

Knowledge Representation and
Acquisition for

Intelligent Tutoring Systems

2003

Steven Linton Supervisor: Dr Brent Martin

Abstract

Intelligent Tutoring System (ITS) Authoring Tools have successfully been able to

mechanise the creation of the intelligent components of the ITS. However, each of

these components have a high level of coupling with the domain model, which is used

to store the domain knowledge. This domain model must be complete and accurate

otherwise the tutor will not perform effectively. The process of creating the domain

model remains problematic due to the large amount of time that must be invested.

This research investigates methods for simplifying and automating the process of

creating the domain model. The focus is on improving the architecture and

representation using XML and the Model-Driven Architecture (MDA) to aid

portability and reuse.

Acknowledgements
I would like to thank Dr Brent Martin for his invaluable feedback and guidance
throughout the research and my parents for enduring the torturous proof reading of
this report.

 2

Table of Contents

1 Introduction..4
1.1 Summary...4
2 Background ..6
2.1 Knowledge Classification ...6
2.2 Intelligent Tutoring System (ITS)...6
2.2.1 The Domain Model ...7
2.2.2 The Student Model..7
2.3 Domain Modelling..7
2.3.1 Constraint-Based Modelling (CBM)...8
2.3.2 Buggy Constraints...8
2.4 XML Technologies...9
2.5 Model-Driven Architecture (MDA)..9
3 Related Work ...10
3.1 ITS Authoring Tools...10
3.2 Constraint Representation...11
3.3 Ontology Engineering...12
4 Knowledge Representation ..13
4.1 Domain Ontology ...13
4.2 Domain Concepts..14
4.2.1 Open Student Model ...16
4.3 Domain Definition ..17
4.3.1 Design Considerations ..18
4.3.2 Namespaces...19
4.3.3 XML Schema Definition...19
4.4 Domain Knowledge ..19
4.4.1 Modal Constraints ...20
4.4.2 Feedback ...21
4.4.3 XSLT Definition ...22
4.5 Courseware (Problems and Solutions)..22
4.5.1 Question Generation..23
4.5.2 Validation..23
4.5.3 XML Definition ..24
5 Knowledge Acquisition..25
5.1 Primer ...25
5.2 Programming by Example ..26
5.2.1 The Algorithm...26
5.2.2 Programming by Demonstration ...28
5.3 Transformation Approach...28
5.3.1 Analysis...29
5.3.2 Limitations ..30
5.4 Inquiry-Based Approach...30
6 Future Work ...32
6.1 Build a MDA ITS ...32
6.2 Evaluate Transformation Approach..33
6.3 The Semantic Web..33
7 Summary ..35
8 References..36
9 Appendix..39
9.1 ER Domain Schema..39

 3

1 Introduction
Intelligent Tutoring Systems (ITS) are educational systems that aim at providing one-
to-one tuition of students. The student interacts with the system by solving problems
that are selected based on that student’s ability. A domain model is used to store an
understanding of the instructional domain, which is to interpret a student’s solution
and track their skills. Due to the large number of complex components comprising an
ITS, Authoring Tools have been developed to aid their construction. This provides
most of the intelligent components, yet the construction of the domain model remains
notoriously difficult.

Efforts to simplify this problem have been primarily involved with the definition of
domain modelling languages. These languages define the process of how a problem is
interpreted. Of interest in this research is the Constraint-Based Modelling (CBM)
approach which models knowledge using independent domain rules. These rules have
been shown to be faster to elicit than other knowledge elements of equivalent
approaches [1]. Estimations place the time to create a single constraint at
approximately one hour. This seems fast, yet in an average to large domain there can
be between 100 to 500 constraints, which results in many weeks work to create a new
ITS.

It is believed that this is one of the main reasons that ITS’s have not be widely
integrated into Schools and workplace training schemes [2]. Another reason cited for
this lack of ITS acceptance is in the lack of configurability [3] and reuse [4]. This is
an issue that has been addressed to some extent by ITS Authoring Tools, however
these tools are often constricted to fixed domain modelling techniques and
representations. This is caused by the high level of coupling of the domain model with
the other ITS components.

The goals of this research are two-fold. The first goal is to demonstrate knowledge
acquisition techniques that can aid in the construction of new domain models. To
achieve this goal effectively a detailed analysis of the domain model must be
performed. The architecture of the ITS and the knowledge representation has a strong
influence on how efficiently the domain knowledge can be acquired. Therefore the
second goal is to illustrate how the domain model, for use in ITS Authoring Tools,
can be designed to enable automated knowledge acquisition, higher speed system
development, portability and the integration of independent domain models.

1.1 Summary
The following paper is organised as follows. Section 2 provides the background
knowledge of ITS systems and the technologies that are proposed to optimise them.
This is followed by the related work that has been performed in the two areas that
form the major component of this report; knowledge representation and knowledge
acquisition. Knowledge representation is discussed in Section 4. Here methods are
described for the simplification and extension of the domain model design. The
standard CBM domain model uses constraints as the only representation. The
extension proposed, represents the domain using three models: the domain concept
model, the domain definition and the domain knowledge. The domain concept model

 4

captures the high-level, abstract concepts that the ITS is attempting to teach the
student. The domain definition is a low-level, syntactic definition of the domain that
provides a language to define ITS courseware and knowledge. The domain knowledge
is composed of constraints, or in a Model-Tracing (MT) tutor, the production rules
and bug library. By defining each of these components using XML and structuring it
with the Model-Driven Architecture, the domain model is portable and platform-
independent. These properties lead to the future of ITS’s which integrate many
domains across a distributed web-based environment.

Based on this new knowledge representation, three knowledge acquisition approaches
are discussed in Section 5. The first approach is programming by example; this treats
the ITS as a student, supplying it with an ideal solution and having it permute its
definition to produce new solutions. The new solutions are validated by the domain
expert. The system infers the effect of alterations and generates a constraint that
captures that state change. The second approach exploits the nature of the XML
domain definition. By using pre-defined templates, it searches the domain definition
for patterns that indicate constraints common throughout different domains. Finally
this transformation approach is augmented by a high-level inquiry system. This aids
the domain expert in mentally exploring the domain knowledge by asking questions
based on observations of the domain model state.

 5

2 Background
This section provides a brief overview of the Intelligent Tutoring field and a
motivation for the research component of this report. It explains the role of the
domain knowledge and representation, and the ITS components that interact with it.

2.1 Knowledge Classification
Although elementary, an investigation of ITS’s must begin with an understanding of
what intelligence is and how it is presented in an ITS. An ITS has knowledge of an
instructional domain and is able to provide feedback that reflects this. ITS’s typically
select a knowledge base that represent either declarative or procedural knowledge. For
the purposes of this research, declarative knowledge in the form of heuristic rules
(constraints) has been selected (discussed further in Section 2.3.1).

Knowledge of the domain is not the only consideration. Constraints do not
encapsulate the concepts of a domain. Concepts in this situation are considered to be
the general ideas that the student must know to understand the domain. ITS’s that
represent domain concepts are able determine how well a student is progressing in a
specific area, and when to move to the next. Finally, the system must have a syntactic
definition of the domain to understand how to parse and process it.

2.2 Intelligent Tutoring System (ITS)
The ITS provides a student with interactive and adaptive tuition with intelligent
feedback. Interactivity is the key function, studies have shown that students learn best
when they are presented with a problem that they must solve manually. ITS’s
typically provide a large repository of problems for the student to work through. The
path that they take is generated adaptively based on the student’s performance. While
a student solves a problem the ITS records statistics that can be used to indicate the
students level of skill. These statistics are stored in a student model, which
encapsulates the domain concepts. The adaptability is facilitated through teaching
strategies, which control the solution feedback and the sequencing of the course.
There are a vast number of teaching strategies and sometimes many are implemented
within a single system. The alternative to ITS’s are Computer-Aided Instruction
(CAI) systems. These have no intelligent component and simply present the student
with static courseware.

Modern ITS’s and ITS Authoring Tools are component-based to reduce the
complexity of their implementation. The component diagram in Figure 1 shows each
of the typical components for a CBM tutor. There are three components and three
repositories. Each repository has no processing capability this is provided by the ITS
components. The courseware for an ITS typically consists of problems and their ideal
solutions. Many ITS’s do not include instructional material. ITS’s do not aim to
replace human tutors, rather to provide a supplement to regular tuition to reinforce the
concepts that are taught [5]. Of particular interest for this research is the domain
model, which stores the domain knowledge required to make the ITS intelligent, this
is explored further in the next section. The constraint-based modeller is responsible
for taking a Student Solution and interpreting its validity using the domain knowledge.
Constraints are only one way to model the domain, this is explained in more detail in
Section 2.3. The modeller is what differentiates an ITS from an Adaptive Hypermedia

 6

Tutor, that contains a Student Model but has no facility for proving intelligent
feedback for student solutions. The pedagogical module is responsible for the
teaching strategies.

Domain Model
(constraints)

Constraint Based

Modeller

Student Model

Pedagogical Module

Courseware

Student

User Interface

Figure 1 : The ITS architecture of KERMIT [6]

2.2.1 The Domain Model
Whether or not it is explicitly stated, all ITS’s must have a domain model. The
domain model stores the knowledge required to interpret the instructional material.
This knowledge is formed from low-level rules or heuristics that describe the detail of
domain concepts. This knowledge is represented in a language that is understood
directly by the other components of the system. Specifically, its representation
strongly influences the approach to student modelling and the pedagogical processing
of the system. The domain model is not inherently intelligent; the intelligence is a
result of how the domain model is used throughout the system.

2.2.2 The Student Model
The student model stores historical data, tracking a student’s progress through the
courseware. This data is used to generate behavioural statistics that model the
knowledge of the individual student. The student model has been the primary focus of
most ITS research as it provides most of the ITS’s intelligence. The uses include
customised feedback, question selection and adaptive structuring of the courseware.

There is a rich variety of student modelling approaches, yet each is dependent on the
content of the domain model knowledge. ITS architecture designs typically show the
student model as independent of the domain model [6], yet in practice the student
model stores its data using the domain model. The student model is either a subset of
the domain model or encapsulates it entirely, while overlaying its own statistics. This
coupling increases the system complexity as changes to the domain model must be
reflected in the student model. This flaw remains a restriction of present ITS designs.

