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Abstract 
Gap creation is what drives succession in natural forests. This research explored the effect of 

artificial canopy gaps in a mature single-aged Pinus radiata forest on understorey native 

regeneration, and what potential role artificial canopy gaps could have in transitioning a pine 

forest to a native forest. Species and abundance by cover class was recorded at 22 plots 

beneath a 22-year-old P. radiata forest, in the Marlborough Sounds. The plots included three 

treatments comprising (1) a closed canopy control, (2) a small gap with trees within a 2.3 m 

radius felled, and (3) a large gap with trees within a 5.6 m radius felled. The gaps were 

established in 2014, allowing six years for species to regenerate before they were measured. 

The effect of treatment and gap ratio on native species importance value was found to be 

highly significant (p<0.01). Whereas only the effect of gap ratio, and not treatment, was 

found to be significant on native species richness (p<0.05). Native species importance value 

was found to be significantly different between the small gap and the control, and the large 

gap and the control. However, there was no significant difference between the small and large 

gap treatments. The composition of understorey species was also found to be significantly 

different between treatments (p<0.05). 

The growth and abundance of regenerating understorey species was strongly influenced by 

the creation of canopy gaps. Gap creation also caused an increase in species richness; 

however, this effect was not as strong as the effect on growth and abundance. The presence of 

gaps was found to be more important than the size of the individual gap as there were only 

minor differences in understorey regeneration between small and large canopy gaps. This 

suggests that artificial canopy gap creation can be used to facilitate native regeneration 

beneath a mature pine canopy. 

There was a distinct lack of later successional species in the forest understorey. This is likely 

due to both a lack of nearby mature forest to act as a seed source and effective seed dispersal 

mechanisms. Enrichment planting is likely to be necessary in many restorations to bring later 

successional species into ecosystems from which they have been lost. Herbivore exclusion 

and control of other mammalian pests is also likely to be necessary to allow for species to 

regenerate freely in the understorey without browsing pressure. Artificial canopy gap creation 

in single-aged plantation monocultures creates light environments and structural 

heterogeneity which can accelerate succession to a natural indigenous forest. However, long-

term management and monitoring will be essential for successful ecosystem restoration.  
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1. Introduction 
 

1.1 Background 
The New Zealand forestry industry relies on the harvesting of timber from large areas of 

planted single-age exotic monocultures. Pinus radiata is the dominant species planted, 

contributing 90% of the 1,725,400 hectares of net stocked area of production forest. The 

forestry industry is the third largest export earner in New Zealand and contributes 

approximately $3.55 billion to New Zealand’s GDP annually (FOA, 2019). However, 

plantation forests provide much more than just revenue from logs. They provide a 

multitude of ecosystems services such as erosion mitigation, reduced long-term 

sedimentation, carbon sequestration, and enhanced biodiversity when compared to 

pastural land uses (Maclaren, 1996). They also present unique opportunities for the 

regeneration of native forests and the restoration of ecosystems (Forbes et al., 2020; 

Norton & Forbes, 2013). 

Monoculture production forests are often viewed as ‘biological deserts’, however, the 

reality is significantly different (Brockerhoff et al., 2008; Norton, 1998; Norton & 

Forbes, 2013; Pawson et al., 2008). Plantation forests form habitats for native biota, 

enhance landscape diversity, and improve connectivity between native remnants in the 

landscape matrix (Norton 1998; Norton & Forbes, 2013; Pawson et al., 2010). They have 

also been proven to be host to a wide range of indigenous understorey plants across many 

parts of New Zealand (Allen et al., 1995; Brockerhoff et al., 2003; Forbes et al., 2019; 

Ogden et al., 1997;). This suggests that plantation forests could be used as a nurse crop 

for regenerating indigenous forest plant species. 

Recently, the Climate Change Response (Emissions Trading Reform) Amendment Act 

2020 has increased the carbon price cap on a New Zealand Unit (NZU) traded under the 

Emissions Trading Scheme (ETS) from $25 to $35/NZU, which will then be further 

increased to a cap of $50/NZU in 2021 (Ministry for the Environment, 2020). A 

substantial increase in carbon price will have significant implications on the profitability 

of permanent forests and make their establishment a more economically viable 

alternative to the traditional rotational harvesting model. Landowners may desire to plant 

P. radiata plantations and reap the financial returns from the NZUs acquired through the 

ETS by the fast-growing trees. They may then wish to gradually convert this to an 

indigenous forest which would provide many ecosystem services as well as acting as a 
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permanent carbon sink and removing the liability of the reduction in carbon stock which 

will eventually occur as the pine trees senesce (Woollons & Manley, 2012).  

Due to the geology of New Zealand, a large amount of the land is highly susceptible to 

erosion. Forests have historically been established on this erodible land to protect the soil 

by offering root reinforcement and regulating the volume and rate of water reaching the 

surface. However, when these forests reach maturity and are harvested there is a window 

of vulnerability where the soil is exposed again, and the risk of erosion increases 

dramatically (Maclaren, 1996). Poor environmental outcomes are often realised during 

this vulnerable period and there are increasing calls for highly erodible land to be retired 

from production forestry. The establishment of permanent pine forests is well-suited to 

such situations. The potential to then transition exotic pine forests to a natural indigenous 

forest provides an exciting opportunity to both enrich the landscape and provide a range 

of benefits to landowners. 

1.2 Purpose of research 
There is increasing interest in the potential of converting P. radiata plantations to native 

forest for both economic and environmental reasons. Permanent pine forests offer long-

term erosion control, revenue from carbon sequestration, and increased biodiversity at 

both the forest and landscape level. There is a wide range of research on the diversity of 

species which are found in these exotic pine plantations, but very little into how to 

improve this diversity and effectively enhance the transition to native forests.  

The use of artificial canopy gaps is widely regarded as a key tool in facilitating the 

regeneration of later successional, more shade tolerant tree species (Baret et al., 2008; 

Coates & Burton, 1997; Forbes et al., 2016, 2020;  Rouvinen & Kouki, 2011; Tulod et 

al., 2018; Zhu et al., 2003). The fast growth and rapid canopy closure which can be 

achieved by P. radiata in New Zealand suggests that it could be a suitable nurse crop in 

facilitating and possibly accelerating ecosystem restoration (Forbes et al., 2019). The use 

of P. radiata as a nurse crop combined with the creation of artifical canopy gaps and the 

possiblity of enrichment planting presents an exciting prospect for the restoration of New 

Zealand’s unique indigenous forest ecosystems. 

This research aims to provide further insight into the effect of artifical canopy gap 

creation in mature P. radiata forest on indigneous understorey species. Data on species 

richness, abundance and structural importance was gathered across plots with a variety of 
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gap treatments. Statistical analyses were undertaken to determine differences in the 

response variables between treatments. The outcomes of this research will help to fill 

knowledge gaps in the current development of strategies to transistion exotic pine forest 

to indigenous forest in New Zealand. This research should aid in helping landowners 

and/or forest managers to make informed decisions on managing the transisition of 

permanent exotic forest to an indigenous forest. 

