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NESTING POLYNOMIALS IN INFINITE RADICALS 

PETER J. HUMPHRIES 

ABSTRACT. We consider infinite nested radicals in which the ar­
guments are positive polynomial sequences. It is shown that the 
evaluation of such a nesting is always finite, and we prove nec­
essary and sufficient conditions for the evaluation to be a finite 
polynomial. 

1. INTRODUCTION 

A famous problem posed by Ramanujan asks for the evaluation of 
the infinite nested radical 

J1+2J1+3V1+4~ 

If we instead try to evaluate a more general expression, where we re­
place the increasing sequence by an arithmetic progression in x, namely 

L(x) ~ J1 +xJl+ (x + 1)J1+ (x+2)~ 

then it can be seen that L(x) satisifes the functional equation 

L(x)2 = 1 + xL(x + 1) 

The solution to this is L(x) = x + 1, giving the evaluation of Ra­
manujan's example correctly as 3. In fact, this numerical example was 
merely a special case of a more complicated identity in three variables 
(see the end of Section 2). 

Several identities concerning infinite nested radicals may be found in 
[1], [2] and [3]. In [1], nested radicals involving arithmetic sequences in 
n-th roots are considered. The purpose of the current paper is to study 
the case where the radicals have two polynomials as their arguments. 

Throughout this paper, we denote the natural numbers (without 
zero) and the real numbers by N and JR respectively. The ring of poly­
nomials in x with real coefficients will be specified by JR[x], and we note 
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further that any use of square roots automatically implies a positive 
square root. A sequence an of positive real numbers is called a positive 
polynomial sequence if there exists a polynomial a(x) E IR[x] such that 
ai = a(i) for all i EN. 

To remove the possibility of any ambiguity, we formalise the concept 
of evaluating an infinite nested radical 

J a1 + b1 J a2 + b2v'a3 + ... 
to be the limit 

(1) lim J a1 + b1 V a2 + ... + bn-1 Jan + bn 
n->oo 

where an, bn are sequences of real numbers. 
In Section 2, we characterise when an infinite nested radical involving 

polynomials from IR[x] has a simple closed form as another polynomial 
in IR[x]. Section 3 is devoted to proving that, for all positive polynomial 
sequences an, bn, the limit in (1) exists and is finite. 

2. IDENTITIES INVOLVING NESTED RADICALS 

The following lemma does not require proof, being a consequence 
of viewing the infinite nested radical as being a limit of an infinite 
sequence. 

Lemma 2.1. Let L(x),p(x),q(x) be polynomials in IR[x]. Then 

L(x) = Jp(x) + q(x)Vp(x + d) + q(x + d)Jp(x + 2d) + · · · 
if and only if 

L(x) = Jp(x) + q(x)L(x + d) 

An analogous statement can be made for higher-order roots, and 
we may further replace the ring IR[x] by any class of function in one 
or more variables. However, for the purposes of this paper we are 
primarily interested in polynomials in one variable. 

From the above lemma, we get any number of results. More impor­
tantly, though, given a nested radical to evaluate, we can now concen­
trate on solving the non-linear functional equation 

L(x)2 = p(x) + q(x)L(x + d) (2) 

rather than on the radical itself, where L(x) is assumed to take positive 
values on the domain of interest. 
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Given L(x), q(x) and d, we can always find a p(x) that satisfies 
equation (2). That is, p(x) = L(x) 2 - q(x)L(x + d). A more interest­
ing problem is, given p(x), q(x) and d, to find the function L(x). In 
particular, we want to find some L(x) that is a polynomial of finite 
degree. 

This is not always possible, as the following example shows. If we 
take p(x) = 1, q(x) = x and d = 2, then we wish to find some L(x) 
that satisfies 

L(x)2 = 1 + xL(x + 2) 

It can be seen that the degree of L(x) must be one, and moreover the 
linear term will be x. However, if we try to evaluate a constant term 
a, we run into problems: 

(x + a) 2 = 1 + x(x + 2 + a) 

ax+ a2 = 2x + 1 

Comparing the linear coefficients gives a = 2, but the solution in the 
linear terms is a = ± 1. 