2.3 Domain Modelling
Domain modelling encapsulates the representation and processing of domain
knowledge. As the domain is the core of the ITS, the method used to model it is

 7

critical in defining the operation of the system. Much research has been performed
into the definition of appropriate domain modelling techniques. Two important
techniques are Constraint-based modelling (CBM) and Model Tracing (MT), which
represent declarative and procedural knowledge respectively. Each approach has
strengths and weaknesses depending on the type of domain they are modelling. CBM
is more effective for modelling open-ended domains such as languages or design
notations and practices, whereas MT is more suited to well-defined domains such as
mathematics or physics. A comparative analysis of the two techniques is provided in
[1]. The most important observation made, for the context of this research, is that
constraints are both easier and consistently faster to manually generate. The
Constraint-Based approach is the focus for knowledge representation and acquisition
techniques presented in this research.

2.3.1 Constraint-Based Modelling (CBM)
Constraints capture the declarative knowledge of the domain. The concept of
modelling the domain knowledge using constraints was introduced in 1993 by S.
Ohlsson [7]. It should be noted that domain knowledge and student knowledge are
terms often used interchangeably, as Ohlsson’s paper does. However, they do
represent quite different concepts. Constraints are independent, modular heuristics
that capture the domain facts. A set of related facts form domain concepts. They are
categorised as syntactic and semantic. Constraints use pattern matching between the
ideal solution and the student solution. Therefore evaluation of a solution in a CBM
tutor should be performed when the student has completed the problem. Each
constraint is structured with a relevance and satisfaction condition. Only constraints
that are relevant are applied to the problem, those that are not satisfied produce some
feedback. The following example shows a constraint, represented in plain English,
which checks that “all Entities have unique names1”.

Relevance Condition: This is an Entity of the Student Solution.
Satisfaction Condition: The Student Solution contains no other Entity with that name.

An additional limitation of constraints is that often they are engineered to only
consider the relationship between the ideal and student solution but not the problem
question. In open-ended domains, where the solutions are of sufficient size, this is
generally appropriate. However, in more formal domains, the question is of critical
importance for inferring whether a solution is correct. As an example, a mathematics
tutor may pose the question, “What is 1 + 1?” The ideal solution is 2 yet if the student
answers 1, based on ideal and student solution only, there is no way for the system to
determine that the student has multiplied the parameters. In the paper [1] that
compares MT and CBM tutors the argument is that declarative domains are more
suited to MT. A solution to this problem is explored in Section 4.5.

2.3.2 Buggy Constraints
Ideally, constraints only identify the correct states of the solution; they do not search
for what the student has done wrong. Constraints that do this are known as buggy
constraints. Buggy Constraints are derived from normal constraints and the feedback
they provide is therefore too detailed; it tells the student specifically their error which
is not constructive to a learning environment [8]. By capturing student errors the

1 This is a common example used throughout the document and was taken directly from KERMIT.

 8

system is more accurately able to model a student’s knowledge, yet these constraints
should not be used to provide feedback directly to the student.

2.4 XML Technologies
XML (eXtensible Markup Language) [9] and its many related technologies are an
important theme throughout this research. It is used as the representation language for
the domain model and courseware. The following is a brief overview of the various
relevant technologies and what they offer.

XML is designed for the standardisation of Internet documents that contain structured
information. XML was introduced in 1997 and was quickly accepted by industry. It is
highly portable; an XML document can be processed on all major platforms and web
browsers. The XML syntax is defined using sets of tags and structural relationships to
describe a document. The syntax of an XML document is described and constrained
by an XML Schema [10]. Semantics are not explicitly defined for an XML document;
this is facilitated through an XSLT (eXtensible Stylesheet Language Transformations)
[11] document. XSLT reads through an XML document searching for tags of interest
and transforms the information they contain to another format such as a web page or
another XML document. XPATH [12] provides the pattern matching capabilities of
XSLT.

2.5 Model-Driven Architecture (MDA)
All of the simplifications, enhancements and extensions can be tied together through
the Model-Driven Architecture (MDA) [13]. The MDA is a software engineering
design principle introduced by the OGM (Object Management Group) in 1997. It
relies on the concept of platform-independent model (PIM) and platform-specific
model (PSM). All of the information should be specified at the platform-independent
level using XML. XSLT transforms can then be used to convert the PIM to a PSM,
which can subsequently be run.

The ITS domain Ontology (Section 4.1) represents the PIM, whereas the domain
knowledge is a PSM. In this sense the platform is considered to be the specific
domain modelling technique used in the ITS. There are currently no tutors that
implement two radically different domain modelling techniques simultaneously. A
second platform is the low-level representation used for the domain model and
courseware. WETAS uses a derivative of LISP for which it has its own parsing engine.
The research presented here uses the high-level XML language for the representation;
this overlays the implementation-specific platform. The greatest benefit of introducing
MDA to ITS’s is that the integration is at a high-level; the existing implementation
could still be used without any major modification. ITS’s and Authoring Tools can
benefit greatly by structuring the domain model and courseware with the MDA.

 9

3 Related Work
This section describes some of existing research that has been performed into
knowledge representation and acquisition. There are a large range of concepts that are
covered in this research including ITS’s, knowledge engineering, ontological
engineering, machine learning, XML and the MDA. Each of these fields have vast
amounts of literature associated with them. Only the most important related work is
presented in this section. Knowledge representation research is most involved with the
development of ITS Authoring Tools and the integration Ontologies. However,
knowledge acquisition has seen few practical and successful approaches when applied
to ITS’s.

3.1 ITS Authoring Tools
Creating a new ITS from scratch is a major task involving many thousands of hours to
build the various components required for a functioning system. Fortunately, ITS
authoring tools and shells have been created that supply most of the complex
components and provide a standardised approach to creating an ITS. The goal of the
ITS Authoring Tool is to aid development by decreasing the effort and skill required,
to aid the designer to consider the domain, to support good design principles and
enable rapid prototyping [14]. Authoring Tools such as WETAS [15] are complete
enough that only the domain model must be completed to create a new ITS. Even so,
the effort required to build the domain model knowledge-base is very high, with
estimates anywhere from several hundred to several thousand work hours, depending
on the modelling technique [1] and size of the domain.

The main difficulty still facing ITS authoring tools is that they are not generic and
there are no standards. Each defines a proprietary structure and domain representation.
In [14] T. Murry describes seven categories for the classification of ITS Authoring
Tools by type. These are:

o Curriculum Sequencing and Planning
o Tutoring Strategies
o Device Simulation and Equipment Training
o Domain Expert System
o Multiple Knowledge Types
o Special Purpose
o Intelligent/Adaptive Hypermedia.

WETAS [15] is a domain expert type ITS Authoring Tool, and uses the constraint-
based approach of domain modelling. WETAS is both the tool for creating an ITS and
a shell for distribution across a web-based interface. It uses the Allegroserve Web
Server and is capable of hosting many domains and sub-domains simultaneously.
Constraints are implemented using the Allegroserve Lisp language, which means that
ITS domain experts must be familiar with this language. Some effort has been made
to simplify this by identifying and limiting the constructs to those that are required to
create constraints [16]. WETAS provides the infrastructure and the intelligent
components required to interpret the domain model. The domain model and
courseware are effectively the only aspects that need to be constructed. The authoring
interface for this includes a visual Ontology that allows the designer to construct a

 10

simple diagram to illustrate the structure of the domain. This aids the domain expert
with their mental exploration of the system. WETAS has been shown to be effective
[17] through four ITS’s that were implemented with it: SQL-Tutor , KERMIT,
NORMIT and LBITS.

REDEEM [18] is a widely successful ITS Authoring Tool, which identifies the fact
that educators are most concerned with the input of the courseware. They wish to
have full control of how the system represents their instructional material. The power
of REDEEM is in its ability to take existing computer-based instructional material
and use that as the domain model. It uses its built-in knowledge, student model and
supplemental domain knowledge defined by the domain expert, to provide adaptive
sequencing of the courseware. In contrast to WETAS, the interface is aimed at the
layman ITS user, where the courseware is structured using friendly Graphical User
Interfaces. Unlike WETAS though, there is no facility for problem solving and is
therefore not as effective at tutoring students. Formative evaluations have shown that
REDEEM does not perform any better than an equivalent CAI tutor, and in some
cases was even worse [19]. This highlights that intelligence is an important part of an
ITS and that user acceptance should not take precedence over functionality.

Demonstr8 [20] is another ITS Authoring Tool, which targets MT domain modelling
based on Anderson’s ACT-R theory [21]. In MT ACT-R the domain model is
represented using production rules, which are statements with a condition and action.
Concepts are known as skills, which are a set of production rules. ACT-R has a clear
line between declarative and procedural knowledge. In Demonstr8 the declarative
knowledge is in the form of a data definition that is used to describe the problem and
working memory structure. The procedural knowledge (production rules) supplies the
intelligence and like WETAS, is defined with LISP. The processing capabilities are
provided by the Authoring Tool. The user must only define the domain structure, the
interface and the production rules. The strength of Demonstr8 is in its Program by
Demonstration method for acquiring production rules. The domain expert takes the
place of the student and trains the system using real examples. The system extracts
production rules by observing and inquiring with regard to the expert’s actions. An
algorithm also exists for the abstraction and generalisation of constraints.
Unfortunately, Demonstr8 did not make it further than the prototype stage. It was
found that production rules could not be automatically extracted without considerable
background domain knowledge as the generalisation algorithm made too many
mistakes. Others are looking to address these issues by reducing the level of
automation but increasing the robustness and generality [22].

3.2 Constraint Representation
One of the advancements to CBM ITS presented by B. Martin in his doctorate thesis
was the WETAS constraint language [16]. The language is a derivative of LISP and
consists of three fundamental functions used for pattern matching: MATCH, TEST
and TEST_SYMBOL. These statements have been sufficient to describe constraints
for SQL (SQL-Tutor [23]), ER (KERMIT [6]) and elementary English (LBITS [16])
tutors. An early version of SQL-Tutor used pure LISP, which resulted in a complex
and undisciplined domain model definition. Functions could be created that captured
specific aspects of the domain. The WETAS constraint language successfully
introduced a structured approach, increasing the maintainability of the constraint set.

 11

The aim and result of this new constraint definition language was to make the domain
executable, so that questions and solutions could be automatically generated [17].
While automatic generation of questions is not a focus of this research, it uses similar
concepts that are relevant to domain model generation. The process of generating
problems and solutions was to select a group of constraints that encapsulate the
concept that the student needs to learn. Constraints represent low-level forms of the
domain knowledge; it was observed that fragments of the domain could be extracted
from each constraint and placed appropriately within the problem definition. This
problem was them put through a problem solver which generated the solution. Finally,
the question was converted to natural language and presented to the student. The
primary difficulty with this approach is that creating a problem solver is problematic
in most domains. This is why constraints exist, as problem solvers are too difficult to
build and to generalise to all domains within an ITS Authoring Tool.