1.3 Research Questions 
The purpose of this research is to gain a further understanding of the factors affecting the 

regeneration of indigenous species under a canopy of single-aged mature P. radiata 

forest. To do so, the research will be directed by the following questions: 

• What effect do artificial canopy gaps have on native regeneration? 

• Which treatment results in the most prolific regeneration? 

• What guidance can be given to those wanting to use P. radiata forests to facilitate 

native regeneration? 

 

Figure 1: Regenerating native species in a canopy gap in the understorey of the Kakapo Bay 

forest, Port Underwood, Marlborough Sounds 
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2. Literature Review 
 

2.1 Plantation forest biodiversity 

Plantation forests are usually intensively managed for timber products. The management 

strategies often involve the use of genetically improved seedlings, herbicides, fertilizers, 

thinning, pruning and eventual clear-felling after a relatively short rotation (Brockerhoff 

et al., 2003). The typical single-aged monoculture production forest is not generally 

synonymous with high biodiversity (Norton 1998; Brockerhoff et al., 2008; Pawson et al., 

2008, 2010). Despite the increasing importance of environmental stewardship and 

conservation among forest managers, many stakeholders are still highly critical of 

plantation forests (Brockerhoff et al., 2008). Literature concerning plantation biodiversity 

is continually expanding. Increasingly, these forests are being found to have an important 

role in enhancing biodiversity and habitat at both the forest and landscape level (Norton 

1998; Brockerhoff et al., 2003, 2008; Norton & Forbes, 2013; Pawson et al., 2008, 2010). 

Timber supply from plantation forests is a substitution for harvesting indigenous forests 

and cannot be overlooked in a biodiversity context. Harvesting of plantations instead of 

natural forests is a key factor in the retention of the complex and diverse ecosystems that 

indigenous forests form (Pawson et al., 2010). 

2.1.1 Plant and animal diversity 

Research conducted in several countries has found that plantation forests do offer habitat 

to plants, animals, and fungi; including populations of rare and/or threatened species 

(Norton 1998; Brockerhoff et al., 2008; Pawson et al., 2008, 2010). However, natural 

indigenous forests are likely to support superior biodiversity due to greater habitat 

diversity and higher habitat complexity (Brockerhoff et al., 2008). Research in south-

western Nigeria compared a natural forest, a degraded forest, and a plantation forest of 

Gmelina arborea (Onyekwelu & Olabiwonnu, 2016). It was found that, while the 

overstorey of the natural and degraded forests had a much greater species richness, the 

understorey of all three forest types had a species richness which was statistically 

comparable (Onyekwelu & Olabiwonnu, 2016). In a study on the populations of birds and 

small mammals occurring in Populus spp. plantation forests in North America compared 

with other land uses, Populus spp. plantation forest was found to be at least as favourable 

for native bird and mammal species as agricultural cropland by assessments of species 

richness, diversity and overall density (Christian et al.,1998). However, the plantation 

forests were found to be less favourable by the same indicators when compared to natural 
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forests (Christian et al., 1998). Similar research explored populations of beetle taxa 

inhabiting a variety of land-use types. It was found that a mature plantation production 

forest of P. radiata contained the most similar composition of beetle species to a native 

forest (Pawson et al., 2008).  This research further demonstrates the preference of 

plantation forest as habitat for many forest species over other intensive land uses such as 

pasture and cropland. 

The presence of native plant species in the understorey of a plantation forest is important 

for its potential to be transitioned to a native forest. The abundance, diversity and life-

history traits will also give an indication of the level of human intervention which will be 

required for ecological restoration. The high variability in understorey diversity of P. 

radiata stands in New Zealand has been emphasised in several studies (Allen et al., 1995; 

Brockerhoff et al., 2003; Forbes et al., 2019; and Ogden et al., 1997). Although there is 

currently no clear understanding for this variability, it has been suggested that geographic 

location and changes in canopy structure over time could be strongly influential 

(Brockerhoff et al., 2003). Brockerhoff et al., (2003) suggest that where soil moisture is 

not a limiting factor, succession of understorey species will be driven by variations in 

light availability due to changes in canopy structure. However, in dry areas understorey 

vegetation may be limited by slow litter decomposition and may result in very low 

abundance and diversity of understorey plants, resulting in much slower succession 

(Brockerhoff et al., 2003). 

2.1.2 Facilitation of regeneration 

Research suggests that plantation forests could be used to facilitate ecological restoration 

by increasing the speed of succession and creating a more favourable habitat for 

regeneration (Lamb, 1998). In lowland Costa Rica, it was observed that both pure and 

mixed native species plantations facilitated the regeneration of other native tree species in 

the understorey (Carnevale & Montagnini, 2002). Tree regeneration was found to be more 

abundant and diverse than in areas where there were no trees. Plantations of mixed 

species were also found to produce the greatest diversity of regenerating species 

(Carnevale & Montagnini, 2002). It has also been suggested that plantation forests could 

facilitate regeneration on previously grazed or degraded land (Brockerhoff et al., 2003).  

The fast growth of P. radiata in New Zealand allows for fast canopy closure, creating a 

desirable understorey microclimate and light environment for native tree species to 

regenerate (Brockerhoff et al., 2003; Ogden et al., 1997). Research on the understories of 
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P. radiata stands in the Central North Island of New Zealand found a variety of 

indigenous plants inhabiting the plantation forest understorey, with older stands tending 

to have the greatest species richness (Allen et al., 1995; Ogden et al., 1997). More recent 

research on the understorey vegetation in plantation P. radiata forests also observed 

similar trends of the increasing of species richness and structural complexity with stand 

age (Forbes et al., 2019). This study noted that the success of P. radiata in facilitating 

native regeneration and ecosystem restoration in New Zealand will, however, depend on 

the presence of nearby seed sources and an effective means of seed dispersal. Climatic 

constraints, the light levels within the forest, and the ability to control or remove exotic 

conifers once native species become self-sustaining are also important issues (Norton & 

Forbes, 2013). 

2.2 Native forest restoration motives and challenges 

Global trends show that the worldwide area of natural and semi-natural forest has 

decreased by 420 million hectares since 1990. However, the area of planted forest has 

increased by 123 million hectares in the same time period (FAO & UNEP, 2020). Forest 

ecosystems are estimated to be habitat for over half of known terrestrial plant and animal 

species. Loss and degradation of natural forests is, therefore, a major source of concern 

for declining biodiversity (Brockerhoff et al., 2008). It has been broadly acknowledged 

that the revival of biodiversity and functioning ecosystems necessitates large-scale 

ecological restoration (Pejchar et al., 2018).  

Political commitments such as the United Nation’s ‘New York Declaration on Forests’ 

and the New Zealand government’s ‘One Billion Trees Programme’ have been used to 

gather support for ecological restoration. However, significant knowledge gaps exist 

regarding effective methods of restoration which can be implemented across a variety of 

ecosystems and socio-political environments to meet these lofty targets (Lu et al., 2017). 

