SHEAR-THINNING EFFECTS

In order to explore parametric variations in some sort of systematic
fashion, we utilise the long wavelength approximation, which provides
sufficient conditions for flow instability. We fix the interface position at
mid-azimuth, ¢; o = 0.5, and consider first vertical annuli g = 0. Fig. 6
shows the effects of increasing mo at small eccentricity, i.e. we make the
fluid that occupies the narrow side of the annulus progressively more
shear-thinning. Fig. 7 shows the same results but at a high eccentricity,
e = 0.5.
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Figure 5. Spectrum for system (43)-(49): 8 = 0, . = 2.5, pp = 1, ¢s0 = 0.5,
mi1=1,B1 =2, Bo=1,Re;1 =1 and Rez = 0.5: a) ¢ = 0.0; b) e = 0.1.

Table I. Test of the numerical method. Numerical values of A substituted into (56)
to give the residual error, (Ac). We present results for the largest of the viscous
modes (which are clustered about the analytical solution) and the two interfacial
modes.

Numerical A |Ae|?
3.559844652988294e-0014-5.466326043265693e-0031  2.964029969411872e-011
-6.287673021974180e-002-4.238254642625869e4-0001  1.875940044675446e-020
-1.716556341567676e-003-3.724625951864712e4-000i  1.074113563660485e-013
-2.148646745047909e-006-6.021629304112192e4-000i  5.973585198654020e-009

We have plotted our results in the (z,y) plane where

Hl/ﬁg -1 o R62N2M1 - Re1N1M2

VA R — d(Res, Rey, ¢) =
T 51/524‘17 ) ( €2, e17e) (M1+M2)2

Here z is simply a nonlinear stretching of the consistency ratio, whereas
d(Rez, Rey, e) enters directly into the stability criterion (60). The con-
sistency ratio tends to affect the interfacial velocity difference, which
also appears in (60). Indeed, for fixed well inclination the product
(Wi — Wi 1)d(Reg, Req, e) determines the long wave instability. Thus,
the checkerboard of stable and unstable regimes in Figs. 6 & 7 is to
be expected, as for § = 0 buoyancy does not influence the long-wave
instability (60). On the face of it, increased eccentricity does not result
in a more or less stable flow, but simply a shifting in the checkerboard
pattern.

Figs. 8 & 9 show the same results as Figs. 6 & 7, except that the
variation of power law index for fluid 1 is explored, again at e = 0.1
and e = 0.5. Again the results are ambiguous, viewed in terms of what
might be the natural questions to ask, i.e. if m; is increased does the
flow become more or less stable? Figs. 8 & 9 demonstrate that the either

stabvpfld.tex; 11/04/2008; 14:43; p.23



o
=~

d(Rez,Rel,e)

I
| o o
I = U1 (=] a1 -

-0.5 0 0.5
(K1/K2 - 1)/(K1/K2 +1)

&

d(Rez,Rel,e)

|
| o o
= U1 (=) a1 =
H ﬁ

[

-0.5 0 0.5
(K1/K2 - 1)/(K1/|<2 +1)

c)

Miguel Movers-Gonzalez and Ian Frigaard

1

d(Rez,Rel,e)

I
| I I
= o =) o

-

-0.5 0 0.5
(K1/K2 - 1)/(1(1/1(2 +1)

=
=

d(Rez,Rel,e)

|
| e o
| = Ul o [&] =

-0.5 0 0.5
d) (K1/|<Z - 1)/(K1/K2 +1)

Figure 6. Regions of marginal stability, long wavelength approximation: § = 0,

QOZ = 1, gbi,() = 0.5, e = 0.1, mi = ].,

By = By = 0: a) ma = 4/3; b) ma = 2; ¢)

mo = 3; d) ma = 5; unstable - white, stable - green (light grey).

1

d(Rez,Rel,e)

-0.5

. 0.5
(K1/K2

0 .
- 1)/(K1/K2 +1)

d(ReZ,Rel,e)

|
[

1
| o o
= a1 o ul

O H

[

-0.5

. 0 .5
c) (Kl/l(2 = 1)/(x 1/K2 +1)

Figure 7. As Fig. 6 with e = 0.5.

