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Abstract 
 

A volume equation for predicting individual tree volume, and a taper function 

for describing a stem profile were developed for a little known species, Styrax 

tonkinensis (Siam benzoin) in northern Laos. The species has high potential 

commercial value and can make an important contribution to the local economy. It 

can provide two different types of products, a non-wood product (benzoin resin) and 

timber. In Laos, the most important product is currently resin, and the use of timber 

for commercial purposes is rare. One reason is that information about the timber is not 

available. In Vietnam, on the other hand, the species is an import pulpwood species.  

 

Data used in this study came from 73 trees. Trees were purposely selected to 

ensure coverage of a full range of tree sizes. Measurement was undertaken only on 

over-bark diameters due to some constraints, limitations and problems during the field 

data collection. However, due to the importance of under-bark volume for this 

species, a small available dataset was used to build a bark model as an interim guide 

to the errors associated with using over-bark models for estimating under-bark 

volumes. From this bark model, errors in estimating under-bark volumes of trees with 

diameters at breast height between 10cm and 17 cm were approximately 18%. 

 

Nineteen individual volume models, and 7 individual taper functions were 

compared for bias and precision. Collective names for the volume equations tested 

include single-entry, double-entry, logarithmic, combined variables. Most volume 

models had similar bias but a few were clearly biased. The models with similar bias 

were further evaluated by four common statistics including bias, standard error of 

estimates, standard deviation of residuals and mean absolute deviation. The results 

showed that a five parameter model was ranked first, and was the most precise model. 

However, the magnitudes of difference in prediction errors between this model and 

other models, particularly the three parameter model were not significant. For 

practical purposes, the simpler model was preferred. 
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Seven taper functions tested here belong to three different groups including 

single taper equations, compatible taper equations and segmented taper equations. 

Evaluation of taper equations used the same residual analysis procedures and criteria 

as those applied with volume equations. Graphical residual analysis showed that most 

taper models had similar precision with their errors in diameter predictions being 

similar in range. However, some models showed obvious bias. The most highly 

ranked taper model was a compatible taper model of polynomial form. It was the least 

biased model. The second ranked model was a single, simple model. This latter model 

is relatively simple to apply, but it is not compatible with the volume model, yielding 

slightly different estimates of volume if it is integrated and rotated around the 

longitudinal axis of a tree. However, if the sole purpose is to describe tree taper, it is 

the best model to use. 
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1. Introduction 
 

1.1 Background 

Tree volume and taper equations are useful and important for forestry, and 

they are lacking for commercial species in developing nations. They are simple 

methods and tools that can be used to obtain individual tree volume and the volumes 

of entire stands. Such information is vital for forest management. 

 

Volume equations have been used to estimate tree and stand volume, and have 

played a crucial role in forest inventories and management for more than a hundred 

years. Studies of tree volume began in the early nineteenth century. Around 1804 

Heinrich Cotta was the first forester to introduce the concept of a volume table (Clark 

1902). However, an extensive study to collect data for constructing the first volume 

table was carried out many years later. This early study was mainly of Norway spruce.  

 

Taper functions were introduced and used much later. The advantage of taper 

functions over volume equations is that taper functions can describe changes in 

diameter up a tree stem, and therefore provide estimates of dimensions of logs that 

might be cut from stems. Volumes of any specific log length can be obtained by 

integrating a taper function. In many cases, this is more convenient than volume ratio 

equations that are usually limited to a particular height such as commercial height. 

 

Even though both volume equations and taper functions have been studied for 

many years, they continue to attract forest research. One reason is that there is no 

single theory in volume and taper equations that can be used satisfactorily for all tree 

species (Clutter et al. 1983; Muhairwe 1999), and no single taper model is best for all 

purposes (McClure and Czaplewski 1986; Coa et al. 1980). Another reason is that 

both volume and taper equations are required to be increasingly accurate and flexible 

in their predictions.  Forest measurement needs to be improved because market 

requirements for timber have become more specific in recent years. 
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Volumes of current growing stock and future growth potential are both vital 

information for forest management. The former can be obtained through forest 

inventories and the latter can be estimated or projected from a current inventory by 

growth and yield models (Methol 2001). Individual tree volumes are primary data for 

estimating stand volume per hectare (or stand volume for a fixed area), and are 

directly linked to forest inventory. Effective tools for estimating individual tree 

volume are volume equations and taper functions. They are acceptably accurate, easy 

and cheap methods (Philip 1994). While most volume equations developed can 

limitedly provide total and/or merchantable stem volume, wider ranges of information 

can be obtained from taper functions. According to Methol (2001) taper functions can 

be used to estimate the following tree variables: 

 

• diameter (either under- or over-bark) at any point of the stem; 

• height at which a given diameter occurs a long the stem; 

• total volume (either under- or over-bark); 

• merchantable volume (either under- or over-bark) to any merchantable 

height or minimum upper-stem diameter and from any stump height; and 

• individual log volumes. 

 

Volume and taper functions have been scarcely studied in Laos. Elsewhere, a 

considerable amount of work on volume and taper has been done (Clutter et al. 1983; 

Kozak et al. 1969; Max and Burkhart 1976; Newnham 1988). No volume or taper 

equation for any species in Laos has been published. 

 

Tree species that have been the focus for past studies, particularly for taper 

equations, are softwoods (Max and Burkhart 1976; Cao et al. 1980; Fang et al. 2000). 

Relatively small numbers of taper equations have been developed for hardwoods. 

Examples of such equations are the study of Appalachian hardwoods conducted in 

locations in the United State of America (Jiang et al. 2005). 

 

Building volume and taper equations warrants study, particularly when the 

methodology is applied to species which have not been previously studied in this way. 
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Styrax tonkinensis is a subject species for the study described here. The species 

is an angiosperm, and belongs to Styracaceae family. More details about it are left for 

the literature review section (section 2 of this paper). Scientific knowledge about the 

species is very limited, particularly in Laos, even though S. tonkinensis has important 

social value and potentially high commercial value. The main economic value of the 

species currently arises from its gum. Timber products are not used commercially in 

Laos at the moment. However, it has high potential value for industrial uses. The the 

timber is good for pulp and has been used for pulping elsewhere. Vietnam has 

commercially planted this species for many years (Pinyopusarerk 1994; Williamson 

1989). 

 

1.2. Study objectives 

 

The overall objective of this study was to find reliable indirect methods for tree 

volume estimation for S. tonkinensis, a species that has a potential commercial value, 

and is important to minority groups in the mountainous areas in northern Laos. The 

specific objectives of study were to: 

 

• develop taper and volume models for S. tonkinensis that can explicitly 

state the relationship between tree volume and dbh, and also tree volume 

and dbh and height, by fitting regression equations to sample tree data; 

• compare the performances of different forms of volume equations in 

predicting volumes of S. tonkinensis; 

• compare the performances of different forms of taper functions in 

describing tree profiles of S. tonkinensis; and 

• select the most suitable compatible volume and taper equations from 

amongst those tested. 
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1.3 Notations 

 

The following notation will be used hereafter. Other definitions specific to a 

particular equation will be listed with the equation: 

 

D is diameter at breast height (1.3 m above ground) over bark (cm) 

H is total tree height (m) 

d is stem diameter over bark at height ‘h’ (cm) 

h is height up the stem from ground (m) 

hD is tree height at breast height equivalent to 1.3 m for this study (other 

study may differ height i.e. 1.37 m) 

V is estimated total stem volume over bark from stump (m3). Stump 

height for this study is 0.15m. 

F is tree form factor 

ln is natural logarithms 

βi (i =1, 2, 3….) is coefficient 

Bias is mean residual 

SEE is the standard error of estimate 

SDR is the standard deviation of residual 

MAD is the mean absolute deviation 

G  is tree basal area 

K is a constant number 
000,40

!  
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2 Literature review 
 

2.1 Tree profile and log volumes 

 

 Modelling individual stem volume is a critical foundation of forest 

mensuration, growth and yield estimation, and forest valuation.  Individual stem 

volume equations are used to translate forest inventory measurements of height and 

diameter at breast height into wood volume and to generate predicted volumes from 

modelled estimates of future heights and diameters at breast height.  In addition, taper 

equations, models of profiles of stems, are critical for estimating the sizes and shapes 

of logs that might be obtained from a tree, and these estimates are required to compute 

log value.  It is essential that volume and taper models are as unbiased and accurate as 

possible. 

 

Trees have various sizes, forms and shapes. A single stem also consists of 

different geometric segments. Some portions of a stem may be cylindrical, while 

others may be conoid or other geometric solids. Some parts of a stem may be also 

affected by irregular forms such as butt swell. Stem volume, therefore, is difficult to 

estimate accurately. However, foresters usually treat tree stems as common geometric 

solids in with volumes that can calculated using the ordinary existing volume 

formulae. Three common solids of revolution applied to the tree stems are neiloids, 

conoids and paraboloids (Avery and Burkhart 1994). Volumes of these solids of 

revolution can be calculated using formulae as follows: 

paraboloid = L
A

2
 

conoid = L
A

3
 

neiloid = L
A

4
,  

 

where A is cross-sectional area, and L is log length. 
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The lower bole portion is generally assumed to be a neiloid frustum, the 

middle portion a paraboloid frustum, and the upper portion a cone (Hush et al. 1972). 

 

According to Avery and Burkhart (1994), the principal problem encountered 

when computing log volumes is that of accurately determining the elusive average 

cross-sectional area, because volumes for all solids of revolution are computed from 

the product of their average cross section and length. Two commonly used formulae 

(Huber’s formula and Smalian’s formula) define average cross-sectional area in 

different ways. Huber’s formula treats cross-sectional area at the midpoint as the 

average, and thus: 

 

Vlog = LA
2/1

 

 

where Vlog is log volume, and L is as previously defined. 

 

Smalian’s formula, on the other hand, uses cross-sectional areas of both ends 

of the log. Therefore, the average cross section is the mean of two end cross-sectional 

areas, and thus: 

Vlog = L
AA

2

21
+  

where A1 and A2 are cross-sectional areas at large end and at small end, 

respectively, and other notations are as previously defined. 

 

One other log volume formula occasionally used for log volume estimation is 

Newton’s formula. The average cross-sectional area used in this formula is slightly 

more complicated than those used in the previous two formulae. This formula is more 

difficult to apply in practice. It requires three measurements, one at both ends plus the 

midpoint of the log and thus: 

Vlog = L
AAA

6

22/11
++  

where all notations are as previously defined. 
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All three formulae can provide identical results if logs are perfectly cylindrical 

(Avery and Burkhart 1994). In addition, when logs are short it is also found that the 

volumes estimated by three formulae are essentially equivalent. 

 

Of the three formulae, Smanlian’s formula is the easiest to apply, but it can be 

shown to be inaccurate with some irregular shapes of logs. Avery and Burkhart 

pointed out that the formula introduced errors when it was used to estimate volumes 

of butt logs having flared ends. Some problems are shared by both Smalian’s formula 

and Huber’s formula. If the log is not a frustum of a quadratic paraboloid and not a 

cylinder, then the use of either Smanlian’s formula or Huber’s formula will introduce 

errors (Philip 1994). However, given some problems encountered by the other two 

formulae, Smalian’s formula is usually preferred by researchers. The use of midpoint 

cross sectional area by Huber’s formula and Newton’s formula can cause a problem in 

practice. The midpoints of logs in piles or ricks are often inaccessible and cannot be 

measured (Avery and Burkhart 1994). Even though Newton’s formula is more 

accurate than the other two methods, its use is limited and it is the least favoured 

formula among the three. 

 

2.2 Volume tables and equations 

 

A volume table is a tabulation that can be used to obtain the estimated 

volumes of single trees of given dimensions (Avery and Burkhart 1994). In modern 

practice, equations are generally used to predict tree volumes rather than hardcopy 

tables. An early volume equation was introduced during 1930’s by Schamacher et al. 

(Laar and Akca 2007). The form of equation is:  

 

V = 21

0

!!! HD  

 

where V is stem volume,  D is diameter at breast height, H is total tree height, and 

β0-2 are estimated parameters. 
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This equation is a non-linear volume equation that can be linearized by a 

logarithmic transformation of the dependent and independent variables. The resultant 

equation is: 

 

ln(V) = β0 + β1ln(D) + β2ln(H) 

 

Nowadays there are many different forms of volume equations of both linear 

and non-linear form. One of the most common forms is Spurr’s volume equation for a 

linear combined variable model (Bi and Hamilton 1998). This equation has a form: 

 

V = HD
2

0
!! +  

 

One merely substitutes the combined variable of ‘diameter squared times 

height’ for the quantity X in the basic equation for a straight-line relationship. 

Solution of the equation is by simple linear regression techniques. Regression 

methods are favoured over other traditional methods like tabular and graphic methods 

that have become obsolete for several reasons (Laar and Akca 2007). One is that it 

eliminates the necessity to read off the estimated volume from a graph or to 

interpolate in a table. More importantly, the parameters of the equation can be stored 

in the memory of a computer and retrieved for volume calculation anytime.  