The high cost of indigenous seedlings is a substantial obstacle to ecological restoration in 

New Zealand. Norton et al., (2018) suggest that investment in new technologies such as 

direct seeding could help to reduce the cost of revegetation and increase the accessibility 

of restoration on private land. 

A significant barrier to effective ecological restoration is the selection of appropriate 

species for planting (Lu et al., 2017). Choosing species and provenances which are suited 

to site and region requires ecological data which is often lacking, especially in developing 

nations. Another challenge facing ecological restoration is the effective restoration of 
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habitat in the presence of exotic species which cannot be eradicated due to financial 

and/or ecological reasons (Pejchar et al., 2018). In circumstances such as these it will be 

important to understand how a novel ecosystem can be created which replicates its 

historic counterpart whilst incorporating both exotic and native species. Norton (2009) 

also addresses this challenge in a New Zealand context, expressing the improbable nature 

of complete eradication of invasive species and the need for ongoing human intervention 

throughout the ecological restoration process to control both mammalian and plant pests. 

The costs associated with pest control, site preparation, planting and ongoing 

maintenance can often be prohibitive and will require some form of financial assistance 

(Christian et al., 1998; Norton, 2009; Pejchar et al., 2018).  

2.3 Gap creation effects 

The succession of a forest is highly dependent on its disturbance regime. The most 

frequent form of small-scale disturbance in a forest is the natural falling of senescent 

trees, resulting in the formation of canopy gaps (Baret et al., 2008). The amount of light 

which reaches the forest floor is influenced heavily by the presence of canopy gaps. They 

also impact patterns of moisture and nutrients, creating a variety of microenvironments 

throughout the forest which provide niches for species with a diversity of life-history 

traits (Schneider & Larson, 2017). The creation of artificial canopy gaps mimics this 

small-scale disturbance regime. 

In a study which investigated the changes in light environments and tree regeneration 

induced by gap creation in Tsuga heterophylla (western hemlock) dominated forest, in 

north-western British Columbia, Canada, Coates & Burton (1997) found that forests 

which contained a broad range of gap sizes have the greatest diversity of microclimates 

and habitats. This is due to the variation in habitat among gaps, within gaps, at the gap 

edge, and within the forest matrix. The increased heterogeneity of forest structure caused 

by the creation of canopy gaps is essential in the development of a diverse and 

structurally complex forest ecosystem (Coates & Burton, 1997). 

The importance of canopy gap creation has been reiterated through many studies. For 

example, a study in coastal Pinus thunbergia (Japanese black pine) forest measured the 

response of seedling regeneration and change in microsite conditions to a variety of 

artificial canopy gap treatments. It was found that seedling density and growth increased 

as the size of the gap treatment increased (Zhu et al., 2003). This is likely due to the 

combined effects of increased light and water availability, reduced litter accumulation on 
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the forest floor, and reduced competition with adjacent mature trees allowing for a more 

favourable environment for regenerating seedlings (Zhu et al., 2003). This study further 

emphasises the importance of small-scale disturbance for the natural regeneration of trees 

across many different forest types. 

Artificial canopy gap creation has also been found to aid in ecosystem restoration. For 

example, a variety of treatments were applied to a Pinus sylvestris (Scots pine) forest in 

eastern Finland to explore the effects of gap creation and forest floor disturbance on the 

regeneration of both broadleaf and pine species (Rouvinen & Kouki, 2011). It was found 

that seedling regeneration was significantly more prolific where the soil had been 

disturbed. Although the study found regeneration of pine seedlings to be successful across 

a range of treatments, regeneration of Betula pendula (silver birch) seedlings was sparse 

throughout. Rouvinen and Kouki (2011) theorised that this was likely due to the shade-

intolerance of B. pendula as well as the lack of mature B. pendula trees within the vicinity 

of the forest to provide a seed source. The study emphasises the importance of viable seed 

sources as well as the possibility of human intervention in the form of site preparation to 

create favourable microclimates for less dominant species to regenerate successfully 

(Rouvinen & Kouki, 2011).  

Research on different strategies for aiding establishment of Podocarpus totora (tōtora) 

under a canopy of regenerating Kunzea robusta (kānuka) on abandoned pasture found that 

the creation of artificial canopy gaps had the greatest effect on P. totora growth, as this 

treatment had the largest increase in total light transmission and, therefore, created a 

suitable micro-climate for P. totora to grow (Tulod et al., 2018). Gap creation has shown 

to have a similar effect on the growth of planted P. totora and Beilschmiedia tawa 

beneath a mature pine canopy (Forbes et al., 2016). Both species of seedlings responded 

with an increase in growth rate in both small and large gaps when compared to control 

plots with no canopy gap creation. This research further strengthens the theory that 

artificial canopy gap creation is a necessary tool in facilitating the regeneration of later-

successional indigenous forest species. 

A recent review of literature concerning the restoration of later successional canopy 

species in New Zealand forests emphasises the necessity of enrichment planting and 

subsequent gap creation to form suitable micro-climates for successful growth and 

establishment (Forbes, et al., 2020). Much of New Zealand has been deforested and there 
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is now a severe lack of pollinators, dispersal mechanisms, and seed sources of later 

successional species. This ecosystem degradation has led to the stagnation of regeneration 

in many secondary forests across the country and emphasises the need for human 

intervention to restore a structurally complex and functional ecosystem. Forbes et al., 

(2020) suggest that successful restoration will require a considered balance between the 

choice of later successional species planted in terms of growth rate, shade tolerance and 

palatability to herbivores, and the frequency and size of artificial canopy gaps. Further 

research, such as this study, into the potential of exotic canopy trees to act as a nurse crop 

to later successional forest species will increase the understanding of how successful 

ecosystem restoration can be achieved in New Zealand’s degraded landscapes (Forbes, et 

al., 2020). 

 

Figure 2: Regenerating native species and some planted species from Forbes et al., (2016) in a 

canopy gap in the Kakapo Bay forest, Port Underwood, Marlborough Sounds 
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3. Methodology 
 

The literature indicated that artificial gap creation will likely cause an increase in the 

growth and abundance of understorey plants within the gap. The size of the gap 

determines how much light reaches the forest floor and may influence the diversity and 

abundance of species. Variables which may indicate the effect of gap size on native 

regeneration in the understorey are native species importance value and native species 

richness. These response variables are likely to be influenced by the explanatory 

variables: extended gap diameter ratio, mesoscale topographical index, distance to nearest 

native seed source, slope, aspect, and landform unit. This section describes the study area, 

the methodology used to collect the data, and the statistical analyses performed. 