3.3 Ontological Engineering
The aim of the Ontology is to define an explicit representation for the conceptual
domain component, which few ITS’s attempt. It is argued that to create intelligent
systems there must be a declarative definition of what they know. The system defines
terms and concepts that are used to describe the domain expert and perform problem
solving independently of the domain. This gives the ITS the ability to analyse and
process a knowledge-based system. In the paper {Mizoguchi, 2000 #58} the Ontology
is described as having three levels:

1. A structured collection of terms that define a conceptual hierarchy of the
domain.

2. A formal definition of the domain concepts and relationships through
constraints and axioms. This is to avoid ambiguity and make the domain
machine readable.

3. An executable version of the domain.

The paper {Mitrovic, 2002 #33} describes the M-OBLIGE model, which implements
this architecture using XML and Protégé-2000 for the representation. It describes how
this model can be applied to integrate KERMIT and SQL-Tutor using local
Ontologies for each domain. Each of these local Ontologies are integrated into an
external Ontology, which is used to interact with other ITS’s. It is hoped that this
infrastructure will suggest a framework towards the unification and interoperability of
multiple tutors.

 12

4 Knowledge Representation
When considering the simplification and automation of creating an ITS, the
representation of the domain model is of critical importance. The representation is a
complex problem as it can affect every component within the ITS. There are two
ways to approach increasing the efficiency for knowledge representation in ITS’s. The
first is to investigate new domain modelling techniques that will allow for simpler
generation of the domain. This also requires the consideration of how each of the ITS
components will use the new domain to process students interactions with the system.
CBM has been selected as the focus for research as its representation is consistently
defined throughout CBM research [5, 7], it stores declarative information and has
been proven to be effective through evaluations of real systems [5]. An initial
investigation showed that the modular nature of constraints make them ideal for
knowledge acquisition as each knowledge element is independent. It also indicated
that this modularity could be extended to make the domain model platform
independent. This section describes how the MDA can be used to achieve this and
how the domain model can be optimised for more efficient use throughout the system,
to enable automated acquisition.

The domain model in a CBM tutor is typically represented solely by using constraints.
As a result the ITS contains a very specific knowledge of the domain. Higher level
concepts are lost or are supplemented without integration. A complete domain model
must also include a model of the domain concepts, and an explicit representation or
definition. The domain concepts and definition can be implemented independently of
ITS components and as such, are generalised to form an Ontology. This Ontology is
interchangeable between systems, be they an ITS or otherwise. To enable this
portability while maintaining integration with the ITS, XML is suggested as the
physical representation for the Ontology, domain knowledge and associated material.

The physical representation of the domain model for CBM tutors is typically
implemented using a functional language such as LISP [16, 24], commonly used for
AI and logic applications. While such languages are extremely effective, both in their
simplicity and their performance, they do have an inherent flaw. Domain models are
not portable without great effort due to the syntax of the language and the lack of
standardisation between ITS research communities. This section demonstrates how
XML can mimic the functions of the WETAS domain language (presented in Section
3.2), while maintaining portability and integration between components. It is further
used in Section 5 to enable effective XML based domain learning algorithms.

4.1 Domain Ontology
The concept of a domain Ontology is relatively new in the field of Intelligent Tutoring
[25, 26]. However, they have received much development in other fields [27] and is
one of the key technologies of the Semantic Web (Section 6.3). The formal definition
of Ontology is the “specification of a conceptualisation”. It provides a definition of
formal domain vocabulary and allows for knowledge sharing and reuse [28]. A visual
Ontology tool is provided as a module for the WETAS authoring tool. This allows
domain experts to model domain concepts and create relationships with associated
constraints. Like any effective notation, this has a profound effect on both the general

 13

understanding of a domain and its relationships. Using the Ontology simply for
conceptual visualisation is limiting its power, as the domain structure (Figure 3) is not
represented.

The domain models illustrated in Figure 2 shows how the domain Ontology captures
two of its aspects: the domain concepts (Section 4.2) and the domain definition
(Section 4.3). The domain knowledge (Section 4.4) is considered external as it is at a
different level of abstraction. While the semantics captured in the domain knowledge
model are platform independent, their representation is dependent on the domain
modelling platform (in this case CBM). The most important concept of the Ontology
is that it is platform-independent and generic. The Ontology must not require or imply
any method for processing it. This notion of platform-independence comes from the
Model-Driven Architecture (Section 2.5). It is this nature that allows the Ontology to
be integrated with other tutors; the Ontology content can be merged as each domain is
syntactically independent. This requires an effective interface between the domain
Ontology, domain knowledge and ITS components.

 Domain Model

Ontology D
om

ain Know
ledge

Student Model
D

om
ain C

oncepts

D
om

ain D
efinition

Figure 2 : Decomposition of the proposed Domain model, illustrating that the Ontology is
comprised of the Domain Concept Mode and Domain Definition, but not the Domain Knowledge.

The Ontology also simplifies the maintenance of the domain model [29]. Many
domains are under constant external development (e.g. UML or XML) and would
provide a major challenge to maintain as ITS. Without a formal definition for the
domain and its concepts it is difficult to track changes. In a traditional system a
change required reinvestigation of the entire domain model to determine what is no
longer relevant and where the required changes must be made. This is a tedious
process and prone to errors. With the Ontology, changes are propagated throughout
the system, any constraints or courseware that relied on it will no longer pass
validation against the schema, immediately identifying the effected material.

4.2 Domain Concepts
The domain concepts are the highest level representation of the domain model (Figure
3). Domain concepts are a direct abstraction of the domain knowledge facts and
semantics, yet are not explicitly present within either the domain definition or the
domain knowledge. Modelling of domain concepts is a subjective process as it is

 14

dependent on the domain modeller, who must attempt to model a combination of the
domain semantics and domain definition abstractions. Although a finalised concept
model is tightly defined, using some modelling notation, it can be the most difficult
design aspect of the domain model. One of the key purposes of the domain concepts
model is for the categorisation of domain knowledge elements.

The concept model more closely resembles the instructional topics and sub-topics
than the explicit domain structure represented in the domain definition. Unlike the
Constraints, questions and solutions, the domain concepts are not represented in terms
of the domain definition (as explained in Section 4.3). In most cases abstract concepts
are not captured explicitly in the syntax of a domain. Yet, this lack of integration does
not cause incompatibility within the system; these linkages must be created manually
by the domain modeller. It is not yet possible to optimally infer the conceptual
structure of domain concepts automatically, although there are efforts to accomplish
this [30]. As the domain concept model is subjective, less importance is placed on
making it portable.

The domain concepts are represented using a semantic network structure. Nodes
represent knowledge concepts, while the links represent the relationships and
interactions between them. Semantic networks are used to describe declarative and
procedural knowledge. There are many notations for the visualisation and structural
definition of semantic networks. Although not a formal notation, UML Class
diagrams have been widely accepted [31, 32] for semantic network visualisation. An
example of how UML can be used to represent a semantic network is illustrated in
Figure 3. This shows the conceptual layout of a simple ITS for tutoring use of
Adjectives. UML is appropriate for this research as it has an associated XML
representation known as XMI [33]. This can be easily transformed using XSL for
subsequent use throughout the ITS components. Another benefit of UML is that it
effectively represents semantic network relationships, which can be lacking in the ER
notation (a conceptual data model more commonly used for semantic networks).
Critical semantic network relationships and their equivalence in UML notation are: is-
a Ù inheritance, uses Ù association and has Ù aggregation.

Figure 3 : A Domain Concept model for an Adjectives tutor.

 15

The key purpose of formally representing the domain concepts is that they act as a
classification medium for the low-level domain knowledge. This improves the
opportunities for both the Open Student Model and Question Selection ITS
components.

4.2.1 Open Student Model
The Open Student Model is one of the ITS components that benefits from the explicit
inclusion of the domain concept model. The purpose of an Open Student Model is to
illustrate to the student what concepts they understand and remain to be learned [34].
This information is derived from the Student Model, which itself is a derivative of the
domain model. The student is presented with a visual representation of the domain
concepts with contextual information inlaid from the Student Model. The ITS ELM-
ART [24] includes this feature, presenting the student with a listing of all domain
concepts with an associated percentage rating (a skillometer) of their understanding
for each. Students are able to revise the student model with new values representing
how they feel they are really progressing in a specific area. The problem is that the
Open Student Model used in ELM-ART has the same structure as the courseware and
therefore conveys the student’s progress through the course, rather than their
conceptual understanding of the course concepts.

Although domain constraints are an effective measure for evaluation of student
progress [35], the grain size is too fine to effectively represent the Open Student
Model. When too much information is presented, the student is able to visualise the
system and as a result is unable to infer their domain understanding. The Student
model is built from statistical analysis of the constraints, which are each classified
under one or more domain concepts. Therefore the student can be presented with a
visual model of the domain concepts, supplemented with averaged data from the
Student Model. This does not impose a course structure and by applying filters, can
show concepts students have learned, what they are learning, and what the
relationships between these concepts are.

Figure 4 : Drill down on a domain concept node to show syntactic (upper) and semantic (lower)
constraints. Selecting constraint gives additional options.

Through a domain concept diagram elements in Figure 4, the student is able to access
instructional material or problems, that are relevant to a domain concept. The student
can also use their self-assessment skills [36] to determine the accuracy of the student

 16

model and modify it if necessary. Finally, they may also drill-down to the constraint
level to receive more detailed explanation of their current state of domain
understanding. Buggy constraints, if present in the domain model, can provide
valuable information for the student through the Open Student Model. As an example,
for a mathematics tutor, three levels of feedback could be supplied when the student
queries the addition concept:

a) You are still having difficulty with addition. Here is the lesson on addition…
(Conceptual level).

b) You have not mastered carry digits for addition. Here is how you use a carry
digit… (Constraint level)

c) You often forget to use a carry. You also sometimes add the carry to the
wrong column. Here is what you should do in these situations… (Buggy
Constraint level)

Supplying the student with too much feedback on student solutions during a problem
session is actively avoided, as it does not encourage them to think for themselves.
However, if the student is not in a problem solving session and are reviewing their
performance, they are seeking a different type of feedback. They wish to know how
well they are achieving and what their common mistakes are. This way, students
benefit from having control over their own learning [24]. In many cases, students
simply wish to know exactly what they need to study and therefore the more detail
within the Open Student Model, the more effective it becomes.

