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Abstract 

Background 

The metabolism of critically ill patients evolves dynamically over time. Post critical insult, 
levels of counter-regulatory hormones are significantly elevated, but decrease rapidly over 
the first 12–48 hours in the intensive care unit (ICU). These hormones have a direct 
physiological impact on insulin sensitivity (SI). Understanding the variability of SI is 
important for safely managing glycaemic levels and understanding the evolution of patient 
condition. The objective of this study is to assess the evolution of SI over the first two days of 
ICU stay, and using this data, propose a separate stochastic model to reduce the impact of SI 
variability during glycaemic control using the STAR glycaemic control protocol. 



Methods 

The value of SI was identified hourly for each patient using a validated physiological model. 
Variability of SI was then calculated as the hour-to-hour percentage change in SI. SI was 
examined using 6 hour blocks of SI to display trends while mitigating the effects of noise. To 
reduce the impact of SI variability on achieving glycaemic control a new stochastic model for 
the most variable period, 0–18 hours, was generated. Virtual simulations were conducted 
using an existing glycaemic control protocol (STAR) to investigate the clinical impact of 
using this separate stochastic model during this period of increased metabolic variability. 

Results 

For the first 18 hours, over 80% of all SI values were less than 0.5× 10−3 L/mU.min , 
compared to 65% for >18 hours. Using the new stochastic model for the first 18 hours of ICU 
stay reduced the number of hypoglycaemic measurements during virtual trials. For time spent 
below 4.4, 4.0, and 3.0 mmol/L absolute reductions of 1.1%, 0.8% and 0.1% were achieved, 
respectively. No severe hypoglycaemic events (BG < 2.2 mmol/L) occurred for either case. 

Conclusions 

SI levels increase significantly, while variability decreases during the first 18 hours of a 
patients stay in ICU. Virtual trials, using a separate stochastic model for this period, 
demonstrated a reduction in variability and hypoglycaemia during the first 18 hours without 
adversely affecting the overall level of control. Thus, use of multiple models can reduce the 
impact of SI variability during model-based glycaemic control. 
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Introduction 

The metabolism of critically ill patients evolves dynamically over time [1-3]. Post critical 
insult, plasma concentrations of counter-regulatory hormones such as cortisol, glucagon, 
growth hormone, and the catecholamines are significantly elevated, but decrease rapidly over 
the first 12–48 hours in the intensive care unit (ICU) [2-5]. These hormones have a direct 
physiological impact on insulin sensitivity (SI)[3]. Therefore, SI is likely to be lowest during 
the first 12–48 hours in the ICU and increase over time [6-8]. Understanding the variability of 
SI, over hours and days, is important for safely and effectively managing glycaemic levels, as 
well as for understanding the evolution of patient condition. 

Bagshaw et al. [9] reported associations between mortality, hypoglycaemia, and variability 
during the first 24 hours of ICU stay. Several other studies [10-13] have also shown that 
glycaemic variability is independently associated with mortality in critically ill patients. 
Accurate predictions of SI and its variability would thus enable safer and more effective 
glycaemic control. 



The STAR (Stochastic TARgeted) glycaemic control protocol, has been used in Christchurch 
Hospital ICU since 2012 [14]. This protocol uses a physiological glucose-insulin system 
model coupled with stochastic models of SI variability [15,16] to determine the most 
appropriate insulin and nutrition treatment combinations. SI is an important consideration in 
clinical blood glucose (BG) control as it captures the overall glycaemic response of a body to 
exogenous insulin and nutrition inputs. This measure of glycaemic response to exogenous 
inputs is particularly important for STAR which aims to minimise the risk of hypoglycaemia 
by directly accounting for likely variability of SI. 

We propose that by using multiple stochastic models, specific to patient condition, 
performance of the STAR protocol could be enhanced by directly accounting for periods of 
increased SI variability. With only a small alteration to the controller, use of different 
stochastic models based on time or diagnosis could allow the existing STAR protocol to 
achieve more accurate control and/or reduce hypoglycaemia. The objective of this study is to 
assess the evolution of SI in both magnitude and variability over the first few days of ICU 
stay, and thus propose and test appropriate additional stochastic models to reduce the impact 
of SI variability on achieving glycaemic control within the STAR protocol. 