3.1 Study area 

The P. radiata forest from which the measurements were taken is located on the coast in 

Port Underwood, in the Marlborough Sounds, in the northeast of the South Island of New 

Zealand. The study area is subject to a mild humid climate (Laffan & Daly, 1985). It 

experiences high annual sunshine hours (1980-2019 average = 2,472 hours) and has a 

mean monthly temperature which ranges from 8.0oC in July to 18.2oC in January. The 

annual rainfall is an average of 1,411 mm and monthly rainfall varies from 84 mm in 

February to 146 mm in July. In the summer months the study area can experience soil 

moisture deficits (Forbes, Norton, & Carswell, 2016). The forest has a north-facing aspect 

and is situated on steeply sloping hill country with an elevation range of 40-120 m above 

sea level. 

Prior to European settlement the site would have been forested, however, most of this 

forest was cleared in the nineteenth century for pastoral farming. Some land has remained 

in pasture whilst many exotic plantations of P. radiata have been established on hilly 

sites in eastern parts of the Marlborough Sounds. The historic forest would have been 

coastal broadleaved with dominant angiosperm tree species of B. tawa, Elaeocarpus 

dentatus, and Dysoxylum spectabile with fewer Weinmannia racemosa and Fuscospora 

fusca (Forbes et al., 2016). The indigenous conifer, P. totara, would have existed as an 

emergent canopy tree, dispersed throughout the forest (Walls & Laffan, 1986). 

The study area is populated by numerous introduced mammals. These include Dama 

dama (fallow deer), some Cervus elaphus scoticus (red deer), Sus scrofa (feral pig), 
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Trichosurus vulpecula (brushtail possum), and few Lepus eruropoeus occidentalis (brown 

hare) (Forbes et al., 2016). 

3.2 Data collection 

This site was selected as it had been used by Forbes et al., (2016) for a study on the effect 

of artificial canopy gap creation on the growth of planted P. totora and B. tawa seedlings. 

The original study design involved selecting 22 plot locations randomly using the 

geographic information system (GIS) ArcMap 10.1. The plots were contained within a 

22-ha area of the forest (Fig.3.) and were located to not be within 20 m of any forest edge, 

to avoid edge effects. Plot centres were also to have at least 22 m of separation to prevent 

interference between treatments. Plot centres were marked with a peg and their GPS 

coordinates recorded which were used to locate the plots for the measurements recorded 

for this research. 

 

Figure 3: Plot centre locations in the Kakapo Bay forest, Port Underwood, New Zealand 

 

Each plot was assigned a gap treatment of either control, small, or large gap. There were 

8 control plots, 8 small gaps and 8 large gaps. The number of small gap plots was reduced 

in this study to 6 due to one plot needing to be excluded from the original experiment due 

to neighbouring livestock entering the plot and another plot being unable to be relocated 
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during the data collection for this research. In the control treatment no trees were felled, 

maintaining the closed canopy. For the small and large gap treatments, all P. radiata trees 

within a 2.3 m radius and 5.6 m radius of the plot centre for the two treatments 

respectively were felled. Felling occurred in 2014, six years prior to the data collection 

for this research. 

3.3 Field methods 

Once the plot was located, a 10 m x 10 m understorey vegetation plot was established 

using the pre-existing peg as the centre. A vegetation description of each plot was 

recorded using the Reconnaissance (RECCE) description method (Hurst & Allen, 2007) 

whereby the plot was divided into height tiers and the cover abundance of each species 

was recorded in each tier. Overall vegetation cover abundance was also recorded. The 

height tiers were: Tier 1 (>25 m), Tier 2 (12-25 m), Tier 3 (5-12 m), Tier 4 (2-5 m), Tier 5 

(30 cm-2 m), Tier 6 (<30 cm). Each species in each tier was given a cover class number 

from 1-6 which represents the percentage cover of live foliage. The cover class numbers 

represent the following percentage foliage cover: 1 (<1%), 2 (1-5%), 3 (6-25%), 4 (26-

50%), 5 (51-75%), 6 (76-100%). Slope, aspect, and landform unit were also recorded at 

each plot as part of the RECCE method (Hurst & Allen, 2007).  

At each plot, the heights of four gap perimeter P. radiata trees were recorded using a 

Vertex III hypsometer. The tree heights were later used to calculate the extended gap 

diameter ratio for each plot by taking the mean of two orthogonal expanded gap diameters 

and dividing these by the average height of the four edge trees. The plot exposure was 

assessed by calculating the mesoscale topographic index which is the mean of eight 

equidistant slope to horizon measurements, taken from the plot centre (McNab, 1993). 

The proximity to native seed source was measured by mapping all nearby areas of native 

vegetation using aerial imagery. The distance from each plot centre to the nearest area of 

native vegetation was calculated using ArcMap. 

3.4 Statistical analysis 

Statistical analyses were undertaken using R software (R Development Core Team, 

2020). An initial scatterplot matrix was created to show possible relationships between all 

variables measured. These variables were: 

• Treatment (gap size) 

• Total exotic species importance value 
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• Total native species importance value 

• Species richness 

• Extended gap diameter to height ratio (gap ratio) 

• Mesoscale topographic index 

• Distance to nearest seed source 

• Slope 

• Aspect 

• Landform unit (ridge, face, gully) 

The scatterplot matrix (App. B) revealed relationships between some response and 

explanatory variables which was used to inform further statistical analysis. All statistical 

analyses conducted in this research look for a significance of p<0.05. 

The differences in the gap ratio among plots between treatments were modelled with a 

one-way analysis of variance (ANOVA). 

One-way ANOVA was then used to determine the effects of treatment on native 

importance value, and again for native species richness. Post hoc pairwise comparisons 

were conducted to determine the effects of each treatment on both importance value and 

species richness. 

A ‘best-fit’ ANOVA model for each of the response variables native importance value 

and species richness was selected using the Akaike Information Criterion (AIC) 

(Mazerolle, 2020). Several models were created using different combinations of 

explanatory variables which were then measured against each other in an AIC test. The 

model selected used the variables gap ratio, mesoscale topographic index, landform unit, 

and distance to nearest seed source as determinants of native importance value. The same 

set of parameters were used in the model analysing variation in native species richness.  

Generalised linear models were used to further explore effects of the measured 

explanatory variables on native regeneration. Models were selected using the AIC test 

which compared several models with different combinations of parameters. The selected 

model to determine native species richness used gap ratio, mesoscale topographic index, 

landform unit, and slope as explanatory variables. The same set of parameters were used 

in the model exploring native species richness. The significance of the two final models 

was evaluated using a Wald chi-squared test. 
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Non-metric multidimensional scaling (nMDS) was used to interpret compositional shifts 

across the different gap size treatments. The ordination was undertaken using the 

metaMDS function of the Vegan package (Oksanen, et al., 2019). The ordination used the 

importance value of each species across all plots. The species importance values were 

calculated using the method of Allen et al., (1995) whereby each species is weighted by 

its cover abundance in each tier and then summing the cover weights across all tiers to 

produce a single importance value for each species in each plot. The following weights 

were assigned to each RECCE cover class (cover class = weight): 1 = 1.0; 2 = 2.0; 3 = 

3.0; 4 = 4.0; 5 = 5.0; and 6 = 6.0. 

