
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Exploring two strategies for teaching procedures

Antonija Mitrovic, Moffat Mathews and Jay Holland

Intelligent Computer Tutoring Group, University of Canterbury, Christchurch, New Zealand
{tanja.mitrovic, moffat.mathews, jay.holland}@canterbury.ac.nz

Abstract. Due to high cost and complexity of Intelligent Tutoring Systems 
(ITS), current systems typically implement a single teaching strategy, and com-
parative evaluations of alternative strategies are rare. We explore two compet-
ing strategies for teaching database normalization. Each data normalization 
problem consists of a number of tasks, some of which are optional. The first 
strategy enforces the procedural nature of the data normalization by providing 
an interface that requires the student to complete the current task (i.e. a part of 
the problem) before attempting the next one. The alternative strategy provides 
more freedom to the student, allowing him/her to select the task to work on. We 
performed an evaluation study which showed that the former, more restrictive 
strategy results in better problem-solving skills. 

Keywords: teaching strategies, procedural tasks, evaluation

1 Introduction

Ideally, ITSs should support multiple teaching strategies and adapt them for each 
student. Current ITSs typically implement a single teaching strategy, due to high de-
velopment costs. Different teaching strategies might require a lot of development 
work; for example, the system’s interface might need to be changed to support a dif-
ferent style of interaction. There are also difficulties in the evaluation of ITSs. For 
those reasons, evaluating competing teaching strategies for the same domain is rare. 

Many factors influence ITS design, such as the limited capacity of working mem-
ory [1], the cognitive load [2] and the nature of the task. Instructional tasks can be 
arranged on a spectrum from strictly procedural (sequential), in which the student 
needs to learn a well-defined algorithm, to non-procedural, in which students are free 
to start from any part of the problem or apply actions in any order [3]. The solution 
search space for sequential tasks is much smaller than that of non-sequential tasks [4], 
as the student only has to concentrate on the solution space for a part of the task rather 
than the whole task. An example non-procedural task is software design: the student 
does not have to start at a particular point and there is no sequence they must follow; 
the solution search space is much higher as they keep track of what they have done, 
the consequences of what they have done, and what is left to do.

So, how should one teach procedures to novices? In this paper, we explore whether 
there is a difference between forcing students to adhere to the sequence of actions or 
leaving them to answer problems steps in any order they wish. Our hypothesis is that 



students taught via the non-sequential method would be less efficient and solve fewer
tasks, while students in the sequential method group would tackle more problems, and 
also more complex ones, have a higher rate of success, and be more efficient. 

We discuss data normalization in the following section. Section 3 then presents 
two versions of NORMIT, implementing the sequential and a less-restrictive strategy. 
We present the study and its results in Section 4, and end with conclusions.

2 Data normalization

Data normalization is the technique of refining an existing relational database schema 
in order to ensure that all relations are of high quality [5]. Normalization is usually 
taught via a series of lectures that introduce the relevant concepts followed by paper-
based exercises. Students find data normalization very difficult [6, 7], as it is very 
theoretical and requires a good understanding of the relational data model, various 
types of keys (primary, candidate, foreign keys and superkeys), Functional Depen-
dencies (FD), normal forms and normalization algorithms.

Data normalization is a procedural technique: the student goes through a number of 
tasks to analyze the quality of a database. Each problem consists of a relation schema
and a set of FDs (which does not have to be complete). For example, the student 
might be given a relation R(A, B, C, D, E) (typically the semantics of the attributes id 
not given) and the set of FDs: {A → B, AB → C, D → AC, D → E}.

The normalization procedure as implemented in NORMIT consists of eleven tasks
described below. Please note that we refer to elements of the procedure as tasks rather 
than steps, as each of them contains a number of actions the student has to perform, 
including in some cases relatively complex algorithms. Therefore we refer to them as 
tasks to make it clear that the tasks are relatively complex compared to what is gener-
ally assumed by a step in the ITS research. The first eight tasks are necessary to de-
termine the highest normal form the relation is in. If the relation is not in Boyce-Codd 
Normal Form (BCNF), the student needs to apply the relational synthesis algorithm to 
derive an improved database schema via tasks 9-11.
1. Identify the candidate keys for the given table. There may be one or more keys in

a table; e.g. the only key in the above problem is D.
2. Find the closure of a given set of attributes. In the above example, to make sure 

that D is the key of relation R, we could determine that its closure consists of all 
attributes of relation R. 

3. Identify prime attributes. Prime attributes are those attributes that belong to any 
candidate keys. In the above problem, D is the only prime attribute.

4. Simplify FDs by applying the decomposition rule, if necessary. In this task, a FD
with more than one attribute on the right-hand side (RHS) is replaced with as 
many FDs as there are attributes on RHS. In the above problem, D → AC would 
be replaced with two FDs: D → A and D → C.

5. Determine the normal forms for the given relation.
6. If the student specified that the relation is not in 2NF, he/she needs to identify FDs 

that violate that form (i.e. partial FDs).



