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Abstract

A partial field P is an algebraic structure that behaves very much
like a field except that addition is a partial binary operation, that is,
for some a,b € P, a + b may not be defined. We develop a theory of
matroid representation over partial fields. It is shown that many im-
portant classes of matroids arise as the class of matroids representable
over a partial field. The matroids representable over a partial field are
closed under standard matroid operations such as the taking of mi-
nors, duals, direct sums and 2—sums. Homomorphisms of partial fields
are defined. It is shown that if ¢ : Py — P5 is a non-trivial partial
field homomorphism, then every matroid representable over P is rep-
resentable over Po. The connection with Dowling group geometries is
examined. It is shown that if G is a finite abelian group, and r > 2,
then there exists a partial field over which the rank—r Dowling group
geometry is representable if and only if G has at most one element of
order 2, that is, if G is a group in which the identity has at most two
square roots.



1 Introduction

It follows from a classical (1958) result of Tutte [19] that a matroid is rep-
resentable over GF'(2) and some field of characteristic other than 2 if and
only if it can be represented over the rationals by the columns of a totally
unimodular matrix, that is, by a matrix over the rationals all of whose non-
zero subdeterminants are in {1, —1}. Consider the analogous problem for
matroids representable over GF'(3) and other fields. It is shown in [22, 23]
that essentially three new classes arise. Let Q(«) denote the field obtained by
extending the rationals by the transcendental cv. A matrix over Q(«) is near-
unimodular if all non-zero subdeterminants are in {*a'(a —1)7 : 4,5 € Z}.
A near-reqular matroid is one that can be represented over the rationals by
a near-unimodular matrix. A matrix over the rationals is dyadic if all non-
zero subdeterminants are in {£2° : i € Z}. A dyadic matroid is one that
can be represented over the rationals by a dyadic matrix. A matrix over the
complex numbers is a v/1-matrix if all non-zero subdeterminants are com-
plex sixth roots of unity. A v/1-matroid is one that can be represented over
the complex numbers by an v/I-matrix. It is shown in [22, 23] that if F
is a field other than GF(2) whose characteristic is not 3, then the class of
matroids representable over GF'(3) and F is either the class of near-regular
matroids, the class of dyadic matroids, the class of ¥/1-matroids or the class
of matroids obtained by taking direct sums and 2-sums of dyadic matroids
and /1-matroids.

The striking thing about the above classes is that they are all obtained by
restricting the values of non-zero subdeterminants in a particular way. Let G
be a subgroup of the multiplicative group of a field F with the property that
forallg € G, —g € G. A (G, F)—matroidis one that can be represented over F
by a matrix, all of whose non-zero subdeterminants are in G. For appropriate
choices of field and subgroup, the classes of regular, near-regular, dyadic and
v/T-matroids are all (G, F)-matroids. Given the significance of these classes it
is clear that a general study of (G, F)—matroids is justified; particularly when
one considers the natural conjecture that the matroids representable over all
members of any given set of fields can be obtained by taking direct sums and
2-sums of members of appropriate classes of (G, F)-matroids. In fact the
research that led to this paper began as a study of (G, F)-matroids, but it



soon became apparent that a further level of generality was appropriate.

Consider a field F and a subgroup G of F* such that —g € G for all g € G.
Then G'U {0} with the induced operations from F behaves very much like a
field except for the fact that, for some a,b € G, a + b may not be defined.
We axiomatise such structures via the notion of “partial field” in Section 2.
Subgroups of fields give rise to partial fields in the way described above, but
many partial fields cannot be embedded in a field. In Section 3 we consider
determinants of matrices over partial fields. In general the determinant of
a square matrix need not be defined. It is shown that if A is a matrix over
a partial field that has the property that all of its square submatrices have
defined determinant, then a well-defined matroid can be associated with A.
A matroid is representable over the partial field if it can be obtained in such
a way. The classes of regular, near-regular, dyadic, and v/1-matroids can
all be interpreted as classes of matroids representable over a partial field. It
is also shown that the class of matroids representable over a given partial
field is minor-closed, and is closed under the taking of duals, direct sums and
2—sums.

Section 5 considers homomorphisms. There are several ways to define a
homomorphism of a partial algebra. It turns out that the weakest is strong
enough to give significant information about the matroids representable over
partial fields. It is shown that if ¢ : P; — P4 is a non-trivial partial-field
homomorphism, then the class of matroids representable over Py is contained
in the class of matroids representable over P5. In Section 6 it is shown that a
theory for equivalence of representations over partial fields can be developed
that is similar to that for fields.

In Section 7 the connection with Dowling group geometries is considered.
Amongst other things it is shown that if G is a finite abelian group, and
r > 2, then there exists a partial field over which the rank—r Dowling group
geometry is representable if and only if G has at most one element of order
2, that is, if G is a group in which the identity has at most two square roots.

It is almost certainly possible that this theory could be generalised to
non-commutative structures, that is, to partial division rings. The theory of
determinants of these structures could be based on the theory of determi-



nants of division rings, see for example [1, 5]. However such a theory would
involve several additional technicalities. Since we do not know of of any
major combinatorial motivation to extend the theory to non-commutative
structures it was felt that the generalisation was not justified.

The real motivation for developing the theory of this paper is the desire
to solve some of the many outstanding problems in matroid representation
theory. With current techniques it seems we can, at best, chip away at
the fringes of these problems: new techniques are desperately needed. We
hope that the theory of partial fields will assist in the development of such
techniques.

2 Partial Fields

Recall that a partial function on a set S is a function whose domain is a
subset of S. It follows that a partial binary operation + on S is a function
+: A — S whose domain is a subset A of S x S. If (a,b) € A then a + b is
defined, otherwise a + b is not defined.

Let G be a subgroup of the multiplicative group of a field F with the
property that for all g € G, —g € G, and consider G U {0} together with the
induced operations from F. It was noted in the introduction that, except
for the fact that + is a partial operation, G U {0} behaves very much like
a field. We have an additive identity, additive inverses and versions of the
distributive and associative laws. In seeking to axiomatise such structures
independently of the embedding field only the version of the associative law
causes difficulty. A natural way to attempt such a law is as follows. If
a+ (b + c) is defined and a + b is defined, then (a + b) + ¢ is defined and
(a+0b)+c=a+ (b+c). This is all very well but one does not just want
three term sums to associate. Consider the expressions (a + b) + (¢ + d) and
(a+c¢) + (b+d). Assume that (a 4+ b) + (¢ + d) is defined (this means that
all sums in the expression are defined) and assume that a + ¢ and b+ d are
defined. One would certainly want this to imply that (a + ¢) + (b + d) is
defined and to have (a 4+ b) + (c+d) = (a + ¢) + (b + d). For fields this is
an immediate consequence of the associative law for sums with three terms,



but if + is a partial operation this is not the case. For this reason we need
a more complicated associative law.

