
1 
 

 

Factors Influencing Haul-out Behaviour of Non-

reproductive Weddell Seals (Leptonychotes weddellii) at 

Cape Royds, Antarctica 

 

A dissertation submitted in partial fulfilment of the requirements for the Degree 

of Master of Antarctic Studies 

at the 

University of Canterbury 

by Arkady Michael Tadeusz Aspinwall 

Gateway Antarctica 

July 2021 

 

   

 

 

 

 

 

 

 

 



2 
 

 

Abstract 

 

The Weddell seals (Leptonychotes weddellii) are a fast-ice obligate phocid that plays a pivotal role as both 

predator and prey within the wider Antarctic marine ecosystem. Weddell seals face an uncertain future with 

the threat of habitat loss and pressures of marine resource extraction from the Southern Ocean. Monitoring 

of Weddell seal population dynamics provides us with an understanding of wider ecosystem health. Remote 

sensing technologies such as satellite imagery are increasingly being used to monitor remote populations in 

the Antarctic. However, satellite imagery needs to be validated by ground-truthing data, and an 

understanding of Weddell seal behaviour is critical for accurately interpreting Weddell seal counts from 

space. While the presence of a diurnal haul-out cycle in Weddell seals has been well documented, it is often 

not corrected for the variation of environmental conditions over a 24-hour period. I review 5,054 images 

from Cuddeback trail cameras between the 30th of October and 28th December 2017 from Cape Royds, 

Antarctica for a colony of non-reproductive Weddell seals. I use Generalised Additive Models to correct 

haul-out behaviour for the environmental variables of temperature, pressure, and wind-speed to determine a 

more accurate diurnal haul-out pattern. I find that more Weddell seals haul-out when air temperatures are 

higher, or wind speeds lower. Secondly, the haul-out cycle persists, with most seals hauled-out in the 

afternoon, and the fewest seals hauled out in the morning. Haul-out patterns can be used to calibrate satellite 

census counts of Weddell seals, integrating environmental parameters to correct time-of-day patterns may be 

the next step in generating better population estimates for the Ross Sea region and the wider Antarctic 

continent.  
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Introduction 

 

Seal ecology 

Weddell seals (Leptonychotes weddellii; WESE) are the southern-most of all seal species, and are endemic 

to the Antarctic (Garrott et al., 2012; Goetz, 2015; Rotella et al., 2012). Due to their key role as one of 

Antarctica’s mesopredators, their population dynamics are of great importance to the current ecology of the 

Ross-Sea region. With a lifespan in the region of 30 years, and adult weights reaching 500kg, WESEs are a 

long-living heavyweight of the Antarctic ecosystem. Large vertebrates have often been used as an indicator 

of ecosystem health due to their relatively high position within the trophic chain (Landres et al., 1988). The 

same is true for WESEs, serving a unique role as a predator of various pelagic fish, Mollusca and Crustacea, 

a competitor to Adélie (Pygoscelis adeliae) and Emperor (Aptenodytes forsteri) penguins (Larue et al., 

2019), and prey to Leopard seals (Hydrurga leptonyx) and Antarctic killer whales (Orcinus orca) (Fenwick, 

1973). The complexity of WESEs trophic interactions with the local ecology of the Ross Sea is clearly 

demonstrated by their relationship with another key mesopredator, the Antarctic toothfish (Dissostichus 

mawsoni). Both WESEs and Antarctic toothfish compete to exploit the pelagic Antarctic silverfish 

(Pleuragramma antarcticum) (Ainley et al., 2020). Secondly, Antarctic toothfish are preyed upon by 

Weddell seals (Ainley et al., 2015; Ainley & Siniff, 2009). Simultaneously, WESEs are competing with 

Type-C killer whales who also eat Antarctic toothfish (Ainley & Ballard, 2012). Such intraguild predation 

between WESEs and toothfish contributes to creating a highly interconnected system where a small change 

to just one species can cause a large shift in the overall ecological equilibrium.   

 

As a fast-ice obligate species, WESEs are found along the entire coastline of Antarctica, congregating 

around ice-cracks and dive-holes that allow them to rest and pup on the ice surface and forage in the ocean 

below (Madden et al., 2014). WESEs have been observed and their ecology described, since the beginning 

of European Antarctic exploration in the early 1900s. The close relationship between WESE colonies and 

perennial sea-ice cracks has been known for a long time (Wilson, 1907). These cracks are formed by the 

tidal motion of fast ice against an immovable landmass such as Ross Island. WESEs use these cracks as an 

interface between the sea-ice surface and the ocean below. Whilst generally kept open by a consistent 

diurnal tide pattern, individuals have been observed maintaining such cracks and holes by abrading sea-ice 

around the edges with their canine teeth (Stirling, 1969b). Paired with the WESEs strong homing abilities in 

locating and returning to various tidal cracks and ice-holes (Fuiman et al., 2020), these access points are of 
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critical importance in the Ross Sea as they allow individuals to haul-out deep into the south of McMurdo 

Sound, near Ross Island, Out of reach of larger predators that may not be able to venture as far under the 

fast-ice without the ability to find the same access points, or ones large enough to accommodate them. This 

has led to a large concentration of breeding populations of WESEs deep in the McMurdo Sound, where the 

low predation rate may be one reason for high pup survivability (Hastings & Testa, 1998). 

 

Early estimates placed around 50,000 individuals in the Western Ross Sea (Stirling, 1969a).  Over the last 

50 years, a wide selection of techniques have been employed to supplement ground monitoring of seal 

populations in the Antarctic. These techniques range from aerial flyovers by helicopters and light-aircraft 

photographing and to count populations (Gurarie et al., 2017), or utilizing imaging satellites to provide 

population snapshots and identify habitat preferences (LaRue et al., 2020). Modern advances in genetics 

have allowed for the estimation of population sizes through an understanding of genetic marker diversity, 

providing an estimate of 50,000 female WESEs in the Ross Sea (Zappes et al., 2017). Estimates driven by 

genetic analysis are particularly useful when dealing with rare and elusive species such as the Ross seal 

(Ommatophoca rossii) as only a relatively small fraction of the overall population needs to be sampled to 

gain an effective estimate of total population size (Curtis et al., 2011).  

Unfortunately, emerging research suggests that there is a worrying declining trend in the size of  WESE 

populations (Ainley et al., 2015). There remains an urgent need for further and more wide-scale monitoring 

of WESE behaviour and breeding patterns in the uncertain times ahead, governed by a warmer Antarctic and 

dominated by a loss of Antarctic sea-ice (Forcada et al., 2012). WESEs reliance on fast-ice for haul-out and 

breeding leaves them at risk of habitat loss driven by a warming climate (Donald B. Siniff et al., 2008). This 

can be further compounded by uncertainties surrounding the effect of the Ross Sea Antarctic toothfish 

fishery (Ainley & Siniff, 2009; Albrecht, 2014; Salas et al., 2017). Where the current ecological balance of 

the Ross Sea may be disrupted by further removal of toothfish from the ecosystem (Ainley et al., 2020; Tin 

et al., 2009). This vulnerability to environmental change and uncertainty around food-web interactions, 

provide the basis for arguments for increased and widespread monitoring of WESE populations in 

Antarctica.   

 

Haul-out behaviour in Weddell seals 

WESEs birth pups in the Austral spring, generally between September and October as the ambient 

temperature begins increasing. The exact timing of pupping corresponds with the latitude of the colony, with 

higher latitude mothers giving birth at a slightly later point in time (Stirling, 1969b).  Despite weaning 

occurring at around  6 weeks, pups have been observed swimming and diving within two weeks of birth 

(Burns et al., 1999). For the early period of pup development, the mothers invest a large amount of energy 
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into weaning large pups, (Mannas, 2011). WESEs however, cannot be classified as pure capital breeders, as 

they do not gain enough mass foraging during gestation to fully support lactation (Shero et al., 2015). This 

energy deficit requires supplementary foraging during lactation, leading to a delicate juggling act of time 

spent feeding young, resting on sea-ice, or searching for food in the ocean.  

The haul-out cycle in WESEs is a phenomenon affecting both males and females, that represents a balance 

between foraging in the ocean and resting on the fast ice (Boehme et al., 2016; Davis et al., 1999). In the 

early afternoon, a larger percentage of WESE populations tend to be hauled-out on the ice surface than in 

the early morning (Siniff et al., 1971; Smith, 1965). This haul-out cycle exists in conjunction with other 

factors that may determine whether an individual seal chooses to haul-out or forage in the ocean. Haul-out 

behaviour can be affected by environmental factors such as wind speed and temperature, or the more elusive 

singular effects such as “bad weather” (Siniff et al., 1971).   

 

Remote sensing 

Antarctic research is conducted in one of the most hostile environments on the planet. Katabatic winds can 

reach speeds of upward of 130km/h (Nylen et al., 2004), and even in the summer months temperatures can 

get well below -20°C. Consequently, data collection tends to be limited to certain locations and certain times 

of the year. This poses a challenge to researchers seeking to understand the ecology of WESE populations 

too remote to easily access, or at times of year too difficult to study (although arguably the austral spring-

summer is of more interest due to WESE reproduction) (Kennicutt et al., 2019; Testa & Siniff, 1987). With 

this in mind, the vast majority of best-studied colonies tend to be near established research stations as this 

drastically limits the logistic challenge of accessing them for research. Secondly, WESE population research 

tends to be biased toward observations in the Austral summer, as it is hard to directly observe the abundance 

and distribution of seals in the dark and often dangerous weather conditions of mid-winter (Siniff et al., 

1977). 

