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Abstract

One of the most famous results in matroid theory is Tutte’s Wheels-and-Whirls Theorem.
It states that every 3-connected matroid has an element which can either be deleted or con-
tracted while retaining 3-connectivity, except for two families of matroids: the eponymous
wheels and whirls. The Wheels-and-Whirls Theorem is a powerful tool for inductive argu-
ments on 3-connected matroids. We consider two generalisations of the Wheels-and-Whirls
Theorem.

First, what are the k-connected matroids such that the deletion and contraction of every
element is not k-connected? Motivated by this problem, we consider matroids in which
every element is contained in a small circuit and a small cocircuit, and, in particular,
when these circuits and cocircuits have a cyclic structure. The first part of this thesis is
concerned with matroids in which have a cyclic ordering σ of their ground set such that
every set of s− 1 consecutive elements of σ is contained in an s-element circuit and every
set of t − 1 consecutive elements of σ is contained in a t-element circuit. We show that
these matroids are highly structured by proving that they are “(s, t)-cyclic”, that is, their
s-element circuits and t-element cocircuits are consecutive in σ in a prescribed way. Next,
we provide a characterisation of these matroids by showing that every (s, t)-cyclic matroid
is a weak-map image of a particular (s, t)-cyclic matroid.

Secondly, what are the 3-connected matroids such that such that the deletion and con-
traction of every 2-element subset is not 3-connected? In the second part of this thesis,
we find all such matroids. Roughly speaking, these matroids can be constructed in one of
four ways: by attaching fans to a spike, by attaching fans to a line, by attaching particular
matroids to M(K3,m), or by attaching particular matroids to each end of a fan.
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chapter1
Introduction

1.1 Tutte’s Wheels-and-Whirls Theorem

One of the most famous results in matroid theory is Tutte’s Wheels-and-Whirls Theorem
[32]. It states that every 3-connected matroid has an element which can either be deleted or
contracted while retaining 3-connectivity, except for two families of matroids: the epony-
mous wheels and whirls. The Wheels-and-Whirls Theorem is a powerful tool for inductive
arguments on 3-connected matroids [20], which has motivated numerous extensions of this
theorem.

We consider two natural generalisations of the Wheels-and-Whirls Theorem. First, what
are the k-connected matroids such that the deletion and contraction of every element is
not k-connected? And second, what are the 3-connected matroids such that the deletion
of every pair of elements and the contraction of every pair of elements is not 3-connected?

We recall the definitions of wheels, whirls, and connectivity. The rank-r wheel is the
matroid corresponding to the graph shown in Figure 1.1. The rank-r whirl has the same
independent sets as the rank-r wheel except the set {b1, b2, . . . , br} is also independent.

The connectivity of a matroid was introduced by Tutte [32] as a notion analagous to that
of vertex-connectivity for graphs. For a matroid M on ground set E and a subset X ⊆ E,
the connectivity of X is defined

λ(X) = r(X) + r(E −X)− r(M)

or equivalently
λ(X) = r(X) + r∗(X)− |X|.

1
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Figure 1.1: The rank-r wheel.

We say X is a k-separation if λ(X) = k − 1 and |X| ≥ k and |E −X| ≥ k. A matroid is
k-connected if, for all k′ ∈ {0, 1, . . . , k − 1}, it has no k′-separations.

1.2 A Wheels-and-Whirls Theorem for Higher Connectivity

Finding a Wheels-and-Whirls-type theorem for connectivity higher than 3 is a difficult
problem. To date, there is no such theorem for 4-connected matroids, let alone higher
connectivity. There have been some results concerning “almost” 4-connected matroids, in
which certain types of 3-separations are allowed to appear. For many applications, allowing
these 3-separations makes for a more natural and useful notion of connectivity than general
4-connectivity.

The first such result was by Geelen and Whittle [12], more than 30 years after Tutte’s sem-
inal paper. A k-separation X is sequential if its elements can be ordered (e1, e2, e3, . . . , em)
such that, for all i ∈ {1, 2, . . . ,m}, we have that λ({e1, e2, . . . , ei}) ≤ k. A matroid is
sequentially 4-connected if it is 3-connected and every 3-separation is sequential. Geelen
and Whittle proved the following.

Theorem 1.2.1. Let M be a sequentially 4-connected matroid. If M is not a wheel or a
whirl, then M has an element x such that either M\x or M/x is sequentially 4-connected.

Sequential 4-connectivity is a natural notion which allows only 3-separations with simple
structure, but these 3-separations can have arbitrary size. Another possible weakening
of 4-connectivity is to allow only small 3-separations. A matroid M is 4-connected up to
separators of size k if it is 3-connected and, for every 3-separation X of M , either |X| ≤ k
or |E(M)−X| ≤ k. The following result is due to Hall [15].
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Theorem 1.2.2. Let M be a matroid which is 4-connected up to separators of size 5.
Then M has a proper minor N which is 4-connected up to separators of size 5 such that
|N | ≥ |E(M)| − 2.

This result was later extended by Chun, Mayhew, and Oxley [9][10].

Theorem 1.2.3. Let M be a matroid which is 4-connected up to separators of size 3.
Then M has a proper minor N which is 4-connected up to separators of size 3 such that
|N | ≥ |E(M)| − 6.

A result due to Oxley, Semple, and Whittle [24] concerned 3-connected matroids in which
every 3-separation is both small and sequential.

Theorem 1.2.4. Let M be a matroid which is both sequentially 4-connected and 4-connected
up to separators of size 5. Then M has a proper minor N which is both sequentially 4-
connected and 4-connected up to separators of size 5 such that |N | ≥ |E(M)| − 2.

These results will not extend easily to 4-connected matroids. Rajan [28] showed that, for
all m ≥ 1, there is a 4-connected matroid M such that every minor of M with size at least
|E(M)| −m is not 4-connected.

1.3 Small Circuits and Cocircuits

So a Wheels-and-Whirls theorem for k-connectivity, with k > 3, is currently infeasible.
However, a starting point to work towards such a theorem is to identify matroids which
have no single-element deletions or contractions that are k-connected. The reason wheels
and whirls are the exceptional matroids for the Wheels-and-Whirls Theorem is that they
are precisely the 3-connected matroids in which every element is contained in both a 3-
element circuit and a 3-element cocircuit. Contracting an element, therefore, produces a
2-element circuit, a 2-separation, so the resulting matroid is not 3-connected. Similarly,
deleting an element produces a 2-element cocircuit, and so the resulting matroid is not
3-connected. More generally, a matroid in which every element is contained in both a
k-element circuit and a k-element cocircuit will have no single-element deletions or single-
element contractions which are k-connected. This has motivated the study of matroids in
which every element is contained in a small circuit and a small cocircuit.

Miller [19] investigated matroids in which every pair of elements is contained in both a
4-element circuit and a 4-element cocircuit, and showed that such a matroid is a tipless
spike. A tipless spike is a matroid which can be partitioned into pairs such that the union
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(a) (b)

Figure 1.2: (a) A rank-4 spike, and (b) a rank-4 swirl.

of any two pairs is both a circuit and a cocircuit. An example of a rank-4 spike is shown
in Figure 1.2a.

Theorem 1.3.1. Let M be a matroid such that every pair of elements is contained in both
a 4-element circuit and a 4-element cocircuit. If |E(M)| ≥ 13, then M is a tipless spike.

Oxley, Pfeil, Semple and Whittle [22] considered matroids in which every pair of elements
is contained in a 4-element circuit, and either every element is contained in a 3-element
cocircuit, or every element is contained in a 4-element cocircuit. They proved the following
two theorems.

Theorem 1.3.2. Let M be a 3-connected matroid such that every pair of elements is
contained in a 4-element circuit, and every element is contained in a 3-element cocircuit.
If |E(M)| ≥ 9, then M is isomorphic to M(K3,m), for some m ≥ 3.

Theorem 1.3.3. Let M be a 4-connected matroid such that every pair of elements is
contained in a 4-element circuit, and every element is contained in a 4-element cocircuit.
If |E(M)| ≥ 16, then M is isomorphic to M(K4,m), for some m ≥ 4.

Brettell, Campbell, Chun, Grace, and Whittle [3] considered matroids in which every t-
element subset is contained in both an `-element circuit and an `-element cocircuit. They
showed that when ` < 2t, there are finitely many matroids satisfying this property, and
when ` = 2t, the following holds.

Theorem 1.3.4. Let M be a matroid such that every t-element subset is contained in a
2t-element circuit and a 2t-element cocircuit. If M has sufficiently many elements, then
E(M) has a partition into pairs such that the union of any t pairs is both a circuit and a
cocircuit.
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Brettell and Grace [5] recently extended this result to the case in which the circuits and
cocircuits need not have the same size.

Theorem 1.3.5. Let M be a matroid such that every s-element subset is contained in a a
2s-element circuit and every t-element subset is contained in a 2t-element cocircuit. If M
has sufficiently many elements, then E(M) has a partition into pairs such that the union
of any s pairs is a circuit, and the union of any t pais is a cocircuit.

1.4 Cyclic Matroids

Of particular relevance to this thesis, is work done by Brettell, Chun, Fife, and Semple in
[4]. We have already seen that every element of a wheel or a whirl is contained in both a
3-element circuit and a 3-element cocircuit, but they also satisfy a stronger property. If
M is a wheel or a whirl, then there is a cyclic ordering σ of its ground set such that every
set of two consecutive elements of σ is contained in a 3-element circuit and a 3-element
cocircuit. For example, σ1 = (a1, b1, a2, b2, . . . , ar, br) is such an ordering for the wheel in
Figure 1.1. Brettell et al. [4] generalised this structure. They considered matroids which
have a cyclic ordering σ such that every set of s − 1 consecutive elements is contained in
both an s-element circuit and an s-element cocircuit. In Chapter 2, we consider a further
generalisation of these matroids in which the circuits and cocircuits do not necessarily have
the same size.

A matroid M is nearly (s, t)-cyclic if there exists a cyclic ordering σ of E(M) such that
every set of s− 1 consecutive elements of σ is contained in an s-element circuit and every
set of t − 1 consecutive elements of σ is contained in a t-element cocircuit. We say that
σ is a nearly (s, t)-cyclic ordering of M . Wheels and whirls are examples of nearly (3, 3)-
cyclic matroids. As we have seen, a matroid M is a spike if E(M) can be partitioned into
pairs L1, L2, . . . , Lr such that, for all distinct i, j ∈ {1, 2, . . . , r}, the set Li ∪ Lj is both a
4-element circuit and a 4-element cocircuit. A matroid M is a swirl (Figure 1.2b) if E(M)
can be partitioned into pairs L1, L2, . . . , Lr such that, for all distinct i, j ∈ {1, 2, . . . , r},
the set Li ∪ Lj is both a 4-element circuit and a 4-element cocircuit if j ∈ {i − 1, i + 1},
where subscripts are interpreted modulo r, and independent and coindependent otherwise.
In either case, if we write Li = {ai, bi} for all i ∈ {1, 2, . . . , r}, then (a1, b1, a2, b2, . . . , ar, br)
is a nearly (4, 4)-cyclic ordering of M . Thus, spikes and swirls are nearly (4, 4)-cyclic
matroids.

We can construct nearly (s, t)-cyclic matroids for large values of s and t using elementary
quotients and elementary lifts. An elementary quotient of a matroid M is a matroid M ′

obtained by extending M by an element e, then contracting e. In particular, when M is
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freely extended by e, we say M ′ is the truncation of M . The truncation of a nearly (s, t)-
cyclic matroid is a nearly (s, t+ 2)-cyclic matroid. Dually, an elementary lift of a matroid
M is found by coextending M by an element e, then deleting e. When this coextension
is free, it is called the Higg’s lift of M . The Higg’s lift of a nearly (s, t)-cyclic matroid
is a nearly (s + 2, t)-cyclic matroid. By repeatedly applying truncations and Higg’s lifts,
therefore, we can construct nearly (s, t)-cyclic matroids for arbitrarily large s and t.

Consider again the nearly (s, t)-cyclic ordering σ1 = (a1, b1, a2, b2, . . . , ar, br) of the wheel
in Figure 1.1. The 3-element circuits and 3-element cocircuits of this matroid consist of sets
of consecutive elements of σ1 — for all i ∈ {1, 2, . . . , r}, the set {ai, bi, ai+1} is a circuit and
the set {bi, ai+1, bi+1} is a cocircuit. In [4], Brettell et al. proved that every (sufficiently
large) nearly (s, s)-cyclic ordering has this structure. We generalise this result to nearly
(s, t)-cyclic orderings with s 6= t.

More precisely, a matroidM is (s, t)-cyclic if there exists a cyclic ordering σ = (e1, e2, . . . , en)
of E(M) such that each of the following holds, where subscripts are interpreted modulo n:

(i) either {e1, e2, . . . , es} or {e2, e3, . . . , es+1} is an s-element circuit of M ,

(ii) either {e1, e2, . . . , et} or {e2, e3, . . . , et+1} is a t-element cocircuit of M ,

(iii) if {ei, ei+1, . . . , ei+s−1} is an s-element circuit of M for some i ∈ {1, 2, . . . , n}, then
{ei+2, ei+3, . . . , ei+s+1} is also an s-element circuit of M , and

(iv) if {ei, ei+1, . . . , ei+t−1} is a t-element cocircuit of M for some i ∈ {1, 2, . . . , n}, then
{ei+2, ei+3, . . . , ei+t+1} is also a t-element cocircuit of M .

Such an ordering is called an (s, t)-cyclic ordering of E(M). Note the terminology here
differs to that in [4]: what we call a nearly (t, t)-cyclic ordering was called a cyclic (t−1, t)-
ordering there, and what we call a (t, t)-cyclic ordering was called a t-cyclic ordering.

The first main result of Chapter 2 is the following.

Theorem 1.4.1. Let M be a matroid on n elements, and suppose that σ is a nearly
(s, t)-cyclic ordering of M , where s, t ≥ 3. Let t1 = min{s, t} and t2 = max{s, t}. If
n ≥ 3t1 + t2 − 5 and n ≥ t1 + 2t2 − 1, then σ is an (s, t)-cyclic ordering of M .

The remainder of Chapter 2 is concerned with characterising the class of (s, t)-cyclic ma-
troids. We have seen that (s, t)-cyclic matroids can be constructed by a sequence of ele-
mentary quotients and elementary lifts. It was our hope, and a conjecture in [4], that every
(s, t)-cyclic matroid could be constructed in this way. However, we define an (s, s)-cyclic
matroid Ψn

s which is not a quotient of any (s, s − 2)-cyclic matroid. In fact, it is not a
quotient of any matroid with the s-element circuits of an (s, s− 2)-cyclic matroid.
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Theorem 1.4.2. Let s ≥ 3, and let n ≥ 4s−8 be even. Let M be a matroid on n elements
with cyclic ordering σ = (e1, e2, . . . , en) such that, for all odd i ∈ {1, 2, . . . , n}, the set
{ei, ei+1, . . . , ei+s−1} is an s-element circuit. Then Ψn

s is not a quotient of M .

The next result of Chapter 2 shows that the matroid Ψn
s can be thought of as “the most

free” (s, s)-cyclic matroid. Let M1 and M2 be matroids, and let ϕ : E(M1)→ E(M2) be a
bijection. Then ϕ is a weak map from M1 to M2 if for all circuits C of M1, the set ϕ(C)
contains a circuit of M2. We say M2 is a weak-map image of M1.

Theorem 1.4.3. Let M be an (s, t)-cyclic matroid such that |E(M)| ≥ s+ t−1 and t ≥ s.
Then M is a weak-map image of the ( t−s2 )-th truncation of Ψn

s , which is an (s, t)-cyclic
matroid.

1.5 The Splitter Theorem and Excluded Minors

Perhaps the most important and widely used extension of the Wheels-and-Whirls Theorem
is the Splitter Theorem, due to Seymour [30], and independently Tan [31].

Theorem 1.5.1. Let M and N be 3-connected matroids such that N is a proper minor of
M , and |E(N)| ≥ 4, and if N is a wheel then M has no larger wheels as a minor, and if
N is a whirl then M has no larger whirls as a minor. Then there exists an element e of
M such that either M\e or M/e is 3-connected and has a minor isomorphic to N .

The Splitter Theorem enables an element to be removed from a 3-connected matroid M
while retaining not just 3-connectivity, but also a certain minor of M . One of the primary
ways of understanding the structure of a class of matroids is through its minors, and the
Splitter Theorem has proven itself to be invaluable for such analyses [20][29]. In particular,
an excluded minor of a minor-closed class of matroids M is a matroid M such that M is
not contained in M but every minor of M is. A matroid is a member of M if and only if
it does not have a minor isomorphic to an excluded minor of M. Hence, the class M can
be characterised by its set of excluded minors.

For example, Geelen, Gerard, and Kapoor [13] used the Splitter Theorem to find the
excluded minors for matroids representable over GF (4). The strategy of their proof is as
follows. For an excluded minor M and distinct elements e, f ∈ E(M), the matroids M\e,
M\f , and M\e\f are representable over GF (4). Use representations of these matroids to
construct a matroid N which is representable over GF (4) and N\e = M\e and N\f =
M\f . But M is not representable over GF (4) and N is representable over GF (4), so
compare M and N to reach a bound on the size of M . This strategy generalises to different
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fields (and partial fields). For example, it is used by Hall, Mayhew, and van Zwam [16]
to find the excluded minors for matroids representable over all fields with at least three
elements.

One major difficulty in the above is that a matroid may have multiple inequivalent repre-
sentations over a field. The theory of stabilizers, introduced by Whittle in [33], is used to
limit these inequivalent representations. A stabilizer over a partial field P is a matroid N
such that, for every 3-connected matroid M which is representable over P and has a minor
isomorphic to N , two representations of M in which the representation of a particular
N -minor are equivalent are themselves equivalent. The representation of an N -minor of M
uniquely determines the representation of M . So, in the proof strategy above, we want to
choose e and f such that M\e, M\f , and M\e\f are each 3-connected and have a minor
isomorphic to a stabilizer. The Splitter Theorem enables us to find one such element. How
can we find both e and f? The proofs in [13] and [16] use the following result, proved in
[33].

Theorem 1.5.2. Let M be a 3-connected matroid with a 3-connected minor N such that
|E(M)| ≥ |E(N)| + 4. Then there is a pair of distinct elements e, f ∈ E(M) such that
either all of M\e, M\f , and M\e\f have a minor isomorphic to N and are 3-connected
up to 2-element cocircuits, or all of M/e, M/f , and M/e/f have a minor isomorphic to
N and are 3-connected up to 2-element circuits.

Removing the possibility of 2-element circuits and cocircuits would simplify the proofs of
these excluded-minor characterisations and strengthen the toolbox available for future at-
tacks on excluded-minor problems. This motivates the following question: for a 3-connected
matroid M with 3-connected minor N , when does there exist {e, f} ⊆ E(M) such that
either M\e\f or M/e/f is 3-connected and has a minor isomorphic to N?

1.6 Detachable Pairs

Let M be a 3-connected matroid. A pair {e, f} ⊆ E(M) is called a detachable pair if
either M\e\f or M/e/f is 3-connected. If N is a 3-connected minor of M , then a pair
{e, f} ⊆ E(M) is called an N -detachable pair if either M\e\f or M/e/f is 3-connected and
has a minor isomorphic to N . Hence, the question at the end of the previous section can be
rephrased as “when does M have an N -detachable pair?”. An answer to this question was
provided by Brettell, Whittle, and Williams [6][7][8]. They showed that, if M is sufficiently
large relative to N , either M has an N -detachable pair, or a matroid with an N -detachable
pair can be constructed from M using a certain operation called a ∆-Y exchange (or its
inverse, a Y -∆ exchange), or M is, roughly speaking, N with a spike attached.
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One of the major obstructions to a matroid having a detachable pair is the presence of
3-element circuits and 3-element cocircuits. The result of Brettell et al. uses the ∆-Y
exchange to avoid this obstruction. This is because their result is specifically aimed at
finding excluded minors for matroids representable over a field (or partial field), and if a
matroid is representable over a partial field, then a ∆-Y exchange of that matroid is also
representable over that partial field. However, it remains an open problem to determine
the 3-connected matroids which have either a 3-element circuit or a 3-element cocircuit and
an N -detachable pair. Such an analysis would combine with [6][7][8] to form a complete
Splitter-type theorem in which two-element sets are deleted or contracted rather than single
elements. This would be a powerful asset for finding excluded minors of classes which are
not closed under ∆-Y exchange.

In Chapter 3, we consider the Wheels-and-Whirls analogue of this result. In particular,
we find precisely the 3-connected matroids which have a 3-element circuit or a 3-element
cocircuit and do not have a detachable pair. A Wheels-and-Whirls-type theorem is typically
the first step towards a Splitter-type theorem, and it is our hope that the result in Chapter 3
can be extended to the Splitter-type theorem described above. Indeed, [6][7][8] developed
from the corresponding Wheels-and-Whirls-type theorem in Williams’ PhD thesis [34].

Theorem 1.6.1. Let M be a 3-connected matroid with |E(M)| ≥ 13. Then either

(i) M has a detachable pair,

(ii) there exists a matroid M ′ such that M ′ can be constructed by performing a single
∆-Y or Y -∆ exchange on M and M ′ has a detachable pair, or

(iii) M is a spike.

By combining the results of Chapter 3 with Theorem 1.6.1, we obtain the following.

Theorem 1.6.2. Let M be a 3-connected matroid with |E(M)| ≥ 13. Then one of the
following holds:

(i) M has a detachable pair,

(ii) M is a wheel or a whirl,

(iii) M is an accordion,

(iv) M is an even-fan-spike or a degenerate even-fan-spike,

(v) M is an even-fan-spike with tip and cotip or a degenerate even-fan-spike with tip and
cotip,

(vi) M or M∗ is a degenerate even-fan-paddle, or

(vii) M ′ has a paddle (P1, P2, . . . , Pm) for some M ′ ∈ {M,M∗} and m ≥ 3, and either
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(a) M ′ is an even-fan-paddle,

(b) M ′ ∼= M(K3,m),

(c) there exists x ∈ E(M) and 0 ≤ t ≤ m such that M ′\({x} ∪
⋃t

i=1 Pi) ∼=
M(K3,m−t) and, for all i ∈ {1, 2, . . . ,m}, the set Pi − {x} is a triad and
x ∈ cl(Pi−{x}), and for all j ∈ {1, 2, . . . , t}, distinct from i, the set Pj ∪{x} is
a 4-element-fan-petal relative to Pi − {x}, or

(d) M ′\P1
∼= M(K3,m−1), and, for all i ∈ {2, 3, . . . ,m}, the set Pi is a triad and

either

(I) M ′|P1
∼= M(K3,t) for some t ≥ 2,

(II) P1 is an augmented-fan-petal relative to Pi,
(III) P1 is a co-augmented-fan-petal relative to Pi, or
(IV) P1 is a quad-petal relative to Pi.

Formal definitions of the matroids in this theorem are deferred until Chapter 3, but we
give a brief description here. It is not surprising that “partial wheels”, called fans, are a
crucial structure for these exceptional matroids. A fan of a matroid M is a set F with
ordering (e1, e2, . . . , e|F |) such that {e1, e2, e3} is either a triangle or a triad, and, for all
i ∈ {1, 2, . . . , |F |−3}, if {ei, ei+1, ei+2} is a triangle, then {ei+1, ei+2, ei+3} is a triad, and if
{ei, ei+1, ei+2} is a triad, then {ei+1, ei+2, ei+3} is a triangle. The exceptional matroids in
Theorem 1.6.2 fall roughly into four categories. Firstly, matroids formed by attaching fans
to a spike (Figure 1.3). Secondly, matroids formed by attaching fans to a line (Figure 1.4).
Thirdly, matroids formed by attaching particular matroids to M(K3,m), for some m ≥ 2
(Figure 1.5). Finally, those matroids which we call accordions. The nine types of accordions
are shown in Figure 1.6.

1.7 Other Generalisations

We discuss other generalisations of Tutte’s Wheels-and-Whirls Theorem. An element e in a
3-connected matroidM is said to be non-essential if eitherM\e orM/e is 3-connected. The
Wheels-and-Whirls Theorem states that wheels and whirls are precisely the 3-connected
matroids with no non-essential elements. What are the 3-connected matroids with exactly
k non-essential elements? Oxley and Wu [26][27] showed that there are no matroids with
exactly one non-essential element, and found the two families of matroids with exactly two
non-essential elements, calling them twisted wheels and multi-dimensional wheels. These
families appear in Chapter 3 — we refer to a twisted wheel as a degenerate even-fan-spike
with tip and cotip (Figure 1.3d), while a single-element deletion of a multi-dimensional
wheel produces an even-fan-paddle (Figure 1.4a).
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(a) An even-fan-spike. (b) An even-fan-spike with tip and cotip.

(c) A degenerate even-fan-spike. (d) A degenerate even-fan-spike with tip and
cotip.

Figure 1.3: Matroids with no detachable pairs formed by attaching fans to spikes.

(a) An even-fan-paddle. (b) A degenerate even-fan-paddle.

Figure 1.4: Matroids with no detachable pairs formed by attaching fans to lines.
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(a) M(K3,3). (b) M(K3,2) with a M∗(K3,2) petal.

(c) M(K3,2) with two 4-element-fan-petals. (d) M(K3,2) with an augmented-fan-petal.

(e) M(K3,2) with a co-augmented-fan-petal. (f) M(K3,2) with a type-A quad-petal.

(g) M(K3,2) with a type-A quad-petal. (h) M(K3,2) with a type-A quad-petal.

(i) M(K3,2) with a type-B quad-petal. (j) M(K3,2) with a type-B quad-petal.

Figure 1.5: Matroids with no detachable pairs formed by attaching a matroid to M(K3,m).



1.7 INTRODUCTION — Other Generalisations 13

(a) An accordion with a fan-
type and a co-fan-type accor-
dion end.

(b) An accordion with a fan-
type and a co-K4-type accor-
dion end.

(c) An accordion with a fan-
type and a triad-type accordion
end.

(d) An accordion with a K4-
type and a co-fan-type accor-
dion end.

(e) An accordion with a K4-
type and a co-K4-type accor-
dion end.

(f) An accordion with aK4-type
and a triad-type accordion end.

(g) An accordion with a
triangle-type and a co-fan-type
accordion end.

(h) An accordion with a
triangle-type and a co-K4-type
accordion end.

(i) An accordion with a triangle-
type and a triad-type accordion
end.

Figure 1.6: The nine types of accordion.
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A Wheels-and-Whirls-type theorem has also been considered for the class of matroids which
are 3-connected and have no 3-element circuits. Lemos [17][18] described seven reduction
operations (regular deletion and contraction are two of these seven operations), and found
the 3-connected matroids with no 3-element circuits which cannot be reduced to a smaller
3-connected matroid with no 3-element circuits by applying one of these seven operations.
Dos Santos [11] considered those matroids M which are 3-connected and have no 3-element
circuits such that every minor N of M with |E(N)| ≥ |E(M)|−2 is either not 3-connected
or has a 3-element circuit.

1.8 Outline

Recall the two motivating questions from the start of this chapter. The first of these
questions, to find a generalisation of Tutte’s Wheels-and-Whirls Theorem for connectivity
higher than three, motivates the simpler problem of analysing matroids in which every
element is contained in a small circuit and a small cocircuit. Chapter 2 contains results
concerning this problem in the case where the circuits and cocircuits are cyclically arranged.
The second question is to find a generalisation of Tutte’s Wheels-and-Whirls Theorem in
which two-element sets are removed, rather than single elements. In Chapter 3, we find
such a generalisation.

The research throughout this thesis is original, and the content of Chapter 2 has been
accepted for publication by SIAM Journal on Discrete Mathematics. Relevant preliminaries
will be introduced at the start of each chapter, however there is some notation in common
which we mention now. We say two sets X and Y intersect if X∩Y is non-empty; otherwise,
X and Y do not intersect. For a positive integer m, let [m] denote the set {1, 2, . . . ,m}.
The following well-known lemma will be used frequently throughout. When applying this
lemma, we use the phrase by orthogonality.

Lemma 1.8.1. Let M be a matroid. If C is a circuit of M and C∗ is a cocircuit of M ,
then |C ∩ C∗| 6= 1.

Unless stated otherwise, notation and terminology follows [21].



chapter2
Cyclic Matroids

2.1 Introduction

In this chapter, we build on work in [4] by considering matroids with a cyclic arrangement
of circuits and cocircuits. In particular, we prove Theorems 1.4.1, 1.4.3, and 1.4.2.

We recall the definitions of nearly (s, t)-cyclic and (s, t)-cyclic matroids from the introduc-
tion. Let s and t be positive integers exceeding one. A matroid M is nearly (s, t)-cyclic if
there exists a cyclic ordering σ of E(M) such that every set of s− 1 consecutive elements
of σ is contained in an s-element circuit and every set of t − 1 consecutive elements of σ
is contained in a t-element cocircuit, in which case we say that σ is a nearly (s, t)-cyclic
ordering of E(M). Although not explicitly stated, there is an implicit assumption that if
M is nearly (s, t)-cyclic, then M has at least max{s, t} − 1 elements, so it has at least one
s-element circuit and at least one t-element cocircuit.

A matroid M is (s, t)-cyclic if there exists a cyclic ordering σ = (e1, e2, . . . , en) of E(M)
such that each of the following holds, where subscripts are interpreted modulo n:

(i) either {e1, e2, . . . , es} or {e2, e3, . . . , es+1} is an s-element circuit of M ,

(ii) either {e1, e2, . . . , et} or {e2, e3, . . . , et+1} is a t-element cocircuit of M ,

(iii) if {ei, ei+1, . . . , ei+s−1} is an s-element circuit of M for some i ∈ {1, 2, . . . , n}, then
{ei+2, ei+3, . . . , ei+s+1} is also an s-element circuit of M , and

(iv) if {ei, ei+1, . . . , ei+t−1} is a t-element cocircuit of M for some i ∈ {1, 2, . . . , n}, then
{ei+2, ei+3, . . . , ei+t+1} is also a t-element cocircuit of M .

15
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A cyclic ordering satisfying (i)–(iv) is called an (s, t)-cyclic ordering of E(M).

If M is nearly (2, 2)-cyclic, then, as noted in [4], M is obtained by taking direct sums of
copies of U1,2, and so M is (2, 2)-cyclic. Brettell et al. [4, Theorem 1.1] showed that, for all
s ≥ 3, if σ is a nearly (s, s)-cyclic ordering of a matroid M on n elements and n ≥ 6s− 10,
then σ is an (s, s)-cyclic ordering of M . The first main result, Theorem 1.4.1, of this
chapter generalises that theorem.

Theorem 1.4.1. Let M be a matroid on n elements, and suppose that σ is a nearly
(s, t)-cyclic ordering of M , where s, t ≥ 3. Let t1 = min{s, t} and t2 = max{s, t}. If
n ≥ 3t1 + t2 − 5 and n ≥ t1 + 2t2 − 1, then σ is an (s, t)-cyclic ordering of M .

The proof of Theorem 1.4.1 takes a different approach to that used in [4]. Equating s
and t in Theorem 1.4.1, we have the following corollary, improving the lower bound in [4,
Theorem 1.1].

Corollary 2.1.1. Let M be a matroid on n elements, and suppose that σ is a nearly (s, s)-
cyclic ordering of M for s ≥ 3. If n ≥ max{8, 4s − 5}, then σ is an (s, s)-cyclic ordering
of M .

For all positive integers s and t exceeding one, we will show that if a matroid on n elements
is nearly (s, t)-cyclic, then n ≥ s + t − 2. Observe that, for all such s and t, the uniform
matroid Us−1,s+t−2 is nearly (s, t)-cyclic with s+ t− 2 elements. Thus this lower bound is
sharp. Furthermore, if a matroid on n elements is (s, t)-cyclic and n > s+ t− 2, then we
will also show that n is even and s ≡ t mod 2. Hence, if a matroid M is (s, t)-cyclic and
s 6≡ t mod 2, then M has exactly s + t − 2 elements. Lastly, we suspect the inequalities
n ≥ 3t1 + t2 − 5 and n ≥ t1 + 2t2 − 1 in Theorem 1.4.1 are not tight, and leave it as an
open problem to determine, for all positive integers s, t ≥ 2, tight lower bounds on the
size of the ground set of a matroid M having the property that if σ is a nearly (s, t)-cyclic
ordering of E(M), then σ is an (s, t)-cyclic ordering of E(M).

The second main result of this chapter, Theorem 1.4.3, shows that, given positive integers
s and t exceeding one, such that t ≥ s, an (s, t)-cyclic matroid M on n elements, where
n > s + t − 2, is a weak-map image of the

(
t−s
2

)
-th truncation of a certain (s, s)-cyclic

matroid, which we define now.

For vertices u and v of a graph, u is a neighbour of v if u is adjacent to v, and we let
N(v) denote the set of neighbours of v. Note that here, as well as elsewhere in the chapter,
we adopt the convention of writing singletons without set braces provided there is no
ambiguity.

Now let s be an integer exceeding one and let n be a positive even integer. Let Gn
s be the

bipartite graph with vertex parts E = {e1, e2, . . . , en} and {1, 2, . . . , n2 } such that, for all
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Figure 2.1: The bipartite graph G12
4 .

i ∈ {1, 2, . . . , n2 }, the set of neighbours of i is

N(i) = {e2i−1, e2i, . . . , e2i+s−2},

where subscripts are interpreted modulo n. For example, if n = 12 and s = 4, then G12
4 is

the bipartite graph shown in Figure 2.1. The transversal matroid on E in which

(N(1), N(2), . . . , N(n2 ))

is a presentation is an example of a multi-path matroid [2]. Denote the dual of this
transversal matroid by Ψn

s . Multi-path matroids have the property that their duals are
transversal [2, Theorem 3.8], so Ψn

s is a transversal matroid. In fact, we shall show that Ψn
s

is a self-dual matroid. If s = 2, then Ψn
s is isomorphic to the rank-n2 matroid obtained by

taking direct sums of copies of U1,2; while if s = 3 or s = 4, then Ψn
s is isomorphic to the

rank-n2 whirl or rank-n2 free swirl, respectively. For example, the dual of the transversal
matroid realised by G12

4 is the rank-6 free swirl. More generally, it turns out that, for all
s ≥ 2, the matroid Ψn

s is (s, s)-cyclic.

Let M be a matroid. If r(M) > 0, then the matroid obtained from M by freely adding an
element f and then contracting f is called the truncation of M and is denoted by T (M). If
r(M) = 0, we set T (M) = M . For all positive integers i, the i-th truncation of M , denoted
T i(M), is defined iteratively as T i(M) = T (T i−1(M)), where T 0(M) = M . The second
main result of this paper is the following theorem.

Theorem 1.4.3. Let M be an (s, t)-cyclic matroid such that |E(M)| ≥ s+ t−1 and t ≥ s.
Then M is a weak-map image of the ( t−s2 )-th truncation of Ψn

s , which is an (s, t)-cyclic
matroid.
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The chapter is organised as follows. The next section contains some preliminaries, while
Section 2.3 establishes some basic properties of cyclic matroids. These properties are used in
the proofs of Theorems 1.4.1 and 1.4.3 which are given in Sections 2.4 and 2.5, respectively.
The proof of Theorem 1.4.3 follows from a more general result concerning the duals of
multi-path matroids. Lastly, in Section 2.6, we prove Theorem 1.4.2, a counterexample to
a conjecture concerning (s, s)-cyclic matroids, given in [4]. This conjecture says that if s is
an integer exceeding two and M is an (s, s)-cyclic matroid, then M can be obtained from
either a wheel or a whirl (if s is odd), or either a spike or a swirl (if s is even) by a sequence
of elementary quotients and elementary lifts.

2.2 Preliminaries

For a positive integer m, let [m] denote the set {1, 2, . . . ,m}. Furthermore, for i, j ∈ [m],
we let [i, j] denote the set {i, i+ 1, . . . , j} if i ≤ j and the set {i, i+ 1, . . . ,m, 1, 2, . . . , j} if
i > j. Now let σ = (e1, e2, . . . , en) be a cyclic ordering of {e1, e2, . . . , en}. For all i, j ∈ [n],
the notation σ(i, j) denotes the set of elements {ei, ei+1, . . . , ej}, where subscripts are
interpreted modulo n.

The next lemma concerns the independent sets of the i-th truncation of a matroid (see, for
example, [21, Proposition 7.3.10]).

Lemma 2.2.1. Let M be a matroid with r(M) ≥ 1, and let i be a non-negative integer
such that i ≤ r(M). Then

I(T i(M)) = {X ∈ I(M) : |X| ≤ r(M)− i}.

2.3 Properties of Cyclic Matroids

In this section, we establish various properties of nearly (s, t)-cyclic and (s, t)-cyclic ma-
troids on n elements. The first lemma is used frequently in this section.

Lemma 2.3.1. Let M be an (s, t)-cyclic matroid on n elements, where n > s + t − 2,
and let σ = (e1, e2, . . . , en) be an (s, t)-cyclic ordering of M . Then,

(i) if σ(i, i+s−1) is a circuit, then σ(i− t, i−1) and σ(i+s, i+s+ t−1) are cocircuits,
and
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(ii) if σ(i, i+ t−1) is a cocircuit, then σ(i−s, i−1) and σ(i+ t, i+s+ t−1) are circuits.

Proof. We will prove (i). The proof of (ii) follows by duality as M∗ is a (t, s)-cyclic matroid.
Since σ is an (s, t)-cyclic ordering of M , it follows that one of σ(i−t, i−1) and σ(i−t+1, i)
is a t-element cocircuit of M . But, as n > s + t − 2, the set σ(i − t + 1, i) intersects the
circuit σ(i, i + s − 1) in one element, and so σ(i − t + 1, i) is not a cocircuit. Therefore
σ(i− t, i− 1) is a cocircuit of M . Similarly, σ(i+ s− 1, i+ s+ t− 2) is not a cocircuit as
it intersects σ(i, i+ s− 1) in one element, and so σ(i+ s, i+ s+ t− 1) is a cocircuit.

The next two lemmas consider the relationships amongst s, t, and n.

Lemma 2.3.2. Let M be a nearly (s, t)-cyclic matroid on n elements. Then n ≥ s+ t− 2.

