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Abstract: A minimal cardiac model has been developed that captures the major
dynamics of the cardio-vascular system (CVS). This model is extended to simulate
time varying disease state including reflex actions and an integral based identifica-
tion method is presented that enables linear and convex parameter identification.
Two common time varying disease states are identified to within 10% without
false identification. Also the valve law in this model is reformulated in terms of
Heaviside functions, and a unique closed form analytical solution is obtained for
the ventricular interaction equation. This enables rapid forward simulations of the
model. Clinically, the method ensures medical staff can rapidly obtain a patient
specific model and can simulate a large number of therapy combinations to find
the best treatment. Copyright © 2006 IFAC
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1. INTRODUCTION

Cardiovascular disease is difficult to diagnose and
treat due to limited measurements available in an
Intensive Care Unit (ICU). The particular disease
state does not generally show up with any indi-
vidual measurement but involves complex inter-
actions between a wide range of data including
the body’s natural reflex response which seeks to
restore circulatory equilibrium. Thus often diag-
nosis and the chosen treatment depends on the
experience and intuition of clinical staff.

A minimal cardiac model which captures all the
major dynamics and interactions observed in stan-

dard clinical measurements and can be tailored
to an individual patient, could therefore assist
medical staff in diagnosis and the prediction of
drug effects to optimize therapy. “Minimal” model
refers to a model that minimizes the number of pa-
rameters while still capturing the essential macro
dynamics of the CVS within the measurements
available.

There is a variety of CVS models in the liter-
ature that range from very complex finite ele-
ment models to more relatively simpler pressure
volume approaches. Although there are models
that describe the whole CVS, patient specific pa-
rameter optimization is either not considered or



restricted to small subsets of the whole parameter
set describing specific aspects of the CVS (e.g.
(Mukkamala and Cohen, 2001)). The approach
of this research is to develop a highly flexible
minimal model that can adapt to wide ranges of
patient dynamics seen in an ICU, including re-
sponses to potentially many different therapies. In
the ICU environment, catheters are often already
in place so a larger range of measurements are
available. Furthermore, as this paper shows, using
an integral based optimization enables virtually
all of the parameter set to be identified.

This research builds on a previously developed
minimal model which accurately simulates a va-
riety of CVS dysfunctions, (Smith et al., 2004).
However, the model does not lend itself to a con-
vex identification problem (Smith, 2004). Thus,
potentially false solutions could be found. Fur-
thermore, to implement common non-linear re-
gression identification methods (Carson and Co-
belli, 2001) requires many computationally expen-
sive model simulations (Smith, 2004). Hence, com-
putational intensity severely limits the number of
optimization iterations available to find a solution
in a clinically useful time period.

In this paper, an integral-based patient specific
identification method is presented which is an
extension of (Hann et al., 2005; Hann et al., 2004).
All measurements assumed are available in critical
care using Swan-Ganz catheters or ultra-sound.

Two common disease states, Pericardial Tampon-
ade and Cardiogenic shock are simulated from
onset. Each disease state is then identified in the
presence of 10% uniformly distributed noise to
prove the concept. The body’s reflex actions to
keep the pressure in the aorta stable are included.

Also a fast forward solver is critical as there re-
mains the task of trialling many different thera-
pies to find the best treatment. Two methods of
significantly speeding up the current model are
discussed.

2. METHODOLOGY
2.1 Cardiac Model

The full model consists of six elastic chambers as
shown in Figure 1. Each of the ventricles is treated
as a single elastic chamber. The differential equa-
tions for the single elastic chamber with inertia

and upstream and downstream pressures P; and
P;, are defined (Smith et al., 2004):

V=0Q1—Q (1)
S T
Qs = %;QQR? (3)

where Q1 and Q2 are the flows in and out, L
and Lo are inertances of the blood, R, and Ry are

resistances. The driving pressure in the chamber
is defined:

P2 = 6(t)Ees(V - Vd)
+ (L —e(®)Po(V 1) 1) (4)
e(t) = e~ 80(t=0.375) (5)

where E is elastance, Vj is the unstressed cham-
ber volume, e(t) is a driving function that simu-
lates ventricular contraction and Py, A, and Vj
define gradient, curvature and volume at zero
pressure of the EDPVR curve in the cardiac cycle
shown in Figure 2 (Smith et al., 2004).
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Fig. 1. The full six chamber cardio-vascular sys-
tem model
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Fig. 2. Pressure-volume diagram of the single
cardiac chamber model.
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Fig. 3. Model state at each part of the cardiac
cycle.