To further investigate the changes in species composition across treatments, a 

multivariate statistical model was fitted using the mvabund package (Wang, et al., 2020). 

An analysis of deviance table was used to determine whether gap size treatment had a 

significant effect on the composition of species. This method was also used to determine 

the effect of treatment on individual species by using the ‘p.uni = “adjusted”’ argument 

which accounts for the correlation among response variables where species may be 

interacting with one another, within the ecological system. A linear model modelling the 

effect of gap ratio on nMDS site scores was also created to further explore the 

relationship between gap size and species composition. 
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4. Results 
 

4.1 Species composition 
Table 1: Species identified in the Kakapo Bay forest study area and their corresponding code, growth form, life 

history trait and presence in each gap treatment 

Species Code Growth 

Form 

Life History Intact 

Canopy 

(Control) 

Small 

Gap 

Large 

Gap 

Aristotelia 

serrata 

ARIser Tree Light demanding 
   

Brachyglottis 

repanda 

BRArep Tree Light 

demanding/Intermediate 

   

Carpodetus 

serratus 

CARser Tree/Shrub Intermediate  
  

Coprosma 

colensoi 

COPcol Shrub Intermediate 
   

Coprosma 

grandifolia 

COPgra Tree/Shrub Intermediate 
 

 
 

Coprosma 

lucida 

COPluc Tree/Shrub Light 

demanding/Intermediate 

   

Coriaria 

arborea var. 

arborea 

CORava Tree Light 

demanding/Intermediate 

  
 

Dicksonia 

squarrosa 

DICsqu Tree fern Intermediate   
 

Hoheria 

populnea 

HOHpop Tree Intermediate 
 

  

Leptospermum 

scoparium 

LEPsco Tree Light demanding 
   

Leucopogon 

fasciculatus 

LEUfas Shrub Intermediate 
   

Melicytus 

ramiflorus 

MELram Tree Light 

demanding/Intermediate 

   

Schefflera 

digitata 

SCHdig Tree Intermediate 
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A total of 13 indigenous species of trees, shrubs, and tree ferns were identified in the 

understorey of the 25-year-old P. radiata forest. The life history traits of these species vary 

from intermediate to light demanding, with no shade tolerant species identified. Of the 13 

identified species, all but one was found in the large gap plots. Three were missing from both 

the control and small gap plots, however, the species missing from the control plots tended to 

be more light demanding than those absent from the small gap plots (Tb.1).  

 
Figure 4:  Non-metric multidimensional scaling (nMDS) ordination of species composition across the 22 plots 

in the Kakapo Bay forest. Treatment codes denote gap size: C = Control; S = Small gap; L = Large gap. Six-

letter species codes are defined in Table 1. 

 

The ordination demonstrated a moderate separation in species composition between the small 

and large gaps, and the intact canopy control (Fig.4). The small and large gap treatments 

appear to have a relatively similar species composition. The ordination suggests that the 

control treatment has a wider range of species composition as the plots are more spread in the 

ordination diagram and six of eight plots are outside the area of the ordination where the 

small and large gap plots were located. This is supported by the results of the multivariate 

analysis which showed that the composition of species is different among the canopy 

treatments (p<0.05). The univariate analysis showed that canopy treatment had the greatest 

effect on the presence and abundance of Aristotelia serrata (p<0.05).  
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Table 2: Linear model showing the effect of gap ratio of NMDS site scores (Fig.2) 

  Estimate Standard error t value Pr(>t) 

NMDS1 (Intercept) -0.1209 0.2426 -0.498 0.624 

Gap ratio 0.3036 0.5596 0.542 0.594 

NMDS2 (Intercept) -0.04941 0.20706 -0.239 0.814 

Gap ratio 0.12410 0.47761 0.260 0.798 

 

The linear model explored the effect of gap ratio on ordination scores, taken from the x and y 

axes of Figure 2. They found that gap ratio had no significant effect (Tb.2) on ordination 

scores suggesting that the gap treatments are may not be significantly influencing the 

composition of species recorded in the P. radiata understorey.  

4.2 Effect on native species richness 
Table 3: Summary statistics of native species richness by treatment (gap size) 

Treatment N Variable Mean Standard deviation 

Control 8 Species richness 5.38 1.30 

Small 6 Species richness 7 1.90 

Large 8 Species richness 7.5 1.93 

 

Species richness was found to be similar between the small gap and large gap treatment plots. 

The control plots have a lower mean species richness than the plots beneath artificial canopy 

gaps (Tb.3). However, one-way ANOVA found that this difference was not great enough for 

canopy gap treatment to have a statistically significant effect on native species richness 

(F=3.306, p=0.0586) (Tb.4).  

Table 4: One-way ANOVA exploring effect of treatment on native species richness 

 df Sum of Squares Mean Square F value Pr(>F) 

Treatment 2 19.44 9.722 3.306 0.0586 

Residuals 19 55.87 2.941   

 

A post hoc pairwise comparison (App. C) further reiterated these findings as there was no 

significant difference in native species richness between the control and small gap treatments 

(p=0.211); the control and the large gap treatments (p=0.0566); and the small gap and large 

gap treatments (p=0.853).  



18 

 

Table 5: ANOVA modelling effects of gap ratio, meso score, landform unit, and distance to native seed source 

on native species richness 

 df Sum of Squares Mean Square F value Pr(>F) 

Gap ratio 1 23.20 23.202 8.395 0.0105 * 

Meso score 1 2.01 2.013 0.728 0.4060 

Landform unit 2 5.03 2.515 0.910 0.4223 

Distance to seed source 1 0.85 0.853 0.308 0.5863 

Residuals 16 44.22 2.764   

 

The ‘best fit’ ANOVA model found that gap ratio does have a significant effect on native 

species richness (p<0.05). The model also included the explanatory variables mesoscale 

topographic index (meso score), distance to seed source , and landform unit, however, none 

of these variables were found to have a significant effect on native species richness (Tb.5).  

Table 6: Generalised linear model showing effects of gap ratio, meso score, landform unit, and slope on native 

species richness 

 Estimate Standard error t value Pr(>t) 

(Intercept) 4.563 1.671 2.730 0.0148 * 

Gap ratio 5.481 2.129 2.573 0.0204 * 

Meso score 0.052 0.039 1.335 0.2005 

Landform unit (Face) -0.731 0.546 -1.339 0.1992 

Landform unit (Gully) 1.232 0.856 1.439 0.1694 

Slope -0.051 0.044 -1.143 0.2700 

 

A generalised linear model was created to model the effects of gap ratio, meso score, 

landform unit, and slope on native species richness. Gap ratio was found to have a significant 

effect on native species richness (p<0.05). The other explanatory variables included in the 

model were not found to have a significant effect (Tb.6). These results further reiterate those 

found in the ANOVA model (Tb.5). An analysis of deviance test found this generalised linear 

model exploring the effects of explanatory variables on native species richness to be 

significant (p<0.05). 
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4.3 Effect on native importance value 
Table 7: Summary statistics of native species importance value by treatment (gap size) 

Treatment N Variable Mean Standard deviation 

Control 8 Native IV 17.6 6.91 

Small 6 Native IV 29.2 5.84 

Large 8 Native IV 26.8 7.02 

 

Mean native importance value was found to be greatest in plots beneath the small canopy gap 

treatments. The mean native importance value found beneath the large canopy gap treatments 

was slightly less than this, and the mean native importance value found beneath the closed 

canopy in the control plots was noticeably less (Tb.7). This is reflected in the results of a one-

way ANOVA which found that canopy gap treatment does have a significant effect on native 

importance value (F=6.096, p<0.01) (Tb.8). 