1

d(Rez,Rel,e)

|
| o o
= » o o
U‘H

-0 5

. 0 0.
(K1/|<Z - 1)/(K1/K2 +1)

o
=

d(ReZ,Rel,e)

|
=

|
| o o

= o o o =

u‘ H

[

-0 5

(=N
=

. 0 0.
(K1/K2 - 1)/(K1/K2 +1)

stabvpfld.tex; 11/04/2008; 14:43; p.24



0.5 0.5

o
[=]

d(Rez,Rel,e)
d(ReZ,Rel,e)

|
o
Ul

I
o
Ul

.. B n [2]=¢
-0.5 0 0.5 1

-1

-1 -0.5 0 0.5 .
a) (Ko /K, = DK Ik, +1) b) (ky/c, = DIk /K, +1)

[

1
05 05
< <
5 3
& &
W 0 Y
[} (o)
S S
° o
-0.5 -05
-1 -1
-1 -05 0 0.5 1 -1 -0.5 0 05 1
c) (K1/K2 - l)/(Klle +1) d) (K1/K2 - 1)/(K1/K2 +1)
Figure 8. Regions of marginal stability, long wavelength approximation: § = 0,

wr =1, ¢i0=05,e=01me =1, Bt = Bo =0: a) m1 = 4/3; b) m1 = 2; ¢)
m1 = 3; d) m1 = 5; unstable - white, stable - green (light grey).

may occur. This ambiguity highlights the value of quick and relatively
simple predictive methods such as here.

We now look at horizontal wells, which represent the other direc-
tional extreme of the buoyancy force. For the same net buoyancy force,
Figs. 10-13 show the analogous results to Figs. 6-9, but with 5 = 7/2.
Evidently, with a positive buoyancy gradient ¢; = 1, the horizontal flow
is strongly stabilized. Figs. 10 & 11 indicate that making the fluid on the
narrow side of the annulus increasingly shear-thinning, (i.e. increasing
msz), apparently decreases the flow stability. Note that the parameters
in the lower right quadrant are physically difficult to achieve. A sim-
ilar destabilisation is observed at low eccentricity with increasing m1,
see Fig. 12. At larger eccentricities the overall stability of the flow is
increased, see Fig. 12, and we see no evidence of destabilisation with
increasing mj.

Use of the long wavelength approximation is clearly efficient com-
putationally and the plots in Figs. 6-13 are probably the clearest way
of presenting the long wavelength stability. Although convenient, two
problems with the long wavelength analysis are: (i) the long wave-
length limit does not always predict the instability of the full problem,
nor the maximal growth rates; (ii) the dimensionless variables that
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are convenient for the long wavelength limit are not those useful for
practical intuition. We illustrate both problems below, by solving the
full stability system for example parameters.

We fix base parameters 8 = 0, e = 0, ¢, = 2.5, pp = 1, ¢; 0 = 0.5,
By =0, B, =0, Re; = 1 and Rey = 0.5, (see Fig. 5a), and explore
variation of the maximal eigenvalues with m; and ms. In Fig. 14, we fix
mgz = 1 and take my =4/3, 2, 3, 5. At m; = 1 (Newtonian case) the
flow is unstable and as we increase mj the flow remains unstable for
all values of e. Physically, we are making fluid 1 thinner/less viscous,
so perhaps this is physically intuitive. As the wavenumber « increases
Al maz changes smoothly until it asymptotes to the short wavelength
limit as @ — oo. Although the long wavelength limit predicts the
instability, the maximal growth rates are found in the short wavelength
limit or at some intermediate wavenumber, see Fig. 14c¢ & d.