 

 In most cases estimates and profiles of under-bark volume are required, but 

there are cases where over-bark volume is essential, such as when trees are used for 

fuel. 

 

2.3 Classification of volume tables 

 

Even though nowadays stem volumes are commonly calculated with volume 

equations, the term ‘volume table’ has persisted in forestry usage as a generic term 

meaning tabulations or equations that show the contents of standing trees 

(Laasasenaho, et al. 2005, and Avery and Burkhart 1994). According to (Laar and 
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Akca 2007) volume tables (equations) can be classified based on the number of 

entries to the table and predictor variables of the volume function: 

 

• Single-entry volume table (one-way table) 

• Multiple-entry volume table (two-way table and three-way table) 

 

A single-entry volume table was first developed towards the end of 19th 

century for all-aged forests in France and adapted for management of mixed uneven-

aged forests of Switzerland (Laar and Akca 2007). The term ”local table” is 

sometimes used to refer to this kind of volume table. Normally diameter at breast 

height (D) or basal area (G) is required for constructing a single-entry volume table. 

The relationship between tree volume and D for many species has been well 

documented. Generally, Tree volumes have a curvilinear relationship with D but are 

approximately linearly related to D squared (Avery and Burkhart 1994). Therefore, 

the volume-basal area line is actually a simple, linear relationship of volume on basal 

area and the equation can be expressed:  

 

V = β0 + β1(D2)     or    V = β0 + β1(G2) 

 

Most single-entry volumes are simple and easy to apply, but their uses are 

limited to local conditions. Tree dimensions that are more difficult to measure such as 

height or form are usually not required. Thus, single-entry tables are particularly 

useful for quick forest inventories and are low cost in use (Philip 1994). Elimination 

of height and form determinations also tends to assure greater uniformity in volume 

estimates, particularly when two or more field parties are cruising within the same 

project area (Avery and Burkhart 1994). 

 

Because trees of a given diameter class, particularly those from different 

stands, can vary in their heights and forms, use of single-entry volume tables can 

introduce bias. Thus most volume tables of this type have to be restricted to a small 

range of diameters in a specific stand at a specific age (Philip 1994). It is usually 



 10 

necessary to construct single-entry tables for each broad site class encountered when 

soils and topography are notably varied. 

 

Multiple-entry volume tables include double-entry and triple-entry volume 

tables. The former is sometimes referred to as ‘standard volume tables’. The standard 

volume tables use both ‘D’ and ‘H’ as table entries, while triple-entry volume tables 

have a third variable of tree’s dimensions such as form, diameter at a particular height 

or taper. Some papers reported that the addition of a third predictor variable reduced 

the amount of unexplained variation and improved the accuracy of volume estimates, 

while other studies found that the addition of a third predictor variable did not 

significantly improve the quality of prediction (Laar and Akca 2007). It is clear, 

however, that triple-entry volume tables are not as widely available as double-entry 

volume tables. 

 

Double-entry volume tables are probably the most common form of volume 

table (Philip 1994). A large number of volume equations, which are linear in their 

parameters, have been proposed with D, D2, H, H2 and interaction terms as 

independent variables, and individual tree volume as the dependent variable. The 

volume equations in Table 2.1 are taken from a list of candidate volume equations 

obtained from the available literature that will be tested with the data set created for 

this study. A full list of them is in the method section. All but equations 8, and 9 are 

linear in their parameters.  
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Table 2.1: Examples of double-entry volume equations  

Equation no. models References 
5 V = b1D2H  Clutter et al. (1983) 
6 V = b0 + b1D2H  
7 V = b0 + b1D2 + b2H + b3D2H  
8 V = b1Db2H b3  
9 V = b0 + b1Db2H b3  
10 V = D2/(b0 + b1H-1)  
11 V = b0 + b1D2H + b2D3H Bi and Hamilton (1998) 
12 V = b0 + b1D2H + b2D3H + b3D  
13a V = b0 + b1D2H + b2D2H2  
13b V =  b1D2H + b2D2H2  
14 V = b0 + b1D2H + b2D2H2 + b3H  
15 V = b0 + b1D2H + b2D3H + b3D2H2  
16 V = b0 + b1D2H + b2D3H + b3D2H2 + b4D  
17 V = b0 + b1D2H + b2D3H + b3D2H2 + b4H  
18 V = b0 + b1D2H + b2D3H + b3D2H2 + b4D + b5H  

 

The equations included in Table 1.1 consist of all three categories of double-

entry volume equations defined by Philip (1994): 

 

• simple combined variable model 

• multiple regressions with powers of D and H 

• logarithmic forms 

 

These three categories of volume equations have been used frequently. Each 

category has some advantages and limitations. One of the advantages of a logarithmic 

form is that it can directly handle heterogeneity of the variance, while ordinary least 

squares techniques cannot. 

 

2.4 Linear and non-linear volume equations 

 

Performances of non-linear or logarithmic volume equations are not affected 

by non-homogeneity of the variance. Using this form of volume equation can 

surmount the problem of non-homogeneity of the variance that exists in most tree 

volume data. Because volume data usually include different sizes of trees from very 

small ones to very large ones, deviations from the regression function of the volumes 
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of the large trees have a disproportionate effect on the estimation of the least squares 

regression coefficients from a sample (Cunia 1964). In other words, one of the 

common assumptions underlying least squares methods of regression, that all data 

points contribute equally to the estimation of the regression coefficients, is not 

satisfied. Even though heterogeneity of variance does not necessarily introduce bias, it 

may increase model statistics such as the standard errors of regression coefficients and 

inply that estimates for small trees are less precise than they actually are.  In addition, 

when the residual error increases with the size of prediction, estimates for small trees 

may be biased because measurements of small trees would have less influence on 

estimated coefficients than those of large trees. This may be one reason that 

unweighted least squares techniques are fully efficient only in the absence of 

heteroscedasticity, a term denoting a correlation between average error maginitude 

and the magnitude of the predicted value of a model (Furnival 1961). 

 

2.5 Weighted least squares 

 

Cunia (1964) argued that using the logarithms of tree volume equations was 

not the best option to surmount the problem of heterogeneity of variance. One 

important drawback of this method is that by taking logarithms the estimation of the 

arithmetic mean is automatically replaced by the estimation of the geometric mean. 

Because the first one is always larger than the second, the results are definitely biased. 

An alternative common technique to combat the non-homogeneity of the variance in 

tree volume construction is to use weighted least squares. A common weight factor 

for volume that uses both variable predictors D and H (interaction term of D2H) is 
2

2

1
!
"

#
$
%

&

HD

. That is because the variance of stem volume tends to increase in proportion 

to D2H as reported by Furnival (1961), Wright (1964), and Meng and Tsai (1986). For 

single-entry volume tables, on the other hand, Meng and Tsai (1986) suggested that 

the weight factor of 
2

1

D

is more appropriate than 
4

1

D

which was used by some 

authors. 
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2.6 Taper  

 

Taper can be defined as the rate of narrowing in diameter along the tree stem 

of a given form (Gray 1956). It can be expressed as a function of height above ground 

level, total tree height, and diameter at breast height (Clutter et al. 1983). Taper 

equations are very useful as they can provide information about diameter at any 

height, and height at any diameter based only on commonly taken tree measurements 

(Byrne and Reed 1986). They can be also used to predict individual log or sectional 

volumes to any height along stem. Therefore, merchantable heights and volumes can 

be estimated directly using a taper equation. Furthermore, taper equations can be used 

to derive volume equations by integration when the equation is rotated around the 

longitudinal axis of a tree (Bruce et al. 1968), Byrne and Reed (1986). They can be 

also compatible to volume equations that are used to estimate single tree volumes. A 

compatible taper equation developed from volume-taper equation system assures that 

estimated volume obtained by integrating the taper equation is equal to the estimate 

obtained with a volume function. 

 

2.7 Classification of taper equations 

 

During the past century, form and taper have been studied widely all over the 

world. Many different forms of taper equations have been developed for various 

species, particularly for softwoods. A simple form of taper depicts the entire stem 

profile with a single equation. A complex taper model usually consists of sub-models 

that attempts to describe different portions of the tree profile with different sub-

models, and uses complicated variable predictors. 

 

According to Methol (2001) taper equations can be grouped into four 

categories; namely, single functions, segmented polynomial models, within-tree 

variable from (or variable exponent equation), and between-tree variable form 

functions. Single functions include the form of polynomial equations that represent 

the whole bole with one single continuous function. The taper models by Bruce et al. 

(1968), Ormerod (1973), Hilt (1980), and Gordon et al. (1995) are examples of this 
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kind. Segmented polynomial taper models consist of sequence of grafted sub-models 

describing different segments. A taper model by Max and Burkhart (1976) is an 

example of this kind. The other two types of taper equations, within-tree variable form 

(or variable exponent equation), and between-tree variable form functions have not 

widely used. This study will not examine any equation of these latter two types. 

 

2.8 Single functions 

 

An equation presented by Kozak et al. (1969) is an example of the relatively 

simple parabolic function with three estimated parameters. This equation is one of the 

candidates model tested with data set in this study (model 19). 
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By imposing the condition, bias generated by the model can be reduced 

because unexplained variation at the top of a tree is restricted.  

 

Other candidate taper equations of single form will be examined in the studies 

described here, including models 20 by Sharma and Oderwald (2001), 21 by Ormerod 

(1973), and 22 (polynomial series model): 
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 Equations 20, and 21 are so conditioned that when h = H, d= 0, and when h = 

hD (hD is breast height equal to 1.3 m), d = D. For equation 21, when β takes on a 

value of one, the resulting tree profile is conic and when β is one-half the resulting 

tree profile is parabolic (Reed and Byrne 1985). When β is greater than one but less 

than one-half i.e. three-fourths, a tree shape is also between a cone and a parabola 

‘paracone’. 

 

Another common form of single taper functions is a polynomial series. 

Equation 22 represents the general form of this kind. Even though very high degree 

polynomials have been used in some studies the most common ones are around fifth-

degree polynomial (Figueired-Filho et al. 1996). Volume equations with additional 

complex powers i.e. an equation by Bruce et al. (1968) can improve the standard error 

of estimate (Kozak et al. 1969). However, Kozak et al. (1969) argued that, for 

practical purposes it appeared that the real advantage of complex taper equations was 

little. 

 

Relatively simple taper equations can effectively describe the general taper of 

trees, however, they often fail to describe the entire stem profile well (Max and 

Burkhart 1976; Newnhan 1992). Some equations are better for describing the profile 

along the mid stem portion of the tree, but they are inadequate for describing the area 

near the butt and at the very top sections of the tree (Jiang et al. 2005). Martin (1981) 

indicated that although no single equation form was best at predicting diameter, height 

and volume the Max and Burkhart segmented polynomial was best overall. This 

model was also ranked best amongst six models evaluated by Cao et al. (1980). 
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 Taper equations are compatible with tree volume equations if they are derived 

from each other. The coefficients of the derived volume equations can be written in 

terms of the taper equation coefficients (Byrne and Reed 1986). Compatible volume 

and taper equations can also written by derived the expression of taper from an 

existing total volume equation (Goulding and Murray 1976), and from an existing 

volume ratio equation (Clutter et al. 1983; Reed and Green 1984).  The theory of 

compatible taper and volume systems was first introduced in the early 1970s 

(Demaerschalk 1972). Before his introduction of the concept it was common that tree 

volume and taper equations were both in use for a given population, and that volumes 

obtained from the tree volume equation were not equal to volumes obtained by 

integration of the taper equation (Methol 2001). The study will examine a compatible 

taper and volume system that has the form of polynomials (equation 23). The process 

used for deriving compatible taper equations is described in the methods section.  
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Vml is the volume of a tree estimated by the volume model 

other notations are as previously defined 

 

2.9 Segmented taper models 

 

Segmented taper models were first introduced by Max and Burkhart (1976). 

This type of taper model may provide a better description of the stem profile than that 

provided by single taper models, especially in the high-volume butt region (Cao et al. 

1980). As previously described, it is generally assumed that a tree stem can be divided 

into three geometric shapes (form the top to bottom: a cone shape, a frustum of a 

paraboliod and a frustum of a neiloid). Segmented models describe these shapes by 
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fitting each one with a different equation and then mathematically joining them to 

produce an overall segmented function (Diéguez-Aranda et al. 2006). Equation 24 

was the classic segmented model proposed by Max and Burkhart (1976). It is one of 

the popular taper models of this kind. 
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While taper and volume equations are very common in developed countries, 

they are less common in developing countries.  The study described here involved 

developing a volume and taper equations for a native species that has high potential 

value in timber for commercial uses in Laos, Styrax tonkinensis. 