Table 8: One-way ANOVA exploring effect of treatment on native importance value 

 df Sum of Squares Mean Square F value Pr(>F) 

Treatment 2 545.6 272.80 6.096 0.009 ** 

Residuals 19 850.2 44.75   

 

A post hoc pairwise comparison (App. D) revealed that the difference between the native 

importance value of control treatments and small gap treatments is significant (p<0.05). The 

difference between the control treatments and the large gap treatments was also found to be 

significant (p<0.05). However, the difference in native importance value between the small 

gap treatments and large gap treatments was not significant (p=0.784). 

Table 9: ANOVA modelling effects of gap ratio, meso score, landform unit, and distance to native seed source 

on native importance value 

 df Sum of Squares Mean Square F value Pr(>F) 

Gap ratio 1 546.7 546.7 10.749 0.00473 ** 

Meso score 1 1.0 1.0 0.0.19 0.89297 

Landform unit 2 32.4 16.2 0.319 0.73144 

Distance to seed source 1 1.9 1.9 0.037 0.84929 

Residuals 16 813.8 50.9   
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The ‘best fit’ ANOVA model found that gap ratio also has a significant effect on native 

importance value (p<0.01). As with the model for native species richness, the model also 

included the explanatory variables meso score, distance to seed source, and landform unit, 

however, none of these variables were found to have a significant effect on native importance 

value (Tb.9). 

Table 10: Generalised linear model showing the effects of gap ratio, meso score, landform unit, and slope on 

native importance value 

 Estimate Standard error t value Pr(>t) 

(Intercept) 24.259 5.987 4.052 0.000925 *** 

Gap ratio 27.877 7.629 3.654 0.002140 ** 

Meso score 0.0514 0.140 0.367 0.718660 

Landform unit (Face) -2.121 1.956 -1.084 0.294354 

Landform unit (Gully) 2.473 3.067 0.806 0.431835 

Slope -0.460 1.159 -2.890 0.010659 * 

 

A generalised linear model was created which explored the effects of gap ratio, meso score, 

landform unit, and slope on native importance value. The model showed that gap ratio has a 

strong influence on native importance value (p<0.01). Meso score and landform unit were not 

found to have any significant effect on native importance value. Interestingly there was a 

statistically significant effect of slope on native importance value (p<0.05) (Tb.10). An 

analysis of deviance found this generalised linear model exploring the effect of explanatory 

variables on native importance value to be highly significant (p<0.001). 
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5. Discussion 
 

5.1 Ecological theory and disturbance regimes 

Disturbance regimes are what drives succession in natural forests. Disturbance events create 

openings in the forest canopy which allows for seedlings to regenerate and eventually form a 

new forest canopy. Disturbance creates a variety of successional stages throughout a forest, 

enabling it to remain highly diverse in both species and structure (Duncan, 1993; Lusk & 

Smith, 1998; Wells et al., 2001). 

 

The creation of a gap in the forest canopy increases the resources available to persisting 

understorey seedlings and new seedlings establishing. The competition for light is greatly 

reduced and existing seedlings often respond with rapid growth, as is well illustrated in beech 

forests (Wardle, 1984). Some later successional species, such as D. cupressinum, also find the 

disturbance of soil associated with gap forming tree windfalls to be favourable for 

germination (Adams & Norton, 1989). These factors combined allow for an increase in 

growth and recruitment of species within canopy gaps. 

Canopy gaps range in size depending on the level of disturbance. Frequent small gaps are 

often created by single tree fall in old growth forests, while larger gaps are created by 

multiple tree falls (Lusk & Smith, 1998). The microclimate created by canopy gaps exists as 

a gradient from gap centre to the undisturbed canopy understorey and also varies with gap 

size (McDonald & Norton, 1992). This gradient allows for the maintainence of high species 

diversity in old growth forests as species which are best suited to various conditons along the 

gradient can coexist and thrive (Lusk et al., 2009; Lusk & Smith, 1998).  

The creation of artificial canopy gaps reflects the frequent, small-scale disturbance regimes 

experienced in many indigenous forests throughout New Zealand. A diverse forest structure 

and composition is unlikely to be achieved beneath a single-aged canopy of P. radiata due to 

the very low light conditions beneath the dense canopy and the inevitable harvesting of the 

trees for timber when the forest is approximately 28 years of age. Over a long period of time 

(>100 years) the pine trees will begin to senesce and will become increasingly susceptible to 

windthrow, breakage, and tree death (Woollons & Manley, 2012). It is plausible that a single-

aged pine forest could eventually transition to a native forest if it were left unharvested and 

sufficient seed sources were available. However, for the purpose of achieving ecosystem 

restoration, this timeline is prolonged and is unlikely to be successful without intervention 
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and long-term management. This study explored the effect of artificial canopy gap creation as 

one such management intervention. 

5.2 Gap creation effects on native regeneration 

The statistical analyses undertaken consistently found a strong effect of treatment and gap 

ratio on native species importance value. Other measured parameters were found to not have 

any significant effect on importance value. This suggests that the increased light availability 

which occurs with artificial canopy gap creation is allowing an increase in the growth, 

abundance, and recruitment of regenerating plants in the understorey of the mature P. radiata 

canopy. 

The analyses also showed a significant effect of gap ratio on the number of native species 

(richness). As with species importance value, other measured parameters did not have any 

significant effect on native species richness. The effect of treatment on species richness was, 

however, not significant. The difference between treatment and gap ratio as an explanatory 

variable is likely responsible for this difference as gap ratio accounts for the variability of gap 

sizes between treatments due to the spacing of the planted pine. The results suggest that 

artificial canopy gap creation does have a significant effect on native species richness, but it 

is not as strong as the effect on native importance value.   

The findings of the analyses show that the presence of artificial canopy gaps is strongly 

affecting the abundance and growth of regenerating light demanding and intermediate native 

plants. The abundance, growth, and diversity of species within small and large canopy gaps 

were found to be significantly greater than beneath the closed canopy control treatment. 

These findings are congruent with the light demanding characteristics of many early and mid-

successional native species (Baxter & Norton, 1989; Tulod & Norton, 2020). The results also 

suggest that artificial canopy gap creation can be a successful tool in stimulating the 

regeneration of native species beneath the canopy of a mature P. radiata forest. 