Proof. Since M contains an s-element circuit, we have that r(M) ≥ s− 1. Similarly, as M
contains a t-element cocircuit, r∗(M) ≥ t − 1. Therefore, as n = r(M) + r∗(M), we also
have that n ≥ s+ t− 2.

Note that the bound in Lemma 2.3.2 is tight. In particular, for any positive integers s, t ≥ 2,
the uniform matroid Us−1,s+t−2 is nearly (s, t)-cyclic. In fact, Us−1,s+t−2 is (s, t)-cyclic.

Lemma 2.3.3. Let M be an (s, t)-cyclic matroid on n elements. If n > s+ t− 2 , then

(i) n is even, and

(ii) s ≡ t mod 2.

Proof. Suppose n > s+ t− 2. To prove (i), assume that n is odd. Let σ = (e1, e2, . . . , en)
be an (s, t)-cyclic ordering of M , and let σ(i, i+s−1) be a circuit of M . Then, for all even
k, the set σ(i+ k, i+ s− 1 + k) is a circuit of M . In particular, taking k = n− 1, the set
σ(i−1, i+s−2) is a circuit of M . But, by Lemma 2.3.1, the set σ(i− t, i−1) is a cocircuit
of M , and, since n > s+ t− 2, this cocircuit intersects the circuit σ(i− 1, i+ s− 2) in one
element. This contradiction implies n is even.

For the proof of (ii), assume that s 6≡ t mod 2. Let σ = (e1, e2, . . . , en) be an (s, t)-cyclic
ordering of M , and let σ(i, i+s−1) be a circuit of M . By Lemma 2.3.1, the set σ(i−t, i−1)
is a cocircuit of M . By the assumption, s+t−1 is even and so, as (i−t)+(s+t−1) = i+s−1,
the set σ(i+ s− 1, i+ s+ t− 2) is a cocircuit. But this cocircuit intersects σ(i, i+ s− 1)
in precisely one element, contradicting orthogonality. Therefore, s ≡ t mod 2, completing
the proof of (ii).
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The bound in Lemma 2.3.3 is tight. For example, choosing one of s and t to be even and
the other to be odd, the uniform matroid Us−1,s+t−2 is an (s, t)-cyclic matroid on s+ t− 2
elements. However, Lemma 2.3.3 shows that there is no (s, t)-cyclic matroid with more
elements.

Generalising [4, Lemma 4.3, Lemma 5.1, Lemma 5.3], the next four lemmas concern the
independent sets, closure operator, and rank function of (s, t)-cyclic matroids. A conse-
quence of the first of these lemmas is that if s = t and s is even, then the s-element circuits
and s-element cocircuits in an (s, s)-cyclic ordering of a matroid coincide. On the other
hand, if s = t and s is odd, then the s-element circuits and s-element cocircuits in an (s, s)-
cyclic ordering of a matroid behave like the 3-element circuits and 3-element cocircuits in
(3, 3)-cyclic orderings of wheels and whirls.

Lemma 2.3.4. Let M be an (s, t)-cyclic matroid on n elements, where n > s+ t− 2 , and
let σ = (e1, e2, . . . , en) be an (s, t)-cyclic ordering of M . Suppose that σ(i, i + s − 1) is a
circuit of M . If s and t are even, then

(i) σ(i, i+ t− 1) is a cocircuit,

(ii) σ(i+ 1, i+ s) is independent, and

(iii) σ(i+ 1, i+ t) is coindependent.

Furthermore, if s and t are odd, then

(iv) σ(i+ 1, i+ t) is a cocircuit,

(v) σ(i+ 1, i+ s) is independent, and

(vi) σ(i, i+ t− 1) is coindependent.

Proof. By Lemma 2.3.1, the set σ(i− t, i− 1) is a cocircuit of M . If t is even, this implies
σ(i, i+ t− 1) is a cocircuit; otherwise, t is odd and σ(i+ 1, i+ t) is a cocircuit.

We next show that σ(i + 1, i + s) is independent. Suppose this is not the case. Then
σ(i+ 1, i+ s) contains a circuit, call it C. By Lemma 2.3.1, the set σ(i+ s, i+ s+ t− 1) is
a cocircuit of M . Therefore, if ei+s ∈ C, then C intersects σ(i+ s, i+ s+ t− 1) in exactly
one element, a contradiction. But if ei+s /∈ C, then C is properly contained in the circuit
σ(i, i+ s− 1), another contradiction. Thus, no such circuit C exists, and so σ(i+ 1, i+ s)
is independent. We have shown that, if σ(i, i + s − 1) is a circuit, then σ(i + 1, i + s) is
independent. Since M∗ is a (t, s)-cyclic matroid, this implies that if σ(j, j + t − 1) is a
cocircuit, then σ(j + 1, j + t) is coindependent. This is sufficient to show (iii) and (vi) and
complete the proof.



2.3 CYCLIC MATROIDS — Properties of Cyclic Matroids 21

Lemma 2.3.5. Let M be an (s, t)-cyclic matroid on n elements, where n > s + t − 2,
and let σ = (e1, e2, . . . , en) be an (s, t)-cyclic ordering of M . Then, for all i ∈ [n] and
s− 1 ≤ k ≤ n− t,

(i) ei+k ∈ cl(σ(i, i+ k − 1)) if and only if σ(i+ k − s+ 1, i+ k) is a circuit, and

(ii) ei−1 ∈ cl(σ(i, i+ k − 1)) if and only if σ(i− 1, i+ s− 2) is a circuit.

Proof. We will prove (i). Then (ii) follows from the fact that reversing the order of σ
gives another (s, t)-cyclic ordering of M . Since k ≥ s − 1, if σ(i + k − s + 1, i + k) is
a circuit, then ei+k ∈ cl(σ(i, i + k − 1)). Conversely, suppose ei+k ∈ cl(σ(i, i + k − 1)).
Then there exists a circuit C contained in σ(i, i + k) such that C contains ei+k. Assume
σ(i + k − s + 1, i + k) is not a circuit. If s and t are even, then, by Lemma 2.3.4, the set
σ(i+ k− s, i+ k− s+ t− 1) is a cocircuit and so, as s is even, the set σ(i+ k, i+ k+ t− 1)
is also a cocircuit. Since k ≤ n− t, this last cocircuit intersects C only in the element ei+k,
a contradiction. Therefore, σ(i+ k− s+ 1, i+ k) is a circuit. Similarly, if s and t are odd,
then, by Lemma 2.3.4, the set σ(i + k − s + 1, i + k − s + t) is a cocircuit, which means
σ(i + k, i + k + t − 1) is also a cocircuit. Again, this contradicts orthogonality with C,
showing that σ(i+k− s+ 1, i+k) is a circuit, and completing the proof of the lemma.

Lemma 2.3.6. Let M be an (s, t)-cyclic matroid on n elements, where n > s+ t− 2 ,
and let σ = (e1, e2, . . . , en) be an (s, t)-cyclic ordering of M . Then, for all i ∈ [n] and
1 ≤ k ≤ n− t+ 1,

r(σ(i,i+ k − 1)) =


k, if k < s;⌊
s+k−1

2

⌋
, if k ≥ s and σ(i, i+ s− 1) is a circuit;⌈

s+k−1
2

⌉
, if k ≥ s and σ(i, i+ s− 1) is not a circuit.

Proof. The proof is by induction on k. If k < s, then σ(i, i + k − 1) is a proper subset of
an s-element circuit, so it is independent. Therefore, r(σ(i, i+ k − 1)) = k. Now suppose
k = s. If σ(i, i+ s− 1) is a circuit, then

r(σ(i, i+ s− 1)) = s− 1 =
⌊
s+s−1

2

⌋
,

while if σ(i, i+ s− 1) is not a circuit, then, by Lemma 2.3.5,

r(σ(i, i+ s− 1)) = s =
⌈
s+s−1

2

⌉
.

Thus the lemma holds for all 1 ≤ k ≤ s.

Now suppose that s + 1 ≤ k ≤ n − t + 1, and the lemma holds for the set σ(i, i + k − 2).
Consider σ(i, i+ k − 1). First assume that σ(i, i+ s− 1) is a circuit. If s+ k is odd, then
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k − s is odd, and it follows by Lemma 2.3.4(ii) and (v) that σ(i+ k − s, i+ k − 1) is not a
circuit. Therefore, by Lemma 2.3.5, ei+k−1 6∈ cl(σ(i, i + k − 2)), and so, by the induction
assumption,

r(σ(i, i+ k − 1)) = r(σ(i, i+ k − 2)) + 1

=
⌊
s+k−2

2

⌋
+ 1 =

⌊
s+k
2

⌋
=
⌊
s+k−1

2

⌋
as s + k is odd. If s + k is even, then σ(i + k − s, i + k − 1) is a circuit, and so ei+k−1 ∈
cl(σ(i, i+ k − 2)). Therefore

r(σ(i, i+ k − 1)) = r(σ(i, i+ k − 2))

=
⌊
s+k−2

2

⌋
=
⌊
s+k−1

2

⌋
as s+ k is even.

Now assume that σ(i, i+ s− 1) is not a circuit. If s+ k is odd, then σ(i+ k− s, i+ k− 1)
is a circuit, and so, by the induction assumption and Lemma 2.3.5,

r(σ(i, i+ k − 1)) = r(σ(i, i+ k − 2))

=
⌈
s+k−2

2

⌉
=
⌈
s+k−1

2

⌉
as s + k is odd. If s + k is even, then σ(i + k − s, i + k − 1) is not a circuit, and so, by
Lemma 2.3.5 and the induction assumption,

r(σ(i, i+ k − 1)) = r(σ(i, i+ k − 2)) + 1

=
⌈
s+k−2

2

⌉
+ 1 =

⌈
s+k
2

⌉
=
⌈
s+k−1

2

⌉
as s+ k is even. This completes the proof of the lemma.

The next lemma shows that the rank of an (s, t)-cyclic matroid on n elements is invariant
under s, t, and n.

Lemma 2.3.7. Let M be an (s, t)-cyclic matroid on n elements. Then r(M) = n+s−t
2 and

r∗(M) = n−s+t
2 .

Proof. By Lemma 2.3.2, the matroid M has at least s + t − 2 elements. Since M has an
s-element circuit and a t-element cocircuit, r(M) ≥ s− 1 and r∗(M) ≥ t− 1. Therefore, if
n = s+ t− 2, then

r(M) = s− 1 = (s+t−2)+s−t
2

and
r∗(M) = t− 1 = (s+t−2)−s+t

2 .
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Otherwise, by Lemma 2.3.6, the set {e1, e2, . . . , en−t+1} either has rank
⌊
n+s−t

2

⌋
or rank⌈

n+s−t
2

⌉
. By Lemma 2.3.3, we have that n+ s− t is even, so

r(σ(1, n− t+ 1)) =
n+ s− t

2
.

Therefore, r(M) ≥ n+s−t
2 . Similarly, by Lemmas 2.3.3 and 2.3.6, we get that

r∗(σ(1, n− s+ 1)) =
n− s+ t

2
,

and so r∗(M) ≥ n−s+t
2 . Since n+s−t

2 + n−s+t
2 = n, it follows that r(M) = n+s−t

2 and
r∗(M) = n−s+t

2 .

The last lemma in this section will be used to prove Theorem 1.4.1 in the next section; we
include it here as it may be of independent interest.

Lemma 2.3.8. Let s and t be positive integers exceeding one, and let σ = (e1, e2, . . . , en)
be a nearly (s, t)-cyclic ordering of a matroid M , where n ≥ s + t. If σ(i, i + s − 1) is a
circuit for all odd i ∈ [n], then σ is an (s, t)-cyclic ordering of M .

Proof. It is sufficient to prove that, for all odd i ∈ [n], the set σ(i−t+2, i+1) is a cocircuit.
Consider the set σ(i− t+2, i). This set contains t−1 consecutive elements of σ, so must be
contained in a t-element cocircuit C∗. Let ej be the unique element of C∗ not contained in
σ(i−t+2, i). If ej /∈ σ(i+1, i+s−1), then C∗ intersects the circuit σ(i, i+s−1) in exactly
one element, contradicting orthogonality. Furthermore, if ej ∈ σ(i+ 2, i+ s− 1), then, as
n ≥ s+ t, the cocircuit C∗ intersects the circuit σ(i+ 2, i+ s+ 1) in exactly one element.
This last contradiction implies that ej = ei+1, completing the proof of the lemma.

2.4 Proof of Theorem 1.4.1

This section consists of the proof of Theorem 1.4.1. Throughout the section, let M be
a nearly (s, t)-cyclic matroid, where s, t ≥ 3, and let σ = (e1, e2, . . . , en) be a nearly
(s, t)-cyclic ordering of M . We shall prove that, provided n is sufficiently large, σ is an
(s, t)-cyclic ordering of M .

For all i ∈ [n], let Ci be an arbitrarily chosen circuit of size s containing σ(i, i + s − 2)
and let C∗i be an arbitrarily chosen cocircuit of size t containing σ(i, i+ t− 2). There is a
unique element of Ci not contained in σ(i, i+ s− 2); call this element ci. Likewise, let c∗i
be the unique element of C∗i not contained in σ(i, i+ t− 2).
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Lemma 2.4.1. If n ≥ s+ 2t− 4, then ci 6= ci+1 for all i ∈ [n].

Proof. Suppose n ≥ s+2t−4 and ci = ci+1 for some i ∈ [n]. Then Ci = σ(i, i+s−2)∪{ci}
and Ci+1 = σ(i+ 1, i+ s− 1)∪ {ci}. By circuit elimination, there is a circuit, say C, of M
contained in σ(i, i + s − 1). If C does not contain ei, then C is properly contained in the
circuit Ci+1, a contradiction. Similarly, if C does not contain ei+s−1, then C is properly
contained in Ci. Therefore, C contains both ei and ei+s−1.

Since t ≥ 3, we have that n ≥ s+ t− 2. Therefore,

σ (i+ s− 1, i+ s+ t− 3) ∩ C = {ei+s−1}

Since σ (i+ s− 1, i+ s+ t− 3)∪{c∗i+s−1} is a cocircuit, orthogonality implies that c∗i+s−1 ∈
C −{ei+s−1} ⊆ σ(i, i+ s− 2). This means that C∗i+s−1 and σ (i, i+ s− 2) also intersect in
exactly one element. Applying orthogonality again, we have that ci ∈ σ(i+s−1, i+s+t−3).

Similarly, the (t−1)-element set σ(i−t+2, i) intersects C in only the element ei. Therefore,
orthogonality between C∗i−t+2 and C implies that c∗i−t+2 ∈ C − {ei} ⊆ σ(i + 1, i + s − 1).
Applying orthogonality again, this time between C∗i−t+2 and Ci+1, shows that ci+1 ∈ σ(i−
t+2, i). But ci = ci+1, and so ci is contained in both σ(i−t+2, i) and σ(i+s−1, i+s+t−3),
two sets which are disjoint since n ≥ s+ 2t− 4. This contradiction implies that ci 6= ci+1

and completes the proof.

The next lemma is used several times in the proof of Lemma 2.4.3.

Lemma 2.4.2. Suppose there exists di 6= ci such that Di = σ(i, i+s−2)∪{di} is a circuit
of M . Let j ∈ [n] such that |σ(j, j + t − 2) ∩ {ci, di}| = 1. Then σ(j, j + t − 2) intersects
σ(i, i+ s− 2).

Proof. Without loss of generality, we may assume that ci ∈ σ(j, j + t − 2) and di /∈
σ(j, j+ t− 2). Suppose σ(j, j+ t− 2) does not intersect σ(i, i+ s− 2). Then σ(j, j+ t− 2)
intersects Ci in one element. Therefore, by orthogonality, c∗j ∈ σ(i, i + s − 2). But now
c∗j ∈ Di, so C∗j and Di intersect in one element. This contradiction to orthogonality implies
that σ(j, j + t− 2) intersects σ(i, i+ s− 2), and completes the proof.

Lemma 2.4.3. If n ≥ s + 2t − 4, then, for all i ∈ [n], there is a unique circuit of size s
containing σ(i, i+ s− 2).

Proof. We know Ci is an s-element circuit containing σ(i, i+ s− 2). Suppose that there is
a second such circuit. This means that there is an element di, distinct from ci, such that
σ(i, i+ s− 2) ∪ {di} is a circuit. Call this circuit Di.
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Now, for some j ∈ [n], we have ci = ej . Consider the (t− 1)-element subsets σ(j− t+ 2, j)
and σ(j, j + t − 2). Since ci 6= di, at least one of these sets does not contain di. Up to
symmetry, we may assume that di /∈ σ(j− t+ 2, j). Now, |σ(j− t+ 2, j)∩{ci, di}| = 1 and
so, by Lemma 2.4.2, the set σ(j− t+2, j) intersects σ(i, i+s−2). Since n ≥ s+2t−5, this
implies that σ(j, j + t− 2) does not intersect σ(i, i+ s− 2). Applying Lemma 2.4.2 again,
we see that |σ(j, j+ t−2)∩{ci, di}| 6= 1, so di ∈ σ(j, j+ t−2). Therefore, σ(j+1, j+ t−1)
contains di but does not contain ci. However, since n ≥ s + 2t − 4 and σ(j − t + 2, j)
intersects σ(i, i+ s− 2), we also have that σ(j+ 1, j+ t− 1) is disjoint from σ(i, i+ s− 2).
This contradiction to Lemma 2.4.2 shows that no such di exists, thereby completing the
proof.

Lemma 2.4.4. Let i, j ∈ [n] such that ci ∈ σ(j+1, j+t−2), and suppose that n ≥ 2s+t−4.
Then each of the following holds:

(i) If σ(j, j + t− 1) does not intersect σ(i, i+ s− 1), then ci+1 ∈ σ(j, j + t− 1).

(ii) If σ(j, j + t− 1) does not intersect σ(i− 1, i+ s− 2), then ci−1 ∈ σ(j, j + t− 1) .

Proof. We prove (i). Then (ii) follows by reversing the order of σ. Suppose that σ(j, j+t−1)
does not intersect σ(i, i+s−1). Assume that ci+1 /∈ σ(j, j+t−1), and consider the (t−1)-
element sets σ(j, j + t− 2) and σ(j + 1, j + t− 1). Each of these sets contains ci and does
not contain ci+1. Furthermore, since σ(j, j + t − 1) and σ(i, i + s − 1) are disjoint, each
of σ(j, j + t − 2) and σ(j + 1, j + t − 1) intersects Ci in exactly one element and does
not intersect Ci+1. Therefore, by orthogonality, c∗j and c∗j+1 are both contained in Ci, but
not contained in Ci+1. The only possibility is c∗j = c∗j+1 = ei. However, this contradicts
Lemma 2.4.1 when applied to M∗. Therefore, ci+1 ∈ σ(j, j + t− 1).

Lemma 2.4.5. Let i ∈ [n], and suppose that ci = ej. If n ≥ s+ 2t− 2 and n ≥ 2s+ t− 4,
then at least one of the following holds:

(i) ci and ci+1 are both contained in σ(i− 1, i+ s);

(ii) ci+1 = ej+1; or

(iii) ci+1 = ej−1.

Proof. Suppose (i) does not hold, that is, at least one of ci and ci+1 is not contained in
σ(i− 1, i+ s). Choose k ∈ [n] such that ek ∈ {ci, ci+1} and ek /∈ σ(i− 1, i+ s). Let ek′ be
the other element of ci and ci+1. We establish the lemma by proving that either k′ = k+ 1
or k′ = k − 1, which we shall do using Lemma 2.4.4.

First assume that ek /∈ σ(i− t+ 2, i+ s+ t− 3). This means that neither σ(k− 1, k+ t− 2)
nor σ(k− t+ 2, k+ 1) intersect σ(i, i+ s− 1). So, by Lemma 2.4.4 (using part (i) if ek = ci
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or part (ii) if ek = ci+1), we have that ek′ ∈ σ(k − 1, k + t− 2) ∩ σ(k − t+ 2, k + 1). Now,

σ(k − 1, k + t− 2) ∩ σ(k − t+ 2, k + 1) = {ek−1, ek, ek+1}

and, by Lemma 2.4.1, ek′ 6= ek. Therefore, either ek′ = ek−1 or ek′ = ek+1, the desired
result.

Now assume that ek ∈ σ(i − t + 2, i + s + t − 3). Then, as ek /∈ σ(i − 1, i + s), either
ek ∈ σ(i+ s+ 1, i+ s+ t− 3) or ek ∈ σ(i− t+ 2, i− 2). We consider only the former case;
the analysis for the latter case is symmetrical. Thus, suppose ek ∈ σ(i+s+1, i+s+ t−3).
Now, σ(k − 1, k + t − 2) does not intersect σ(i, i + s − 1), as k is at most i + s + t − 3
and n ≥ s+ 2t− 2. Therefore, by Lemma 2.4.4, we have that ek′ ∈ σ(k − 1, k + t− 2). If
ek′ 6= ek−1 and ek′ 6= ek+1, then ek′ ∈ σ(k+ 2, k+ t− 2). Furthermore, since n ≥ s+ 2t− 2,
the sets σ(i, i+ s− 1) and σ(k + 1, k + t) do not intersect. However, ek /∈ σ(k + 1, k + t),
contradicting Lemma 2.4.4. Thus either ek′ = ek−1 or ek′ = ek+1, thereby completing the
proof of the lemma.

Lemma 2.4.6. If n ≥ s+ 2t− 1 and n ≥ 2s+ t− 4, then ci 6= ci+2 for all i ∈ [n].

Proof. Suppose ci = ci+2 for some i ∈ [n]. Then Ci = σ(i, i + s − 2) ∪ {ci} and Ci+2 =
σ(i+ 2, i+ s) ∪ {ci}. By circuit elimination, there is also a circuit, say C, of M contained
in σ(i, i+ s). If C contains neither ei+s−1 nor ei+s, then C is contained in σ(i, i+ s− 2),
and thus properly contained in Ci, a contradiction. So C contains at least one of ei+s−1
and ei+s. We next show that ci is contained in σ(i+ s+ 1, i+ s+ t− 1).

First, if ei+s is not contained in C, then ei+s−1 ∈ C, in which case the (t − 1)-element
set σ(i + s − 1, i + s + t − 3) intersects C in one element. Therefore, by orthogonal-
ity, c∗i+s−1 ∈ σ(i, i + s − 2). Now, orthogonality between Ci and C∗i+s−1 implies ci ∈
σ (i+ s− 1, i+ s+ t− 3). Furthermore, ci can be neither ei+s−1 nor ei+s since these ele-
ments are contained in σ (i+ 2, i+ s) and ci = ci+2, so ci ∈ σ(i+ s+ 1, i+ s+ t− 3).

Now assume that ei+s ∈ C. Orthogonality with C∗i+s implies that c∗i+s ∈ σ(i, i+ s− 1) ,
so either c∗i+s = ei+s−1 or c∗i+s ∈ σ(i, i+ s− 2) . In the latter case, orthogonality with
Ci implies that ci ∈ σ(i+ s+ 1, i+ s+ t− 2) . Thus, we may assume that c∗i+s = ei+s−1.
Now, C∗i+s intersects σ(i + 1, i + s − 1) in one element, so ci+1 ∈ σ(i + s, i + s + t − 2).
Either ci+1 = ei+s, or ci+1 ∈ σ(i + s + 1, i + s + t − 2). Say ci+1 = ei+s. Then both
σ(i + 1, i + s) and σ(i + 2, i + s) ∪ {ci} are circuits of M (noting that ci 6= ei+1 because
ei+1 ∈ σ(i, i+ s− 2)). This contradicts Lemma 2.4.3, so ci+1 ∈ σ(i+ s+ 1, i+ s+ t− 2).
Since ci+1 /∈ σ(i−1, i+s), and n ≥ s+ 2t−1 and n ≥ 2s+ t−4, it follows by Lemma 2.4.5
that the elements ci and ci+1 are consecutive, so ci ∈ σ(i+ s+ 1, i+ s+ t− 1).

We have now shown that, in all cases, ci ∈ σ(i+s+1, i+s+t−1). But, using a symmetrical
argument and comparing C and Ci+2, we can show that ci+2 ∈ σ(i − t + 1, i − 1). Now,
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ci+2 = ci, so ci ∈ σ(i−t+1, i−1) and ci ∈ σ(i+s+1, i+s+t−1). But, since n ≥ s+2t−1,
these two sets are disjoint. This contradiction completes the proof of the lemma.

Lemma 2.4.7. Let n ≥ s+ 2t− 1 and t ≥ s. If there exists i ∈ [n] such that σ(i, i+ s− 1)
is a circuit of M , then M is (s, t)-cyclic.

Proof. Let i ∈ [n] such that σ(i, i+s−1) is a circuit of M . We will show that σ(i+2, i+s+1)
is also a circuit. It then follows that σ(i+ 2k, i+ 2k + s− 1) is a circuit for all k ≥ 1 and
so, by Lemma 2.3.8, M is (s, t)-cyclic.

Since σ(i, i+ s− 1) is a circuit, it follows by Lemma 2.4.3 that ci = ei+s−1 and ci+1 = ei.
By Lemma 2.4.5, either ci+2 ∈ σ(i, i + s + 1) or ci+2 = ei−1 or ci+2 = ei+1. Therefore,
ci+2 ∈ {ei−1, ei, ei+1, ei+s+1}. If ci+2 = ei+s+1, then σ(i+ 2, i+ s+ 1) is a circuit, and we
have the desired result.

Furthermore, if ci+2 = ei, then ci+2 = ci+1, contradicting Lemma 2.4.1. If ci+2 = ei+1, then
both σ(i, i+s−1) and σ(i+1, i+s) are circuits containing σ(i+1, i+s−1), contradicting
Lemma 2.4.3. Therefore we may assume that ci+2 = ei−1.

Now consider ci+3. Since ci+2 is not contained in σ(i+1, i+s+2), it follows by Lemma 2.4.5
that either ci+3 = ei−2 or ci+3 = ei. But ci+1 = ei, so ci+3 6= ei by Lemma 2.4.6. Therefore,
ci+3 = ei−2. More generally, suppose that ci+k−2 = ei−k+3 and ci+k−1 = ei−k+2, for some
k ≥ 4. If n ≥ 2k + s − 2, then ci+k−1 /∈ σ(i + k − 2, i + k + s − 1), and we can apply
Lemma 2.4.5 to show that ci+k ∈ {ei−k+1, ei−k+3}. But ci+k−2 = ei−k+3, so ci+k = ei−k+1

by Lemma 2.4.6.

By induction, we deduce, for all k ≥ 2 satisfying n ≥ 2k+s−2, that ci+k = ei−k+1. Suppose
t = s. Taking k = s, we have that n ≥ 3s− 2, and so ci+s = ei−s+1. Therefore, assuming
t > s, we have that ci+s = ei−s+1 ∈ σ(i − t + 2, i). This means that the (t − 1)-element
set σ(i− t+ 2, i) intersects each of Ci and Ci+s in one element, and so c∗i−t+2 ∈ Ci ∩Ci+s.
But Ci and Ci+s are disjoint, a contradiction. Thus, we may assume that s = t.

We apply Lemma 2.4.5 to ci−1 with the aim of showing that ci−1 = ei+s. Suppose ci−1 = ej .
If ci−1 /∈ σ(i− 2, i+ s− 1), then either ci = ej−1 or ci = ej+1. Since ci = ei+s−1, it follows
that either ci−1 ∈ σ(i − 2, i + s − 1) or ci−1 = ei+s. Now consider the (t − 1)-element set
σ(i+s, i+s+t−2). This intersects Ci+2 = σ(i+2, i+s)∪{ei−1} in one element. So, either
c∗i+s ∈ σ(i+2, i+s−1) or c∗i+s = ei−1. In the former case, C∗i+s intersects σ(i, i+s−1) in one
element, contradicting orthogonality. So c∗i+s = ei−1. But then σ(i− 1, i+ s− 3) intersects
C∗i+s in one element, and so ci−1 ∈ σ(i+s, i+s+ t−2). Therefore, ci−1 /∈ σ(i−2, i+s−1),
and so ci−1 = ei+s.

Consider ci−2. Since ci−1 /∈ σ(i − 3, i + s − 2), it follows by Lemma 2.4.5 that either



2.4 CYCLIC MATROIDS — Proof of Theorem 1.4.1 28

ci−2 = ei+s−1 or ci−2 = ei+s+1. But ci = ei+s−1 and so, by Lemma 2.4.6, ci−2 = ei+s+1.
More generally, suppose ci−k+3 = ei+s+k−4 and ci−k+2 = ei+s+k−3, for some k ≥ 4. If
n ≥ 2k + s − 2, then ci−k+2 /∈ σ(i − k, i − k + s + 1), and we can apply Lemma 2.4.5 to
show that ci−k+1 ∈ {ei+s+k−4, ei+s+k−2}. But ci−k+3 = ei+s+k−4, so ci−k+1 = ei+s+k−2.

Therefore, by induction, for all k ≥ 2 satisfying n ≥ 2k+ s− 2, we have ci+k = ei−k+1 and
ci−k+1 = ei+s+k−2. If s = t = 3, we have ci+2 = ei−1 and ci−1 = ei+3. By orthogonality
between C∗i and Ci−1, we have that either c∗i = ei−1 or c∗i = ei+3. For either possibility,
C∗i intersects Ci+2 in one element, a contradiction. Now assume that s = t ≥ 4, and
consider the (t − 1)-element set σ(i, i + t − 2). This set intersects each of σ(i − s + 2, i)
and σ(i+ t− 2, i+ s+ t− 4) in exactly one element. Now, since n ≥ 3s− 4, we have that
ci−s+2 = ei+2s−3 and, since n ≥ s+ 2t− 6, we have that ci+t−2 = ei−t+3 = ei−s+3. Neither
ci−s+2 nor ci+t−2 are contained in σ(i, i+ t− 2), and so c∗i ∈ Ci−s+2 ∩ Ci+t−2 = {ei−s+3}.
But now, since ci−s+1 = ei+2s−2, we have that Ci−s+1 = σ(i−s+1, i−1)∪{ei+2s−2}, which
intersects C∗i in one element. This contradiction to orthogonality completes the proof of
the lemma.

Lemma 2.4.8. Let n ≥ s+2t−1, and suppose that t ≥ s. If ci = ei+s, then ci+1 = ei+s+1.

Proof. As t ≥ s, it follows by Lemma 2.4.5 that either ci+1 ∈ σ(i−1, i+s), or ci+1 = ei+s+1.
Therefore, ci+1 ∈ {ei−1, ei, ei+s, ei+s+1}. By Lemma 2.4.1, ci+1 6= ei+s. Also, if ci+1 = ei,
then both σ(i, i+ s− 1) and σ(i, i+ s− 2) ∪ {ei+s} are circuits containing σ(i, i+ s− 2),
contradicting Lemma 2.4.3.

Suppose ci+1 = ei−1, and consider the (t−1)-element set σ(i−t+1, i−1). As n ≥ s+2t−1,
this set intersects Ci+1 in exactly one element, but does not intersect Ci. Therefore,
c∗i−t+1 ∈ Ci+1, but not in c∗i−t+1 /∈ Ci; the only possibility is c∗i−t+1 = ei+s−1.

Now consider the (t − 1)-element set σ(i + s, i + s + t − 2). As n ≥ s + 2t − 1, this set
intersects Ci in exactly one element, and does not intersect Ci+1. Therefore, c∗i+s = ei.
Finally, consider the (s − 1)-element set σ(i + 2, i + s). This last set intersects each of
C∗i+s and C∗i−t+1 in exactly one element. But C∗i+s and C∗i−t+1 are disjoint, a contradiction.
Therefore, ci+1 = ei+s+1.

Lemma 2.4.9. Let n ≥ s + 2t − 1 and t ≥ s. If ci = ei+s−1+k for some 1 ≤ k < n − s,
then ci+1 = ei+s+k.

Proof. The proof is by induction on k. If k = 1, then the result follows immediately from
Lemma 2.4.8. Suppose k = 2, so that, ci = ei+s+1. By Lemma 2.4.5, either ci+1 = ei+s or
ci+1 = ei+s+2. If ci+1 = ei+s, then σ(i + 1, i + s) is a circuit. But, by Lemma 2.4.7, this
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implies M is (s, t)-cyclic, which, by Lemma 2.4.3, contradicts the uniqueness of the circuit
containing σ(i, i+ s− 2). So ci+1 = ei+s+2, and the lemma holds for k = 2.

Now let k ≥ 3, and suppose that, for all i′ ∈ [n], if ci′ = ei′+s−1+(k−2), then ci′+1 =
ei′+s+(k−2). We shall complete the proof by proving that the lemma holds for k. So,
let ci = ei+s−1+k. Then, by Lemma 2.4.5, either ci+1 = ei+s−2+k or ci+1 = ei+s+k. If
ci+1 = ei+s−2+k, then, by the induction assumption, ci+2 = ei+s−1+k. But now ci+2 = ci.
This contradiction to Lemma 2.4.6 shows that ci+1 = ei+s+k, and completes the proof of
the lemma.

At last we are ready to prove Theorem 1.4.1.

Proof of Theorem 1.4.1. Since σ is an (s, t)-cyclic ordering of M if and only if σ is a (t, s)-
cyclic ordering of M∗, we may assume, without loss of generality, that t ≥ s. For the
purposes of obtaining a contradiction, suppose there is no j ∈ [n] such that σ(j, j + s− 1)
is a circuit of M . Since σ is a nearly (s, t)-cyclic ordering of M , it follows by Lemma 2.4.9
that there exists 1 ≤ k < n− s such that, for all i ∈ [n], the set σ(i, i+ s− 2)∪ {ei+s−1+k}
is a circuit. In particular, by Lemma 2.4.3, Ci = σ(i, i+s−2)∪{ei+s−1+k}. Take one such
i, and consider the (t− 1)-element set σ(i, i+ t− 2). As n ≥ 2s+ t− 3, the (s− 1)-element
sets σ(i− s+ 1, i− 1) and σ(i+ t− 1, i+ s+ t− 3) are disjoint, so at least one of these two
sets does not contain c∗i .

We will establish a contradiction for when c∗i 6∈ σ(i− s+ 1, i−1). A symmetrical argument
applies when c∗i 6∈ σ(i + t − 1, i + s + t − 3). So suppose c∗i /∈ σ(i − s + 1, i − 1). Then
σ(i − s + 2, i) intersects C∗i in exactly one element. Therefore, either ci−s+2 = c∗i or
ci−s+2 ∈ σ(i+ 1, i+ t− 2).

First assume that ci−s+2 ∈ σ(i + 1, i + t − 2). We know that ci−s+2 6= ei+1, for otherwise
σ(i − s + 2, i + 1) is a circuit. So ci−s+2 ∈ σ(i + 2, i + t − 2). But now, by Lemma 2.4.9,
ci−s+1 ∈ σ(i + 1, i + t − 3), and so Ci−s+1 and C∗i intersect in exactly one element, a
contradiction.

Now assume that ci−s+2 = c∗i . Consider the (s− 1)-element set σ (i+ t− 2, i+ s+ t− 4).
Suppose c∗i /∈ σ(i+ t− 1, i+ s+ t− 3) . Then, by orthogonality, either ci+t−2 = c∗i or
ci+t−2 ∈ σ(i, i+ t− 3). But ci+t−2 6= ei+t−3, since then σ(i+ t− 3, i+ s+ t− 4) is a circuit,
and ci+t−2 /∈ σ(i, i + t − 4) since then Ci+t−1 and C∗i intersect in exactly one element,
by Lemma 2.4.9. Furthermore, ci+t−2 6= c∗i , since then ci+t−2 = ci−s+2, contradicting
Lemmas 2.4.3 and 2.4.9. Therefore, c∗i ∈ σ(i+ t− 1, i+ s+ t− 3).

It now follows that ci−s+2 = ei+t−2+` for some 1 ≤ ` ≤ s− 1. Therefore, by Lemma 2.4.9,
ci−s+2−` = ei+t−2. Furthermore, as n ≥ 3s+t−5, the (s−1)-element set σ(i−s+2−`, i−`)
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does not contain c∗i = ei+t−2+` and does not intersect σ(i, i+ t− 2). So Ci−s+2−` and C∗i
intersect in exactly one element. This contradiction to orthogonality establishes that M
must contain a circuit σ(j, j + s − 1) for some j ∈ [n], and so, by Lemma 2.4.7, σ is an
(s, t)-cyclic ordering of M . This completes the proof of the theorem.

2.5 Proof of Theorem 1.4.3

In this section, we prove Theorem 1.4.3. We begin by defining a class of matroids that
contains, for all positive integers s exceeding one and all positive even integers n, the
matroid Ψn

s . The proof of Theorem 1.4.3 is a consequence of a more general weak-map
result, namely Theorem 2.5.4, that we establish for this class.

Recall that for a vertex v of a graph G, we denote the set of vertices of G adjacent to v,
that is, the neighbours of v, by N(v). More generally, for a subset U of vertices of G, the
neighbours of U , denoted N(U), is ⋃

v∈U
N(v).

We next define a multi-path matroid. Let E be a set of n elements, and suppose that
σ = (e1, e2, . . . , en) is a cyclic ordering of E. Let m be a positive integer exceeding one.
Choose distinct elements x1, x2, . . . , xm ∈ [n] and distinct elements y1, y2, . . . , ym ∈ [n] such
that exi ∈ σ(xi−1, xi+1) and eyi ∈ σ(yi−1, yi+1) for all i ∈ [m], where subscripts of x and y
are interpreted modulo m, and, furthermore, the intervals σ(xi, yi) form an antichain of σ,
that is, there is no i, i′ ∈ [m] such that σ(xi, yi) ⊆ σ(xi′ , yi′). Let G denote the bipartite
graph with parts E and [m], and whose set of edges satisfy N(i) = σ(xi, yi) for all i ∈ [m].
The transversal matroid on ground set E with presentation

I = (N(1), N(2), . . . , N(m))

is called a multi-path matroid and is denoted by M [I]. Let M∗[I] denote the dual of M [I],
and observe that, for all i ∈ [m], the set σ(xi, yi) is a circuit of M∗[I]. Multi-path matroids
were introduced in [2].

As an example, let s be a positive integer exceeding one and let n be a positive even integer,
and suppose that σ = (e1, e2, . . . , en) is a cyclic ordering of E and m = n

2 . By choosing
xi = 2i − 1 and yi = 2i + s − 2 for all i ∈

[
n
2

]
, we have that G ∼= Gn

s , the bipartite graph
defined in the introduction, and M∗[I] ∼= Ψn

s .