Our aim is to characterise when an infinite nested radical with poly­
nomial arguments has a polynomial solution. That is, for what com­
binations of p(x),q(x) and d can we find some L(x) E JR[x] satisfying 
equation (2). It is known ([3]) that if both p(x) and q(x) are constants, 
p and q say, then L(x) is also constant, and solves the quadratic equa­
tion £ 2 - qL - p = 0. 

Let deg(!) denote the degree of a polynomial f(x), and [xi]J(x) 
denote the coefficient of xi in the function f ( x). Then we have the 
following two lemmas, which both follow from equation (2): 

Lemma 2.2. If L(x) E JR[x] solves equation (2) for some p(x),q(x) E 
JR[x], then deg(L) = max{de~(p), deg(q)}. 

Lemma 2.3. Let p(x), q(x) be polynomials in JR[x], and let 

F(x) = L(x)2 
- p(x) - q(x)L(x + d) 

where L(x) = akxk + ... +ao. Then there exist ao, ... , ak E JR such that 
L(x) solves equation (2) if and only if there exist a0 , ... , ak E JR such 
that [xi]F(x) = 0 for all i ~ 0. 

This now allows us to find a solution to equation (2) by comparing 
coefficients of F(x). While in the last lemma it is stated that [xi]F(x) 
must be zero for all i ~ 0, it suffices by Lemma 2.2 for this to hold 
only for values of i not exceeding the maximum of deg(p) and 2deg(q). 
While, for L(x) of degree k, this could potentially involve solving up 
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to 2k + 1 simultaneous polynomials in the k + 1 coefficients of L( x), we 
can use the next lemma to find the solution systematically by solving 
only one quadratic equation (taking the positive root) and at most k 
linear equations. 

Lemma 2.4. Let p(x), q(x) be polynomials in JR.[x], and let 

F(x) = L(x)2 
- p(x) - q(x)L(x + d) 

where L(x) = akxk + ... + ao, and k = max{de~(p), deg(q)}. Then 

(i) [x2k]F(x) is quadratic in ak; 
(ii) [xi]F(x) is linear in aj-k for all k::; j < 2k; and 

(iii) [xi]F(x) is independent of ai for all i < j-k where k::; j ::; 2k. 

Proof. The coefficient [x2k]F(x) is given by 

[x2k]F(x) = ([xk]L(x)) 2 
- [x 2k]p(x) - ([xk]q(x))([xk]L(x + d)) 

= a~ - ak[xk]q(x) - [x2k]p(x) 

proving part (i). Similarly, the coefficient [xi]F(x), where k::; j < 2k 
is 

k 

[xi]F(x) = L ([xi]L(x))([xi-i]L(x)) - [xi]p(x) 
i=j-k 

k 

- L ([xi]q(x))([xi-i]L(x + d)) 
i=j-k 

k . 
= 2aj-kak - aj-k[x ]q(x) - [x1]p(x) + g(aj-k+l, ... , ak) 

where g(ai-k+l, ... , ak) takes care of the extra terms in the summa­
tions. This proves (ii), and (iii) follows directly from the expansions 
above. 0 

We can now prove the main theorem of this section. 

Theorem 2.5. Let p(x), q(x) be polynomials of degrees, t respectively 
in JR.[x], both with positive leading coefficients. Then there are maxH, t} 
equalities that must be satisfied by d and the coefficients of p(x), q(x) 
in order for some L(x) E JR.[x] solving equation (2) to exist. Moreover, 
if these equalities are satisfied, then there is a general solution for L( x) 
in terms of d and the coefficients of p( x), q( x). 

Proof. We take L(x), F(x) as in Lemma 2.4. Then, by the same lemma, 
we can find a positive ak E JR. that solves [x2k]F(x) = 0. Further, given 
a;, ... , ak, where i > 0, we can find a;_1 that solves [xi+k-1]F(x) = 0. 
That is, we can find a0 , ... , ak that solve [xi]F(x) = 0 for all k::; i::; 2k. 
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Now, by Lemma 2.3, for L(x) E ~[x] to exist, we need [xi]F(x) = 0 
for all i > 0. Since we have this equality for k :::; i :::; 2k, we need 
the remaining k equations to be satisfied. That is, [xi]F(x) = 0 for 
0 :::; i < k. Hence there are k constraints on d and the coefficients of 
p(x), q(x). 