In Fig. 15, we fix m; = 1 and consider changes in mg = 4/3, 2, 3, 5,
for increasing e. A range of interesting behaviours are observed. First,
the short wavelength and long wavelength limits clearly can give quite
different stability predictions, as in Fig. 14. Second, we observe regions
in which A7 4. are apparently constant. Thirdly, for small values of «,
as we increase the power law index of fluid 2, we jump from an unstable
flow to a stable flow, see e.g. my = 3 and my = 5.
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Figure 14. Examples of typical variations in least stable eigenvalue with wavenum-
ber, 3 =0, ¢i0 =0.5, ¢ =1, Re1 =1, Re2 = 0.5, pr, = 2.5, B = B2 =0, m2 = 1;
a) e=0.1; b) e =0.3; c) e = 0.5; d) e = 0.8. In each figure m; = 4/3 - marked with
o, m1 = 2 - marked with +, m; = 3 - marked with {6, m1; = 5 - marked with .

The regions of near-constant Aj .. are explained in part 1, [1].
Essentially these regions are found when the interfacial modes become
more stable than the viscous modes. The most unstable part of the
viscous spectra turns about to be relatively insensitive to variations in
wavenumber a.

The jumping from stable to unstable at first appears strange, but
is easily explained in the context of the long wavelength approxima-
tion. Here, at fixed 3, stability is governed by the product (W;o —
Wi 1)d(Rez, Req, e). As we increase any one rheological parameter both
the interfacial velocities and d(Rez, Rer,e) will change in a nonlin-
ear fashion, possibly changing time. It is this switching that leads to
non-intuitive variations in stability. Figure 16, plots W; 2 — W; 1 and
d(Rez, Rey, e) for varying my, relative to the parameters in Fig. 14 &
15. In Figs. 16a & b we fix my = 1 and vary m;. We can see that
W2 —W; 1 and d(Reg, Rey, e) have opposite sign and therefore the flow
remains unstable. In Figs. 16c & d we fix m; = 1 and vary mo. We
can see that W; o — W, 1 is always positive (fluid two is always thinner)
and d(Res, Req, e) changes sign from negative to positive for increasing
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Figure 15. Examples of typical variations in least stable eigenvalue with wavenum-
ber, 3 =0, ¢i0 =0.5, ¢ =1, Re1 =1, Re2 = 0.5, pr, = 2.5, B = B2 =0, m1 = 1;
a) e=0.1; b) e =0.3; c) e = 0.5; d) e = 0.8. In each figure my = 4/3 - marked with
o, ma = 2 - marked with +, ms = 3 - marked with 6, m2 = 5 - marked with .

ma, thus the flow will stabilize for large values of mo. As we increase
eccentricity the value of mg for which d(Res, Rei,e) changes sign in-
creases. It is not possible to give a complete picture of even general
rules regarding instability in the long wavelength limit. However, only
simple quadrature is needed to evaluate the expression (60).

5.3. YIELD STRESS EFFECTS

We now consider yield stress fluids, which are themselves shear-thinning.
We can anticipate a similar level of complexity as for the power-law
fluids in the above section. We therefore do not attempt to give a
broad parametric study, but instead focus on those phenomena that are
markedly different for yield stress fluids. As discussed in §4.2, certain
parameter combinations allow static channels to develop in the base
flow and the majority of these flows are linearly stable. The occurrence
of static channels is intuitively governed by the yield stresses of the
fluids and width of the annular gap, i.e. by eccentricity and azimuthal
position.
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Figure 16. Examples of typical variations for W; 2 — W; 1 and d(Resz,Rei,e) for
varying my: 8 =0, ¢;,0 = 0.5, o5 =1, Re1 =1, Rea = 0.5, ¢, = 2.5, B = B = 0;
a) and b) mg = 1; ¢) and d) m; = 1. In each figure e = 0.1 - marked with o, e = 0.3
- marked with +, e = 0.5 - marked with <>, e = 0.8 - marked with .

By way of illustration, below in Fig. 17 we show predictions of the
long wavelength theory (60), at different azimuthal positions in a verti-
cal annulus with e = 0.5. Fig. 18 shows analogous results in a horizontal
annulus. What can be observed in Fig. 17 is that the usual checkerboard
of stable and unstable regions is interrupted by large parameter regions
where static channels are found in the base flow. Note that the base
flow is independent of the Reynolds numbers. These same regions are
found also in the horizontal annulus. Perhaps more interesting is that
we see that there a direct transition from regions that are unstable,
according to (60), to those with a static channel. This is a new type of
transition and one that we should understand further.