4.3 Domain Definition
The domain definition is a new concept for ITS’s; it provides a complete and formal
meta-description of the domain syntax. The semantics are not included as these are
captured by the domain constraints. It is at the same level of abstraction as the domain
knowledge, yet it is platform-independent (where the ITS is considered the platform).
The definition can therefore be used in any ITS or software system that has a use for it.
For most domains the identification of the syntactic structure is routine and can be
easily defined by a domain expert. The purpose of the domain definition is to provide
a definition language and syntactic validation for each of the ITS documents 2 :
questions, solutions, constraints and even the user interface.

Each ITS document element that pertains to the domain must be specified using only
meta-data that exists within the domain definition. This requirement gives the illusion
of adding a high-level of complexity to the ITS structure as the domain definition is
platform-independent. Yet, through the use of XML and the MDA practices, this level
of integration is relatively simple to achieve.

The domain definition is defined using XML Schema which is a core component of
the MDA. XML Schema is used to define meta-languages and is a strictly typed
language; there are few instances that a definition can be written in multiple ways.
Those inconsistencies that do exist are easily remedied with a XSLT stylesheet, which
transforms the XML Schema to a compatible form before use. This stylesheet is

2 It is always assumed that static ITS components are managed by an authoring tool or shell.

 17

generically applicable to all XML Schema definitions as it acts on the language rather
than the resultant data model.

The power of the MDA is that all of the ITS documents are defined at both the
platform-independent and platform-specific level. Generic XSLT stylesheets are
provided that convert between the two levels. As an example, the pure XSL constraint
from Listing 3 can be transformed into the WETAS constraint from Listing 1 using a
generic stylesheet. The result is that all of the XML definitions for constraints,
questions and solutions proposed throughout these sections can be provided as a
higher-level language defined over the standard WETAS interface. No changes must
be made to WETAS whilst most of the benefits are retained.

Despite the advantages, there is a great amount of work involved with creating these
generic stylesheets as they must be capable of converting, in the case of constraints,
from one complex pattern matching syntax to another. Ultimately, an ITS authoring
tool must be built that uses pure XML definitions for all the ITS documents,
eliminating the need for a multi-level model.

4.3.1 Design Considerations
A great benefit of using the MDA and XML Schema to model the domain definition
is that many domains have already been modelled using XML Schema. Domains like
the ER notation provided in Listing 8, or UML Class Diagram notation that is due for
free release in XMI version 2.0 [33]. Many organisations are using XML technologies
to define their business processes and technologies. Work based training systems are
notoriously difficult to create, yet such systems can be derived from the internal
systems already in place. This notion introduces great potential benefit for ITS’s.

The modelling notation used to design the domain definition is not a confounding
factor. The ITS assumes no prior knowledge of the domain content or structure; it is
not aware of the difference between a well defined or badly defined domain definition.
A bad design will result in questions, solutions and especially constraints, that are
difficult to define, yet the system will still function. An example situation follows:

The domain model can be designed using an Entity Relationship diagram, which is a
conceptual data model. Once the ER diagram is complete the Xere algorithm3 [37]
can be used to generate an XML Schema domain definition. Alternatively, an
implementation data model such as the richer UML notation can be used to model the
domain. In this case the derived XML Schema will be substantially different from the
ER data model as they were created using different constructs. The result is that both
systems have operational domain definitions. The ER model is based on a simple data
model and can therefore only define simple ITS documents. The UML model is
detailed yet requires more effort in the subsequent definition of the ITS documents.

The domain definition does pose one constraint on the user interface component. The
user interfaces must confine the student to creating solutions that use the domain
definition constructs. If the student generates a solution containing undefined meta-

3 The Xere Algorithm aims to create interoperability between XML schema and ER diagrams. Its
process of taking an XML schema, transforming with a XSL stylesheet and generating an XML ER
diagram, is the same as the domain learning scheme presented in Section 5.3.

 18

data the system will not be able to process it. This error will not be captured as the
domain definition is never used for direct validation. Due to the nature of XML
Schema, a document that does not conform can not be loaded, even if it is well-
formed. As a result the student would never be able to enter a solution with invalid
syntax and would result in an unusable interface.

4.3.2 Namespaces
The MDA allows the integration of multiple domain models. When domains become
large and distributed over different sub-domains, the internal representation of
elements have a risk of clashing. Programming languages and modelling notations are
an example; the ER diagram notation for attribute is different from the UML Class
Diagram attribute notation, which in turn is different from an attribute in Java. A tutor
that incorporates these domains into a centralised ITS domain model would not
operate correctly. Manually merging the two domain definitions is infeasible and
unnecessary. XML namespaces [38] manage this problem by qualifying domains
using Uniform Resource Identifiers (URI). The probability that there exist two
domains with the same name and conflicting URI’s is extremely low. The XML
Schema defines the constraints of the namespace; each document that uses it must
consequently be a part of that namespace.

4.3.3 XML Schema Definition
The following listing shows a sample of the ER domain definition, the full listing is in
Listing 8. This defines an Entity element that consists of zero to many Attribute
elements, where order is irrelevant, and an attribute name that is required and must be
unique with respect to all other Entity elements.

<xs:element name="entity">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="attribute" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:key name="entity_key">
 <xs:selector xpath="."/>
 <xs:field xpath="name"/>
 </xs:key>
</xs:element>

Listing 1: An XML Schema definition for an Entity with the ER domain.

4.4 Domain Knowledge
Constraints capture the declarative syntax and semantics of the domain. These are the
relationships and interactions between elements of the domain definition that can not
be defined using XML Schema, or that are subjective as they depend on a certain state
of the system to be valid (Section 4.4.1). Constraints represent the domain facts that
group together to form the domain concepts; constraints are categorised and
associated with the domain concept model (Section 4.2). Constraints perform pattern
matches on the question and solution XML documents that conform to the XML
Schema domain definition. Constraints are therefore defined using XSLT stylesheet,

 19

which takes one XML document, performs a transformation and generates a new
textual document. XSLT can only perform transformations on a well-formed XML
document, although any output format may be used. A stylesheet defines templates
that search XML documents, using XPATH queries, for specific meta-tags. Once a
meta-tag has been located it outputs some feedback into the new XML document. The
template illustrated in Listing 3 locates Entities with duplicate names and generates an
XML formatted feedback message.

Domain knowledge in a CBM tutor is represented using constraints, in a MT tutor it is
represented using production rules and a bug library. Therefore, the domain
knowledge is platform-specific as it is dependent on the type of ITS it is created for.
With consideration to the MDA there are two platforms within an ITS; the type of ITS
and the language used to write its various facets. Similar to the domain definition the
constraints are defined at each of these levels. The ITS platform constraints are
defined using XSLT (Listing 1) and are therefore platform-independent for that
specific platform. This means that CBM constraints can be integrated with any other
CBM ITS. Constraints at the language level are generated from the XML constraints;
and can therefore be defined using any syntax.

Another advantage of using XSLT is that it allows constraints to reference each other,
rather than rely on external macros or functions [16]. This allows for reuse within the
constraint set, reducing the redundancy. The relevance or satisfaction condition of a
given constraint may encapsulate that of another constraint, this is common in a
hierarchically structured domain where parent constraints abstract their child
constraints [39]. A constraint must be able to reference the relevance and/or
satisfaction condition of another constraint. This binds constraints together which is
important to ensure the integrity of the domain model and it simplifies the automated
generation of constraints, for which the generation of macros would be problematic.

4.4.1 Modal Constraints
Modal constraints are an addition suggested for domain modelling. Syntactic and
semantic constraints are able to capture facts of domain concepts, and through the
relevance condition the system is able to determine when it is appropriate to use them.
With open-ended domains there are multiple solutions to a given problem. In this case
the constraints are engineered to check dependencies that generate alternative
solutions.

This works well for small domains where the constraints are independent, yet in larger
domains there are different styles of solving problems. Concepts can overlap and are
applied differently. When two overlapping concepts are validated concurrently they
conflict and inappropriate feedback is generated. Constraints are unable to capture this
as they are not defined at the conceptual level. In this situation there are two groups of
constraints that conflict if processed together but will produce the correct feedback if
only one group is evaluated. An example is in the UML notation domain, where the
notation remains constant, yet there are many modelling techniques that are each
considered correct. Another example within the same domain is when advanced
students are expected to use Object-Oriented design patterns, yet beginner students
are not.

 20

The solution is to make constraints modal. This can be achieved by allowing the
constraints relevance condition to check against external variables. These variables
are generated by the student model or specified by the student. As illustrated in Figure
5 the student would be able to select a modelling technique to attempt.

Syntactic / Semantic

Constraints
Pedagogical

Module

XP RUPDesign
Patterns

GOF COAD User
Input

Figure 5 : Illustrates how modal constraint repositories can be shuffled and selected.

4.4.2 Feedback
The feedback from an ITS is controlled by the pedagogical module, which
implements the teaching strategies [14]. Yet, constraints have their own feedback
message hard-coded, decreasing the adaptability of the ITS. In an ITS with a
hierarchical domain it is logical to provide feedback messages that mimic this
structure. It can be achieved in two ways, firstly by providing constraints at each level
of the hierarchy, each with a feedback that generalises the child node. Secondly, by
using a meta-language for the definition of feedback messages, an algorithm can
generate abstracted, natural language feedback messages that contain references to all
violated child constraints.

Another advantage of this approach is that unique feedback messages can be created.
Adaptability and uniqueness are important concepts for Intelligent Tutoring. By using
a meta-definition for feedback messages they can be generated uniquely. As an
example, the feedback message “Check the names of entity types. They must be
unique”, could be rearranged to produce “Ensure that each of your entity types have
unique names”, or “Unique names must be supplied for all entity types”. This is one
case where the fickleness of English is useful, as each message is sufficiently different
that it fools the mind to thinking that they convey a different meaning. If a student is
consistently presented with the same feedback message they run the risk of learning
how to fix an error based on the message, rather than on the root cause of the problem
(as happens with compiler errors). Using dynamic feedback messages, unless the
student is deliberately searching for short-cuts, they will be forced to think about all
feedback messages.