 

Researchers have attempted to leverage various emerging remote sensing technologies to solve this 

challenge of difficult or unsafe in-situ observations (Andrews et al., 2008; LaRue et al., 2011). A useful 

technique is that of using satellite imaging to monitor populations that are inaccessible either by their 

distance from logistical support, or their proximity to hazardous terrains, such as the crevasses that tend to 

be associated with glaciers and ice tongues. With the increasing resolution and abundance of satellite 

imagery, this technique is becoming increasingly useful as a tool for population monitoring (Marvin et al., 

2016; Moxley et al., 2017). Satellite imaging can be a cheaper solution for accessing remote locations when 

compared to in-situ observations or aerial flyovers, both of which require the logistics and infrastructure to 

send researchers to the continent (Fretwell et al., 2017). Furthermore, WESEs have proven an excellent 
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study species for satellite sensing technologies due to their propensity to haul-out for long periods of time on 

the sea-ice and the stark contrast of their dark coat and the white ice (LaRue et al., 2020).  

Trail cameras form another part of the suite of remote sensing technologies available, this time operating 

within much closer proximity of the study species (Cutler & Swann, 1999). Unlike satellite imagery, trail 

cameras still require physical access to the study population as researchers need to place cameras within the 

visual range of their intended targets. The advantage of trail cameras is that they only need to be placed 

once, before collecting information over a prolonged period of time. This limits the disturbance to the study 

species caused by the presence of human observers (Cutler & Swann, 1999; Griffiths & Van Schaik, 1993; 

Lynch et al., 2020; Marvin et al., 2016). Within an Antarctic context, trail cameras have been used to great 

success as part of the Penguin Watch program, allowing for high-frequency monitoring of Gentoo penguins 

(Pygoscelis papua) (Jones, 2019).    

 

A principal problem in using satellite imagery to generate census data on WESEs is photograph timing is 

limited by weather (think cloud-cover) and satellite orbits (Banner, 2012). A satellite image will contain all 

the individuals hauled-out on the sea ice across a wide region, but only at that exact moment the photograph 

was taken. Any individuals that happened to be under the sea-ice at the time of the photograph would not be 

included within a satellite-based population estimate. This contrasts with in-situ census counts which take 

place over an entire, or series of days so that all individuals hauled-out over the length of the study can be 

counted, capturing a more accurate representation of the population size. Or, with trail-camera counts, where 

the camera can take photographs at a consistent rate over an extended period of time.  

 

This problem is compounded further by the aforementioned haul-out cycle in WESEs (Stirling, 1969a; Testa 

& Siniff, 1987), a cyclical variation of sea haul-out over a 24-hour period leading to a systematic under-

sampling by satellite imagery at specific times of day (LaRue et al., 2011). This cycle means that at different 

times of day a different proportion of the seal population is hauled-out onto the ice surface and there can be 

significant daily variation within satellite count data, with photographs in the early afternoon local time 

containing a larger proportion of the population on the fast-ice (Siniff et al., 1971; Smith, 1965). This 

difference in haul-out by time of day needs to be corrected between satellite images in order to correctly 

estimate a population size and not confound any further inferences on population dynamics.  

 

My research objectives 

With such a pivotal position within the trophic chain in mind, a fuller understanding of WESE ecology 

provides us with a great opportunity to understand wider ecosystem functions (LaRue et al., 2020). To 
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elucidate the impact of a warming climate (Vaughan et al., 2003), fisheries management (Ainley & Siniff, 

2009), and loss of seasonal sea-ice (Donald B. Siniff et al., 2008), the current dynamics and future trends of 

WESE populations need to be monitored carefully. This is especially important as the harsh environment 

and remote nature of Antarctic research might make other species that are influenced by WESE population 

dynamics much more difficult to observe directly. Due to these difficulties of research in such extreme and 

remote conditions, we need to leverage remote sensing technologies to monitor inaccessible populations 

toward these aims. WESEs tendency to spend large lengths of time hauled-out on sea-ice make them a 

species particularly well suited to ground census observations and remote satellite imaging (LaRue et al., 

2020). However, remote sensing technologies such as satellite imagery carry associated assumptions that 

need to be accounted for before fully relying on the information they produce, such as a variation in WESE 

haul-out depending on the time of day, season, and local environmental conditions.  

 

I attempt to use a different remote sensing technique, trail cameras, to build a model that describes WESE 

haul-out behaviour. By combining camera count data with weather data, I aim to develop an understanding 

of the proportion of WESEs hauled-out at a specific point in time given a specific set of environmental 

conditions. Such a model can be used as an adjustment factor to allow for the comparison of WESE counts 

between different satellite images taken at different points in time during different weather regimes, or 

provide a guideline to determine at what time, or under what conditions, census data should be collected. 

Both strategies aim to improve the monitoring quality of such a keystone species as the Weddell seal.  
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Methods 
Study area 
The study was conducted at the edge of Ross Island, near Shackleton’s Hut at Cape Royds (77°33'33.8"S 

166°09'46.1"E), about 35km due north of Scott Base. Cape Royds lies on the western shoreline of Ross 

Island, facing McMurdo Sound. This region experiences a large seasonal variability in sea-ice cover, with 

high ice coverage over the austral winter, sea-ice breakout between November to January, and open water 

throughout the summer period (Kim et al., 2018). The ocean floor along the coast initially slopes gently to 

around 100 m deep, before dropping off rapidly to over 800 m (Robinson, 1963).  The presence of a large 

anti-cyclonic eddy to the west of Cape Royds generates a consistent northward current of cold low-salinity 

water from the Ross ice-shelf (Lewis & Perkin, 1985). Temperatures at Cape Royds tend to vary between a 

monthly mean of -30°C in the austral winter and 0°C in the summer (Stearns, 1988).  In general Cape Royds 

experiences relatively warmer and calmer weather as the cold southerly winds coming off the Ross Ice Shelf 

are diverted eastward by the topography of Ross Island itself (Monaghan et al., 2005).  

 

WESEs at Cape Royds co-exist with several other Antarctic species. There is a relatively small Adélie 

penguin colony consisting of 3,000-4,000 breeding pairs, however, this colony appears too small to attract 

many Leopard seals to the region (Ainley et al., 2005). The coast off Cape Royds is known to be frequented 

by Antarctic killer whales, including type-B killer whales that predate on large mammals; with pod sightings 

and predation events observed in late December through January (Ainley & Ballard, 2012), coinciding with 

the break-out of winter sea-ice. Finally, vagrant Emperor penguins are known to frequent the study area, 

most likely from the colony at Cape Crozier (M. LaRue, 2021, personal communications). 
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Fig.1: Map of Ross Island identifying the location of automated weather stations made available by the 

University of Wisconsin. Weather data are collected from Marble Point II, tidal data from Scott Base, and 

sea count data from Cape Royds. Map courtesy of publicly available data provided by 

https://amrc.ssec.wisc.edu/aws/ 

 

 

Environmental data 

I used publicly available data from Automated Weather Stations (AWS, Appendix A) 

(https://amrc.ssec.wisc.edu/aws/). For this study, I used weather data from one of the closest available AWS 

at Marble point II, 60 km to the west across McMurdo Sound. Data at 10-minute time intervals were 

available across the length of the study period. The environmental variables collected were as follows: 

temperature (°C), pressure (hPa), wind-speed (ms-1), wind-direction (°), humidity (%), and delta-T (°C). In 

the context of this AWS, delta-T represents the difference in temperature between two thermometers 

contained within the AWS and is used to identify whether or not the weather station is buried under snow 

(A. McDonald, 2021, personal communications). There is still some distance between the AWS at Marble 

point and the study site at Cape Royds, meaning that there will not be a perfect match between the weather 
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at both locations. However, visual inspection of the weather data at Cape Bird, Marble Point, and Willie 

Field identified broadly similar trends in temperature, pressure, and wind speed, providing us with 

confidence that weather data from Marble Point would hold at least some explanatory power for WESE 

haul-out at Cape Royds.  

 

I used tidal information publicly available for Scott Base approximately 35km south 

(https://www.linz.govt.nz/sea/tides/sea-level-data). Tidal data is at 5-minute intervals between the 30th of 

October and 28th of December 2017 and displays tidal elevation in meters above chart datum.  

 

Seal data 
Three Cuddeback trail cameras (20MP, model-E), were set up along the rocky shore of Cape Royds facing 

westward over McMurdo Sound at neighbouring patches of sea-ice. These cameras took one photograph 

every 30 minutes between the 30th of October - 31st December 2017. The cameras were pointed at a small 

population of WESEs that used the sea-ice near a series of tidal pressure ridges as a haul-out spot in between 

forages in the ocean. All three cameras were set up at varying heights along the island slope and 

consequently, the scope of the area captured in their photographs varied dramatically from camera to 

camera. Camera #2 was placed at the highest vantage point, capturing images of the largest sea-ice area; 

camera #3, being at the lowest vantage point, captured images of the smallest area. The three cameras were 

set up opportunistically by researchers working at the nearby Adélie penguin colony, who identified this 

location as a reliable haul-out of WESEs and decided to collect data for future study of WESE behaviour.  