Exploration of the spectrum of the full problem reveals that the
addition of a yield stress appears to stabilise the flow by acting first
on the short wavelength limit. Thus, as the yield stress is increased
instability is found eventually only in an increasingly small interval of
wavenumbers close to & = 0. An illustration of this is given in Fig. 19.
Further increase of the fluid 1 yield stresses for the example in Fig. 19
results in the disappearance of the unstable interval and eventually the

stabvpfld.tex; 11/04/2008; 14:43; p.31



32 Miguel Moyers-Gonzalez and lan Frigaard

1 1
0.5 0.5
< <
- =
& &
~ 0 ~ 0
[9) [}
S «
o o
-0.5 -0.5
-1 -1
-1 -0.5 0 0.5 -1 -0.5 0 0.5 1
a) (K /Ky = DiK Ik, + 1) b) (K /K, = DK [, + 1)
1 1
0.5 0.5
© o
- -
& &
Y ~ 0
[0) [}
S S
° =
-0.5 -0.5
-1 -1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
c) (Kl/KZ - 1)/(K1/K2 +1) d) (K1/K2 - 1)/(K1/K2 +1)

Figure 17. Regions of marginal stability, long wavelength approximation: § = 0,
(p; = 1./ € = 05, mi1 = mg = 1: a) (]51',’0 = 025, B = 1, By = 057 b) ¢)i,0 = 075,
Bi1 =1, By =0.5;¢) ¢i,0 =0.25, B1 = 0.5, By = 1; d) ¢5,0 = 0.75, B1 = 0.5, By = 1;
unstable - white, stable - green (light grey), unyielded/static channel (black).

fluid 1 layer becomes static. This transition is characteristic of any of
the transitions from stable to static regimes in Figs. 17-18.

A different transition occurs directly from unstable to static channel
regimes. We illustrate this below in Fig. 20. For parameters: 8§ = 0,
QDZ = 1, R61 = 1, Reg = 05, P = 2.5, B1 = 0.1, BQ = 1, mi1p = ma = 1,
¢i,0 = 0.8, we approach the static channel regime by progressively in-
creasing the eccentricity, e. We present the evolution of the least stable
eigenvalues of system (43)-(49) for e € [0.3,0.9] in Fig. 20a. The viscous
spectrum remains fairly fixed, stabilising slightly. The main change is
observed in the interfacial mode. As the static channel is approached,
Al maz — 0 from above, but also Ag ez — 0. We have presented only
results for a = 1, although other wavenumbers are similar. Fig. 20b
shows the base velocity solution for e = 0.3 and e = 0.9. For e = 0.9
the fluid 2 layer is nearly static, with |Wg 4| ~ O(1076).

The approach to the static layer flow is easier to understand via
analysis of the long wavelength limit (60). From the results in [10] we
know that x(|[V¥|) ~ |V¥|™/ (D) a5 |VE| — 0. Thus, x,(|VP|) ~
|VW|~1/(+1) a5 |VW¥| — 0. This singular behaviour causes difficulties
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Figure 19. Examples of typical variations in least stable eigenvalue with wavenum-
ber, e = 0.5, 3 =0, ¢; =1, Re1 =1, Rea = 0.5, o, = 2.5, Bo = 0.5, m; = ma = 1;
a) ¢i,0 = 0.25; b) ¢;,0 = 0.75. In each figure B1 = 0.1 - marked with o, By = 0.5 -
marked with +, B; = 1 - marked with <>, By = 2 - marked with [J.

for numerical solution of (43)-(49), and some numerical noise can be
observed in the calculated Aj 4, in Fig. 20a, as e becomes large. From
(60) and the asymptotic behaviour of x} we can resolve the leading
order behaviour of A at & = 0 as the static channel is approached:

A~ O(|\I}2’O’¢|1/(n2+1))’
Ag ~ O(g sin B]Ts.0.4) ™ HD) 4 O(|Tg 04| 2 HD).
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Figure 20. Transition from unstable to static channel for parameters: 8 =0, p; = 1,
Re1 = 1, Rez = 05, Pk = 25, B = 01, By = 17 mi = ma = 1, (]57;,0 = 08, with
increasing eccentricity e. Figure a) shows the evolution of the least stable (interfacial)
mode as e is varied from e = 0.3 (marked with o) to e = 0.9 (marked with O); see
broken line. We also show the viscous spectrum at e = 0.3 and e = 0.9; that at
e = 0.9 (marked with ) is offset along the real axis by 0.5 for clarity. Figure b)
shows the base solution at e = 0.3 and e = 0.9.