The initial goal of this section is to establish Theorem 2.5.4 which says that, up to isomor-
phism, M∗[I] is at least as free as any matroid on the same ground set satisfying a certain
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rank condition; that is, up to isomorphism, every such matroid is a weak-map image of
M∗[I].

A subset X ⊆ E is independent in M∗[I] if and only if E − X is cospanning. In other
words, X is independent in M∗[I] if and only if there is a complete matching from [m] into
E −X. By Hall’s Theorem [14], this is true precisely if, for all subsets J of [m], we have
that |N(J) −X| ≥ |J |. We repeatedly use this fact in the proofs in this section. To ease
reading, in the statements of these lemmas and theorem, the multi-path matroid M [I] has
ground set E and is constructed as above.

Lemma 2.5.1. r(M∗[I]) = |E| −m.

Proof. It is sufficient to prove that r(M [I]) = m. Let X ⊆ E be a set of m + 1 elements.
Clearly there is no matching of X into [m], so X is dependent. Therefore, r(M [I]) ≤ m.
For all i ∈ [m], we have that {i, exi} is an edge of the bipartite graph G. Therefore,
{{1, ex1}, {2, ex2}, . . . , {m, exm}} is a matching of G. Hence r(M [I]) ≥ m, so r(M [I]) = m,
completing the proof.

Lemma 2.5.2. Let C be a circuit of M∗[I]. Let J ⊆ [m] such that |N(J)− C| < |J | .
Then C is a subset of N(J) containing |N(J)| − |J |+ 1 elements.

Proof. If C is not a subset of N(J), then there exists an element e of C such that e 6∈ N(J).
Then

|N(J)− (C − {e})| = |N(J)− C| < |J |.

But this implies that C − {e} is dependent, a contradiction. Thus C is a subset of N(J).

To see that C contains |N(J)| − |J |+ 1 elements, suppose that |N(J)− C| < |J | − 1, and
let e ∈ C. Then, as C is a subset of N(J), we have

|N(J)− (C − {e})| = |N(J)− C|+ 1 < |J |.

Again, this implies C − {e} is dependent, a contradiction. Thus

|N(J)| − |C| = |N(J)− C| = |J | − 1.

Rearranging this last equation gives |C| = |N(J)| − |J |+ 1, thereby completing the proof
of the lemma.

Lemma 2.5.3. Let C be a circuit of M∗[I]. Then either C has |E| −m + 1 elements or
there exist i, j ∈ [m] such that each of the following hold:

(i) N([i, j]) = σ(xi, yj),
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(ii) C is a subset of N([i, j]) containing |N([i, j])| − |[i, j]|+ 1 elements,

(iii) either i = j, or N([i, j])−N([i+ 1, j]) ⊆ C,

(iv) either i = j, or N([i, j])−N([i, j − 1]) ⊆ C, and

(v) σ(xi, yj) ⊆ cl(C),

Proof. Since C is dependent, there exists J ⊆ [m] such that |N(J)−C| < |J |. If N(J) = E,
then N([m]) = E, so |N([m]) − C| = |E − C| < |J | ≤ m. Therefore, by Lemma 2.5.2, C
has |E| −m+ 1 elements. So suppose that N(J) 6= E.

We next show that we may assume that J has the property that N(J) = σ(xi, yj) for some
i, j ∈ [m]. If J does not satisfy this property, then partition J into maximal subsets with
disjoint, consecutive neighbourhoods. More formally, since

N(J) =
⋃
i0∈J

σ(xi0 , yi0),

we may partition J into sets J1, J2, . . . , Jk such that, for all ` ∈ [k], there exist i`, j` ∈ [m]
with N(J`) = σ(xi` , yj`). Furthermore, we may choose such a partition in which, for all
distinct `, `′ ∈ [k], the sets σ(xi` , yj`) and σ(xi′` , yj

′
`
) are disjoint. Now,

|N(J1)− C|+ |N(J2)− C|+ · · ·+ |N(Jk)− C| = |N(J)− C|
< |J |
= |J1|+ |J2|+ · · ·+ |Jk|.

It follows that there exists ` ∈ [k] such that |N(J`) − C| < |J`|, in which case replace J
with J`.

We have chosen J ⊆ [m] such that |N(J)− C| < |J | and N(J) = σ(xi, yj) for some i, j ∈
[m]. It follows from the definition of the bipartite graph G that J ⊆ [i, j]. Furthermore,
N([i, j]) ⊆ σ(xi, yj), so N([i, j]) = σ(xi, yj), that is, (i) holds. Therefore,

|N([i, j])− C| = |N(J)− C| < |J | ≤ |[i, j]| .

Hence, by Lemma 2.5.2, C is a subset of N([i, j]) containing |N([i, j])| − |[i, j]|+ 1 ele-
ments, so (ii) holds.

We next show that we may choose i′ ∈ [m] such that the pair i′, j satisfies (i), (ii), and (iii).
Initially, choose i′ = i, and suppose i′ and j do not satisfy (iii). Then i′ 6= j, and there exists
f ∈ N([i′, j]) − N([i′ + 1, j]) with f /∈ C. First, assume N([i′, j])−N([i′ + 1, j]) = {f} .
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Then C is a subset of N([i′ + 1, j]) and

|C| = |N([i′, j])| − |[i′, j]|+ 1

= (|N([i′ + 1, j])|+ 1)− (|[i′ + 1, j]|+ 1) + 1

= |N([i′ + 1, j])| − |[i′ + 1, j]|+ 1,

so i′+1, j satisfies (ii). Furthermore, it follows from the definition of the bipartite graph G
that, since N([i′, j]) = σ(xi′ , yj), we have that N([i′ + 1, j]) = σ(xi′+1, yj) . Thus, i′ + 1, j
satisfies (i) and (ii), and we may replace i′ in the pair i′, j with i′ + 1.

Hence, we may assume there exists f ′ ∈ N([i′, j])−N([i′+ 1, j]) with f ′ 6= f . First assume
f ′ ∈ C. Then, by (ii),

|N([i′ + 1, j])− (C − {f ′})| = |N([i′ + 1, j])− C|
< |N([i′, j])− C|
=
∣∣[i′, j]∣∣− 1

=
∣∣[i′ + 1, j]

∣∣ .
Therefore, C − {f ′} is dependent, a contradiction. Now assume f ′ /∈ C. Since f, f ′ 6∈ C,

|N([i′ + 1, j])− C| < |N([i′, j])− C| − 1.

Let x ∈ C. Then, by (ii),

|N([i′ + 1, j])− (C − {x})| ≤ |N([i′ + 1, j])− C|+ 1

< |N([i′, j])− C| =
∣∣[i′, j]∣∣− 1 =

∣∣[i′ + 1, j]
∣∣ .

But this implies that C − {x} is dependent, and thus the pair i′, j satisfies (i), (ii) and
(iii). A symmetrical argument shows that we may choose j′ ∈ [m] such that the pair i′, j′

satisfies (i)-(iv).

It remains to show (v). Let e ∈ C, and let e′ ∈ σ(xi′ , yj′)− C. Then

|N([i′, j′])− ((C − {e}) ∪ {e′})| = |N([i′, j′])− C| < |[i′, j′]|.

Therefore, (C − {e}) ∪ {e′} is dependent, so contains a circuit C ′. The circuit C ′ contains
the element e′, as otherwise C ′ is a proper subset of C. Therefore, e′ ∈ cl(C), completing
the proof of the lemma.

Theorem 2.5.4. Let M be a matroid on ground set E such that, for all i ∈ [m] and
1 ≤ k ≤ m, we have

rM
(
σ(xi, yi)∪σ(xi+1, yi+1) ∪ · · · ∪ σ(xi+k−1, yi+k−1)

)
≤ rM∗[I]

(
σ(xi, yi) ∪ (xi+1, yi+1) ∪ · · · ∪ σ(xi+k−1, yi+k−1)

)
.

If M [I] has no loops, then, under the identity map, M is a weak-map image of M∗[I].
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Proof. Let ϕ denote the identity map from the ground set E of M∗[I] to the ground set E of
M . To prove the theorem, we will show that if C is a circuit of M∗[I], then ϕ(C) contains a
circuit of M . Let C be a circuit of M∗[I]. Now, as M [I] has no loops, every element of E is
in N(i) = σ(xi, yi) for some i ∈ [m]. Therefore, σ(x1, y1)∪σ(x2, y2)∪ · · · ∪σ(xm, ym) = E.
Thus, by Lemma 2.5.1

|E| −m = r(M∗[I])

= rM∗[I]
(
σ(x1, y1) ∪ σ(x2, y2) ∪ · · · ∪ σ(xm, ym)

)
≥ rM

(
σ(x1, y1) ∪ σ(x2, y2) ∪ · · · ∪ σ(xm, ym)

)
= r(M).

Therefore, if C contains |E| −m+ 1 elements, then ϕ(C) contains a circuit of M .

Otherwise, by Lemma 2.5.3, there exist i, j ∈ [m] such that C is a subset of σ(xi, yj)
containing |σ(xi, yj)| − |[i, j]|+ 1 elements. Furthermore, by Lemma 2.5.3(i), we have that

N([i, j]) = σ(xi, yi) ∪ σ(xi+1, yi+1) ∪ · · · ∪ σ(xj , yj) = σ(xi, yj)

and so rM (σ(xi, yj)) ≤ rM∗[I](σ(xi, yj)). By Lemma 2.5.3(v), we have that σ(xi, yj) ⊆
cl(C), so rM∗[I](σ(xi, yj)) = rM∗[I](C) = |C| − 1. Thus,

rM (C) ≤ rM (σ(xi, yj)) ≤ rM∗[I](σ(xi, yj)) = |C| − 1.

Therefore, ϕ(C) contains a circuit of M .

The previous results in this section apply for any multi-path matroid M∗[I]. We now turn
our attention to the case where M∗[I] ∼= Ψn

s , towards proving Theorem 1.4.3. We first show
that Ψn

s is self-dual.

Lemma 2.5.5. Let s be an integer exceeding two, and let φs : E → E be the identity map
if s is even, or the map φs(ei) = ei+1 if s is odd. Then Ψn

s is self-dual under the map φs.

Proof. Let B be a basis of Ψn
s . We show that φ−1s (E − B) is also a basis of Ψn

s . By
Lemma 2.5.1, we have that

∣∣φ−1s (E −B)
∣∣ = r(Ψn

s ) = n
2 . Furthermore, by Lemma 2.5.3, a

circuit of Ψn
s is either a set of n

2 + 1 elements, or a subset of σ(xi, yi+k) = σ(2i − 1, 2i +
2k+ s− 2) containing |σ(2i− 1, 2i+ 2k + s− 2)| − (k + 1) + 1 = s+ k elements, for some
i ∈ [m] and k ≤ n

2 − s. Hence, to show that φ−1s (E − B) contains no circuits, and is
therefore a basis, it suffices to show that, for all odd i ∈ [n] and k ≤ n

2 − s, we have that∣∣φ−1s (E −B) ∩ σ(i, i+ s− 1 + 2k)
∣∣ < s+ k.
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First, suppose s is even. Then

φs(E − σ(i, i+ s− 1 + 2k)) = σ(i+ s+ 2k, i− 1)

= σ
(
i+ s+ 2k, i+ s+ 2k + s− 1 + 2

(
n
2 − k − s

))
.

Therefore, since i+ s+ 2k is odd, there exists j ∈
[
n
2

]
such that

N
([
j, j +

(
n
2 − k − s

)])
= φs(E − σ(i, i+ s− 1 + 2k)).

Now, B is independent, so∣∣N ([j, j +
(
n
2 − k − s

)])
−B

∣∣ = |φs(E − σ(i, i+ s− 1 + 2k))−B|
≥ n

2 − k − s+ 1.

It follows that
|B ∩ φs (E − σ(i, i+ s− 1 + 2k))| < n

2 − k.

On the other hand, if s is odd, then

φs(E − σ(i, i+ s− 1 + 2k)) = φs(σ(i+ s+ 2k, i− 1))

= σ(i+ s+ 2k + 1, i)

= σ
(
i+ s+ 2k + 1, i+ s+ 2k + 1 + s− 1 + 2

(
n
2 − k − s

))
.

Since i+ s+ 2k + 1 is odd, there exists j ∈
[
n
2

]
such that

N
([
j, j +

(
n
2 − k − s

)])
= φs(E − σ(i, i+ s− 1 + 2k)).

As before, since B is independent, it follows that

|B ∩ φs (E − σ(i, i+ s− 1 + 2k))| < n
2 − k.

In both cases, ∣∣φ−1s (B) ∩ (E − σ(i, i+ s− 1 + 2k))
∣∣ < n

2 − k

and so ∣∣φ−1s (B) ∩ σ(i, i+ s− 1 + 2k)
∣∣ > k.

Therefore, ∣∣φ−1s (E −B) ∩ σ(i, i+ s− 1 + 2k)
∣∣ < |σ(i, i+ s− 1 + 2k)| − k

= s+ 2k − k = s+ k

as required.
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Lemma 2.5.6. Let s and t be positive integers exceeding one, such that t ≥ s. If n is a

positive even integer with n ≥ s+ t− 2 and s ≡ t mod 2, then T
t−s
2 (Ψn

s ) is an (s, t)-cyclic
matroid.

Proof. Without loss of generality, we may assume that the ground set {e1, e2, . . . , en} of
Ψn

s is consistent with the bipartite graph Gn
s associated with the dual of Ψn

s as described
in the introduction. In particular, Gn

s has vertex parts {e1, e2, . . . , en} and [n2 ] and, for all
i ∈ {1, 2, . . . , n2 }, we have

N(i) = {e2i−1, e2i, . . . , e2i+s−2}.

The proof is by induction on t. Suppose that t = s, and consider T 0(Ψn
s ) = Ψn

s . It is easily
checked that, for all odd i ∈ [n], the set {ei, ei+1, . . . , ei+s−1} is an s-element circuit of Ψn

s .
By Lemma 2.5.5, the set {ej , ej+1, . . . , ej+s−1} is an s-element cocircuit of Ψn

s for all odd
j ∈ [n] if s is even, or for all even j ∈ [n] if s is odd. Therefore Ψn

s is (s, s)-cyclic, and the
lemma holds if t = s.

Now suppose that t > s and that the matroid T
(t−2)−s

2 (Ψn
s ) is (s, t− 2)-cyclic. Consider

T
t−s
2 (Ψn

s ) = T
(
T

(t−2)−s
2 (Ψn

s )
)
.

It follows from Lemma 2.2.1 that each non-spanning circuit of T
(t−2)−s

2 (Ψn
s ) is a circuit of

T
t−s
2 (Ψn

s ). Now, by Lemma 2.3.7,

r
(
T

(t−2)−s
2 (Ψn

s )
)

= n+s−(t−2)
2

≥ (s+t−2)+s−t+2
2

= s.

Therefore, for all odd i ∈ [n], we have that {ei, ei+1, . . . , ei+s−1} is a non-spanning circuit

of T
(t−2)−s

2 (Ψn
s ), so is also an s-element circuit of T

t−s
2 (Ψn

s ). Furthermore, for all j ∈
[n], if {ej , ej+1, . . . , ej+t−3} and {ej+2, ej+3, . . . , ej+t−1} are (t − 2)-element cocircuits of

T
(t−2)−s

2 (Ψn
s ), then {ej , ej+1, . . . , ej+t−1} is a t-element cocircuit of T

t−s
2 (Ψn

s ). To see this,

if f is the element freely added to T
(t−2)−s

2 (Ψn
s ), then it is easily checked that(

E
(
T

(t−2)−s
2 (Ψn

s )
)
− {ej , ej+1, . . . , ej+t−1}

)
∪ {f}

is a hyperplane of the resulting matroid. Therefore

E
(
T

t−s
2 (Ψn

s )
)
− {ej , ej+1, . . . , ej+t−1}
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is a hyperplane of T
t−s
2 (Ψn

s ), so {ej , ej+1, . . . , ej+t−1} is a t-element cocircuit of T
t−s
2 (Ψn

s ).

Hence, by induction, T
t−s
2 (Ψn

s ) is (s, t)-cyclic.

Proof of Theorem 1.4.3. LetM be an (s, t)-cyclic matroid on n elements, where n ≥ s+t−1
and t ≥ s. Then, by Lemma 2.3.3, n is even, and s ≡ t mod 2. Let σ = (e1, e2, . . . , en) be
an (s, t)-cyclic ordering of E(M). Without loss of generality, we may assume that, for all
odd i ∈ [n], the set σ(i, i+ s− 1) is an s-element circuit of M . Now consider Ψn

s . To ease
reading, we may assume that E(M) = E(Ψn

s ) and σ = (e1, e2, . . . , en) is an (s, s)-cyclic
ordering of Ψn

s , where σ(i, i+ s− 1) is an s-element circuit of Ψn
s for all odd i ∈ [n]. Note

that the dual of Ψn
s has no loops.

First suppose that t = s. By Lemma 2.5.6, both M and Ψn
s are (s, s)-cyclic matroids with

n elements. Therefore, by Lemma 2.3.6, for all i ∈ [n2 ] and k such that 1 ≤ k ≤ m, we have
that

rM
(
σ(xi, yi)∪σ(xi+1, yi+1) ∪ · · · ∪ σ(xi+k−1, yi+k−1)

)
= rM∗[I]

(
σ(xi, yi) ∪ σ(xi+1, yi+1) ∪ · · · ∪ σ(xi+k−1, yi+k−1)

)
,

where xi = e2i−1 and yi = e2i+s−2 for all i ∈ {1, 2, . . . , n2 }. Hence, by Theorem 2.5.4, under
the identity map, M is a weak-map image of Ψn

s .

Now suppose t > s. By Lemma 2.5.6, the matroid T
t−s
2 (Ψn

s ) is an (s, t)-cyclic matroid. It

remains to show that M is a weak-map image of T
t−s
2 (Ψn

s ). Let I be an independent set
in M . By Theorem 2.5.4, under the identity map, M is a weak-map image of Ψn

s , and so
I is an independent set in Ψn

s . From Lemma 2.3.7, we have that

r(M) = n+s−t
2 = n

2 −
(
t−s
2

)
= r(Ψn

s )−
(
t−s
2

)
,

Therefore, |I| ≤ r(Ψn
s )−

(
t−s
2

)
. Therefore, as T

t−s
2 (Ψn

s ) is the
(
t−s
2

)
-th truncation of Ψn

s , it

follows by Lemma 2.2.1 that I is independent in T
t−s
2 (Ψn

s ). In particular, under the identity

map, M is a weak-map image of T
t−s
2 (Ψn

s ). This completes the proof of Theorem 1.4.3.

2.6 Counterexample

In this section, we give a counterexample to a conjecture posed in [4]. Let s be an integer
exceeding two, and let M be an (s, s)-cyclic matroid such that |E(M)| ≥ 2s+2. A matroid
N is an inflation of M if N can be obtained from M by first taking an elementary quotient
in which none of the s-element cocircuits corresponding to consecutive elements in the
cyclic ordering are preserved, which produces an (s, s+ 2)-cyclic matroid, and then taking
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an elementary lift in which none of the s-element circuits corresponding to consecutive
elements in the cyclic ordering are preserved. The resulting matroid N is (s + 2, s + 2)-
cyclic. The conjecture in [4, Conjecture 6.1] is the following:

Conjecture 2.6.1. Let s be an integer exceeding two, and let M be an (s, s)-cyclic matroid.

(i) If s is even, then M can be obtained from a spike or a swirl by a sequence of inflations.

(ii) If s is odd, then M can be obtained from a wheel or a whirl by a sequence of inflations.

Now consider the matroid Ψn
s , where s ≥ 5. If Ψn

s can be obtained from a spike, swirl,
wheel, or whirl by a sequence of inflations, then Ψn

s is an elementary lift of some (s− 2, s)-
cyclic matroid, or, equivalently, using Lemma 2.5.5, (Ψn

s )∗ ∼= Ψn
s is the elementary quotient

of some (s, s− 2)-cyclic matroid. We shall establish a counterexample to Conjecture 2.6.1
by showing that no such (s, s − 2)-cyclic matroid exists; in fact, we prove a more general
result.

Theorem 1.4.2. Let s ≥ 3, and let n ≥ 4s−8 be even. Let M be a matroid on n elements
with cyclic ordering σ = (e1, e2, . . . , en) such that, for all odd i ∈ {1, 2, . . . , n}, the set
{ei, ei+1, . . . , ei+s−1} is an s-element circuit. Then Ψn

s is not a quotient of M .

For the remainder of this section, let M ′ be a rank-(n2 +1) matroid in which there is a cyclic
ordering σ = (e1, e2, . . . , en) of its ground set such that {ei, ei+1, . . . , ei+s−1} is a circuit of
M for all odd i ∈ [n]. Further assume that σ is also an (s, s)-cyclic ordering of Ψn

s such
that {ei, ei+1, . . . , ei+s−1} is a circuit of Ψn

s for all odd i ∈ [n]. The following results show
that Ψn

s is not a quotient of M ′. For the next lemma see, for example, [21, Proposition
7.3.6].

Lemma 2.6.2. Let M1 and M2 be matroids on the same ground set. Then M2 is a quotient
of M1 if and only if every circuit of M1 is a union of circuits of M2.

Key to the counterexample shall be the following sets. Let M be a matroid on n elements
and let s be an integer exceeding three. Suppose that σ = (e1, e2, . . . , en) is a cyclic ordering
of E(M) such that, for all odd i ∈ [n], the set {ei, ei+1, . . . , ei+s−1} is an s-element circuit
of M . For all odd i ∈ [n], and for all integers k and ` such that 2 ≤ k, ` ≤ s − 1 and
s− 1 ≤ k + ` ≤ 2s− 4, define

Ci,k,` = σ(i, i+ k − 1) ∪ σ(i+ 2k + `− s+ 2, i+ 2k + 2`− s+ 1).

Informally, starting at ei, there are k consecutive elements of σ in Ci,k,`, followed by
k + ` − (s − 2) consecutive elements of σ not in Ci,k,`, followed by ` consecutive elements
of σ in Ci,k,`.
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The next lemma establishes that certain subsets of the ground set of Ψn
s containing Ci,k,`

are circuits of Ψn
s . The subsequent lemma shows that these subsets are also circuits of M ′.

We will eventually combine these two lemmas to show that Ψn
s is not a quotient of M ′.

Lemma 2.6.3. Suppose that n ≥ 4s − 8. Then, for all odd i ∈ [n], and for all k and `
such that 2 ≤ k, ` ≤ s− 1 and s− 1 ≤ k+ ` ≤ 2s− 4, the set Ci,k,` ∪{x} is a circuit of Ψn

s ,
where x ∈ σ(i+ k, i+ 2k + `− s+ 1), and

x 6=

{
ei+k if k = s− 1;

ei+2k+`−s+1 if ` = s− 1.

Proof. Recall the bipartite graph Gn
s whose vertex parts are E = {e1, e2, . . . , en} and

{1, 2, . . . , n2 } and, for all i ∈ {1, 2, . . . , n2 }, the set of neighbours of i is

N(i) = {e2i−1, e2i, . . . , e2i+s−2},

where subscripts are interpreted modulo n. Let i0 = i+1
2 and j0 = i+2(k+`−s)+3

2 . Observe
that

N (i0) = {ei, ei+1, . . . , ei+k−1, . . . , ei+s−1}

and

N (j0) = {ei+2(k+`−s)+2,ei+2(k+`−s)+3, . . . ,

ei+2k+`−s+2, . . . , ei+2(k+`)−s+1}.

In particular, N (i0)∪N (j0) contains Ci,k,`. Also recall that Ψn
s is the dual of the transversal

matroid on E in which
(N(1), N(2), . . . , N(n2 ))

is a presentation.

We first show that Ci,k,` ∪ {x} is dependent in Ψn
s by showing that E − (Ci,k,` ∪ {x}) is

not cospanning in Ψn
s . Consider Gn

s and the subset [i0, j0] of [n2 ]. Since n ≥ 4s−8, we have
that N ([i0, j0]) 6= E, and so

|N ([i0, j0])| = 2k + 2`− s+ 2.



2.6 CYCLIC MATROIDS — Counterexample 40

Therefore, as Ci,k,` ∪ {x} ⊆ N ([i0, j0]) and |Ci,k,` ∪ {x}| = k + `+ 1, it follows that∣∣∣N ([i0, j0]) −(Ci,k,` ∪ {x})
∣∣∣

= |N ([i0, j0])| − |Ci,k,` ∪ {x}|
= (2k + 2`− s+ 2)− (k + `+ 1)

= k + `− s+ 1

< k + `− s+ 2

= |[i0, j0]| .

Hence, by Hall’s Theorem [14], E− (Ci,k,`∪{x}) is not cospanning in Ψn
s . Thus Ci,k,`∪{x}

is dependent in Ψn
s .

Since Ci,k,`∪{x} is dependent, Ci,k,`∪{x} contains a circuit C of Ψn
s . If |C| = |E|− n

2 +1 =
n
2 + 1, then, as n ≥ 4s− 8, it follows that |C| ≥ 2s− 3. Furthermore, |C| ≤ |Ci,k,` ∪{x}| =
k+`+1 ≤ 2s−3. Thus C = Ci,k,`∪{x}, and so Ci,k,`∪{x} is a circuit of Ψn

s . Therefore, by
Lemma 2.5.3, we may assume that there are i1, j1 ∈ [n2 ] satisfying (i)–(v) of that lemma.
If i1 = j1, then, by Lemma 2.5.3(ii), C = N(i1) for some i1 ∈ [n2 ]. Now, C, and thus
Ci,k,` ∪{x}, contains s consecutive elements of σ. But if Ci,k,` ∪{x} contains s consecutive
elements, then k + ` = s − 1, in which case Ci,k,` ∪ {x} is a circuit, and we are done.
Therefore i1 6= j1, and, by Lemma 2.5.3(iii) and (iv),

N([i1, j1])−N([i1 + 1, j1]) = {e2i1−1, e2i1} ⊆ C (2.1)

and

N([i1, j1])−N([i1, j1 − 1]) = {e2j1+s−3, e2j1+s−2} ⊆ C. (2.2)

Suppose e2i1−1 /∈ σ(i, i+ k − 1) . Then, by (2.1),

C ⊆ (Ci,k,` ∪ {x})− σ(i, i+ k − 1)

= σ(i+ 2k + `− s+ 2, i+ 2k + 2`− s+ 1) ∪ {x}.

However, since i1 6= j1, we have that |C| ≥ s+ 1, while

|σ(i+ 2k + `− s+ 2, i+ 2k + 2`− s+ 1) ∪ {x}| = `+ 1 ≤ s.

This contradiction implies that e2i1−1 ∈ σ(i, i+ k − 1). Symmetrically,

e2j1+s−2 ∈ σ(i+ 2k + `− s+ 2, i+ 2k + 2`− s+ 1)

and so j1 = j0 − j′ for some 0 ≤ j′ ≤ d `2e.
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By Lemma 2.5.3(ii), C is a subset of N([i1, j1]) containing |N([i1, j1])| − |[i1, j1]|+ 1 ele-
ments. Now,

|N([i1, j1])| = |N([i0, j0])| − 2(i′ + j′) = 2k + 2`− s+ 2− 2(i′ + j′),

and
|[i1, j1]| = |[i0, j0]| − (i′ + j′) = k + `− s+ 2− (i′ + j′)

so

|C| = k + `+ 1− (i′ + j′). (2.3)

On the other hand,

|C| ≤ |(Ci,k,` ∪ {x}) ∩N([i1, j1])| = k + `+ 1− 2(i′ + j′). (2.4)

Therefore, since both (2.3) and (2.4) hold, we have that i′ = j′ = 0, that is, i0 = i1 and
j0 = j1, and that |C| = |Ci,k,` ∪ {x}|. Hence, C = Ci,k,` ∪ {x}, completing the proof of the
lemma.

Lemma 2.6.4. Let n ≥ 4s − 8, and suppose that Ψn
s is a quotient of M ′. Then, for all

odd i ∈ [n], and for all k and ` such that 2 ≤ k, ` ≤ s− 1 and s− 1 ≤ k + ` ≤ 2s− 4, the
set Ci,k,` ∪ {x} is a circuit of M ′, where x ∈ σ(i+ k, i+ 2k + `− s+ 1), and

x 6=

{
ei+k if k = s− 1;

ei+2k+`−s+1 if ` = s− 1.

Proof. Since Ψn
s is a quotient of M ′, it follows by Lemma 2.6.2 that every circuit of M ′ is

a union of circuits of Ψn
s . Now, by Lemma 2.6.3, Ci,k,` ∪ {x} is a circuit of Ψn

s . Therefore,
to prove the lemma, it suffices to show that M ′ has a circuit contained in Ci,k,` ∪{x}. The
proof is by induction on k + `.

If k + ` = s− 1, then

Ci,k,` = σ(i, i+ k − 1) ∪ σ(i+ k + 1, i+ s− 1).

Therefore, x = ei+k, and Ci,k,`∪{x} = σ(i, i+s−1) which is a circuit of M ′. Furthermore,
if k + ` = s, then

Ci,k,` = σ(i, i+ k − 1) ∪ σ(i+ k + 2, i+ s+ 1),

so Ci,k,` ∪ {x} = σ(i, i+ s+ 1)−{y}, where y is the element of {ei+k, ei+k+1} which is not
equal to x. Since y ∈ σ(i, i + s − 1) ∩ σ(i + 2, i + s + 1), it follows by circuit elimination
that M ′ has a circuit contained in Ci,k,` ∪ {x}, as desired.
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Now suppose that the lemma holds for all 2 ≤ k′, `′ ≤ s − 1 and s− 1 ≤ k′ + `′ ≤ 2s− 4
such that k′+ `′ = k+ `− 1. First assume that either k or ` is equal to s− 1. If k = s− 1,
then x 6= ei+s−1. Therefore, by the induction assumption,

Ci+2,k−1,` ∪ {x} = σ(i+ 2, i+ s− 1) ∪ {x} ∪ σ(i+ `+ s, i+ 2`+ s− 1)

is a circuit of M ′. Thus, by circuit elimination between Ci+2,k−1,` ∪ {x} and σ(i, i+ s− 1)
on ei+s−1, the matroid M ′ has a circuit contained in

σ(i, i+ s− 2) ∪ {x} ∪ σ(i+ `+ s, i+ 2`+ s− 1) = Ci,s−1,` ∪ {x}
= Ci,k,` ∪ {x}

as desired. A similar argument shows the lemma holds if ` = s− 1.

We may now assume that neither k nor ` is equal to s−1. Furthermore, since k+` ≥ s+1,
we have that k 6= 2 and ` 6= 2. Assume k = ` = 3. This implies that s = 5, so

Ci,k,` = Ci,3,3 = {ei, ei+1, ei+2, ei+6, ei+7, ei+8}.

By the induction assumption, if x ∈ {ei+4, ei+5}, then the desired result follows from circuit
elimination between

Ci,3,2 ∪ {ei+4} = {ei, ei+1, ei+2, ei+4, ei+5, ei+6}

and {ei+4, ei+5, ei+6, ei+7, ei+8}. If x = ei+3, then the result follows from circuit elimination
between

Ci+2,2,3 ∪ {ei+4} = {ei+2, ei+3, ei+4, ei+6, ei+7, ei+8}

and {ei, ei+1, ei+2, ei+3, ei+4}.

Lastly, assume that either k ≥ 4 or ` ≥ 4, which implies s ≥ 6. We establish that the
lemma holds when k ≥ 4. The proof of the lemma when ` ≥ 4 is similar and omitted.
Assume k ≥ 4. Suppose x 6= ei+2k+`−s+1, that is x ∈ σ(i+ k, i+ 2k+ `− s). Then, by the
induction assumption, the set

Ci,k,`−1 ∪ {x} = σ(i, i+ k − 1) ∪ {x} ∪ σ(i+ 2k + `− s+ 1, i+ 2k + 2`− s− 1)

is a circuit. If ` = s− 2 and x = ei+2k+`−s, then the set

σ(i+ 2k + `− s, i+ 2k + 2`− s+ 1) = σ(i+ 2k − 2, i+ 2k + s− 3)

is an s-element circuit of M ′. Hence, circuit elimination between this circuit and Ci,k,`−1 ∪
{x} on the element ei+2k+`−s+1 gives a ciruit of M ′ contained in

σ(i, i+ k − 1) ∪ {ei+2k+`−s} ∪ σ(i+ 2k + `− s+ 2, i+ 2k + 2`− s+ 1) = Ci,k,` ∪ {x}



2.6 CYCLIC MATROIDS — Counterexample 43

as desired. Otherwise, since k ≥ 4, the set

Ci+2,k−2,`+1 ∪ {x} = σ(i+ 2, i+ k − 1) ∪ {x} ∪ σ(i+ 2k + `− s+ 1, i+ 2k + 2`− s+ 1)

is a circuit. Again, circuit elimination between this circuit and Ci,k,`−1∪{x} on the element
ei+2k+`−s+1 implies that M ′ has a circuit contained in

σ(i, i+ k − 1) ∪ {x} ∪ σ(i+ 2k + `− s+ 2, i+ 2k + 2`− s+ 1) = Ci,k,` ∪ {x}

as desired.

The final case to consider is when x = ei+2k+`−s+1. By the induction assumption, and
since k 6= s− 1, the set

Ci,k,`−1 ∪ {ei+k} = σ(i, i+ k − 1) ∪ {ei+k} ∪ σ(i+ 2k + `− s+ 1, i+ 2k + 2`− s− 1)

is a circuit of M ′. Additionally, since k ≥ 4, the set

Ci+2,k−2,`+1 ∪{ei+k} = σ(i+ 2, i+ k− 1)∪{ei+k}∪σ(i+ 2k+ `− s+ 1, i+ 2k+ 2`− s+ 1)

is a circuit of M ′. Circuit elimination between these circuits on the element ei+k implies
that M ′ has a circuit contained in

σ(i, i+ k − 1) ∪ σ(i+ 2k + `− s+ 1, i+ 2k + 2`− s+ 1) = Ci,k,` ∪ {ei+2k+`−s+1}.

This completes the proof of the case when k ≥ 4, and thus completes the proof of the
lemma.

Proposition 2.6.5. Let n ≥ 4s− 8, where s is an integer exceeding three. Then Ψn
s is not

a quotient of M ′.

Proof. Suppose Ψn
s is a quotient of M ′. We establish a contradiction by showing that

r(M ′) ≤ n
2 . By definition of M ′, {e1, e2, . . . , es} is a circuit with rank s− 1. The element

es+1 may or may not be in the closure of {e1, e2, . . . , es}, so r({e1, e2, . . . , es+1}) ≤ s. Since
{e3, e4, . . . , es+2} is a circuit, es+2 ∈ cl({e1, e2, . . . , es+1}), that is, r({e1, e2, . . . , es+2}) ≤ s.
Repeating this process, we see that r({e1, e2, . . . , es+2u}) ≤ s − 1 + u for all u ≤ n−s

2 . In
particular, when u = n

2 − s + 1, we have that r({e1, e2, . . . , en−s+2}) ≤ n
2 . However, by

Lemma 2.6.4 with i = n− 2s+ 5 and k = ` = s− 2, the set

{en−2s+5, en−2s+6, . . . , en−s+2} ∪ {x} ∪ {e1, e2, e3, . . . , es−2}

is a circuit for all x ∈ {en−s+3, en−s+4, . . . , en−1, en}, and so {e1, e2, . . . , en−s+2} is spanning.
This implies r(M ′) ≤ n

2 , a contradiction.



chapter3
Detachable Pairs

3.1 Introduction

This chapter is concerned with finding a generalisation of Tutte’s Wheels-and-Whirls The-
orem in which, rather than single elements, 2-element subsets are deleted or contracted. In
particular, for a 3-connected matroid M and a pair {x, y} ⊆ E(M), then we say {x, y} is
a detachable pair if either M\x\y is 3-connected or M/x/y is 3-connected. We prove The-
orem 1.6.2, which describes precisely the 3-connected matroids which have no detachable
pairs.

This builds on a result of Williams [34].

Theorem 1.6.1. Let M be a 3-connected matroid with |E(M)| ≥ 13. Then either

(i) M has a detachable pair,

(ii) there exists a matroid M ′ such that M ′ can be constructed by performing a single
∆-Y or Y -∆ exchange on M and M ′ has a detachable pair, or

(iii) M is a spike.

It follows from Theorem 1.6.1 that if M is a 3-connected matroid with no detachable
pairs and no 3-element circuits or cocircuits, then M is a spike. It remains to consider
3-connected matroids with at least one 3-element circuit or cocircuit. The organisation
of this chapter is as follows. Section 3.2 contains some preliminaries. In Section 3.3, we
formally define the 3-connected matroids with no detachable pairs. The remainder of this
chapter is the proof of Theorem 1.6.2, the structure of which is described at the end of
Section 3.3.

44
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3.2 Preliminaries

3.2.1 Connectivity

Let M be a matroid with ground set E. Let X,Y ⊆ E. The local connectivity of subsets
X,Y ⊆ E(M) is defined as

u(X,Y ) = r(X) + r(Y )− r(X ∪ Y ).

The connectivity of X in M is defined

λM (X) = u(X,E −X) = rM (X) + rM (E −X)− r(M)

or, equivalently,
λM (X) = rM (X) + r∗M (X)− |X|.

It follows from the above definitions that λM (X) = λM (E − X) and λM∗(X) = λM (X).
When it is apparent which matroid we are referring to, we will often write λ(X) = λM (X).

The next two lemmas follow straightforwardly from the definition (see, for example, [21,
Corollary 8.2.6, Proposition 8.2.14]). They will be applied frequently throughout the proof
of Theorem 1.6.2, often without statement of their application.

Lemma 3.2.1. Let M be a matroid, and let X ⊆ E(M) and e ∈ E(M)−X. Then

λM/e(X) =

{
λM (X)− 1 if e ∈ cl(X),

λM (X) if e /∈ cl(X).

Dually,

λM\e(X) =

{
λM (X)− 1 if e ∈ cl∗(X),

λM (X) if e /∈ cl∗(X).