Let S be a set with a commutative partial binary operation +. Say S’ is
a finite multiset of elements of S. An association of the multiset S’ is a way
of unambiguously defining sums to obtain an expression that is a version of
the sum of the elements of S’. (This definition does not purport to be even
vaguely precise. The reader can easily see how a precise definition could be
given in terms of rooted binary trees with their terminal vertices labelled
by the members of S’.) An association of S’ is defined if all of the sums in
the expression are defined. We now define what it means for the associative
law to hold. Let S’ be any finite multiset of elements of S and consider any
defined association of S’; the result of performing the sums being s. Consider
any other association of S’ that has the property that all sums apart possibly
from the final sum are defined. The associative law holds if in all such cases
the final sum is indeed defined; the result being equal to s. Assume that the
associative law holds for +. To say that ay + as + - - - + a,, is defined means
that some association of {ay,as, ..., a,} has all sums defined.

Let P be a set with a distinguished element called 0, and set P* = P—{0}.
Let o be a binary operation on P, and + be a partial binary operation on P.
Then P is a partial field if the following properties are satisfied.

P1 P* is an abelian group under o.

P2 Foralla e P, a+0=a.

P3 For all a € P, there exists an element —a € P with the property that
a+ (—a) =0.

P4 For all a,b € P, if a+b is defined, then b+ a is defined and a+b = b+ a.

P5 For all a,b,c € P, a(b+ ¢) is defined if and only if ab + ac is defined; in
this case a(b+ ¢) = ab + ac.

P6 The associative law holds for —+.

The above definition already uses some standard ring-theoretic notational
conventions; for example, ab denotes a o b. We will continue to use such



conventions without comment. The terminology adopted here more or less
agrees with that of Grétzer [8, Chapter 2|. In particular our notion of par-
tial binary operation agrees with [8]. Grétzer defines the notion of “partial
algebra”. Our partial fields are special cases of partial algebras.

Certain elementary properties of rings hold for partial fields. The proofs
are essentially the same as for rings. The only difficulty being that one has
to ensure at each stage that sums are defined. In particular we have:

Proposition 2.1 If ¢ and b are elements of a partial field, then a0 = 0 = Oa,
(—a)b = a(—b) = —(ab), and (—a)(—b) = ab. O

The motivation for studying partial fields arose from examples obtained
from subsets of fields. We certainly need to show that if G is a subgroup of
the multiplicative group of a field such that —g € G for all g € G, the GU{0}
with the induced operations is a partial field. More generally we have

Proposition 2.2 Let P be a partial field, and let G be a subgroup of P*
with the property that —a € G for all a € G. Then GU{0} with the induced
operations from P is a partial field.

Proof. The only property that is not immediate is P5. Say a,b,c € (G U
{0}). Then ab+ac € (GU{0}) if and only if a(b+c¢) is, and a(b+c¢) € GU{0}
if and only if a~'a(b+c) = b+c is. It follows routinely from this observation
that P5 holds. a

Of course Proposition 2.2 holds when P is a field. The partial field ob-
tained in Proposition 2.2 is denoted (G, P).

With Proposition 2.2 in hand we simplify terminology for some of our
most fundamental classes. The partial field ({1, —1}, Q) leads to the class of
regular matroids. Set Reg = ({1, —1}, Q). The partial field ({+a'(a —1)? :
i,7 € Z},Q(«)) leads to the class of near-regular matroids. Set NR =
({xa'(a— 1) 4,5 € Z},Q()). The partial field ({+2 : i € Z}, Q) leads
to the class of dyadic matroids. Set D = ({£2°:4 € Z},Q). Let G denote
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the group of complex sixth roots of unity. The partial field (Gg, C) leads to
the class of v/1-matroids. Since the multiplicative group of (G, C) has order
6, set Pg = (Gg, C). Anticipating the definition of “isomorphism” given in
Section 5 we will use Reg, NR, D, and Pg to denote any member of their
respective isomorphism classes.

It is time for some examples to illustrate some elementary, but important,
facts. Note that the partial fields obtained from fields via Proposition 2.2
depend on both the group and the field. For example ({—1,1},GF(3)) =
GF(3), while Reg = ({—1, 1}, Q) is quite a different structure. The point is
that 1+ 1 and —1 — 1 are not defined in Reg.

For a less trivial example consider possible partial fields having Gg = {a :

a® = 1} as their multiplicative group. Define Py as follows. Let —1 = a?,

—a = a*, and —a? = a®. Then, in Py, x + y is defined if and only if
x = —y, in which case, z +y = 0. Of course we define x +0 =0+ z = .
Routine checking shows that Pt is a partial field. Note that the operation
of addition in Pt is as trivial as it could be. Another partial field is Pg
which is obtained by embedding G as a subgroup of the complex numbers.
Clearly, Pg has a partial addition that is an augmented version of the partial
addition of Pp. We now also have a? + 1 = a, and a* + 1 = a®. Yet another
partial field is obtained by embedding G as a subgroup of the multiplicative
group of GF(7). Of course, this partial field is just GF(7) itself. Note that
whenever G is embedded as a subgroup of the multiplicative group of a field
the relations a®+1 = a and a*+1 = a® hold so that P cannot be embedded

in any field.

3 Partial Fields and Matroids.

Our interest in partial fields is essentially due to the fact that classes of
matroids can be associated with them. Let P be a partial field. Consider
column vectors with entries in P. If x = (zy,29,...,7,)" is such a vec-
tor and a € P, then, obviously, we define the scalar multiple ax of x by
ax = (ax1,arsy, ..., ar,)". One can also define the sum of two vectors in the
obvious way; such a sum will be defined only if the sum is defined for each



coordinate. To associate matroids with partial fields, one needs to have a
criterion to decide whether a set of vectors is independent. The familiar way
from vector spaces is to use linear combinations. Such a notion for partial
fields will be a partial operation, and it is unclear how one deals with the exis-
tence of undefined linear combinations in attempting to decide whether a set
of vectors is independent. An alternative approach is to use determinants. A
set of vectors {x1,Xa,...,Xn} in a vector space over a field is independent if
and only if at least one of the n x n submatrices of the matrix [x1, Xa, .. ., Xy

has a non-zero determinant. This is the approach we generalise to partial
fields.