 

In order to investigate the presence of a haul-out cycle in non-reproductive Weddell seals at Cape Royds, I 

counted the number of observable individuals in every photograph taken by the three aforementioned trail 

cameras. Initially, I was interested in the questions pertaining to the orientation of hauled-out seals on the 

sea-ice, I recorded the angle of each WESE in all photographs, as well as the date and time of the 

photograph, the camera the photograph set belonged to, and the following associated metadata that I thought 

would be of ecological interest to this research: photograph quality, sea-ice cover, seal size, and whether or 

not the seal was in shadow (this was recorded to answer an auxiliary question on habitat preference). 

Initially, I attempted to estimate the angle of shadows in each photograph to get an indication of sun 

location. However, due to the unreliability of trying to obtain this estimate from the photographs, as well as 

the large number of overcast days across the study period, this effort was quickly abandoned. This is 

important as it leads to the main difference in definitions between medium and high-quality photographs I 

discuss later in the methods (Table. 1). 

 

 



14 
 

Dataset formatting 
The format of data recording was as follows: each row contained the angle of individual seals recorded. This 

angle was measured with a on_screen_protractor.jar program (https://sourceforge.net/projects/osprotractor/) 

that measured the angle of a seal from tail to head, where possible, in radians. This angle was with respect to 

the upward direction of the photograph which, due to the fact the cameras were stationary throughout the 

dataset, was consistent. If there was no seal present in a photograph, the angle would be recorded as “none”.   

For each seal angle recorded, I recorded the photo_ID, the date of the photograph, and the time of the 

photograph. Time was recorded as the number of hours since midnight of that day (eg. 10:30 am would be 

10.5) as well as in military time. For each seal record, I recorded a measure of photograph quality. This 

metric was included to account for the varying quality of the image and therefore my varying confidence of 

being able to accurately count the true number of seals present in a photograph. In some cases, due to either 

a white-out event or overexposure of the camera from sunlight reflected into the lens, the quality of the 

photograph was so low that it was recorded as “none”. These photographs were later excluded from the 

dataset as it is impossible to tell whether seals were present at that time. In general, photographs were rated 

as anywhere between low (low confidence in recording all seals) through medium, to high (high confidence 

in observing all seals in a photograph). The definitions of photo quality are outlined in Table 1.  
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Table 1: Definitions of photograph quality recorded in order to identify possible under-sampling of Weddell 

seal counts. The quality of each individual photograph was assessed according to these requirements and 

placed in one of four categories representing my confidence that the number of seals I counted in a 

photograph was the true number of seals on the sea-ice captured in that image. If there is a temporal 

structure in photo quality distribution, this could indicate a systemic under-sampling of seal numbers at 

certain times of day thus suppressing or exaggerating the presence of a haul-out cycle.    

Photograph Quality Category Requirements 

None No discernible features in the photograph. These 

images tend to be fully or partially obscured due to 

blizzards obscuring the camera or direct reflection 

of sunlight off the sea-ice surface into the lens 

Low There is enough contrast within the photograph to 

identify the presence of seals. However, these 

photographs could have up to 25% of the image 

overexposed, or part of the lens is obscured by 

snow. Any seal hauled-out in an obscured part of 

the image would not be counted and therefore 

photos of low quality may under-sample the 

number of seals.  

Medium These photographs contain good contrast across the 

image. I have high confidence that all seals in 

medium and above quality images were correctly 

counted. Medium quality photographs are 

differentiated from high-quality photographs by 

lack of discernible shadow.  

High High-quality photographs contain excellent contrast 

leading to a low probability of under-sampling seal 

counts. Secondly, in high-quality photographs, 

shadows are clearly discernible and have sharp 

edges. Allowing for identification of whether a seal 

is resting in shadow and initially, estimation of sun 

angle.  
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I estimated the percentage of ice-cover in each photograph. This is important as data collection took place 

over a period of time where sea-ice break-out would be expected.  As the proportion of ice-cover may affect 

the number of seals present (i.e., less ice, fewer seals), this information was included for potential use in 

future modelling. The ice-cover was calculated by dividing each photograph into four quadrants and 

estimating whether each quadrant is majority sea-ice or not. A quadrant would be  0 if it contained no sea-

ice, 0.5 if it was approximately 50% sea ice, and 1 if it was majority sea ice. The scores for all 4 quadrants 

were summed to get an estimate of sea-ice cover ranging from 0-4.  

 

Data processing 

All data processing was conducted in R v4.0.3 (R Core Team, 2021) with the tidyverse package (Wickham 

et al., 2019). Weather, tide, and seal dates were adjusted to match time-zone (NZDT), before being merged 

by DateTime, so that for each DateTime there would be the number of WESEs observed at a single point in 

time, as well as all the associated environmental variables. In the rare case that a gap in weather station data 

coverage would prevent merging, the nearest DateTime was used instead. To elucidate the potential haul-out 

patterns, I calculated the number of seals by summing the total recorded angles per DateTime. After the 

removal of photographs with quality = none, where no information can be gained from a photograph due to 

events such as whiteouts or glare into the camera lens, the remaining dataset contained the photo_ID, date, 

time, number of seals present, and all the associated environmental variables. At the beginning of the 

dataset, camera #1 only took a photograph once an hour, before being recalibrated by the original 

researchers to take half-hourly images. Consequently, a subset of 159 photographs at the beginning of the 

dataset contained only hourly data as opposed to half-hourly data. I, therefore, interpolated half-hourly seal 

numbers for this subset by averaging the seal counts between each hourly interval and then matching the 

newly generated values with weather and tidal information available for that time (Fig. 1). I felt confident 

generating such averages as the gap between data points was never more than one hour. This was 

considerably shorter than most seals seemed to haul-out for, implying it was unlikely that between two-

hourly points there would be a drastic, unobserved spike in seal numbers. Interpolated photographs also had 

an ice-cover value generated by averaging the two adjacent ice-cover values and rounding to the nearest 0.5. 

However, photograph quality was not simulated as this was not necessarily a parameter associated with the 

environment, but often due to the mechanics of the image taking process -specifically overexposure.  

 



17 
 

 

Fig. 2: Workflow diagram displaying photograph parameters and process to reach format imputable into the 

final statistical model. 413 photographs were of photo quality “none” and therefore rejected from further 

analysis. 159 photographs were taken at hourly intervals and consequently combined with interpolated half-

hourly Weddell seal values.  

 

Statistical modelling 

Before I construct a model to determine what factors affect WESE haul-out, I need to interrogate my data 

for any unusual structures that may mislead my analyses. Within my dataset, there are several correlations 

that I need to keep an eye on (Fig. 2). For this analysis, the most important correlation structures are between 
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date and temperature, as well as date and pressure, with a Pearson’s correlation value of 0.67 and 0.47 

respectively (both p-values <0.0001). Delta T  has the second-highest correlation of -0.52 with date and 

some of the highest correlations with numerous other variables. This is a variable that has little importance 

for WESE ecology and is primarily used to check the condition of the AWS itself, as such it was excluded 

from further analysis.   

 

Fig. 3: Pearson’s corrgram of collected environmental variables, date, and time of day generated by 

corrgram function (Wright, 2018). Blue colours represent a positive correlation, whilst red, a negative 

correlation. The intensity of the colour reflects the strength of the correlation. The relationship is visualized 

both through colour plots and numerically with Pearson’s correlation coefficient. This corrgram allows for 

the comparison of relationships between many different variables simultaneously.  

 

The strongest relationship is the positive correlation between date and temperature of 0.67. The second 

highest correlation is between delta T and date. The non-negligible correlations between delta T and most 

other variables, combined with its unconvincing ecological importance encouraged me to exclude this 

variable from further analysis. 

 

Date -0.02 -0.03 0.67 0.47 0.20 -0.12 0.27 -0.52
Time of day -0.32 0.12 -0.01 0.02 -0.11 -0.04 -0.26

Tide Height -0.10 -0.21 0.01 0.24 -0.00 0.33
Temperature 0.17 -0.04 -0.13 -0.27 -0.33

Pressure 0.12 -0.01 0.32 -0.29
Wind Speed -0.09 0.25 -0.43

Wind Direction 0.02 0.30
Humidity -0.30

Delta T
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To deal with the complexities of the dataset (such as the nonlinear relationship between environmental 

covariates and WESE haul-out behaviour, or temporal autocorrelation), I chose to use Generalised Additive 

Models (GAMs) provided by the R package ‘mgcv’ (Wood, 2017).  One of the biggest strengths of GAMs is 

their ability to decompose complex temporal structures into their constituent components. Secondly, GAMs 

provide the tools necessary to account for the correlation and autocorrelation in my data (Ciannelli et al., 

2008). The structure of GAMs is very similar to regular Generalised Linear Models (GLMs), however, they 

allow for the defining of much more complex non-linear relationships between explanatory and response 

variables through fitting an individual smoothing component to each parameter of the model.  

