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ABSTRACT 

High Force-to-Volume (HF2V) lead extrusion dampers can be used to protect structures by 

dissipating seismic response energy. The lead within the dampers deforms plastically by flowing 

around a bulged shaft, dissipating significant energy. This study develops a generic finite element 

modelling approach for these dampers to accurately predict device forces to optimize device 

designs for implementation into structures. 

A 2D axisymmetric large-deformation finite element model with adaptive meshing is developed 

using ABAQUS. The model has a rigid shaft and deformable working material (lead). The total 

force output is the sum of the contact frictional forces and contact pressure forces acting between 

the moving shaft and the displaced lead in the devices. For validation, model results are compared 

to experimental data from 14 experimental devices of different sizes and force capacities. 

The model predicts the force capacities of devices and simulates the stress distribution, and device 

behaviour with good overall accuracy. Model force-displacement plots exhibits good prediction 

capacity corresponding to experimental results. The error in predicted force capacity for 10 of the 

14 modelled devices is less than 10%, with 3 further devices within 10%-20% errors and the one 

within 30% errors. Overall, a generic FEM modelling approach for highly nonlinear HF2V devices 

is developed, with very good performance compared to experimental data. This modelling approach 

enables improved optimization of device design for developing a specific design for buildings or 

bridges using these devices. 
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 INTRODUCTION 

It is important to protect structures using protective systems to reduce their seismic vulnerability. High 

Force-to-Volume Lead Extrusion Dampers (LED) are supplemental energy dissipation devices that enhance 

structural energy dissipation and reduce seismic structural response. The advantages of LEDs/HF2Vs have 

long been recognised and have been applied for improved damping systems (Latham et al., 2013; Rodgers, 

2009, 2012; Skinner et al., 1980). Prediction of lead extrusion damper forces, stress, and force distribution 

are essential for device design. Few analytical models have been proposed to estimate the lead extrusion 

damper force capacities (Parulekar et al., 2004; Rodgers et al., 2007; Rodgers et al., 2006; Tsai et al., 2002; 

Vishnupriya et al., 2018). 

Design based models that can precisely predict the HF2V force capacity are very limited (Vishnupriya et al., 

2018). Currently, devices are manufactured and tested for determining the precise exact force capacities 

before application. Thus, there is a need for a more detailed methodology to better estimate the device force 

capacity in the design phase. Finite element (FE) analysis is an effective method for studying the nonlinear 

mechanics of device operations and computing the resulting force capacities and has not been used before as 

a damper force prediction tool (Jin and Altintas, 2012; Li et al., 2004). 

1.1 HF2V lead extrusion damper 

The HF2V lead extrusion damper has the following parts: a cylinder; working material (lead) enclosed in the 

cylinder; a bulged shaft passing through the lead and endcaps to secure the lead within the cylinder. The 

HF2V device produces resistive forces when the device’s shaft moves through the solid lead working 

material under seismic excitation or other loading. The lead is deformed plastically by the shaft bulge and 

displaced through the annular orifice between the bulge and the cylinder wall. The displaced lead moves 

behind the bulge towards the cylinder walls and end caps, producing large contact stresses. The lead quickly 

recrystallizes and regains its original properties, resulting in consistent device behaviour across multiple 

response cycles without any strain hardening or loss of strength or stiffness (Paul, 1940; Robinson, 1976). 

The total resistive forces developed in the HF2V devices is as a result of extrusion of lead and friction 

between lead-shaft and lead-cylinder surfaces. 

1.2 Finite Element software 

There are numerous different FE software packages available for simulations and analyses (ABAQUS-Users-

Manual, 2013). However, ABAQUS is a popular FE tool for simulating complex contact problems, large 

deformation, nonlinear and dynamic problems like cutting and extrusion (Lei et al., 1999; Li et al., 2004; Nasr 

and Ammar, 2017). With accurate material properties and design dimensions of a device, it can be expected to 

realistically simulate the HF2V lead mechanics within a device, and thus estimate device resistive force 

capacity. A simple FEM model is developed which can be used as a reference design tool for predicting HF2V 

device force capacities. 

 METHODS 

2.1  FE Model  

A 2D axisymmetric model was created using ABAQUS/CAE as it is less computationally intensive than 3D 

models. (ABAQUS-Users-Manual, 2013). The modelling parameters of the FE model are as tabulated in 

Table 1 (Evans, 1970; Gondusky and Duffy, 1967; Lindholm, 1964; Loizou and Sims, 1953). Arbitrary 

Lagrangian–Eulerian (ALE) finite element method is used to simulate large deformation problems, allowing 

a moving mesh along with the moving part (Gadala and Wang, 2000; Zhao et al., 2012; Zhuang et al., 2008). 
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The motion of the mesh is only constrained at the boundaries and allowed to move under high strain within 

these fixed boundaries. The mesh is smoothed constantly to reduce element distortion without changing the 

number of elements and their connectivity (Donea et al., 1982). This re-meshing allows the simulation of 

lead flow within the cylinder and around the shaft, providing a visual guide to the evolution of stress 

distributions with changing strain/strain rates in the devices as the shaft moves and the dissipation forces are 

generated. 