The signs of the constants in the above limiting expression will be
governed by the fluid 1 velocity profile, which remains O(1) and in fact
changes very little as fluid 2 becomes progressively static. Thus, the
slightly strange transition direct from instability to the static channel
is explained.

6. Discussion

This paper has considered a practically relevant generalisation of [1]
to the case of shear-thinning and yield stress fluids, as are commonly
used in primary cementing. Although the methodology is similar to
the Newtonian case, there are a number of interesting differences in
the results.

The occurrence of static mud channels in primary cementing has
been known of since the 1960’s, [2] and is a major cause of process
failure. We have seen here that static channels can occur in either fluid
layer, in the displaced or displacing fluid. It is those that occur on the
narrow side of the annulus that are of most direct industrial relevance.
Here we have quantified this phenomenon via the maximal volume of
residual fluid that is possible to be left behind in the annulus, fsatic-
We have shown that fs.. depends on five dimensionless parameters
and have presented a range of results that illustrate this dependency. In
general fsqric 18 quick to compute as the solution of a simple nonlinear
equation.

Via dimensional analysis, we have shown that the base solutions
depend on a minimal set of 8 dimensionless parameters, which is 4
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more than the Newtonian fluid case in part 1. These additional param-
eters are the two power law indices and two Bingham numbers. These
additional parameters thus capture the shear-thinning and yield stress
effects. The stability problem depends on an additional 3 dimensionless
parameters: two Reynolds numbers and a wavelength.

A range of analytical and semi-analytical results have been derived.
For the industrially problematic static channel flows, we show that
3 of the 4 different types of static channel flows are linearly stable.
The fourth type of static channel flow may be stable or unstable,
this involves simply a restriction of the yielded channel width, but the
interface has yielded fluid on both sides.

The most useful semi-analytical results certainly come from the long
wavelength analysis. Here we have provided an equivalent characteri-
sation of the stability to that in [1] for the Newtonian fluids. By this
we mean that the final formulae for the eigenvalue contain equivalent
terms to those in [1], albeit modified in a nonlinear fashion to account
for the fluids. The formulae may be simply evaluated once the base
flow is calculated and hence are suitable for rapid computation, e.g. as
part of a process optimisation. In a similar way to the Newtonian fluid
case, in the absence of buoyancy instability is governed by a product
between the difference in interfacial velocities and a weighted difference
in Reynolds number for the two fluids. The switching of signs of the
terms in this product is responsible for much of the complexity that
we observe in the results. When density differences are included the
stability is changed in a fairly predictable way.

For power law fluids, i.e. only with shear-thinning effects, for vertical
annuli we can make no simple statements regarding stability. For hor-
izontal annuli with ¢ > 0 the flow is stabilised. As the fluids become
more shear-thinning the stability is slightly reduced.

Addition of a yield stress has the general effect of suppressing short
wavelength instabilities. We also have the phenomenon of static chan-
nels, described above, which are commonly stable. Thus, our parametric
results exhibit an additional two types of transition, from stable to
static channel and direct from unstable to static channel. The latter
is of course quite surprising and we have investigated the transition in
detail, showing that the growth rates can indeed approach zero from
above as the fluid channel solidifies.