We complete the proof by noting that L(x) = akxk + ... + a0 solves 
equation (2) if and only if the above constraints are met with equality. 

0 

We illustrate the theorem with a more concrete example. If p( x) and 
q(x) are both linear, then we wish to find L(x) E ~[x] such that 

L(x)2 
= (pix+ Po)+ (q1x + qo)L(x + d) 

In this case, it can be seen that L(x) is of the form a1x + ao, and that 
in fact a1 = q1. So we have 

(q1x + ao) 2 =(pix+ Po)+ (q1x + qo)(q1x + a1d + ao) 
2 2 . 

aoq1x + a0 = (q1qo + q1 d + P1)x + (q1qod + aoqo + Po) 

By comparing the linear terms, we get a0 = qo + q1d + El, which on 
q1 

substitution into the constant terms gives 

0 = q1qop1 + q{d2 + 2qip1d + Pi - qiPo (3) 

That is, the solution L(x) E ~[x] exists if and only if this equality is 
met, in which case 

L(x) = q1x + (qo + q1d + ::) 

The identity of Ramanujan's, which we alluded to in the introduc­
tion, is 

X + n +a= ) ax+ (n + a) 2 + xv a(x + n) + (n + a)2 + ... 
where p(x) =ax+ (n + a)2, q(x) = x and d = n. Applying the results 
we have just derived we find that the constraint in equation (3) is 
indeed satisfied, and the evaluation of the nested radical is x + n + a 
as expected. 

3. CONVERGENCE OF NESTED RADICALS 

At this point, we introduce a more compact notation for nested rad­
icals. For two sequences an, bn of positive real numbers, we define the 
operator R by 

Rf=1 ( ai, bi) = J a1 + b1 V a2 + ... + bn-1 Van + bn 
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It was proved by Herschfeld ([2]) that Ri=1(ai, 1) converges if a;-n has 
a finite upper limit as n tends to infinity. 

Let Pn, qn be positive polynomial sequences, and let the sequence rn 
be given by 

rn = Ri=l (Pi, qi) 

Then we wish to find whether or not r n converges. The next lemma 
will be of use. 

Lemma 3.1. Let Un, Vn, Yn, Zn be sequences of positive real numbers 
such that ui S Yi, vi :S Zi for all i EN. Then for all n EN 

Rf=1 ( U;, vi) S Rf=1 (Yi, z;) 

Proof. The result is a straight-forward consequence of the sequences 
being strictly positive. D 

Theorem 3.2. Let Pn, qn be positive polynomial sequences. Then the 
sequence r n = Ri=l (p;, q;) converges. 

Proof. Let p(x), q(x) E IR[x] be polynomials such that p(i) = Pi, q(i) = 
q; for all i E N, and let m E N be such that 2m > deq(p), m > 
deg(q) + 1. Then let L(x) = xm and v(x) = xm-l, and define u(x) by 

u(x) = L(x)2 - q(x)L(x + 1) 
= X2m + O(x2m-1) 

We further define the sequences Un,Vn by u; = u(i),v; = v(i). Then 
there is some k E N such that Pi S ui, qi :S Vj for all j 2: k. Hence, by 
Lemmas 2.1 and 3.1 , we have 

lim Ri=k (Pi, qi) S lim Ri=k ( u;, vi) 
n~oo n-l'oo 

= L(k) 
=km 

This provides a finite upper bound on rn by applying Lemma 3.1 again 
with the finite sequences (q1, ... , qk-1) and (qi, ... , qk-2, kmqk-1). 

Now, there is also some k E N such that Pi + % > 1 for all j 2: k. 
That is 

for all j 2: k, and hence rn converges to some finite limit. D 
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