The original solution procedure (Smith et al.,
2004) for incorporating valve dynamics in the
chambers is to solve the Equations (1) and (2)
when Q17 > 0, during the filling stage, and to
solve Equations (1) and (3) when Q3 > 0, during
the ejection stage. This model has an open on
pressure, close on flow valve law as shown in
Figure 2 (Smith et al., 2004; Smith, 2004). Figure
3 shows the states used for each portion of the
cardiac cycle.



2.2 Reflex actions

The effect of heart disease and shock on the
CVS can be significantly altered by the body’s
natural reflex response that attempts to maintain
enough blood pressure and flow to sustain life. The
effect of reflex actions can thus often mask the

underlying problem and must be accounted for in
the CVS model.

Reflex actions included are divided into four
groups: vaso-constriction, venous constriction, in-
creased heart rate (HR) and increased ventricular
contractility (Burkhoff and Tyberg, 1993). Their
activation is assumed to be proportional to the
drop in the average pressure in the aorta (Pao).
The proportionality constants are estimated based
on clinically observed CVS hemodynamic re-
sponses reported in the literature (Braunwald,
1997).

Specifically, vaso-constriction is simulated in the
model based on increasing the systemic resistance
Rgys by 35% for a drop in average P,, from
100 mmHg to 80 mmHg. Similarly, venous con-
striction, HR and ventricular contractility are in-
creased based on increasing the venous dead space
Vi,ve, HR and the left and right ventricle free wall
contractilities Fes vt and Ees v by 67%, 80 to
120 beats per minute and 35% respectively for a
drop in average P,, to 80 mmHg. In the model
simulations, reflex actions are applied every heart
beat.

2.8 Integral parameter identification

The differential equations associated with the left
and right ventricles can be reformulated in terms
of integrals of the measured flows through the
chambers, see (Hann et al., 2004). Similarly the
differential equations of (Smith et al., 2004) de-
scribing volume changes in the aorta, pulmonary
artery, vena cava and pulmonary vein can be refor-
mulated in terms of integrals by choosing suitable
sampling periods.

The end result is that given the pressure wave-
forms through the aorta and pulmonary artery,
the flows into and out of the left and right ventri-
cles and their maximum and minimum volumes,
a system of linear equations can be defined:

AB=b (6)
ﬁ = [Q; Paoo, PpuOy PpaOa PVCO} (7)

& = [Lav, Lmt, Lic, Lpv, Eesivs Po.ive, Ees rvf,
PO,rvf7 Rava Rm‘m RtCa Rpw EVCa Epua Ea.Oa Epaa
Rgys; Rpull (8)

where A is an N x 22 matrix, N >> 22 is the

number of chosen integration periods over which
the parameters are constant, b is an N x 1 vector, «

are the patient specific parameters and the initial
conditions, Paoo, Ppuo, Ppao and Py are treated
as extra unknown variables. Equation (6) can
then be solved by linear least squares to uniquely
determine a.

2.4 Simulating Disease States

The disease states that are simulated are Pericar-
dial Tamponade and Cardiogenic Shock. Pericar-
dial tamponade is an excessive build up of fluid
in the pericardium limiting ventricular expansion.
It is simulated by reducing the pericardium dead-
space volume Vj ,cq by 20 ml every 10 heart beats
for a total of 50 heart beats.

Cardiogenic shock occurs when the heart is un-
able to pump a sufficient amount of blood to
provide oxygen to the tissues and myocardium
(Braunwald, 1997). Lack of oxygen supply to
the myocardium causes further depression of car-
diac function by decreasing ventricular contrac-
tilities and increasing diastolic elastance. Hence,
a patient beginning to suffer from left ventricu-
lar infarction due to a coronary artery becoming
blocked is simulated from an initial healthy state.
The left ventricle contractility is reduced in piece-
wise constant steps to 50% of normal and diastolic
elastance is increased in piecewise constant steps
to a factor of 2.5 due to ischemia.