Subjects and methods 

Patients 

This study used data from 371 patients admitted to the Christchurch Hospital ICU between 
2005 and 2007 and treated with the SPRINT (Specialised Relative Insulin Nutrition Tables) 
glycaemic control protocol [17]. The variability study and the virtual trials were conducted on 
two different sub sets of patients from this cohort. Table 1 presents a summary of the cohort 
demographics. The Upper South Regional Ethics Committee, New Zealand granted approval 
for the audit, analysis and publication of this data. 

Table 1 Cohort and Sub-cohort summary statistics 
 All patients Patients that started 

SPRINT within 18 hrs of 
ICU admission (used to 

generate Stochastic Model) 

Patients that started SPRINT with 
in 12 hrs of ICU admission and 

continued for at least 24 hrs (used 
to test separate stochastic model) 

Number 371 287 164 
Age (years) 65 [49–74] 65 [55–74] 65 [56–74] 
Gender (M/F) 236/135 181/106 102/62 
APACHE II score 18 [15–24] 18 [14–24] 19 [16–25] 
APACHE II ROD (%)  26 [13–49] 26 [13–44] 32 [17–52] 
Operative/Non- operative 170/201 143/144 66/98 
Diabetic status (T1DM/T2DM) 14/49 13/44 10/22 
Hospital Mortality  16% 22% 25% 
ICU length of stay (hrs) 98 [41–251] 72 [26–184] 142 [70–308] 



Analysis of SI variability 

Patients 

The analysis of SI variability was performed on a sub-cohort of 164 patients from the 
SPRINT study [17]. These particular patients were included because SPRINT was 
commenced within 12 hours of ICU admission and continued for at least 24 hours, ensuring 
that enough data was available to accurately assess the change in SI during the first 24 hours 
of glycaemic control. 

Methods 

SI was identified hourly for each patient using the validated Intensive Control Insulin-
Nutrition-Glucose (ICING) model [18]. This is the same model used in the model-based 
STAR protocol [14]. Variability of SI was calculated as the hour-to-hour percentage change 
in SI (∆%SI): 
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The use of percentage change, rather than absolute change, normalises the metric so patients 
with differing SI levels can be compared fairly. 

Bagshaw et al. [9] reported an association between both hypoglycaemia and variability with 
mortality during the first 24 hours of ICU stay. Thus, the acute evolution of SI over the first 
day using 6-hour blocks was analysed. For the cohort analysis, SI and ∆%SI data from all 
patients was grouped into each appropriate time-block. Median values for each time-block 
were calculated for comparison to the previous block, thus capturing overall cohort changes 
over time in level and hour-to-hour variability. 

For the per-patient analysis, the median value of SI and the interquartile range (IQR) of ∆%SI 
were calculated for each patient, for each time-block. The IQR captures the width of degree 
of variability of a given patient within each 6-hour block. Thus, a reduction in the IQR of 
∆%SI over time would indicate a reduction in hour-to-hour variability for a given patient. 

Analyses were based on the time spent on the SPRINT protocol, rather than time spent in the 
ICU, to ensure sufficient insulin and nutrition data to accurately identify an hourly value of SI 
[19]. Therefore, day 1 comprises the first 24 hours of SPRINT. However, patients were only 
included in this sub-cohort if they commenced SPRINT within 12 hours of ICU admission. 
Thus, this data is representative of the first day of ICU stay. The median delay between 
admission and commencement of SPRINT for this cohort was 1.9 hours and 81% of the 
cohort (N = 134) had commenced SPRINT within 6 hours of admission, which is well within 
the reported 24 hour increased variability window [9]. 

SI levels and variability were compared using cumulative distribution functions (CDFs) and 
non-parametric statistics. All distributed data was compared using the Wilcoxon rank-sum 
test (Mann–Whitney U-test), except for SI variability results. SI variability was compared 
using the Kolmogorov-Smirnov test as it has greater power to detect differences in the shape 



of distributions when median values are similar. P-values < 0.05 were considered statistically 
significant. 