 

2.10 Styrax tonkinensis 

 

2.10.1 General information 

 

Styrax tonkinensis belongs to the genus Styrax and the family Styracaceae. It 

has a narrow range of natural distribution, naturally growing only some parts of 

Southeast Asia. The countries that reportedly have natural growth forests of this 

species include Vietnam, Thailand and Laos. In Laos, the species grows naturally in 

four provinces in the mountainous northern areas of the country; Luang Prabang, 

Phong Saly, Houaphan and Oudomxay. Relatively little is know about the species. 

Closely related species that are in the same genus, produce similar gum, and are better 

known include S. paralleloneurum, S. benzoin and S. hypoglauca in Indonesia, 

Malaysia and China. 
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Some studies classified S. tonkinensis as an important non-timber forest 

product (NTFP) species, because of current use of its gum. The gum extracted from S. 

tonkinensis is known as Lao or Siam benzoin. Laos is currently the only country that 

exports significant products of Lao benzoin. The exact amounts of gum exported each 

year cannot be accurately estimated, but it is believed to be many hundreds of tonnes. 

 

S. tonkinensis is an angiosperm with a soft wood that is used only by local 

people for household purposes such as buildings and firewood. So far, there have been 

no reports of trade in timber products in Laos, and therefore, it has no recognized 

commercial value. In Vietnam, however, timber has been used for pulp and 

commercial plantations have been established (Pinyopusarerk 1994). It is one of 

major plantation species in Vietnam. Difficult access to S. tonkinensis forests 

precludes any type of log transportation, and this may be a main limitation on use of 

timber. The species grows naturally in very remote mountainous terrains where there 

are neither roads nor other means of transportation. 

 

2.10.2 Previous research  

 

In Laos, studies of S. tonkinensis are rare, and only undertaken in recent years. 

The most comprehensive study project so far was an experimental trial at two sites in 

Luang Prabang Province. The results of this trial were documented by Kashio and 

Johnson (2001). This paper also presented the results from other research conducted 2 

years prior to the trial, on the relationship between tree size and benzoin production, 

and the methods of harvesting gum. According to the authors of this paper, much 

research and study on S. tonkinensis is required, particularly in topics that could 

promote successful plantation establishment. 

 

Other studies published include the study by Pinyopusarerk (1994), about the 

distribution, ecology and silvicultural management; Takeda and Shinya (2004) about 

traditional trapping of the benzoin gum by local people in Luang Prabang Province, 

and the regeneration of the species after fallow cultivation; and Satoshi (2004) about 

the importance of S. tonkinensis for mountainous people in Laos. 
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In Vietnam, however, there have been more studies of the species over a long 

period. The research and study papers cited in Kashio and Johnson (2001) include 

Lam Cong Dinh (1964), Le Quang Dang (1966), Hoang Chuong (1974), Doan Van 

Nhung et al (1978), Nguyen Ba Chat (1979) and Anon (1983). Vietnam is the only 

country known to have large areas of plantations of S. tonkinensis. Over 20,000 ha 

have been planted.  

 

The following descriptions of characteristics of S. tonkinensis are drawn or 

summarized from the report by Kashio and Johnson (2001). 

 

2.10.3 Species characteristics and ecology 

 

S. tonkinensis has not been studied widely. Information about it is scare or 

inaccessible. As mentioned above, most studies about the species were carried out in 

Vietnam. Access to those reports is very difficult. However, a few papers are 

available i.e. Kashio and Johnson (2001); Williamson (1989); Jøker (2000). 

According to these papers some important information about the species can be 

summarised as follows: 

 

“S. tonkinensis is a deciduous tree up to 25 m tall and 30 cm in diameter with 

a clear bole for about two-thirds of total tree height. The bark is generally 

gray, smooth, and 6-9 mm thick when young, but becomes brown and rough 

with longitudinal fissures with age. S. tonkinensis is a fast growing species that 

can reach sexual maturity at 4-5 years of age. Under management, trees can 

grow very fast. Thai Van Trung (1975) reported that a mean height of 18-25 m 

and DBH of 20-24 cm could be obtained at 10 years, and height increments of 

3 m during the first three years have been observed on good sites.”, from 

Kashio and Johnson (2001). 

 

  S. tonkinensis is a pioneer species. Within its range it regenerates well in gaps. 

In Laos, the species is naturally found at 800-1,600 m elevation in the northern part of 
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the country. Clearing forest for temporary agriculture such as shifting cultivation can 

promote regeneration of the species. It can sometimes occur in almost pure stands 

over many hectares. Burning is also believed to promote seed germination. S. 

tonkinensis trees produce a lot of seeds throughout their lives. Each year, a mature 

tree can produce up to 40 kg of fruit, and 2-3 kg of fruit contains 8,000-9,000 seeds. 

 

Even though S. tonkinensis can grow well naturally through gaps created by 

forest disturbance, i.e. shifting cultivation plots, tree growth can be significantly 

improved by silvicultural practices. Important techniques and procedures applied to 

the species were described by Kashio and Johnson (2001). Seeds are best collected 

from trees when they have matured but before they fall to the ground. Storage 

techniques are required to keep seeds at an appropriate moisture content which is 30 

%. Planting can be done directly from seeds or transplanted from seedlings previously 

grown in a nursery. High stock planting was recommended as S. tonkinensis is a 

pioneer species. Two or three thinnings may be required before the plantation reaches 

the minimum rotation age of approximate 10 years. S. tonkinensis is regarded as a 

‘fast-growing species’ has a high productive capacity and no major health problems. 

However, according to Williamson (1989) one negative feature of the species is a 

high wood to pulp ratio (about 8.6 m3 per tonne). Another undesirable feature is that 

the species is susceptible to defoliation from insects at a young age.  

 

The uses of S. tonkinensis were summarised by Jøker (2000): 

 

“Because the wood is light and soft with a density of 410-450 kg/m3 (at 15% 

moisture), it is not thought to be suitable for construction. In Vietnam it is an 

important pulpwood species and yield and quality of the pulp is comparable 

with many commercial pulpwood species. An important non-wood product is 

the benzoin resin that is tapped from the trunk. Although the market has 

decreased, it is still an important contribution to the local economy for people 

in the highlands of Laos.” 
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Estimates of current uses of species in Vietnam are difficult to access from 

outside Vietnam. Currently S. tonkinensis timber is not used commercially in Laos. 

However, a study of production from one major paper mill in Vietnam by Williamson 

(1989) found that the mill used 112,000 tonnes of S. tonkinensis annually. Paper 

production from that mill accounted for 30% of Vietnam’s total production at that 

time. Given that the species has been a major part of the reafforestation programme in 

Vietnam, it is expected that the current use should be much higher than 20 years ago. 

 

Because the wood of S. tonkinensis has high potential commercial value in 

Laos, and the non-wood product from this species (benzoin resin) is an important 

contribution to the local economy for people in the highlands of Laos, it is worth 

promoting plantations of the species for commercial purposes. 

 

The species was chosen for this study of volume and taper equations primarily 

because of its high potential commercial value and because it has been neglected by 

researchers in Laos. Details and specific objectives of the study were already 

expressed in the objective section (section 1.2). 
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3 Study area and methodology 

3.1 Study area 

3.1.1 Geographical  

Data used in this study were collected from five locations. All five locations 

are in Nam Bak district, Luang Prabang province (Figure 3.1). Nam Bak town is 

located in a mountainous area, about 130 km north of the provincial capital Luang 

Prabang. The study area is part of the Nam Ou (Ou River) watershed. The Nam Ou is 

the largest tributary of Mekong River. The Mekong River is one of the Asia’s longest 

river running through many countries including China, Laos, Thailand, Cambodia and 

Vietnam. The study sites range in altitude from 400 – 900 meters above sea level. 

 

3.1.2 Climate, soil and vegetation 

 

The climate in the study area is a wet and dry monsoon tropical climate. The 

mean annual rainfall is about 1,400 millimeters. The annual weather pattern is 

characterized by two main seasons. The rainy season is between the months of May 

and October and account for 90% of annual precipitation. The variation in annual 

rainfall from year to year is wide ranging from as low as 1,000 millimeters up to 

above 2,000 millimeters. 

 

The mean temperature is about 25°C. the coolest period is between the months 

of December and January, while the hottest period is between May and June. 

 

Soil data from the study area is insufficient. Limited study has been carried 

out. It was presumed that the prevalent soil texture was clay-loam with a higher 

portion of loam in the upper soil layers. 

 

Most of the forests in Nam Bak district are secondary forests in different 

stages of succession. They are influenced by the practice of shifting cultivation. 

Abandoned cultivation plots are usually occupied by pioneer species in the first few 
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years. Then, vegetation can develop towards a forest cover if the plots are left for a 

longer period (Kashio and Dennis 2001). 

 

 
 

Figure 3.1: Map showing the location of study sites 
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3.2 Data collection 

 

Sample data were collected from 73 trees in five different locations. Three sites 

were natural forests and two were plantations. All sites were located in relatively close 

proximity within the same district (see map 1).  Thirty-five trees were from two 

plantations (one site had 10 and the other had 25). Thirty-eight were from three stands of 

natural forests (two sites had 12 trees each and the third one had 14 trees). The trees were 

subjectively selected to ensure a representative distribution by diameter and height 

classes. 

 

Before felling the trees, diameters at breast height (1.3 m above ground level), at 

0.75m and at 0.15m were measured using a diameter tape to the nearest 0.1 cm on each 

tree. After felling, total length was measured to the nearest 0.01 m, and then diameters 

along the upper tree boles were measured to the nearest 0.1cm at 3m intervals starting 

from a height of 3m above ground level1. 

 

Individual tree volumes were the sum of volume sections. The volume sections 

were calculated by using Smalian’s formula presuming the top end section of each tree 

was a cone (see section 2.1). Table 3.1 shows a summary of the data. Plots of height 

against diameter at breast height, and relative height against relative diameter are shown 

in Figure 3.2 and Figure 3.3, respectively. 

 

Table 3.1: A summary of the data 

Height DBH 
sites no. of trees mean max min SD mean max min SD 
Plantation 1 10 12.05 16.72 8.43 2.15 14.29 25.10 10.00 4.35 
Plantation 2 25 12.51 15.32 12.52 2.28 15.10 18.50 11.20 2.48 
Natural 1 12 13.05 16.92 10.31 1.94 14.98 20.00 10.50 2.96 
Natural 2 14 16.59 18.06 14.59 1.17 24.61 31.00 19.50 3.26 
Natural 3 12 16.34 18.19 13.40 1.31 21.39 28.90 15.20 3.56 
Total 73 13.85 18.19 8.43 2.69 17.66 31.00 10.00 5.480 
 

                                                
1 Diameters were measured over-bark owing to a decision taken under difficult circumstances.  Please see 
section 3.4 for an explanation 
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Figure 3.2: Height plotted against diameter at breast height for all 73 sample trees 
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Figure 3.3: Relative diameter (the quotient between an upper-stem diameter and 

D) plotted against relative height (the quotient between above ground 

level to an upper-stem diameter and total tree height) for 571 sections. 
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3.3 Models 

 

3.3.1 Volume models 

 

Stem volume is a function of a tree’s height (H), diameter at breast height (D) and 

tree shape or form factor (F). The general formula for the volume of a tree is 

HFDV
2

4

!
= , 

and a common expression for tree volume equations is 

),,( FHDfV = . 

However, F is rarely used in tree volume model construction. Even though form 

(F) is required in some formulae for the volume of a tree, it is not a truly independent 

variable; like volume, form factor is usually estimated from other measurements of a 

tree’s dimensions and form factor can be neither measured nor calculated without first 

measuring the volume (Philip 1994). Form quotients are ratios of diameters at specified 

heights to tree diameter at breast height, and cylindrical form factor is defined as the ratio 

of total volume to the volume of a cylinder with diameter equal to tree diameter at breast 

height and height equal to the tree height (Clutter et al. 1983). 

 

Most volume models are constructed from one variable, D only, or two variables, 

D and H. The two parameter volume equations are the most widely used. Such equations 

have functional form 

)(DfV =  

),( HDfV = . 

Volume equations with more than two independent variables are not widely built 

and used. The third and fourth independent variables can be crown height, site index, 

ratios of Di to D or other tree dimensions. 
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This study included tests on various volume equations of one parameter and two 

parameters limited to the functional forms )(DfV = and ),( HDfV = . Most equations 

were directly obtained from the available literature. Some models were modified 

specifically for the study. All volume models are included in Table 3.2. 