Lemma 3.2.2. Let X ⊆ E(M) and let e ∈ E(M)−X. Then

λ(X ∪ {e}) =


λ(X)− 1 if e ∈ cl(X) and e ∈ cl∗(X),

λ(X) if e ∈ cl(X) and e /∈ cl∗(X),

λ(X) if e /∈ cl(X) and e ∈ cl∗(X),

λ(X) + 1 if e /∈ cl(X) and e /∈ cl∗(X).

We say that X is a k-separation if λ(X) = k − 1 and |X| ≥ k and |E(M) − X| ≥ k. A
matroid is k-connected if it contains no k′-separations, for all k′ < k.
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Small 3-separations will be important for this work. If M is 3-connected, then a 3-
separation of M with 3 elements is either a 3-element circuit, called a triangle, or a
3-element cocircuit, called a triad. Contracting an element in a triangle produces a 2-
element circuit, and thus the resulting matroid is not 3-connected. Dually, the matroid
produced by deleting an element from a triad is not 3-connected. A 3-separation of M
with 4 elements either contains a triangle or a triad, or it is a quad, which is a 4-element
set that is both a circuit and a cocircuit.

The next two well-known lemmas are useful for identifying elements which may be deleted
or contracted while retaining 3-connectivity. The first, which is commonly referred to as
Bixby’s Lemma, states that if an element e is not contained in a triangle or a triad, then
either M\e or M/e is 3-connected [1, Theorem 1].

Lemma 3.2.3. Let M be a 3-connected matroid and let e ∈ E(M). Then either si(M/e)
is 3-connected or co(M\e) is 3-connected.

The next lemma is called Tutte’s Triangle Lemma [32, 7.2].

Lemma 3.2.4. Let M be a 3-connected matroid, and let T be a triangle of M . Let e, e′ be
distinct elements of T . If there is no triad of M containing e and e′, then either M\e is
3-connected or M\e′ is 3-connected.

Applying Tutte’s Triangle Lemma to M∗ rather than M gives the following corollary, which
we also refer to as Tutte’s Triangle Lemma.

Corollary 3.2.5. Let M be a 3-connected matroid, and let T ∗ be a triad of M . Let e, e′ be
distinct elements of T ∗. If there is no triangle of M containing e and e′, then either M/e
is 3-connected or M/e′ is 3-connected.

There are two consequences of Tutte’s Triangle Lemma which are particularly useful for
us. Firstly, if T is a triangle of M which does not intersect a triad, then there are at least
two elements of T which can be deleted while retaining 3-connectivity. Dually, a triad
which does not intersect a triangle contains at least two elements which can be contracted
while retaining 3-connectivity. Secondly, let {e1, e2, e3, e4} be a set such that {e1, e2, e3}
is a triangle, and {e2, e3, e4} is a triad. If e1 is not contained in a triad, then M\e1 is
3-connected, and if e4 is not contained in a triangle, then M/e4 is 3-connected.

3.2.2 Fans

The set {e1, e2, e3, e4} in the previous paragraph is an example of a fan. In general, a fan
is a set F with ordering (e1, e2, . . . , e|F |) such that {e1, e2, e3} is either a triangle or a triad,



3.2 DETACHABLE PAIRS — Preliminaries 47

and, for all i ∈ {1, 2, . . . , |F | − 3}, if {ei, ei+1, ei+2} is a triangle then {ei+1, ei+2, ei+3} is a
triad, and if {ei, ei+1, ei+2} is a triad, then {ei+1, ei+2, ei+3} is a triangle. Differing from
[21], we shall also say that any set containing fewer than three elements is a fan.

The length of a fan is the number of elements it contains. Let F be a fan of length k ≥ 3
and ordering (e1, e2, . . . , ek). Note that if k is even, then either {e1, e2, e3} is a triangle
and {ek−2, ek−1, ek} is a triad, or {e1, e2, e3} is a triad and {ek−2, ek−1, ek} is a triangle.
Similarly, if k is odd, then {e1, e2, e3} and {ek−2, ek−1, ek} are either both triangles or both
triads. We say that the elements e1 and ek are the ends of the fan F . Furthermore, F is
maximal if there is no fan F ′ such that F ⊂ F ′. Every fan is contained in a maximal fan.

If F is a fan with ordering (e1, e2, . . . , e|F |), then (e|F |, e|F |−1, . . . , e1) is also an ordering of
F satisfying the fan properties. When exploiting this symmetry, we use the phrase “up
to reversing the ordering of F”. For example, if C is a circuit containing one of e1 and
e|F |, we might say “up to reversing the ordering of F , we may assume that e1 ∈ C”. If
F has length at least five, then these are the only two orderings of F . However, this is
not true for fans of length three and four. If F has length four then (e1, e2, e3, e4) and
(e1, e3, e2, e4) are both orderings of F which satisfy the fan properties. This means that
we may choose the order of the elements e2 and e3 arbitrarily “up to the ordering of F”.
Similarly, if F has length three, then the ordering of F is arbitrary. Although the same
fan can have multiple orderings, it is often convenient to refer to a fan as an ordering and
not as a set. For example, we might say “(e1, e2, . . . , e|F |) is a fan” as shorthand for “the
set {e1, e2, . . . , e|F |} is a fan with ordering (e1, e2, . . . , e|F |)”.

We now prove a number of basic lemmas concerning the structure of fans in 3-connected
matroids. These results are known, but we provide proofs for completeness.

Lemma 3.2.6. Let M be a 3-connected matroid, and let F = (e1, e2, . . . , e|F |) be a fan of
M such that F ≥ 2 and |E(M)| ≥ |F |+ 2. Then

r(F ) =


⌊
|F |
2

⌋
+ 1, if {e1, e2, e3} is a triangle;⌈

|F |
2

⌉
+ 1, if {e1, e2, e3} is a triad,

r∗(F ) =


⌈
|F |
2

⌉
+ 1, if {e1, e2, e3} is a triangle;⌊

|F |
2

⌋
+ 1, if {e1, e2, e3} is a triad, and

λ(F ) = 2

Proof. If |F | = 2, then r(F ) = r∗(F ) = 2 = |F |
2 + 1 and λ(F ) = 2, so the result holds.

Suppose |F | > 2, and the result holds for all fans F ′ with |F ′| = |F | − 1. In particular,
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the result holds for the fan F − {e1} which has ordering (e2, e3, . . . , e|F |). If {e1, e2, e3} is
a triangle, then {e2, e3, e4} is a triad. Therefore,

r(F − {e1}) =

⌈
|F | − 1

2

⌉
+ 1 =

⌊
|F |
2

⌋
+ 1

and

r∗(F − {e1}) =

⌊
|F | − 1

2

⌋
+ 1 =

⌈
|F |
2

⌉
.

Now, e1 ∈ cl(F − {e1}), and thus

r(F ) = r(F − {e1}) =

⌊
|F |
2

⌋
+ 1.

If e1 ∈ cl∗(F −{e1}), then λ(F ) = λ(F −{e1})− 1 = 1, by Lemma 3.2.2. This contradicts
the 3-connectivity of M since |E(M)| ≥ |F | + 2. Thus, e1 /∈ cl∗(F − {e1}), so λ(F ) =
λ(F − {e1}) = 2, and

r∗(F ) = r∗(F − {e1}) + 1 =

⌈
|F |
2

⌉
+ 1.

This completes the proof in the case where {e1, e2, e3} is a triangle. The argument for
when {e1, e2, e3} is a triad is symmetrical and omitted.

Lemma 3.2.7. Let M be a 3-connected matroid, and let F be a fan of M such that |F | ≥ 4.
Then either M is a wheel or a whirl, or |E(M)| ≥ |F |+ 2.

Proof. Suppose that M is not a wheel or a whirl. Let F+ be a maximal fan of M containing
F , and let (e1, e2, . . . , e|F+|) be an ordering of F . We shall show that |E(M)| ≥ |F+|+ 2 ≥
|F |+ 2.

Suppose |E(M)| = |F+| + 1, that is, E(M) = F+ ∪ {x} for some x /∈ F+. Now,
(e3, e4, . . . , e|F+|) is a fan, so λ({e3, e4, . . . , e|F+|}) = 2. This means that

λ(E(M)− {e3, e4, . . . , e|F+|}) = λ({e1, e2, x}) = 2.

Hence, {e1, e2, x} is either a triangle or a triad. The sets {e1, e2, x} and {e2, e3, e4} intersect
in one element. Thus, by orthogonality, if {e2, e3, e4} is a triangle then {e1, e2, x} is a triad,
and if {e2, e3, e4} is a triad then {e1, e2, x} is a triangle. But this implies (x, e1, e2, . . . , e|F+|)
is a fan of M , contradicting the maximality of F+.

Suppose E(M) = F+. If |F+| = 4, then F+ contains a triad, and the complement of this
triad is a hyperplane with one element. In other words, r(M) = 2, so M ∼= U2,4, which is
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the rank-2 whirl. Otherwise, |F+| ≥ 5. Then (e2, e3, . . . , e|F+|−2) is a fan of length at least
two, so λ({e2, e3, . . . , e|F+|−2}) = 2. This implies that λ({e|F+|−1, e|F+|, e1}) = 2. Similarly,
λ({e3, e4, . . . , e|F+|−1}) = 2, so λ({e|F+|, e1, e2}) = 2. Therefore, {e|F+|−1, e|F+|, e1} and
{e|F+|, e1, e2} are each a triangle or a triad, from which it follows that M is a wheel or a
whirl. Thus, |E(M)| ≥ |F+|+ 2, completing the proof.

Lemma 3.2.8. Let M be a 3-connected matroid, and let F = (e1, e2, . . . , e|F |) be a maximal
fan of M such that |F | ≥ 3. Then either M is a wheel or a whirl, or all of the following
hold:

(i) if {e1, e2, e3} is a triad, then e1 is not contained in a triangle,

(ii) if {e1, e2, e3} is a triangle, then e1 is not contained in a triad,

(iii) if {e|F |−2, e|F |−1, e|F |} is a triad, then e|F | is not contained in a triangle, and

(iv) if {e|F |−2, e|F |−1, e|F |} is a triangle, then e|F | is not contained in a triad.

Proof. We prove (i). Then (ii) follows by applying (i) to M∗, and (iii) and (iv) follow
by reversing the ordering of the fan F . Suppose {e1, e2, e3} is a triad, and that e1 is
contained in some triangle T of M . By orthogonality, T contains a second element of the
triad {e1, e2, e3}. First, suppose |T ∩ F | = 2. Then there exists x ∈ T with x /∈ F . If
T = {e1, e2, x}, then (x, e1, e2, . . . , e|F |) is a fan of M , which contradicts the maximality
of F . On the other hand, suppose T = {e1, e3, x}. If |F | ≥ 5, then T intersects the
triad {e3, e4, e5} in one element, contradicting orthogonality. Therefore, |F | ≤ 4. But now
F ∪{x} is a fan of M with ordering (x, e1, e3, e2) if |F | = 3, or with ordering (x, e1, e3, e2, e4)
if |F | = 4. This contradicts the maximality of F , and thus T ⊆ F .

Therefore, e1 ∈ cl(F −{e1}) and e1 ∈ cl∗(F −{e1}), so λ(F ) = λ(F −{e1})− 1 = 1. Since
M is 3-connected, this implies that |E(M)| ≤ |F | + 1. Lemma 3.2.7 implies that M is a
wheel or a whirl and completes the proof.

A consequence of Lemma 3.2.8 is that, if F = (e1, e2, . . . , e|F |) is a maximal fan of a 3-
connected matroid M such that |F | ≥ 4, then either e1 is contained in a triangle and not
contained in a triad, or e1 is contained in a triad and not contained in a triangle. In the
former case, Tutte’s Triangle Lemma implies that M\e1 is 3-connected, and in the latter
case M/e1 is 3-connected. Similarly, either M\e|F | or M/e|F | is 3-connected.

Lemma 3.2.9. Let M be a 3-connected matroid, and let F = (e1, e2, . . . , e|F |) be a maximal
fan of M with length at least four. Then either M is a wheel or whirl, or, for all i ∈
{1, 2, . . . , |F | − 1}, both of the followng hold:

(i) if {ei, ei+1} is contained in a triangle T , then either T = {ei−1, ei, ei+1} or T =
{ei, ei+1, ei+2}, and
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(i) if {ei, ei+1} is contained in a triad T ∗, then either T ∗ = {ei−1, ei, ei+1} or T ∗ =
{ei, ei+1, ei+2}.

Proof. Suppose M is not a wheel or a whirl. We prove (i), from which (ii) follows by
applying (i) to M∗. First, suppose i = 1. Assume {e1, e2} is contained in a triangle
T = {e1, e2, x} with x 6= e3. Since e1 is contained in a triangle, Lemma 3.2.8 implies that
{e1, e2, e3} is a triangle. By orthogonality with the triad {e2, e3, e4}, we have that x = e4,
so {e1, e2, e4} is a triangle. But now λ({e1, e2, e3, e4}) = 1, and, since M is not a wheel or
a whirl, |E(M)| ≥ |F | + 2. This is a contradiction to the 3-connectivity of M . Hence, if
{e1, e2} is contained in a triangle, then this triangle is {e1, e2, e3}. Similarly, by reversing
the ordering of F , we see that if {e|F |−1, e|F |} is contained in a triangle, then this triangle
is {e|F |−2, e|F |−1, e|F |}. Hence, the result holds for i = 1 and i = |F | − 1.

It remains prove the result for i ∈ {2, 3, . . . , |F |−2}. Suppose T = {ei, ei+1, x} is a triangle
with x /∈ {ei−1, ei+2}. The set {ei, ei+1} is contained in both a triangle and a triad of F —
either {ei−1, ei, ei+1} is a triangle and {ei, ei+1, ei+2} is a triad, or {ei−1, ei, ei+1} is a triad
and {ei, ei+1, ei+2} is a triangle. Up to reversing the ordering of the fan, we may assume
the former. By circuit elimination with {ei−1, ei, ei+1}, the set {ei−1, ei, x} is a triangle of
M . But x /∈ {ei+1, ei+2}, so this contradicts orthogonality with the triad {ei, ei+1, ei+2}
and completes the proof.

Lemma 3.2.10. Let M be a 3-connected matroid and let F1 = (e1, e2, . . . , e|F1|) and F2 =
(f1, f2, . . . , f|F2|) be distinct maximal fans of M such that |F1| ≥ 4 and |F2| ≥ 3. Let e ∈
F1 ∩ F2. Then e ∈ {e2, e3, . . . , e|F1|−1} if and only if |F2| ≥ 4 and e ∈ {f2, f3, . . . , f|F2|−1}.

Proof. First, assume e ∈ {e2, e3, . . . , e|F1|−1}. Thus, e is contained in both a triangle and
a triad of F1. Noting that M has two distinct, maximal fans, and is therefore not a wheel
or a whirl, Lemma 3.2.8 implies that e /∈ {f1, f|F2|}. Furthermore, if |F2| = 3, then F2

intersects both a triangle and a triad. This implies that F2 is contained in a 4-element fan,
contradicting the maximality of F2. Thus, |F2| ≥ 4 and e ∈ {f2, f3, . . . , f|F2|−1}, as desired.
Conversely, if |F2| ≥ 4 and e ∈ {f2, f3, . . . , f|F2|−1}, then e is contained in a triangle and a
triad, so Lemma 3.2.8 implies that e /∈ {e1, e|F1|} and completes the proof.

The next lemma shows that two maximal fans intersect in only their end elements, unless
they form a so-called M(K4)-separator. An M(K4)-separator of a matroid M , pictured
in Figure 3.1, is a set {a, b, c, x, y, z} such that {x, y, z} is a triad, and {a, b, c}, {a, x, y},
{b, x, z}, and {c, y, z} are all triangles.

Lemma 3.2.11. Let M be a 3-connected matroid such that |E(M)| ≥ 8. Let F1 =
(e1, e2, . . . , e|F1|) and F2 = (f1, f2, . . . , f|F2|) be distinct maximal fans of M such that
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Figure 3.1: M(K4)-separator.

|F1| ≥ 4 and |F2| ≥ 3. Then either F1 ∩F2 ⊆ {e1, e|F1|}, or F1 ∪F2 is an M(K4)-separator
in either M or M∗.

Proof. Suppose F1 ∩ F2 6⊆ {e1, e|F1|}, that is, there exists ei ∈ F1 ∩ F2 such that i ∈
{2, 3, . . . , |F1| − 1}. Since F1 and F2 are distinct, F1 has an element which is not an
element of F2. This means there exists such an i for which either ei+1 /∈ F2 or ei−1 /∈ F2.
Up to reversing the ordering of F1, we may assume that ei−1 /∈ F2. The set {ei−1, ei, ei+1} is
either a triangle or a triad. Up to duality, we may assume that {ei−1, ei, ei+1} is a triangle.
By Lemma 3.2.10, we have that |F2| ≥ 4 and ei ∈ {f2, f3, . . . , f|F2|−1}. Let ei = fj with
j ∈ {2, 3, . . . , |F2| − 1}. Now, ei is contained in a triad of F2, and this triad is either
{fj−2, fj−1, ei} or {fj−1, ei, fj+1} or {ei, fj+1, fj+2}.

First, suppose {fj−1, ei, fj+1} is a triad. Then, by orthogonality with the triangle
{ei−1, ei, ei+1}, and since ei−1 /∈ F2, we have that ei+1 ∈ {fj−1, fj+1}. Now, ei+1 is con-
tained in both a triangle and a triad, which implies, by Lemma 3.2.8, that ei+1 /∈ {f1, f|F2|}.
Therefore, if ei+1 = fj−1, then {fj−2, fj−1, fj} is a triangle containing both ei and ei+1,
and if ei+1 = fj+1, then {fj , fj+1, fj+2} is a triangle containing both ei and ei+1. But
since ei−1 /∈ F2, this triangle is distinct from the triangle {ei−1, ei, ei+1}, contradicting
Lemma 3.2.9.

Therefore, either {fj−2, fj−1, ei} or {ei, fj+1, fj+2} is a triad. Up to reversing the or-
dering of F2, we may assume that {ei, fj+1, fj+2} is a triad. By orthogonality with
{ei−1, ei, ei+1}, this triad contains ei+1. Suppose ei+1 = fj+1. Since ei /∈ {f1, f|F2|}, we
have that {fj−1, fj , fj+1} is a triangle containing both ei and ei+1. This contradiction to
Lemma 3.2.9 implies that ei+1 = fj+2. Now, ei+1 is contained in both a triangle and a triad,
so ei+1 /∈ {f1, f|F2|}. Therefore, M has triangles {fj−1, ei, fj+1} and {fj+1, ei+1, fj+3}. Sim-
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ilarly, ei+1 /∈ {e1, e|F1|}, so M has a triad {ei, ei+1, ei+2}. By orthogonality, ei+2 = fj+1.
Furthermore, ei+2 is contained in both a triangle and a triad, so ei+2 /∈ {e1, e|F1|}, which
means {ei+1, ei+2, ei+3} is a triangle. Now, {fj+1, fj+2, fj+3} is also a triangle containing
{ei+1, ei+2}. Lemma 3.2.9 implies that these are the same triangle, so ei+3 = fj+3.

We label these elements in the following way: a = ei−1, b = fj−1, c = ei+3 = fj+3,
x = ei = fj , y = ei+1 = fj+2, z = ei+2 = fj+1. Now, {x, y, z} is a triad, and {a, x, y},
{b, x, z}, {c, y, z} are all triangles. We show that F1 ∪ F2 is an M(K4)-separator in M by
showing that none of a, b, or c are contained in triads, so that F1 ∪ F2 = {a, b, c, x, y, z},
and that {a, b, c} is a triangle.

First, assume that one of a, b, or c is contained in a triad T ∗. Orthogonality with the
triangles {a, x, y}, {b, x, z}, and {c, y, z} implies that T ∗ ⊆ {a, b, c, x, y, z}. But now
λ({a, b, c, x, y, z}) ≤ 1, a contradiction since |E(M)| ≥ 8. Hence, no such triad exists,
so F1 ∪ F2 = {a, b, c, x, y, z}. Now, we show that {a, b, c} is a triangle. By orthogonality
with the triad {x, y, z}, we have that x /∈ cl({a, b, c}), so r({a, b, c, x}) = r({a, b, c}) + 1.
Therefore, since {y, z} ⊆ cl({a, b, c, x}), we have that r(F1∪F2) = r({a, b, c})+1. But con-
versely, {a, b, c} ⊆ cl({x, y, z}), so r(F1∪F2) = r({x, y, z}) = 3. Therefore, r({a, b, c}) = 2,
and M has an M(K4)-separator.

3.2.3 Vertical and cyclic separations

Let M be a matroid. A vertical k-separation of M is a partition (X, {e}, Y ) of E(M) such
that λ(X) = k−1 and λ(Y ) = k−1, and e ∈ cl(X)∩cl(Y ), and r(X) ≥ k and r(Y ) ≥ k. A
cyclic k-separation of M is a partition (X, {e}, Y ) such that λ(X) = k−1 and λ(Y ) = k−1,
and e ∈ cl∗(X) ∩ cl∗(Y ), and r∗(X) ≥ k and r∗(Y ) ≥ k. Note that a vertical k-separation
of M is a cyclic k-separation of M∗. The importance of vertical and cyclic 3-separations
to this work is illustrated by the following lemma (see [25, Lemma 3.1]).

Lemma 3.2.12. Let e be an element of a 3-connected matroid M . If si(M/e) is not 3-
connected, then there exists a vertical 3-separation (X, {e}, Y ) of M . Similarly, if co(M\e)
is not 3-connected, then there exists a cyclic 3-separation (X ′, {e}, Y ′) of M .

The following lemmas about vertical and cyclic separations will be useful.

Lemma 3.2.13. Let M be a 3-connected matroid, and let (X, {e}, Y ) be a vertical 3-
separation of M . Let y ∈ Y . If y ∈ cl(X), then (X ∪ {y}, {e}, Y − {y}) is a vertical
3-separation of M . Furthermore, if y ∈ cl∗(X) and e is not contained in a triangle of M ,
then (X ∪ {y}, {e}, Y − {y}) is a vertical 3-separation of M .
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Proof. First, we suppose that either y ∈ cl(X) or y ∈ cl∗(X) and show that

λ(X ∪ {y}) = λ(Y − {y}) = 2.

Since y ∈ cl(X) ∪ cl∗(X), we have that λ(X ∪ {y}) ≤ 2. Furthermore, r(Y ) ≥ 3, so
|Y − {y}| ≥ 2, and thus, since M is 3-connected, λ(X ∪ {y}) ≥ 2. Hence, λ(X ∪ {y}) = 2.
Now, e ∈ cl(X), which implies λ(X ∪ {e, y}) = 2. Thus, λ(E(M) − (X ∪ {e, y})) =
λ(Y − {y}) = 2.

Next, we show that e ∈ cl(X ∪ {y}) and e ∈ cl(Y − {y}). Since e ∈ cl(X), clearly
e ∈ cl(X ∪ {y}). Now, λ((Y − {y}) ∪ {e}) = λ(X ∪ {y}) = 2, so either e ∈ cl(Y − {y}) or
e ∈ cl∗(Y − {y}). Since e ∈ cl(X ∪ {y}), orthogonality implies that e ∈ cl(Y − {y}).

To show that (X ∪ {y}, {e}, Y − {y}) is a vertical 3-separation, it remains to show that
r(X ∪ {y}) ≥ 3 and r(Y − {y}) ≥ 3. Clearly, r(X ∪ {y}) ≥ r(X) ≥ 3. To complete the
proof, we show that, if r(Y − {y}) = 2, then y ∈ cl∗(X) and e is contained in a triangle
of M . Since r(Y ) ≥ 3, then, if r(Y − {y}) = 2, we have that y /∈ cl(Y − {y}). But
λ(Y ) = λ(Y − {y}), so y ∈ cl∗(Y − {y}). Therefore, by orthogonality, y /∈ cl(X), so
y ∈ cl∗(X). Now, e ∈ cl(Y − {y}), so, since r(Y − {y}) = 2, we have that e is contained in
a rank-2 circuit, that is, e is contained in a triangle. This completes the proof.

Lemma 3.2.14. Let M be a 3-connected matroid, and let F be a fan of M such that
|F | ≥ 3. Let (X, {e}, Y ) be a vertical 3-separation of M such that e /∈ F and e is not
contained in a triangle. Then M has a vertical 3-separation (X ′, {e}, Y ′) such that F ⊆ X ′.

Proof. Suppose F has ordering (e1, e2, . . . , e|F |). Consider the set {e1, e2, e3}, which is
a triangle or a triad. Either |{e1, e2, e3} ∩ X| ≥ 2 or |{e1, e2, e3} ∩ Y | ≥ 2. Without
loss of generality, we may assume the former. Hence, if {e1, e2, e3} is a triangle, then
{e1, e2, e3} ⊆ cl(X), and if {e1, e2, e3} is a triad, then {e1, e2, e3} ⊆ cl∗(X). Since e is
not contained in a triangle, Lemma 3.2.13 implies that M has a vertical 3-separation
(X3, {e}, Y3), with X3 = X ∪ {e1, e2, e3} and Y3 = Y − {e1, e2, e3}. Now, {e2, e3, e4} is
a triangle or a triad, so either e4 ∈ cl(X3) or e4 ∈ cl∗(X3). Thus, M has a vertical
3-separation (X4, {e}, Y4), with X4 = X ∪ {e1, e2, e3, e4} and Y4 = Y − {e1, e2, e3, e4}.
Repeating in this way, we see that M has a vertical 3-separation (X ∪ F, {e}, Y − F ),
completing the proof.

Naturally, applying Lemmas 3.2.13 and 3.2.14 to M∗ gives dual results concerning cyclic
3-separations.

Corollary 3.2.15. Let M be a 3-connected matroid, and let (X, {e}, Y ) be a cyclic 3-
separation of M . Let y ∈ Y . If y ∈ cl∗(X), then (X ∪ {y}, {e}, Y − {y}) is a cyclic
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3-separation of M . Furthermore, if y ∈ cl(X) and e is not contained in a triad of M , then
(X ∪ {y}, {e}, Y − {y}) is a cyclic 3-separation of M .

Corollary 3.2.16. Let M be a 3-connected matroid, and let F be a fan of M such that
|F | ≥ 3. Let (X, {e}, Y ) be a cyclic 3-separation of M such that e /∈ F and e is not
contained in a triad. Then M has a cyclic 3-separation (X ′, {e}, Y ′) such that F ⊆ X ′.

3.3 Matroids With No Detachable Pairs

In this section, we formally define the 3-connected matroids with no detachable pairs. Let
M be a 3-connected matroid. Following [23], we say that Φ = (P1, P2, . . . , Pm), with m ≥ 2,
is a flower in M if Φ is a partition of M such that, for all i ∈ [m], we have that |Pi| ≥ 2,
and λ(Pi) = 2, and λ(Pi ∪Pi+1) = 2, where subscripts are interpreted modulo m. The sets
Pi are called petals of Φ. The flower Φ is an anemone if, for all proper non-empty subsets
J of [m], we have that λ(

⋃
j∈J Pj) = 2. Furthermore, the anemone Φ is

(i) a paddle if u(Pi, Pj) = 2 for all distinct i, j ∈ [m], and

(ii) spike-like if u(Pi, Pj) = 1 for all distinct i, j ∈ [m].

3.3.1 Spike-like anemones with no detachable pairs

We say that M is an even-fan-spike if there is a spike-like anemone Φ = (P1, P2, . . . , Pm)
in M such that m ≥ 3 and Pi is a fan with even length at least two for every i ∈ [m], and⋂

i∈[m] cl(Pi) =
⋂

i∈[m] cl∗(Pi) = ∅. If |Pi| = 2 for each i ∈ [m], then M is a (tipless) spike.
An example of an even-fan-spike is show in Figure 3.2a.

We say that M is an even-fan-spike with tip and cotip if there is a spike-like anemone
Φ = (P1, P2, . . . , Pm) in M where m ≥ 3 and there exists distinct elements x, y ∈ E(M)
such that, for all i ∈ [m], the set Pi ∪ {x, y} is a fan with even length at least four and
ends x and y, and

⋂
i∈[m] cl(Pi) = {x} and

⋂
i∈[m] cl∗(Pi) = {y}. If |Pi ∪ {x, y}| = 4 for all

i ∈ [m], then M is a spike with tip x and cotip y. An example of an even-fan-spike with
tip and cotip is shown in Figure 3.2b.

We now consider the degenerate cases where the anemone Φ has two petals. We say that
M is a degenerate even-fan-spike if E(M) = P1 ∪ P2 such that P1 = (p11, p

1
2, . . . , p

1
|P1|) and

P2 = (p21, p
2
2, . . . , p

2
|P2|) are disjoint fans with even length at least four such that

(i) {p11, p12, p13} and {p21, p22, p23} are triads,
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(a) An even-fan-spike.

x

y

(b) An even-fan-spike with tip and cotip.

(c) A degenerate even-fan-spike.

x

y

(d) A degenerate even-fan-spike with tip and
cotip.

Figure 3.2: Spike-like anemones with no detachable pairs.

(ii) {p1|P1|−2, p
1
|P1|−1, p

1
|P1|} and {p2|P2|−2, p

2
|P2|−1, p

2
|P2|} are triangles,

(iii) {p11, p12, p21, p22} is a circuit, and

(iv) {p1|P1|−1, p
1
|P1|, p

2
|P2|−1, p

2
|P2|} is a cocircuit.

Additionally, M is a degenerate even-fan-spike with tip and cotip if E(M) = P1∪P2∪{x, y}
such that P1 ∪ {x, y} and P2 ∪ {x, y} are each even fans of length at least four with ends x
and y, and cl(P1) ∩ cl(P2) = {x} and cl∗(P1) ∩ cl∗(P2) = {y}. A degenerate even-fan-spike
and a degenerate even-fan-spike with tip and cotip are shown in Figures 3.2c and 3.2d.

3.3.2 Accordions

Let M be a 3-connected matroid, and let F = (e1, e2, . . . , e|F |) be a maximal fan of M
with even length at least four such that {e1, e2, e3} is a triangle and {e|F |−2, e|F |−1, e|F |} is
a triad. Let G ⊆ E(M)− F .

We say that G is a fan-type accordion end with F if G ∪ {e1} is a maximal fan of length
5 with ordering (e1, g2, g3, g4, g5) such that {e1, g2, g3} and {g3, g4, g5} are both triangles,
and {e1, e2, g3, g5} is a cocircuit, and u({g2, g4}, E(M) − (F ∪ G)) = 1. Dually, G is
a co-fan-type accordion end with F if G ∪ {e|F |} is a maximal fan of length 5 with or-
dering (e|F |, h2, h3, h4, h5) such that {e|F |, h2, h3} and {h3, h4, h5} are both triads, and
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{e|F |−1, e|F |, h3, h5} is a circuit, and u({h4, h5}, E(M)− (F ∪G)) = 1.

Next, G is a K4-type accordion end with F if G = {a1, a2, b1, b2} such that {e1, a1, a2}
and {e1, b1, b2} are triangles, and {e1, e2, a1, b1} and {e1, e2, a2, b2} are cocircuits, and
u({a1, b1}, E(M)− (F ∪G)) = u({a2, b2}, E(M)− (F ∪G)) = 1. Dually, G is a co-K4-type
accordion end with F if G = {c1, c2, d1, d2} such that {e|F |, c1, c2} and {e|F |, d1, d2} are tri-
ads, and {e|F |−1, e|F |, c1, d1} and {e|F |−1, e|F |, c2, d2} are circuits, and u({c1, c2}, E(M) −
(F ∪G)) = u({d1, d2}, E(M)− (F ∪G)) = 1.

Finally, G is a triangle-type accordion end with F if G∪{e1} is a triangle and u(G,E(M)−
(F ∪ G)) = 1, and G is a triad-type accordion end with F if G ∪ {e|F |} is a triad, and
u(G,E(M)− (F ∪G)) = 1.

The matroid M is an accordion if E(M) has a partition (G,F,H) of E(M) such that F is a
maximal fan with even length at least four, and G is a fan-type, K4-type, or triangle-type
accordion end with F , and H is a co-fan-type, co-K4-type, or triad-type accordion end
with F . The nine types of accordion are illustrated in Figure 3.3.

3.3.3 Paddles with no detachable pairs.

Suppose M has a paddle Φ = (P1, P2, . . . , Pm), with m ≥ 3, and an element x ∈ E(M)
such that, for all i ∈ [m], the set Pi ∪ {x} is an even fan of length at least four with
ordering (pi1, p

i
2, . . . , p

i
|Pi|, x). We say that M is an even-fan-paddle if

⋂
i∈[m] cl(Pi) = {x}

and
⋂

i∈[m] cl∗(Pi) = ∅, and, for all i, j ∈ [m], the set {pi1, pi2, p
j
1, p

j
2} is a circuit. An

even-fan-paddle is shown in Figure 3.4a.

As with even-fan-spikes, we consider a degenerate case where Φ has two petals. The matroid
M is a degenerate even-fan-paddle if E(M) = P1 ∪ P2 ∪ {x, y} such that P1 ∪ {x} is an
even fan of length at least four with ordering (p11, p

1
2, . . . , p

1
|P1|, x), and P2 ∪ {x} is an even

fan of length at least four with ordering (p21, p
2
2, . . . , p

2
|P2|, x), and cl(P1) ∩ cl(P2) = {x, y}

and cl∗(P1) ∩ cl∗(P2) = ∅, and {p11, p12, p21, p22} is a circuit. A degenerate even-fan-paddle is
shown in Figure 3.4b.

The matroid M(K3,m), shown in Figure 3.5a for when m = 3, has no detachable pairs for
all m ≥ 3. Note that M(K3,m) has a paddle (P1, P2, . . . , Pm) such that Pi is a triad for all
i ∈ [m]. In the remainder of this section, we define types of petals which may be attached
to M(K3,m) to produce a matroid with no detachable pairs (see Figure 3.5).

Let T ∗ be a triad of M , and let X ⊆ E(M) disjoint from T ∗. Then X is a 4-element-
fan-petal relative to T ∗ if X is a fan of length four with ordering (e1, e2, e3, e4) such that
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(a) An accordion with a fan-
type and a co-fan-type accor-
dion end.

e|F |

c2

d2
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(b) An accordion with a fan-
type and a co-K4-type accor-
dion end.

e|F |

(c) An accordion with a fan-
type and a triad-type accordion
end.

e1

b1a1

a2
b2

(d) An accordion with a K4-
type and a co-fan-type accor-
dion end.

(e) An accordion with a K4-
type and a co-K4-type accor-
dion end.

(f) An accordion with aK4-type
and a triad-type accordion end.

e1

(g) An accordion with a
triangle-type and a co-fan-type
accordion end.

(h) An accordion with a
triangle-type and a co-K4-type
accordion end.

(i) An accordion with a triangle-
type and a triad-type accordion
end.

Figure 3.3: The nine types of accordion.
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(a) An even-fan-paddle.
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(b) A degenerate even-fan-paddle.

Figure 3.4: Examples of even-fan-paddles.
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(a) M(K3,3). (b) M(K3,2) with a M∗(K3,2) petal.

x

(c) M(K3,2) with two 4-element-fan-petals.
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(d) M(K3,2) with an augmented-fan-petal.

x
e1

e5

e3e2
e4

(e) M(K3,2) with a co-augmented-fan-petal. (f) M(K3,2) with a type-A quad-petal.

(g) M(K3,2) with a type-A quad-petal. (h) M(K3,2) with a type-A quad-petal.

(i) M(K3,2) with a type-B quad-petal. (j) M(K3,2) with a type-B quad-petal.

Figure 3.5: Examples of paddles with no detachable pairs.
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{e1, e2, e3} is a triad, {e2, e3, e4} is a triangle, e4 ∈ cl(T ∗), and {e1, e2, e3} = {x, x′, x′′}
such that u({x, x′}, T ∗) = u({x, x′′}, T ∗) = 1.

Suppose M has a paddle (P1, P2, . . . , Pm), and there exists x ∈ E(M) and 0 ≤ t ≤ m such
that M\({x} ∪

⋃t
i=1 Pi) ∼= M(K3,m−t) and, for all i ∈ [m], the set Pi − {x} is a triad and

x ∈ cl(Pi−{x}), and for all j ∈ [t], distinct from i, the set Pj ∪{x} is a 4-element-fan-petal
relative to Pi − {x}. Then M has no detachable pairs. To illustrate this matroid, we note
that it can be constructed as follows. Start with U2,4 on ground set {x, y, z, w}. Repeatedly
attach M(K4) along a three-element subset of {a, b, c, d} by generalised parallel connection.
Finally, delete y, z, and w.

Now, we suppose the matroid M has a paddle (P1, P2, . . . , Pm) such that M\P1
∼= M(K3,m)

and Pi is a triad for all i ∈ {2, 3, . . . ,m}. We find the possibilities for P1 such that M has
no detachable pairs. In most cases, the petal P1 will have to attach to P2∪P3∪ · · ·∪Pm in
a certain way. However, if M |P1

∼= M∗(K3,m), then M has no detachable pairs regardless.

Let X ⊆ E(M). The set X is an augmented-fan-petal relative to T ∗ if X = F ∪ {x}
such that F is a fan of length five with ordering (e1, e2, e3, e4, e5) where {e1, e2, e3} and
{e3, e4, e5} are triads, and {e1, e3, e5, x} is a circuit, and T ∗ ∪ {x} is a 4-element fan, and
u({e1, e2}, T ∗) = u({e4, e5}, T ∗) = 1.

We say X is a co-augmented-fan-petal relative to T ∗ if X = F ∪{x} such that F is a fan of
length five with ordering (e1, e2, e3, e4, e5) where {e1, e2, e3} and {e3, e4, e5} are triangles,
and {e1, e3, e5, x} is a cocircuit, and u({e1, x}, T ∗) = u({e5, x}, T ∗) = u({e2, e4}, T ∗) = 1.

We say X is a type-A quad-petal relative to T ∗ if |X| = 4, and X is a circuit and a
cocircuit, and, for all x ∈ X, there exists distinct x′, x′′ ∈ X−{x} such that u({x, x′}, T ∗) =
u({x, x′′}, T ∗) = 1. Finally, we say X is a type-B quad-petal relative to T ∗ if X is a cocircuit,
and X = T ∪ {x} such that T is a triangle, and there exists distinct x′, x′′ ∈ T such that
u({x, x′}, T ∗) = u({x, x′′}, T ∗) = 1. It is not difficult to verify that there are three different
type-A quad-petals and two different type-B quad-petals, shown in Figure 3.5f-j.