I set date as a cubic smooth function (“cs”) as cubic functions can handle temporal autocorrelation structures 

well (Ciannelli et al., 2008; Wood, 2006).  Time of day is set as a cyclic cubic “cc” smooth. The end of one 

day is the beginning of another and a cyclic smooth with endpoints set as 0 and 24 hours allows the model to 

understand that these points in time are linked and the end of one cycle influences the start of the next.   

All environmental covariates in my models were fitted as penalized thin-plate smooths (“ts”) to account for 

their correlation structures and optimized by restricted maximum likelihood (REML) method as per 

(Blanchet et al., 2015; McIntosh et al., 2015). The penalization of these smooths automatically accounts for 

collinearity present variables (Marra & Radice, 2010; Wood, 2008), reducing the effective size of the 

smooth and accounting for overfitting.  

I set the camera number as a simple random effect smooth (“re”).  This is necessary as different cameras 

have different mean numbers of seals observed, most likely due to the difference in the sea-ice area that each 

camera covers. The random effect smooth allows for the movement of the intercept (accounting for the 

difference in mean in seal counts) between the three cameras, without generating unique smooths for each 

other variable per camera. Whilst the number of seals observed by each camera is different, all three capture 

different parts of the same population, so I would expect the impact of all my other variables to be the same 

across all three cameras (essentially, my model needs to account for a random intercept by camera). 

Therefore, by modelling camera number as a simple random effect smooth, I can remove variance due to 

camera number whilst still generating a single function for each other variable.  

I generated a series of models, starting with a workhorse model containing all the environmental variables 

collected at Marble Point. I then progressively removed variables based on my hypothesis that weather can 

explain the haul-out behaviour of WESEs. I selected the best model by balancing simplicity with the 

explanatory power of the model. I did this by removing variables that did not have a strong foundation in the 

literature supporting their ecological importance (such as dT), and by comparing AIC and deviance 

explained scores to check this did not largely decrease the performance of my model (Table 2).  

In my view, removing humidity and tide height from the final model is justified due to their limited 

contributions to model deviance explained, and their minimal improvement to AIC. Within my dataset, tidal 
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height varied by approximately 0.5 m around the mean. With such a small tidal variation, I assume that its 

effect on haul-out in this region will be limited, a similar assumption as per (Boehme et al., 2016).  

 

Table 2: Model selection procedure showing the effect of removing various parameters. Removing tide 

height and humidity reduces the deviance explained by 1.2% Whilst just removing pressure would reduce 

deviance explained by 1.9% whilst also generating the largest increase in AIC 

Model parameters (excluded 

variables in bold) 

Deviance Explained AIC value 

Date, time of day, temperature, 

pressure, tide height, wind-speed, 

humidity 

58.1% 14037.64 

Date, time of day, temperature, 

pressure, tide height, wind-speed, 

humidity 

57.7% 14099.03 

Date, time of day, temperature, 

pressure, tide height, wind-

speed, humidity 

56.9% 14196.88 

Date, time of day, temperature, 

pressure, tide height, wind-

speed, humidity 

56.2% 14298.05 
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Results 

Environmental data 

Across the study period of 31st October to 28th December 2017, the temperature at Marble Point varied from 

-21.9°C to -0.9°C, with a mean temperature of -7.75°C. Marble Point was a generally low-pressure system 

with pressure readings varying from 954.7-985 hPa and a mean of 970.2 hPa, whilst relative humidity 

ranged from 25.1-91.2% with a mean of 65.0%. The predominant winds were north westerlies coming down 

the Victoria Land coast (150-160°). A mean wind speed of 3.9 m s-1 and the largest recorded wind speed of 

13.79 m s-1 strongly suggested no wind events such as katabatic flow down from the Transantarctic 

mountains occurred over the study period. Tidal information from Scott Base indicated a consistent diurnal 

tide pattern consistent with the Ross Sea region with one low tide between 14:30-15:30 local time, and one 

high tide between 05:00-06:00 in the morning. The tidal range was in the region of 1.5 m with a low tide and 

high tide of 1.38 m and 2.95 m respectively.  

 

Table 3: Descriptive statistics for selected environmental variables used as covariates to determine haul-out 

behaviour in Weddell seals at Cape Royds between the 31st of October -28th December 2017, collected by 

the Marble Point II Automated Weather Station, Antarctica. Variables included Temperature (in degrees 

Celsius), Pressure (in hectopascals), Windspeed (in meters per second), and Relative Humidity (as a 

percentage). All values are given to 1 decimal place. 

Variable Minimum  Maximum  Mean Standard Deviation 

Temperature/°C -21.9 -0.9 -7.01 3.9 

Pressure/hPa 954.7 985.0 971.4 6.9 

Wind speed/ms-1 0.2 12.8 4.0 2.3 

Humidity/% 25.1 91.2 65.0 15.2 
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Fig. 4: Mean daily variation in temperature Marble Point II, used to build models explaining the temporal 

variation of non-reproductive Weddell seal haul-out at Cape Royds between the 30th of October and 28th of 

December 2017. Standard error represented by Grey ribbon. 

 

 
Fig. 5: Mean hourly variation in temperature Marble Point II, used to build models explaining the temporal 

variation of non-reproductive Weddell seal haul-out at Cape Royds between the 30th of October and 28th of 

December 2017. Standard error represented by Grey ribbon. 
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Photo analysis 

In total 5,311 photographs across three separate cameras were captured and analysed as part of this study. Of 

these photographs, I categorised 2,979 as high quality, which means there was a high confidence of 

identifying every WESE present within the photograph; 1,141 were listed as medium quality, implying 

medium confidence, 778 were listed as low quality, and 413 were listed as no-quality (as described in table 

1). These photographs were so poor in quality (primarily due to periods of white-out, or overexposure of the 

camera due to direct reflection of sunlight into the lens) that they were excluded from further analysis as it 

was impossible to determine whether a WESE was present at that time. Across the 2,507 half-hourly time 

points between the 31st of October and 28th December 2017, 895 DateTimes were captured across all three 

cameras; 601 DateTimes were captured by two cameras, and 1,011 by only one camera. Of the 4,898 

photographs of low, medium, or high-quality remaining; 2,236 contained no WESEs, whilst in 2,662 at least 

one WESE was present. Of the 156 interpolated time points near the beginning of the study period, 6 

contained no WESEs, and 150 contained at least one WESE. Interpolated time points are not included in 

further descriptive statistics, they do however inform the final model used to explain WESE haul-out 

behaviour reported at the end of this section.  

 

 

Fig. 6: Proportion of photographs listed as low, medium, or high quality by time of day. Photographs were 

taken at half-hourly intervals by three separate Cuddeback cameras at Cape Royds, Antarctica between the 

30th of October and 28th December 2017. 
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The vast majority of photographs (75-90%) are of medium or high quality indicating high confidence of 

complete WESE count capture. The highest proportion of low-quality photographs occurs between 1200-

1600 NZST.  

Table 4:  Percentage of photographs per camera that have a given level of ice cover ranging from an ice 

cover value of 50-100%. A value lower than 50% is not included in this table as no photograph had less than 

50% sea ice cover. Photographs were taken at half-hourly intervals by three separate trail cameras at Cape 

Royds, Antarctica between the 30th of October and 28th December 2017. All percentages are given to the 

nearest whole number. 

Camera 

number 

Percent of photographs with a given level of ice cover (%) 

50% 62.5% 75% 87.5% 100% 

1 19 1 40 6 34 

2 0 0 0 0 100 

3 0 0 90 0 10 

 

 

Variation in sea ice cover was mostly seen on camera #1, with values ranging from half to full sea-ice cover. 

Photographs from Camera #2 contained full sea-ice coverage across the entire dataset, while photographs 

from camera #3 had one quadrant of open water across most of the dataset. The majority of break-out of sea-

ice was visibly observable in photographs from mid to late November (20th onward) on camera #1, reaching 

approximately half the image area being open water by the conclusion of data collection on 31st of 

December.  

In total 8,153 individual WESE observations were recorded within the study. The mean number of WESEs 

observed per photograph was 1.72, the largest number of WESEs counted within one photograph was 14 

individuals. The time with the fewest WESEs was 0330 NZT with a mean of 1.07 seals, whilst the time with 

most WESEs was 1330 NZST with a mean of 2.45 WESEs. The highest daily mean was 5.32 on the 30th of 

November. The most WESEs observed simultaneously across three cameras at the same point in time was 

20 individuals. 
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Table 5: Descriptive statistics for the number of Weddell seals counted in photographs at Cape Royds, 

Antarctica between the 30th of October and 28th December 2017. Photographs were taken at half-hourly 

intervals by three separate Cuddeback cameras at Cape Royds, Antarctica between the 30th of October and 

28th December 2017.  There is a slight variation in the three calculated means as some days have fewer 

associated photographs due to events such as white-outs or sun-glare. All statistics are given to 1 decimal 

place. 

 

 

 

 

 

 

Fig. 7: Mean number of Weddell seals per photograph per day hauled-out on the sea-ice at Cape Royds, 

Antarctica between the 31st of October to 28th December 2017. Photographs were taken by three separate 

Cuddeback trail cameras at 30-minute time intervals.  
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Fig. 8: Mean number of Weddell seals per photograph per 30 minute-time period hauled-out on the sea-ice 

at Cape Royds, Antarctica between the 31st of October and 28th December 2017 as recorded by three 

separate Cuddeback trail cameras. 