Table 3.2: A list of candidate volume equations 

no. Models References Type 
1 DbbV 10)ln( +=  
2 )ln()ln( 10 DbbV +=  
3 2

10
DbbV +=  

4 2

210
DbDbbV ++=  

Laar and Akca 2007 single-entry 

5 V = b1D2H  
6 V = b0 + b1D2H 
7 V = b0 + b1D2 + b2H + b3D2H 
8 V = b1Db2H b3 
9 V = b0 + b1Db2H b3 
10 V = D2/(b0 + b1H-1) 

Clutter et al. (1983) 

11 V = b0 + b1D2H + b2D3H 
12 V = b0 + b1D2H + b2D3H + b3D 
13a V = b0 + b1D2H + b2D2H2 
13b V =  b1D2H + b2D2H2 
14 V = b0 + b1D2H + b2D2H2 + b3H 
15 V = b0 + b1D2H + b2D3H + b3D2H2 
16 V = b0 + b1D2H + b2D3H + b3D2H2 + b4D 
17 V = b0 + b1D2H + b2D3H + b3D2H2 + b4H 
18 V = b0 + b1D2H + b2D3H + b3D2H2 + b4D + 

b5H 

Bi and Hamilton (1998) 

double-entry 

 

3.3.1.1 Single-entry volume models 
 

Single-entry volume models are constructed by relating tree volume to one of a 

tree’s dimensions. Diameter at breast height or basal area (G) is the most commonly used 

dimension. The relationship between D and G is a direct mathematical expression. The 

formula is 

2

4
DG

!
= . 

Four functional forms of single-entry volume equations were tested with the data 

set. Two were of logarithmic form (Table 3.2). 
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3.3.1.2 Double-entry volume models 

The second portion of the study focused on the tests on double-entry volume 

models. Double-entry volume equations are probably the most common form of volume 

model (Philip 1994). Many forms and equations of this type were tested with the data set. 

Amongst the candidate models tested were six equation forms commonly used for 

estimation of stem volumes given by Clutter et al. (1983) and the various modification 

forms of generalized combined variables listed in Bi and Hamilton (1998). They were 

listed in Table 3.2.  

 

3.3.2 Taper models 

A tree’s taper can be expressed as a function of diameter at breast height (D), total 

height (H) and upper stem height (h). The common expression for functional form of a 

taper equations is 

),,( hHDfd = . 

Taper equations can be represented by a single simple quadratic model describing a 

whole bole length of a tree, or by a system of many complex models describing different 

sections of trees separately. A taper function is also related to a volume function. A taper 

equation, in which a volume equation is presented in the process of constructing the 

equation, is known as a compatible taper equation, and has the property that it will 

produce the same volume as the volume equation if it is integrated and rotated around an 

axis representing height of the tree. 

Taper equations can be classified by different methods. One classification method 

classifies them into two groups: (i) compatible taper models and (ii) non-compatible 

models. Another method of classifying taper equations was described by Methol (2001). 

This method groups them into four categories according to the taper model components, 

characteristics of independent variables and the process of model construction. The four 

categories were: (a) single functions; (b) segmented taper models; (c) variable-

exponent taper equations; and (d) between-tree variable form models. 
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Both compatible and non-compatible taper equations were examined in this study. 

They were within the first two groups, single functions and segmented taper models. 

Compatible taper models generated in this study were polynomial equations that were 

within the group of single functions. One model of segmented polynomial equation 

consisting of three sub-models was tested with the data. All taper equations tested in this 

study included in Table 3.3. 

Table 3.3: A list of candidate taper equations 

no. Models References Type 
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where Vml is volume estimated by volume model  

Note: In this study, two functional forms of Vml  were tested: 

(i) 23a with volume model 4 and; 

(ii) 23b with volume model 13a. 

Goulding and 

Murray (1976), and 

Gordon (1983). 
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where I1 = 1 if 
1
a

H

h
!  and I1 = 0 otherwise  

I2 = 1 if 
2
a

H

h
!  and I2 = 0 otherwise  

 

 

Max and Burkhart 

(1976) 
(3) 

 

Type: (1a) Single simple functions; (1b) Single polynomial functions;  

 (2) Compatible taper model; and (3) Segmented polynomial taper equation. 
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3.3.2.1 Single functions 

Single taper equations tested with the data set consisted of three single simple 

models (equations 19, 20, and 21), and one polynomial series model (equation 22). 

 

3.3.2.2 Compatible taper models 

Compatible polynomial form of taper was tested with the data set (model 23). The 

theory and development of compatible polynomial taper equations were described by 

Goulding and Murray (1976), and Gordon (1983). 

Model 23 was tested by using two different volume models, in order to compare 

the influences of volume models on such compatible systems. Two volume models were 

one-entry and double-entry volume equations. The two volume equations were: 

V(volume model 4) = 0.0062478622 – 0.0048205045d + 0.0008340514d2  

V(volume model 13a) = – 0.0011383579 + 0.000052703d2h – 0.0000008312d2h2 

Note: Model 23 that was tested with V(volume model 4) and V(volume model 13a) is referred to 

model 23a and model 23b, respectively. Estimating parameters for the two 

compatible volume systems followed the same procedure. There were five 

parameters to be estimated for each of two compatible taper models. The 

Polynomial series of notations 
n

n

h

hH
nz !

"

#
$
%

& '
+= )1( were used.  

 

3.3.2.3 Segmented polynomial taper equation 

The segmented polynomial taper with three sub-models was examined in this 

study (model 24). The terminology and methodology of segmented polynomial 

regression were described by Max and Burkhart (1976). All three sub-models are 

quadratic. Two join-point parameters were represented by I1 and I2.  
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3.3.3 Model fitting 

 

All statistical analyses for both volume models and taper equations were carried 

out with the SAS statistical software package. The primary analyses of all models used 

the least squares method. Further analyses of the compatible taper equations used 

restricted least squares, while further analyses of some volume models used weighted 

least squares. Two SAS options of the linear regression and nonlinear regression were 

chosen to assist the requirement of the above analyses. The subsequent SAS programmes 

within the two regression options employed were the GLM procedure, the REG 

procedure and the NLIN procedure.  

 

3.3.4 Evaluating models 

 

Statistical interferences based on t and F distributions were not sufficient to 

evaluate the volume models, and were invalid for the taper models because of the nature 

and characteristics of the data. Since taper data were obtained by taking diameters at 

several positions along the same tree, they were not independent. The quality of a volume 

model cannot be fully illustrated by examining t and F. The volume model that has 

apparently good precision, with strongly significant t and F values, can be biased. 

 

Residual analysis was necessary for evaluating both volume models and taper 

models in this study. Fit statistics of residual analyses were used along side with the 

graphical methods of residual plotting. Fit statistics used were among the most common 

ones. They included bias (mean residual), the standard error of estimate (SEE), the 

standard deviation of the residuals (SDR) and the mean absolute deviation (MAD). These 

statistics are defined as: 
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where i
y is observation 

 !

i
y is prediction 

 n is number of observations 

 p is the numbers of estimated parameters 

 

             Graphs of residuals were plotted against predicted values and independent 

variables, and these were examined for evidence of bias.   In addition, frequency 

distributions of residuals were examined for departures from normality. 

 

3.3.5 Estimating parameters for volume models 

 

Parameters for volume models were estimated by using PROC GLM and PROC 

NLIN. Estimating parameters for equations 8, and 9 that are non-linear used the NLIN 

procedure. On the other hand, the GLM procedure was used for the other linear volume 

equations. 

According to Cunia (1964) in fitting the tree volume data by using the GLM 

procedure cannot effectively estimate the variance due to heteroscedasticity. One way of 

correcting for non-homogeneity of the variance is to estimate the model parameters using 

weighted least squares. 

This study applied the weighted least squares method using weighting factors (! ) 

of:
HD
2

1
=! , and   

2

1

D
=! . While the first (! ) was used for those volume equations of 

two parameters, the latter (! ) was used for those volume equations of one parameter. 

 

In contrast, for the NLIN procedure there are fewer problems with 

heteroscedasticity. Cunia (1964) suggested that using logarithmic forms of volume 
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equations is another way to overcome the problems of non-homogeneity of the variance. 

Two volume equations of this study were tested with the NLIN procedure. 

 

The t-test was used to determine the significance of estimated parameters. The 

estimated parameters that were not significant had the absolute t-value very small around 

zero. The insignificant estimated parameters were removed from the models. 

 

3.3.6 Estimating parameters for taper models 

 

The processes and procedures of estimating the parameters for four taper 

equations of the single functions were similar to those of the volume equations. The taper 

equations 19 and 22 were fitted using the GLM procedure and the REG procedure, 

respectively. The NLIN procedure, on the other hand, was used to fit the equations 20 

and 21. 

 

Compatible taper equations were fitted using the REG procedure. This procedure 

allows a restriction command to be added into the analysis. The compatible taper and 

volume system used in this study adapted a variable ‘z’ (previously defined), and a 

variable ‘y’. The variable ‘y’ was defined as: 

mlV

Hkd
y

2

=  

The initial parameters were estimated for the variable ‘z’ by establishing the 

relationships between ‘y’ and ‘z’, and based on the theory of the least squares method. 

The restriction was applied to the estimated parameters to make the model compatible.  

 

The NLIN procedure was used for the segmented taper equation, equation 24. 

Three steps were set in the model procedure with the conditions of I1,and 2. The first step 

was to fit the model to the lower bole portions of trees by conditioning both I1,and 2 equal 

zero. Both parameters a1 and a2 (0 > a1 <a2) were not useful. The following step allowed 

the procedure to fit the middle bole portions by conditioning I1 equal to one and I 2 equal 
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to zero. Only parameters a1 alongside with parameters b(1-4) were used in this step. The 

last step allowed both parameters a1 and a2 to fit the equation to the upper bole portions. 

 

3.4 Problems and constraints 

 

Usually under-bark volume and taper receive more attention from researchers 

than over-bark volume and taper. For example taper equations constructed by Bruce et al. 

(1968); Ormerod (1973); Goulding and Murray (1976); McClure and Czaplewski (1986); 

Newnhan (1992); and Kozak (1997) were all under-bark models. While some taper 

equations have been constructed for both under-bark and over-bark tree tapers, a few 

were constructed for over-bark tree tapers only (Methol 2001). The later included the 

taper functions by Diéguez-Aranda et al. (2006), and Reed and Byrne (1985). 

 

Initially this study was designed to model both under- and over bark stem volume, 

as well as both under- and over-bark tree taper.  However, there were some constraints, 

limitations and problems during field data collection that forced a change in the original 

proposal. I had to drop the measurement of bark thickness in order to speed up field work 

during a brief return to Laos during my studies, in order to get enough tree samples. One 

factor was that the study was delayed by an unplanned road incident. Another factor was 

that the study sites were very remote and located in rough terrain with undesirable 

conditions for field work.  I was assured that a bark gauge was available at a field station 

that was my last point of departure for the remote field sites, when in fact a bark gauge 

was not available at the field station.  I began stripping bark to measure it with a ruler, but 

this consumed more time and resources than were available. Therefore, to collect enough 

or sufficient the numbers of sample trees would have been impossible if under-bark 

measurement was undertaken.  Dropping measurements of bark thickness was a better 

option than reducing the numbers of sample trees because the numbers of sample trees 

proposed were already minimal for effective volume and taper modelling for a new 

species. 
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Measurement of bark was carried out on few trees. At each measuring point along 

the stem two bark measurements were taken by peeling it off, and measuring it using a 

ruler with millimeter marks. Double bark thickness was recorded as a sum of the two 

measurements.  There were only 20 data points. They were measured from 4 trees that 

the diameters of breast height of around 14 cm. A summary of the data and the results of 

an analysis of bark thickness are in the Appendix 1. Data were too few to be used for 

building a reliable bark model for the taper and volume study described here.  Under bark 

volumes of some sample trees were estimated using a bark model built from this small 

data set (Appendix 1), particularly those with ‘D’ smaller than 14 cm.  

 

Bark measured during this study had a slightly curvilinear relationship with 

diameter. Non-linear forms of equations were prime candidates, and it was found that the 

best form of equation was: 2

10

!!! dY += , where Y is double bark thickness and d is 

over-bark diameter at a range of points up a stem. The parameters for this model were 

estimated using the NLIN procedure, and residual analysis followed the same procedures 

as those used for non-linear volume equations.    Courbet & Houllier (2002) implied a 

model of double bark thickness of Cedrus atlantica by modelling the ratio of over-bark to 

under-bark diameter as a function of distance from tree apex: 

 

3

2

1 c

i

o

x

c
c

D

D
+=  

where Do = over-bark diameter, Di = under-bark diameter, X= distance from stem apex, 

and c1, c2 and c3 were coefficients.   Their model implies an almost linear increase in bark 

thickness with diameter when it is applied to estimates of diameter from a fitted taper 

equation. 
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4 Results 

 

4.1 Estimated parameters 

 

Estimated parameters of fitted models are presented in Table 4.1. The first 19 

models are volume models and the seven remaining models at the bottom of the table are 

taper models. Two equations of each type had one estimated parameter. Two taper 

models had six estimated parameters and that was the highest number of parameters in a 

single equation tested in this study. One volume model also had six estimated parameters.  

 

Many volume models contained estimated parameters that were not useful. Such 

parameters had very small t-values and were not significant at the 5% level (p=0.05). 

Insignificant parameters are marked with asterisks in Table 4.1. The models that 

contained insignificant estimated parameters were not considered further. This will be 

discussed further in the sections on stem volume. 

 

Insignificant parameters were excluded from models during the parameter 

estimating process of taper models. Therefore, they are not included in Table 4.1. 