If, for all i ∈ {2, 3, . . . ,m}, the petal P1 is an augmented-fan-petal, a co-augmented-fan-
petal, or a quad-petal (type-A or type-B) relative to Pi, then M has no detachable pairs.

3.3.4 Proof Strategy

We now prove that the matroids in this section and their duals are the only 3-connected
matroids with no detachable pairs.

Theorem 1.6.2. Let M be a 3-connected matroid with |E(M)| ≥ 13. Then one of the
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following holds:

(i) M has a detachable pair,

(ii) M is a wheel or a whirl,

(iii) M is an accordion,

(iv) M is an even-fan-spike or a degenerate even-fan-spike,

(v) M is an even-fan-spike with tip and cotip or a degenerate even-fan-spike with tip and
cotip,

(vi) M or M∗ is a degenerate even-fan-paddle, or

(vii) M ′ has a paddle (P1, P2, . . . , Pm) for some M ′ ∈ {M,M∗} and m ≥ 3, and either

(a) M ′ is an even-fan-paddle,

(b) M ′ ∼= M(K3,m),

(c) there exists x ∈ E(M) and 0 ≤ t ≤ m such that M ′\({x} ∪
⋃t

i=1 Pi) ∼=
M(K3,m−t) and, for all i ∈ {1, 2, . . . ,m}, the set Pi − {x} is a triad and
x ∈ cl(Pi−{x}), and for all j ∈ {1, 2, . . . , t}, distinct from i, the set Pj ∪{x} is
a 4-element-fan-petal relative to Pi − {x}, or

(d) M ′\P1
∼= M(K3,m−1), and, for all i ∈ {2, 3, . . . ,m}, the set Pi is a triad and

either

(I) M ′|P1
∼= M(K3,t) for some t ≥ 2,

(II) P1 is an augmented-fan-petal relative to Pi,
(III) P1 is a co-augmented-fan-petal relative to Pi, or
(IV) P1 is a quad-petal relative to Pi.

An outline of the proof is as follows. Let M be a 3-connected matroid with no de-
tachable pairs. In Sections 3.5 and 3.6, we assume that M has distinct maximal fans
F1 = (e1, e2, . . . , e|F1|) and F2 = (f1, f2, . . . , f|F2|) such that |F1| ≥ 4 and |F2| ≥ 3. First,
in Section 3.5, we consider the case where F1 and F2 are disjoint and either {e1, e2, e3}
and {f1, f2, f3} are both triads or {e1, e2, e3} and {f1, f2, f3} are both triads. Under these
assumptions, we prove that one of (iv), (vii)(c) (with 1 ≤ t < m), and (vii)(d)(II) holds. In
Section 3.6, we assume that F1 ∩ F2 6= ∅, and prove that, if the assumptions of Section 3.5
do not hold, then M is one of the matroids described in (iii), (iv), (v), (vi), (vii)(a), and
(vii)(c) (with t = m). Next, in Section 3.7, we suppose that M has a 4-element fan, but
the conditions of Sections 3.5 and 3.6 do not hold. We show that one of (ii), (iv), and
(vii)(d)(III) holds. The remaining cases are when M has no 4-element fans whatsoever,
and this is what we consider in Section 3.8. If M has no triangles or triads, then Theo-
rem 1.6.1 implies that M is a spike and outcome (iv) of Theorem 1.6.2 holds. Otherwise,
we assume that M has a triangle or a triad, and prove that one of (vii)(b), (vii)(c) (with
t = 0), (vii)(d)(I), and (vii)(d)(IV) holds.
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3.4 Further Preliminary Lemmas

In this section, we prove lemmas which will be useful throughout the proof of Theorem 1.6.2.
Note that each lemma may be applied to the matroid M∗ rather than M to obtain a dual
result. These dual results are often not explicitly stated, but are used frequently.

Lemma 3.4.1. Let M be a 3-connected matroid. Let X ⊆ E(M) such that λ(X) = 2 and
|X| ≥ 3 and |E(M)| ≥ |X|+ 3. Let e ∈ E(M)−X. If e ∈ cl(X), then either e is contained
in a triad or M\e is 3-connected.

Proof. First, assume that both r(X) > 2 and r(E(M)−(X∪{e})) > 2. Then λM/e(X) = 1,
and |E(M/e)| ≥ |X| + 2, so M/e is not 3-connected. Furthermore, λsi(M/e)(X) = 1, and,
since r(X) > 2 and r(E(M) − (X ∪ {e})) > 2, there are at least two elements of X and
two elements of E(M) − (X ∪ {e}) remaining in si(M/e). Therefore, si(M/e) is not 3-
connected, and so, by Bixby’s Lemma, co(M\e) is 3-connected. It follows that either M\e
is 3-connected, or e is contained in a triad.

Now assume r(X) = 2. Suppose e is not contained in a triad and M\e is not 3-connected.
Then co(M\e) is not 3-connected, so M has a cyclic 3-separation (P, {e}, Q). Since |X| > 2
and r(X) = 2, we have that X ⊆ cl(T ) for some triangle T ⊆ X. Now, by Corollary 3.2.16,
we may assume that T ⊆ P and, by Corollary 3.2.15, we may assume that X ⊆ P . But
now e ∈ cl(P ) and e ∈ cl∗(P ). This means that λ(P ∪ {e}) = 1, a contradiction.

Finally, assume r(E(M)− (X ∪ {e})) = 2. Note that

λ(E(M)−X) = λ(X) = 2

and
λ(E(M)− (X ∪ {e})) = λ(X ∪ {e}) = 2.

Hence, either e ∈ cl(E(M) − (X ∪ {e})) or e ∈ cl∗(E(M) − (X ∪ {e})). Orthogonality
implies that e ∈ cl(E(M) − (X ∪ {e})). This means that we can apply the argument in
the previous paragraph to the set E(M)− (X ∪ {e}) rather than X, which completes the
proof.

Lemma 3.4.2. Let M be a 3-connected matroid, and let X ⊆ E(M) be a quad. Let e ∈ X.
If e is not contained in a triad, then M\e is 3-connected. Similarly, if e is not contained
in a triangle, then M/e is 3-connected.

Proof. Suppose e is not contained in a triad and M\e is not 3-connected. Then co(M\e)
is also not 3-connected. Thus, M has a cyclic 3-separation (P, {e}, Q). Either |X ∩P | ≥ 2
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or |X ∩ Q| ≥ 2. Without loss of generality, assume the former. If |X ∩ P | = 3, then
e ∈ cl(P ) ∩ cl∗(P ), a contradiction. Otherwise, |X ∩ P | = 2, and |X ∩ Q| = 1. Let f be
the unique element of X ∩ Q. Then f ∈ cl(P ∪ {e}) and f ∈ cl∗(P ∪ {e}). Again, this
contradicts the 3-connectivity of M since |Q − {e}| ≥ 2. Thus, if e is not contained in a
triad, then M\e is 3-connected. A dual argument shows that if e is not contained in a
triangle, then M/e is 3-connected and completes the proof.

Lemma 3.4.3. Let M be a 3-connected matroid with no detachable pairs. Let X ⊆ E(M)
such that |X| ≥ 2 and |E(M)| ≥ |X| + 4. Let e ∈ E(M) −X such that either λ(X) = 2
or λ(X ∪ {e}) = 2, and M\e is 3-connected. Furthermore, let f ∈ E(M) − X such that
f ∈ cl(X) and f is not contained in a triad of M . Then M has a 4-element cocircuit
C∗ = {e, f, g, h} such that g ∈ X and h /∈ X.

Proof. We first prove that there is a triad of M\e containing f . Suppose this is not
the case. Since M\e is 3-connected and |X| ≥ 2 and |E(M)| ≥ |X| + 4, we have that
λM\e(X) ≥ 2. Therefore, if λM (X) = 2, Lemma 3.2.1 implies that λM\e(X) = 2. If
λM (X) 6= 2, then λM (X ∪ {e}) = 2. This implies that λM (X) = 3 and e ∈ cl∗(X). Again,
Lemma 3.2.1 implies that λM\e(X) = 2. If |X| ≥ 3, then Lemma 3.4.1 implies that M\e\f
is 3-connected, so M has a detachable pair, a contradiction. Otherwise, |X| = 2. Since
f ∈ cl(X), the set X ∪ {f} is a triangle. If X ∪ {f} is not contained in a 4-element fan of
M\e, then Tutte’s Triangle Lemma implies that there exists x ∈ X ∪{f} such that M\e\x
is 3-connected, a contradiction. Therefore, there is a 4-element fan of M\e containing the
triangle X ∪ {f}. But f is not contained in a triad of M\f , so f is an end of this fan.
Thus, M\e\f is 3-connected.

In all cases, if f is not contained in a triad of M\e, then M has a detachable pair. Hence,
f is contained in a triad T ∗ of M\e. Since f ∈ cl(X), orthogonality implies that there
exists g ∈ T ∗ such that g ∈ X. Furthermore, if T ∗ ⊆ X ∪ {f}, then f ∈ cl(X) and
f ∈ cl∗(X). This implies λ(X ∪ {f}) < 2, a contradiction to the 3-connectivity of M\f ,
since |E(M\e)| ≥ |X|+ 3. Thus, there exists h ∈ T ∗ with h /∈ X. Since f is not contained
in a triad of M , we have that T ∗ ∪ {e} = {e, f, g, h} is a cocircuit of M .

Lemma 3.4.4. Let M be a 3-connected matroid. Let C = {e, f, g, h} be a 4-element circuit
of M such that {g, h} is contained in a triad T ∗ of M . If si(M/f) is 3-connected and e is
not contained in a triad, then M\e is 3-connected.

Proof. Suppose M\e is not 3-connected. Then M has a cyclic 3-separation (P, {e}, Q).
By Corollary 3.2.16, we may assume that T ∗ ⊆ P . If f ∈ P , then C − {e} ⊆ P . This
means that e ∈ cl(P ) ∩ cl∗(P ), a contradiction. So f ∈ Q. But now f ∈ cl(P ∪ {e}). This
contradicts the fact that si(M/f) is 3-connected, and completes the proof.
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Lemma 3.4.5. Let M be a 3-connected matroid with no detachable pairs. Let C =
{e, f, g, h} be a 4-element circuit of M such that {g, h} is contained in a triad of M ,
and neither e nor f is contained in a triad of M . Let x ∈ E(M) − C such that M\x is
3-connected. Then M has a 4-element cocircuit C∗ containing x and either e or f .

Proof. Suppose neither e nor f is contained in a triad of M\x. Since M\x\e is not 3-
connected, Lemma 3.4.4 implies that si(M\x/f) is not 3-connected. Hence, by Bixby’s
Lemma, co(M\x\f) is 3-connected. But f is not contained in a triad of M\x, so M\x\f
is 3-connected, and M has a detachable pair. This contradiction implies that M\x has a
triad T ∗ containing either e or f . Since neither e nor f is contained in a triad of M , this
means that T ∗ ∪ {x} is a 4-element cocircuit of M , completing the proof.

Lemma 3.4.6. Let M be a 3-connected matroid, and let e and f be distinct elements
of E(M) such that M/e\f is 3-connected. Then either M\f is 3-connected, or {e, f} is
contained in a triad of M .

Proof. Suppose M\f is not 3-connected. This implies there exists a 2-separation X of M\f
such that X − {e} is not a 2-separation of M\f/e. But λM\f/e(X − {e}) ≤ λM\f (X) ≤ 1.
Therefore, either |X − {e}| = 1 or |(E(M)−X)− {e}| = 1. Without loss of generality, we
may assume the former, which implies that e ∈ X and |X| = 2. Since λM\f (X) ≤ 1 and
λM (X) ≥ 2, we have that f ∈ cl∗(X), and thus X ∪ {f} is a triad of M containing both e
and f .

Lemma 3.4.7. Let M be a 3-connected matroid with no detachable pairs. Let C be a
4-element circuit of M , and let e ∈ C such that M/e is 3-connected and not a wheel or
a whirl. Then there is a maximal fan of M/e containing C − {e} with end elements e−

and e+ such that either {e−, e} is contained in a triad of M or M\e− is 3-connected, and
either {e+, e} is contained in a triad of M or M\e+ is 3-connected.

Proof. In M/e, the set C−{e} is a triangle. If C−{e} is not contained in a 4-element fan
of M/e, then Tutte’s Triangle Lemma implies that there exists e−, e+ ∈ C −{e} such that
M/e\e− and M/e\e+ are 3-connected. By Lemma 3.4.6, either {e−, e} is contained in a
triad of M , or M\e− is 3-connected. Similarly, either {e+, e} is contained in a triad of M ,
or M\e+ is 3-connected. Thus, the result holds.

Otherwise, M/e has a maximal fan of length at least four containing C − {e}. Let e− and
e+ be the end elements of this fan. Since, M/e is not a wheel or a whirl, we have that either
e− is contained in a triad and not a triangle, in which case M/e/e− is 3-connected, or e− is
contained in a triangle and not a triad, in which case M/e\e− is 3-connected. Since M has
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no detachable pairs, we have that M/e/e− is not 3-connected, so M/e\e− is 3-connected.
Similarly, M/e\e+ is 3-connected. Again, the result follows from Lemma 3.4.6.

The next lemma will be used frequently throughout the proof of Theorem 1.6.2 to identify
subsets which contain every deletable element of a 3-connected matroid. We introduce
the following notation. A deletable collection of a matroid M is a collection of subsets
({e}, X1, X2, . . . , Xk) of E(M), with k ≥ 2, such that

(i) e /∈ X1 ∪X2 · · · ∪Xk,

(ii) X1 ∩X2 ∩ · · · ∩Xk = ∅,
(iii) either λ(X1) = 2, or X1 ∪ {e} is a quad,

(iv) e ∈ cl(Xi) for all i ∈ [k], and

(v) e is not contained in a triad.

Lemma 3.4.8. Let M be a 3-connected matroid with no detachable pairs. Let X ⊆ E(M)
such that λ(X) = 2, and |E(M)| ≥ |X|+ 3. If X contains a deletable collection, then, for
all x ∈ E(M)−X, the matroid M\x is not 3-connected.

Proof. Suppose there exists x ∈ E(M) − X such that M\x is 3-connected. Let
({e}, X1, X2, . . . , Xk) be a deletable collection contained in X. First, suppose λ(X1) = 2.
Now, |E(M)| ≥ |X| + 3 ≥ |X1| + 4, so Lemma 3.4.3 implies that the matroid M has a
4-element cocircuit containing {e, x}. Otherwise, suppose X1∪{e} is both a quad, in which
case X1∪{e} is still a quad in M\x. Since M\x\e is not 3-connected, Lemma 3.4.2 implies
that M\x has a triad containing e, and so M has a 4-element cocircuit containing {e, x}. In
either case, the matroid M has a 4-element cocircuit C∗ containing {e, x}. Since e ∈ cl(X1),
orthogonality implies that there exists f ∈ C∗ with f ∈ X1. But X1 ∩X2 ∩ · · · ∩Xk = ∅,
so there exists i ∈ [k] such that f /∈ Xi. Now, orthogonality implies that C∗ contains an
element of Xi, so C∗ = {x, e, f, g} with f ∈ X1 and g ∈ Xi. But now x ∈ cl∗(X), so
λM\x(X) ≤ 1. Since |E(M\x)| ≥ |X| + 2, this is a contradiction to the 3-connectivity of
M\x, and completes the proof.

Lemma 3.4.9. Let M be a 3-connected matroid with no detachable pairs. Let X ⊆ E(M)
such that λ(X) = 2 and |E(M)| ≥ |X| + 3. If X contains a deletable collection, then for
all x ∈ E(M)−X, if x is contained in a triangle, then x is contained in a triad.

Proof. Suppose there exists e ∈ E(M) − X such that e is contained in a triangle T , but
e is not contained in a triad. If T is contained in a 4-element fan, then e is an end of
this fan since e is not contained in a triad. This implies M\e is 3-connected, contradicting
Lemma 3.4.8. Thus, T is not contained in a 4-element fan, and Tutte’s Triangle Lemma
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implies that there exists x, y ∈ T such that M\x and M\y are both 3-connected. Thus,
x, y ∈ X. But now e ∈ cl(X), which implies, by Lemma 3.4.1, that M\e is 3-connected.
This is a contradiction which completes the proof.

Lemma 3.4.10. Let M be a 3-connected matroid with no detachable pairs. Let X ⊆
E(M) such that λ(X) = 2, and |E(M)| ≥ |X| + 3, and X contains a deletable collection.
Suppose there exists Y ⊆ X and y ∈ X − Y such that λ(Y ) = 2, and y ∈ cl∗(Y ), and
y is not contained in a triangle of M . Furthermore, suppose, for all y′ ∈ Y ∪ {y}, that
y′ ∈ cl(X − {y′}). Then every element of E(M)−X is contained in a triad.

Proof. Suppose there exists e /∈ X such that e is not contained in a triad. By Lemma 3.4.9,
the element e is also not contained in a triangle. Now, Bixby’s Lemma implies that ei-
ther M/e or M\e is 3-connected. Since M\e is not 3-connected, we have that M/e is
3-connected. By Lemma 3.4.3, there is a 4-element circuit C of M containing {e, y}.
Furthermore, C = {e, f, y, z} such that f /∈ X ∪ {e} and z ∈ Y .

Suppose f is not contained in a triad of M . Neither e nor f is contained in a triad,
which implies that, in M/y, the set C − {y} does not intersect a triad. By Lemma 3.4.7,
there exists distinct e−, e+ ∈ C − {e} such that either {e−, y} is contained in a triad of
M or M\e− is 3-connected, and either {e+, y} is contained in a triad of M or M\e+ is
3-connected. Now, |(C − {y}) ∩X| = 1, so either e− ∈ {e, f} or e+ ∈ {e, f}. Without loss
of generality, assume the former. Neither e nor f is contained in a triad, which implies
M\e− is 3-connected. But e− /∈ X, a contradiction.

So f is contained in a triad T ∗ of M . By orthogonality, T ∗ contains a second element
of C. Now, e is not contained in a triad, so T ∗ contains either y or z. We have that
y ∈ cl(X − {y}) and z ∈ cl(X − {z}), so orthogonality implies that f ∈ cl∗(X), and thus
λ(X ∪ {f}) = 2. Now, e ∈ cl(X ∪ {f}), and M/e is 3-connected, which implies that
|E(M/e)| ≤ |X ∪ {f}|+ 1, that is, |E(M)| = |X|+ 3. But λ(E(M)−X) = λ(X) = 2, so
E(M)−X is either a triangle or a triad containing e, a contradiction.

We can apply Lemmas 3.4.8, 3.4.9 and 3.4.10 to M∗. A contractable collection of a matroid
M is a collection of sets ({e}, X1, X2, . . . , Xk), with k ≥ 2, such that

(i) e /∈ X1 ∪X2 · · · ∪Xk,

(ii) X1 ∩X2 ∩ · · · ∩Xk = ∅,
(iii) either λ(X1) = 2, or X1 ∪ {e} is a quad,

(iv) e ∈ cl∗(Xi) for all i ∈ [k], and

(v) e is not contained in a triangle.
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Corollary 3.4.11. Let M be a 3-connected matroid with no detachable pairs. Let X ⊆
E(M) such that λ(X) = 2, and |E(M)| ≥ |X|+ 3. If X contains a contractable collection,
then, for all x ∈ E(M)−X, the matroid M/x is not 3-connected.

Corollary 3.4.12. Let M be a 3-connected matroid with no detachable pairs. Let X ⊆
E(M) such that λ(X) = 2 and |E(M)| ≥ |X|+ 3. If X contains a contractable collection,
then, for all x ∈ E(M)−X, if x is contained in a triad, then x is contained in a triangle.

Corollary 3.4.13. Let M be a 3-connected matroid with no detachable pairs. Let X ⊆
E(M) such that λ(X) = 2, and |E(M)| ≥ |X|+3, and X contains a contractable collection.
Suppose there exists Y ⊆ X and y ∈ X − Y such that λ(Y ) = 2, and y ∈ cl(Y ), and
y is not contained in a triad of M . Furthermore, suppose, for all y′ ∈ Y ∪ {y}, that
y′ ∈ cl∗(X − {y′}). Then every element of E(M)−X is contained in a triangle.

Lemma 3.4.14. Let M be a 3-connected matroid with no detachable pairs. Let X ⊆ E(M)
such that λ(X) = 2, and |E(M)| ≥ |X| + 3, and X contains a deletable collection. Let
Y ⊆ E(M) such that λ(Y ) = 2, and |E(M)| ≥ |Y | + 3, and Y contains a contractable
collection. Then every element of E(M)− (X ∪Y ) is contained in a maximal fan of length
at least four with end elements in X ∪ Y .

Proof. Let e /∈ X ∪ Y . To show the result, it is sufficient to prove that e is contained in
both a triangle and a triad. If e is contained in neither a triangle nor a triad, then Bixby’s
Lemma implies that either M\e or M/e is 3-connected, contradicting either Lemma 3.4.8
or Corollary 3.4.11. By Lemma 3.4.9, if e is contained in a triangle then e is also contained
in a triad. Dually, by Corollary 3.4.12, if e is contained in a triad, then e is also contained
in a triangle. This completes the proof.

We now consider specific structures which may arise in 3-connected matroids with no
detachable pairs.

Lemma 3.4.15. Let M be a 3-connected matroid with no detachable pairs. Let X ⊆ E(M)
such that λ(X) = 2, and |X| ≥ 3, and |E(M)| ≥ |X| + 7, and, for all x ∈ X, we
have that x ∈ cl∗(X − {x}). Suppose there exists distinct a, b, c ∈ E(M) − X such that
{a, b, c} ⊆ cl(X) and none of a, b, or c are contained in a triad. Then there exists distinct
d, e, f ∈ E(M)− (X ∪ {a, b, c}) such that {d, e, f} ⊆ cl∗(X ∪ {a, b, c}) and none of d, e, or
f are contained in a triangle.

Proof. By Lemma 3.4.1, each of M\a, M\b, and M\c are 3-connected. Hence, by
Lemma 3.4.3, there is a 4-element cocircuit C∗1 = {a, b, d, x} of M , where x ∈ X and
d /∈ X ∪ {a, b, c}. Similarly, M has 4-element cocircuits {a, c, e, y} and {b, c, f, z} with
y, z ∈ X and e, f /∈ X ∪ {a, b, c}. Note that these cocircuits are all distinct.
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If d = e, then cocircuit elimination implies that M has a 4-element cocircuit C∗ contained
in {a, b, c, x, y}. The cocircuit C∗ contains one of a, b, and c — assume, without loss of
generality, that a ∈ C∗. Then a ∈ cl(X ∪ {b, c}) and a ∈ cl∗(X ∪ {b, c}), a contradiction.
In a similar way, we see that all of d, e, and f are distinct. Furthermore, {d, e, f} ⊆
cl∗(X ∪ {a, b, c}).

To complete the proof, we show that none of d, e, and f are contained in a triangle. Suppose
M has a triangle T containing d. By orthogonality, T contains an element of {a, b, x}. If x ∈
T , then, since x ∈ cl∗(X −{x}), orthogonality implies that T contains a second element of
X. But now d ∈ cl(X) and d ∈ cl∗(X∪{a, b}), a contradiction. If a ∈ T , then orthogonality
with {a, c, e, y} implies that T contains one of {c, e, y}, so d ∈ cl(X ∪ {a, b, c, e}) and d ∈
cl∗(X ∪ {a, b, c, e}). This is a contradiction since |E(M)| ≥ |X ∪ {a, b, c, d, e}|+ 2. Finally,
if b ∈ T , then T contains one of {c, f, z}, so d ∈ cl(X ∪ {a, b, c, f}) ∩ cl∗(X ∪ {a, b, c, f}).
This contradiction shows that d is not contained in a triangle, and similarly e and f are
not contained in triangles.

Lemma 3.4.16. Let M be a 3-connected matroid such that |E(M)| ≥ 11. Suppose there
exists distinct a, b, c, d ∈ E(M) such that r({a, b, c, d}) = 2. Then M has a detachable pair.

Proof. Assume, with the aim of reaching a contradiction, that M does not contain a detach-
able pair. To begin, suppose M has a triad T ∗ which intersects {a, b, c, d}. Orthogonality
implies that T ∗ ⊆ {a, b, c, d}. But now the set T ∗ is both a triangle and a triad, contra-
dicting the 3-connectivity of M . Thus, {a, b, c, d} does not intersect a triad. It follows that
({a}, {b, c}, {b, d}, {c, d}) is a deletable collection. We shall find an element z /∈ {a, b, c, d}
such that M\z is 3-connected. Since λ({a, b, c, d}) = 2 and |E(M)| ≥ 7, this will contradict
Lemma 3.4.8 and complete the proof.

Let x, y ∈ {a, b, c, d}. By Lemma 3.4.1, we have that M\x is 3-connected, and y ∈
cl({a, b, c, d} − {y}). Thus, by Lemma 3.4.3, there is a 4-element cocircuit of M con-
taining {x, y}. Furthermore, this cocircuit contains another element of {a, b, c, d}, and an
element which is not an element of {a, b, c, d}.

So M has a 4-element cocircuit C∗1 containing a and b. Without loss of generality, let
C∗1 = {a, b, c, e} with e /∈ {a, b, c, d}. Similarly, M has a 4-element cocircuit containing
a and d, which we may assume is C∗2 = {a, b, d, f} with f /∈ {a, b, c, d}. If e = f , then
cocircuit elimination implies M has a cocircuit contained in {a, b, c, d}, a contradiction to
the 3-connectivity of M . So e 6= f . Similarly, M has a 4-element cocircuit containing c
and d, which we may take to be C∗3 = {a, c, d, g} with g /∈ {a, b, c, d, e, f}.

We apply the dual of Lemma 3.4.15 withX = {a, b, c, d}. Certainly, {e, f, g} ⊆ cl∗({a, b, c, d})
and, for all x ∈ {a, b, c, d}, we have that x ∈ cl({a, b, c, d}−{x}). Suppose e is contained in
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a triangle T of M . Then, by orthogonality with C∗1 , the triangle T contains one of {a, b, c}.
In turn, orthogonality with either C∗2 or C∗3 implies that T contains a second element of
{a, b, c, d, f, g}. But now e ∈ cl({a, b, c, d, f, g}) and e ∈ cl∗({a, b, c, d, f, g}), a contradic-
tion. Hence, the element e, and symmetrically f and g, is not contained in a triangle. Thus,
Lemma 3.4.15 implies that M has elements h, i, j such that {h, i, j} ⊆ cl({a, b, c, d, e, f, g})
and none of h, i, and j are contained in a triad. In particular, M\h is 3-connected, a
contradiction which completes the proof.

Lemma 3.4.17. Let M be a 3-connected matroid with no detachable pairs. Let F =
(e1, e2, . . . , e|F |) be a maximal fan with odd length at least five such that {e1, e2, e3} is a
triangle. Then |F | = 5, and there exists z ∈ E(M)−F such that {e1, e3, e5, z} is a cocircuit.

Proof. Since |F | is odd, the set {e|F |−2, e|F |−1, e|F |} is also a triangle. Therefore, M\e|F | is
3-connected, and e1 ∈ cl({e2, e3}). By Lemma 3.2.7, and observing that M is not a wheel
or a whirl since M has a maximal fan of odd length, we have that |E(M)| ≥ |F | + 2 ≥
|{e2, e3}| + 4. Thus, by Lemma 3.4.3, there is a 4-element cocircuit C∗ of M containing
{e1, e|F |} and an element z /∈ F . Furthermore, by orthogonality, C∗ contains one element
of {e2, e3} and one element of {e|F |−2, e|F |−1}. The only possibility is |F | = 5 and e3 ∈ C∗,
which completes the proof.

Lemma 3.4.18. Let M be a 3-connected matroid with no detachable pairs such that
|E(M)| ≥ 8. Let F = (e1, e2, . . . , e|F |) be a maximal fan of M with such that |F | ≥ 3
and {e1, e2, e3} is a triad. Let T ∗ be a triad of M which is not contained in a 4-element
fan. Then one of the following holds.

(i) |F | = 3 and |F ∩ T ∗| > 0,

(ii) e1 ∈ T ∗,
(iii) F is a 4-element-fan-petal relative to T ∗, or

(iv) M |(F ∪ T ∗) ∼= M(K3,2).

Proof. Suppose neither (i) nor (ii) holds. Note that this implies, by Lemma 3.2.11, that
the triads {e1, e2, e3} and T ∗ are disjoint. Let x ∈ T ∗. If |F | ≥ 4, then M/e1 is 3-connected.
If |F | = 3, then F is a triad not contained in a 4-element fan, and Tutte’s Triangle Lemma
implies that at least two of M/e1, M/e2, and M/e3 are 3-connected. Thus, without loss
of generality, we assume that M/e1 is 3-connected. In either case, x ∈ cl∗(T ∗ − {x}),
so Lemma 3.4.3 implies that there is a 4-element circuit C1 of M containing {x, e1}. By
orthogonality, C1 contains another element of T ∗ and another element of {e1, e2, e3}. Hence,
C1 = {e1, ei, x, y}, with i ∈ {2, 3} and y ∈ T ∗. Let z be the unique element of T ∗ − {x, y}.
Lemma 3.4.3 again implies that there is a 4-element circuit C2 of M containing {e1, z},
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and another element of T ∗, and another element of {e1, e2, e3}. Without loss of generality,
let C2 = {e1, ej , x, z} with j ∈ {2, 3}.

Suppose i = j. Circuit elimination implies that M has a circuit C contained in {x, y, z, e1}.
By orthogonality with {e1, e2, e3}, we have that e1 /∈ C. Therefore, the triad {e1, e2, e3}
contains a circuit, a contradiction to the 3-connectivity of M . Hence, i 6= j, and so, without
loss of generality, C1 = {x, y, e1, e2} and C2 = {x, z, e1, e3}.

If |F | ≥ 5, then C2 intersects the triad {e3, e4, e5} in one element, a contradiction. There-
fore, |F | ≤ 4. Suppose |F | = 4. We show that F is a 4-element-fan-petal relative to T ∗.
Now,

u({e1, e2}, T ∗) = r({e1, e2}) + r(T ∗)− r(T ∗ ∪ {e1, e2}) = 2 + 3− 4 = 1

Similarly, u({e1, e3}, T ∗) = 1. To show that F is a 4-element-fan-petal relative to T ∗,
it remains to show that e4 ∈ cl(T ∗). We have that r(F ) = 3, so r(F ∪ {x}) = 4, by
orthogonality with T ∗. Now, y, z ∈ cl(F ∪ {x}), and thus r(F ∪ T ∗) = 4. By orthogonality
with the triad {e1, e2, e3}, we have that r(F ∪ T ∗) > r(T ∗ ∪ {e4}). Thus, r(T ∗ ∪ {e4}) =
r(T ∗) = 3, so e4 ∈ cl(T ∗), and F is a 4-element-fan-petal relative to T ∗.

Finally, suppose |F | = 3. Either M/e2 or M/e3 is 3-connected. Without loss of generality,
we assume M/e2 is 3-connected. Then M has a 4-element circuit C3 containing {e2, z},
and one of e1 and e3, and one of x and y. If e1 ∈ C3, then circuit elimination with C1

implies that M has a circuit contained in T ∗ ∪ {e2}, and orthogonality with {e1, e2, e3}
implies that M has a circuit contained in T ∗, a contradiction. Similarly, if x ∈ C3, then
circuit elimination with C2 and orthogonality implies that M has a circuit in {e1, e2, e3}.
Therefore, C3 = {e2, e3, y, z}, which implies that M |(F ∪ T ∗) ∼= M(K3,2), completing the
proof.

Lemma 3.4.19. Let M be a 3-connected matroid. Suppose E(M) can be partitioned into
P1, P2, . . . , Pm, with m ≥ 2, such that |P1| ≥ 2, and, for all i ∈ {2, 3, . . . ,m}, the set Pi is
a triad and r(Pi ∪Pj) = r(Pj) + 1, for all j ∈ [m]−{i}. Then (P1, P2, . . . , Pm) is a paddle
of M .

Proof. First, let i, j be distinct elements of [m] and suppose, without loss of generality,
that i 6= 1. Then

u(Pi, Pj) = r(Pi) + r(Pj)− r(Pi ∪ Pj)

= 3 + r(Pj)− (r(Pj) + 1) = 2.

Next, let J be a proper non-empty subset of [m], and let X =
⋃

i∈J Pi. To complete the
proof, we show that λ(X) = 2. First, assume that 1 /∈ J . If |J | = 1, then X is a triad, so
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λ(X) = 2. Otherwise, let i ∈ J , and assume that λ(X−Pi) = 2. Now, r(X) ≤ r(X−Pi)+1,
and, since Pi is a triad, r∗(X) ≤ r∗(X − Pi) + 2. Thus,

λ(X) ≤ (r(X − Pi) + 1) + (r∗(X − Pi) + 2)− (|X|+ 3) = 2

Thus, λ(X) = 2, as desired. Finally, if 1 ∈ J , then 1 /∈ [m] − J . Hence, λ(X) =
λ(
⋃

i∈[m]−J Pi) = 2, which completes the proof.

3.5 Disjoint Fans

Armed with the lemmas from the previous sections, we begin the proof in earnest. In this
section, we prove the following:

Theorem 3.5.1. Let M be a 3-connected matroid such that |E(M)| ≥ 13. Let F1 =
(e1, e2, . . . , e|F1|) and F2 = (f1, f2, . . . , f|F2|) be disjoint, maximal fans of M such that
|F1| ≥ 4 and |F2| ≥ 3. If {e1, e2, e3} and {f1, f2, f3} are both triads, then one of the
following holds:

(i) M has a detachable pair,

(ii) M is an even-fan-spike or a degenerate even-fan-spike, or

(iii) M has a paddle (P1, P2, . . . , Pm) such that either

(a) there exists x ∈ E(M) and 1 ≤ t < m such that M ′\({x} ∪
⋃t

i=1 Pi) ∼=
M(K3,m−t) and for all i ∈ {1, 2, . . . ,m} the set Pi − {x} is a triad, and for
all j ∈ {1, 2, . . . , t}, distinct from i, the set Pj ∪ {x} is a 4-element-fan-petal
relative to Pi − {x},

(b) M\P1
∼= M(K3,m−1) and, for all i ∈ {2, 3, . . . ,m}, the set Pi is a triad and P1

is an augmented-fan-petal relative to P1.

3.5.1 F2 has length three

First, we consider the case where |F2| = 3, and show that either M has a detachable pair,
or has the structure described in Theorem 3.5.1(iii)(a).

Lemma 3.5.2. Let M be a 3-connected matroid with no detachable pairs such that |E(M)| ≥
10. Let F1 = (e1, e2, . . . , e|F1|) be a maximal fan of M such that |F1| ≥ 4 and {e1, e2, e3} is
a triad. Let F2 be a triad of M which is disjoint from F1 and not contained in a 4-element
fan. Then both of the following hold:

(i) F1 is a 4-element-fan-petal relative to F2, and
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(ii) every element of E(M)− (F1 ∪ F2) is contained in a triad.

Proof. Since F1 and F2 are disjoint, we have that Lemma 3.4.18(i) and (ii) do not hold. Fur-
thermore, |F1| ≥ 4, which means Lemma 3.4.18(iv) does not hold. Therefore, Lemma 3.4.18(iii)
holds, and F1 is a 4-element-fan-petal relative to F2.

Note that e4 ∈ cl(F1 − {e4}) and e4 ∈ cl(F2). Furthermore, λ(F1 − {e4}) = 2, and e4 is
not contained in a triad by Lemma 3.2.8. Therefore, ({e4}, F1 − {e4}, F2) is a deletable
collection. Also, λ(F1 ∪ F2) = 2 and |E(M)| ≥ |F1 ∪ F2| + 3 = 10. Furthermore, e1 ∈
cl∗(F1 − {e1}) and, for all i ∈ {1, 2, . . . , |F1|}, we have that ei ∈ cl(F1 ∪ F2). Thus, by
Lemma 3.4.10, every element of E(M) − (F1 ∪ F2) is contained in a triad and completes
the proof.

Lemma 3.5.3. Let M be a 3-connected matroid with no detachable pairs such that |E(M)| ≥
10. Let F1 = (e1, e2, e3, e4) be a maximal fan of M such that {e1, e2, e3} is a triad. Let F2

be a triad of M which is disjoint from F1 and not contained in a 4-element fan. Further-
more, let F3 be a maximal fan of M , distinct from F1 and F2, such that |F3| ≥ 4. Then
e4 ∈ F3, and F3 is a 4-element-fan-petal relative to {e1, e2, e3} and F2.

Proof. By Lemma 3.5.2, we have that F1 is a 4-element-fan-petal relative to F2. So
let F2 = {f1, f2, f3} such that {e1, e2, f1, f2} and {e1, e3, f1, f3} are circuits. Also let
(g1, g2, . . . , g|F3|) be an ordering of F3.

If {g1, g2, g3} is a triangle, then g1 is not contained in a triad, and so, Lemma 3.5.2 implies
that g1 ∈ F1 ∪ F2. The only element of F1 ∪ F2 which is not contained in a triad is e4,
so g1 = e4. Similarly, if {g|F3|−2, g|F3|−1, g|F3|} is a triangle, then g|F3| = e4. Therefore,
either {g1, g2, g3} is a triad, or {g|F3|−2, g|F3|−1, g|F3|} is a triad. Without loss of generality,
assume the former.