 

Model results 

I endeavoured to determine the presence of a haul-out cycle and further elucidate haul-out behaviour with 

respect to environmental variables in non-reproductive WESEs at Cape Royds, Antarctica. In order to 

answer this question, I constructed a Generalised Additive Model (GAM) identifying the relationship 

between the number of WESEs counted on the fast-ice across three trail cameras and: the Julian date and 

time of day of the photograph, and the temperature, pressure, and wind-speed from an AWS at Marble Point.  

The final GAM took the following form: 

𝑔𝑎𝑚(𝑠𝑒𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	~	𝑠!(𝑑𝑎𝑡𝑒) + 𝑠!(𝑡𝑖𝑚𝑒	𝑜𝑓	𝑑𝑎𝑦) +	𝑠"(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) +										 𝑠#(𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒) +

	𝑠$(𝑤𝑖𝑛𝑑	𝑠𝑝𝑒𝑒𝑑) +	𝑠%(𝑐𝑎𝑚𝑒𝑟𝑎	𝑛𝑢𝑚𝑏𝑒𝑟)	  

Where s is the associated smoothing term as listed in table 6.  

The largest effect on WESE count is date. Holding all environmental covariates constant, the mean number 

of WESEs hauled-out per image is 2.5 individuals lower at the end of December compared to the beginning 

of November (Fig. 9). This variation is larger than the mean number of WESEs hauled-out per photograph 

of 1.72. The raw data show that haul-out behaviour is diurnally cyclical, with an average of only ~1.1 

WESEs hauled-out between 00:00 and 03:00 NZST and around 2.25 WESEs between 12:00 and 18:00 
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NZST (Fig. 8). However, once controlled for other variables such as temperature; the effect of time of day 

on haul-out persists but is reduced in magnitude, only explaining a variation of around 0.8 WESEs between 

early morning and early afternoon (Fig. 9). With increasing temperature there is an increased number of 

WESEs hauled-out on the sea-ice, this relationship appears to be bimodal. There were significantly more 

WESEs hauled-out when pressure was above 980 hPa, however, below this value pressure seemed to have 

little effect. There appears to be a linear relationship between wind speed and haul-out with the number of 

individuals on ice decreasing slightly as wind speeds increase up to 13 m s-1. The final model explains 

almost 60% of the variation in WESE haul-out observed in photograph counts at Cape Royds (Table 6).  

 

Fig. 9: Estimated smoothing plots for covariates of the Generalised Additive Model (GAM) used to explain 

non-reproductive Weddell seal haul-out behaviour at Cape Royds, Antarctica between the 31st of October 

and 28th of December 2017. Grey ribbons represent two standard errors around the respective smoothing 

function, while lugs on the x-axis show distribution of data points informing the smoothing function. The 

units of the Y-axis are in number of seals, identifying what effect each covariate has on the mean number of 

seals, all else being equal. Julian date and time of day refer to the date and time that photographs at Cape 

Royds were taken with Cuddeback trail cameras, from which the number of Weddell seals hauled-out was 

counted.  Temperature (°C), pressure (hPa), and wind speed (ms-1) are collected for those exact dates and 

times from an automated weather station at Marble Point, Antarctica.  
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Table 6: Results of the GAM used to explain non-reproductive Weddell seal haul-out behaviour at Cape 

Royds, Antarctica between the 31st of October and 28th of December 2017. The model explains 56.9% of 

deviance observed. Estimated degrees of freedom are a representation of the ‘wiggliness’ of a relationship 

between covariate and response variable, an estimated degree of freedom of 1 implies a linear relationship, 

larger numbers imply progressively more wiggliness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Smoothing terms Estimated Degrees of 

Freedom 

Chi-squared P-value 

Date cubic regression (cr) 3.962 1888.41 <0.0001 

Time of Day cyclic cubic (cc) 5.714 370.01 <0.0001 

Temperature thin-plate shrinkage 

(ts) 

7.853 410.27 <0.0001 

Pressure thin-plate shrinkage 

(ts) 

8.255 294.12 <0.0001 

Wind Speed thin-plate shrinkage 

(ts) 

1.858 61.44 <0.0001 

Camera  random effect (re) 1.998 2827.56 <0.0001 
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Discussion 

Cape Royds population 

My analysis of trail camera images clearly indicated that the WESE population at Cape Royds comprised of 

non-reproductive individuals, with a clear lack of pups or associated pupping behaviour in any of the 

images. There was little deviation in the size of WESEs observed in the images, which would be required to 

indicate the presence of pups. Furthermore, there was no pattern of paired individuals, with one consistently 

hauled-out on the fast-ice surface and the other displaying varied haul-out behaviour, repeatedly 

disappearing and returning to the same location. WESEs in the Ross Sea region tend to pup between 

September and October, weaning their young by mid-December (Stirling, 1969b). The lack of pups at any 

point in my data strongly suggests that the Cape Royds WESE subpopulation consists of non-reproductive 

individuals, either juvenile or skip-breeding adults. This is in concordance with previous observations that 

found significant stratifications by age in WESE subpopulations throughout McMurdo Sound, with a 

concentration of non-breeding, younger individuals near the vicinity of Cape Royds (Siniff et al., 1977), as 

well as observations by (Testa, 1986), who found that juvenile WESEs do not return into the far south of 

McMurdo Sound, past the Erebus Ice tongue, until fully reproductive. This distribution is likely tied to natal 

site fidelity in WESEs, which increases with age; a strategy that typically leads to a higher reproductive 

success for females (Cameron et al., 2007a).  

 

The maximum number of WESEs observed was at 1430 NZST on the 29th of November 2017 where, 

between the three cameras, 20 individuals were counted. A mean haul-out of 1.7 seals per photograph is 

lower than other comparative studies of WESE haul-out behaviour, such as by (Banner, 2012) who recorded 

daily counts between 100-200 individuals at Big Razorback Island just south of the study area here, or (Lake 

et al., 1997) who recorded maximum daily counts in the Vestfold Hills of 68-84 individuals between 

October and December. However, the 30-minute resolution across the entire two-month study period 

provides a more granular analysis than both these studies, which used a 45-minute and 150-minute interval 

respectively.  

 

 

Seasonal variation 

My GAM indicates that the single largest variable affecting non-reproductive WESE haul-out was date 

(Table 6). The number of individual WESEs hauled-out per photograph declined across the length of the 

dataset, between the 30th of October and 28th of December (Fig. 9). This seasonal effect is responsible for a 

decrease of the mean number of WESEs observed per photograph by over 2.5 individuals, representing a 
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73% variation around the mean of 1.72 WESEs per photograph in my dataset. This decrease in apparent seal 

haul-out behaviour is unlikely to be caused solely by individuals spending less time hauled-out on the land-

fast sea-ice in December compared to November. The more likely explanation for the size of the seasonal 

effect my model suggests is that between the 30th of October and 28th of December WESEs increasingly 

haul-out at a different location not captured by the three trail cameras. In other words, seals that were once 

hauled out and captured on these three trail cameras may have moved elsewhere in McMurdo Sound. First, 

non-reproductive WESEs still need to spend significant lengths of time resting on the fast-ice, but the lack of 

a pup allows individuals more flexibility in haul-out location based on environmental conditions. Second, 

the maximum length of time WESEs have been observed holding their breaths is in the region of 70-80 

minutes (Zapol, 1987),  making it highly unlikely they would be able to forage under the fast-ice for the 

entire length of time as some of the WESE-free gaps in my data, the longest of which reached five days. In 

the Vestfold Hills, East Antarctica, female reproductive WESEs were observed to spend less time hauled-out 

on fast-ice in December compared to October, but this decrease was around 10% –an order of magnitude 

less than my model suggests is occurring (Lake et al., 1997). This difference would be expected if female 

reproductive WESEs needed to continue hauling out to the same location to feed their pups.  

 

Fewer WESEs hauled-out on the fast-ice at Cape Royds as the season progressed may reflect a geographic 

relocation of individuals in response to changes in land-fast sea-ice conditions or predator numbers. It is 

long known that WESEs exhibit regional movement within McMurdo Sound that is linked to fast-ice 

movement and the associated tidal cracks and pressure ridges that form at the interface between fast-ice and 

Ross Island (Stirling, 1969b). Reproductive individuals show high site fidelity, often breeding at the same 

site they were born (Cameron et al., 2007b). However, non-reproductive individuals such as those observed 

at Cape Royds tend to exhibit stronger regional movements associated with seasonal fast-ice availability 

(Croxall & Hiby, 1983). Furthermore, we know the distance to fast-ice edge is a significant predictor of 

WESE distribution, where there exists a certain ‘ideal’ distance away that WESEs are more likely to be 

located (Larue et al., 2019). The fact that a specific ‘preferred’ distance may exist implies that not only is 

there a benefit for WESEs to be located near the fast-ice edge (such as availability of access points to the 

ocean), but there must also be a cost associated with being too close to the ice-edge. In the case of the Cape 

Royds population, the likely cost is that of predation by mammal-eating, type-B killer whales. At Cape 

Royds, type-B killer whales arrive from mid-November onwards (Ainley et al., 2017). It is well known that 

the sequential breakup of fast-ice in the Ross Sea provides optimal foraging conditions for type-B killer 

whales, as the open water provides access to new pockets of prey on the fast-ice (Ainley & Ballard, 2012; 

Andrews et al., 2008). With this in mind, I find it plausible that the break-out of fast-ice at Cape Royds, 

from around the 20th of November (Table 4) and the associated increase in predation risk from killer whales 

are contributing to the decreasing trend of WESEs hauling-out as described by my model (Fig. 9).  
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The suggestion, therefore, is that the decrease of WESEs observed hauling-out on the fast-ice at Cape Royds 

between the 30th of October and 28th of December 2017 is not due to a decreased propensity for individuals 

to haul-out, but due to regional movements of WESEs causing the haul-out location to be out of the frame of 

reference of the three cameras set up used to inform my model. This is an important caveat for my model, as 

it suggests that the effect of date is unique and specific to the Cape Royds population I observed. Different 

locations in McMurdo Sound and elsewhere on the continent will experience fast-ice break-out at different 

points in time, and different populations may experience different predation pressures. Therefore, such a 

strong seasonal decrease may occur at a different point in time, or not at all. This is in contrast with the other 

covariates in my model which may be more universally experienced by WESEs in the Ross Sea region or 

beyond.  