Let A be an n x n square matrix with entries in a partial field P. Just as
with fields we define the determinant to be a signed sum of products deter-
mined by permutations. Let p be an element of S,,, the group of permutations
of {1,2,...,n}. Then £(p) denotes the sign of p. Formally, the determinant
of A is defined by

det(A) = D £(p)aip1)aop(2) - * Anp(n);

PESn

if this sum is defined. The arguments that prove the following proposition
are essentially the same as those for fields.

Proposition 3.1 Let A be a square matrix with entries in a partial field P.

(i) If B is obtained from A by interchanging a pair of rows or columns,
then det(B) is defined if and only if det(A) is defined, in which case,
det(B) = —det(A).

(ii) If B is obtained from A by multiplying each entry of a row or a column
by a non-zero element k of P, then det(B) is defined if and only if
det(A) is defined, in which case, det(B) = k det(A).

(iii) If det(A) is defined and B is obtained from A by adding two rows or two
columns whose sum is defined, then det(B) is defined and det(B) =
det(A). O



Other elementary properties of determinants generalise straightforwardly.
For example we have

Proposition 3.2 Let A be a square a matrix with entries in a partial field
P. Let A;; denote the submatrix obtained by deleting row ¢ and column j
from A.

(i) If A has a row or a column of zeros, then det(A) = 0.

ii a;; 18 the only non-zero entry in its row or column, then det is

ii) If a;; h 1 1 hen det(A
defined if and only if det(A;;) is defined, in which case, det(A4) =
(—1)”jaij det(Aw) O

With familiar classes such as totally unimodular, near—unimodular, or
dyadic matrices a condition is placed on all subdeterminants of a matrix.
Generalising to partial fields, we require that all subdeterminants be defined.
An m xn matrix A over a partial field P is a P-matriz if det(A’) is defined for
every square submatrix A’ of A. Say A is a P—matrix, then a non-empty set of
columns {c;,, Ci,, . . ., ¢;, } of Ais independent if k < m, and at least one of the
k x k submatrices of A with columns indexed by {i1, is, ..., 4} has a non-zero
determinant. Also an empty set of columns is independent. We aim to show
that the independent sets of vectors of a P-matrix are the independent sets of
a matroid. In what follows we consider matrices whose columns are labelled
by the elements of a set E. A subset of F is independent if the set of columns
it labels is independent. We first show that the property of being a P-
matrix is preserved under some standard operations. It is assumed that labels
are fixed under these operations apart from the operation of interchanging
columns where labels are interchanged with the columns. Let x4 be a non-
zero entry of a matrix A. Recall that a pivot on x4 is obtained by multiplying
row s by 1/zg and, for i in {1,2,...,s —1,s +1,...,m}, replacing x;; by
T st xsj
Tyt Tij

-1
Lot

Proposition 3.3 Let A be a P-matrix. If the matrix B is obtained from A
by one of the following operations, then B is a P—matrix.



(i) Interchanging a pair of rows or columns.

(ii) Replacing a row or column by a non-zero scalar multiple of that row or
column.

(iii) Performing a pivot on a non-zero entry of A.

Proof. If B is obtained from A by interchanging rows or columns, or by
multiplying rows or columns by a non-zero scalar, it follows immediately
from Proposition 3.1 that the proposition holds. Assume that B is obtained
from A by pivoting on a non-zero entry of A. By (i), we may assume without
loss of generality that the entry is a;;. Since A is a P—matrix, and since all
entries of B are, up to a scalar multiple, equal to subdeterminants of A, it
follows that B is defined. We now show that B is a P-matrix.

Let A" and B’ be corresponding square submatrices of A and B respec-
tively, each having their rows and columns indexed by the sets Ji and Jo
respectively. We want to show that det(B’) is defined. If 1 € Jg, then it
follows from Proposition 3.1 that det(B’) is defined. Hence we may assume
that 1 € Jg. In this case, if 1 € Jgo, then B’ has a zero column, and by
Proposition 3.2, det(B’) is defined with det(B’) = 0. Thus we may also as-
sume that 1 ¢ Jo. Now let A” and B” be the submatrices of A and B whose
rows and columns are indexed by Jr U {1} and Jo U {1}. By the above,
det(B") is defined. The only non-zero entry in column 1 of B” is b7;. Hence,
by Proposition 3.2, det(B’) is defined. In all cases det(B’) is defined and we
conclude that B is a P-matrix. O

The following lemma has an obvious geometric interpretation for matrices
over fields and a straightforward inductive proof. This proof generalises
immediately to partial fields.

Lemma 3.4 Let A be an (n + 1) x n P-matrix, where n > 2, and assume
that each row of A has a non-zero entry. Let B be an n x n submatrix of A.
If all other n x n submatrices of A have zero determinant, then det(B) = 0.
(]
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Proposition 3.5 The independent sets of a P—matrix are preserved under
the operations of interchanging a pair of rows or columns, multiplying a
column or a row by a non-zero scalar, and performing a pivot on a non-zero
entry of the matrix.

Proof. Say B is obtained from the P-matrix A by one of the above opera-
tions. By Proposition 3.3 B is a P-matrix so the independent sets of B are
defined. If B is obtained by interchanging rows or columns, or by multiplying
a row or a column by a non-zero scalar the result is clear. Assume that B
is obtained by performing a pivot on a non-zero entry of A. Without loss
of generality assume that this entry is a;;. Let A" and B’ be corresponding
submatrices of A and B with the assumption that A’ meets all rows of A.
In other words, A" and B’ consist of columns of A and B respectively. Say
|Jo| = k. Assume that the columns of A’ are independent. Then some k X k
submatrix A” of A’ has a non-zero determinant. If this submatrix contains
the first row of A”, then by Proposition 3.1, the corresponding submatrix B”
of B’ also has a non-zero determinant and the columns of B” are independent.
Assume that A” does not contain the first row of A’. If the first row of A’
consists of zeros, then the pivot has no effect on A’, and again the columns
of B" are independent. Assume that there is a non-zero entry in the first
row of A’. Let A" denote the matrix obtained by adjoining the first row of
A’ to A”. By Lemma 3.4, A” is not the only k£ x k submatrix of A" with
a non-zero determinant. Hence A’ has a k x k submatrix with a non-zero
determinant that contains the first row of A’ and we are in a case that has
been covered. It follows that if the columns of A" are independent, then the
columns of B’ are independent. The argument in the case that the columns
of A" are dependent is similar and is omitted. a

Theorem 3.6 Let A be a P-matrix whose columns are labelled by a set S.
Then the independent subsets of S are the independent sets of a matroid on

S.