Parameters for taper models were estimated using a slightly different technique to that 

used for volume models. Fewer taper models than volume models were tested, and the 

forms of each taper model differed markedly from each other. Form of polynomial taper 

(equation 22) was one of them. The best form of polynomial taper equation 22 for data 

set was with the maximum power (n) equal to five. More details on the taper results will 

be presented in the taper equation sections. 
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Table 4.1: Estimated parameters for both volume models and taper equations 

Estimated parameters 
Model β0 β1 β2 β3 β4 β5 a1 a2 

Type 

1 –4.307128116 0.138775542       Volume 

2 –8.777960846 2.451721028       Volume 
3 –0.0320955366 0.0006970493       Volume 

4 0.0062478622 –0.0048205045 0.0008340514      Volume 
5  0.0000394999       Volume 

6 0.0076987481 0.0000380232       Volume 
7 –0.0155762999 0.000157317* 0.0014547596* 0.0000283177     Volume 

8  0.000103 2.0207 0.6289     Volume 

9 –0.0142 0.000192 1.9350 0.5170     Volume 
10 388.37623 19340.5766       Volume 

11 0.0035692069 0.0000425543 –0.0000001729*      Volume 
12 –0.0068662056 0.0000383096 –0.0000000887* 0.001306919*     Volume 

13a –0.0011383579 0.0000527030 –0.0000008312      Volume 

13b  0.0000511539 –0.000000746      Volume 
14 –0.006234753 0.0000518431 –0.0000008075 0.0005518114*     Volume 

15 –0.0014589324 0.0000526977 –0.0000000399 –0.0000007717*     Volume 
16 0.0673786113 0.0001070346 –0.0000003951 –0.000002439 –0.0099818225    Volume 

17 –0.0080354411 0.0000514999 0.0000000323* –0.000000846 0.0007748548*    Volume 
18 0.1435781767 0.0001464542 –0.0000009870 –0.0000030718 –0.0160811635 –0.0040220457*   Volume 

19  –2.015015689 0.726953554      Taper 

20  2.1074       Taper 
21  0.6124       Taper 

22 1.21557 –3.44075 15.94318 –39.63581 43.57723 –17.65705   Taper 
23a  1.66332 –6.34498 16.78882 –18.03822 6.93107   Taper 

23b  1.66643 –6.29986 16.59056 –17.77828 6.82116   Taper 
24  – 1.2665 0.1842 7.0547 70.063  0.186 0.0517 Taper 
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4.2 Volume equations 

 

Examination of the estimated parameters revealed that some volume equations 

could be eliminated from the list of candidates, and they were not examined further. 

These equations contained estimated parameters that had very small t-values that were 

not significant at the 5% level (p=0.05). Those insignificant parameters were distributed 

within 7 models including models 7, 11, 12, 14, 15, 17 and 18.  

 

When fitting candidate equations to data, insignificant variables are usually 

removed from the models, and new tests on fitting are carried out again until there are no 

more insignificant parameters in the models. Because seven models that contained the 

insignificant parameters found in this study were related to other candidate models, 

removing one or more variables of these models transformed them to other candidate 

models. For example, two independent variables (D2 and H or β1 and β2) in model 7 were 

insignificant, and excluding these variables transformed the model 7 into the candidate 

model 6. Removing the insignificant variable D3H from model 11 also transformed it into 

the candidate model 6. Meanwhile, removing variable H from model 14 transformed it 

into model 13a which was the final candidate volume model. Model 13a will be 

examined in details in the later sections. 

 

4.2.1 Independent variable D2H 

 

Table 4.2 presents the variables and t-values of twelve combined variable 

equations. Significant parameters are shown in bold font. All models contained the 

independent variable D2H. The models were different forms of combined variable 

volume equations. Variable D2H was highly significantly related to stem volume. It was 

significant in all twelve volume models. Bi and Hamilton (1998) explain that this variable 

represents the volume of a cylinder of diameter D and height H. Stem volume is directly 

related to the cylindrical volume by the coefficient of this variable that varies with stem 

form, that is, the solid shape of the stem.  
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Table 4.2: The significant parameters at 5% level and t-values 

D2H D3H D2H2 D2 D H 
M

od
el

 

t-value Pr > | t | t-value Pr > | t | t-value Pr > | t | t-value Pr > | t | t-value Pr > | t | t-value Pr > | t | 

5 99.75 <0.0001           
6 71.2 <0.0001           
7 5.13 0.0001     1.66 0.1021   1.12 0.2653 
11 12.55 <0.0001 −1.35  0.1803         
12 4.65 <0.0001 −0.45 0.6526     0.57 0.5728   
13a 8.09 <0.0001   −2.26 0.0269       
13b 19.65 <0.0001   −4.52  <0.0001      
14 7.58 <0.0001   −2.16 0.0342     0.44 0.6615 
15 8.04 <0.0001 −0.27 0.7852 −1.80 0.0766       
16 4.12 0.0001 −1.82 0.0736 −2.78 0.071   −2.16 0.0344   
17 6.99 <0.0001 0.13 0.8959 −1.77 0.0809     0.37 0.7156 
18 3.93 0.0002 −2.15 0.0349 −3.16 0.0024   −2.60 0.0116 −1.46 0.1479 

 

 

 

4.2.2 Graphs of residuals 

 

Seven volume models were eliminated as they contained insignificant parameters. 

The remaining models were evaluated by analyzing errors in their volume predictions. 

For each model, graphs of residuals were plotted, and common statistics of fit Bias (mean 

residual), SEE (standard error of estimate), SDR (standard deviation of the residual) and 

MAD (mean absolute deviation) were calculated. Figure 4.1(a-l) presents plots of 

residuals. Fit statistics are presented in Table 4.3. Figure 4.1a shows the residual plot of 

volume model 1, and Figure 4.1b shows that of volume model 2. Figure 4.1c shows the 

residual plot of volume model 3 and so on. It was clear from these residual plots that 

model 1 was a biased model. It was also the least precise model. Model 2 was also 

biased, but less obviously so than model 1. Fit statistics of these two models also 

indicated that they were biased. The models were excluded from ranking, and were not 

included in Table 4.3. 

 

Even though analyzing a graph of residuals can be a useful tool to evaluate 

volume model performances, it is ineffective in some circumstances. This study found 

that the graphs of residuals from ten models (models 3, 4, 5, 6, 8, 9, 10, 13a, 13b, and 16) 
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were not significant different, and they could not be used to distinguish their precision 

and accuracy in tree volume predictions. Evaluating the performances of these models 

required the other statistics tools, and this will be discussed in the next section. 

Meanwhile, the observation on insignificant differences in the graphs of residuals from 

the ten models can be described as follows: 

 

Models 9, 13, and 16 were amongst the best candidate volume models. They were 

slightly less biased than other models. On the other hand, models 5, and 6 were among 

the most biased models. However, graphs of residuals from the best group and from most 

biased group were not obviously different. They performed similarly for predicting the 

volumes of trees. It could be observed that the models performed particularly well when 

predicting the volumes of small trees but moderately in predicting the volumes of big 

trees, as more biased were observed at the upper ends than lower ends in those graphs of 

residuals. Moreover, biased patterns in their residual plots were similar, and errors in 

their volume predictions were within the similar range. Also, they all overestimated 

slightly the volumes of big trees. 
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Figure 4.1: Plots of residuals from volume equations 
(a): model 1
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(b): model 2
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(c): model 3
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(d): model 4
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(e): model 5
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(f): model 6
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(g): model 8

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Predicted volume (m^3)

R
e
s
id

u
a
l 
(m

^
3
)

 
(h): model 9
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(i): model 10
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(j): model 13a
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(k): model 13b

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Predicted volume (m^3)

R
e
s
id

u
a
l 
(m

^
3
)

 
(l): model 16
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4.2.3 Fit Statistics of residuals 

 

After examining the graphs of residuals, it was clear that fitted equations 1, and 2 

were biased. It was not necessary to calculate their statistics of fit (bias, SEE, SDR and 

MAD), and compared them with the statistics of the other equations. Therefore, only ten 

equations were left for examining the fit statistics of residuals. Bias, SEE, SDR and MAD 

calculated for these equations are shown in Table 4.3. The table also shows the results of 

model ranking. 

 

Various statistical results were used to rank the volume models. Models were 

firstly ranked four times by bias, SEE, SDR and then MAD. Ranking values were then 

summed and divided by four to give an average value for overall model ranking. The best 

model by the individual statistics was assigned a rank of one, while the poorest model 

was assigned a rank of ten. Therefore, if the best model was ranked first by all four 

statistics, the model would have an average value of one for overall model ranking. The 

model with smallest average value was ranked first by overall model ranking.  This 

scheme was used as a preliminary screening technique only, and then the highest ranked 

models were evaluated carefully to explore the consequences of their relative bias and 

imprecision. 

 

The best model by overall model ranking was model 16. This model was ranked 

seventh by bias, but first by other three statistics. Models 13a, and 13b were ranked 

second and third by overall model ranking, respectively. 

 

Some models generated similar values in every statistics calculated that made it 

hard to distinguish them. Most models generated very small values in bias statistics. The 

other three statistics were also very similar among some of models. 
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Bias 

 

Models 8, and 10 were the two of the most biased models. These two models 

were significantly biased when compared with model 4 that was ranked at number one by 

this statistic. The value of bias for model 4 was 1.7x10−17, while the values of bias for 

model 8, and 10 were 0.00059 and 0.0051, respectively. Model 9, on the other hand, was 

ranked at eight with a bias value of 2.1x7x10−9. 

 

The bias statistic was not useful for determining differences among the seven 

other models (model 3, 4, 5, 6, 13a, 13b, and 16). These models generated very small 

bias. Model 16 ranked at number seven was very little different from model 4 ranked at 

number one in value of bias. The former model had a bias value of 2.2x10−16, while the 

later model had a value of 1.7x10−17. 

 

SEE, SDR and MAD  

 

By examining SEE, SDR and MAD, it was clear that model 5 was the most 

imprecise model for predicting the volume of trees. The model was ranked at the bottom 

by all three statistics. Other imprecise models included models 8, and 3. Model 3 is a 

single-entry volume model using ‘D’ as an independent variable, while model 8 is a 

logarithmic form.  

 

The top ranking models by these statistics were models 16, 13a, 13b and 9. They 

were ranked first, second, third and fourth respectively. Models 13a, and 13b were ranked 

second and third by MAD, respectively. In contrast, model 13b was ranked second, while 

model 13a was ranked third by SDR. Model 9 was ranked third, fourth and fifth by SDR, 

SEE and MAD, respectively. 

 

Three models ranked at the middle by overall statistics were model 6, 10, and 4. 

Model 6 was ranked fifth, while model 10, and 4 were ranked sixth and seventh, 
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respectively. Model 4 is a single-entry model. This model was the least biased model 

ranking first by bias.  

 

While the differences in these statistics between the poorest model (model 5) and 

best models (model 16) were clear, these differences were not substantial among the 4 

highest ranked models (models 16, 13a, 13b and 9). Values of SEE and SDR for all four 

models were around 0.018, while their values of MAD were around 0.012. 

 

Table 4.3: The statistics of Bias, SEE, SDR and MAD, and model ranking for volume 

equations 

Models Bias Rank SEE Rank SDR Rank MAD Rank Overall rank 

3 -3.23 x 10−17 2 0.020046 8 0.019906 8 0.014174 9 7   (6.75) 
4 1.73 x 10−17 1 0.020343 9 0.020059 9 0.013954 8 7   (6.75) 
5 1.101 x 10−16 4 0.021112 10 0.021112 10 0.014402 10 10   (8.50) 
6 8.54 x 10−17 3 0.019772 7 0.019634 7 0.013092 7 5   (6.00) 
8 -0.0005943 10 0.018819 6 0.018546 5 0.012664 6 9   (7.00) 
9 2.10 x 10−9 8 0.018731 4 0.018337 3 0.012618 5 4   (5.00) 
10 0.0005119 9 0.018810 5 0.018672 6 0.012587 4 6   (6.25) 
13a 1.33 x 10−16 5 0.018585 3 0.018325 2 0.012375 2 2   (3.00)  
13b 1.53 x 10−16 6 0.018534 2 0.018405 4 0.012420 3 3   (3.75) 
16 2.23 x 10−16 7 0.018130 1 0.017620 1 0.01171 1 1   (2.50)  

 

Note: In overall rank column, the number in parenthesis is the average value of four 

statistics. The model with smallest value ranked first (the number outside 

parenthesis).
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4.2.4 Equations 4, and 13a 

Equation 4 was the best model of single-entry volume equations tested. It was 

ranked seventh by overall ranking. Figure 4.2(a-c) illustrates the predicted volumes of 

all trees in data set by this equation against the observed volumes. The figure also 

shows that the volumes had a curvilinear relationship with diameter at breast height 

(D) but were seemingly linearly related to D squared (D2). Both D and D2 were 

included in the equation. 
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Figure 4.2: Observed volume, and 
predicted volume by equation 4. 
(a) predicted volume against 
observed volume; (b) predicted 
volume and observed volume 
against D and (c) predicted volume 
and observed volume against D 
squared (D2). 
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Meanwhile, equation 13a was the highest ranked double-entry volume 

equation among those tested. It was second to model 16 by overall ranking. However, 

the two equations were not substantially different in predicting the volumes of trees. 