Virtual trial simulation and star protocol 

Patients 

For this virtual trial, and based on the results of the variability analysis, a new stochastic 
model based only on data collected during the first 18 hours of patient stay in the ICU was 
used. Thus, data from 287 patients who commenced SPRINT within 18 hour of ICU 
admission was used. Specifically, if a patient commenced SPRINT 13 hours after ICU 
admission, only data from the first 5 hours of glycaemic control would contribute to the 0–18 
hours stochastic model, and the remainder to the 18+ hours model. These 287 patients where 
then used in simulation to investigate the potential benefits of using two stochastic models. 

Methods 

The virtual trial simulation method used in this study is described in detail by Chase et al. 
[20]. This method involves using the SI profile of patients, identified from actual clinical 
data, as the underlying basis for virtual patients. During a virtual trial, a control algorithm is 
used to select an insulin and nutrition intervention, and the known SI profile is used to 
simulate the resulting BG profile and take a virtual BG measurement at the next intervention 
time. Prior work has validated this methodology [20], and this information can be used with 
the STAR controller to assess the benefits of using separate stochastic models. Cohort 
statistics such as percentage time in a target band and BG distributions achieved highlight the 
potential effects of changes to the control algorithm. 

The STAR protocol recommends insulin and nutrition interventions based on the predicted 
BG response over 1–3 hour intervals using a forecasted SI from the stochastic model, as 
shown in Figure 1 [14]. The STAR protocol targets a BG range by maximising the likelihood 
of achieving that range, given constraints such as acceptable risk of hypoglycaemia and 
limitations on insulin and nutrition delivery. If BG is stable, the STAR protocol allows 2 and 
3-hour BG measurement options. The STAR protocol is described in detail by Fisk et al. 
[14,21]. For this analysis, the in-silico STAR controller always selects the longest available 
measurement interval, to obtain the best balance between the level of control and expected 
nurse workload. 

Figure 1 Schematic of the stochastic model showing the percentiles (5th - 95th) for 
insulin sensitivity variation for the forthcoming 1–3 hours (n + 1). For a feed and insulin 
intervention an output BG distribution can be forecast using the physiological glucose – 
insulin model. 

Currently, the STAR protocol uses a single stochastic model for all patients, for the entire 
duration of control (the general model) [21]. Hence, this method has no temporal variability. 
Based on the results of the variability analysis presented in this study, a specific model was 
generated from data collected during the first 18 hours of patient stay in the ICU, and used 
only during this period. An 18+ hour model covers all subsequent time. During virtual trial 
simulation, if a virtual-patient commences control 13 hours after admission, only the first 5 
hours would be controlled using the 0–18 hour stochastic model. 



This study compares outcome glycaemia from virtual trials during the first 18 hours of ICU 
stay. The 18+ hour stochastic model is sufficiently similar to the general model that 
comparing results from virtual trials using these two models would show no appreciable 
difference. Further, by analysing and presenting only the data from the first 18 hours of 
patient stay (4398 hours for the cohort), changes to the outcome glycaemia are clear, as they 
are not overwhelmed by the much larger quantity of data post-18 hours (27792 hours for the 
cohort). 

Results 

Insulin sensitivity level and variability 

In addition to the actual insulin sensitivity, the SI parameter also captures any sensor noise 
and un- or under-modelled processes, such as variability in hepatic glucose output. Therefore, 
Insulin Sensitivity was examined using 6-hour blocks of SI to display trends while reducing 
any noise effects through averaging. SI increased over each 6-hour block during the first 24 
hours of data, while SI variability decreased over this period. The top half of Table 2 displays 
the percentage increase in median SI for both the overall cohort and per-patient analyses. It is 
clear from this table that the first 18 hours result in the largest increase in SI level. 