 21

This could be implemented in two simple ways. The first method has a list of
common types of feedback message that relate to groups of constraints. For each type
a list of alternatives is defined, where key words can be substituted from the feedback
message definition contained within the constraint. This is not optimal as there would
be a limited number of combinations possible for each message. The second method
is to create a list of similes and different word arrangements to common phrases. The
feedback messages are defined with meta-tags that refer to these phrases. The
pedagogical module is responsible for selecting an appropriate simile for each
substitutable meta-tag. By changing both words and their arrangement, more unique
message can be generated.

4.4.3 XSLT Definition

(10
 "Check the names of your entity types. They must be unique."
 (match SS ENTITIES (?* "@" ?tag1 ?ent_name ?*))
 (not-p
 (match SS ENTITIES (?* "@" ?tag2 ?ent_name ?*
"@" ?tag3 ?ent_name ?*))
)
 "entity types"
)

Listing 2 : A WETAS constraint that checks all Entity’s have unique names for the ER domain.

<!-- Relevance Condition -->
<xsl:template match=”Entity”>
 <!-- Satisfaction Condition -->
 <xsl:if test=”name=preceding::Entity/Name”>
 <!-- Constraint output -->
 <xsl:element name="ConstraintID">10</xsl:element>
 <xsl:element name="OntologyMember">
 Entity
 </xsl:element>
 <xsl:element name="Feedback">
 Check the names of your entity types. They must be unique.
 </xsl:element>
 </xsl:if>
</xsl:template>

Listing 3 : An XSLT template constraint that checks all Entity’s have unique names for the ER
domain.

4.5 Courseware (Problems and Solutions)
The courseware is not a part of the domain model, yet it is strongly influenced by it.
The courseware must be defined in the same language that is used to interpret it; in
this case the courseware is defined using the domain definition. In WETAS questions
and solutions are defined using LISP syntax. People entering courseware are not
necessarily familiar with computers and require a simple interface [18]. To make this
more effective the courseware must be represented using XML. It allows for
integration with the domain model notation and also to provide a simple means of
building a visual courseware entry mechanism for ITS shells. As the questions and

 22

solutions are specified using the domain definition they provide validation to ensure
accuracy.

A major advantage of representing the question and solution using the domain
definition is that the system can easily determine the relevance of problems to specific
constraints. This aids problem selection and makes the tutor intelligent without hard-
coding these relevance relationships. The system enumerates each of the elements that
exist within both the question and solution, and are represented in the domain
definition. These elements must belong to at least one constraint relevance or
satisfaction condition. Those constraints can be judged as to their level of relevance
through the complexity of the constraint and how many domain elements were used
from the question and solution. This process can also be performed in reverse to
determine the relevance of a constraint to a problem.

The representation of questions internally using pure natural language is a
disadvantage as it is difficult to extract information without any direct relationship
with the domain definition. In KERMIT [6] questions are supplemented with meta-
tags that are interpreted by the constraints. These meta-tags have no direct
relationship to the domain, and therefore an extra layer of knowledge must be added
to the tutor to understand them.

A more elegant solution is to define the question using the domain schema definition.
Constraints can then refer to question content as they would the ideal or student
solution, as both have the domain definition as the common language. An algorithm
similar to that explained in Section 4.4.2 is used to convert the meta-definition to
natural language. This further leads to question generation opportunities.

4.5.1 Question Generation
Using the domain definition creates the opportunity for automated generation of the
question and solutions. In [40] a technique is proposed for automated generation of
courseware from constraints. Constraints represent fragments of the domain. By
selecting a set of constraints a unique question and ideal solution can be extrapolated.
This is a complex procedure and may not be effective for all domains. An advantage
of using the domain definition is that the appropriate representation for the question
and ideal solution is given. They must simply select a set of entities and attributes
from the definition and define a set of relationships between them. This selection may
be random or based on the relevance condition of a set of target constraints generated
by the student model. This allows the system to generate problems that are relevant to
the specific students. Once the template has been generated, a problem domain (e.g.
school, transportation, movies, etc) is overlaid to give the student some context.

4.5.2 Validation
Errors within the question and solution sets are inevitable. The ITS can provide a
function to help in locating them. If the ITS collates each of the students solutions,
either verbatim or in a global student model, it can determine patterns in the students
answering behaviour. As an example, if a majority of students answer a particular
question correctly yet in a method different from that suggested by the ideal solution
it suggests one of two things; either the students were not adequately taught that
concept or that the ideal solution is inappropriate. While the ITS will continue to

 23

operate correctly with an inappropriate ideal solution, if that solution is presented to
the student it may cause confusion.

4.5.3 XML Definition
(10 ; problem number
 10 ; difficulty
 "10. 10. Sometimes <E1> students </E1> <R1> work in </R1> <E2> groups </E2>. Each <E2>
group </E2> has a unique <E2K1> number </E2K1> and <E1> students </E1> have their <E1K1>
student ids </E1K1>. A <E1> student </E1> may have different <R1S1> roles </R1S1> in various
<E2> groups </E2> he/she belongs to."
 (("ENTITIES" "@ E1 STUDENT regular @ E2 GROUP regular")
 ("RELATIONSHIPS" "@ R1 WORKS_IN regular")
 ("ATTRIBUTES" "@ E1K1 Id key simple E1 @ E2K1 Number key simple E2 @ R1S1 Role
simple composite R1 ")
 ("CONNECTIONS" "@ C1 partial N R1 E1 @ C2 total N R1 E2 "))
 "10.gif"
 "Student groups"
)

Listing 4 : A WETAS style question and ideal solution.

<Problem>
 <Number>10</Number>
 <Difficulty>1</Difficulty>
 <Description>...</Description>
 <IdealSolution>...</IdealSolution>
 <!--Optional/Customised -->
 <Schema>Student</Schema>
 <SolutionImage></SolutionImage>
</Problem>

Listing 5 : An XML question definition.

<ER>
 <Entity>
 <Name>AIRPLANE</Name>
 <Attribute>
 <Name>Business_Seat</Name>
 <Type>Simple</Type>
 </Attribute>
 <Attribute>
 <Name>Economy_Seat</Name>
 <Type>Simple</Type>
 </Attribute>
 <Attribute>
 <Name>Year</Name>
 <Type>Simple</Type>
 </Attribute>
 <Attribute>
 <Name>Reg_Number</Name>
 <Type>Key</Type>
 </Attribute>
 <Attribute>
 <Name>Type_Attribute</Name>
 <Type>Simple</Type>
 </Attribute>
 </Entity>
</ER>

Listing 6 : An XML definition of the ideal solution from the question defined in Listing 4.

 24

5 Knowledge Acquisition
This section explores a range of techniques that might be used to simplify or automate
the creation (or learning) of the domain knowledge.

Once the domain modelling technique has been selected (in this case CBM) the
domain model must be built. The first step is to create the Ontology; the domain
definition is a formal definition of the domain syntax, the domain concept model is a
high-level representation of the domain concepts. The domain definition may be
available from another application that represents its information using XML Schema.
Otherwise, the domain definition must be constructed by a domain expert. The
accuracy of the domain model is critical, if parts of the domain are incomplete the ITS
will be unable to process effectively. All of the knowledge acquisition techniques rely
on the domain definition. The domain concept model is less critical depending on how
the underlying ITS Authoring Tool or shell implements it. This is used to categorise
the domain constraints and it used for some of the knowledge acquisition techniques
covered in this section.

For CBM tutor knowledge acquisition, the process involves eliciting the platform-
specific constraint set. These constraints are extracted from the declarative syntactic
and semantic dependencies found within the domain definition. The MT domain
modelling approach is not the focus of this research; it captures the procedural domain
concepts in the form of production rules and a bug library. This bug library is
problematic for automated acquisition as it contains all the invalid actions a student
may perform. Knowledge discovery algorithms require input that proves examples of
student behaviour or domain concepts. For any significant domain, the number of
negative examples (or bugs) present is combinatorial, making this approach
prohibitive.

The most common approach toward determining the domain knowledge is best
described as manual [14]. Automated knowledge acquisition is a much touted goal for
ITS’s [14, 18, 20, 41], yet there are few practical implementations {Murray, 1999
#26}. The best ITS authoring tools are able to greatly aid the input procedure, yet it
still remains manual. The problem of knowledge acquisition is a complex one and is
typically classified under machine learning. The difficulty with machine learning
tools is that they are aimed toward general knowledge acquisition with arbitrary
domains and applications. In the following sections the nature of the ITS domain
knowledge and domain definition is exploited to demonstrate practical techniques for
the implementation of automated domain constraint acquisition tools.

5.1 Primer
One generally applicable simplification for the constraint acquisition process concerns
the verification of constraints. This can be achieved using the same technique that is
used for the validation of questions and solutions (Section 4.5.2). There is a fortunate
property of constraint-based domain models in that if it is incomplete it can still be
used, yet it will generate false positive solutions during validation. Therefore, as the
ITS is built and new constraints are added, questions and solutions are presented to
test the accuracy of the model. The system records all solutions presented to it and the
state of each constraint after the solutions are validated. When a new constraint is

 25

entered into the system, every solution relevant (i.e. they share domain definition
elements in either the relevance or satisfaction condition) to the new constraint is
revalidated. Constraints are independent, so adding a new constraint will not affect the
result of any old constraint’s validation. However, this new constraint should cause
new failed solutions and/or old failed solutions with additional feedback from the new
constraint.

The authoring tool should visually display these result to the domain expert.
Additional statistics can be generated that determine the effect across the system. For
example a 100 percent effect would indicate that the new constraint contains a
tautology, whereas a zero percent effect indicates that the constraint is never relevant.
An ITS authoring tool must assume that the domain expert is not an ITS or computer
expert and that log based debugging is inappropriate. Once the domain expert is
satisfied with the new constraint, the model is updated with the new validation state of
each question and solution.

5.2 Programming by Example
In B. Martin’s paper [42] he describes a method of teaching the CBM ITS domain
constraints by having a dialog between the domain expert and the system. The system
generalises terms from the problem and solution to test some underlying domain
concept. For each new concept an example is supplied, using its knowledge the
example is generalised and presented to the domain expert. If the example is rejected,
the new concept is false. If it is accepted, the system attempts to further generalise
until the generalised concept is rejected, at which point the constraint is generated.
The technique is based on MARVIN machine learning system [43] from 1986.