 

Diurnal variation 

My results suggest a haul-out cycle in the Cape Royds population of WESEs (Fig. 9), supporting previous 

work whom all confirm the general principle that more WESEs haul-out in the afternoon than in the 

morning, local time (Banner, 2012; Lake et al., 1997; Siniff et al., 1971; Smith, 1965; Stirling, 1969a; J. A. 

Thomas & DeMaster, 1983). This haul-out cycle does not appear to be the strongest effect on haul-out 

behaviour as suggested by a chi-sq value compared to temperature and date (Table 6) and size of the effect 

in comparison to other covariates (Fig. 9). The raw data seems to indicate the haul-out cycle is quite 

pronounced, with a peak of 2.5 and a trough of 1.1 individuals (Fig. 8) (a range of 1.4 individuals). 

However, the model suggests a gentler haul-out cycle, with a range of effect of only 0.8 individuals (Fig. 9). 

This is probably due to some of the diurnal variation being attributed by the GAM to other environmental 

covariates that may have a cyclical daily component, such as temperature which follows a clear diurnal 

pattern (Fig. 5).  

 

The presence of a haul-out cycle is to be expected considering the wealth of knowledge documenting this 

phenomenon in other WESE populations. (Smith, 1965) conducted a 24-hour ground census of WESEs 

hauled-out on the fast-ice due south of Scott Base on two separate days in February 1963 and 1964, at this 

point in the year fast-ice has mostly broken out, leaving only open water, multi-year land-fast sea-ice, and 

the Ross Ice Shelf. A distinct daily pattern is visible in the raw data from this study, with maximum haul-out 

at 1600 NZST and minimum haul-out between 0100-0400 NZST in both years. This pattern is made 

particularly clear by the large number of individuals counted across the 24-hour period, with a peak of 700 

and 450 individuals in 1963 and 1964 respectively. However, these data are only used to inform the 

remainder of the research by (Smith, 1965). The daily pattern was not modelled with respect to other 
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environmental covariates. It is possible that the effect would be lessened after accounting for factors such as 

temperature in the same way as in my model. (Stirling, 1969a) also described a clear diurnal pattern in 

WESE haul-out, with a similar peak at 1600 NZST. This was again not modelled with respect to 

environmental covariates. Instead, the haul-out pattern was used directly to calibrate census data, by 

adjusting aerial fly-over counts by the time of day, to achieve a better estimate of WESE counts. Such 

methodology seems justified since in both cases the objective of recording the haul-out cycle was to 

standardise future counts at the same location, whether by only sampling at peak haul-out, or adjusting by 

the estimated proportion of population haul-out by the time of data collection. The underlying assumption of 

this method is that the haul-out cycle remains the same between its identification and the time of the 

following study. This is reasonable if the research informed by the haul-out cycle is conducted at the same 

location within the same season. 

 

Previous work by (Banner, 2012) focused specifically on WESE haul-out in order to generate a more 

accurate understanding of the percentage of WESEs hauled-out onto the fast-ice at a given time. Thus 

allowing for the adjustment of satellite images by time of day to provide more accurate satellite census data. 

Trail camera counts were collected for a pupping WESE population at Big Razorback Island by McMurdo 

Station in 2010, and compared with estimates generated from satellite images taken at exactly the same time. 

After correction for temperature, tide, and wind speed, the diurnal haul-out cycle persisted with peak haul-

out around 1700 NZST. Due to higher daily counts of seals at Big Razorback (around 20 a day), (Banner, 

2012) was able to generate a separate haul-out cycle for each day of the study. This was not something I felt 

would be appropriate in my study, where a mean of 1.7 individuals per photograph would create a much less 

reliable haul-out pattern from a single day of data. However, the similarity in haul-out pattern, where my 

data had peak haul-out between 1200-2000 NZST (Fig. 9) is encouraging. A key point of distinction 

between the research of (Banner, 2012) and my study is that I looked at non-reproductive WESEs, in 

contrast to reproductive female adults. The fact that this haul-out cycle persists between both demographics 

drives home the point that it is not present purely as a result of females needing to balance the acts of 

foraging and weaning their pups. The presence of this cycle in non-reproductive WESEs implies that it is a 

more wide-ranging phenomenon governing WESE foraging strategy.  

Although difficult to study (due to their preference for pack-ice and the marginal ice zone as a habitat (Wege 

et al., 2021)), there is evidence that such a haul-out cycle is present in other Antarctic phocids such as 

crabeater seals (Lobodon carcinophagus), which also display a peak haul-out in the afternoon, between 1200 

and 1400 hrs local time (Bengtson & Stewart, 1992). To address similar questions, crabeater seals are harder 

to study due to their association with pack-ice leading to a much wider range and lack of stable populations 

near the shore such as with fast-ice obligate Weddell seals. Even less observational data has been collected 

for the elusive Ross seal, but again, the little evidence there is does seem to indicate a preference for 
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spending more time on pack-ice during the afternoon, and more time in the ocean during the early morning 

(Southwell, 2003), though notably the Ross seal data was collected from only two individuals. This is 

clearly not representative of their entire population, however, the methods of this study (using radio 

transmitting tags to monitor an individual) is a powerful technique as it allows for the full tracking of a 

seal’s behaviour over a period of time, in contrast to relying on placing cameras. In my study, it is uncertain 

whether a lack of seals in an image is due to a lack of haul-out, or a haul-out in a different location. With 

tagging data, these questions are easier to understand, as these tags largely record behaviours up to several 

times per second (Goetz, 2015).   

 

My findings support the work of (Siniff et al., 1971). They tracked adult female WESEs in McMurdo Sound 

with radio-tags, and found them to be most active in the water between 0000 and 1000 NZST, and mostly 

inactive and hauled-out in the afternoon. regarding haul-out cycles and activity/behaviour, they also reaffirm 

the suggestion that WESEs haul-out on fast-ice in order to recover from foraging. The presence of a diurnal 

haul-out cycle persists in my model after accounting for the environmental covariates of temperature, 

pressure, and wind speed. This implies that the time of day cycle is inherent in WESE life history regardless 

of weather variables. It is possible that the haul-out cycle in WESEs evolved in response to a diurnal pattern 

of prey availability. In other non-Antarctic phocid species such as Arctic ringed seals (Pusa hispida) there is 

an observable relationship between diurnal haul-out cycle and plankton movements (T. G. Smith, 1973) or 

grey seals (Halichoerus grypus) that show a diurnal cycle in foraging behaviour linked to diurnal 

movements of sand eels (Photopoulou et al., 2014).  It is well documented that motile plankton exhibit a 

vertical diurnal migration up and down the water column driven by movements in temperature gradients and 

sunlight availability (Kamykowski & Zentara, 1976; Wirtz & Smith, 2020). In McMurdo Sound, ocean 

dynamics tend to be dominated by High Salinity Shelf Water production from the Ross Ice Shelf, as opposed 

to a surface-thermocline (Lewis & Perkin, 1985) (a lack of which is common in polar waters due to surface 

cooling from cold air promoting mixing of the top layer). However, there still exists a diurnal variation in 

under-ice radiant flux due to shifting in sunlight angle (Matthes et al., 2019) which could drive vertical 

plankton movement even in the 24-hour sunlight of austral summer. (Stirling, 1969b) suggest that the 

activity of WESE prey may be higher during the “night” cycle, leading to increased hunting activity.  Time-

depth recording of eight adult WESEs supports the potential relationship between prey availability and haul-

out (Plötz et al., 2001). Foraging dives increased in depth across the night, with the deepest dives occurring 

between 0800-1000 local time before diving depth reduced and individuals haul-out on the fast-ice. The 

depth of dives appears to be a behavioural response to the stratification of prey species at different depth 

layers (McIntyre et al., 2013). Such behaviour is consistent with a diurnal cycle of WESE prey availability 

within the water column, as a similar behaviour would be present if different foraging strategies were 

required at different times of the day. Therefore, I believe it is likely that the modelled diurnal WESE haul-
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out cycle is at least partially, the above-surface consequence of a foraging pattern driven by diurnal variation 

in prey availability. However, it does seem that temperature influenced this diurnal pattern, it is unsurprising 

that a species adapted to live in such a harsh environment would change its behaviour in response to changes 

in temperature. As the WESE haul-out cycle persists the implication is that time of day captures diurnal 

variation in some other environmental variable (abiotic or otherwise) that I did not record in this study. 