Table 2 The top half of the table displays the increasing cohort and per patient median 
insulin sensitivity over 6hr blocks and the second half of the table shows the reductions 
in the IQR and median per-patient hour to hour percentage insulin sensitivity over time  
SI level analysis Cohort analysis Per-patient analysis 

% increase at median p-value % increase at median p-value 

0-6 vs 6–12 hrs 42 < 0.0001 40 0.0007 
6-12 vs 12–18 hrs 28 <0.0001 26 0.0123 
12-18 vs 18–24 hrs 1 0.0335 3 0.4822 
18-24 vs 24–48 hrs 9 0.0428 7 0.2873 
Variability analysis % Change of IQR p-value % Change at median p-value 
0-6 vs 6–12 hrs −36 0.0092 −39 <0.0001 
6-12 vs 12–18 hrs −24 0.0806 −29 0.0794 
12-18 vs 18–24 hrs 1 0.0806 −9 0.1029 
18-24 vs 24–48 hrs −19 0.0998 −18 0.0467 
P-values calculated using Kolmogorov-Smirnov test for cohort comparisons and Wilcoxon 
rank-sum for per-patient comparisons 

The bottom half of Table 2 shows the reduction in SI variability over time. These values 
represent the percentage change to the IQR-width of ∆%SI and the shift at the median of per-
patient IQR-widths (see Figure 2), for the cohort and per-patient analyses, respectively. 
Again, the largest change is seen over the first 18 hours. Past 18 hours, both variability and 
magnitude of SI are similar to that seen on days 2, 3 and 4 (results not presented here) [8]. 

Figure 2 Cumulative distributions for Insulin sensitivity level and variability by cohort 
and per patient for the first 0 -18hours compared to the rest of a patients stay. (A) 
insulin sensitivity level by cohort (B) insulin sensitivity level per patient (C) hour-to-hour 
variability of insulin sensitivity by cohort (D) hour-to-hour variability of insulin sensitivity 
per patient. 



Figure 2 summarises the difference in SI and variability observed during the first 18 hours of 
patient data compared to the rest of their stay. For data collected during the first 18 hours of 
stay, more than 80% of all SI values were less than 0.5× 10−3 L/mU.min , compared to 65% 
for >18 hours. Both per patient panels (B and D) show the same trends as the whole-cohort 
results, with the 0–18 hour model exhibiting a higher SI level (80% < 0.4× 10−3 L/mU.min) 
and greater variability. As the first 18 hours produced the greatest increase in SI level and 
reduction in variability, this period was selected as the most likely to see benefit from using a 
separate stochastic model. 

Virtual trials 

Figure 3 compares the 0–18 hour stochastic model with the general model used in this 
analysis. The y-axis shows the distribution of expected SI values for hour n + 1 given the x-
axis value of SI at hour n. The lines on this plot represent the 5th, 25th, 50th, 75th and 95th 
percentiles. The 0–18 hour model has noticeably wider intervals between the 5th – 95th 
percentiles than the general model. This increased width is expected due to the increased 
hour-to-hour patient variability during the first 18 hours of patient stay and reflects the results 
presented in Figure 2a and d. Additionally, data points for the 0–18 hour model are 
concentrated at lower SI levels, also matching the previously reported results. 

Figure 3 Comparison of 0–18 hrs and general stochastic models where the lines 
represent the 5th, 25th, 50th, 75th and 95th percentiles from the x-axis upward. 

Figure 4 and Table 3 summarise the results of the virtual trials comparing use of a specific 0–
18 hour stochastic model with the general model. These results show a shift in the BG 
distribution at low BG levels (<7 mmol/L) when compared to the general model. This result 
fits with the wider percentile bands of the 0–18 hour model, and represents a small reduction 
in overall cohort glycaemic variability. Despite this shift, the median BG for the 0–18 hour 
model is only 0.2 mmol/L higher than the general model and is still well within the target 
band shown in Figure 4. The interquartile range of the per-patient median glycaemia is 
reduced using the 0–18 hour model, demonstrating the benefit of using this separate 
stochastic model during a known period of patient variability. 

Figure 4 Cumulative distribution of the BG results from the virtual tr ial simulations 
performed over the first 18 hours of ICU stay using a specific 0 -18 hr stochastic model 
and the general model, with the STAR protocol. 