Now, |F3| ≥ 4, so Lemma 3.4.18(i) and (iv) do not hold. Suppose g1 ∈ F1∪F2. Lemma 3.2.8
implies that g1 6= e4, and Lemma 3.2.11 implies that g2, g3 /∈ F1 ∪ F2. Therefore, the triad
{g1, g2, g3} intersects either the circuit {e1, e2, f1, f2} or the circuit {e1, e3, f1, f3} in one
element. This contradiction to orthogonality implies that g1 /∈ F1∪F2, so Lemma 3.4.18(ii)
does not hold. Hence, F3 is a 4-element-fan-petal relative to F2. This means that |F3| = 4,
so g4 is not contained in a triad, and thus g4 = e4. Now, Lemma 3.4.3 implies that M
has a circuit containing {e1, g1} and, by orthogonality, one of {e2, e3} and one of {g2, g3}.
This implies that either u({g1, g2}, {e1, e2, e3}) = 1 or u({g1, g3}, {e1, e2, e3}) = 1, and the
triangles {e2, e3, e4} and {g2, g3, e4} imply that u({g2, g3}, {e1, e2, e3}) = 1. Hence, F3 is a
4-element-fan-petal relative to {e1, e2, e3}, completing the proof.
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Lemma 3.5.4. Let M be a 3-connected matroid with no detachable pairs such that |E(M)| ≥
11. Let F1 = (e1, e2, e3, e4) be a maximal fan of M such that {e1, e2, e3} is a triad. Let F2

be a triad of M which is disjoint from F1 and not contained in a 4-element fan. Further-
more, let F3 6⊆ F1 ∪ F2 be a triad of M which is not contained in a 4-element fan. Then
F1 is a 4-element-fan-petal relative to F3 and M |(F2 ∪ F3) ∼= M(K3,2).

Proof. Let F2 = {f1, f2, f3} such that {e1, e2, f1, f2} and {e1, e3, f1, f3} are circuits. Sup-
pose F1 and F3 are disjoint. Then Lemma 3.5.2 implies that F1 is a 4-element-fan-
petal relative to F3. Furthermore, orthogonality with the circuits {e1, e2, f1, f2} and
{e1, e3, f1, f3} implies that F2 and F3 are disjoint. Therefore, by Lemma 3.4.18, we have
that M |(F2 ∪ F3) ∼= M(K3,2), and the result holds.

Otherwise, suppose that F1 ∩ F3 6= ∅. This implies, by Lemma 3.2.11 and Lemma 3.2.8,
that e1 ∈ F3. If |F2 ∩ F3| = 2, then r∗(F2 ∪ F3) = 2, contradicting Lemma 3.4.16. Thus,
orthogonality with {e1, e2, f1, f2} and {e1, e3, f1, f3} implies that T ∗ = {e1, f1, e}, for some
e /∈ F1∪F2. Now, ({e1}, F1−{e1}, {f1, e}) is a contractable collection. Thus, F1∪F2∪{e}
contains both a deletable collection and a contractable collection.

Let g /∈ F1 ∪ F2 ∪ {e}. By Lemma 3.4.14, the element g is contained in a maximal fan G.
Lemma 3.5.3 implies that G is a 4-element-fan-petal relative to F2, so G has an ordering
(g1, g2, g3, e4) such that {g1, g2, g3} is a triad. Furthermore, g1 ∈ F1 ∪ F2 ∪ {e}. But
g1 /∈ F1 ∪ F2, by orthogonality, so g1 = e. Note that since G is a 4-element-fan-petal
relative to F2, there is a circuit C of M containing {e, g2} and two elements of F2.

Since |E(M)| ≥ 11, there exists h /∈ F1 ∪ F2 ∪ G. As before, h is contained in a maximal
fan H with ordering (e, h2, h3, e4) such that {e, h2, h3}. But this triad intersects the circuit
C in one element, a contradiction which completes the proof.

Lemma 3.5.5. Let M be a 3-connected matroid with no detachable pairs such that |E(M)| ≥
11. Let F1 = (e1, e2, . . . , e|F1|) be a maximal fan of M such that |F1| ≥ 4 and {e1, e2, e3} is
a triad. Let F2 be a triad of M which is disjoint from F1 and not contained in a 4-element
fan. Then M has a paddle (P1, P2, . . . , Pm) and an element x ∈ E(M) and 1 ≤ t < m such
that M ′\({x} ∪

⋃t
i=1 Pi) ∼= M(K3,m−t) and for all i ∈ {1, 2, . . . ,m} the set Pi − {x} is a

triad, and for all j ∈ {1, 2, . . . , t}, distinct from i, the set Pj ∪ {x} is a 4-element-fan-petal
relative to Pi − {x}.

Proof. By Lemma 3.5.2, we have that F1 is a 4-element-fan-petal relative to F2. Let
e /∈ F1∪F2. By Lemma 3.5.2, the element e is contained in a triad T ∗. If T ∗ is contained in
a 4-element fan, then Lemma 3.5.3 implies that T ∗ ∪ {e4} is a 4-element-fan-petal relative
to F1 − {e4} and F2. Otherwise, Lemma 3.5.4 implies that F1 is a 4-element-fan-petal
relative to T ∗ and M |(F2 ∪ T ∗) ∼= M(K3,2).
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It follows that E(M) can be partitioned into P1, P2, . . . , Pm, with m ≥ 3 and 1 ≤ t < m
such that P1 = F1 and Pi is a triad for all i ∈ {2, 3, . . . ,m}. Furthermore, M\(

⋃t
i=1 Pi) ∼=

M(K3,m−t) and for all distinct i ∈ {1, 2, . . . , t} and j ∈ {1, 2, . . . ,m}, the set Pi ∪ {e4} is
a 4-element-fan-petal relative to Pj . By Lemma 3.4.19, we have that (P1, P2, . . . , Pm) is a
paddle of M , completing the proof.

3.5.2 F2 has odd length

Next, we consider the case where F2 is odd and has length at least five, and show that
either M has a detachable pair, or M has the structure described in Theorem 3.5.1(iii)(b).

Lemma 3.5.6. Let M be a 3-connected matroid with no detachable pairs such that |E(M)| ≥
12. Let F1 = (e1, e2, . . . , e|F1|) and F2 = (f1, f2, . . . , f|F2|) be disjoint, maximal fans of M
such that |F1| ≥ 4, and |F2| ≥ 5 and odd. If {e1, e2, e3} and {f1, f2, f3} are both triads,
then both of the following hold:

(i) |F1| = 4 and |F2| = 5 and F2 ∪ {e4} is an augmented-fan-petal relative to the triad
{e1, e2, e3}, and

(ii) every element of E(M)− (F1 ∪ F2) is contained in a triad.

Proof. Lemma 3.4.17 implies that |F2| = 5. By Lemma 3.4.3, there is a 4-element circuit
C1 of M containing {e1, f1}. Orthogonality with the triads {f1, f2, f3} and {f3, f4, f5}
implies that f2 ∈ C1, and orthogonality with {e1, e2, e3} implies that either e2 ∈ C1 or
e3 ∈ C1. Hence, C1 = {e1, ei, f1, f2} with i ∈ {2, 3}. Similarly, M has a 4-element circuit
C2 = {e1, ej , f4, f5} with j ∈ {2, 3}. If i = j, then circuit elimination impliesM has a circuit
contained in {f1, f2, f4, f5, e1}, and e1 is not contained in this circuit by orthogonality with
{e1, e2, e3}. But now M has a circuit contained in {f1, f2, f4, f5}, which means λ(F2) ≤ 1,
a contradiction. This means that either i = 3 or j = 3, which contradicts orthogonality
with {e3, e4, e5} if |F1| ≥ 5. Hence, |F1| = 4.

Note that λ(F1 ∪F2) = 2. Furthermore, r(F1 ∪F2) = r(F2) + 1, and by orthogonality with
the triad {e1, e2, e3}, we have that e1, e2, e3 /∈ cl(F2 ∪ {e4}). It follows that e4 ∈ cl(F2),
so ({e4}, F1 − {e4}, F2) is a deletable collection. Since e1 ∈ cl∗(F1 − {e1}) and |E(M)| ≥
|F1∪F2|+3 = 12, Lemma 3.4.10 implies that every element of E(M)−(F1∪F2) is contained
in a triad.

Now, u({f1, f2}, {e1, e2, e3}) = u({f4, f5}, {e1, e2, e3}) = 1. To show that F2 ∪ {e4} is
an augmented-fan-petal relative to {e1, e2, e3}, it remains to show that {f1, f3, f5, e4} is a
circuit of M . By Lemma 3.4.17, there is a 4-element circuit {f1, f3, f5, z} of M . Assume,
with the aim of reaching a contradiction, that z 6= f4. It follows, by orthogonality, that z /∈
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F1∪F2, and thus z is contained in a triad T ∗. Orthogonality with the circuit {f1, f3, f5, z}
implies that either f1 ∈ T ∗ or f5 ∈ T ∗. Furthermore, orthogonality with either C1 or C2

implies that e1 ∈ T ∗. But now z ∈ cl(F2) and z ∈ cl∗(F1 ∪ F2), so λ(F1 ∪ F2 ∪ {z}) ≤ 1.
This is a contradiction, since |E(M)| ≥ |F1 ∪ F2 ∪ {z}| + 2 = 12, which completes the
proof.

Lemma 3.5.7. Let M be a 3-connected matroid with no detachable pairs such that |E(M)| ≥
12. Let F1 = (e1, e2, e3, e4) and F2 = (f1, f2, f3, f4, f5) be disjoint maximal fans of M such
that {e1, e2, e3} and {f1, f2, f3} are both triads. Let e ∈ E(M) − (F1 ∪ F2). Then e is
contained in a triad T ∗ such that F2 ∪ {e4} is a augmented-fan-petal relative to T ∗ and
M |(T ∗ ∪ {e1, e2, e3}) ∼= M(K3,2).

Proof. By Lemma 3.5.6, F2 ∪ {e4} is an augmented-fan-petal relative to {e1, e2, e3}. Fur-
thermore, the element e is contained in a triad T ∗. Suppose T ∗ is not contained in a
4-element fan. Since |F2| = 5, Lemma 3.4.18(i), (iii), and (iv) do not hold. Thus, f1 ∈ T ∗.
Furthermore, by reversing the ordering of F2, we see that f5 ∈ T ∗. Hence, T ∗ = {f1, f5, e}.
But now F1 and T ∗ are disjoint, which contradicts Lemma 3.5.5.

So T ∗ is contained in a 4-element fan. Let F3 be the maximal fan containing T ∗, and
let (g1, g2, . . . , g|F3|) be an ordering of F3. Suppose g1 ∈ F2, which means that g1 ∈
{f1, f5}. Lemma 3.2.8 implies that {g1, g2, g3} is a triad. Since F2 is an augmented-
fan-petal relative to F1, orthogonality implies that F2 ∪ F3 is not a M(K4)-separator
in M∗. Thus, Lemma 3.2.11 implies that g2, g3 /∈ F2, and Lemma 3.2.8 implies that
e4 /∈ {g1, g2, g3}. But now the triad {g1, g2, g3} intersects the circuit {f1, f3, f5, e4} in one
element, a contradiction. Similarly, g|F3| /∈ F2, which implies F2 and F3 are disjoint. If
{g1, g2, g3} is a triangle, then g1 ∈ F1∪F2, so g1 = e4. Similarly, if {g|F3|−2, g|F3|−1, g|F3|} is
a triangle, then g|F3| = e4. Therefore, either {g1, g2, g3} or {g|F3|−2, g|F3|−1, g|F3|} is a triad,
so we may assume that {g1, g2, g3} is a triad. Thus, by Lemma 3.5.6, we have that |F3| = 4
and F2 ∪ {g4} is an augmented-fan-petal relative to T ∗ = {g1, g2, g3}. Also, g4 is not
contained in a triad, so g4 = e4. Finally, since F2 ∪{e4} is an augmented-fan-petal relative
to both {e1, e2, e3} and T ∗, circuit elimination implies that M |(T ∗∪{e1, e2, e3}) ∼= M(K3,2).
This completes the proof.

Lemma 3.5.8. Let M be a 3-connected matroid with no detachable pairs such that |E(M)| ≥
12. Let F1 = (e1, e2, . . . , e|F1|) and F2 = (f1, f2, . . . , f|F2|) be disjoint, maximal fans of M
such that |F1| ≥ 4, and |F2| ≥ 5 and odd. If {e1, e2, e3} and {f1, f2, f3} are both triads, then
M has a paddle (P1, P2, . . . , Pm) where M\P1

∼= M(K3,m−1), and, for all i ∈ {2, 3, . . . ,m},
the petal Pi is a triad, and P1 is an augmented-fan-petal relative to Pi.

Proof. By Lemma 3.5.6, we have that |F1| = 4 and F2∪{e4} is an augmented-fan-petal rela-
tive to {e1, e2, e3}. Let e /∈ F1∪F2. By Lemma 3.5.7, there exists a triad T ∗ of M containing
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e such that F2 ∪ {e4} is an augmented-fan-petal relative to T ∗ and M |({e1, e2, e3} ∪ T ∗) ∼=
M(K3,2). It follows that E(M) can be partitioned into P1, P2, . . . , Pm ⊆ E(M) such that
P1 = F2 ∪ {e4} and M\P1

∼= M(K3,m−1) and, for all i ∈ {2, 3, . . . ,m}, the set Pi is a
triad and P1 is an augmented-fan-petal relative to Pi. By Lemma 3.4.19, we have that
(P1, P2, . . . , Pm) is a paddle of M , completing the proof.

3.5.3 F1 and F2 have even length

Finally, we consider the case where both F1 and F2 are even, and show that M is an
even-fan-spike or a degenerate even-fan-spike. Notice that in this section we are assuming
that M has two disjoint even fans of length at least four, but certain lemmas apply when
one of the fans has length two — these lemmas will be useful again later on.

Lemma 3.5.9. Let M be a 3-connected matroid with no detachable pairs. Let F1 and F2

be disjoint maximal fans of M with even length at least four. Then there exists orderings
(e1, e2, . . . , e|F1|) and (f1, f2, . . . , f|F2|) of F1 and F2 respectively such that {e1, e2, e3} and
{f1, f2, f3} are triads, and {e|F1|−2, e|F1|−1, e|F1|} and {f|F1|−2, f|F1|−1, f|F1|} are triangles,
and either {e1, e2, f1, f2} is a circuit and {e|F1|−1, e|F1|, f|F2|−1, f|F2|} is a cocircuit, or |F1| =
|F2| = 4 and {e1, e2, f1, f2} is a circuit and {e2, e4, f2, f4} is a cocircuit.

Proof. Let (e1, e2, . . . , e|F1|) and (f1, f2, . . . , f|F2|) be orderings of F1 and F2 respec-
tively such that {e1, e2, e3} and {f1, f2, f3} are triads, and {e|F1|−2, e|F1|−1, e|F1|} and
{f|F1|−2, f|F1|−1, f|F1|} are triangles. By Lemma 3.4.3, there is a 4-element circuit C of
M containing {e1, f1}. Orthogonality implies that C contains either e2 or e3. If |F1| > 4,
then orthogonality with {e3, e4, e5} implies that e2 ∈ C. Furthermore, if |F1| = 4, then, up
to the ordering of F1, we may assume that e2 ∈ C. Similarly, orthogonality implies that
either f2 ∈ C or f3 ∈ C, so we may assume that f2 ∈ C. Thus, C = {e1, e2, f1, f2}.

By Lemma 3.4.3, there is a 4-element cocircuit C∗ of M containing {e|F1|, f|F2|}, and either
e|F1|−2 or e|F1|−1, and either f|F2|−2 or f|F2|−1. If C∗ = {e|F1|−1, e|F1|, f|F2|−1, f|F2|} then the
result holds. Otherwise, either e|F1|−2 ∈ C∗ or f|F2|−2 ∈ C∗. Without loss of generality,
assume the former. If |F1| > 4, then C∗ intersects the triangle {e|F1|−4, e|F1|−3, e|F1|−2} in
one element, so |F1| = 4. Now, e2 ∈ C ∩ C∗, so orthogonality implies that f2 ∈ C∗. Thus,
|F1| = |F2| = 4 and {e2, e4, f2, f4} is a cocircuit, completing the proof.

Lemma 3.5.10. Let M be a 3-connected matroid. Let F = (e1, e2, . . . , e|F |) be a maximal
fan of M with length at least two such that either |F | = 2 or {e1, e2, e3} is a triad. Suppose
there exists a 4-element circuit C = {e1, ei, a, b} of M with i ∈ {2, 3} and a, b /∈ F . Then
for all x ∈ E(M)− (F ∪ C), we have that x /∈ cl∗(F ).
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Proof. Suppose, to the contrary, that there exists e ∈ E(M)−(F ∪X) such that e ∈ cl∗(F ).
If |F | = 2, then F ∪ {e} is a triad, which contradicts the maximality of F . So we may
assume that |F | ≥ 3. Since e1 ∈ cl∗(F − {e1}), we also have that e ∈ cl∗(F − {e1}), so
λ((F − {e1}) ∪ {e}) = 2. The circuit C implies that ei ∈ cl(E(M) − ((F − {e1}) ∪ {e})),
so λ(E(M)− ((F − {e1, ei}) ∪ {e})) = 2. In turn, the element of {e2, e3} which isn’t ei is
contained in cl∗(E(M)− ((F −{e1, ei})∪{e})), so λ(E(M)− ((F −{e1, e2, e3})∪{e})) = 2.
Repeating in this way, we see that λ(E(M) − {e|F |−1, e|F |, e}) = 2, so {e|F |−1, e|F |, e} is
either a triangle or a triad. Since e ∈ cl∗(F ), we have that {e|F |−1, e|F |, e} is a triad. If
{e|F |−2, e|F |−1, e|F |} is a triangle, then the fan F is not maximal, a contradiction. Hence,
{e|F |−2, e|F |−1, e|F |} is a triad. Orthogonality implies that |F | = 3, but now the triad
{e|F |−1, e|F |, e} intersects the circuit C in one element, a contradiction.

Lemma 3.5.11. Let M be a 3-connected matroid with no detachable pairs such that
|E(M)| ≥ 9. Let P1, P2, . . . , Pm be disjoint subsets of E(M), with m ≥ 2, such that, for all
i ∈ [m], the set Pi = (pi1, p

i
2, . . . , p

i
|Pi|) is a maximal fan with even length at least two, where

either |Pi| = 2, or {pi1, pi2, pi3} is a triad. Furthermore, for all distinct i, j ∈ [m], suppose
there is a 4-element circuit Ci,j containing {pi1, p

j
1} such that |Ci,j ∩ Pi| = |Ci,j ∩ Pj | = 2,

and a 4-element cocircuit C∗i,j containing {pi|Pi|, p
i
|Pj |} such that |C∗i,j ∩Pi| = |C∗i,j ∩Pj | = 2.

If |E(M)| ≤ |P1 ∪ P2 ∪ · · · ∪ Pm| + 2, then M is a degenerate even-fan-spike or an even-
fan-spike.

Proof. First, suppose m = 2 and E(M) = P1 ∪ P2. We show that M is a degenerate even-
fan-spike. Suppose |P1| = 2. Since λ(P2 − {p21}) = 2, we also have that λ(P1 ∪ {p21}) = 2.
But now P1 ∪ {p21} is either a triangle or a triad, contradicting the maximality of P1.
Thus, |P1| ≥ 4 and, similarly, |P2| ≥ 4. Since |E(M)| ≥ 9, Lemma 3.5.9 implies that
{p11, p12, p21, p22} is a circuit and {p1|P1|−1, p

1
|P1|, p

2
|P2|−1, p

2
|P2|} is a cocircuit, and thus M is a

degenerate even-fan-spike.

Otherwise, let J be a proper, non-empty subset of [m], and let X =
⋃

i∈J Pi. We show
that λ(X) = 2. If |J | = 1, then X is a fan, so λ(X) = 2. Otherwise, let j ∈ J , and
suppose that λ(X − Pj) = 2. Now, for some i ∈ J − {j}, the circuit Ci,j implies that

pj1 ∈ cl(X −{pj1}). But pj1 /∈ cl(Pj −{pj1}), and so r(X) ≤ r(X −Pj) + r(Pj)− 1. Similarly,
r∗(X) ≤ r∗(X − Pj) + r∗(Pj)− 1. Therefore,

λ(X) ≤ (r(X − Pj) + r(Pj)− 1) + (r∗(X − Pj) + r∗(Pj)− 1)− (|X − Pj |+ |Pj |)
= λ(X − {Pj}) + λ(Pj)− 2 = 2

This shows that λ(X) = 2. In particular, for all distinct i, j ∈ [m], we have that λ(Pi ∪
Pj) = 2. It follows that r(Pi ∪ Pj) = r(Pi) + r(Pj) − 1, and so u(Pi, Pj) = 1. Thus, if
E(M) = P1 ∪ P2 ∪ · · · ∪ Pm, then (P1, P2, . . . , Pm) is a spike-like anemone, so M is an
even-fan-spike.
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Now, suppose E(M) = P1 ∪ P2 ∪ · · · ∪ Pm ∪ {x}. Since λ(P1 ∪ P2 ∪ · · · ∪ Pm−1) = 2, we
have that λ(Pm ∪ {x}) = 2. This implies that either x ∈ cl(Pm) or x ∈ cl∗(Pm), which
contradicts either Lemma 3.5.10 or its dual.

The last case to consider is when E(M) = P1 ∪ P2 ∪ · · · ∪ Pm ∪ {x, y}. For all proper,
non-empty subsets J of [m], we have that λ(

⋃
i∈[m]−J Pi) = 2, so λ({x, y} ∪

⋃
i∈J Pi) = 2.

This shows that (P1, P2, . . . , Pm, {x, y}) is an anemone. Also, for all i ∈ [m], we have that
x /∈ cl(Pi) and x /∈ cl∗(Pi), by Lemma 3.5.10. Since λ(Pi ∪ {x, y}) = 2, this implies that
y ∈ cl(Pi∪{x})∩cl∗(Pi∪{x}). Therefore, u(Pi, {x, y}) = r(Pi)+2−(r(Pi)+1) = 1. Hence,
(P1, P2, . . . , Pm, {x, y}) is a spike-like anemone, so M is an even-fan-spike, completing the
proof.

Lemma 3.5.12. Let M be a 3-connected matroid with no detachable pairs. Let F1 and F2

be maximal disjoint fans of M with even length at least four such that |E(M)| ≥ |F1∪F2|+3.
Let e /∈ F1∪F2. If e is contained in a triangle or a triad, then e is contained in a 4-element
fan.

Proof. Let (e1, e2, . . . , e|F1|) and (f1, f2, . . . , f|F2|) be orderings of F1 and F2 respectively
such that {e1, e2, e3} and {f1, f2, f3} are both triads, and M has a circuit C containing
{e1, f1} and a cocircuit C∗ containing {e|F1|, f|F2|}. Suppose there exists e /∈ F1 ∪ F2 such
that e is contained in a triad T ∗ and not contained in a 4-element fan. If T ∗ is disjoint
from F1, then Lemma 3.5.5 contradicts the existence of two disjoint maximal fans with
even length in M . Thus, T ∗ ∩ F1 6= ∅, and, similarly, T ∗ ∩ F2 6= ∅. Lemma 3.2.11 implies
that T ∗ = {e1, f1, e}.

If |E(M)| = |F1∪F2|+3, then, as λ(E(M)−(F1∪F2)) = 2, we have that E(M)−(F1∪F2)
is either a triangle or a triad disjoint from F1 and F2. By orthogonality with the circuit C
and the cocircuit C∗, we have that E(M)− (F1 ∪ F2) is not contained in a 4-element fan.
But E(M)− (F1 ∪ F2) is disjoint from F1 and F2, contradicting Lemma 3.5.5. Otherwise,
|E(M)| ≥ |F1 ∪ F2| + 4, and e ∈ cl∗(F1 ∪ F2). Thus, Lemma 3.4.3 implies that M has
a 4-element circuit C ′ containing {e, e1}, and one of {e2, e3}, and an element f with f /∈
F1 ∪ F2 ∪ {e}. Suppose f is contained in a triad T ∗2 . If T ∗2 is not contained in a 4-element
fan, then T ∗2 = {e1, f1, f}. But now r∗({e1, f1, e, f}) = 2, contradicting Lemma 3.4.16.
Thus, T ∗2 is contained in a 4-element fan. By assumption, e is not contained in a 4-element
fan, so e /∈ T ∗2 . Hence, orthogonality with {e1, f1, e, f} implies that either e1 ∈ T ∗2 or
f1 ∈ T ∗2 , and, furthermore, this is the only element of T ∗2 ∩ (F1 ∪ F2) by Lemma 3.2.11.
But this contradicts orthogonality with the circuit C, so f is not contained in a triad.

Now, f ∈ cl(F1 ∪ F2 ∪ {e}), so M\f is 3-connected by Lemma 3.4.1. Thus, M has a 4-
element cocircuit containing {f, f|F2|}, and one of {f|F2|−2, f|F2|−1}, and one of {e, e1, e2}.
But now f ∈ cl∗(F1 ∪ F2 ∪ {e}), a contradiction.
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Hence, if e is contained in a triad, then e is contained in a 4-element fan. A dual argument
shows that if e is contained in a triangle, then e is contained in a 4-element fan, completing
the proof.

Lemma 3.5.13. Let M be a 3-connected matroid such that |E(M)| ≥ 13. Let F1 =
(e1, e2, e3, e4) and F2 = (f1, f2, f3, f4) be disjoint maximal fans of M . Suppose that {e1, e2, e3}
and {f1, f2, f3} are triads and {e1, e2, f1, f2} is a circuit and {e2, e4, f2, f4} is a cocircuit.
Then M has a detachable pair.

Proof. Suppose, to the contrary, that M has no detachable pairs. First, assume there exists
e /∈ F1 ∪ F2 such that e is contained in a triangle or triad. Then Lemma 3.5.12 implies
that there is a 4-element fan of M which contains e. Let F3 be a maximal fan containing
e. Orthogonality with the circuit {e1, e2, f1, f2} and the cocircuit {e2, e4, f2, f4} implies
that F3 is disjoint from F1 and F2. Furthermore, by Lemma 3.5.8, we have that |F3| is not
odd. Thus, let (g1, g2, . . . , g|F3|) be an ordering of F3 such that {g1, g2, g3} is a triad and
{g|F3|−2, g|F3|−1, g|F3|} is a triangle.

There is a 4-element circuit C of M containing {e1, g1}, and one of {e2, e3}, and one of
{g2, g3}. Orthogonality with {e2, e4, f2, f4} implies that e3 ∈ C. Furthermore, if |F3| ≥
5, then orthogonality implies that g2 ∈ C, and if |F3| = 4, then we may assume that
g2 ∈ C up to the ordering of F3. Thus, C = {e1, e3, g1, g2}. By Lemma 3.5.9, either
{e2, e4, g|F3|−1, g|F3|} is a cocircuit, or |F3| = 4 and {e3, e4, g2, g4} is a cocircuit. The former
case contradicts orthogonality with the circuit {e1, e2, f1, f2}, so the latter holds. Similarly,
M has a 4-element circuit containing {f1, g1}, and, by orthogonality with {e2, e4, f2, f4}
and {e3, e4, g2, g4}, this circuit is {f1, f3, g1, g3}. But now λ(F1 ∪ F2 ∪ F3) ≤ 1, which
implies E(M) ≤ |F1 ∪ F2 ∪ F3| + 1. Lemma 3.5.9 implies that E(M) = F1 ∪ F2 ∪ F3, so
that |E(M)| = 12, a contradiction.

Otherwise, for all x /∈ F1 ∪ F2, we have that x is not contained in a triangle or a triad.
Let f /∈ F1 ∪ F2. Bixby’s Lemma implies that either M/f or M\f is 3-connected. Up
to duality, we may assume the former. Then M has a 4-element circuit C1 containing
{e1, e}, one of {e2, e3}, and an element g /∈ F1 ∪ F2. By orthogonality with {e2, e4, f2, f4},
we have that C1 = {e1, e3, f, g}. Also, M has a 4-element circuit C2 = {f1, f3, f, g′}, for
g′ /∈ F1 ∪ F2.

Suppose g = g′. Then circuit elimination implies that M has a circuit contained in
{e1, e3, f1, f3, f}. But f /∈ cl(F1 ∪ F2) which means that {e1, e3, f1, f3} is a circuit of
M . This implies that λ(F1 ∪ F2) ≤ 1, a contradiction. Now, g is not contained in a triad,
so Lemma 3.4.4 implies that M\g is 3-connected. Hence, M has a 4-element cocircuit con-
taining {f4, g}, one of {f2, f3}, and an element which is not an element of F1∪F2. Thus, by
orthogonality, M has a cocircuit {f3, f4, f, g}. Similarly, M has a cocircuit {e3, e4, f, g′}.
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But now λ(F1 ∪ F2 ∪ {f, g, g′}) ≤ 1, a contradiction since |E(M)| ≥ 13.

Lemma 3.5.14. Let M be a 3-connected matroid with no detachable pairs such that
|E(M)| ≥ 13. Let F1 = (e1, e2, . . . , e|F1|) be a maximal fan of even length at least four
such that {e1, e2, e3} is a triad, and let F2 = (f1, f2, . . . , f|F2|) be a maximal fan, disjoint
from F1, with even length at least two such that either |F2| = 2 or {f1, f2, f3} is a triad.
If {e1, e2, f1, f2} is a circuit and {e|F1|−1, e|F1|, f|F2|−1, f|F2|} is a cocircuit, then M is a
degenerate even-fan-spike or an even-fan-spike.

Proof. By the assumptions of the lemma, we may choose disjoint subsets P1, P2, . . . , Pm

of M such that, for all i ∈ [m], the set Pi = (pi1, p
i
2, . . . , p

i
|Pi|) is a maximal fan with

even length at least two and ordering such that either |Pi| = 2 or {pi1, pi2, pi3} is a triad,
and, for all j ∈ [m] − {i}, the set Ci,j = {pi1, pi2, p

j
1, p

j
2} is a circuit, and the set C∗i,j =

{pi|Pi|−1, p
i
|Pi|, p

j
|Pj |−1, p

j
|Pj |} is a cocircuit. Furthermore, we may assume that |P1| ≥ 4.

If |E(M)| ≤ |P1∪P2∪· · ·∪Pm|+2, then the result follows from Lemma 3.5.11. Otherwise,
let e /∈ P1∪P2∪· · ·∪Pm such that e is contained in a triangle or a triad. By Lemma 3.5.12,
the element e is contained in a 4-element fan. Let P ′ be a maximal fan containing e. By
orthogonality with the circuits Ci,j and the cocircuits C∗i,j , the fan P ′ is disjoint from each
of the Pi. Furthermore, by Lemma 3.5.8, we have that |P ′| is not odd. By Lemma 3.5.9
and Lemma 3.5.13, there exists an ordering (p′1, p

′
2, . . . , p

′
|P ′|) of P ′ such that {p′1, p′2, p′3} is

a triad and {p′1, p′2, p11, p12} is a circuit and {p′|P ′|−1, p
′
|P ′|, p

1
|P1|−1, p

1
|P1|} is a cocircuit. For all

i ∈ [m], circuit elimination with C1,i implies that {p′1, p′2, pi1, pi2} is a circuit, and cocircuit
elimination with C∗1,i implies that {p′|P ′|−1, p

′
|P ′|, p

i
|Pi|−1, p

i
|Pi|} is a cocircuit.

Set Pm+1 = P ′, and repeat the above process for every element of M which is contained
in a triangle or a triad. This means we can assume that every element of M which is
not an element of P1 ∪ P2 ∪ · · · ∪ Pm is contained in neither a triangle nor a triad. So let
e /∈ P1 ∪ P2 ∪ · · · ∪ Pm. By Bixby’s Lemma, either M/e or M\e is 3-connected. Without
loss of generality, assume the former. Then M has a 4-element circuit C containing {e, p11}
and one of {p12, p13} and, by orthogonality, an element e′ /∈ P1∪P2∪ · · ·∪Pm. Furthermore,
p13 /∈ C by orthogonality with {p13, p14, p15} if |P1| ≥ 5, or by orthogonality with {p13, p14, p23, p24}
if |P1| = 4. Thus, {e, e′, p11, p12} is a circuit.

Now, e′ is not contained in a triangle or a triad. Lemma 3.4.4 implies that M\e′ is 3-
connected. Therefore, M has a 4-element cocircuit C∗ containing {e′, p1|P1|}, and either

p1|P1|−2 or p1|P1|−1, and an element which is not an element of P1 ∪ P2 ∪ · · · ∪ Pm. As

before, orthogonality with {p1|P1|−4, p
1
|P1|−3, p

1
|P1|−2} if |P1| ≥ 5, or with {p11, p12, p21, p22} if

|P1| = 4, implies that p1|P1|−1 ∈ C
∗. Orthogonality with C implies that e ∈ C∗, so C∗ =

{e, e′, p1|P1|−1, p
1
|P1|}.
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Now, {e, e′} is a maximal 2-element fan, and, for all i ∈ [m], circuit and cocircuit elimination
with C1,i and C∗1,i implies that {e, e′, pi1, pi2} is a circuit and {e, e′, pi|Pi|−1, p

i
|Pi|} is a cocircuit.

Set Pm+1 = {e, e′}, and repeat in this way. This completes the proof.

3.5.4 Putting it together

We now combine the lemmas in this section to prove Theorem 3.5.1.

Proof of Theorem 3.5.1. Suppose M does not have a detachable pair. If |F2| = 3, then
Lemma 3.5.5 implies that (iii)(a) holds. Otherwise, |F2| ≥ 4. If either |F1| or |F2| is
odd, then Lemma 3.5.8 implies that (iii)(b) holds. Finally, if both |F1| and |F2| are even,
then Lemmas 3.5.9, 3.5.13, and 3.5.14 combine to show that (ii) holds and completes the
proof.

3.6 Intersecting Fans

For the remainder of the proof of Theorem 1.6.2, we may assume that M has no disjoint
maximal fans F1 = (e1, e2, . . . , e|F1|) and F2 = (f1, f2, . . . , f|F2|) such that |F1| ≥ 4, and
|F2| ≥ 3, and {e1, e2, e3} and {f1, f2, f3} are both triads. Similarly, if {e1, e2, e3} and
{f1, f2, f3} are both triangles, then M∗ is one of the matroids described in Theorem 3.5.1,
so we may assume that this is not the case either. As shorthand for this assumption, we
shall say M has no disjoint fans with like ends. This section concerns 3-connected matroids
which have two intersecting fans. In particular, we prove the following.

Theorem 3.6.1. Let M be a 3-connected matroid such that |E(M)| ≥ 13 and M has
no disjoint fans with like ends. Let F1 and F2 be distinct, maximal fans of M such that
|F1| ≥ 4 and |F2| ≥ 3, and |F1 ∩ F2| 6= ∅. Then one of the following holds.

(i) M has a detachable pair,

(ii) M is an even-fan-spike with three petals,

(iii) M is an even-fan-spike with tip and cotip,

(iv) M is an accordion,

(v) M or M∗ is a degenerate even-fan-paddle, or

(vi) M ′ has a paddle (P1, P2, . . . , Pm) for some M ′ ∈ {M,M∗} and m ≥ 3, and either

(a) M ′ is an even-fan-paddle, or
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(b) there exists x ∈ E(M) such that, for all distinct i, j ∈ {1, 2, . . . ,m}, the set
Pj − {x} is a triad, and Pi ∪ {x} is a 4-element-fan-petal relative to Pj − {x}.

3.6.1 F1 and F2 have odd length

First, we consider the case where both F1 and F2 have odd length. By Lemma 3.4.17, we
only need to consider fans with length three or five.

Lemma 3.6.2. Let M be a 3-connected matroid such that |E(M)| ≥ 13. Let F1 =
(e1, e2, e3, e4, e5) be a maximal fan of M , and suppose there exists e ∈ E(M)−F1 such that
{e1, e5, e} is a triangle. Then M has a detachable pair.

Proof. Suppose, to the contrary, that M has no detachable pairs. Note that e1 and e5
are contained in the triangle {e1, e5, e}, so, by Lemma 3.2.8, we have that {e1, e2, e3} and
{e3, e4, e5} are triangles. Therefore, e1 ∈ cl({e2, e3, e4}) and e1 ∈ cl({e5, e}). Furthermore,
e1 is not contained in a triad. Hence, ({e1}, {e2, e3, e4}, {e5, e}) is a deletable collection,
and λ(F ∪{e}) = 2. We complete the proof of the lemma by finding x /∈ F ∪{e} such that
M\x is 3-connected, a contradiction to Lemma 3.4.8.

Now, {e1, e5, e} ⊆ cl({e2, e3, e4}). Furthermore, e1 and e5 are not contained in a triad,
and e not contained in a triad, since orthogonality with {e1, e5, e} implies that this triad
contains either e1 or e5. Now, |E(M)| ≥ |{e2, e3, e4}| + 7 = 10, so Lemma 3.4.15 implies
that M has elements f, f ′, f ′′ /∈ F ∪ {e} such that {f, f ′, f ′′} ⊆ cl∗(F ∪ {e}) and none of
f , f ′, and f ′′ are contained in a triangle. Additionally, for all x ∈ F ∪ {e}, we have that
x ∈ cl((F ∪ {e}) − {x}), and that |E(M)| ≥ |F ∪ {e}| + 7 = 13. Hence, by the dual of
Lemma 3.4.15, there exists g, g′, g′′ ∈ cl(F ∪{e, f, f ′, f ′′}) which are not contained in triads.
In particular, M\g is 3-connected, a contradiction.

A consequence of the above lemma is the following, which implies that a matroid with no
detachable pairs has no M(K4)-separators. In particular, by Lemma 3.2.11, maximal fans
intersect in only the end elements.

Corollary 3.6.3. Let M be a 3-connected matroid such that |E(M)| ≥ 13. If M has an
M(K4)-separator, then M has a detachable pair.

Lemma 3.6.4. Let M be a 3-connected matroid such that |E(M)| ≥ 13. Let F1 be a
maximal fan of M with ordering (e1, e2, e3, e4, e5) such that {e1, e2, e3} and {e3, e4, e5} are
triangles. If M has a triangle T which is not contained in a 4-element fan, then M has a
detachable pair.
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Proof. Suppose M has no detachable pairs, and consider the dual of Lemma 3.4.18. Since
|F1| = 5, we have that F1 and T do not satisfy Lemma 3.4.18(ii), (iii), or (iv). Hence,
e1 ∈ T . Furthermore, by reversing the ordering of F1, Lemma 3.4.18 implies that e5 ∈ T .
Thus, T = {e1, e5, e}, for some e /∈ F , which contradicts Lemma 3.6.2.

Lemma 3.6.5. Let M be a 3-connected matroid such that |E(M)| ≥ 13. Let F1 =
(e1, e2, e3, e4, e5) and F2 = (f1, f2, f3, f4, f5) be distinct, maximal fans of M such that
e1 = f1. Then M has a detachable pair.