 

Whilst generally considered as a large Antarctic predator, WESEs are also preyed upon by Type-B killer 

whales and leopard seals, where the taking of pups or juveniles contributes heavily to non-reproductive 

mortality rates (Fenwick, 1973). We know that WESEs have co-evolved with such predation pressure as we 

can observe various anti-predator responses such as the adjusting rate of calls rate and social behaviours 

based on perceived predation risk (J. Thomas et al., 1987). Given how common adjusting diurnal patterns as 

a tactic to reduce predation pressure are (Lima & Dill, 1990),  it is possible that such a haul-out cycle forms 

part of an evolved anti-predatory strategy. However, the relationship between WESEs and their potential 

predators requires more attention, and I do not think there is conclusive evidence to support or reject this 

hypothesis.  

 

Environmental covariates 

One large advantage of Generalised Additive Models is that by using shrinkage base functions I can account 

for the near-collinearity between variables such as the seasonal variation in temperature in my dataset (Fig. 3 

& 4), (Marra & Radice, 2010). This relationship is important to elucidate as it is clear from my data that 

temperature also follows a cyclical diurnal, and seasonal pattern (Fig. 5). This relationship is repeatedly 

noted in other studies, such as (Lake et al., 1997) observing peak WESE haul-out rates in the Vestfold Hills 

also coinciding with the warmest time of day.  

 

My GAM shows a relationship between temperature and seal count, indicating that as temperature increases, 

the number of WESEs on the ice increases (Fig. 9). Secondly, with increasing wind speed, the number of 

seals decreases. It is important to take both into account simultaneously due to their influence on 

thermoregulation of Antarctic species. Wind speed has a significant impact on the perceived temperature an 

individual experiences, and it has been demonstrated that increases in windspeed can increase temperature 

flux due to the continuous removal of warmed air maintaining a steep temperature gradient (Beltran et al., 

2016). 
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WESEs have evolved in conjunction with the extreme temperatures of the Antarctic, (Stirling, 1977; Zapol, 

1987). Consequently, a reduced WESE haul-out in colder conditions could be a behavioural response to 

supplement their physiological adaptations to the cold weather. They have already developed a high 

thermoregulatory buffer, as their thick layer of blubber can simultaneously act as an effective insulator and 

deep store of metabolic energy (J. A. E. Mellish et al., 2011), which allows them to spend time hauled-out 

on the sea-ice surface for extended periods of time despite negative air temperatures. They also utilize the 

variation in temperature over seasonal scales for maximum ecological benefit, as the temperature in the Ross 

Sea Region begins increasing in October through November, which coincides with WESE pups being born. 

This warming combined with the subsequent plankton blooms may have impacted the evolution of pupping 

timing in WESEs, as pups being smaller, with fewer reserves of metabolic energy have stricter 

thermodynamic requirements (Stirling, 1969b). The fewer hauled-out WESEs in colder temperatures as 

implied by my model support the work of (Boehme et al., 2016) who found that haul-out patterns in WESEs 

tend to be seasonally bimodal, with individuals spend a larger percentage of the day in the ocean during 

winter than in summer. The authors suggesting this could be a response to a threshold temperature where 

energy losses to lower air temperature (which can reach upward of -70°C in winter) outweigh energy losses 

to cold water. However, it is equally likely that such a change in haul-out pattern, as identified in their paper, 

is due to the increased foraging demands on female WESEs that need to build mass to support gestation 

costs (Shero et al., 2018). 

 

Like most polar waters, the sub-ice water in McMurdo Sound tends to lack a thermocline and maintain 

temperatures of around -1.5°C (Madden et al., 2014). In winter, and even across my dataset, air temperatures 

in the Antarctic get much colder than McMurdo Sound. However, the dramatically higher thermal 

conductivity of water leads to larger thermal losses in the ocean than on ice at a given temperature. Whilst 

temperature and wind-speed are both shown to impact thermoregulatory capacity, (J. A. Mellish et al., 2015) 

the complexity of Weddell seal thermoregulatory systems, and different behavioural strategies in water and 

on ice, contribute to the difficulty of determining where exactly such a threshold temperature lies, and how it 

can vary between individuals and across time.  

 

There is a tendency in ecology to view all individuals within a population as homogenous, being subject to 

the same pressures and making the same decisions in response to environmental stimuli. However, in reality, 

all individuals within a population are different and have unique preferences and responses to the 

environment. I think that the non-linear relationship of WESE haul-out to both the diurnal cycle and 

environmental stimuli like temperature and wind speed is an excellent example of this. Early research 

attempted to elucidate the effect of temperature on WESE haul-out to mixed success. (Smith, 1965) found 

the effect of temperature was limited outside of “bad weather”, however wind speed seemed to explain most 
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of the variance the effect they observed varied on demographics, with only nursing individuals remaining on 

the ice. Furthermore, they observed a small scale variation in habitat use, with nursing females hauling out 

nearer to broken ice-ridges than males. The argument presented is that this variation in habitat use offered 

females more protection from the adverse weather effects they had to endure since they could not simply 

retreat under the ice and leave their pups alone.  

 

A subsequent study by (Siniff et al., 1971) supported the argument that WESEs would prefer staying in the 

water during “bad weather”. With environmental variables primarily modifying behaviour during the peak 

haul-out times between 1700-2100. A hypothesis for this could be that warm weather would not make a 

WESE haul-out whilst foraging, but cold weather could encourage some seals to take shelter in the ocean 

instead of staying exposed on the sea ice. (Siniff et al., 1971) defined “bad weather” by a wind-chill index 

threshold to obtain a more objective proxy of bad weather. Such a definition could be followed up using a 

similar GAM analysis to the one I performed that includes an interactive effect between temperature and 

wind speed, instead of interpreting pressure as a proxy for bad weather. 

 

In Queen Maud Land, East Antarctica (Sato et al., 2003) conducted ground counts of WESEs in the early 

afternoon (intentionally counting at peak haul-out). They found that the number of WESEs on fast-ice 

decreased under higher wind speeds and lower temperatures. However, even on relatively calm and warm 

days, there was a lot of variation in exact WESE numbers, indicating that there were still independent 

decisions being undertaken by individual seals. Further research in the Vestfold Hills found that wind speed 

and temperature were the strongest environmental descriptors of WESE winter haul-out with decreasing 

numbers of individuals at lower temperatures, and higher wind speeds (Andrews-Goff et al., 2010). Further 

research of reproductive WESEs at McMurdo used infra-red cameras to monitor body heat-flux (Mellish et 

al., 2015). This research was comprehensive, covering pups, juveniles, post-weaning females, and skip-

breeding females. Across all four demographics, the biggest environmental contributor to loss of body 

temperature was wind speed. Higher winds contributed to a larger heat loss, as the air surrounding an 

individual is continually replaced by fresh colder air, maintaining a steep temperature gradient between the 

warm skin and cool air. Furthermore, this behaviour of retreating into the water in bad weather conditions 

appears to be present in other seal species such as Crabeater seals, which prefer spending more time hauled-

out when it is warmer (Bengtson & Cameron, 2004). It seems reasonable to suggest that both species 

experience similar thermoregulatory pressures as part of their daily life in the Antarctic. 

 

It is clear that temperature, wind speed and thermoregulation are intrinsically linked.  The need for reduced 

model complexity prevented the exploration of interactive terms between temperature and wind speed in this 
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model, but that is certainly something that could be explored in subsequent analyses. It seems probable that 

there is some level of thermoregulatory incentive to haul-out variation, but this certainly does not explain all 

the variation and is just a component. Whilst I have assumed that less heat loss will occur on ice partially 

due to a decreased metabolic rate, it is certainly the case that male Weddell seals can also rest under the sea-

ice (Stirling, 1969b), as well as perform other behaviours not related to foraging, such as the vicious defence 

of underwater territories  (Brusa et al., 2020). This could theoretically increase the critical threshold 

temperature at which Weddell seals lose less energy to the environment in the ocean vs hauled-out, thus 

providing a mechanism by which a wind speed-temperature complex would be a motivating factor in seal 

behaviour.  

 

The perceived effect of temperature and wind speed seems in contrast to some earlier research. Which has 

found these factors to be less important than loosely defined “bad weather” (Siniff et al., 1970), or  (Smith, 

1965) who found that non-pupping WESEs; freed from their responsibilities of caring for less robust young, 

would flee into the water to escape local blizzards. In my study, I interpret the role of pressure as a more 

quantitative measure of weather quality. GAM output seems to suggest that there is a threshold pressure of 

around 980 kPa below which you get fewer seals, and above there are more (Fig. 9). This is in line with 

early observations of “bad weather” if we treat pressure as a proxy for such. Low-pressure systems tend to 

be associated with atmospheric phenomena often viewed as “bad weather”, such as the drop in temperatures 

and increased windspeed already accounted for in the model, but also variables that were unaccounted for, 

such as increased precipitation, reduced visibility, or increased cloud cover (Speer et al., 2009). Indeed, 

lower pressure systems are associated with higher snow-fall events in Ross Island too (Cohen et al., 2013). 