The following technique is an adaptation of B. Martin’s “Learning by asking
Questions” approach. The ITS attempts to mimic the relationship between tutor and
student; the computer is now the student and the domain expert is the tutor. The
domain expert supplies questions and solutions, and the system searches for
relationships and patterns that can be used to form constraints. The ITS is initialised
with the domain definition that gives it the ability to process domain inputs such as
questions, solutions and constraints. Based on its current constraint set and a set pre-
programmed heuristics, the system is able to make alterations to questions and
solutions. This forms a new example which is validated by the domain expert. From
the domain expert’s answer, new constraints can be inferred from the changes that
were made and their effect on the solution. This reduces the machine learning
problem to the permutation of well-defined XML document elements and pattern
matching.

5.2.1 The Algorithm
This approach has two phases. The first phase aids the domain expert in locating and
creating the core domain constraints. It requires that the domain definition has been
created and that the domain expert is able to create questions and solutions using that
syntax, and that they are able to critique solutions. This technique works equally well
for finding positive or negative examples of domain knowledge. In fact, it must store
buggy constraints otherwise the algorithm will never exhaust the list of possible
permutations that might be made to the domain inputs.

 26

The system has a list of heuristics which determine how XML Schema elements can
be permuted. These heuristics are ordered by their level of severity (how drastically
they alter the input). As an example, the removal of an XML Entity or Attribute is
considered severe, whereas changing the case of an XML Attribute is considered
minor. Possible permutations include: changes to text, removal of an element,
addition of an element, combination of elements and changing an element type. The
order that the permutations are applied has a significant effect on the operation of the
algorithm. Practical implementation is the only way to determine the most appropriate
order.

Step 1 The domain expert supplies the tutor with a question and ideal solution

using the representation from Section 4.5.3.

Step 2 From the domain definition the system enumerates all of the recognisable
elements within the question and solution. The grain size is determined by
the level of detail within the domain definition.

Step 3 Based on the current domain knowledge, the domain definition elements
are tagged if they have one or more associated constraint.

Step 4 For those elements that are not tagged, their state is altered using a
heuristic, either structurally or through its text. This produces a new
solution.

Step 4.1 If there are no permutations of the inputs possible, the algorithm is
complete. This occurs when constraints prohibit any possible alterations to
the solution. For this reason buggy constraints must be included.

Step 4.2 The newly generated solution is presented to the domain expert.

Step 5 The domain expert validates the new solution, corrects any errors and
resubmits the solution.

Step 5.1 If the resubmitted solution is the same as Step 1, the domain expert has
changed the answer back. A constraint is generated.

Step 5.2 If the resubmitted solution is the same as Step 4, the adjustment did not
affect the syntax or semantics of the solution. The algorithm returns to
Step 4.

Step 5.3 If the resubmitted solution is new, the system repeats step 4 until it is able
to generate a new solution, or asks the domain expert for the sequence of
alterations. A constraint is generated.

Step 6 Repeat from Step 1.

When a new constraint is created the system presents the domain expert with both a
template constraint that encapsulates the alterations, and an ordered list of those

 27

alterations. From this, the domain expert is able to interpret an accurate constraint
definition. The new constraint is subsequently added to the domain knowledge and
categorised in the domain concept model.

The benefit of this approach over programming by demonstration is that the expert is
not required to think of all the different ways to correctly and incorrectly solve a
problem.

5.2.2 Programming by Demonstration
Programming by Demonstration was used in Demonstr8 [20] (Section 3.1). For this
technique the system is supplied with examples from the domain expert that illustrates
how a real student would solve a problem. The system attempts to infer what process
is taken and subsequently generate domain knowledge. In many cases the domain
modeller is an educator and has access to questions and real correct and incorrect
student solutions. In the programming by example technique all that is required is the
ideal solution and the system attempts to discover what changes could be made. By
demonstrating to the system typical student solutions, differences between these and
the ideal solution can be identified. The difficulty is that identification of these
differences and what was the cause of them is difficult. The technique of applying
small and cumulative alterations to the student or ideal solution can be used to
determine what has changed.

This introduces a problem as a student does not necessarily violate one constraint. The
system has no way to differentiate between the different solution paths, except by the
rigorous comparison of all student solution paths for that problem. The system first
locates all solutions that have no errors and generates constraints for those that have
changed elements. It then attempts to locate solutions with few changes but which are
incorrect. Constraints are generated that capture these changes and as the constraint
set is becomes more complete, more complex constraints can be derived.

Although in theory this process is fully automated, the level of processing required to
perform the operations required would be immense. The location of a path between
ideal solution and student solution is very difficult and has been the subject of much
research, as it is the underlying concept of Model Tracing tutors. Programming by
example is likely to be the more effective approach.

5.3 Transformation Approach
The transformation approach is fully automated and only relies on the domain expert
to provide the domain definition. The hard work is performed once initially by the
ITS expert when creating the ITS Authoring tool expert, who must create a set of
XSLT templates that are capable of converting the domain definition elements into
constraints. Analysis of existing constraint sets for KERMIT and SQL-Tutor, show
that there is a strong relationship between the constraint conditions and the structural
composition of the domain.

Based on analysis of pre-existing domain constraints a set of transforms are created
that convert domain definition patterns to common constraint type. Listing 7 shows a
XSLT template that search the domain definition for an xs:Element with an xs:key
element (i.e. all elements with unique attributes will be located). It proceeds to extract

 28

the name of the entity and the attribute. Finally a template constraint is generated,
complete with unique identification number and generic feedback message. The
reference ConceptMember links the constraint to the concept domain model. This acts
simply as a reminder as this technique is not able to extract the concept domain model
as the abstract domain concepts are not represented within the domain definition. This
is a very simple example constraint transform; complex constraints defined using
XSLT transforms quickly become very long and hard to define. Transforms can only
be defined by highly skilled use of XPATH queries.

The ratio of XSLT template to generated constraint is not one-to-one. This transform,
when applied to the ER domain definition, creates two constraints. In some domains,
such as LBITS, the constraints are very similar where a few templates can generate a
large proportion of the domain model. The important result is that this template is
generic and can be applied to any other domain definition. Subsequent constraints are
generated for free.

<xsl:template match=”//xs:Element”>
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match=”xs:Key/xs:Field”>
 <xsl:variable name=”EntityName”
select=”ancestor::xs:Element/@name”>
 <xsl:variable name=”AttributeName” select=”@xpath”>

 <!-- The following is pseudo xslt output -->
 <xsl:template match=”$EntityName”>
 <xsl:if test=”name=preceding::$EntityName/$AttributeName>
 <xsl:element name="ConstraintID">
 <xsl:number/>
 </xsl:element>
 <xsl:element name="ConceptMember">
 $EntityName
 </xsl:element>
 <xsl:element name="Feedback">
 An attribute [$AttributeName] from entity [$EntityName] must
be unique.
 </xsl:element>
 </xsl:if>
 </xsl:template>

</xsl:template>

Listing 7 : Example of a transform between the ER domain definition (Listing 8) and the
constraint defined in Listing 3.

5.3.1 Analysis
A limited version of the ER domain definition is provided in Listing 8. This domain
definition is captured by 7 syntax constraints and 24 semantic constraints.4 These
constraints were taken from KERMIT. Of these constraints, 3 syntax and 20 semantic
constraints can be generated directly from the domain definition by XSLT
transformations. The domain definition shows that the names can not be shared
between Entities and Relationships. It shows the incorrect cardinality for entity

4 The constraints used in this evaluation were taken from the KERMIT ITS.

 29

attributes and it does not define the cardinalities values for relationships. Of these
only the cardinality values can not be defined using XML Schema. The final result is
that, of the 31 constraints, 27 can be generated with an appropriate XSLT stylesheet
that captures these conditions. It must be noted that the ER domain definition supplied
is very simple; the full ER domain model consists of 26 syntax and 66 semantic
constraints. Many of these constraints have more complex conditions.

5.3.2 Limitations
The greatest limitation of this approach is that it only works for domains that are
structured similarly to XML Schema. For example, a superlative adjective within a
language tutor might be defined as ending with ‘est’. This can be defined in XML
using a simple type and a pattern restriction, yet this definition is specific to that
domain fact. It is unlikely that a defining an XSLT transform for this constraint will
ever be used by another domain. This problem will decrease as transforms are created
for a wide range of domains. However, domains that contain many unique definitions
are likely to always be a problem. Fortunately, there are a large number of domains
that can be defined using the general XML Schema constructs, including
programming languages and software design notations (including ER and UML).

Another limitation is that resulting constraints are static with respect to the domain;
they are unable to infer alternate solutions. To an extent, the generated constraints can
act simply as a guideline and as a means of locating trivial constraints. A legitimate
advantage is that these constraints can be used to initially populate the domain for
subsequent use in other domain learning techniques that require them.

5.4 Inquiry-Based Approach
This high-level approach is aimed at aiding the domain modeller to create the whole
domain model. It does not automate the generation of constraints as with the previous
approaches. In previous techniques it was assumed that the domain definition was
predefined or easily created by the domain expert. Inquiry-based machine learning
algorithms have been a popular technique for knowledge acquisition [44]. The
concept is that the domain expert provides domain input, the system then asks
questions to infer semantic knowledge of that domain.

Specifically, the system has a repository of pre-defined questions or question types
that explore an aspect of the domain definition. The inquiry facility offers no
automated acquisition of domain model components; it serves to aid the domain
expert’s mental exploration of the domain. Therefore, the following two options
explore concurrent and consecutive methods of integrating inquiry-based learning
with the Transformation approach explained in Section 5.3.

The first option explores consecutive integration where the Transformation approach
is run to completion and subsequently the inquiry phase begins. Once all of the
constraints have been generated the system asks questions to ensure that the domain
expert has critiqued the domain knowledge. These questions can take two forms;
direct generalisations of the constraint transforms (each transform is pre-programmed
with different scenarios) and questions that explore the relationships. Relationships
are between the classification of constraints within the domain concept model and
constraints relevant to the domain definition. As the transformation approach is

 30

unable to capture all domain constraints, especially those complex ones, the inquiry
system aids the developer in completing the model. This only works in situations
where the domain model is pre-built.

The second approach integrates the inquiry facility with the creation of the whole
domain model, no prior specification is assumed. Domain constraints are generated
(through transforms) while the designer creates the domain Ontology; the domain
concept model and domain definition. Concurrently, the system generates questions
that probe the domain modeller’s decisions and actions to infer semantic knowledge.
While the constraint templates are necessarily scoped to the domain definition, the
questions are able to explore the linkages between the domain definition, concepts
and constraints. When the domain modeller reaches an impasse, the system is
prompted to suggest aspects that have not been considered. These questions relate to
elements or structures of the domain definition or concept model that have few
linkages. As explained in Section 4.4.2 it is important that these questions are
generated uniquely to support a creative rather than a robotic approach.