Proof. Evidently the empty set is independent. Say [ is a nonempty inde-
pendent subset of S with |I| = k. By pivoting, taking scalar multiples, inter-
changing rows and columns, and applying Proposition 3.5, we may assume
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without loss of generality that the first £ rows of the submatrix of columns
labelled by I form an identity matrix. All other rows of this submatrix con-
sist of zeros. It follows immediately that all subsets of I are independent.
Now say J is an independent subset of S with |J| > |I|. It is easily seen
that at least one of the columns labelled by x € J has a non-zero entry in a
row other than the first k rows. Certainly x & I. It now follows readily that
I'U{x} is independent and the theorem is proved. O

If A is a P-matrix for some partial field P, then the matroid obtained
via Theorem 3.6 is denoted by M[A]. A matroid M is representable over P
or is P—representable if it is equal to M[A] for some P—matrix A; in this case
A is said to be a representation of M.

4 Basic Properties.

In this section we show that the class of matroids representable over a fixed
partial field shares some of the properties enjoyed by the matroids repre-
sentable over a field. Let P be a partial field. A routine application of
Proposition 3.5 proves

Proposition 4.1 If the matroid M is representable over P, then M can be
represented by a P-matrix of the form [/|A] where [ is an identity matrix.
O

A representation of the form [|A] is said to be in standard form.

Proposition 4.2 Let M and N be matroids representable over P.

(i) M~ is representable over P.
(ii) All minors of M are representable over P.

(iii) The direct sum of M and N is representable over P.
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(iv) The parallel connection P(M, N) and series connection S(M, N) of M
and N relative to any chosen basepoint are P-representable.

(v) The 2-sum of M and N is representable over P.

Proof. The proof of (i) is a matter of showing that the standard proof
for matroids representable over a field (see [14, Theorem 2.2.8]) works in
the more general setting of partial fields. The proofs of (ii) and (iii) are
straightforward. Essentially, the proof of (iv) is a matter of showing that a
matrix A of the form

Al . 0

is a P—matrix if and only if the matrices

0 1
0
Bl = A1 and B2 = : A2
0 0
L 1 - L 0 -

are both P—-matrices. Moreover, M[A] represents P(M|[B;], M[Bs]). For full
details see [16]. It follows immediately from (iv) that (v) holds. O

Let G be a subgroup of the multiplicative group of a field F with the
property that, for all ¢ in G, —g is in G. Recall that a (G, F)-matroid
is a matroid that can be represented over F by a matrix A over F with the
property that all non-zero subdeterminants of A are in GG. Since these classes
of matroids form the motivation for the development of partial fields and their
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associated matroids we certainly need to show that being representable over
the partial field (G, F) and being a (G, F)-matroid coincide.

Proposition 4.3 The matroid M is a (G, F)-matroid if and only if it is
representable over (G, F).

Proof. It only needs to be shown that a matrix A with entries in G U {0}
is a (G, F)-matrix if and only if, regarded as a matrix over F, all non-zero
subdeterminants of A are in G. Certainly, if A is a (G, F)-matrix, then all
non-zero subdeterminants of A are in G. Consider the converse. Assume
that A is a matrix over F such that all non-zero subdeterminants are in G.
If Ais 1 x 1 or 2 x 2, then it is clear that A is a (G, F)-matrix. Say n > 2
and make the obvious induction assumption. If A is the zero matrix then it
is clear that A is a (G, F)-matrix. Otherwise perform a pivot on a non-zero
element a;; of A. One routinely checks that the resulting matrix A’ also
has the property that all non-zero subdeterminants are in G. Moreover, by
induction, the matrix obtained by deleting row ¢ and column j from A is a
(G,F)-matrix. It is now easily seen that A’ is a (G, F)-matrix. But A’ is
obtained from A by a pivot, so A is also a (G, F)-matrix. O

It follows from Proposition 4.3 that, as expected, the classes of matroids
representable over the partial fields Reg, NR, D and Pg are the classes of
regular, near-regular, dyadic, and +/1-matroids respectively.

5 Homomorphisms.

The study of homomorphisms of partial fields is motivated by the desire to
understand the relationships between the classes of matroids representable
over them. Our terminology follows Gréatzer [8, Chapter 2].

Let Py and P, be partial fields. A function ¢ : Py — Ps is a homomor-
phism if, for all a,b € Py, ¢(ab) = p(a)p(b), and whenever a + b is defined,
then ¢(a)+ ¢(b) is defined, and ¢(a+b) = ¢(a)+¢(b). Of course, it may be
the case that ¢(a)+p(b) is defined when a+b is not (insisting that ¢(a)+p(b)
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is defined if and only if a + b is defined leads to a strictly stronger notion
of “homomorphism”). We are interested in the effect that homomorphisms
have on represented matroids. For a matrix A over Py, ¢(A) denotes the
matrix over Py whose (i, j)-th entry is ¢(a;;). Of course, the kernel of a
homomorphism ¢ is the set {a € Py : p(a) = 0}. The homomorphism ¢ is
trivial if its kernel is equal to Pj.

Gratzer defines three distinct types of homomorphism for partial alge-
bras. The one we have used is the weakest of these. It turns out that this is
sufficient for our purposes. Evidently the kernel of a homomorphism ¢ con-
tains 0. Say that ¢ is non-trivial. Then ¢(1) = 1. Moreover, if a # 0, then
o(a)p(a™) = p(1) =1, so p(a) # 0. Therefore the kernel of a non-trivial
homomorphism contains only 0. The proof of Proposition 5.1 below follows
from this observation and the definitions of “determinant” and “homomor-
phism”.

Proposition 5.1 Let P; and Py be partial fields and let ¢ : P; — Py
be a homomorphism. Let A be a P;—matrix. (Recall that this means that
determinants are defined for all square submatrices of A.)

(i) ¢(A) is a Py—matrix.

(ii) If A is square and det(A) = 0, then det(p(A)) = 0.