In terms of practical matters, the most relevant fact is that static
channels with an unyielded interface are linearly stable. This tends to
suggest that ideas related to flow pulsation and the instigation of insta-
bility may not destabilise the mud channels. In short, the formation of
static mud channels needs to be avoided as once formed they are likely
to persist.
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An area that we have not touched here is which base parameters
are likely to lead to multi-layer flows of the type studied here. Multi-
layer flows only arise from an ineffective underlying displacement for
which the interface elongates into a pseudo-parallel flow; see Fig. 1f.
Many parameter regimes lead to displacements that are in fact effective,
i.e. steady traveling waves, see [9, 10, 11]. The analysis in [8] provides
one method for predicting whether displacements will be steady or
unsteady. Ideally, for practical application of the results in this paper
we need to couple the predictions of a model such as in [8], with those
from our work here, i.e. there is no point to consider the stability of a
flow that never evolves in the first place.

Acknowledgements

This research has been carried out at the University of British Columbia,
supported financially by Schlumberger and NSERC. We are grateful for
this sponsorship.

References

1. M.A. Moyers-Gonzélez & I.A. Frigaard (2007) Kinematic instabilities in two-
layer eccentric annular flows, part 1: Newtonian fluids. J Engng Math., DOI
10.1007/s10665-007-9178-y.

2. R.H. McLean, C.W. Manry and W.W. Whitaker (1966) Displacement Mechanics
in Primary Cementing. Society of Petroleum Engineers paper number SPE 1488

3. M.J. Economides (1990) Implications of Cementing on Well Performance. In:
E. B. Nelson (ed.) Well Cementing. Schlumberger Educational Services

4. Primary and Remedial Cementing Guidelines. Drilling and Completions Com-
mittee, Alberta, April 1995. Distributed by the Petroleum Industry Training
Service.

5. E. B. Nelson (ed.) (2001) Well Cementing. Schlumberger Educational Services.

6. D. Guillot, H. Hendriks, F. Callet and B. Vidick (1990) Mud Removal. In: E. B.
Nelson (ed.) Well Cementing. Schlumberger Educational Services

7. C.F. Lockyear, D.F. Ryan and M.M. Gunningham (1989) Cement Channelling:
How to Predict and Prevent. Society of Petroleum Engineers paper number SPE
19865

8. S. Pelipenko & I.A. Frigaard (2004) Visco-plastic fluid displacements in near-
vertical narrow eccentric annuli: prediction of travelling wave solutions and
interfacial instability. J Fluid Mech, 520: 343-377

9. S.H. Bittleston, J. Ferguson and I.A. Frigaard (2002) Mud removal and ce-
ment placement during primary cementing of an oil well; laminar non-Newtonian
displacements in an eccentric annular Hele-Shaw cell. J Engng Math 43: 229-253

10. S. Pelipenko and I.A. Frigaard (2004) On steady state displacements in primary
cementing of an oil well. J Engng Math, 46(1): 1-26

11.  S. Pelipenko & I.A. Frigaard (2004) Two-dimensional computational simulation
of eccentric annular cementing displacements. IMA J Appl Math, 64(6): 557-583

stabvpfld.tex; 11/04/2008; 14:43; p.36



Kinematic instabilities in two-layer eccentric annular flows 37

12.  A. Tehrani, J. Ferguson and S.H. Bittleston (1992) Laminar Displacement in
Annuli: A Combined Experimental and Theoretical Study. Society of Petroleum
Engineers paper number SPE 24569

13.  A. Tehrani, S.H. Bittleston and P.J.G. Long (1993) Flow instabilities during
annular displacement of one non-Newtonian fluid by another. Experiments in
Fluids 14: 246-256

14. M.A. Moyers-Gonzélez (2006) Transient Effects in Oilfield Cementing flows.
Ph.D. dissertation, University of British Columbia

15. M.A. Moyers-Gonzalez, I.A. Frigaard, O. Scherzer & T.-P. Tsai (2007) Tran-
sient effects in oilfield cementing flows: qualitative behaviour. Euro J Appl Math.,
18: 477-512.

16. P.J. Schmid, D. S. Henningson (2001) Stability and Transition in Shear Flows.
Springer-Verlag, New York, Inc.

17. 1. A. Frigaard, S. D. Howison and I.J. Sobey (1994) On the stability of Poiseuille
flow of a Bingham Fluid. J. Fluid Mech., 263: 133-150.

stabvpfld.tex; 11/04/2008; 14:43; p.37



stabvpfld.tex; 11/04/2008; 14:43; p.38