As a trivial example, when designing a music tutor, the domain expert creates an
entity for Note, a number of Note subclasses and an Entity for Bar. The Bar has an
aggregation of Notes. The system now has enough information to ask whether the
order of elements for the aggregation is important. In this case it is, so the system
generates a generic constraint that is capable of checking sequential aggregations. The
expert amends this with domain knowledge of how exactly the sequence is important.
At this stage the designer realises that the definition is too shallow. In the Music
domain the sequence of notes is of critical importance and has many constraints
governing it. Consequently, the domain expert discovers that note sequencing is a
fundamental concept of the Music domain and it is added to the domain concept
model.

As designing a domain Ontology is not a linear process, there are likely to be many
revisions before a final solution is developed. The generation of constraint templates
and questions act as promptings to aid in the full exploration of the domain concept
currently being considered. Despite the volatility of the domain Ontology during the
design process, as constraints are considered to be the lowest level form of domain
knowledge, they will require little or no revision after they are first derived.

 31

6 Future Work
Many new concepts have been described throughout Section 4 and 5 for the
modification or extension of existing ITS processes. This section describes future
applications of these suggestions and introduces some other areas that lead from the
findings of this report.

6.1 Build a MDA ITS
Section 4.1 describes a new approach to domain modelling by splitting the domain
model into three platform-independent components: domain concept model, domain
definition and domain knowledge. Each of these is physically represented using XML
and related technologies. These components are overlaid on an ITS using the MDA.
The next logical step is to implement and evaluate these techniques. Initial
experiments can be incorporated into an existing ITS Authoring Tool such as WETAS.
This would be sufficient to prove the effectiveness of the MDA and to develop
standards for the representations. If successful this would lead to the development of a
pure XML ITS.

XMLTutor [45] is an ITS defined using XML, to teach XML. It encapsulates many of
the ideals presented in this research but it does not use the MDA. In this pure XML
ITS only MDA technologies would be used for the implementation, this includes Java
– for components, XML – for documents and data interchange, and SOAP [46] – for
distributed internet-based communication. This excludes LISP and therefore most of
the framework of WETAS. Fortunately, XML is well supported on all major
operating systems and low-level frameworks already exist for processing it. The
selected platform must support XML pipelines. These are critical to the simple
implementation of the MDA for an ITS Authoring Tool. An XML pipeline takes an
XML document and applies a series of XSL transformations to generate some final
output. An example of this process is shown in Figure 6. The pipeline allows for the
implementation of a modular, component based architecture. One powerful Java-
based platform that supports this notion very well is Cocoon5, which is aimed at
creating XML/Java, component-based websites.

The suggested approach is to build an ITS that encapsulates the domains of KERMIT
[6], NORMIT [47] and SQL-Tutor [23]. These are all tutors within the greater domain
of databases and each represent different problem styles. As mentioned, the
underlying platform could be WETAS, or implemented using an XML based platform
such as Cocoon. This is the power of the MDA. The process would require the
creation or locating of XML Schema definitions for each domain. The constraint and
question set must then be converted to the XSLT and XML representations. This is
not a small task, however, it is menial as the constraint set has already been proved to
work. Once this is complete the interfaces for three sub-domains must be created.
This must communicate using XML to the platform-independent domain model.
Depending on the platform-specific architecture, messages are either processed
directly, or have a stylesheet applied that converts them to the WETAS format for
processing. This is only a very brief description of the system. The important
observation will be how effectively constraints can be represented using XSL, how

5 More information on Cocoon can be found at: http://cocoon.apache.org/

 32

http://cocoon.apache.org/

well the three database sub-domains integrate and how efficiently the MDA can be
implemented.

-XML-
Question/Solutio

-XSLT-
Apply Constraints

-XML-
Student Solution -XML-

Raw Feedback

-XSLT-
To Natural LanguageStudent

-XML-
Student Model

-XSLT-
Merge Statistics

Figure 6 : Demonstrates an XSLT pipeline that takes a student solution, generates feedback
messages and updates the Student Model.

6.2 Evaluate Transformation Approach
A practical evaluation should be performed on the Transformation approach to
determine how effective it is when applied to a real domain. This may follow from the
creation of the MDA ITS described in the previous section, as it has many of the same
requirements. It is suggested that a new tutor for UML Class Diagrams be built, based
on transforms generated from the KERMIT, SQL-Tutor and NORMIT constraint sets.
UML is an ideal choice as the domain shares similar concepts, syntax and semantics,
to these existing ITS’s. As UML is a rich notation it is likely to include constraints
from each of these domains.

The Process:

1. Identify patterns within existing constraint sets – ER, SQL and NORMIT.
2. Write specific XSL transformations between XML Schema.
3. Generalise transforms between tutors.
4. Apply transforms to new domain – UML.
5. Evaluate new constraints.

The first important observation will be what the level of overlap is between the
transforms generated for each domain. The transforms can be specified using the
WETAS constraint language, and is therefore not dependent on a MDA to support it.
The appropriateness of the generated constraint set can be evaluated without a full
UML ITS, however to test for completeness the UML domain model would have to
be completed.

6.3 The Semantic Web
A path that was not followed is how definition of the domain model would benefit
from the Resource Description Framework (RDF) [48] and the Web Ontology

 33

Language (OWL) [49] technologies. RDF is an assertion language used for describing
and interchanging metadata. It is a low-level datamodel for defining objects and the
relationships between them. OWL is a revision of the DAML+OIL [50] web ontology
language. It extends the vocabulary offered by RDF, defining classes of objects
complete with property types, relationships and cardinalities. It was observed in
Section 4.3.1 that XML Schema was unable to sufficiently define cardinalities.
Therefore, RDF and OIL could be used to replace the XML Schema used to define the
domain definition.

RDF and OWL are underlying technologies for the creation of the Semantic Web [51],
which aims at creating an XML-based global data representation for the World Wide
Web. The semantic web would be of particular interest to an XML-based ITS such as
that proposed in Section 6.1, as it can serve as the domain model. The semantic web is
a domain model that has the potential to eventually define representations for all
forms of knowledge. If an ITS is able to integrate with the Semantic Web the effort in
creating new ITS’s could be reduced to simply providing instructional material and
problems. This is a lofty goal, which provides an excellent target for ITS’s to strive
for.

 34

7 Summary
The goal of this research was to illustrate methods that can be used to extend and
simplify knowledge representation and acquisition for the creation of ITS’s and ITS
Authoring Tools. This research presents three significant contributions to knowledge
representation and acquisition for CBM ITS’s:

¾ It was shown that the domain model can be defined in three forms: the domain

concepts, the domain definition and the domain knowledge. The advantage of
the domain definition is that it provides a domain independent schema that
unifies all of the domain model and courseware components. Furthermore, the
richer domain model explicitly categorises constraints to a domain concept
model. Together these extensions aim to simplify the implementation of the
feature set within an ITS Authoring Tool and enable the automated generation
of the domain knowledge.

¾ It was shown how the coupling can be reduced between the domain model and

the ITS components by using the MDA. An XML representation for the
domain model and courseware has been shown to be independent of the ITS
implementation platform. The benefits are in providing the ability to integrate
knowledge base of ITS’s on independent implementation platforms without
change to the underlying system. It also increases the efficiency of the domain
model’s portability, extendibility, reusability and distributed architecture. It
indicates that it will possible to create standards for knowledge representation
in ITS’s.

¾ Finally methods of simplifying the domain knowledge acquisition were

presented. The most significant of these is the Transformation approach,
which searches for known patterns with the domain definition and extracts
them as constraints. This has the potential to provide fully automated
constraint generation for a large proportion of the domain knowledge for
selected domains.

In conclusion, it has been shown that the field of Intelligent Tutoring has much to gain
from recent advances in Software and Knowledge Engineering. This research
provides a step in the right direction toward the ultimate goal of ITS representation
standards through platform-independent domain models. The next step will be in
creating an ITS that implements these solutions.

 35

8 References

[1] A. Mitrovic, K. R. Koedinger, and B. Martin, "A Comparative Analysis of

Cognitive Tutoring and Constraint-Based Modelling," presented at Ninth
International Conference on User Modeling (UM 2003), 2003.

[2] J. E. Beck, B. P. Woolf, and C. R. Beal, "ADVISOR: A machine learning
architecture for intelligent tutor construction (2000)," presented at Seventeenth
National Conference on Artificial Intelligence and Twelfth Conference on on
Innovative Applications of Artificial Intelligence, Austin, Texas, USA, 2000.

[3] C. P. Bloom, "Promoting the transfer of advanced training technologies,"
presented at Third International Conference on Intelligent Tutoring Systems,
Montreal, Canada, 1996.

[4] E. El-Sheikh and J. Sticklen, "Generating Intelligent Tutoring Systems from
Reusable Components and Knowledge-Based Systems," presented at 6th
International Conference in Intelligent Tutoring Systems, Spain, 2002.

[5] A. Mitrovic, M. Mayo, P. Suraweera, and B. Martin, "Constraint-Based
Tutors: A Success Story," presented at Fourteenth International Conference on
Industrial & Engineering Applications of Artificial Intelligence and Expert
Systems, Budapest, Hungary, 2001.

[6] P. Suraweera, "KERMIT: A Knowledge-based Entity Relationship Modelling
Intelligent Tutor," presented at New Zealand Computer Science Research
Students' Conference (NZCSRSC), New Zealand, 2001.

[7] S. Ohlsson, "Constraint-Based Student Modeling," Artificial Intelligence in
Education, vol. 3, pp. 429-447, 1993.

[8] A. Mitrovic and B. Martin, "Evaluating Effectiveness of Feedback in SQL-
Tutor," presented at IWALT 2000, Palmerston North, 2000.

[9] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler, "Extensible
Markup Language (XML) 1.0 (Second Edition)," World Wide Web
Consortium, Technical Report REC-xml-20001006, 6 October 2000.

[10] D. C. Fallside, "XML Schema Part 0: Primer," IBM, Technical Report REC-
xmlschema-0-20010502, 2 May 2001.

[11] J. Clark, "XSL Transformations (XSLT) Version 1.0," Technical Report 16
November 1999.