(iii) If A is square and ¢ is non-trivial, then det(A) = 0 if and only if
det(p(A)) = 0. O

As an immediate consequence of Proposition 5.1 we have

Corollary 5.2 Let P; and Py be partial fields and let ¢ : P; — P3 be a
non-trivial homomorphism. If A is a Py—matrix, then M[p(A)] = M[A4]. O

This in turn immediately implies
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Corollary 5.3 If there exists a non-trivial homomorphism ¢ : P; — Ps,
then every matroid representable over P is also representable over P,. O

We now give some examples to illustrate these ideas. The function ¢ :
Reg — GF(2) defined by ¢(—1) = ¢(1) = 1, and ¢(0) = 0 is easily seen to
be a non-trivial homomorphism. The well-known fact that regular matroids
are binary follows from the existence of this homomorphism. Consider also
the function ¢ : D — GF(3) defined by ¢(£2°) = £(—1)%, and »(0) = 0.
Again it is easily checked that ¢ is a homomorphism. One can conclude from
the existence of this homomorphism that dyadic matroids are ternary. Recall
the partial field Pt defined in Section 2. One readily checks that the identity
maps ¢ : P — Pg, and ¢ : Pg :— GF(7) are homomorphisms. Hence the
matroids representable over Pt are contained in the matroids representable
over Pg and these in turn are contained in the matroids representable over
GF(7). It is also easily checked that these containments are proper.

The homomorphism ¢ : P; — Py is an isomorphismif it is a bijection and
has the property that a+b is defined if and only if ¢(a)4¢(b) is defined. Note
that being an isomorphism is stronger than being a bijective homomorphism.
Of course, if P; and P4 are isomorphic, then the class of Py—matroids is
equal to the class of Po—matroids, but the converse does not hold. A strictly
weaker condition that guarantees that two partial fields P; and Py carry
the same class of matroids is that there exists a non-trivial homomorphism
p1 : Py — Ps, and a non-trivial homomorphism ¢, : P — P;. It is
easily checked that such homomorphisms exist for the partial fields Reg and
({£3": 1 € Z},Q), and these partial fields are certainly not isomorphic.

It follows that a matroid is representable over ({3 :4i € Z}, Q) if and
only if it is regular. (This fact has also been noted in [13].) It is clear that
very little is going on in the partial addition of ({£3":7 € Z}, Q). We make
this notion precise. A partial field P has trivial addition if 1 # —1 and, for
all z € P, x — 1 is defined if and only if z € {0,1}. The definition of trivial
is justified by

Proposition 5.4 If P has trivial addition, then, for all z,y € P*, x + vy is
defined if and only if y = —x.
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Proof. Say that P has trivial addition. Then x + y is defined if and only if
—y(—xy~t — 1) is defined, and the latter expression is defined if and only if
—xy~! — 1 is defined, that is, y = —x. O

The following theorem shows that both regular and near-regular matroids
are particularly significant in the study of matroids representable over partial
fields.

Theorem 5.5 Let P be a partial field.

(i) If P has trivial addition, then the class of P-representable matroids is
the class of regular matroids.

(ii) If —1 =1 in P, then the class of P-representable matroids contains the
class of binary matroids.

(iii) If there exists an element a € (P — {0,1}) such that (a — 1) € P, then
the class of P-representable matroids contains the class of near-regular
matroids.

Proof. Assume that P has trivial addition. It is straightforward to check
that neither U, 4 nor the Fano-matroid F; are representable over P. Since the
class of P—matroids is minor-closed and closed under duality we deduce that
the class of P-representable matroids is contained in the class of regular
matroids. Now define ¢ : ({1,—1},Q) — P by ¢(0) = 0, (1) = 1, and
¢(—1) = —1. One readily checks that ¢ is a non-trivial homomorphism and
it follows that a matroid is representable over P if and only if it is regular.

Assume that P satisfies (ii). Define ¢ : GF(2) — P by ¢(0) = 0, and
©(1) = 1. Evidently ¢ is a non-trivial homomorphism and it follows by
Corollary 5.3 that all binary matroids are P-representable.

Assume that P satisfies (iii). A matroid is near-regular if it is repre-
sentable over the partial field NR = ({£a'(a—1)? : 4,5 € Z}, Q(«)). Define
¢ :NR — P by ¢(0) =0, and, for i,j € Z, p(+a'(a — 1)) = +a'(a — 1)7.
Again, it is straightforward to check that ¢ is a non-trivial homomorphism.
It follows that near-regular matroids are P—representable. a
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Of course a partial field can simultaneously satisfy conditions (ii) and
(iii) of Theorem 5.5. It is shown in [23] that near-regular matroids are the
matroids representable over all fields except perhaps GF(2). Also, regular
matroids are the matroids representable over all fields, [19, 20]. From these
facts and Theorem 5.5 we have

Corollary 5.6 A matroid is representable over all partial fields if and only
if it is regular. A matroid is representable over all non-trivial partial fields
except possibly GF'(2) if and only if it is near-regular. O

6 Equivalent Representations.

An automorphism of a partial field P is an isomorphism ¢ : P — P. From
a matroid-theoretic point of view the main interest in automorphisms is the
role that they play in determining whether representations of a matroid are
equivalent. For partial fields we define equivalence of representations just as
for fields (see [14, Chapter 6.3]). Two matrix representations of a matroid M
over a partial field P are equivalent if one can be obtained from the other by a
sequence of the following operations: interchanging two rows; interchanging
two columns (together with their labels); pivoting on a non-zero element;
multiplying a row or a column by a non-zero member of P; and replacing
each entry of the matrix by its image under some automorphism of P. A
matroid is uniquely representable over P if all representations of M over P
are equivalent.

Equivalent representations of matroids over fields have been quite well
studied. It is easily seen that matroids are uniquely representable over GF'(2).
In fact Brylawski and Lucas [4] show that representations of binary matroids
are unique over any field. They also show that representations of matroids
over GF(3) are unique, although note that ternary matroids may have in-
equivalent representations over other fields. Kahn [10] has shown that rep-
resentations of 3—connected matroids over GF'(4) are unique. Unfortunately,
if M is the 2—sum of non-binary matroids then one can apply the non-trivial
automorphism of GF(4) to one part of the sum to obtain a strictly inequiv-
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alent representation of the same matroid. This situation occurs for any field
(or partial field) that has a non-trivial automorphism. The main reason why
equivalence of representations have been studied is due to the fact that strong
results in matroid representation theory are generally obtainable only when
matroids are uniquely representable: for example all known proofs of the
excluded-minor characterisations of binary, ternary and regular matroids use
unique representability in an essential way [3, 9, 12, 17, 19, 7]. Note also that
while ternary matroids generally have inequivalent representations over fields
other than GF(3), the precise way such representations occur is understood.
This understanding is essential to the results of [22, 23].