5.3 Factors affecting regeneration 

The disturbance regime of a forest is what drives its succession and species turnover 

(Duncan, 1993; Lusk & Smith, 1998; Wells et al., 2001). The creation of artificial canopy 

gaps mimics a small-scale disturbance such as tree fall and creates more varied and 

favourable conditions in the understorey for species to regenerate. This research found a 

small subset of earlier successional species throughout all the plots measured. There was a 

distinct lack of later successional species and a relatively low total richness comprised of just 
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thirteen native species. The typical light-demanding early coloniser A. serrata was frequently 

found throughout small and large gap plots. Other more shade tolerant early-successional 

species such as Schefflera digitata, Melicytus ramiflorus, and Brachyglottis repanda were 

also frequently recorded in the plots. The presence and abundance of these species suggests 

the forest succession is moving towards the establishment and growth of later successional 

canopy species such as P. totora and B. tawa, although these species had yet to establish at 

the site.  

 

The absence of later successional species within the study site is likely due to several factors. 

The site for this study was a grazed pasture for a significant period before it was established 

as a plantation pine forest. New Zealand native vegetation does not have long lived seeds so 

it is highly unlikely that there would be any contribution of a soil seed bank to regeneration at 

this site (Moles & Drake, 1999).  

 

Limitations related to seed dispersal are also likely to affect the regeneration of native 

species. Areas of native forest were identified within relatively close proximity to the site (<2 

km), however, these are secondary forests which have regenerated after having been 

historically cleared for grazing. These regenerated forests also lacked later successional 

canopy species due to a lack of nearby old growth forest to provide an effective seed source. 

The mechanism for seed dispersal may also be lacking as many later-successional indigenous 

tree species have large fruits which require dispersal through frugivorous birds (Clout & Hay, 

1989). This is also a possible explanation for the lack of regionally typical later successional 

species in the study area. For example, both B. tawa and Pectinopitys ferruginea are reliant 

on the kererū (Hemiphaga novaeseelandiae) to disperse their large fruits. Other species of 

birds such as tūī (Prosthemadera novaeseelandiae) and korimako (Anthornis melanura) also 

act as dispersers of fleshy fruits, of which 70% of common indigenous woody species possess 

(Clout & Hay, 1989). Nearby stands of old growth forest are highly important as seed sources 

for regenerating forest. The isolation of many areas of regenerating forest from seed sources 

is a likely cause of the lack of later successional species establishing. The existence of old 

growth or mature indigenous forest in the adjacent landscape matrix is crucial for the 

presence of seed sources and populations of seed dispersing birds (Forbes et al., 2019). This 

further reiterates the need for ecosystem restorations as these will improve the landscape 

matrix and help to facilitate the regeneration of vegetation in adjacent areas as well as 

improve landscape biodiversity and forest patch connectivity. The lack of effective seed 
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sources and dispersal mechanisms at this site, and at many other similar restoration sites 

throughout the country, emphasises the need for enrichment planting to ensure later-

successional species will establish in the restored ecosystem. 

5.4 Management considerations 

The results of the analyses found that there was a significant difference between the growth, 

abundance, and richness of species in the understorey of small and large gaps compared to 

the closed canopy control. However, no statistically significant difference was found between 

the growth, abundance, or richness of species in the understorey of the small gap compared to 

the large gap treatment. Minor differences in mean species richness and mean importance 

value were noted between the two treatments, however, this difference was not great enough 

to produce a statistically significant result. These findings suggest that the presence of gaps is 

substantially more important than the size of the canopy gap, at least in the context of the gap 

sizes included in this study. Therefore, for landowners wishing to transition a single-aged P. 

radiata forest to an indigenous forest, the focus should be on the creation of canopy gaps 

throughout the forest, rather than the size of the individual gap. Canopy gaps could be created 

by felling small groups of mature trees, as was the process for this study, or by leaving gaps 

in the forest when planting for forest establishment. A progressive thinning regime could also 

be adopted to gradually remove the pine canopy trees and allow native regeneration to 

eventually become the dominant cover. 

 

The creation of canopy gaps does not guarantee that a successful ecological restoration will 

be achieved. There are often significant limitations preventing a full suite of species from 

regenerating in secondary forests. As mentioned in the previous section, one of these 

limitations is adequate seed sources and seed dispersal mechanisms. Research has suggested 

that enrichment planting is likely to be critical for the establishment of indigenous canopy 

species in the face of seed dispersal limitations (Forbes et al., 2016, 2020; Norton et al., 2018; 

Tulod et al., 2018; Tulod & Norton, 2020). The light environments produced from artifical 

canopy gap creation produces more favourable conditions for the establishment and growth 

of mid and later successional species (Tulod et al., 2018). Enrichment planting of species 

such as P. totora and B. tawa beneath canopy gaps could help to facilitate a more successful 

ecosystem restoration. It is important that the species selected for enrichment planting are 

well-suited to the region, site, and light environments within canopy gaps for optimum 

restoration. Eco-sourcing high quality plant material is essential for successful growth when 
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planted and to ensure that appropriate genetic material is being introduced into the natural 

environment (Norton et al., 2018). 

 

Herbivory is a key limitation often faced in ecological restoration. Ungulates browse 

regenerating species and cause their growth to be stunted and may result in seedling death. 

The occurance of browsing also tends to increase with gap creation which acts as a further 

barrier to regeneration (Forbes et al., 2016). Browsing from ungulates and other mammalian 

pests is known to alter the structure and function of indigenous forests. Ungulates can be 

excluded effectively with fencing and populations of other mammalian pests can be reduced 

through pest control. These actions will aid in ecosystem restoration as there will be an 

increase in regenerating plants, an increase in invertebrate populations, and an increase in 

litter mass other than pine needles (Wardle, et al., 1999; Dodd, et al., 2011). Therefore, the 

exclusion and control of browsing mammals is vital in allowing a full suite of species to 

regenerate freely, facilitating the effective restoration of forest ecosystem processes. 

 

The results of this research suggest that the transition of a pine forest to an indigenous forest 

may be possible with the assistance of artifical canopy gaps. However, the transition is likely 

to require a signifcant period of time and can be expected to result in the regeneration of a 

limited subset of forest species if management interventions are not taken. There is also a 

requirement for ungulate exclusion, control of other mammalian pests, and enrichment 

planting to support in the restoration of the indigenous ecosystem. It is critical that any 

ecological restoration project has a high level of long-term management throughout. The 

restoration should be based on a local reference system to act as a guide to appropriate 

species for enrichment planting and for setting targets regarding the functions and systems of 

the site. The level of input and intervention required will depend on the level of resilience and 

degradation of the site. The Kakapo Bay forest has been highly modified from its natural 

environment for a long period and is likely to require a higher level of restoration inputs and 

intervention to progress the forest towards an indigenous forest ecosystem. Finally, it is vital 

that clear targets, goals, and objectives are defined for the ecological restoration project 

(McDonald et al., 2016). Monitoring of key variables will help to quanitify progress and 

identify areas which require further attention. A high level of long-term management and 

involvement will give the greatest possibility of an ecological restoration being successful. 
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5.5  Limitations 

There are some limitations to the research conducted in this dissertation. The statistical 

analyses looked for a significance level of p<0.05. This means that the result can be called 

significant with a confidence level of 95%. This leaves of 5% chance that a false positive 

result may be returned. In this study one of the statistical analyses found slope to have a 

significant effect on native species importance value to a 95% confidence level (Tb.10). Due 

to the relatively homogenous slope profile of the site and from what was observed in the 

field, this is result is likely to be a false positive. Other results in this dissertation may be 

subject to this phenomenon. 