Proof. Up to duality, we may assume that {e1, e2, e3} is a triangle. Since e1 = f1,
Lemma 3.2.8 implies that {f1, f2, f3} is also a triangle. Now assume, with the aim of
reaching a contradiction, that M does not have a detachable pair. Corollary 3.6.3 im-
plies that F1 ∪ F2 is not an M(K4)-separator, so either F1 ∩ F2 = {e1} = {f1} or
F1 ∩ F2 = {e1, e5} = {f1, f5}. By Lemma 3.4.17, there exist z, z′ ∈ E(M) such that
{e1, e3, e5, z} and {f1, f3, f5, z′} are cocircuits. By orthogonality with {f1, f2, f3}, we have
that z ∈ {f2, f3}, and by orthogonality with {e1, e2, e3}, we have that z′ ∈ {e2, e3}.

First, suppose F1 ∩ F2 = {e1}. Now, λ(F1 ∪ F2 − {f5}) = 2. But f5 ∈ cl(F1 ∪ F2 − {f5})
and f5 ∈ cl∗(F1 ∪ F2 − {f5}). Thus, λ(F1 ∪ F2) ≤ 1, a contradiction. Otherwise, if
F1∩F2 = {e1, e5}, then λ(F1∪F2−{f4}) = 2 and f4 ∈ cl(F1∪F2−{f4})∩cl∗(F1∪F2−{f4}).
Again, λ(F1 ∪ F2) ≤ 1, which completes the proof.

3.6.2 F1 and F2 intersect at both ends

Now, we may assume that at least one of F1 and F2 are even. We first consider the case
where both F1 and F2 are even and, in particular, when F1 and F2 intersect in both end
elements.

Lemma 3.6.6. Let M be a 3-connected matroid with no detachable pairs. Let F1 =
(e1, e2, . . . , e|F1|) and F2 = (f1, f2, . . . , f|F2|) be distinct, maximal fans of M with even
length at least four. If e1 = f1 and e|F1| = f|F2|, then every element of M is contained in
a maximal fan of length at least four with ends e1 and e|F1|.

Proof. Without loss of generality, assume that {e1, e2, e3} and {f1, f2, f3} are triangles,
and {e|F1|−2, e|F1|−1, e|F1|} and {f|F2|−2, f|F2|−1, f|F2|} are triads. Clearly, the result holds if
E(M) = F1 ∪ F2.

Suppose E(M) = F1∪F2∪{x}. Note that λ(F1∪F2−{e1, e|F1|}) = 2. But this implies that
λ({e1, e|F1|, x}) = 2, so {e1, e|F1|, x} is either a triangle or a triad. This is a contradiction
to orthogonality, since e1 is contained in a triangle and e|F1| is contained in a triad.
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Next, suppose E(M) = F1 ∪ F2 ∪ {x, y}. Since λ(F1 ∪ F2 − {e1}) = 2, we have that
λ({e1, x, y}) = 2. Thus, {e1, x, y} is a triangle. Similarly, λ({e|F1|, x, y}) = 2, so {e|F1|, x, y}
is a triad. Thus, M has a maximal fan with ordering (e1, x, y, e|F1|) and the result holds.

Finally, suppose |E(M)| ≥ |F1∪F2|+3. Note that λ(F1∪F2) = 2, and ({e1}, F1−{e1}, F2−
{e1}) is a deletable collection, and ({e|F1|}, F1 − {e|F1|}, F2 − {e|F1|}) is a contractable
collection. Let e /∈ F1 ∪ F2. Lemma 3.4.14 implies that e is contained in a maximal fan F3

of length at least four with ends in F1 ∪ F2. Lemma 3.2.8 implies that the ends of F3 are
e1 and e|F1|, completing the proof.

Lemma 3.6.7. Let M be a 3-connected matroid with no detachable pairs. Let F1 =
(e1, e2, . . . , e|F1|) and F2 = (f1, f2, . . . , f|F2|) be distinct, maximal fans of M with even
length at least four. If e1 = f1 and e|F1| = f|F2|, then M is a degenerate even-fan-spike
with tip and cotip, or M is an even-fan-spike with tip and cotip.

Proof. Suppose, without loss of generality, that {e1, e2, e3} and {f1, f2, f3} are triangles,
and {e|F1|−2, e|F1|−1, e|F1|} and {f|F2|−2, f|F2|−1, f|F2|} are triads. If E(M) = F1 ∪ F2, then
M is a degenerate even-fan-spike with tip e1 and cotip e|F1|. Otherwise, choose disjoint
subsets P1, P2, . . . , Pm, with m ≥ 2, such that

(i) for all i ∈ [m], the set Pi ∪ {e1, e|F1|} is an even fan,

(ii) for all proper, non-empty subsets J of [m], we have that λ(
⋃

i∈J Pi) = 2, and

(iii) for all distinct i, j ∈ [m], we have that u(Pi, Pj) = 2.

If E(M) = P1 ∪ P2 ∪ · · · ∪ Pm, then (P1, P2, . . . , Pm) is a spike-like anemone. This implies
that M is an even-fan-spike with tip and cotip, and completes the proof.

Otherwise, let e ∈ E(M) − (P1 ∪ P2 ∪ · · · ∪ Pm). By Lemma 3.6.6, the element e is
contained in a maximal fan F3 with length at least four, ends e1 and e|F1|, and ordering
(e1, g1, g2, . . . , g|F3|−2, e|F1|). Let P ′ = F3−{e1, e|F1|}. Let J be a proper, non-empty subset
of [m], and let X =

⋃
i∈J Pi. Then g1 ∈ cl(X ∪ (P ′ − {g1})) but g1 /∈ cl(P ′ − {g1}). This

implies that r(X ∪ P ′) ≤ r(X) + r(P ′) − 1. Similarly, r∗(X ∪ P ′) ≤ r∗(X) + r∗(P ′) − 1.
It follows that λ(X ∪ P ′) = λ(X) = 2. Furthermore, for all i ∈ [m], we have that
r(Pi ∪ P ′) = r(Pi) + r(P ′)− 1, and so u(Pi, P

′) = 1.

Therefore, if E(M) = P1 ∪ P2 ∪ · · · ∪ Pm ∪ P ′, then (P1, P2, . . . , Pm, P
′) is a spike-like

anemone of M , completing the proof. Otherwise, repeating in the above manner establishes
the result.
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3.6.3 F1 and F2 intersect in one end

Next, we consider the case where F1 and F2 both have even length and intersect in exactly
one element.

Lemma 3.6.8. Let M be a 3-connected matroid with no detachable pairs and no disjoint
fans with like ends. Let F1 = (e1, e2, . . . , e|F1|) and F2 = (f1, f2, . . . , f|F2|) be distinct,
maximal fans of M with even length at least four such that {e1, e2, e3} and {f1, f2, f3} are
triangles. If e1 = f1 and e|F1| 6= f|F2| and |E(M)| ≤ |F1 ∪ F2|+ 2, then M is a degenerate
even-fan-paddle.

Proof. Lemma 3.4.3 and orthogonality implies that there is a 4-element circuit C of M
containing {e|F1|, f|F2|}, and one of {e|F1|−2, e|F1|−1}, and one of {f|F2|−2, f|F2|−1}.

First, assume that E(M) = F1 ∪ F2. Since M is 3-connected, the set {e|F1|, f|F2|} is
coindependent. Therefore, E(M)− {e|F1|, e|F2|} is spanning, so

e|F1| ∈ cl(F1 ∪ F2 − {e|F1|, f|F2|}).

Now, f|F2|−1 ∈ cl(F2−{f|F2|−1, f|F2|}), so we have that e|F1| ∈ cl(F1∪F2−{e|F1|, f|F2|−1, f|F2|}).
Orthogonality with the triad {f|F2|−2, f|F2|−1, f|F2|} implies that

e|F1| ∈ cl(F1 ∪ F2 − {e|F1|, f|F2|−2, f|F2|−1, f|F2|}).

Repeating in this way, we see that e|F1| ∈ cl(F1 − {e|F1|}). But this means that λ(F1) = 1,
a contradiction.

Next, suppose E(M) = F1 ∪ F2 ∪ {x} with x /∈ F1 ∪ F2. Since λ(F1 − {e1}) = 2, we also
have that λ(F2 ∪ {x}) = 2. Thus, either x ∈ cl(F2) or x ∈ cl∗(F2). Lemma 3.5.10 implies
that x /∈ cl∗(F2), so x ∈ cl(F2). Similarly, x ∈ cl(F1), which implies that M is a degenerate
even-fan-paddle.

Finally, suppose E(M) = F1 ∪ F2 ∪ {x, y}. We have that λ(F1 ∪ F2 − {e1}) = 2, so
λ({e1, x, y}) = 2. It follows that {e1, x, y} is a triangle. If {x, y} is contained in a triad,
then this triad contains either e|F1| or f|F2|, which contradicts orthogonality with the circuit
C. Hence, {x, y} is not contained in a triad, so {e1, x, y} is not contained in a 4-element
fan. By Tutte’s Triangle Lemma, either M\x or M\y is 3-connected. Without loss of
generality, assume the former. Lemma 3.4.3 implies that M has a 4-element cocircuit C∗

containing {e1, x}, and one of {e2, e3} and one of {f2, f3}. If |F1| > 4, then orthogonality
implies that e2 ∈ C∗, and if |F1| = 4, then we may assume e2 ∈ C∗ up to the ordering
of F1. Similarly, we may assume f2 ∈ C∗, so that C∗ = {e2, e1, f2, x}. Now, M\x has a
fan (e|F1|, e|F1|−1, . . . , e2, e1, f2, f3, . . . , f|F2|). Since |E(M\x)| = |F1 ∪F2|+ 1, Lemma 3.2.7
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implies that M\x is a wheel or a whirl. But e|F1| is not contained in a triangle of M , so
is also not contained in a triangle of M\x. This is a contradiction which completes the
proof.

Lemma 3.6.9. Let M be a 3-connected matroid with no detachable pairs and no disjoint
fans with like ends. Let F1 = (e1, e2, . . . , e|F1|) and F2 = (f1, f2, . . . , f|F2|) be distinct,
maximal fans of M with even length at least four such that {e1, e2, e3} and {f1, f2, f3} are
triangles. Suppose e1 = f1 and e|F1| 6= f|F2| and |E(M)| ≥ |F1 ∪ F2| + 3. Then, for all
x /∈ F1 ∪ F2, the element x is contained in a maximal fan of even length at least four with
ends e1 and x+ such that x+ /∈ F1 ∪ F2.

Proof. Lemma 3.4.3 implies thatM has a 4-element circuit C containing {e|F1|, f|F2|}, which
we may assume is {e|F1|−1, e|F1|, f|F2|−1, f|F2|}. Notice that ({e1}, F1 − {e1}, F2 − {e1}) is
a deletable collection and λ(F1 ∪ F2) = 2. Furthermore, e|F1| ∈ cl∗(F1 − {e|F1|}) and, for
each i ∈ {1, 2, . . . , |F1|}, we have that ei ∈ cl(F1 ∪ F2 − {ei}). Hence, by Lemma 3.4.10,
every element of E(M)− (F1 ∪ F2) is contained in a triad.

Let F3 = (g1, g2, . . . , g|F3|) be a maximal fan of M , distinct from F1 and F2, such that
|F3| ≥ 4. Since M has no disjoint fans with like ends, we have that F1 ∩ F3 6= ∅ and
F2 ∩ F3 6= ∅. Furthermore, orthogonality with the circuit C implies that e|F1| /∈ F3 and
f|F2| /∈ F3. Therefore, e1 ∈ F3, so, without loss of generality, e1 = g1 and {g1, g2, g3} is a
triangle. Furthermore, g|F3| /∈ F1 ∪ F2. This implies that g|F3| is contained in a triad, so
{g|F3|−2, g|F3|−1, g|F3|} is a triad. Hence, F3 has even length.

Let e /∈ F1∪F2. To complete the proof, it remains to show that e is contained in a 4-element
fan. Suppose this is not the case. Now, e is contained in a triad T ∗ which is not contained
in a 4-element fan. Since M has no disjoint fans with like ends, we have that F1 ∩ T ∗ 6= ∅
and F2∩T ∗ 6= ∅. Hence, T ∗ = {e, e|F1|, f|F2|}. Now, let f /∈ F1∪F2∪{e}. The element f is
contained in a triad T ∗2 . If T ∗2 is not contained in a 4-element fan, then T ∗2 = {f, e|F1|, f|F2|}.
But this means that r∗({e, f, e|F1|, f|F2|}) = 2, a contradiction to Lemma 3.4.16. So there
is a maximal fan F with length at least four containing T ∗2 . Now, F has even length and
ends e1 and f+, say, with f+ /∈ F1 ∪ F2. Furthermore, e is not contained in a 4-element
fan, so e /∈ F . But now F ∩ T ∗ = ∅, and M has a pair of disjoint fans with like ends. This
contradiction completes the proof.

Lemma 3.6.10. Let M be a 3-connected matroid with no detachable pairs and no disjoint
fans with like ends. Let F1 = (e1, e2, . . . , e|F1|) and F2 = (f1, f2, . . . , f|F2|) be distinct
maximal fans of M with even length at least four such that {e1, e2, e3} and {f1, f2, f3} are
triangles. Suppose e1 = f1 and e|F1| 6= f|F2|. Then either

(i) M is a degenerate even-fan-paddle,
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(ii) M is an even-fan-paddle, or

(iii) M has a paddle (P1, P2, . . . , Pm) with m ≥ 3 and x ∈ E(M) such that, for all distinct
i, j ∈ {1, 2, . . . ,m}, the set Pj − {x} is a triad, and Pi ∪ {x} is a 4-element-fan-petal
relative to Pj − {x}.

Proof. If |E(M)| ≤ |F1 ∪F2|+ 2, then M is a degenerate even-fan-paddle by Lemma 3.6.8.
Otherwise, |E(M)| ≥ |F1 ∪ F2| + 3, and we may choose disjoint subsets P1, P2, . . . , Pm ⊆
E(M), with m ≥ 2, such that

(i) for all i ∈ [m], the set Pi ∪ {e1} is a maximal fan with even length at least four and
ordering (pi1, p

i
2, . . . , p

i
|Pi|, e1),

(ii) for all proper, non-empty subsets J of [m], we have that λ(
⋃

i∈J Pi) = 2, and

(iii) for all distinct i, j ∈ [m], we have that u(Pi, Pj) = 2.

Furthermore, for distinct i, j ∈ {1, 2, . . . ,m}, Lemma 3.4.3 implies M has a circuit Ci,j

containing {pi1, p
j
1}, and one of {pi2, pi3}, and one of {pj2, p

j
3}.

Let e /∈ E(M) − (P1 ∪ P2 ∪ · · · ∪ Pm). By Lemma 3.6.9, the element e is contained in a
set P ′ such that P ′ ∪ {e1} is a maximal fan with even length at least four and ordering
(p′1, p

′
2, . . . , p

′
|P ′|, e1), and, for all i ∈ [m], there is a circuit C of M containing {p′1, pi1}. Let

I be a proper, non-empty subset of [m], and let X =
⋃

i∈I Pi. Now, p′1 ∈ cl(X ∪P ′−{p′1})
and p′1 /∈ cl(P ′ − {p′1}), and p′|P ′| ∈ cl(X ∪ P ′ − {p′|P ′|}) and p′|P ′| /∈ cl(P ′ − {p′|P ′|}). Thus,

r(X∪P ′) ≤ r(X)+r(P ′)−2. Since λ(X∪P ′) ≥ 2, the only possibility is λ(X∪P ′) = 2 and
r(X∪P ′) = r(X)+r(P ′)−2. Also, for all i ∈ [m], we have that r(Pi∪P ′) = r(Pi)+r(P ′)−2,
so u(Pi, P

′) = 2.

Set Pm+1 = P ′, and repeat in this way until we can partition E(M) into such sets
P1, P2, . . . , Pm. Then (P1, P2, . . . , Pm) is a paddle. Assume |Pi ∪ {e4}| = 4, for all i ∈ [m].
For all distinct i, j ∈ [m], we have that u({pi2, pi3}, Pj − {e4}) = 1, and the circuit Ci,j im-
plies that either u({pi1, pi2}, Pj − {e4}) = 1 or u({pi1, pi3}, Pj − {e4}) = 1. Hence, Pi ∪ {e4}
is a 4-element-fan-petal relative to Pj − {e4}, and (iii) holds.

Otherwise, suppose, without loss of generality, that |P1 ∪ {e4}| > 4. Orthogonality with
{p13, p14, p15} implies that, for all i ∈ {2, 3, . . . ,m}, the circuit C1,i contains p12. Furthermore,
either |Pi∪{e4}| > 4 and C1,i contains pi2, or |Pi∪{e4}| = 4 and we may choose the ordering
of Pi ∪ {e4} such that pi2 ∈ C1,i. Now, for any other j ∈ [m], circuit elimination between

C1,i and C1,j implies that {pi1, pi2, p
j
1, p

j
2} is a circuit. Hence, M is an even-fan-paddle,

completing the proof.



3.6 DETACHABLE PAIRS — Intersecting Fans 87

3.6.4 One of F1 and F2 is odd

Finally, we consider the case where exactly one of F1 and F2 is odd, and show that the
resulting matroid is either an accordion or an even-fan-spike with three petals.

Lemma 3.6.11. Let M be a 3-connected matroid with no detachable pairs and no dis-
joint fans with like ends such that |E(M)| ≥ 8. Let F1 = (e1, e2, . . . , e|F1|) be a maximal
fan of M with even length at least four such that {e1, e2, e3} is a triangle, and let F2 =
(f1, f2, f3, f4, f5) be a maximal fan of M such that e1 = f1. Then |E(M)| ≥ |F1 ∪ F2|+ 2,
and F2 − {e1} is a fan-type accordion end with F1 in M , and a co-fan-type accordion end
with F1 in M∗.

Proof. By Lemma 3.2.8, the set {f1, f2, f3} is a triangle. Lemma 3.4.17 implies that there
exists z /∈ F2 such that {f1, f3, f5, z} is a cocircuit. By orthogonality, z ∈ {e2, e3}, and so,
up to the ordering of F1 if |F1| = 4, we have that z = e2. It follows that F1 ∪F2−{f5} is a
fan of M\f5. The element e|F1| is not contained in a triangle of M , so is also not contained
in a triangle of M\f5. Thus, M\f5 is not a wheel or a whirl, so Lemma 3.2.7 implies that
|E(M\f5)| ≥ |F1 ∪ F2 − {f5}|+ 2, and thus |E(M)| ≥ |F1 ∪ F2|+ 2.

To show that F2 − {e1} is a fan-type accordion end with F1, it remains to show that
u({f2, f4}, E(M)−(F1∪F2)) = 1. First, note that f5 ∈ cl∗(F1∪{f3}), so λ(F1∪{f3, f5}) ≤
3. Hence,

λ(E(M)− (F1 ∪ {f3, f5})) = λ((E(M)− (F1 ∪ F2)) ∪ {f2, f4}) ≤ 3.

By orthogonality with the triangle {f1, f2, f3} and the triad {f2, f3, f4} we have that f2 /∈
cl(E(M)−(F1∪F2)) and f2 /∈ cl∗(E(M)−(F1∪F2)). Thus, λ((E(M)−(F1∪F2))∪{f2}) = 3.
Now, f4 /∈ cl∗((E(M) − (F1 ∪ F2)) ∪ {f2}), by orthogonality with {f3, f4, f5}, so f4 ∈
cl((E(M)− (F1 ∪ F2)) ∪ {f2}). It follows that

r((E(M)− (F1 ∪ F2)) ∪ {f2, f4}) = r(E(M)− (F1 ∪ F2)) + 1

so u({f2, f4}, E(M)− (F1 ∪ F2)) = 1, as desired.

To complete the proof, we show that F2 − {e1} is a co-fan-type accordion end with F1 in
M∗ by showing that u∗({f4, f5}, E(M)− (F1∪F2)) = 1. Orthogonality with the cocircuits
{f2, f3, f4} and {e2, e1, f3, f5} implies that

r((E(M)− (F1 ∪ F2)) ∪ {f4, f5}) = r(E(M)− (F1 ∪ F2)) + 2

and orthogonality with {e3, e4, e5} implies that

r∗((E(M)− (F1 ∪ F2)) ∪ {f4, f5}) ≥ r∗(E(M)− (F1 ∪ F2)) + 1.
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But
λ((E(M)− (F1 ∪ F2)) ∪ {f4, f5}) = λ(F1 ∪ {f2, f3}) ≤ 3

so
r∗((E(M)− (F1 ∪ F2)) ∪ {f4, f5}) = r∗(E(M)− (F1 ∪ F2)) + 1

which means that u∗({f4, f5}, E(M)− (F1 ∪ F2)) = 1.

Lemma 3.6.12. Let M be a 3-connected matroid with no detachable pairs and no disjoint
fans with like ends. Let F1 = (e1, e2, . . . , e|F1|) be a maximal fan of M with even length
at least four such that {e1, e2, e3} is a triangle, and let {e1, f2, f3} be a triangle of M
which is not contained in a 4-element fan such that {e1, e2, f2, f3} is a cocircuit. Then
|E(M)| ≥ |F1 ∪ {f2, f3}| + 2 and {f2, f3} is a triangle-type accordion end with F1 in M ,
and a triad-type accordion end with F1 in M∗.

Proof. By Tutte’s Triangle Lemma, wither M\f2 or M\f3 is 3-connected. Without loss
of generality, we assume the latter. The matroid M\f3 has a fan F1 ∪ {f2}. Further-
more, M\f3 is not a wheel or a whirl, since e|F1| is not contained in a triangle. Thus, by
Lemma 3.2.7, we have that |E(M)| ≥ |F1∪{f2, f3}|+2. By orthogonality with the triangle
{e1, f2, f3} and the cocircuit {e1, e2, f2, f3}, we have that f2 /∈ cl(E(M)− (F1 ∪ {f2, f3}))
and f2 /∈ cl∗(E(M) − (F1 ∪ {f2, f3})). Since λ(E(M) − F1) = 2, it follows that f3 ∈
cl(E(M)− (F1 ∪ {f3})) and f3 ∈ cl∗(E(M)− (F1 ∪ {f3})). Thus,

r(E(M)− F1) = r(E(M)− (F1 ∪ {f2, f3})) + 1

and
r∗(E(M)− F1) = r∗(E(M)− (F1 ∪ {f2, f3})) + 1.

It follows that u({f2, f3}, E(M)−(F1∪{f2, f3})) = 1, so {f2, f3} is a triangle-type accordion
end with F1 in M , and u∗({f2, f3}, E(M)− (F1 ∪ {f2, f3})) = 1, so {f2, f3} is a triad-type
accordion end with F1 in M∗.

Naturally, in the next lemma, we aim to show that if M is a 3-connected matroid with
a maximal fan F1 of even length at least four with ordering (e1, e2, . . . , e|F1|) and distinct
triangles {e1, f2, f3} and {e1, f2, f3}, then {f2, f3, g2, g3} is aK4-type accordion end with F1.
However, there is one problematic case we need to consider: if |F1| = 4, and {e1, e2, f2, g2}
and {e1, e3, f3, g3} are cocircuits, and

u({f2, g2}, E(M)− (F1 ∪ {f2, f3, g2, g3})) = u({f3, g3}, E(M)− (F1 ∪ {f2, f3, g2, g3})) = 1

then we say {f2, f3, g2, g3} is an almost-K4-type accordion end with F1. Similarly, if
{e1, e2, f2, g2} and {e1, e3, f3, g3} are circuits, and

u∗({f2, f3}, E(M)− (F1∪{f2, f3, g2, g3})) = u∗({g2, g3}, E(M)− (F1∪{f2, f3, g2, g3})) = 1

then we say {f2, f3, g2, g3} is an almost-co-K4-type accordion end with F1.
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Lemma 3.6.13. Let M be a 3-connected matroid with no detachable pairs and no disjoint
fans with like ends such that |E(M)| ≥ 10. Let F1 = (e1, e2, . . . , e|F1|) be a maximal fan of
M with even length at least four. Let {e1, f2, f3} and {e1, g2, g3} be triangles of M which
are not contained in 4-element fans such that {e1, e2, f2, g2} is a cocircuit. Then either M
is an even-fan-spike with three petals, or all of the following hold.

(i) |E(M)| ≥ |F1 ∪ {f2, f3, g2, g3}|+ 2,

(ii) {f2, f3, g2, g3} is a K4-type or an almost-K4-type accordion end with F1 in M , and

(iii) {f2, f3, g2, g3} is a co-K4-type or an almost-co-K4-type accordion end with F1 in M∗.

Proof. We show that M\f3 is 3-connected. Suppose, to the contrary, that M\f3 is not
3-connected. The element f3 is not contained in a triad, so M has a cyclic 3-separation
(X, {f3}, Y ). By Corollary 3.2.16, we may assume that F1 ⊆ X. If f2 ∈ X, then f3 ∈
cl(X), a contradiction. Furthermore, by Corollary 3.2.15, we have that f2 /∈ cl(X) and
f2 /∈ cl∗(X). This implies that g2 ∈ Y . In turn, g3 ∈ Y , since g2 /∈ cl(X). But now
e1 ∈ cl(Y ), so M has a cyclic-3-separation (X−{e1}, {f3}, Y ∪{e1}). But f3 ∈ cl(Y ∪{e1}),
a contradiction. Thus, M\f3 is 3-connected. So M has a 4-element cocircuit C∗ containing
{e1, f3}, and one of {e2, e3}, and one of {g2, g3}. If g2 ∈ C∗, then, by cocircuit elimination,
M has a cocircuit contained in {e1, e2, e3, f2, f3}. But now λ({e1, e2, e3, f2, f3}) = 2, and
({e1}, {e2, e3}, {f2, f3}) is a deletable collection. This contradicts Lemma 3.4.8 since either
M\g2 or M\g3 is 3-connected. Hence, g3 ∈ C∗. Furthermore, if e3 ∈ C∗, then |F1| = 4.

If E(M) = F1 ∪ {f2, f3, g2, g3} then (F1, {f2, f3}, {g2, g3}) is a spike-like anemone, so M
is a even-fan-spike with three petals. Next, suppose E(M) = F1 ∪ {f2, f3, g2, g3, x}. We
have that λ({e1, e2, e3, f2, f3, g2, g3}) = 2. Furthermore, |F1| > 4, since |E(M)| ≥ 10,
so λ((F1 − {e|F1|−1, e|F1|}) ∪ {f2, f3, g2, g3}) = 2. Therefore, λ({e|F1|−1, e|F1|, x}) = 2, so
{e|F1|−1, e|F1|, x} is either a triangle or a triad. But this contradicts the maximality of F1.
Hence, |E(M)| ≥ |F1 ∪ {f2, f3, g2, g3}|+ 2.

Now, letH = E(M)−(F1∪{f2, f3, g2, g3}). We show that u({f2, g2}, H) = u({f3, g3}, H) =
1 and u∗({f2, f3}, H) = u∗({g2, g3}, H) = 1. This means that, if C∗ = {e1, e2, f3, g3},
then {f2, f3, g2, g3} is a K4-type accordion end with F1 in M and a co-K4-type accordion
end with F1 in M∗, while if C∗ = {e1, e3, f3, g3}, then {f2, f3, g2, g3} is an almost-K4-
type accordion end with F1 in M and a almost-co-K4-type accordion end with F1 in M∗.
Orthogonality with {e1, f2, f3} and {e1, g2, g3} implies that r∗(H ∪ {f2, g2}) = r∗(H) + 2.
Orthogonality with C∗ implies that r(H ∪ {f2, g2}) ≥ r(H) + 1. But

λ(H ∪ {f2, g2}) = λ(F1 ∪ {f3, g3}) ≤ 3.

Thus, r(H ∪ {f2}) = r(H) + 1, so u({f2, g2}, H) = 1. In the same way, u({f3, g3}, H) = 1.
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Similarly, orthogonality with the cocircuits C∗1 and C∗2 and with the triangle {e1, f2, f3} im-
ply that r(H∪{f2, f3}) = r(H)+2 and r∗(H∪{f2, f3}) ≥ r∗(H)+1. Since λ(H∪{f2, f3}) ≤
3, we have that r∗(H ∪ {f2, f3}) = r∗(H) + 1, so u∗({f2, f3}, H) = 1. Symmetrically,
u∗({g2, g3}, H) = 1, completing the proof.

Lemma 3.6.14. Let M be a 3-connected matroid with no detachable pairs and no disjoint
fans with like ends such that |E(M)| ≥ 11. Let F1 = (e1, e2, . . . , e|F1|) be a maximal fan
of M with even length at least four such that {e1, e2, e3} is a triangle. Let G be a fan-
type, triangle-type, K4-type, or almost-K4-type accordion end with F1 such that |E(M)| ≥
|F1 ∪G|+ 2. Then M is an accordion.

Proof. First, observe that ({e1}, {e2, e3}, G) is a deletable collection, and λ(G∪{e1, e2, e3}) =
2. Suppose |E(M)| = |F1∪G|+2, and let H = E(M)−(F1∪G). Now, λ(F1∪G−{e|F1|}) =
2, which implies that H ∪ {e|F1|} is a triad. Furthermore, |E(M)| ≥ 11, which means
that |F1| > 4. Now, λ(F1 ∪ G − {e|F1|−1, e|F1|}) = 2, and so λ(H ∪ {e|F1|−1, e|F1|}) = 2.
Thus, either e|F1|−1 ∈ cl(H ∪ {e|F1|}) or e|F1|−1 ∈ cl∗(H ∪ {e|F1|}). In the latter case,
r∗(H ∪ {e|F1|−1, e|F1|}) = 2, contradicting Lemma 3.4.16. Hence, since e|F1| is not con-
tained in a triangle, it follows that H ∪ {e|F1|−1, e|F1|} is a circuit. By Lemma 3.6.11,
the set H is a co-fan-type accordion end with F1. Since |F1| > 4, we have that G is
not an almost-K4-type accordion end, so M is an accordion. Hence, we may assume that
|E(M)| ≥ |F1 ∪G|+ 3.

We show that there is a triad of M which is not contained in F1∪G. Suppose this is not the
case, that is, no element of E(M)−(F1∪G) is contained in a triad. Let e ∈ E(M)−(F1∪G).
By Lemma 3.4.9, the element e is also not contained in a triangle. Furthermore, M\e is
not 3-connected. Thus, by Bixby’s Lemma, M/e is 3-connected. If |E(M)| = |F1 ∪G|+ 3,
then, since λ(E(M)− (F1 ∪G)) = 2, we have that E(M)− (F1 ∪G) is either a triangle or
a triad. But no element of E(M)− (F1 ∪G) is contained in a triad, so E(M)− (F1 ∪G)
is a triangle which is not contained in a 4-element fan and is disjoint from F1. This is a
contradiction, so |E(M)| ≥ |F1∪G|+4. Thus, Lemma 3.4.3 implies that M has a 4-element
circuit C containing {e, e|F1|}, and one of {e|F1|−1, e|F1|−2}, and an element f /∈ F1 ∪ G.
But f is not contained in a triad, so Lemma 3.4.4 implies that M\f is 3-connected. This
contradiction implies that M has a triad T ∗ 6⊆ F1 ∪G.

Suppose T ∗ is contained in a 4-element fan, and let F2 be a maximal fan containing T ∗.
SinceM has no disjoint fans with like ends, we have that F1∩F2 6= ∅. By either Lemma 3.6.7
or Lemma 3.6.10, the fan F2 does not have even length, so |F2| is odd, and thus |F2| = 5.
If F2 intersects G∪{e1}, then F2 is an odd fan intersecting either a triangle or a 5-element
fan, contradicting Lemma 3.6.4 or Lemma 3.6.5. Thus, e1 /∈ F2, so e|F1| ∈ F2. Now,
Lemma 3.6.11 implies that H = F2−{e|F1|} is a co-fan-type accordion end with F1. Next,
we consider the cases where T ∗ is not contained in a 4-element fan, and show that M has
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a triad-type or co-K4-type accordion end.

We have that F1 ∩ T ∗ 6= ∅, which implies that e|F1| ∈ T ∗. Without loss of generality,
T ∗ = {e|F1|, f2, f3} such that M/f2 is 3-connected. Now, M has a 4-element circuit C
containing {f2, e|F1|}, one of {e|F1|−1, e|F1|−2}, and an element e /∈ F1 ∪G. If |F1| > 4, then
orthogonality with {e|F1|−4, e|F1|−3, e|F1|−2} implies that e|F2|−1 ∈ C. If |F1| = 4, then,
regardless of which type of accordion end G is, we have that e|F1|−2 = e2 ∈ cl∗(G ∪ {e1}).
Again, e|F2|−1 ∈ C. If e = f3, then Lemma 3.6.12 implies that H = {f2, f3} is a triad-type
accordion end with F1. Otherwise, suppose e 6= f3. If e is not contained in a triad, then
Lemma 3.4.4 implies that M\e is 3-connected, a contradiction. Thus, there is a triad T ∗2 of
M containing e. Furthermore, T ∗2 ∩F1 6= ∅, so e|F1| ∈ T ∗2 . Now, Lemma 3.6.13 implies that
H = T ∗ ∪ T ∗2 − {e|F1|} is a co-K4-type accordion end or an almost-co-K4-type accordion
end with F1.

In all cases, we have a set H which is either a co-fan-type, triad-type, co-K4-type, or
almost-co-K4-type accordion end with F1. Also note that there is a circuit of M containing
{e|F1|−1, e|F1|} and two elements of H. By orthogonality, G is not an almost-K4-type
accordion end, and similarly H is not an almost-co-K4-type accordion end. Now, M has a
contractable collection ({e|F1|}, {e|F1|−1, e|F1|−2}, H) and λ(H ∪{e|F1|−2, e|F1|−1, e|F1|}) = 2.
Combined with the deletable collection ({e1}, {e2, e3}, G), Lemma 3.4.14 implies that every
element of E(M)− (F1 ∪G ∪H) is contained in a 4-element fan. If F is a maximal fan of
M with length at least four which is not contained in F1 ∪G ∪H, then F has odd length
and contains either e1 or e|F1|. But now F intersects a maximal fan of odd length in either
G or H. This is a contradiction, and shows that E(M) = F1 ∪ G ∪ H. Thus, M is an
accordion.

Lemma 3.6.15. Let M be a 3-connected matroid with no detachable pairs and no disjoint
fans with like ends. Let F1 = (e1, e2, . . . , e|F1|) be a maximal fan of M with even length at
least four such that {e1, e2, e3} is a triangle. Let T = {e1, f2, f3} be a triangle of M and
T ∗ = {e|F1|, g2, g3} be a triad of M , and let e /∈ F1 ∪ {f2, f3, g2, g3} such that {e1, e2, f2, e}
is a cocircuit. If M has an element x 6= e such that x is not contained in a triangle or a
triad and M\x is 3-connected, then x ∈ cl∗(F1 ∪ {f2, f3}) and x ∈ cl(F1 ∪ {g2, g3}).

Proof. Lemma 3.4.3 implies that M has a 4-element cocircuit C∗ containing {e1, x}, and
either e2 or e3, and either f2 or f3, so x ∈ cl∗(F1 ∪ {f2, f3}). Now, suppose M/x is not
3-connected. Then M has a vertical 3-separation (X, {x}, Y ), and we may assume that
F1 ⊆ X. If {f2, f3} ⊆ X, then x ∈ cl∗(X), a contradiction. This implies that f2 /∈ cl(X)
and f2 /∈ cl∗(X), from which it follows that {e, f2, f3} ⊆ Y . But now e1 ∈ cl(Y ), and
e2 ∈ cl∗(Y ∪{e1}), and, repeating in this way, we see that (X−F1, {x}, Y ∪F1) is a vertical
3-separation of M . However, x ∈ cl∗(Y ∪F1), a contradiction. Hence, M/x is 3-connected,
so M has a 4-element circuit containing {e|F1|, x}, and either e|F1|−2 or e|F1|−1, and either
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g2 or g3. Thus, x ∈ cl(F1 ∪ {g2, g3}), as desired.

Lemma 3.6.16. Let M be a 3-connected matroid with no detachable pairs and no disjoint
fans with like ends such that |E(M)| ≥ 13. Let F1 = (e1, e2, . . . , e|F1|) be a maximal
fan of M with even length at least four such that {e1, e2, e3} is a triangle and M has no
other 4-element fans. Let {e1, f2, f3} be a triangle of M such that M\f2 is 3-connected.
Furthermore, let e ∈ E(M)− (F1 ∪ {f2, f3}) such that {e1, e2, f2, e} is a cocircuit and e is
not contained in a triangle. Then M is an even-fan-spike with three petals.

Proof. Since M\f2 is 3-connected, Lemma 3.4.4 implies that M/e is 3-connected. There-
fore, M has a 4-element circuit C containing {e|F1|, e}, and one of e|F1|−2 and e|F1|−1, and
an element f /∈ F1 ∪{e}. If T ∗ is a triad of M which is not contained in F1, then, since T ∗

is not contained in a 4-element fan and M has no disjoint fans with like ends, we have that
T ∗ ∩ F1 6= ∅. Hence, e|F1| ∈ T ∗, and, by orthogonality with C, either e ∈ T ∗ or f ∈ T ∗.
Now, every triad of M which is not contained in F1 contains either {e4, e} or {e4, f}. It fol-
lows, by Lemma 3.4.16, that there are at most two elements of E(M)− (F1 ∪{f2, f3, e, f})
contained in triads.

The strategy for this proof is to find a set X with F1 ∪ {f2, f3, e, f} ⊆ X and λ(X) = 2.
Then ({e1}, F1−{e1}, {f2, f3}) is a deletable collection, and e|F1| ∈ cl∗(F1−{e|F1|}), and, for
all i ∈ {1, 2, . . . , |F1|}, we have that ei ∈ cl(X). Hence, if |E(M)| ≥ |X|+ 3, Lemma 3.4.10
implies that every element of E(M) − X is contained in a triad. But E(M) − X has at
most two elements contained in triads. This is a contradiction, so |E(M)| ≤ |X|+ 2.