Table 3 Virtual trial simulation BG results comparison for data within 18 hours of ICU 
admission 
Whole cohort control statistics STAR general model STAR 2 0 -18 hrs model 
Num Patients 287 287 
Total hours 5591 hours 5292 hours 
Num BG measurements 4232 4096 
Target BG band (mmol/L) 4.4 – 8.0 4.4 - 8.0 
BG median [IQR] (mmol/L) 6.3 [5.3 - 8.1] 6.5 [5.5 - 8.1] 
% BG within 4.0 - 6.1 mmol/L 45.9 42.9 
% BG within 4.4 - 7.0 mmol/L 55.4 54.7 
% BG within 4.4 - 8.0 mmol/L 68.7 69.0 
% BG within 8.0 - 10 mmol/L 15.7 16.1 
% BG > 10 mmol/L 10.2 10.5 
% BG < 4.4 mmol/L 5.5 4.4 
% BG < 4.0 mmol/L 3.0 2.2 
% BG < 3 mmol/L 0.3 0.2 
Num patients < 2.2 mmol/L 0 0 

Importantly, the 0–18 hour stochastic model reduces the number of hypoglycaemic 
measurements. For time spent below 4.4, 4.0 and 3.0 mmol/L absolute reductions of 1.1%, 
0.8% and 0.1% were achieved, respectively (relative reductions of 20-33%). These values 
represent clinically significant changes (p = 0.008, p = 0.0098 and p = 0.35, Two-Tailed 
Fishers Exact Test, respectively), particularly given the association of hypoglycaemia with 
negative patient outcome [11]. No severe hypoglycaemic events (BG < 2.2 mmol/L) occurred 
for either case. 

Discussion 

The use of a time-specific 0–18 hour stochastic model reduces hypoglycaemia and glycaemic 
variability over the first 18 hours of patient admission. This reduction in hypoglycaemia is 
due to the wider percentile bands of the 0–18 hour stochastic model, as seen in Figure 3. The 
STAR protocol constrains the 5th percentile BG prediction to a lower limit, and thus increased 
width of the percentile bands causes a shift in the BG distribution to higher levels. 

Approximately 300–400 patients a year receive glycaemic control from the STAR protocol in 
Christchurch hospital Intensive Care Unit. These patients are typically treated by the STAR 
protocol for approximately 5 days, resulting in 24000 BG measurements per year. Hence, a 
reduction of BG < 4.4 mmol/L by 1.1% could decrease the number of mild-hypoglycaemic 
events by up to 260 each year. 

Additionally, the BG interquartile range was reduced by applying the 0–18 hour model. This 
result indicates a small reduction on overall cohort glycaemic variability and may be due to 
less ‘over control’ by STAR for variable patients. Hence, these virtual trials indicate that the 
impact of SI variability can be reduced by using more than one stochastic model. This 
reduced variability is potentially beneficial as glycaemic variability has been shown to be 
independently associated with mortality in critically ill patients [10-13]. Therefore, not only 
does the additional stochastic model improve control performance by reducing the occurrence 



of hypoglycaemia, it also has the potential to improve patient outcomes by reducing 
variability. 

It has been proposed that a number of factors, including cardiovascular surgery and 
glucocorticoid therapy, are associated with increased SI variability. Thus it would be ideal to 
be able to create separate stochastic models for each of these different cases, and potentially 
separate models for different time frames with in the first 24 hours of ICU stay. However, 
currently we do not have enough available data to create specific stochastic models for all 
proposed cases, while ensuring the data used in each is independent of the others. 
Nevertheless, this study has validated the concept of using additional stochastic models to 
achieve more accurate glycaemic control with reduced hypoglycaemia. 

Conclusions 

Insulin sensitivity levels increase significantly, while variability decreases over the first few 
days of patient stay in the ICU. This study determined that the largest changes in SI level and 
variability occur during the first 18 post ICU admission, and thus, a separate stochastic model 
of SI behaviour for this period is warranted for use with model-based controllers to better 
manage this evolution. 

Virtual trials using a separate stochastic model for the first 18 hours of stay demonstrated a 
reduction in both glycaemic variability and hypoglycaemia during this period without 
adversely affecting the overall level of control. Thus, use of multiple models can reduce the 
impact of SI variability during model-based glycaemic control. As more data becomes 
available this same method could be used to analyse and generate stochastic models specific 
to various diagnostic categories, drug therapies or other situations that are thought to increase 
metabolic variability. 

Key message 

The impact of Insulin Sensitivity variability on glycaemic outcomes can be reduced by using 
separate stochastic models. 

Abbreviations 
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