Given the above, it is certainly of interest to understand the behaviour
of representations over partial fields. We initiate such a study by looking at
some fundamental classes. We first note that the techniques of [4] can be
extended to prove

Proposition 6.1 If M is a binary matroid representable over the partial
field P, then M is uniquely representable over P. O

Now consider representations over the partial fields NR, D, and Pg. The
following lemma is a straightforward generalisation of results in [21] to partial

fields.

Lemma 6.2 If the rank-3 whirl W3 has a finite number % of inequivalent
representations over the partial field P, then any 3-connected, ternary ma-
troid that is representable over P has at most &k inequivalent representations
over P. O

In Lemma 6.2 the rank—3 whirl could have been replaced by the rank—
2 whirl U4, but there is some ambiguity in the literature regarding the
criteria for equivalence of rank-2 matroids. Use of W? avoids this problem.
The following lemma is clear.

Lemma 6.3 Let P be a partial field and let P’ be a subset of P that is a
partial field with the induced operations. If ¢ is an automorphism of P with

19



the property that the restriction of ¢ to P’ is a bijection of P/, then ¢|p: is
an automorphism of P’ O

Theorem 6.4 Let M be a 3—connected matroid.

(i) If M is representable over NR, then M is uniquely representable over
NR.

(ii) If M is representable over D, then M either has three inequivalent rep-
resentations over D, or is uniquely representable over D. The former
case occurs if M is non-binary and near-regular.

(iv) If M is representable over Pg, then M is uniquely representable over
Ps.

Proof. Say that W? is representable over the partial field P. Then it is
straightforward to show that any representation of W3 is equivalent to one
of the form

10010 1
01011 0|,
00101 —z

where z € (P—{0,1}), and 2—1 is defined. Note that matroids representable
over NR, D or Pg are ternary so we may apply Lemma 6.2.

Now say that P = NR. It is routine to check that if x is chosen so that
the above matrix represents W3 over NR, then

re{a,—(a—1),a/(a=1),—-1/(a—1),1/a, (o —1)/a}.

This gives six representations of YW3. We now show that these representations
are equivalent. Consider automorphisms of Q(«). Such automorphisms are
determined by their action on «, since the image of the rational function r(«)
under an automorphism ¢ is just 7(¢(«)). It is well known (see for example
[5, Proposition 5.2.3]) that all automorphism of Q(«) have the following

action on «:
ac +b

ca+d’

o —
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where a,b,c,d € Q, and ad — bc # 0. It follows that @« — —(a — 1),
a— afla—-1), a - -1/(a = 1), « — 1/a, and & — (o — 1)/« each
generate automorphisms of Q(«a). It is straightforward to check that the
restriction of each of these automorphisms to {+a'(a — 1)/ : i,j € Z} is
a bijection. It now follows from Lemma 6.3 that these restrictions are all
automorphisms of NR. We deduce that the above representations of W3
over NR are indeed equivalent. We conclude by Lemma 6.2 that (i) holds.

Say that P = D. We first show that D has no non-trivial automorphisms.
Assume that ¢ is an automorphism of D. Then

L=p(1)=p2-1)=9¢(2) —p(1) = (2) — 1.

Hence ¢(2) = 2, and it follows that ¢ is the identity map. It is easily checked
that the possible choices for x in the above matrix to obtain a representation
of W3 are 2, 1/2, and —1. We conclude that W3 has three inequivalent
representations over D. This establishes part of (ii). The remaining claims
in (ii) follow from an application of [22, Theorems 5.11 and 7.2].

Now say that P = Pg. In this case the choices for = are %\/gz But
conjugation in the complex numbers clearly induces an automorphism of
Pgs. Hence W3 is uniquely representable over Pg, and it now follows from
Lemma 6.2 that (iii) holds. O

7 Dowling Group Geometries.

For this section it is assumed that the reader has some familiarity with Dowl-
ing group geometries. These are introduced in [6]. Other useful references
are [2, 11]. See also [24, 25] for a graph-theoretic perspective.

Consider a finite group GG. We denote the rank-r Dowling group geometry
associated with G by @Q,(G). A matroid is a G—matroid if it is isomorphic
to a minor of Q,(G) for some positive integer r. It is natural to ask if there
exists a partial field P such that the class of P-matroids contains the class of
G-matroids. Of course there may be many such partial fields. For example, if
G is the trivial group, then the class of G-matroids is just the class of graphic
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matroids, and, since graphic matroids are regular, they are representable over
every partial field. Of these, the minimal partial field (in a natural sense) is
Reg. A similar situation holds if G is the 2—element group. Here the natural
minimal partial field P with the property that the P-matroids contain the
G-matroids is D. In what follows we generalise these ideas in a way that we
make precise.

A partial field P supports a group G if P* has a subgroup G’ isomorphic
to G with the property that g — 1 is defined for all g € G".

Theorem 7.1 Let G be a group and P be a partial field. Then the class of
G-matroids is contained in the class of P-matroids if and only if P* supports
a subgroup isomorphic to G.

Proof. Assume that P supports G. We show that for each rank r, Q,(G)
is representable over P. By relabelling if necessary, we may assume that G

is a subgroup of P*. Say r > 2. A column vector x = (1, xa,...,z,)" is a
G-wvector if it has the following properties. There are exactly two nonzero
entries, x; and x; where ¢ < j. Moreover, z; = 1, and z; = (=1)""g

for some g € G. Let A be the r x <£)|G| matrix consisting of all possible
G-vectors. Consider the matrix [|A].

7.1.1 [I]|4] is a P-matrix.