The complexity of model 16 that has many estimated parameters (5 in total) makes it 

less desirable. Figure 4.3(a-c) presents the performance of model 13a, and also 

illustrates a relationship between independent variables of this equation (D2H and 

D2H2) and the volumes of trees within data set. Both variables were plotted against 

both observed and predicted volumes. 
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Figure 4.3: Observed volume, and predicted 
volume by equation 13a. (a) predicted 
volume against observed volume; (b) 
predicted volume and observed volume 
against D2H and (c) predicted volume 
and observed volume against D2H2. 
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4.3 Taper equations 

 

4.3.1 Intercept parameter (β0) 

Estimated parameters for the seven taper equations tested are shown in the 

Table 4.1. All parameters were significant at the 5% level. Most equations do not 

contain an intercept term (β0). However, when fitting the equations to data, some 

candidate models were tested with intercept terms included. The results showed that 

intercepts (β0) were either insignificant or deteriorated the performances of the 

models. The intercept parameter was significant in taper equation 19 but, by including 

it, the model did not give zero values for diameters when h equalled H. This increased 

the overall bias in its predictions. Meanwhile, β0 was insignificant in equation 21. On 

the other hand, the intercept term was required for model 22. The equation could not 

function properly without this parameter. 

 

4.3.2 Residual analysis  

 

Graphs of residuals were plotted for each candidate taper model, and they are 

presented in Figure 4.4. It was initially concluded that precisions in their predictions 

were similar. Errors in the predictions of all models were distributed between ± 5 cm. 

Only a few data points from some models were outside this range. However, some 

models were more biased than others. Compatible model (model 23) and one of three 

simple function models (model 20) by Sharma and Oderwald (2001) were the least 

biased and most precise models. On the other hand, two simple models including 

model 21 by Ormerod (1973), and model 19 by Kozak et al. (1969) were obviously 

biased. Model 22, a polynomial model with the maximum power of five (n=5) was 

moderately biased. The other taper equation with moderate bias was a segmented 

model by Max and Burkhart (1976). Models 20, 23a, and 23b performed similarly, 

and were the most precise and least biased. There were no substantial differences in 

the residual distributions of the three later models. 

 

The most obviously biased models were eliminated from further evaluation. 

Further evaluation of these models used the results of fit statistics.  
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Figure 4.4: Plots of residuals from taper equations 

 

 

 

 

 

 

 

 

 

 

 

(a): model 19
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(b): model 20

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40

Predicted diameter (cm)

R
e
si

d
u

a
l 

(c
m

)

 

(c): model 21
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(d): model 22
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(e): model 23a
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(f): model 23b
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(g): model 24
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4.3.3 Fit statistics 

 

Bias, SEE, SDR and MAD calculated for equations 20, 23a, 23b, and 24 are 

shown in Table 4.3. The table also shows model ranks. The other three models (model 

19, 21, and 22) were excluded; models 19, and 21 were obviously biased (see Figure 

4.4) and model 22 generated errors in predicting diameter at particular portions of 

stems. The diameters at the tops of trees (h = H) were not zero when predicted by this 

latter model.  Therefore, only 4 equations were left for examining the fit statistics of 

residuals. 

 

Table 4.4: The statistics of Bias, SEE, SDR and MAD, and model ranking for taper 

equations 

Models Bias Ranking SDR Ranking SEE Ranking MAD Ranking 
Overall 
ranking 

20 0.19826 4 1.09604 2 1.11386 2 0.79287 2 2.5 
23a 0.08520 1 1.14527 3 1.15309 3 0.86969 4 2.75 
23b 0.08685 2 1.08287 1 1.09075 1 0.78699 1 1.25 
24 -0.15391 3 1.16294 4 1.17905 4 0.86362 3 3.5 

 

The results of fit statistics showed that model 23b was the most highly ranked 

model. It was ranked first by three out of four statistics. The bias statistic ranked this 

model at number 2. The other compatible taper equation (model 23a) was ranked first 

by the bias statistic. Model 20 was the second ranked model, ranking second by SDR, 

SEE and MAD. However, this model was the most biased model. The value of bias 

for this model was 0.19826 cm, while the value of bias for model 23a that ranked at 

the top was 0.0852 cm. It was interesting to observe that bias and MAD ranked some 

models in opposite ways. Model 23a was ranked first by bias, but last (at number 4) 

by MAD. Meanwhile, model 20 was ranked fourth by bias, but second by MAD. Both 

bias and MAD are related to the average value of residuals. MAD, however, is not 

affected by the minus and plus residuals cancelling each other out, as pointed out by 

Kozak and Smith (1993). The other two statistics (SDR and SEE), on the other hand, 

ranked all models in the same way. Both ranked model 24 last at number 4 and model 

23b first. The second and third models ranked by SDR were also ranked at number 2 

and 3 by SEE, respectively. 

 



 53 

After examining the graphs of residuals and fit statistics, it was clear that 

model 24 was not as precise as the other three models, and it was more biased. 

However, this model was further examined for estimating diameter at different 

portions of the stems. The statistics calculated for this test are presented in Table 4.4.  

 

It was clear that model 20 was less biased in predicting lower and upper 

portions than middle portions of stems. The bias values for the middle portion of 

relative height between 30% and 60% ranked 0.41 cm - 0.64 cm, while the bias values 

for the lower and upper portions was around 0.1 cm or less. Models 23b, and 23a 

were more constant in their predictions. The values of bias for different parts of stems 

were not substantially different. Two high values of bias were at the lower part and 

upper stem portions. The highest value of bias for model 23b was 0.48 occurring at 

the portion of relative height 70% - 80%, but the two portions located on either side of 

this portion had very small values of bias.  The second highest value of bias for this 

was 0.31 occurring at the lower part of stems (portion of 10% - 20%). Values of bias 

for the remaining portions by this model were similar and low. Bias from model 23a 

had the similar pattern to model 23b.  

 

MAD statistics for the lower portion were smaller than the upper portions for 

all four models. The values of MAD for lower portions (lower than 50%) of all 

models were less than 1.00 cm, while the most values for upper portions were greater 

than 1.00 cm. SDR and SEE statistics were similar in their interpretation of residuals. 

Where the SDR value was high SEE was high. Meanwhile, if SDR was low SEE was 

also low. Overall all four models had the lower values of SDR and SEE for the lower 

portions of stem than the upper portions. 

 

4.3.4 Equations 20 and 23b 

 

Equation 20 was ranked top for non-compatible taper equations. It was the 

most precise and least biased model among non-compatible models. It performed 

similarly to compatible taper models 23b. Figure 4.5 illustrates these models 

predicting diameters graphically for different sizes of trees. 
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Table 4.5: The statistics of Bias, SEE, SDR and MAD for estimating diameter at different portions of stems 

 

Model 20 Model 23a Model 23b Model 24 
Relative 
height n Bias SDR SEE MAD Bias SDR SEE MAD Bias SDR SEE MAD Bias SDR SEE MAD 
<5% 109 0.178 1.052 1.067 0.857 -0.013 1.109 1.130 0.864 -0.005 1.052 1.072 0.856 -0.197 1.141 1.186 0.970 
5 - <10% 82 0.140 0.605 0.621 0.274 -0.093 0.701 0.725 0.515 -0.059 0.586 0.604 0.353 -0.139 0.792 0.831 0.607 
10 - <20% 56 0.120 0.534 0.547 0.324 0.338 0.790 0.893 0.667 0.312 0.573 0.679 0.432 -0.084 0.642 0.679 0.428 
20 - <30% 39 0.138 0.594 0.610 0.500 0.086 0.743 0.791 0.618 0.101 0.600 0.644 0.490 0.005 0.623 0.668 0.481 
30 - <40% 34 0.641 1.019 1.209 0.994 0.156 1.143 1.231 0.938 0.178 0.987 1.070 0.783 -0.066 1.011 1.100 0.802 
40 - <50% 25 0.414 0.931 1.022 0.816 -0.263 0.868 0.995 0.635 -0.167 0.888 0.990 0.650 -0.059 1.034 1.164 0.702 
50 - <60% 42 0.526 1.206 1.318 1.050 0.394 1.191 1.322 1.023 0.290 1.209 1.310 0.973 -0.005 1.235 1.318 0.954 
60 - <70 32 -0.233 1.634 1.651 1.295 -0.006 1.608 1.723 1.302 0.072 1.603 1.719 1.285 -0.663 1.719 2.016 1.284 
70 - <80% 28 0.005 1.277 1.277 1.008 0.521 1.305 1.527 1.024 0.478 1.279 1.482 1.017 -0.388 1.314 1.520 1.094 
80 - <90% 43 0.090 1.740 1.743 1.449 0.018 1.762 1.852 1.440 -0.033 1.736 1.825 1.407 -0.165 1.818 1.946 1.483 
90 - <100% 8 0.620 2.002 2.108 1.387 -0.157 1.982 3.039 1.532 -0.145 1.996 3.059 1.567 0.486 2.008 3.880 1.439 
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Figure 4.5: Tree profiles generated from observed data and from predicted data 

(observed data with solid lines and predicted data with broken lines) by equation 

23b (left) and 20 (right). Three different sizes of trees were presented, an 

innermost one with observed D = 10.6 cm and H = 10.31 m, a middle one with 

observed D = 20.2 cm and H = 16.92 m and an outermost one D = 31.0 cm and H 

= 17.36 m. 
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4.3.5 Tree volume generated by taper equation 20 

 

One of the non-compatible taper equations (equation 20) was tested for 

predicting volume and the results were compared with observed volumes and the 

volumes predicted by the best volume equation (equation 13a). This taper equation 

was the best model of non-compatible equations tested. Residual plots of the two 

models are presented in Figure 4.6. The two models predicted the volumes of trees 

similarly. Their errors in predictions were almost the same. The patterns of bias in the 

two residual plots were similar and their precisions were within the same ranges. 

However, the volumes by these two methods were not exactly equal. These were 

expected results. Non-compatible taper equations do not normally generate exactly the 

same volumes of trees as volume equations predict. 

From volume equation 13a
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Figure 4.6: Residual plots from two predicted volumes by volume model 

(above) and taper model (below). 
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Comparing the two volumes by subtracting one from the other showed that 

volume equation 13a provided slightly greater values for almost every tree in the data 

set than taper equation 20 did. The differences between the two volumes were very 

small. The biggest difference was 0.0081 m3 and only four data points exceeded 0.006 

m3. Figure 4.7 shows differences between the models. Predicted volume from 

equation 13a was subtracted by volumes from equation 20. The volumes of a few 

trees were predicted equally by the two models. 
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Figure 4.7: Plot of the differences between the predicted volume by volume equation 

(model 13a), and the volume generated by taper equation (model 20). 
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5. Discussion  

5.1 Volume equations 

5.1.1 Single-entry volume equations 

 

Most of the single-entry models did not perform well with the data set. Models 

1, and 2 were the two lowest ranked models amongst all types of volume models 

tested in this study. Both models are log-linear line volume equations. Apart from 

common problems of transforming data into logarithms explained by Cunia (1964); 

and Vanclay and Skovsgaard (1997), the obvious problem with taking logarithms in 

this study could be explained simply by plotting tree volumes transformed against D 

or D transformed. In the case of model 1, transforming volume data into logarithms 

(natural logarithms) did not make the relationship between stem volume and D more 

linear (Figure 5.1a). Therefore, when the model was fitted by linear regression 

methods, volume predictions were clearly biased. In the case of model 2, the 

relationship was improved by transforming both volumes and diameters into natural 

logarithms (Figure 5.2b). However, when the model was fitted by linear regression,  

residual analysis showed that it was biased in predicting the volumes of bigger trees 

(Figure 4.1b). 

 

Figure 5.1: Graphs of stem volume against tree diameter: (a) only volume 

transformed into natural logarithms; (b) both volume and diameter 

transformed into natural logarithms. 
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not as precise as some of the double-entry volume models. Most statistics tested, and 

residual plots did not clearly show differences between the two models (Figure 4.1c, 

and d; Table 4.3). Bias statistics showed that model 4 was slightly less biased, but the 

magnitude of the difference in bias statistics was too small to be used to justify the 

conclusion that model 4 was better than model 3. It implied that the presence of 

variable D in equation 4 had little effect on the outcome of prediction. However, a t-

test showed that this variable was significant at the 5% level. Given that the formula 

used to calculate the standard error of estimate (SEE) is directly influenced by the 

numbers of estimated parameters, model 3 could be preferred over model 4 but the 

results shown in Table 4.3 did not favour model 3 in this study. The SEE of model 3 

was not significantly different from that of model 4. This statistic is commonly used 

for measuring overall predictive value of a model, along with goodness of fit, with 

low values indicting better fits (Akindele and LeMay 2006). More importantly, these 

two models were ranked equally at number 7 by overall rank. The performances of the 

two models are discussed further below where they are compared with other types of 

volume equations tested in this study. 