7. If the student specified that the relation is not in 3NF, he/she needs to identify FDs 
that violate that form (i.e. transitive FDs).

8. If the student specified that the relation is not in BCNF, he/she will be asked to 
identify FDs that violate that form.

9. For relations that are not in BCNF, reduce LHS of FDs. This task checks whether 
some of the attributes on the LHS can be dropped while still having a valid FD.

10. Find minimal cover (i.e. the minimal set of FDs).
11. Decompose the table by using the minimal cover.

3 Two versions of NORMIT

NORMIT [8, 9] teaches data normalization in a task-by-task manner, showing only 
one task at a time which the student needs to complete before moving on to the next 
task. The student can submit a solution at any time, which the system then analyses 
and presents feedback. At any point during the session, the student may change the 
problem, review the history of the session, examine the student model or ask for help 
on the current task. The system currently contains 50 problems and new problems can 
be added easily. NORMIT is a constraint-based tutor, and its knowledge base is 
represented as a set of 82 (problem-independent) constraints. Each constraint is rele-
vant for a particular task of the procedure. Some constraints are purely syntactic, 
while others compare the student’s solution to the ideal solution (generated by the 
problem solver). The short-term student model consists of a list of violated/satisfied 
constraints for the current attempt, while the long term model records the history of 
usage for each constraint. Please see [8] for information about NORMIT.

The original version of NORMIT enforces the procedural nature of the data norma-
lization by forcing the student to complete the current task before being able to move 
on to the next task. An alternative strategy would allow the student to work on any 
task of the procedure in any order. To implement that strategy, we developed a less 
restrictive interface which shows all the tasks on a single page, thus allowing the stu-
dent to approach the problem in different ways. In order to work on a particular task, 
the student clicks the Edit button which expands the page by adding specific elements 
for that task. The functionality provided by the modified interface is essentially the 
same as in the original tutor, but the interaction is slightly different. We also had to 
modify the system’s knowledge base to support this new style of interaction. In the 
original version of NORMIT, constraints are task-specific: the very first test in each 
constraint specifies the task the constraint is relevant for. In the new version, the stu-
dent is free to select the task, and therefore the constraints cannot be restricted to spe-
cific task. There are 75 constraints in the non-procedural version of NORMIT.

4 Evaluation Study

We performed an evaluation study with the students enrolled in an introductory data-
base course at the University of Canterbury. Our hypothesis was that procedural ver-
sion of the tutor would result in higher learning in terms of problem-solving skills and 



conceptual knowledge. Prior to the experiment, the students had four lectures on nor-
malization. The study was conducted at the scheduled lab times on October 5th or 6th, 
2011(the students were divided into two streams). The session length was 100 mi-
nutes. The students in the control group used the original, procedural version of the 
system, while the experimental group used the new, non-procedural version. The 
participation was voluntary, and 33 students participated in the study. All students 
enrolled in the course were free to use the system after the study if they so wished.

The students were randomly assigned to one of the two conditions, and were given 
an online pre-test, with four multi-choice questions. The initial two question required 
students to identify the correct primary key and the highest normal form for a given 
table. For the remaining two questions students needed to identify the correct defini-
tion of a given concept. A similar test was used as the post-test at the end of the ses-
sions. Both tests were short on purpose as the session was of limited length. The con-
sequence of short pre/post tests, however, is the limited coverage of the domain.

Table 1. Statistics from the study (standard deviations given in parentheses)

Group Experimental (14) Control (14) Significant?
Pre-test mean (SD) 1.9 (1.3) 2.3 (1.3) no
Post-test mean (SD) 3.3 (1) 3.5 (0.8) no
Gain 1.5 (1) 1.2 (1.5) no
Normalized gain 0.7 (0.4) 0.6 (0.5) no
Improvement pre-to-post t=5, t<0.01 t=2.9, p<0.01
Time 68 (27) 74 (15) no
Attempted problems 4.7 (2.2) 8.3 (3.3) p<0.05
Solved problems 3.7 (2.4) 6.6 (3.7) p<0.05
Attempts 33 (24) 101 (56) p<0.01
Known at start 35 (15) 37 (17) no
Learnt constraints 6.9 (5.9) 5.4 (3.7) no
Used constraints 53 (18) 63 (20) p=0.09
Problem complexity 2.3 (1.3) 4.4 (2.5) p<0.01

We excluded data about students who interacted with the system for less than 10 
minutes and/or have made no attempts at problems, which resulted in 14 students in 
each group (Table 1). There was no difference between the two groups on the pre-test 
and post-test performance, as well as on the gains, normalized gains and interaction 
time. Both groups improved significantly during the session (determined by compar-
ing their pre/post test results by a matched t-test). 

We then analyzed the learning behavior by examining the student logs. The control 
group students attempted and solved significantly more problems and made signifi-
cantly more attempts than their peers. The latter is easy to explain: the control condi-
tion had to go through each task in order to solve problems, while the experimental 
condition participants could only work on a subset of tasks.