2.5 Heaviside formulation and Ventricular
Interaction

For the full model described in (Smith et al., 2004)
there are two valves for each of the left and right
ventricles giving rise to a number of combinations
of open and closed positions of the valves to cap-
ture. This formulation can be coded with some
effort, but is computationally heavy, constantly
searching for sign changes in model states. An-
other significantly simpler formulation that does
not require an event solver is to automatically
account for the valve opening or closing using
Heaviside functions.

For the left ventricle the upstream pressure P;
is the pressure in the pulmonary vein (Ppy,) and
the downstream pressure P, is the pressure in
the aorta (P,,). The Heaviside formulation of
Equations (1)-(3) is defined as follows:

V= H(Q1)Q1 — H(Q2)Q> (9)
Q1 =H(H(P, — P,) + H(Q1) — 0.5)
(Pr — P, — RiQn)
Ly

H
H

(10)
Q2= H(H(P; — P3) + H(Q2) — 0.5)
(P> — P3s — R2Q)2)

Ly
(11)




where the Heaviside function H (K (t)) is defined:

H(K(t) =0, K(t)<0
=1, K(t)>0 (12)

Note that a more compact form for the Heaviside
function can be defined as follows:

H(K(t)) = % n % <tan1(K(t)) 4 tanl(Kl(t))>

(13)

By using a triangle with base K(t) and height 1
it is easily shown that Equation (13) and (12) are
precisely equivalent. Simulations have shown that
Equation (13) is a computationally more efficient
form than Equation (12).

During filling, Q2 = 0 and P, < P3 so the right
hand side of Equation (11) is zero and thus Qs
remains at zero and Equations (9)-(10) are solved.
The pressure P, will then increase but when P»
becomes greater than P;, the inlet valve does not
shut off (that is Q1 = 0) until Q; becomes 0 or
negative. This implementation of the close on flow
portion of the valve law occurs because

H(H(PL— P,) + H(Q1) —0.5) =1,

P, > Py, Ql >0
H(H(Py — P) + H(Q1) —0.5) =0,

P,>P, Q1 <0

Hence, this valve law captures the effect of inertia
for the inlet valve by closing on flow.

The explanation for the contraction, ejection and
relaxation periods is similar. This cycle is con-
tinued for as many heart beats as required. Thus,
the two flow differential equations and the volume
differential equation are solved simultaneously for
all time without needing the event solver to switch
models and sets of equations (Smith, 2004). All
that is required are initial conditions at the start,
with no implicit searches for sign changes as for
any input K(¢) in Equation (13) the output is
simply determined from the sum of two tan~!
evaluations. By avoiding switching models and
equations the small errors that occur with an
event solver will not build up over long simulations
and contaminate the results and model stability.

However a computationally simpler set of differ-
ential equations with fewer Heavisides, for a single
chamber can be defined as follows:

V=H(Q1)Q: — H(Q2)Q2 (14)
AP QiR

Q1 i7 (15)
1

QQZ—P2_P?’L_Q2R2 (16)
2

Equations (14)-(16) behave in a similar way to
Equations (9)-(11) except that when P, = P
which signals the start of the ejection stage, Q2
is not necessarily at 0 as it would be if Equations

(9)-(11) were solved. The analytical solution of
Equation (16) is given by:

Qa(t) = QQ(tl)e_(%)(t_tl)

L [" (B2 g
ty
(17)

where t; is the time where P, first equals Pj.
However, since inductances are approximately a
factor of 100 smaller than resistances of the valves
(Smith, 2004) there is a very small time constant
of the order of 0.01s so that the transient effect
of a non-zero will die away quickly. A similar
analytical construction can be done for @Q; to
show that )1 converges quickly onto the solution
of Equations (9)-(11) during the filling stage.
This process is applied to both the left and right
ventricles to form a Heaviside formulation of the
full model and continues for as many heart beats
as required. Note that in practice, this simpler
Heaviside formulation could be run for a number
of heart beats until the solution settles to a
steady state and then Equations (9)-(11) could be
simulated for one more heart beat to correct for
the error in this transient period at the beginning
stages of filling and ejection.