 

5.1.2 Double-entry volume equations 

 

The combined variable equation of Spurr (1952) and the logarithmic of 

Schamacher and Hall (1933) are classic volume models and commonly used, often 

without question, when developing stem volume equations (Bi and Hamilton 1999). 

Thus statistical analysis to ensure the most appropriate model specification has 

sometimes been neglected. With this study, while one of these classic models 

performed considerably well, the other was not very consistent in its prediction. 

Model 8, a logarithmic form by Schamacher and Hall (1933), performed 

inconsistently through different classes of sample trees and, thus, it showed more bias 

than many models tested including two single-entry models (models 3, and 4). Overall 

it was ranked at number 9 out of 10 final candidate volume equations. Bias statistics 

ranked it last at number 10 (Table 4.3). Residual plots revealed that, in general, the 

model was as precise as the other top models; its error was in a similar range to those 

of the other models (Figure 4.1g). However, this model slightly overestimated the 

volumes of trees with individual total volumes less than 0.1 m3. Another classic 
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model (model 6) by Spurr (1952), on the other hand, was moderately precise 

compared to other models. It was ranked at number 5 overall. This model also slightly 

overestimated volumes of small trees, but its bias was less obvious than that of model 

8. Another interesting volume equation tested in this study is the Honer transformed 

variable (model 10). It performed well in predicting the volumes of small trees. Even 

though this model was ranked at number 6, residual plots revealed that it was similar 

in precision and bias to model 13a (combined variable equation) that was ranked at 

the top. Figures 5.2a, and 5.2b were residual plots from two models with Loess 

smoothing lines added.  

 

Figure 5.2: Residual plots with Loess smoothing to show average bias: (a) Honer 

transformed variable (model 10); (b) combined variable equation (model 

13a). 
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Model 16 by Bi and Hamilton (1999) was the most precise and least biased 

model. It was ranked first by three statistics including SEE, SDR and MAD. Residual 

plots with Loess smooth lines added also showed that the model was less biased than 

models 6, and 13a. However, it was quite interesting that the bias statistic ranked this 

model at number 7 below models 3, and 4. Model 4 was actually more biased than 

model 16 (Figure 5.3). It was also less precise. One well known problem of the bias 
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statistic used is that it performs ineffectively when many negative and positive 

residuals cancel each other (Koza and Smith 1993; Muhairwe 1999). In the case of 

model 4 (Figure 5.3b), many imprecise residuals located at both above and below a 

horizontal reference line did not equally concentrate along the predicted volume scale. 

Even though the bias statistic of this model was very low (Table 4.3) with negative 

and positive residuals cancelling each other out, the model could be still obviously 

biased in graphical residual plots. 

 

Figure 5.3: Residual plots with Loess smoothing of bias: (a) combined variable 

volume equation (model 16); (b) single-entry volume equation (model 

4). 
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Model 13a was ranked second to model 16. However, differences between two 

models were not substantial. Figures 5.2b and 5.3a show that bias patterns of two 

models were similar, but the Loess smoothing line of model 16 was slightly closer to 

the zero reference line. For practical purposes, model 16 was more difficult to apply 

than model 13a as it contained more estimated parameters than model 13a. 

Consequently, model 13a was considered to be the best model amongst two parameter 

volume equations tested, and it was selected for further study of compatible volume 

and taper equation system. Single-entry volume model 4 was also selected for 
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comparison between the two systems of deriving compatible taper equations (see the 

methods section). 

 

Three main points can be made to sum up the overall findings in this volume 

section: 

 

• Most models tested performed similarly to each other. Residual analysis 

showed little differences in magnitudes of bias and precision amongst 

many models; 

• Overall, double-entry volume equations were more precise and less biased 

than single-entry ones; and 

• Overall combined variable volume equations were more consistent in 

predicting the volumes of different stems. Some of them were among the 

most precise models, even though many of them were eliminated at the 

very beginning of model screening because they contained insignificant 

estimated parameters. 

 

As mentioned in the previous sections, various forms of volume equations 

have been developed by other researchers. Some of those models were very precise 

and little biased. For example, Teshome (2005) developed over-bark volume model 

for Cupressus lusitanica in Munessa forest, Ethiopia. His model form is: 

HD
D

H
V

2

10

2
!

!! "
#

$
%
&

'
+= . It was very precise that error terms were within 34

101 m
!

"± . 

Compared to his volume model, all the models developed in this study were very 

imprecise in his study. Another study of over bark volume model was carried by 

RonDeux and Pauwels (2000). They developed over bark volume model for small 

trees of larch (Larix sp.) in the southern part of Belgium. The volume equation form 

that was the best fit to their data was constant form factor V = b1D2H. Unfortunately, 

they used different residual analysis criteria to evaluate their model (R2 and CRV, 

which is the residual standard deviation divided by the mean volume), and it is not 

compatible with the ones used in the study reported here. Meanwhile, Fowler (1997) 

developed volume models for red pine species in Michigan, USA using a logarithmic 

volume equation (V = β0Dβ1Hβ2). One model evaluation method used by Fowler 
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(1997) was not applied in this study. That method was to use an independent data set 

to validate the model. Even though it is the most effective model evaluation criteria, 

many studies can not employ it because they do not have enough data. 

 

To conclude the discussion for the volume equation study, it is important to 

highlight that even though over bark model volume equations have been developed 

for some species, and are useful for particular cases, they can not provide estimates of  

timber volumes.  For this we need under bark volume models. Some species have a 

high ratio of bark volume over total volume over bark. For such species bark models 

are of particular importance. It was very unfortunate that the implementation of field 

data collection for this study did not go according to plan (see the methodology 

section). Very few bark data could be collected. The bark thickness model built in this 

study was built with data from too few trees to be reliable, therefore, it can be 

regarded as a guide for academic purposes only (see Appendix 1). To model bark 

thickness effectively, more data are required. 

 

The bark model in Appendix 1 was applied to estimate under bark volumes of 

small trees with the largest diameter (i.e. at height 0.15 m) were less than 17.5 cm. 

The range of diameters was within the diameter range of four trees that were used to 

build the model.  Twenty-seven sample trees were classified into the above diameter 

range, and their under bark volumes were calculated using the bark model. The results 

are presented in Table A1.2 in Appendix 1. The differences between over- and under 

bark volumes were around 18 %. The maximum was 18.8 %, while the minimum was 

17.6%.  Users of the models developed here might be tempted to simply apply a 

correction factor of 0.82 to estimates of volume to calculate under-bark volume, but it 

should be noted that bark measurements were available for only four trees, and such a 

practice may lead to severe bias.  Clearly developing a bark model is a crucial future 

step for the studies reported here. 
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5.2 Taper equations 

5.2.1 Single taper functions 

 

Most taper functions tested in this study were precise in their predictions of 

over bark diameters of S. tonkinensis. Some models, however, showed more bias than 

the others. Overall, simple single taper functions tested in this study performed 

poorly. Three single taper functions (models 19, 21, and 22) were eliminated during 

the first screening test by examining residual plots because they were obvious biased. 

Only one model of this kind (model 20) was relatively unbiased, and it was ranked at 

the top among the best taper models of all types. However, these results were not 

surprising. Single taper functions usually fail to describe entire tree profiles 

adequately (Max and Burkhart 1976; Jiang et al. 2005).  

 

Model 19 by Kozak et al. (1969) assumed a constant influence of section 

height on taper regardless of tree height. It underestimated small diameters but 

overestimated the bigger diameters (Figure 5.4a). Given that the sizes of diameter at 

breast height ‘D’ of samples were between 10 cm and 25 cm, many smaller diameters 

were likely to be the diameters near the tops of the trees while the bigger diameters 

were likely to be the diameters near the butts of the trees. The model, therefore, was 

inadequate for describing two portions at the both ends of the tree bole. However, 

when residuals were plotted against stem heights, it was found that most biases 

occurred at the lowest stem portions near the butts. The model was relatively unbiased 

in predicting the diameters at the top portions of the stems. Thus, the bias at the lower 

end in the residual plot (Figure 5.4a) could come from the diameters of the lower-

middle portions of small trees. 
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Model 21 by Ormerod (1973), on the other hand, was biased because it 

underestimated the diameters of all stem sizes. A majority of residuals were located 

above a horizontal reference line. The results were contrary to those from a study by 

Reed and Byrne (1985) in which the same taper function was applied to jack pine. In 

their study, it was presumed that the model overestimated as bias (average residual) 

was negative. Values of estimated parameter (β1) in their study, and in this study were 

different. A value of β1 less than 0.5 was estimated in their study, while this study 

estimated it around 0.61. Taper of S. tonkinensis may not be related to those of the 

jack pine, but when β1 takes on the value less than 0.5 this implies tree stems are 

cylindrical. This may have resulted in overestimates the diameters of jack pine. When 

β1 takes on 0.61 (between a conic and parabolic shape) this may have caused the 

diameters of S. tonkinensis to be underestimated. 

 

 

Figure 5.4a: Residual plot with smooth 
line showing bias pattern 
(model 21a). 
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Figure 5.4b: Plot of residuals against 
stem height 

 

Figure 5.4a: Residual plot with smooth 
line showing bias pattern 
(model 19). 
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Figure 5.4b: Plot of residuals against 
stem height 
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Model 22 was similarly precise and biased when compared with model 19, but 

the bias was less obvious. It slightly underestimated small diameters, but slightly 

overestimated bigger diameters. Another problem of this polynomial taper function is 

that it incorrectly predicted the diameters at the top by estimating ‘d’ with some non-

zero values at this point. 

 

5.2.2 Segmented taper functions 

 

Model 24, a classic segmented taper equation by Max and Burkhart (1976) is 

of particular interest. It has been tested with many species by a number of people 

including Methol (2001), Muhairwe (1999), Diéguez-Aranda et al. (2006), Jiang et al. 

(2005), Sharma and Oderwald (2001); and Cao et al. (1980). The results were mixed. 

Some found it ranked at the top, while others found it less precise and more biased 

than other forms of taper functions. Moreover, some studies investigated the model 

with more than one species and found that it performed differently with each species 

(Muhairwe 1999). Nevertheless, this model is considered to have many advantages 

and it is probably the most used segmented taper model (Methol 2001). It is a 

relatively simple model amongst the segmented models, and is often able describe a 

tree profile adequately. In comparison with single taper functions, however, 

estimating the equation coefficients for this model is a complicated computing 

process. Thus, it is worth describing the procedure for estimating equation coefficients 

(see Appendix 2). 

 

In this study, the model by Max and Burkhart (1976) was ranked below the 

two models that showed the least bias and most precision in prediction. They include 

compatible taper models by (Gordon 1983), and model 20 by Sharma and Oderwald 

(2001). This model was not consistent in predicting all sizes of stem diameters. 

Graphical residual analysis by Loess smoothing line showed that the bias was very 

obvious at the upper end along the predicted volume scale line which the model 

overestimated the diameters (Figure 5.5a). Meanwhile, at the other end, it slightly 

underestimated the small diameters of the stems. 
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5.2.3 Model 20  

 

The performance of model 20 was the least biased amongst non-compatible 

taper equations (Figure 5.5b). However, this model can be developed alongside with 

volume model to make it a compatible taper equation. The theory and development of 

such a system were proposed by Sharma and Oderwald (2001). Compatible volume 

and taper equation systems investigated in this study followed the theory proposed by 

Gordon (1983). Nevertheless, the most interesting point about this model is that the 

only estimated parameter (β1) is very sensitive. Two is a critical value for β1; if it is 

equal to 2, the function takes a purely parabolic form to depict a tree shape (Sharma 

and Oderwald 2001); if it is greater than 2, the function predicts the diameter at the 

butt much larger than diameter at breast height ‘D’; and if it is smaller than 2, the 

function predicts the diameter at the butt smaller than diameter at breast height ‘D’ 

(Figure 5.6). In the last case, one would not expect it to accurately depict a tree’s 

shape. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S. tonkinensis’ taper took a shape that meant the β1 was greater than 2. The 

value estimated for β1 in this study was 2.1074 (Table 4.1). This finding is compatible 

to the result presented by Sharma and Oderwald (2001) in which the value of β1 was 

  

(a) (b) 
 
Figure 5.5: Plots of residuals against predicted volumes; (a) for model 24 and (b) 

for model 20 
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2.1852 and 2.0056 for over- and under bark taper equations, respectively. Their taper 

functions were developed for loblolly pine species in the Coastal Plain of North 

Carolina, USA, the standard errors of estimate for the over bark taper model was 1.38 

cm. If only this statistic was used as a criterion for evaluation model quality, the taper 

equation developed in this study here was more precise than their over bark model. 