Another measure of learning is the number of constraints that were learnt during 
the session. To see whether a constraint is known at the start, we require that the stu-
dent has applied it correctly on at least 4 out of 5 initial attempts at that constraint. As 



reported in Table 1, there was neither significant difference on the number of con-
straints known at start, nor on the number of learnt constraints. 

The control group participants attempted and solved approximately twice as many 
problems as their peers. At the first look, it seems contradictory that they acquired the 
same number of constraints and achieved similar results at the post-test as the experi-
mental group. We therefore looked deeper into the logs. We identified all constraints 
relevant for attempts and report them in the Used constraints row of Table 1. There 
was a marginal difference in favour of the control group. Therefore, the control group 
students used more constraints to solve problems that the experimental group. A dee-
per look at the problems solved provides another interesting observation. The average 
complexity of problems solved by the experimental group is just over 2, while the 
control group solved problems of significantly higher complexities (the last row of 
Table 1). Given that there was no difference in background knowledge of the two 
groups, we can conclude that the significant difference in the problem-solving ac-
complishments comes from the difference in the interfaces. The procedural version of 
the tutor provided more guidance which in turn enabled the students to solve more 
problems, and also more complex problems, in the same amount of time. 

Fig. 1. Learning curves for the two groups

Figure 1 shows the learning curves for the two conditions (i.e. the proportion of vi-
olated constraints following the nth occasion when a constraint was relevant, averaged 
across all students and all constraints). The R2 fit to the exponential curve is good for 
the control, but is quite poor for the experimental group. The learning rate of the con-
trol group is also slightly higher. A closer inspection of the constraints learnt shows 
that the control group learnt more complex constraints, which is the consequence of 
higher average complexity of problems they attempted and solved.

5 Conclusions

There are many possible approaches to teach the same instructional domain. Due to 
high complexity of ITSs and high development costs, ITS developers usually imple-



ment only one teaching strategy. In this paper, we present two teaching strategies for 
data normalization, which differ in the amount of control students have in selecting 
which part of the problem to work on. The first strategy requires the student to follow 
the procedure closely, working on one task at a time and completing it before attempt-
ing subsequent tasks, while the other gives full control to the student. Our hypothesis 
was that the former strategy would result in better learning.

Our study shows that both strategies resulted in significant improvement from pre-
to post-test. There was no significant difference between the two groups on the post-
test; however, the post-test was short and its questions are of different nature com-
pared to the problems in the ITS. We also looked at how many new knowledge ele-
ments (i.e. constraints) students learnt during the study. Although there was no signif-
icant difference in the amount of newly acquired knowledge, there was difference in 
the kinds of constraints learnt. The procedural version resulted in significantly higher 
number of problems attempted and solved in comparison to the non-procedural strate-
gy. The average complexity of problems solved is also significantly higher in the case 
of procedural strategy. Therefore, closer adherence to the procedural nature of data 
normalization did result in higher problem-solving success.

Our study was of short duration and small in terms of the participants. We plan to 
to perform a bigger study in 2012 with NORMIT and also to conduct similar studies 
in other instructional domains.

References

1. Miller, G.A. The Magical Number Seven, Plus or Minus Two. The Psyhological Review, 
63, 81-97, 1956.

2. Sweller, J. Cognitive Load Theory, Learning Difficulty, and Instructional Design, 
Learning and Instruction, 4, 295-312, 1994.

3. Mitrovic, A., Weerasinghe, A. Revisiting the Ill-Definedness and Consequences for ITSs. 
Dimitrova, V., Mizoguchi, R., du Boulay, B., Graesser, A (eds) Proc 14th Int Conf AIED 
pp. 375-382, 2009.

4. McCallum, A. K. Learning to Use Selective Attention and Short-Term Memory in 
Sequential Tasks. Proc. 4th Int. Conf. Simulation of Adaptive Behavior, 315-324, 1996.

5. Elmasri, R., Navathe, S. B. Fundamentals of database systems. Addison-Wesley, 2010. 
6. Kung, H.-J., Tung, H-L., An alternative approach to teaching database normalization: A 

simple algorithm and an interactive e-Learning tool, Journal of Information Systems Edu-
cation, 17(30), 315-325, 2006.

7. Phillip, G. C. Teaching database modeling and design: areas of confusion and helpful
hints, Journal of Information Technology Education, 6, 481-497, 2007.

8. Mitrovic, A. The Effect of Explaining on Learning: a Case Study with a Data 
Normalization Tutor. In: C-K Looi, G. McCalla, B. Bredeweg, J. Breuker (eds) Proc. 
Artificial Intelligence in Education, IOS Press, pp. 499-506, 2005.

9. Mitrovic, A. Fifteen years of Constraint-Based Tutors: What we have achieved and where 
we are going. User Modeling and User-Adapted Interaction, 22 (in print) 
http://dx.doi.org/10.1007/s11257-011-9105-9