Precipitation is a fairly significant determinant of bad weather and not something that was recorded by the 

AWS systems used in my study. As such, the relationship between haul-out and pressure in my model can 

be interpreted as WESEs appearing to haul-out in greater numbers during fine weather conditions.  

 

Generalised Additive Model 
My model identifies a large variation in WESE count between the three trail cameras (Fig. 9), which were 

placed in the same location but at slightly different angles viewing the fast ice. While the absolute number of 

seals recorded by each camera is different, the actual impact of model covariates should be consistent across 

all three sites given their proximity to each other, and to the AWS at Marble Point which provided the 

environmental data that informs my model. If I did not define camera as a random effect, the model would 

underestimate the dependency of the WESE count observations within each camera and the shrinkage 

smoothing functions would not be able to account for the correlation between some variables in the dataset, 

such as between temperature and date (Fig. 2). This would lead to an over-fitted model. At this point, it is 
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worth noting that all variables have highly significant p-values (Table 6). This is in part due to the nature of 

GAMs, where the p-value is associated with the distribution of the response in association with a smoothing 

parameter, instead of the choice of the actual smoothing term  (Bradshaw et al., 2004). In simpler terms, the 

p-values indicate how well the modelled relationship fits the data, however, the relationship could still have 

no biological effect (such as a linear relationship with a gradient of zero).  

 

Assumptions and limitations 

The two largest assumptions I make with my modelling are: that the environmental covariates collected at 

Marble Point relate to the environmental conditions at Cape Royds, and that sampling effort across the data 

set is consistent. Despite Marble Point being approximately 60 km away, the GAM performance is 

reasonable, with 56.9% of deviance explained (Table 6). This indicates that between the 30th of October and 

28th of December 2017, weather at Marble Point is at least somewhat consistent with Cape Royds. Secondly, 

the visual comparison of weather data at 3 separate AWS (Cape Bird, Willie Fields, and Marble Point) 

triangulated around Cape Royds, implied broad consistencies. I think it is justified to use the weather data at 

Marble Point as an inference point, however, this is clearly a limitation; if geographically closer data were 

available, a more accurate model of WESE haul-out behaviour could be built.  

 

There is a potential that a systematic difference in sampling effort across the dataset exists. The number of 

low-quality photographs varies by time of day, with the highest percentage of low-quality photographs 

having been taken in the early afternoon, between 1200-1600 NZST (Fig. 6). Such a pattern of low-quality 

photographs is consistent with the sun generating lens glare in the afternoon in a set of west-facing cameras. 

As low-quality photographs represent my decreased confidence in spotting all individuals that were hauled-

out in an image, it also suggests that some under-sampling of WESE counts may be occurring in the 

afternoon. I decided against including this as a parameter within my model, as I felt that my rating of 

perceived overexposure of each image was very subjective, especially between medium and high-quality 

photographs. While being able to identify white-outs was fairly straightforward, trying to get a measure of 

how overexposed an image of already white sea-ice was more challenging. Furthermore, photograph quality 

depended quite heavily on the camera, with camera #2 being at the highest vantage-point, it experienced the 

least overexposure from sunlight reflection due to its higher angle relative to the fast-ice surface, whilst 

camera #3 experienced the most over-exposure, and consequently the most low-quality photographs since its 

proximity to the ice-surface lead to more light-flux hitting the lens. The fact that quality measure was so 

subjective and camera-specific, meant I was more comfortable using camera as a random factor to also 

account for this variability in photo quality, rather than use my measure of photo quality directly. Finally, 

since most low-quality photographs, and therefore under-sampling, occurs in the early afternoon, this would 
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imply that I detected fewer seals in the afternoon than there were actually present. Consequently, the haul-

out cycle I detected might be slightly stronger than I calculated as by under-sampling in the afternoon I 

suppressed the number of seals at peak haul-out. However, future research could account for variation in 

sampling effort by measuring the quality of an image in a more objective way 
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Conclusions 

In summary, my study echo’s the vast body of literature in identifying a diurnal cycle in WESE haul-out. 

Critically, this haul-out pattern remains even once accounting for the environmental variables of 

temperature, windspeed, and pressure. Unsurprisingly, WESEs are less likely to haul-out onto the fast-ice if 

the weather is unpleasant. The fact that non-reproductive WESEs also display a haul-out cycle is interesting 

and worth exploring further, as it implies that the presence of haul-out cycle is not entirely linked to the 

demands of raising young in Antarctica. To conduct this research I only used trail cameras from one 

location, but the methods used could be reasonably reproduced with cameras covering a wider range of 

WESE colonies. If in the future, data are collected from multiple locations or multiple seasons, more 

complex models could be constructed to further elucidate the roles of various environmental parameters. 

The biggest effects that could be looked at further are certainly interactive ones between wind-speed and 

temperature, certainly no-one can dispute the impact windchill can have in the Antarctic.  

 

This study has implications for remote sensing surveys of ice-obligate seals and other Antarctic animals. 

Firstly, it demonstrates the importance of trail cameras as a remote sensing technology. In this case, three 

Cuddeback trail cameras were opportunistically set up at a field site where researchers conducted studies on 

a completely different species, the Adélie penguin. These cameras were left unattended for two months 

before recovery. Combined with long-term monitoring of environmental conditions provided by the 

University of Wisconsin, it has been possible to tease out clear behaviours of ecological significance. There 

are obvious limitations to a camera set-up like this, such as the limited field of view covered, or lens flair 

generated by a low-angle sun. However, these are not challenges that can’t be solved by increasing the 

number of cameras and using UV filters to limit to prevent glare. Trail cameras have already been used to 

great effect in the Antarctic, such as the Penguin Watch project (Jones et al., 2018), where over 70,000 

photographs from 15 cameras at penguin colonies in the Antarctic peninsula have created a deluge of data 

from which ecological information can be teased. With the continually increasing quality of battery and data 

storage devices, there has never been a better time for supplementing Antarctic data collection with trail 

camera technology.  

 

Remote sensing can also be performed by satellite-based imagery, as it is being increasingly used within 

ecology to monitor populations (Moxley et al., 2017). However, satellite imagery presents a single snapshot 

in time. As is clear by the presence of a WESE haul-out cycle, satellite imagery would likely contain count 

discrepancies caused by differences in time of day of photographs taken (LaRue et al., 2011). Thus far, the 

majority of studies conduct their own estimates of daily haul-out in order to calibrate their work. However, 
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this needs to be conducted repeatedly with each new population observed. The methods of my study could 

be extended further to build a comprehensive model used to predict the proportion of WESEs hauled-out at a 

given time, given certain environmental conditions such as weather, wind speed, and pressure. When paired 

together these two remote sensing techniques could prove powerful tools for generating population estimates 

at a much larger scale.  

 

Better satellite census data is a critical step in understanding the wide-scale ecology of WESEs in both the 

Ross Sea region and Antarctica as a whole. As WESEs exhibit a circumpolar distribution (Langley et al., 

2018; J. A. E. Mellish et al., 2011) they will experience the full range of changing environmental conditions 

from a warming peninsula, marine ice-sheet collapse, to reduced fish-stock in the Ross Sea (Ainley et al., 

2015; Joughin et al., 2014; Vaughan et al., 2003). Monitoring how WESEs react to these changes will be a 

critical step in understanding the impact humanity is having on the planet and what this means specifically 

for the Antarctic continent and its associated ecosystems.  
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Appendices 

 

Appendix A: 

Automated Weather Station specifications as presented at: https://amrc.ssec.wisc.edu/aws/index.html 

University of Wisconsin-Madison AWS Specifications  

From Technical Manual for Automatic Weather Stations, by George A. Weidner, Department of 
Meteorology (now Atmospheric and Oceanic Sciences), University of Wisconsin-Madison, 1985.  

Variable Sensor Specifications  

 

Air Pressure  Paroscientific Model 215 A  
Range: 0 to 1100 hPa Resolution: 0.050 hPa Accuracy: +/- 0.2 
hPa 
(0.2 hPa/year long term drift)  

Air 
Temperature  

Weed PRT Two-wire 
bridge  

Range: to -100 C minimum Resolution: 0.125 C Accuracy: +/- 
0.5 C  

Humidity  Vaisala HMP-35A (and 
other models)  

Range: 0 to 100% 
Resolution: 1.0 % 
Accuracy: +/- 5.0 % down to -55 C Corrections possible for 
lower temperatures  

Wind Direction  10 K Ohm pot.  Range: 0 to 355 Degrees Resolution: 1.5 Degrees Accuracy: +/- 
3.0 Degrees  

Wind Speed  Bendix/Belfort RM Young 
Hydro-Tech  

Resolution/Accuracy: 0.25 +/- 0.5 m/s Resolution/Accuracy: 
0.20 +/- 0.5 m/s Resolution/Accuracy: 0.33 +/- 2%  

Temperature 
String  

Thermocouple Two 
junction Copper-Cons.  Resolution: 0.06 C Accuracy: +/- 0.125 C  

 

 