The RECCE method used to gather abundance by cover class data is a subjective method. 

The canopy cover of each species in the different height tiers is determined by a best estimate 

by sight. There will be some level of variability in this method of data collection, however, 

this has been reduced in this study by all data being gathered by the same person, over the 

course of two consecutive days. 

This study is missing two small gap treatments due to circumstances beyond control. The 

other two treatments had two more plots than the small gap treatment which may have 

affected the consistency of the results. A larger sample size would also improve the reliability 

of the results. Repeated studies across different sites with different climatic conditions would 

be a valuable contribution to this field of research and would aid to further understand the 

factors which drive regeneration beneath pine canopies and how they can be managed to 

improve biodiversity. Further research into other canopy manipulation methods, such as 

progressive thinning, would also provide useful insight. A long-term study on the response of 

understorey vegetation to canopy manipulation would also help to grow the field of expertise 

in transitioning pine forest to native forest. 
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6. Conclusion 
 

The results of this research have provided evidence that artificial canopy gap creation has a 

positive effect on the growth, abundance, and richness of native regenerating species in the 

understorey of a mature P. radiata forest. The small and large gap canopy treatments were 

both found to significantly improve growth, abundance, and species richness of regenerating 

species when compared to the closed canopy control treatment. However, there was no 

significant difference between the growth, abundance, or richness of species beneath small 

and large canopy gaps. This shows that the presence of canopy gaps is more important for 

stimulating regeneration than the size of each canopy gap, at least for the range of gap sizes 

included in this study. Therefore, if a forest owner wished to transition a single-aged pine 

forest to an indigenous forest it is strongly advised that artificial canopy gaps are created to 

allow for favourable understorey conditions for the establishment and growth of regenerating 

species. 

A common limitation to successful ecosystem restoration which has been identified is a lack 

of adequate seed sources and dispersal mechanisms. In this study an absence of later 

successional species was noted in the understorey of the forest. The lack of nearby old growth 

or mature indigenous forest is likely to be the cause of this absence. Intervention in the form 

of enrichment planting of later successional species beneath canopy gaps is likely to be 

necessary to successfully restore a structurally diverse forest. Enrichment planting will also 

further help to accelerate succession towards a mature indigenous forest. 

The effects of herbivory have also been noted as a limitation to ecosystem restoration. 

Browsing can stunt growth, kill seedlings, and alter the composition of species regenerating. 

To allow species to regenerate freely and to ensure the survival of palatable species, 

herbivores must be excluded through a combination of effective fencing and pest control. 

These actions will also assist in restoring the functionality of the ecosystem regarding flora 

and fauna populations. 

The findings of this research suggest artificial canopy gaps can be useful in promoting natural 

regeneration beneath mature pine canopy. However, it is imperative that ecological 

restoration is treated as a long-term project with management and monitoring throughout the 

process. Clear goals and objectives will keep the project on track and bring attention to areas 

where there may be shortcomings. Restoring indigenous forests with the aid of pine trees as a 
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nurse crop appears to be a viable option in the context of this research, and artificial canopy 

gaps will likely be essential in providing the conditions required for species to regenerate in 

the forest understorey. 

 

Figure 5: Regenerating native species in a canopy gap, in the understorey of the Kakapo Bay forest, 

Port Underwood, Marlborough Sounds 
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Appendices  
 

Appendix A 
Appendix A:  Native species importance values. Kakapo Bay Forest, Marlborough Sounds, New Zealand. Site 

codes refer to treatment (L = Large gap, S = Small gap, C = Control). Species codes are the six letter codes 

assign by the National Vegetation Survey. Species corresponding to each code are given in Table 1. 

 

 

Site ARIser BRArep CARser COPcol COPgra COPluc CORava DICsqu HOHpop LEPsco LEUfas MELram SCHdig

L 9 1 2 0 2 2 0 0 0 2 0 8 9

S 5 0 0 0 0 2 0 0 0 0 0 10 11

S 5 5 2 2 0 2 0 2 0 0 0 9 6

C 0 0 0 0 0 2 0 0 0 0 0 6 6

C 0 3 0 0 0 0 0 0 0 0 0 2 2

L 5 2 0 0 0 2 0 2 0 0 0 8 11

C 0 0 0 2 0 4 0 0 0 6 2 6 6

C 0 2 0 1 0 2 0 0 0 0 2 5 8

L 2 0 0 0 0 2 0 0 0 0 0 9 8

L 2 2 2 2 0 2 0 0 0 4 2 7 9

C 0 4 0 2 0 2 0 0 0 0 0 2 6

L 2 0 0 2 0 2 2 0 0 4 0 4 6

S 0 0 0 2 0 0 0 0 0 9 2 0 10

L 8 4 0 0 0 2 0 0 0 0 0 7 5

S 3 7 0 0 0 2 0 0 0 2 2 11 11

C 0 5 0 2 0 2 0 0 4 0 0 6 11

L 8 2 0 0 0 2 0 0 0 0 0 10 5

C 2 0 0 0 0 2 0 0 0 6 0 0 7

S 0 7 0 1 0 2 0 0 0 0 0 7 6

S 2 4 0 2 0 4 0 0 0 2 2 9 7

L 6 0 2 2 2 2 0 0 0 6 2 4 8

C 2 0 0 0 4 0 0 0 0 0 0 0 7
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Appendix B 

 

Appendix B: Scatterplot matrix of variables measured at Kakapo Bay, Port Underwood, Marlborough Sounds 
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Appendix C 
 

Appendix C: Post hoc tukey test of one-way ANOVA: effect of treatment on native species richness 

 

Appendix D 
 

Appendix D: Post hoc tukey HSD test of one-way ANOVA: effect of treatment on native species importance 

value 

 

 

 

 

Treatment diff lwr upr p adj 

Small-Control 1.625 -0.728 3.978 0.212 

Large-Control 2.125 -0.053 4.303 0.057 

Large-Small 0.500 -1.853 2.853 0.853 

Treatment diff lwr upr p adj 

Small-Control 11.542 2.263 20.719 0.013* 

Large-Control 9.125 0.628 17.622 0.034* 

Large-Small -2.417 -11.594 6.761 0.784 