Ventricular interaction is an important dynamic
in obtaining accurate CVS dynamics (Smith et
al., 2004). The septum volume, Vip; is calculated
from numerically solving the equation (Smith,
2004; Smith et al., 2004):

e(t) Ees,spt (Vapt — Va,spt)

+ (1 = e(t)) Py spi (M0t (Vort =Voumt) _ 1)

= e(t) Ees, vt (Viv — Vispt)

+ (1 — e(t)) Poye (e (Vv =Vere) 1)
—e(t) Ees rvi(Viv + Vspt)

— (1 — e(t)) Py pys (e iVetVert) 1) (18)

at each time step in the numerical differen-
tial equation routine, where FEgsgpt, £o.spts Aspts
Va,spt, Vospt are fixed generic parameters (Smith,
2004; Smith et al., 2004).

Due to the high non-linearities in Equation (18)
this procedure is very computationally expensive.
As Equation (18) stands there is no closed form
analytical solution. However, at each time step
of the DE solver the V,,; value does not change
significantly (< 0.1 ml) from the previous value.
Thus, given the previous Vipy value, denoted
Vept,old, the exponential terms eoptVopt eArveVopt

and e~ Vst can be approximated by the Equa-
tions:

e)\spt‘/spt — aspt‘/spt =+ bspt (19)

e—/\lvaspt = alvf‘/spt + bive (20)

e)\rvaspt = arvf‘/spt + brvt (21)



where agpt, bspt are each a function of Vipt o1a and
can be derived from finding the equation of the
straight line joining the two points (zg,e?st%2)
to (1, e ®1), where 21 = Vipgola — AVipy and
22 = Vipt,old + AVispr and AV = 0.1ml. The pa-
rameters ayve, bive, Grvf, brye can be found similarly.

Substituting Equations (19)-(21) into Equation
(18), gives an equation which is linear in Vgpy and
thus a closed form analytical solution for Vi, can
be obtained.

3. RESULTS

A healthy human is simulated first, producing
the results shown in Table 1. These results are
consistent with an average human (Guyton and
Hall, 2001).

Table 1. Pressure and volume outputs
for a healthy human.

Volume in left ventricle
Volume in right ventricle

111.7/45.7 ml
112.2/46.1 ml

Cardiac output 5.3 L/min
Max P, 119.2 mmHg
Max Py 26.2 mmHg

Pressure in aorta
Pressure in pulmonary artery

116.6/79.1 mmHg
25.7/7.8 mmHg

Pericardial tamponade is then simulated produc-
ing a significant rise in the pressure in the pul-
monary vein to 7.9 mmHg, a reduction in cardiac
output to 4.1 L/min and a reduction in mean ar-
terial pressure to 88.0 mmHg. This result captures
the physiological trends (Braunwald, 1997).

Similarly Cardiogenic Shock produces trends in
agreement with known physiological response in-
cluding decreased mean arterial pressure, de-
creased cardiac output and elevated pulmonary
vein pressure. Trend magnitudes are also in good
agreement with limited clinical data.

The output pressures through the aorta and pul-
monary artery and the flows through the cham-
bers for all disease states are then discretized by
sampling every 0.005s and 10% random uniformly
distributed noise is added using a random number
generator in Matlab, analogous to measured data.
A uniform distribution is a conservative choice
where outliers are more likely to occur. Figure 4
shows the non-smooth pressure in the aorta for
Pericardial Tamponade for one heart beat after
random noise is added.

The integral method is then applied to identify
each disease state as it progresses from an initial
healthy state in the presence of 10% uniformly dis-
tributed noise. Note that one extra parameter, the
pericardium dead-space volume Vj cq, is included
in the optimization for all disease states. This
parameter is embedded non-linearly in the matrix

EQ E] 01 02 03 04 ED
time (5]

Fig. 4. The pressure through the aorta for one
heart beat after 10% random uniformly dis-
tributed noise is added.

A of Equation (6), so it is optimized by a depth
first search to minimize [|A(Vp pea)B — b||2. Each

evaluation of [|A(Vj pea)B — bl]2 involves solving

Equation (6) by linear least squares.