[12] S. D. James Clark, "XML Path Language (XPath) Version 1.0," Technical
Report REC-xpath-19991116, 16 November 1999.

[13] J. D. Poole, "Model-Driven Architecture: Vision, Standards And Emerging
Technologies," presented at Workshop on Metamodeling and Adaptive Object
Models (ECOOP 2001), 2001.

[14] T. Murray, "Authoring Intelligent Tutoring Systems: An analysis of the state
of the art," Artificial Intelligence in Education, vol. 10, pp. 98-129, 1999.

[15] A. Mitrovic and B. Martin, "WETAS: A Web-Based Authoring System for
Constraint-Based ITS," presented at Second International Conference on
Adaptive Hypermedia and Adaptive Web-Based Systems, Malaga, 2002.

[16] B. Martin, "Intelligent Tutoring Systems: The practical implementation of
constraint-based modelling," in Computer Science. Christchurch: Canterbury
University, 2003, pp. 218.

[17] B. Martin and A. Mitrovic, "Authoring Web-Based Tutoring Systems with
WETAS," presented at ICCE 2002, Auckland, New Zealand, 2002.

 36

[18] N. Major, S. Ainsworth, and D. Wood, "REDEEM: Exploiting symbiosis
between psychology and authoring environments," Artificial Intelligence in
Education, vol. 8, pp. 317-340, 1997.

[19] S. Ainsworth and S. Grimshaw, "Are ITSs Created with the REDEEM
Authoring Tool More Effective than "Dumb" Couresware?," presented at
International Conference on Intelligent Tutoring Systems, 2002.

[20] S. B. Blessing, "A programming by demonstration authoring tool for Model
Tracing tutors," Artificial Intelligence in Education., vol. 8, pp. 233-261, 1997.

[21] J. R. Anderson, M. Matessa, and S. Douglass, "The ACT-R theory and visual
attention," presented at Seventeenth Annual Conference of the Cognitive
Science Society, Hillsdale, NJ, 1995.

[22] K. R. Koedinger, V. A. W. M. M. Aleven, and N. T. Heffernan, "Cognitive
Tutor Tools for Advanced Instructional Strategies," Office of Naval Research
April 1st - Sept 30th 2002.

[23] A. Mitrovic, "A Knowledge-Based Teaching System for SQL," presented at
ED-MEDIA/ED-TELECOM'98, Freiburg, 1998.

[24] G. Weber and P. Brusilovsky, "ELM-ART: An adaptive versatile system for
web-based instruction," International Journal of Artificial Intelligence in
Education, vol. 12, pp. 351-384, 2001.

[25] A. Mitrovic and V. Devedzic, "A Model of multitutor Ontology-based
Learning Environments," presented at International Conference Computers in
Education (ICCE 2002), Auckland, New Zealand, 2002.

[26] V. Devedzic, L. Jerinic, and D. Radovic, "The GET-BITS Model of Intelligent
Tutoring Systems," Interactive Learning Research (JILR), vol. 11, pp. 411-
434, 2000.

[27] N. Noy and C. Hafner, "The State of the Art in Ontology Design," in AI
Magazine, vol. 18, 1997, pp. 53-74.

[28] T. R. Gruber, "A translation approach to portable ontology specifications,"
Knowledge Acquisition, vol. 5, pp. 199 - 220, 1993.

[29] B. Chandrasekaran, J. R. Josephson, and V. R. Benjamins, "What Are
Ontologies, and Why Do We Need Them?," IEEE Intelligent Systems, vol. 14,
pp. 20-26, 1999.

[30] J. Kay and S. Holden, "Automatic Extraction of Ontologies from Teaching
Document Metadata," presented at International Conference on Computers in
Education (ICCE 2002), Auckland, New Zealand, 2002.

[31] S. Cranefield and M. Purvis, "UML as an ontology modelling language,"
presented at Workshop on Intelligent Information Integration, 16th
International Joint Conference on Artificial Intelligence (IJCAI-99), 1999.

[32] S. Cranefield, "UML and the Semantic Web," International Semantic Web
Working Symposium (SWWS), 2001.

[33] L. Heaton, "XML Metadata Interchange (XMI), v2.0," Object Management
Group (OGM) formal/03-05-02, 5 March 2003.

[34] D. Hartley and A. Mitrovic, "Supporting learning by opening the student
model," presented at 6th Int. Conf on Intelligent Tutoring Systems, Biarritz,
France, 2002.

[35] B. Martin, "Constraint-Based Modelling: Representing Student Knowledge,"
New Zealand Journal of Computing, vol. 7, pp. 30-38, 1999.

[36] A. Weerasinghe and A. Mitrovic, "Effects of self-explanation in an open-
ended domain," presented at Artificial Intelligence in Education (AIED 2003),
2003.

 37

[37] G. D. Penna, A. D. Marco, B. Intrigila, I. Melatti, and A. Pierantonio, "Xere :
Towards a Natural Interoperability between XML and ER Diagrams,"
presented at Fundamental Approaches to Software Engineering (FASE 2003),
Warsaw, Poland, 2003.

[38] T. Bray, D. Hollander, and A. Layman, "Namespaces in XML," World Wide
Web Consortium, Technical Report REC-xml-names-19990114, 14-January
1999.

[39] E. El-Sheikh and J. S. 636-642, "Using Hierarchical Classification-Based
Expert Systems to Support Tutoring," presented at International Conference
on Artificial Intelligence, Las Vegas, Nevada, USA, 2003.

[40] B. Martin and A. Mitrovic, "Automatic Problem Generation in Constraint-
Based Tutors," presented at Sixth International Conference on Intelligent
Tutoring Systems, Biarritz, 2002.

[41] A. Munro, M. C. Johnson, Q. A. Pizzini, D. S. Surmon, D. M. Towne, and J. L.
Wogulis, "Authoring simulation-centered tutors with RIDES," Artificial
Intelligence in Education, vol. 8, pp. 284-316, 1997.

[42] B. Martin and A. Mitrovic, "Learning Domain Constraints by Asking
Questions," presented at ITS'2000 workshop on applying Machine Learning to
ITS Design/Construction, Montreal, 2000.

[43] C. Sammut and R. Banerji, "MARVIN: Learning concepts by asking
questions," presented at Machine Learning: An Artificial Intelligence
Approach, Los Altos, California, 1986.

[44] B. P. Woolf, J. Reid, N. Stillings, M. Bruno, D. Murray, P. Reese, A.
Peterfreund, and K. Rath, "A General Platform for Inquiry Learning,"
presented at 6th International Conference in Intelligent Tutoring Systems (ITS
2002), Biarritz, France and San Sebastian, Spain, 2002.

[45] D. Abraham and K. Yacef, "XMLTutor - an Authoring Tool for Factual
Domains," presented at International Conference on Computers in Education,
Auckland, New Zealand, 2002.

[46] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and H. F. Nielsen,
"SOAP Version 1.2 Part 1: Messaging Framework," Microsoft - Sun
Microsystems - IBM - Canon, W3C Recommendation REC-soap12-part1-
20030624, 24 June 2003.

[47] A. Mitrovic, "NORMIT: A Web-Enabled Tutor for Database Normalization,"
presented at International Conference on Computers in Education (ICCE
2002), Auckland, New Zealand, 2002.

[48] P. Hayes and B. McBride, "RDF Semantics," IHMC - Hewlett Packard Labs,
W3C Proposed Recommendation PR-rdf-mt-20031215, 15 December 2003.

[49] D. L. McGuinness and F. v. Harmelen, "OWL Web Ontology Language
Overview," Stanford University - Vrije Universiteit, W3C Proposed
Recommendation PR-owl-features-20031215, 15 December 2003.

[50] D. Connolly, F. van Harmelen, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider, and L. A. Stein, "DAML+OIL Reference Description," W3C Note
18 December 2001.

[51] J. Hendler, T. Berners-Lee, and E. Miller, "Integrating Applications on the
Semantic Web," Institute of Electrical Engineers of Japan, vol. 122, pp. 676-
680, 2002.

 38

9 Appendix

9.1 ER Domain Schema
This XML schema defines a simple ER domain model. It is a modified version of the
ER XML Schema that defines ER diagrams generated using the Xere algorithm6.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:element name="ER">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element ref="entity"/>
 <xs:element ref="relation"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <xs:element name="entity">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="attribute" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:key name="entity_key">
 <xs:selector xpath="."/>
 <xs:field xpath="name"/>
 </xs:key>
 </xs:element>

 <xs:element name="relation">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="attribute" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="optional"/>
 <xs:attribute name="from" type="xs:string" use="required"/>
 <xs:attribute name="to" type="xs:string" use="required"/>
 <xs:attribute name="card" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="\d+,(\d+ | unbounded) -\d+,(\d+ |
unbounded)"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 <xs:keyref name="from_ref" refer="entity_key">
 <xs:selector xpath="."/>
 <xs:field xpath="from"/>
 </xs:keyref>
 <xs:keyref name="to_ref" refer="entity_key">

6 The XML schema for ER diagrams was sourced from: http://dellapenna.univaq.it:800/xere/index.asp

 39

 40

 <xs:selector xpath="."/>
 <xs:field xpath="to"/>
 </xs:keyref>

</xs:element>

 <xs:element name="attribute">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="type" type="xs:string" use="required"/>
 </xs:complexType>0
 </xs:element>
</xs:schema>

Listing 8 : The full ER XML Schema domain definition for the ER domain.

	Introduction
	Summary

	Background
	Knowledge Classification
	Intelligent Tutoring System (ITS)
	The Domain Model
	The Student Model

	Domain Modelling
	Constraint-Based Modelling (CBM)
	Buggy Constraints

	XML Technologies
	Model-Driven Architecture (MDA)

	Related Work
	ITS Authoring Tools
	Constraint Representation
	Ontological Engineering

	Knowledge Representation
	Domain Ontology
	Domain Concepts
	Open Student Model

	Domain Definition
	Design Considerations
	Namespaces
	XML Schema Definition

	Domain Knowledge
	Modal Constraints
	Feedback
	XSLT Definition

	Courseware (Problems and Solutions)
	Question Generation
	Validation
	XML Definition

	Knowledge Acquisition
	Primer
	Programming by Example
	The Algorithm
	Programming by Demonstration

	Transformation Approach
	Analysis
	Limitations

	Inquiry-Based Approach

	Future Work
	Build a MDA ITS
	Evaluate Transformation Approach
	The Semantic Web

	Summary
	References
	Appendix
	ER Domain Schema