Proof. It is straightforward to check that all square submatrices of [I|A]
will have a defined determinant so long as ones that—up to a permutation
of rows and columns—are of the form

1 0 0 1
hy 1 -« 0 0

0 hy 0 0

D=1| . : :
0 0 1 0

0 0 - hoy hy
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have a defined determinant. Evidently this matrix will have a defined deter-
minant if and only if

o+ (=) kg - By = h(1+ (—=1)" A hyhy - )

is defined. For 1 < k < n, consider the column of A corresponding to the
k~th column of D. This column has non-zero entries in rows k; and k;. Let
dr. = k;j — k; — 1. Then hy, = (—1)%g;, for some g € G. Thus

L4+ (=1)" "hythahg - hyy = 1+ (=1t dntditdetdn gl g0 oo g

The above sum—and hence det(D)—will certainly be defined if n —1—d,, +
di +do +---+d,_1 is odd. We now show that this is the case. The sum
dy +dy+ -+ d, is (—1)n minus twice the index in A of row 1 of D plus
twice the index of row n (all indices except the first and last appear once as
a k; and once as a k; and so cancel). Therefore dy + dy + - - - + d,, has the
same parity as n so that —d,, + dy + dy + - - - + d,,_1 has the same parity as
n. It follows that n — 1 —d,, +dy +ds + - -+ + d,,—1 is odd as claimed. O

Since [I]A] is a P—matrix, the matroid M|[I|A] is well-defined.
7.1.2 M[I|A] = Q.(G).

Proof. Consider a G—vector with non-zero entries in the i—th and j—th coor-
dinates, the j—th coordinate being h. Then h = (—1)?~"!g for some g € G.
Call g the underlying group element of the G-vector. Return attention to
the matrix D examined in 7.1.1. It follows from the analysis in the proof of
7.1.1, that det(D) = 0 if and only if the underlying group elements of the
columns of D satisfy ¢, 'g1gs--- g1 = 1. Consider the columns of A that
meet D. Evidently, these columns are independent if and only if det(D) # 0.
(Note that dependency of the columns is determined entirely by group mul-
tiplication in G.) The proof of the fact that M[I|A] = @Q,(G) now follows
without much difficulty. We omit details and merely outline one (of several)
ways that such a proof could be completed. Associated with [/|A] is a biased
graph in the sense of [24]. Edges of this graph are labelled by elements of G.
Here [I|A] can be regarded as being—up to the signs of entries—a weighted
incidence matrix of this biased graph. It is straightforward to show that
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M{I|A] is equal to the bias matroid of this biased graph. But it is known
[25] that the bias matroid of the graph we have constructed is just Q,(G).O

We conclude that if P supports G, then Q,.(G) is representable over P.
Consider the converse. Assume that, for r > 2, Q,.(G) is representable
over P. Then, in particular Q3(G) is representable over P. Let [I3]A] be a
representation of Q3(G) in standard form where the columns of I3 represent
the joints of Q3(G). In such a representation, if ¢ is a column of A, then
for some x € P*, ¢ is equal to (1,z,0)", (1,0,z)", or (0,1,z)". An argument,
essentially identical to that of [6, Theorem 9] shows that the set S = {z :
(1,2,0)" is a column of A} is a coset of a subgroup G’ of P* that is isomorphic
to G. To show that P supports G all that remains is to show that g — 1 is
defined for all g € G'. Since S is a coset of G, there exists k € P* such that
S={kg:g€ G} Forged,

1 1
D= [ k kg ]
is a submatrix of the P-matrix A, so D has a defined determinant. But

det(D) = k(g — 1) is defined if and only if g — 1 is defined. We deduce that
P indeed supports G. g

By Theorem 7.1, for a given group G, deciding whether there exists a
partial field P such that the P-matroids contain the G—matroids reduces to
deciding whether there there exists a partial field that supports G. Of course,
if G is not abelian, such a partial field does not exist. But even being abelian
is not enough, a fact that initially surprised us.

Theorem 7.2 Let G be an abelian group. Then there exists a partial field
that supports G if and only if G has at most one element of order 2 (that is,
there exists at most one element g # 1 such that g* = 1).

Proof. Let P be a partial field supporting the group G. Evidently we may
regard G as a subgroup of P. Say g € G, g # 1, and ¢?> = 1. Since P
supports G, (g — 1) € P. Now

glg—1)=g"—g=1—-g=—(9-1).
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Since g # 1, (9 — 1)~ is defined, and it follows that ¢ = —1. We conclude
that there is at most one element of G of order 2.

Consider the converse. In what follows we use multiplicative notation
for all groups—even free abelian groups. Let G be a group with at most
one element of order 2. We proceed by constructing a canonical partial field
associated with G that supports G. We need to be able to subtract 1 from
elements of G. With this in mind we define the set S, by S ={g—1:¢g €
G,g # 1}. Note that g — 1 is just a name for an element of S; we do not yet
have a notion of subtraction. Let Gg denote the free abelian group generated
by S. We also need to be able to negate elements. With this in mind we let
Go be the 2—element group defined by Gy = {1,—1}. Now put the groups
together and let G’ be the direct product of G, Gg, and G,. Evidently, the
elements of G’ all have the form

:l:g(gl - 1)“(92 - 1)12 T (gTL - 1)Zn ‘g € G7g17g27 -y 0n S (G - {1})

As yet G’ is not appropriate as the multiplicative group of a partial field
P. In such a group we would want to interpret g — 1 as g + (—1). Also,
in P we require the distributive law to hold. This means that we need to
have g — 1 = g(1 — ¢g71), that is, g — 1 = —g(¢g! — 1). But this does
not hold in G’. We solve this problem by imposing this relation on G’. Let
G" = (—g(g7 =1)(g—1)"1: g € (G—{1})), and set P* = G'/G". Obviously
we intend to make P* the multiplicative group of our partial field, but there
is little point in doing this if, in the process of factoring out G”, we have lost
information about G. We now show that this has not happened.

Evidently, the elements of G correspond to distinct elements of P* if and
only if 1 is the only member of G in G”. First note that

(=g9(g7' =D(g-1)) == g =) (g—1) = ~h(h = 1)(h-1)7",
where h = ¢g~!. It follows that if ¢” # 1 is a member of G”, then ¢” has the
form

(=D)"g1(g1 = Dlgr =D "2y = Dlg2 = D7 - gulgn” = Dlga — 17,
for some ¢g1,92...9, € (G — {1}). Under what circumstances can ¢g” be in
G? Certainly, if n =1, ¢ € G. Say n = 2, that is, say

9" =gi(gr' =D —1) g9y = (g2 — 17
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If ¢" € G, then either g; = g or g? = g2 = 1. In the former case ¢" = 1.
Consider the latter. Since G does not have two distinct elements of order
2, we also have g; = g9, and again ¢” = 1. A straightforward inductive
argument based on these two cases shows that for all n, ¢” € G if and only
if ¢” = 1. It follows that if we can represent P* as the multiplicative group
of a partial field P in such a way that g —1 = g+ (—1), then P will support
G. We turn to this question now.