 

Table 1: Device data used for modelling and analysis 

 

Module Model Parameter 

Parts - Analytical rigid shaft and wall and deformable lead 

Material properties of lead - Elastic properties: 

Young’s Modulus (E) = 16 GPa, Poisson’s Ratio (υ)= 0.44 and 

Density (ρ) = 11340 kg/m3 

- Plastic data: 

Plastic 

Strain 

Yield Stress 

(N/m2) 

0 689476 

0.01 5810000 

0.02 8963184 

0.04 12400000 

0.08 15100000 

0.12 17000000 

0.16 18000000 

0.2 19000000 

0.24 21000000 

0.28 22000000 

0.32 22750000 
 

Step - Dynamic Explicit  

- Step time = 1s 

Interaction - Kinematic friction  

Contact -  Tangential friction. Friction coefficient = 0.25 

Boundary Conditions - Fixed end conditions at lead ends and cylinder wall 

- Displacement on shaft along Y direction 

- Velocity of 0.5mm/s at RP-1* 

Meshing - Element type : CAX4R/CAX3 

- ALE meshing 

*RP-1 – Reference points as shown in Figure 1. 

An example device model geometry, showing the domain of the FE analysis and the associated boundary 

conditions is presented in Figure 1. The boundary conditions where the lead working material meets the 

device endcaps is considered as a fixed boundary. The steel cylinder wall that acts to confine the lead is 

modelled as a rigid boundary and a frictional interface is modelled between the lead and the cylinder wall. 
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Figure 1: 2D Model parts and boundary conditions  

2.2  HF2V device information 

14 devices of different sizes and force capacities are considered for FE modelling (Vishnupriya et al., 2018). 

The HF2V device dimensions are as given in Table 2, where Dcyl is cylinder diameter; Dshaft is shaft diameter; 

Dblg is bulge diameter and Lcyl is cylinder length. Fexp indicates the experimental peak force attained from 

experiments, representing the force plateau during yielding at quasi-static test velocities. The devices are 

numbered in accordance to previous research and categorized as small (device 3), typical (devices 5-15) and  

large (devices 16-18) (Vishnupriya et al., 2018).  

Table 2: Device data used for modelling and analysis 

Device Fexp (kN) Dcyl (mm) Dblg (mm) Dshaft (mm) Lcyl (mm) 

3 55 17 13 12 56 

5 160 89 40 30 110 

6 280 89 50 30 110 

7 360 89 58 30 110 

8 200 66 40 30 130 

9 346 66 50 30 130 

10 130 50 32 20 50 

11 150 50 32 20 70 

13 260 60 42 33 160 

14 155 50 35 24 100 

15 250 70 48 30 75 

16 145 54 35 30 160 

17 200 54 36 30 160 

18 260 190 45 140 27 
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2.3 Analysis 

The force output from the model is analysed for its accuracy in prediction of experimental device behaviour. 

The total force obtained from the sum of extrusion forces and friction forces from the FEM model are compared 

with the experimental forces. The model’s performance is initially assessed for its ability to replicate the lead 

flow in the HF2V devices with shaft displacement. Then, the developed model is validated against range of 

experimental results from devices with different designs, sizes, and different force and stroke capacities. The 

model will then be applied to investigate a wide range of device parameters, to enable further device 

optimisation and further delineate the force contributions of friction and extrusion to the overall resistive force 

produced by the device. 

This computational approach will enable broader analysis of design parameters such as bulge size, shaft surface 

area, cylinder diameter, bulge length etc. Such parametric design studies can be undertaken on a much broader 

range of devices without the time and cost involved with experimentally testing every configuration. 

 RESULTS 

The experimental forces are compared with the Finite element forces and corresponding errors as shown in 

Equation 1 are calculated and presented in Table 3. The experimental device force, the model device force, 

and the contributions from extrusion and friction are included in the table. 

𝐸𝑟𝑟𝑜𝑟 =
|𝐹𝑒𝑥𝑝− 𝐹𝑚𝑜𝑑𝑒𝑙|

𝐹𝑚𝑜𝑑𝑒𝑙
 × 100    %         (1) 

Table 3: Comparison of FE model forces to experimental forces 

Device Fexp (kN) Fmodel (kN) Fextrusion (kN) Ffriction (kN) Error (%) 

3 55 46 12 34 16 

5 160 160 54 106 0 

6 280 300 130 170 7 

7 390 400 135 265 3 

8 200 185 60 125 8 

9 346 335 145 190 3 

10 130 125 67 58 4 

11 150 152 78 74 1 

13 260 245 68 177 6 

14 155 155 45 110 0 

15 250 200 115 85 20 

16 170 175 27 148 3 

17 200 220 65 155 10 

18 260 190 45 140 27 

 

The results show that 11 out of 14 devices predict precisely with less than 10% errors, 2 devices within 20% 

percent errors and 1 atypical device with a large error of ~27%. The results indicate that the Finite Element 

modelling approach shows promise as a potential tool for predicting forces for typical devices with an error 
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range of 0%-20%. The errors could be mitigated by better Finite Element modelling techniques, meshing and 

computation methods. However, the errors can also be attributed to manufacturing variance and variability in 

experimental results (Rodgers et al., 2019). 

 CONCLUSION 

A novel Finite Element Modelling (FEM) technique is created for modelling and analysis of HF2V lead 

extrusion dampers. The FEM is generic and can be used for modelling all sizes and capacities of devices. 

The model predicts device force capacity with reasonable accuracy within a range of 0% - 20% for typical 

HF2V lead extrusion damper. Thus, the modelling approach presented shows promise as a reliable prediction 

methodology that can be a useful tool for the design of HF2V lead extrusion dampers. Ongoing research is 

investigating the influence of specific FE model assumptions and their influence on the predictive capability 

of the model. 
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