Table 2 shows the identification results for Peri-
cardial Tamponade. The particular disease state
values of Vj peq are all identified within 3% and
all other parameters are identified within a mean
error of 10%. Table 3 shows the results for Cardio-
genic Shock. The total mean over the two disease
states and values identified was 3.2%, ranging
from 0 — 10%. Note that when inertances are not
included the mean and standard deviation values
are significantly reduced. The reason for this last
result is that inertances can change quite signifi-
cantly (approximately 10 — 30%) without having
a major effect on dynamics. As they represent
the inertia of blood volumes, they are difficult to
measure and not well defined (Smith, 2004). The
total mean error in all parameters across the two
disease states including inertances was 7.3% and
without inertances was 4.1%.

Table 2. Pericardial tamponade (deter-
mining V pea).

Change True value Optimized Error
(to the nearest ml)  value (%)
First 180 176 2.22
Second 160 158 1.25
Third 140 138 1.43
Fourth 120 117 2.50
Fifth 100 100 0

Table 3. Cardiogenic Shock (determin-
ing [Ees,lvfa PO,lvf] ([mmHg m1717 mmHgD)

Change True values Optimized Error
values (%)

First [2.59, 0.16] [2.61, 0.15] [0.89, 5.49]

Second [2.30, 0.19] [2.30, 0.18] [0.34, 4.39]

Third [2.02, 0.23] [2.02,0.21]  [0.43, 8.03]

Fourth [1.73, 0.26] [1.70, 0.24]  [1.48, 9.85]

Fifth [1.44, 0.30] [1.43, 0.27] (0.47, 9.39]

The simpler Heaviside formulation + analytical
formula for Vi is now simulated for 19 heart
beats then the first Heaviside formulation is sim-
ulated for 1 heart beat. The outputs and CPU
time are compared with the original event solver
method of (Smith et al., 2004).



Table 4. Computational speeds.

Method CPU Speed increase
time (s) factor

Event solver 101.9

First Heaviside 36.8 2.8

Simpler Heaviside 18.8 5.4

Simpler Heaviside + 3.1 32.9

analytical Vipt formula

Table 4 shows that the computationally simpler
Heaviside formulation is approximately 5 times
faster than the previous event solver method of
(Smith et al., 2004) and 2 times faster than
the initial Heaviside formulation. Combining both
methods gives a 33 times speed increase over the
previous method, and a 6x improvement on the
simpler Heaviside formulation alone.

To test the accuracy of the new method four
disease states: mitral and aortic stenosis, pul-
monary embolism and septic shock are simulated
(Smith, 2004). The mean errors in all simulations
are no greater than 0.2% showing the method is
very accurate and that the improved computa-
tional approach does not impact model validity
or accuracy.

4. DISCUSSION AND CONCLUSIONS

The minimal cardiac model (Smith et al., 2004) is
extended to simulate two common heart diseases:
Pericardial tamponade and Cardiogenic Shock
from onset including the autonomic nervous sys-
tem. The model accurately captures the physio-
logical trends. An integral based parameter identi-
fication method is presented which identified each
disease as it developed with errors ranging from
0-10% in the presence of significant simulated
measurement noise. These results show that the
model can be rapidly identified using measure-
ments common in the ICU. Furthermore, a major
advantage of the integral method is that it allows
significant flexibility in adding further complexity
to the model, such as atrial dynamics without
significantly affecting computational time.

Future work will also look at the case of very
limited data when only discrete measurements are
available, for example the maximum pressure in
the aorta rather than the continuous waveform.
However the integral method can still be used, as
a previously simulated aorta waveform could be
scaled to have a peak the same as the measured
peak. The integral method could then be applied
to get a very fast approximate matching to the
data. Then after an iteration between forward
simulations and the integral method the model
could be matched to the data. Thus a fast forward
solver of the model is important to maintain real-
time clinical application in the case of very limited
discrete data.

Also a fast and accurate forward simulation is crit-
ical in the process of simulating a large number of
therapy combinations to find the best treatment.
The Heaviside formulation, and analytical formula
for Vi presented, significantly increase the for-
ward simulation speed so that many more simu-
lations can be readily performed, making clinical
application of the model more realistic.

Overall, the speed and accuracy of the integral
based identification method and the efficient for-
ward simulation method, demonstrates the poten-
tial of using this model in a clinical setting, to
assist medical staff in diagnosis and therapy in
clinically useful time (3-5 minutes) on a standard
desktop computer.
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