Let P = P* U {0}. Define the multiplication of P to be that of P* with,
of course, a0 = 0a = 0 for all a € P. Now define + as follows:

(i) Foralla e P*, a+ (—a)=0,and a+0=0+a = 0.
(ii) Forall g,h € G, g+ (—h) = h(gh™' —1), in particular, g—1 = g+ (—1).
(iii) Forall g,h € G, (¢ — 1)+ (—(h—1)) =g — h.

(iv) For all a,b € P*, a + b is defined if there exists x € P such that for
some h,g € G, either a = xg and b = —zh, or a = x(g — 1) and
b= —x(h —1). In either case, a +b=x(g — h).

In any case not covered by (i)—(iv), + is not defined. It remains to show
that with this definition P is indeed a partial field. Evidently, 0 is the additive
identity. Consider the commutative law. For g € G, 1 —¢g =g(g~'—1). But
we know that —g(g~' — 1) = g — 1. Therefore 1 — g = —(g — 1). The fact
that a + b is defined if and only if b+ a is defined in which case a+b=0+a
now follows routinely.

Consider the distributive law. Say that a,b,c¢ € P, and that a(b + ¢) is
defined. Then for some g, h € G, either b = xg and ¢ = —xh or b= xz(g — 1)
and ¢ = z(h — 1). In the former case ab = axg and ac = —axh, and in the
latter case ab = ax(g — 1) and ac = —ax(h — 1). In either case we have
a(b+c) = ax(g—h) = ab+ac. The converse follows from an obvious reversal
of this argument.

Finally consider the associative law. We use the theory of group rings.
Let F be a field and H = {h; : i € I} be a multiplicative group, The group
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ring F[H] consists of all formal sums }";c; a;g; for a; € F, and h; € H, where
all but a finite number of the a; are 0. The sum of two elements of F[H] is
defined by

i€l i€l i€l
and the product is defined by

(z aihi> (z bl-hl-> _y ( 5 ajbk) e

icl el i€l \hjhr=h;

A comprehensive treatment of group rings is given in [15]. All that we need
know here is that group rings are indeed rings. Now consider the group ring
Q[G]. Let PT denote the elements of P that can be written in the form

tg(g1 — 1) (go — 1)+ (g, — 1)

where, for 1 < j <mn, ¢; > 0. There is a natural embedding of P* into Q[G].
Moreover it is easily checked that this embedding preserves sums. We now
show that the associative law holds for elements of P*. Say aq, as, ..., a, are
elements of P*. Assume that some association of aj,as,...,a, is defined,
the result of this sum being a. Consider some other association in which all
sums are defined except possibly the final sum. Denote this sum by b + c.
It follows from the embedding of P* into Q[G] that if b + ¢ is defined, then
a = b+ c. We show that b + ¢ is indeed defined. Regarding a,b and c as
elements of Q[G] we have a = b + ¢, so that ¢ = a — b. But these are all
well-defined as elements of P. Hence in P we also have ¢ = a — b. But

(a=b)+b=>b((ab"' —=1) = (0—1)) =b(ab"") = a.

It follows that b + ¢ is indeed defined in P. Now say that ai,as,...,a, are
in P. Then for some non-zero element x, aix,asz,...,a,x are all in P*.
We know that the associative law holds for these elements. It then follows
from the distributive law that the associative law holds for aq, as, ..., a,. We
conclude that the associative law holds in general and that P is a partial
field. O

Let G be an abelian group with at most one element of order 2. Denote
the partial field supporting GG constructed via the technique of Theorem 7.2
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by Pg. We now show that Pg is in some sense a minimum partial field
supporting G.

Theorem 7.3 Let P be a partial field supporting the group G. Then there
exists a non-trivial homomorphism ¢ : Pg — P.

Proof. Regard G as a subgroup of Pg. Say that P supports G’ where
G' = G. Let ¢ : G — G be an isomorphism. If z € Pg, then for some
g,91,92 --.,0n EG, and il,ig,...,in EZ,

v=g(gr = 1) (g2 = 1) (gn — 1™
Define ¢ : Pq — P by

p(Eg(gr — 1) (g2 — 1) -+ (gn — 1)) ,
= $¢(9)(d(g1) — 1) (d(g2) — 1)+ (¢(gn) — 1)

The details of the straightforward argument that shows ¢ is a homomorphism
are omitted. O

We immediately obtain

Corollary 7.4 If, for r > 3, the partial field P supports the group G, then
the class of matroids representable over P contains the class of matroids
representable over Pg. O

If G is the trivial group, then Pg = Reg. It is also readily checked that
if G is the 2—element group, then Pg = D, so that the dyadic matroids form
the smallest class of matroids representable over a partial field that contain
the matroids representable over the 2—element group. For both these groups,
Pg can be embedded in a field. Say Gs = {a : a® = 1}. Here, in Pg,,
a + 1 is not defined. But whenever Gj3 is embedded as a subgroup of the
multiplicative group of a field, a + 1 = —a?, so Pg, cannot be embedded in
any field.
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It is well known (and easily seen) that a finite subgroup of the multiplica-
tive group of a field is cyclic. It follows from this fact that no partial field
that supports a non-cyclic group can be embedded in a field.

While knowledge of the groups supported by a partial field give insight
into its structure, this is by no means the whole story. The only group
supported by the partial fields Reg, NR, Pg, and GF'(2) is the trivial group,
yet the classes of matroids representable over these partial fields are very
different.

We now test the readers patience with a final general comment. Let G be
an abelian group with at most one element of order 2. It is of interest to com-
pare the class of G-matroids with the class of Pg-representable matroids.
Which class has the most satisfying structure theory? In their interesting pa-
per [11], Kahn and Kung show that the class of G-matroids forms a variety.
In particular this means that the class is minor-closed and is closed under
the taking of direct sums. Moreover, for each rank r, there is a universal
model, namely @Q,(G). This means that every simple rank-r G-matroid is a
restriction of Q,(G). What about the class of Pg-representable matroids?
This class is certainly closed under direct sums and the taking of minors.
However there does not exist a universal model, so that the class is not a
variety. On the other hand, the class of Pg-representable matroids is closed
under duality and 2-sums, and neither of these properties are enjoyed by
the class of G-matroids. In balance we believe that the loss of the universal
model is adequately compensated by the gain of 2—sums and duality.
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