SEE calculated for the model in this study was 1.11 which is lower than their value. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

This model not only showed the most precise and least biased in prediction the 

diameters of all sizes, but also was considerably more precise in prediction of tree 

volume when integrated to generate stem volume. It is worth describing the procedure 

of volume generation in detail (see Appendix 3).  
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Figure 5.6: Tree profiles generated from model 20 using artificial data 
to test a function shape with three different values of b1 (b1 
= 2.1074 was value estimated from the data of the sample 
trees).  Adopted from Sharma and Oderwald (2001) 
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5.2.4 Compatible taper functions 

 

Ideally, a volume estimation system should be compatible, i.e., the volume 

computed by integration of the taper equation from the ground to the top of the tree 

should be equal to that calculated by a total volume equation (Demaerschalk 1972). 

However, some studies found that this type of taper equation has been ranked behind 

many non-compatible taper functions using common precision and bias evaluation 

criteria (i.e. Cao et al. 1980). In addition, Cao et al. (1980) pointed out that if the sole 

purpose was to describe tree taper, the use of compatible taper was not a good option. 

This study, on the other hand found that a compatible volume and taper equation 

system was the least biased taper model, even though its precision was not 

substantially different from the other types of taper models. The residual plot with 

Loess smoothing lines added showed no obvious bias (Figure 5.7). Using different 

volume models to derive a compatible taper equation did not significantly affect the 

model quality, even though bias patterns were not identical. Figure 5.7 compares the 

residual plots of two compatible taper models that used different volume equations.  

 

 

 

 

 

 

 

 (a) (b) 
 

 

 

 

 

 

  

 
Figure 5.7: Plots of residuals against predicted volumes; (a) for model 23b and (b) for 

model 23a 
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Four main points can be made to sum up the overall findings in this taper 

section: 

 

• The precisions of most taper models were similar. All models had most 

residuals distributed between –0.4cm and +0.4 cm (only few data points 

outside this range);  

• Most models tested performed best in prediction of the medium sizes of 

tree diameters but worst in prediction of the small sizes; 

• Compatible taper models were the least biased model. They were relatively 

consistent in prediction of all diameter sizes; and 

• If the sole purpose is to describe tree taper, the best model to use is model 

20. It is simple to apply, and was ranked amongst the best taper models 

tested in this study. 
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6. Conclusions 
 

6.1 Volume models 

 

Amongst nineteen individual tree volume models tested during the study, two 

models, each with three estimated parameters, were judged to be best overall when 

using bias and precision as criteria to predict over-bark volume of S. tonkinensis. The 

first model (model 4) was a single entry model with diameter at breast height as an 

independent variable, while the second one (model 13a) was a double-entry model 

that used both diameter at breast height and height as independent variables: 

 

(4) V = 0.0062478622 – 0.0048205045D + 0.0008340514D2 

 

(13a) V = – 0.0011383579 + 0.000052703D2H – 0.0000008312D2H2 

 

Precision and bias of these two models were similar. Errors in their volume 

predictions were within a similar range (+0.06 m3/tree and – 0.06m3/tree), except that 

one data point from model 4 was 0.066. Models were equivalently effective at 

predicting the volumes of small trees. Based on the analysis of residuals, three out of 

four statistics showed that model 13a was a better model for the entire dataset. Those 

statistics included bias (mean residual), the standard error of estimate (SEE), the 

standard deviation of the residuals (SDR) and mean absolute deviation (MAD). Model 

4 was slightly less biased than model 13a. The differences in each statistic between 

the two models, however, were not significant. 

 

Other forms and equations tested were inferior to the two models above. They 

were either too complicated, significantly biased, or less precise.  

 

6.2 Taper equations 

 

Amongst three different forms of taper models tested, a compatible taper 

model (model 23b) was the most precise and least biased model for describing the 

over-bark stem profile of S. tonkinensis. Residual analysis showed that the compatible 
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taper model was less biased, more accurate and more precise than the other two 

models tested. The equation for the model is: 

 

(23) ( )
kH

zzzzzV
d
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+= )1(  

 k = 0.00007854 

 other notations are as previously defined. 

 

The model had residuals all distributed between –0.4cm and +0.4 cm, except 

one data point which was –0.48 cm. This was the narrowest range of the errors 

generated by the three models tested. Graphs of residuals against predicted values 

showed the compatible taper model was the least biased among the models tested. 

 

The other two types of models (a simple polynomial model and a segmented 

polynomial model) were more obviously biased. The simple model was the least 

precise and the most biased model among those tested.  

 

6.3 Compatible taper systems 

 

While two compatible volume systems (model 23a, and 23b) were similar in 

bias, the compatible volume system using volume equation 13a (model 23b) was more 

precise than the system using model 4 (model 23a). The system using volume 

equation 4 also had residuals all but one distributed between –0.4cm and +0.4 cm. 

Residual plotting, however, showed that this system was less precise as the residuals 

were less compacted. Fit statistics of residual analyses also indicated that distributions 

of residuals from the system using model 13a were more precise and less biased than 

the other system. 
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Appendix 1: Bark model 
 
 

Table A1.1: a summary of the bark data 
 
 
 

Bark thickness statistics  
Stem height ‘d’ (m) n Mean 

(cm) 

Max (cm) Min (cm) SD 
0.15 4 1.27 1.4 1.2 0.096 
0.70 4 1.25 1.3 1.2 0.058 
1.30 4 1.15 1.3 1.0 0.129 

3 3 0.93 1.0 0.9 0.058 
6 3 0.67 0.8 0.6 0.115 
9 3 0.57 0.6 0.5 0.058 
12 1 0.5 0.5 0.5 - 
15      

 
Note: All trees were less than 15 m in height, and their diameters at breast height and the 

largest diameter (i.e. at 1.5 m height) were between 14 cm and 17.4 cm,. 
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Figure A1.1: Diameter due to bark (sum of the two bark measurements) versus over-bark 

diameter for four trees.  The four trees are represented by different symbols.  
The line shows a non-linear model between the two variables.  

 
Note: bark model was 5944.1

0115.02814.0 dY +=  
 

where Y, d are 2 x bark thickness and stem diameter of the stem respectively.  
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Appendix 1 (continued) 
 

As a guide to the errors associated with using over-bark models, the bark 

thickness model developed from the data shown in Figure A1.1 were applied to trees 

in the sample that had diameters at 0.15 m less than 17.5 cm (Table A1.2).   
 

Table A1.2: Over-bark and under-bark volumes of small trees with the largest 
diameter (i.e. at height 0.15 m) were less than 17.5 cm. 

 

No. Tree 
height(m) 

DBH 
(cm) 

Over-bark 
volume (m3) 

Under-bark 
volume (m3) 

% of 
difference 

1 11.54 11.8 0.062907982 0.053500204 17.6 
2 9.31 11.7 0.064539862 0.054762586 17.9 
3 10.5 10 0.04012935 0.034037713 17.9 
4 10.87 11 0.06406858 0.054295496 18.0 
5 8.43 11.3 0.047904764 0.040597022 18.0 
6 10.31 10.6 0.054851933 0.046464369 18.1 
7 11.34 13 0.071032231 0.060169775 18.1 
8 11.04 10.5 0.057347186 0.048576317 18.1 
9 12.54 14 0.098325641 0.083252027 18.1 

10 10.98 11 0.059347956 0.050244092 18.1 
11 10.82 11.1 0.05978593 0.05061093 18.1 
12 11.96 11.5 0.064747655 0.054810591 18.1 
13 12.59 13.6 0.09086216 0.076902001 18.2 
14 10.55 10.3 0.052431591 0.044357097 18.2 
15 11.09 11.6 0.063972373 0.054113373 18.2 
16 10.39 11.2 0.057302104 0.04847012 18.2 
17 11.96 10.5 0.053382158 0.045153017 18.2 
18 10.62 10.4 0.054431203 0.045986897 18.4 
19 13.5 14.6 0.119552602 0.100981038 18.4 
20 9.02 10.7 0.044286018 0.037403354 18.4 
21 12.84 16 0.145561749 0.122920746 18.4 
22 8.85 11.2 0.047994032 0.040508266 18.5 
23 11.4 14.5 0.098948584 0.083496379 18.5 
24 10.73 12.2 0.067459525 0.056895726 18.6 
25 10 11.9 0.05503014 0.046394513 18.6 
26 12.6 16.5 0.139353982 0.117396593 18.7 
27 9.43 13.8 0.065214131 0.054902858 18.8 

 
Note: percentages of differences were calculated by using equation A1.1. 
 

100!
"

=
under

underover

V

VV
p                                     (A1.1) 

 
where p, Vover, and Vunder are the percentage, volume over bark and volume under bark, 
respectively. 
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Appendix 1 (continued) 

 

A plot of error versus diameter at breast height (DBH) is shown in Figure A1.2. The 

error averaged 18 %.  While this figure might be used as an interim guide to the likely 

magnitude of errors associated with estimating under-bark volumes for small trees 

using the models developed during the study reported here, it should be noted that 

bark measurements came from only 4 trees. Any under-bark volume estimates derived 

by combining the over-bark volume model with this adjustment factor should 

therefore be regarded as potentially biased.  A wider ranging study of bark thickness 

of S. tonkinensis is urgently required. 
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Figure A1.2: Plot of predicted volume errors against tree DBH 

 
 
Courbet & Houllier (2002) implied a model of double bark thickness of Cedrus 

atlantica by modelling the ratio of over-bark to under-bark diameter as a function of distance 

from tree apex: 
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where Do = over-bark diameter, Di = under-bark diameter, X= distance from stem apex, 

and c1, c2 and c3 were coefficients.  
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Appendix 1 (continued) 

Their model implies an almost linear increase in bark thickness with diameter 

when it is applied to estimates of diameter from a fitted taper equation.  When an 

inverted form of this equation was applied to estimate bark thickness among trees 

where bark was measured during the studies reported here, a plot of predicted versus 

residual values indicated that although the model was biased, a simple change to one 

or more of the parameters might enable it to fit data from S. tonkinensis (Figure A1.3).  

It is therefore a candidate for future studies of bark thickness. 
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Figure A1.3: Estimated 2 x bark thickness using Courbet and Houlliet’s (2002) model 
versus actual 2 x bark thickness.  The line shows a one to one correspondence. 

 
 

 Using a bark thickness model derived from measurements of S. tonkinensis 

along with the over-bark volume and taper models created during the study reported 

here will enable estimates of under-bark volume, but at a cost when compared to 

direct models of under-bark volume and taper.  The extra cost will arise from 

combining imprecision of over-bark models with imprecision of the bark thickness 

model.  When taper and volume studies are done in future for this species, 
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measurements of bark thickness on the sampled trees will allow us to directly model 

under-bark volume and taper. 
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Appendix 2: The procedure for estimating equation coefficients for segmented taper 
model (model 24) by Max and Burkhart (1976). 

 
The list below provides the complete steps and the code that used for 

estimating equation coefficients for Max and Burkhart taper function in this study:  
 

libname avolume 'p:\thesis\data analysis\input data' ; 
data temp; 
set avolume.table_combinedv2  
 

d = diaob ; 
ht = topheight ; 
h = height ; 
y = (d/dbh)**2 ; 
x = h/ht ; 
x1 = x – 1 ; 
x2 = x*x – 1 ; 

 
proc nlin ; 

parms b1 = 0.002 b2 = - 0.002 b3 = 0.05  b4 =35 a1 = 0.95 a2 = 0.05 ; 
if x ge a1 then do ; 

model y = b1*x1 + b2*x2 ; 
der.b1 = x1 ; 
der.b2 = x2 ; 
der.b3 = 0  ; 
der.b4 = 0  ; 
der.a1 = 0 ; 
der.a2 = 0 ; 
end ; 
else do ; 
if a2 le x lt a1 then do ; 

model y = b1*x1 + b2*x2 + b3*(a1 - x)**2 ; 
der.b1 = x1 ; 
der.b2 = x2 ; 
der.b3 = (a1 - x)**2  ; 
der.b4 = 0  ; 
der.a1 = 2*b3*(a1 - x)  ; 
der.a2 = 0 ; 
end ; 
else do ; 

model y = b1*x1 + b2*x2 + b3*(a1 - x)**2 + b4*(a2-x)**2  ; 
der.b1 = x1 ; 
der.b2 = x2 ; 
der.b3 = (a1 - x)**2  ; 
der.b4 = (a2 - x)**2  ; 
der.a1 = 2*b3*(a1 - x)  ; 
der.a2 = 2*b4*(a2 - x)  ; 
 
output out = stats r = resid p = pred; 
end;  end ; 

 
proc gplot ; 

plot resid * pred/ vref = 0 ; 
 
run ; 
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Appendix 3: The procedure for generating stem volume from taper function 
 
 
Taper function (model 20): 
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Solving the above function, so that: 
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If the function is rotated around the X-axis and the frustra is generated. 
 
Because  

dhdkV

H

!=
0

2

 

 
Replacing d2 with the function: 
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Integrating 
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