We set about finding such a set X. First, suppose f 6= f2. Orthogonality with the
cocircuit {e1, e2, f2, e} implies that e2 ∈ C, so |F1| = 4. Suppose f is not contained in a
triad. If f = f3, then λ(F1 ∪ {f2, f3, e}) = 2. Thus, |E(M)| ≤ |F1 ∪ {f2, f3, e}| + 2 = 9,
a contradiction. Otherwise, since f is not contained in a triad, Lemma 3.4.4 implies that
M\f is 3-connected. Hence, M has a 4-element cocircuit containing {e1, f}, and one of
{e2, e3}, and one of {f2, f3}. Now, λ(F1 ∪ {f2, f3, e, f}) = 2, again a contradiction.

Next, assume that f is contained in a triad T ∗. The triad T ∗ also contains e4. Let
g /∈ F1 ∪ T ∗ ∪ {f2, f3, e} such that g is not contained in a triad. Such an element must
exist, since E(M) − (F1 ∪ {f2, f3, e, f}) has at most two elements contained in triads. If
g is contained in a triangle T , then T contains e1, since M has no disjoint fans with
like ends. But e /∈ T since e is not contained in a triangle, and f2 /∈ T as otherwise
r({e1, f2, f3, g}) = 2. This contradicts orthogonality with the cocicircuit {e1, e2, f2, e}, so
g is not contained in a triangle or a triad. By Bixby’s Lemma, either M\g or M/g is 3-
connected. If M\g is 3-connected, then Lemma 3.6.15 implies that g ∈ cl(F1∪T ∗∪{f2, f3})
and g ∈ cl∗(F1 ∪ T ∗ ∪ {f2, f3}). If M/g is 3-connected, then the dual of Lemma 3.6.15
implies that g ∈ cl(F1 ∪ T ∗ ∪ {f2, f3}) and g ∈ cl∗(F1 ∪ T ∗ ∪ {f2, f3}). In either case,
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λ(F1∪T ∗∪{f2, f3, e, g}) = 2, a contradiction since |E(M)| ≥ |F1∪T ∗∪{f2, f3, e, g}|+3 = 13.

Thus, f = f2. This means that λ(F1∪{f2, f3, e}) = 2, and so |E(M)| ≤ |F1∪{f2, f3, e}|+2.
Suppose |E(M)| = |F1 ∪ {f2, f3, e}| + 2. We have that λ(F1 ∪ {e, f2}) = 2, so λ(E(M) −
(F1 ∪ {e, f2})) = 2. Hence, E(M) − (F1 ∪ {e, f2}) is a triangle or a triad disjoint from
F1, a contradiction. Now, |E(M)| ≤ |F1 ∪ {e, f2}| + 2, so M is an even-fan-spike by
Lemma 3.5.11.

Lemma 3.6.17. Let M be a 3-connected matroid with no detachable pairs and no disjoint
fans with like ends such that |E(M)| ≥ 13. Let F1 = (e1, e2, . . . , e|F1|) be a maximal
fan of M with even length at least four such that {e1, e2, e3} is a triangle. Let F2 =
(f1, f2, . . . , |F1|) be a maximal fan of M with odd length at least three such that f1 = e1.
Then M is either an even-fan-spike with three petals or an accordion.

Proof. First, suppose M has a maximal fan F , distinct from F1, with length at least four.
Then F ∩ F1 6= ∅ and F has odd length, so |F | = 5. Up to reversing the ordering of F1

and duality, we have that e1 ∈ F and {e1, e2, e3} is a triangle. By Lemma 3.6.11, the set
G = F2 − {e1} is a fan-type accordion end with F1, and |E(M)| ≥ |F1 ∪G|+ 2. Thus, M
is an accordion by Lemma 3.6.14.

Otherwise, M has no 4-element fans outside of F1 whatsoever, so |F2| = 3. Without loss
of generality, assume that M\f2 is 3-connected, so M has a 4-element cocircuit C∗ =
{e1, e2, f2, e}, where e /∈ F1. If e = f3, then {f2, f3} is a triangle-type accordion end and
|E(M)| ≥ |F1∪{f2, f3}|+2, by Lemma 3.6.12. Again, M is an accordion by Lemma 3.6.14.

Finally, suppose e 6= f3. If e is not contained in a triangle, then M is an even-fan-spike with
three petals by Lemma 3.6.16. Otherwise, e is contained in a triangle T , which contains e1.
We apply Lemma 3.6.13. Either M is an even-fan-spike with three petals, or F2∪T −{e1}
is a K4-type or almost-K4-type accordion end with F1 and |E(M)| ≥ |F1 ∪ F2 ∪ T | + 2.
Therefore, M is an accordion, by Lemma 3.6.14.

3.6.5 Putting it together

Proof of Theorem 3.6.1. Let (e1, e2, . . . , e|F1|) and (f1, f2, . . . , f|F2|) be orderings of F1 and
F2 respectively. By Lemma 3.2.11, we may assume that e1 = f1, and up to duality, suppose
that {e1, e2, e3} is a triangle. By Lemma 3.2.8, the set {f1, f2, f3} is also a triangle. Suppose
F1 and F2 are both odd. If F1∪F2 is an M(K4)-separator, then M has a detachable pair by
Corollary 3.6.3. Otherwise, if |F2| = 3, then Lemma 3.6.4 implies that M has a detachable
pair, and if |F2| > 3, then Lemma 3.6.5 implies that M has a detachable pair. Next,
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suppose both F1 and F2 are even. If F1 ∩ F2 = {e1, e|F1|}, then M is a degenerate even-
fan-spike with tip and cotip or an even-fan-spike with tip and cotip by Lemma 3.6.7. If
F1 ∩F2 = {e1}, then either (iv) or (v) holds by Lemma 3.6.10. Finally, if F1 is odd and F2

is even or vice versa, then Lemma 3.6.17 implies that either M is an even-fan-spike with
three petals or M is an accordion.

3.7 Remaining Fan Cases

We may now assume that M has no disjoint fans with like ends, and no intersecting fans.
This means that, if F1 = (e1, e2, . . . , e|F1|) and F2 = (f1, f2, . . . , f|F2|) are distinct maximal
fans such that |F1| ≥ 4 and |F1| ≥ 3, then F1 and F2 are disjoint and either {e1, e2, e3}
and {e|F1|−2, e|F1|−1, e|F1|} are both triangles and {f1, f2, f3} and {f|F2|−2, f|F2|−1, f|F2|} are
both triads, or vice versa. We say that M has no distinct fans with like ends. The goal of
this section is to consider the case in which M has a 4-element fan, but no distinct fans
with like ends, and prove the following.

Theorem 3.7.1. Let M be a 3-connected matroid with no distinct fans with like ends such
that |E(M)| ≥ 13. Let F be a maximal fan of M with length at least four. Then either

(i) M has a detachable pair,

(ii) M is a wheel or a whirl,

(iii) M is an even-fan-spike,

(iv) M ′ has a paddle (P1, P2, . . . , Pm) for some M ′ ∈ {M,M∗} and m ≥ 3 such that
M ′\P1

∼= M(K3,m−1), and, for all i ∈ {2, 3, . . . ,m}, the set Pi is a triad and P1 is a
co-augmented-fan-petal relative to Pi.

3.7.1 Two Fans

First, we consider the case where M has two distinct maximal fans with length at least
four.

Lemma 3.7.2. Let M be a 3-connected matroid with no distinct fans with like ends such
that |E(M)| ≥ 13. Let F1 and F2 be distinct, maximal fans of M with length at least four.
Then M has a detachable pair.

Proof. Suppose, with the aim of reaching a contradiction, that M does not have a detach-
able pair. Let (e1, e2, . . . , e|F1|) be an ordering of F1, and (f1, f2, . . . , f|F2|) be an ordering
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of F2. Since M has no distinct fans with like ends, we may assume that {e1, e2, e3} and
{e|F1|−2, e|F1|−1, e|F1|} are triangles, and {f1, f2, f3} and {f|F2|−2, f|F2|−1, f|F2|} are triads.
This implies that F1 and F2 have odd length, so, by Lemma 3.4.17, we have that |F1| = 5
and |F2| = 5. Furthermore, there exists z /∈ F1 such that {e1, e3, e5, z} is a cocircuit, and
there exists z′ /∈ F2 such that {f1, f3, f5, z′} is a circuit.

Since M has no distinct fans with like ends, there are no triangles or triads of M outside of
F1 and F2. This means that z is not contained in a triangle. Since z ∈ cl∗(F1), we have that
M/z is 3-connected. Similarly, M\z′ is 3-connected. We show that z ∈ {f1, f5}. Suppose
this is not the case. Lemma 3.4.3 implies that M has a 4-element circuit C1 containing
{z, f1}. By orthogonality with {f1, f2, f3} and {e1, e3, e5, z}, the circuit C1 contains f2
and either e1 or e5. Without loss of generality, assume that C1 = {z, e1, f1, f2}. Also,
M has a 4-element circuit C2 containing {z, f4, f5} and either e1 or e5. If e1 ∈ C2, then
circuit elimination implies M has a circuit contained in {f1, f2, f4, f5}, a contradiction. So
C2 = {z, e5, f4, f5}.

Also, orthogonality with {e1, e3, e5, z} implies that z′ /∈ {e1, e5}. Hence, Lemma 3.4.3 and
orthogonality implies that M has cocircuits C∗1 = {z′, f1, e1, e2} and C∗2 = {z′, f5, e4, e5}.
But now λ(F1∪F2∪{z, z′}) ≤ 1, so |E(M)| ≤ |F1∪F2∪{z, z′}|+1 = 13. But |E(M)| ≥ 13,
so E(M) = F1 ∪ F2 ∪ {z, z′, x}, for some x /∈ F1 ∪ F2 ∪ {z, z′}. Now, λ(F1 ∪ {z}) = 2 and
λ(F2 ∪ {z′}) = 2, which implies that either x ∈ cl(F1 ∪ {z}) and x ∈ cl(F2 ∪ {z′}), or
x ∈ cl∗(F1 ∪ {z}) and x ∈ cl∗(F2 ∪ {z′}). Up to duality, we may assume the former — in
particular, x ∈ cl(F2 ∪ {z′}). But z′ ∈ cl(F2), so x ∈ cl(F2), and λ(F2 ∪ {x}) = 2. Now,
λ(F1∪{z, z′}) = 2. The cocircuits C∗1 and C∗2 imply that λ(F1∪{z, z′, f1, f5}) = 2, and the
circuit {f1, f3, f5, z′} implies that λ(F1 ∪ {z, z′, f1, f3, f5}) = 2. Thus, λ({f2, f4, x}) = 2,
which implies by orthogonality that {f2, f4, x} is a triad. But now x ∈ cl(F2) ∩ cl∗(F2), a
contradiction.

Thus, z ∈ {f1, f5}. Dually, z′ ∈ {e1, e5}. Then ({z}, F1, F2 − {z}) is a contractable
triple and ({z′}, F1−{z′}, F2) is a deletable triple and λ(F1 ∪F2) = 2. Since |E(M)| ≥ 13,
Lemma 3.4.14 implies that every element of M which is not contained in F1∪F2 is contained
in a 4-element fan. But M has no distinct fans with like ends, so M has no other 4-element
fans, a contradiction which completes the proof.

3.7.2 Even fan

Next, we consider the case where M has an even fan, and show that M is an even-fan-spike.
We may also assume that M has no other triangles or triads.

Lemma 3.7.3. Let M be a 3-connected matroid with no detachable pairs. Let F =
(e1, e2, . . . , e|F |) be a maximal fan of M with even length at least four such that {e1, e2, e3}



3.7 DETACHABLE PAIRS — Remaining Fan Cases 96

is a triangle. Suppose M has no triangles or triads outside of F . Let e /∈ F such that
M\e is 3-connected. Then either M is an even-fan-spike, or |F | = 4 and there exists
f, g, h ∈ E(M)− F (not necessarily distinct) for which

(i) there exists i ∈ {2, 3} such that {e1, ei, e, f} is a cocircuit and {ei, e4, f, g} is a circuit,
and

(ii) λ(F ∪ {e, f, g, h}) = 2.

Proof. By Lemma 3.4.3 and orthogonality with {e1, e2, e3}, there exists f /∈ F ∪ {e} such
that {e1, ei, e, f} is a cocircuit of M for some i ∈ {2, 3}. Now, f is not contained in
a triangle, so Lemma 3.4.4 implies that M/f is 3-connected. Thus, M has a 4-element
circuit C = {e|F |, ej , f, g} for some g /∈ F ∪ {f} and j ∈ {|F | − 2, |F | − 1}. If ej 6= ei, then
orthogonality with C∗ implies that g = e. Furthermore, either |F | > 4 and orthogonality
implies that C∗ = {e1, e2, e, f} and C = {e|F |−1, e|F |, e, f}, or |F | = 4 and we may choose
an ordering of F such that C∗ = {e1, e2, e, f} and C = {e3, e4, e, f}. In either case,
Lemma 3.5.14 implies that M is an even-fan-spike, as desired. Hence, ej = ei, which
implies that |F | = 4.

If g = e, then λ(F ∪ {e, f}) = 2, and the result holds. Otherwise, Lemma 3.4.4 implies
that M\g is 3-connected. Thus, M has a 4-element cocircuit C∗2 containing {e1, g} and
one of {e2, e3} and an element h /∈ F ∪ {g}. If h ∈ {e, f}, then λ(F ∪ {e, f, g}) = 2,
as desired. Otherwise, orthogonality with C implies that C∗2 = {e1, ei, g, h}, and M/h is
3-connected. Now, M has a 4-element circuit C2 containing {e4, h} and either e2 or e3. If
ei ∈ C2, then orthogonality with C∗ implies that either e ∈ C2 or f ∈ C2, and if ei /∈ C2,
then orthogonality with C∗2 implies that g ∈ C2. In either case, λ(F ∪ {e, f, g, h}) = 2,
completing the proof.

Lemma 3.7.4. Let M be a 3-connected matroid with no detachable pairs such that |E(M)| ≥
13. Let F be a maximal fan of M with even length at least four. If M has no triangles or
triads outside of F , then M is either a wheel, a whirl or an even-fan-spike.

Proof. If E(M) = F , then M is a wheel or a whirl by Lemma 3.2.7. Otherwise, let
e ∈ E(M) − F , and suppose that M is not an even-fan-spike. Either M\e or M/e is
3-connected, so, up to duality, we may assume that M\e is 3-connected. By Lemma 3.7.3,
there exists f, g, h /∈ F and an ordering (e1, e2, e3, e4) of F such that {e1, e2, e, f} is a
cocircuit and {e2, e4, f, g} is a circuit, and λ(F ∪ {e, f, g, h}) = 2.

Now, let e′ /∈ F ∪ {e, f, g, h}. Again, up to duality we may assume that M\e′ is 3-
connected, so there exists f ′, g′, h′ /∈ F and i ∈ {2, 3} such that {e1, ei, e′, f ′} is a cocircuit
and {ei, e4, f ′, g′} is a circuit and λ(F ∪ {e′, f ′, g′, h′}) = 2. Furthermore, if i = 2, then
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orthogonality implies that f ′ ∈ {f, g}. But now e′ ∈ cl∗(F ∪{e, f, g, h}), which contradicts
the fact that M\e′ is 3-connected. So i = 3.

Since |E(M)| ≥ 13, there exists e′′ /∈ F∪{e, f, g, h, e′, f ′, g′, h′}. Again assume, without loss
of generality, that M\e′′ is 3-connected. Thus, M has a 4-element cocircuit C∗ containing
{e1, e′′}, and either e2 or e3. But if e2 ∈ C∗, then e′′ ∈ cl∗(F ∪ {e, f, g, h}) and if e3 ∈ C∗,
then e′′ ∈ cl∗(F∪{e′, f ′, g′, h′}). Either case is a contradiction, and completes the proof.

3.7.3 Odd fan

Finally, we consider the case where M has an odd fan. The next lemma is similar to
Lemma 3.4.4 and will be useful in this section.

Lemma 3.7.5. Let M be a 3-connected matroid. Let F = (e1, e2, e3, e4, e5) be a maximal
fan of M such that {e1, e2, e3} is a triangle, and let z ∈ E(M)− F such that {e1, e3, e5, z}
is a cocircuit. If M has a circuit {e1, z, e, f} such that M/e is 3-connected and f is not
contained in a triad, then M\f is 3-connected.

Proof. Suppose M\f is not 3-connected. Since f is not contained in a triad, M has a
cyclic 3-separation (X, {f}, Y ) such that F ⊆ X. Now, z ∈ cl∗(F ), so we may assume that
z ∈ X. If e ∈ X, then f ∈ cl(X), a contradiction. Otherwise, e ∈ Y , and e ∈ cl(X ∪ {f}),
which contradicts the fact that M/e is 3-connected.

Lemma 3.7.6. Let M be a 3-connected matroid such that |E(M)| ≥ 11. Let F =
(e1, e2, e3, e4, e5) be a maximal fan of M such that {e1, e2, e3} is a triangle. Suppose M has
no triangles or triads outside of F . Then M has a detachable pair.

Proof. Suppose, to the contrary, that M has no detachable pairs. By Lemma 3.4.17, there
exists z ∈ E(M)−F such that {e1, e3, e5, z} is a cocircuit, so z ∈ cl∗(F ). Let e /∈ F ∪ {z}.
Suppose M/e is 3-connected. Then M has a 4-element circuit C containing {e, z}, and
either e1 or e5, and an element f /∈ F ∪ {z}. Suppose, without loss of generality, that
C = {e1, z, e, f}. Note that ({e1}, F − {e1}, {z, e, f}) is a deletable collection.

By Lemma 3.7.5, the matroid M\f is 3-connected. Now, M has a 4-element cocircuit
C∗ containing {e5, f}, and, by orthogonality with C, either C∗ = {e4, e5, z, f} or C∗ =
{e4, e5, e, f}. In either case, λ(F ∪ {z, e, f}) = 2. Furthermore, z ∈ cl∗(F ) and, for all
x ∈ F ∪ {z}, we have that x ∈ cl(F ∪ {z, e, f}). Since |E(M)| ≥ 11, Lemma 3.4.10 implies
that every element of E(M)− (F ∪ {z, e, f}) is contained in a triad, a contradiction.
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Thus, M\e is 3-connected, and, furthermore, for all x ∈ E(M)−(F∪{z}), the matroid M/x
is not 3-connected. Now, M has a 4-element cocircuit {e1, e2, e, f ′} where f ′ /∈ F ∪ {z}.
But Lemma 3.4.4 implies that M/f ′ is 3-connected, a contradiction which completes the
proof.

Lemma 3.7.7. Let M be a 3-connected matroid with no detachable pairs such that |E(M)| ≥
13. Let F = (e1, e2, e3, e4, e5) be a maximal fan of M such that {e1, e2, e3} is a triangle,
and M has no triangles outside of F . Let z ∈ E(M) − F such that {e1, e3, e5, z} is a
cocircuit. Then M has a triad which is disjoint from F ∪ {z}.

Proof. Suppose that every triad of M intersects F ∪{z}. By Lemma 3.7.6, the matroid M
has a triad T ∗ outside of F . Now, T ∗∩ (F ∪{z}) 6= ∅. By Lemma 3.2.8 and Lemma 3.2.11,
we have that T ∗ and F are disjoint. Thus, z ∈ T ∗, so let T ∗ = {z, e, f}. Note that
({z}, F, {e, f}) is a contractable collection. T ∗ is not contained in a 4-element fan, so
Tutte’s Triangle Lemma implies that either M/e or M/f is 3-connected. We may assume
that M/e is 3-connected. By Lemma 3.4.3, there is a 4-element circuit C = {ei, z, e, g} of
M , for some i ∈ {1, 5} and g /∈ F ∪ {e, z}. Assume, without loss of generality, that i = 1.
Now, ({e1}, F − {e1}, {z, e, g}) is a deletable collection. If g = f , then λ(F ∪ {z, e, f}) = 2
and F ∪ {z, e, f} contains both a deletable and a contractable triple. This contradicts
Lemma 3.4.14. Hence, g 6= f .

Suppose g is not contained in a triad. Lemma 3.7.5 implies that M\g is 3-connected.
Thus, M has a 4-element cocircuit C∗ containing {e4, e5, g} and one of {e, z, e1}. Now,
λ(F ∪ {z, e, f, g}) = 2, again contradicting Lemma 3.4.14.

Otherwise, g is contained in a triad of M . This triad contains z, so M has a triad {z, g, h},
for some h /∈ F ∪ {z, e, f, g}. Lemma 3.4.3 implies that M has a 4-element circuit C ′ con-
taining {e, h}. By orthogonality, C ′ contains one of {z, f} and one of {z, g}. Furthermore,
if z ∈ C ′, then C also contains one of e1 and e5. But now λ(F ∪ {z, e, f, g, h}) = 2, a
contradiction which completes the proof.

Lemma 3.7.8. Let M be a 3-connected matroid with no detachable pairs such that |E(M)| ≥
12. Let F = (e1, e2, e3, e4, e5) be a maximal fan of M such that {e1, e2, e3} is a triangle and
M has no triangles outside of F . Let z ∈ E(M)− F such that {e1, e3, e5, z} is a cocircuit,
and let T ∗ be a triad of M which does not contain z. Then

(i) T ∗ = {a, b, c} such that {e1, z, a, b} and {e5, z, b, c} are circuits, and

(ii) every element of E(M)− (F ∪ {z} ∪ T ∗) is contained in a triad.

Proof. By Lemma 3.4.3 and orthogonality, we may label T ∗ = {a, b, c} such that C1 =
{ei, z, a, b} and C2 = {ej , z, b, c}, for some i, j ∈ {1, 5}. If i = j, then circuit elimination
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and orthogonality with {e1, e3, e5, z} implies that M has a circuit contained in T ∗. This is
a contradiction, so i 6= j, proving (i).

Now, ({e1}, F −{e1}, T ∗∪{z}) is a deletable collection. Furthermore, λ(F ∪T ∗∪{z}) = 2,
and z ∈ cl∗(F ), and, for all x ∈ F ∪ {z}, we have that z ∈ cl(F ∪ T ∗ ∪ {z}). Hence, by
Lemma 3.4.10, every element of E(M)− (F ∪ T ∗ ∪ {z}) is contained in a triad.

Lemma 3.7.9. Let M be a 3-connected matroid with no detachable pairs such that |E(M)| ≥
13. Let F = (e1, e2, . . . , e|F |) be a maximal fan of M with odd length at least five such that
{e1, e2, e3} is a triangle and M has no triangles outside of F . Then M has a paddle
(P1, P2, . . . , Pm) such that M\P1

∼= M(K3,m−1) and, for all i ∈ {2, 3, . . . ,m}, the petal Pi

is a triad and P1 is a co-augmented-fan-petal relative to Pi.

Proof. By Lemma 3.4.17, we have that |F | = 5 and there exists z /∈ F such that {e1, e3, e5, z}
is a cocircuit. By Lemma 3.7.7, there exists a triad T ∗1 disjoint from F ∪ {z}, and by
Lemma 3.7.8(i), we have that T ∗1 = {a1, b1, c1} such that {e1, z, a1, b1} and {e5, z, b1, c1}
are circuits. Let e /∈ F ∪ {z} ∪ T ∗1 . By Lemma 3.7.8, there is a triad T ∗2 containing e. Fur-
thermore, orthogonality implies that T ∗2 is disjoint from F ∪ {z} ∪ T ∗1 , so T ∗2 = {a2, b2, c2}
such that {e1, z, a2, b2} and {e5, z, b2, c2} are circuits. Furthermore, Lemma 3.4.18 implies
that M |(T ∗1 ∪ T ∗2 ) ∼= M(K3,2).

It follows that we may partition E(M) into P1, P2, . . . , Pm, with m ≥ 3, such that P1 =
F ∪ {z} and M\P1

∼= M(K3,m−1) and, for all i ∈ {2, 3, . . . ,m}, the set Pi = {ai, bi, ci} is a
triad such that {e1, z, ai, bi} and {e5, z, bi, ci} are circuits. By Lemma 3.4.19, we have that
(P1, P2, . . . , Pm) is a paddle of M .

To complete the proof, we show that P1 is a co-augmented-fan-petal relative to Pi, for all
i ∈ {2, 3, . . . ,m}. The circuits {e1, z, ai, bi} and {e5, z, bi, ci} imply that u({e1, z}, Pi) = 1
and u({e5, z}, Pi) = 1. We show that u({e2, e4}, Pi) = 1. Observe that

λ(Pi∪{e2, e4}) = λ((P2∪P3∪· · ·∪Pm−Pi)∪{e1, e3, e5, z}) ≤ λ(P2∪P3∪· · ·∪Pm−Pi)+1 = 3.

Orthogonality with the triangles {e1, e2, e3} and {e3, e4, e5} imply that r∗(Pi ∪ {e2, e3}) =
r∗(Pi) + 2, and orthogonality with {e2, e3, e4} implies that r(Pi ∪ {e2, e4}) ≥ r(Pi) + 1.
Therefore,

λ(Pi ∪ {e2, e4}) ≥ (r(Pi) + 1) + (r∗(Pi) + 2)− (|Pi|+ 2) = λ(Pi) + 1 = 3

Therefore, λ(Pi ∪ {e2, e4}) = 2, so r(Pi ∪ {e2, e4}) = r(Pi) + 1, completing the proof.
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3.7.4 Putting it together

Proof of Theorem 3.7.1. Suppose M has a maximal fan G, distinct from F , with length
at least four. Lemma 3.7.2 implies that M has a detachable pair. Otherwise, M has no
4-element fans outside of F . If F has even length, then M has no triangles or triads outside
of F , and Lemma 3.7.4 implies that M is a wheel, a whirl, or an even-fan-spike. Otherwise,
F has odd length. Up to duality, we may assume that the end elements of F are contained
in triangles. This means that M has no triangles outside of F , so the result follows from
Lemma 3.7.9.

3.8 No Fans

Now we may assume that M has no 4-element fans whatsoever.

Theorem 3.8.1. Let M be a 3-connected matroid with no 4-element fans such that |E(M)| ≥
13. Then one of the following holds.

(i) M has a detachable pair,

(ii) M is a spike, or

(iii) M ′ has a paddle (P1, P2, . . . , Pm) for some M ′ ∈ {M,M∗} and m ≥ 3, and either

(a) M ′ ∼= M(K3,m), where Pi is a triad for each i ∈ [m],

(b) there exists x ∈ E(M) such that M ′\x ∼= M(K3,m) and, for all i ∈ {1, 2, . . . ,m},
the set Pi − {x} is a triad and x ∈ cl(Pi − {x}), or

(c) M ′\P1
∼= M(K3,m−1), and, for all i ∈ {2, 3, . . . ,m}, the set Pi is a triad and

either

(I) M ′|P1
∼= M∗(K3,t) for some t ≥ 2, or

(II) P1 is a quad-petal relative to Pi.

3.8.1 Intersecting triads

First, we consider the case where M has two intersecting triads, working towards showing
that M has a detachable pair.

Lemma 3.8.2. Let M be a 3-connected matroid with no 4-element fans such that |E(M)| ≥
9. Let T ∗1 = {t, a1, a2} and T ∗2 = {t, b1, b2} be triads of M . Let e /∈ T ∗1 ∪ T ∗2 such that M/e
is 3-connected. Then M has a detachable pair.
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Proof. Suppose, with the aim of reaching a contradiction, that M has no detachable pairs.
Note that ({t}, {a1, a2}, {b1, b2}) is a contractable collection. Since e /∈ T ∗1 ∪T ∗2 and M/e is
3-connected, Corollary 3.4.11 implies that λ(T ∗1 ∪ T ∗2 ) > 2. In particular, this means that
T ∗1 ∪ T ∗2 is independent.

By Lemma 3.4.3, there is a 4-element circuit C of M containing {e, t}. By orthogonality,
and without loss of generality, we have that C = {e, t, a1, b1}. Additionally, M has a 4-
element circuit C1 containing {e, a2}. If C1 contains three elements of T ∗1 ∪T ∗2 , then circuit
elimination with C on the element e implies that M has a circuit contained in T ∗1 ∪ T ∗2 , a
contradiction. Thus, C1 = {a1, a2, e, f}, for some f /∈ T ∗1 ∪ T ∗2 ∪ {e}. Similarly, M has a
circuit C2 = {b1, b2, e, g}, with g /∈ T ∗1 ∪ T ∗2 ∪ {e}. Furthermore, note that if f = g, then
T ∗1 ∪ T ∗2 is not independent, so f 6= g.

Now, we show that M/a2 is 3-connected. If this is not the case, then M has a vertical
3-separation (X, {a2}, Y ). Without loss of generality, assume that T ∗2 ⊆ X. Then a1 ∈ Y ,
as otherwise a2 ∈ cl∗(X). This further implies that e ∈ Y , as otherwise a1 ∈ cl(X).
Now, λ(X ∪ {a1, a2}) = 2. But e ∈ cl(X ∪ {a1, a2}), which contradicts the fact that
M/e is 3-connected, since |Y − {a1, a2}| ≥ 2. Hence, M/a2 is 3-connected. This implies,
by Lemma 3.4.3, that M has a 4-element circuit C ′ containing {a2, b2}. Orthogonality
implies that M contains one of {t, a1}, one of {t, b1}, one of {a1, e, f}, and one of {b1, e, g}.
Furthermore, C ′ 6⊆ T ∗1 ∪ T ∗2 , so the only possibility is C ′ = {e, t, a2, b2}. But now circuit
elimination between C and C ′ implies that M has a circuit contained in T ∗1 ∪ T ∗2 . This
contradiction completes the proof.

Lemma 3.8.3. Let M be a 3-connected matroid with no detachable pairs and no 4-element
fans such that |E(M)| ≥ 9. Let T ∗1 and T ∗2 be triads of M such that |T ∗1 ∩ T ∗2 | = 1. Then
M has no other triads.

Proof. Let T ∗3 be a triad of M distinct from T ∗1 and T ∗2 . If |T ∗3 − (T ∗1 ∩ T ∗2 )| ≥ 2, then
Tutte’s Triangle Lemma implies that there exists x ∈ T ∗3 − (T ∗1 ∩ T ∗2 ) such that M/x
is 3-connected, a contradiction to Lemma 3.8.2. Otherwise, |T ∗3 − (T ∗1 ∩ T ∗2 )| = 1. By
Lemma 3.4.16, we have that |T ∗1 ∩ T ∗2 | = 1 and |T ∗1 ∩ T ∗3 | = 1. This means that we can
label the elements of T ∗1 , T ∗2 , and T ∗3 such that T ∗1 = {a1, b1, a2}, and T ∗2 = {a2, b2, a3},
and T ∗3 = {a3, b3, a1}. By Lemma 3.8.2, none of M/b1, M/b2, and M/b3 are 3-connected,
so M has a vertical 3-separation (X, {b3}, Y ), Without loss of generality, T ∗1 ⊆ X. This
implies a3 ∈ Y , as otherwise b3 ∈ cl∗(X), and, in turn, b2 ∈ Y , since a3 /∈ cl∗(X). But now
λ(X ∪ {b3, a3}) = 2, and b2 ∈ cl∗(X ∪ {b3, a3}). Since |Y − {b2, a3}| ≥ 2, this implies that
M/b2 is 3-connected, a contradiction.

The next lemma will be useful in a few different places in this section.
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Lemma 3.8.4. Let M be a 3-connected matroid with no detachable pairs. Suppose that, for
all x ∈ E(M), if x is not contained in a triad, then M/x is not 3-connected. If there exists
distinct e, f ∈ E(M) such that neither e nor f is contained in a triangle or a triad, then M
has a 4-element cocircuit C∗ such that e, f ∈ C∗, and a triad T ∗ such that T ∗ ∩ C∗ = {g}
and M/g is 3-connected.

Proof. Suppose {e, f} is not contained in a 4-element cocircuit of M . Neither M/e nor M/f
are 3-connected, so Bixby’s Lemma implies that M\e and M\f are 3-connected. Since f is
not contained in a triangle of M , we also have that f is not contained in triangle of M\e.
Also, f is not contained in a triad of M and {e, f} is not contained in a 4-element cocircuit
of M , so f is not contained in a triad of M\e. Hence, as M\e\f is not 3-connected, we
have that M\e/f is 3-connected. But Lemma 3.4.6 implies that M/f is 3-connected, a
contradiction. Therefore, M has a 4-element cocircuit C∗ containing {e, f}.

Now, M/e is not 3-connected, so M has a vertical 3-separation (X, {e}, Y ). If |C∗∩X| = 3,
then e ∈ cl∗(X), a contradiction. Likewise, |C∗∩Y | 6= 3. Hence, without loss of generality,
we may assume that |C∗∩X| = 2 and |C∗∩Y | = 1. Let g be the unique element of C∗∩Y .
Then g ∈ cl∗(X ∪ {e}), so co(M\g) is not 3-connected. Thus, si(M/g) is 3-connected.
Suppose g is contained in a triangle T . By orthogonality, T contains a second element of
C∗. But now Lemma 3.4.4 implies that M/f is 3-connected, a contradiction. This means
that M/g is 3-connected, and so g is contained in a triad T ∗.

Suppose T ∗ contains a second element of C∗, so that |T ∗ ∩ X| ≥ 1. If g ∈ cl∗(X), then
(X ∪ {g}, {e}, Y − {g}) is a vertical 3-separation of M , and e ∈ cl∗(X ∪ {g}). Thus,
g /∈ cl∗(X), so |T ∗ ∩ Y | = 2 and |T ∗ ∩X| = 1. But this means that (X − T ∗, {e}, Y ∪ T ∗)
is a vertical 3-separation. However, C∗−{e, f} ⊆ T ∗, which implies f ∈ cl∗(Y ∪T ∗ ∪{e}).
This means that M\f is not 3-connected, a contradiction which completes the proof.

Lemma 3.8.5. Let M be a 3-connected matroid with no 4-element fans such that |E(M)| ≥
9. Suppose that, for all x ∈ E(M), if x is not contained in a triad, then M/x is not 3-
connected. Let T ∗1 = {t, a1, a2} and T ∗2 = {t, b1, b2} be triads of M , and let e and f be
distinct elements of E(M) which are not contained in a triangle or a triad. Then M has
a detachable pair.

Proof. By Lemma 3.8.4, there exists a 4-element cocircuit C∗ containing {e, f}, and a triad
T ∗ such that C∗ ∩ T ∗ = {g} where M/g is 3-connected. By Lemma 3.8.3, we have that
T ∗ = T ∗1 or T ∗ = T ∗2 . Take T ∗ = T ∗1 . If g = t, then, since either M/a1 or M/a2 is 3-
connected, Lemma 3.4.3 implies that M has a 4-element circuit containing t and either a1
or a2. Otherwise, since M/g is 3-connected, Lemma 3.4.3 implies that M has a 4-element
circuit containing {g, t}. In either case, M has a 4-element circuit C = {ai, bj , t, h}, for
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some element h ∈ E(M) and i, j ∈ {1, 2} such that g ∈ C. Since g ∈ C ∩C∗, orthogonlaity
implies that |C ∩ C∗| ≥ 2.

Neither M/e nor M/f is 3-connected, so M has a vertical 3-separation (X, {e}, Y ). We
may assume that h 6= e, for if h = e, then apply identical logic to a vertical 3-separation
(X ′, {f}, Y ′). We show that there is such a vertical 3-separation in which T ∗1 ∪T ∗2 ∪{h} ⊆ X.
Suppose, without loss of generality, that T ∗1 ⊆ X. If {b1, b2} ⊆ X, then h ∈ cl(X), and
the result follows. Otherwise, assume {b1, b2} ⊆ Y . If h ∈ X, then bj ∈ cl(X) and we may
assume that T ∗1 ∪ T ∗2 ∪ {h} ⊆ X, and if h ∈ Y , then t ∈ cl∗(Y ) and ai ∈ cl(Y ∪ {t}), so we
may assume that T ∗1 ∪ T ∗2 ∪ {h} ⊆ Y . Thus, we take T ∗1 ∪ T ∗2 ∪ {h} ⊆ X.

Now, C ⊆ X, so |C∗ ∩ X| ≥ 2. If |C∗ ∩ X| = 3, then e ∈ cl∗(X), a contradiction. So
|C∗ ∩X| = 2, and there exists a unique element y of C∗ ∩ Y . But y ∈ cl∗(X), and y is not
contained in a triangle since such a triangle would contain a second element of C∗ and none
of e, f , or g are contained in a triangle. This means that M/y is 3-connected. However,
now y is contained in a triad distinct from T ∗1 and T ∗2 , a contradiction to Lemma 3.8.3
which completes the proof.

3.8.2 Disjoint triads

We move onto the case where M has two disjoint triads.

Lemma 3.8.6. Let M be a 3-connected matroid. Let T ∗ = {a1, a2, a3} be a triad of M ,
and let e, f, g, h be distinct elements of E(M)−T ∗ such that {a1, a2, e, f} and {a2, a3, e, g}
are circuits, and {e, f, g, h} is a cocircuit, and h is not contained in a triangle. Then M/h
is 3-connected.

Proof. Suppose M/h is not 3-connected. Then M has a vertical 3-separation (X, {h}, Y )
such that T ∗ ⊆ X. If {e, f, g} ∩X 6= ∅, then {e, f, g} ⊆ cl(X), so (X ∪ {e, f, g}, {h}, Y −
{e, f, g}) is a vertical 3-separation. However, h ∈ cl∗(X∪{e, f, g}), a contradiction. Other-
wise, {e, f, g} ⊆ Y , which means that h ∈ cl∗(Y ), another contradiction. Therefore, M/h
is 3-connected.

Lemma 3.8.7. Let M be a 3-connected matroid with no detachable pairs and no 4-element
fans such that |E(M)| ≥ 13. Let T ∗1 and T ∗2 be disjoint triads of M , and let e be an element
of M such that e is not contained in a triangle or a triad and M/e is 3-connected. Then

(i) there exists X ⊆ E(M) such that e ∈ X and X is a quad-petal relative to T ∗1 and T ∗2 ,
and

(ii) every element of E(M)−X is contained in a triad.
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Proof. By Lemma 3.4.18, we have that T ∗1 = {a1, a2, a3} and T ∗2 = {b1, b2, b3} such that, for
all distinct i, j ∈ {1, 2, 3}, the set {ai, aj , bi, bj} is a circuit. Lemma 3.4.3 implies that M has
a 4-element circuit C1 containing {e, a1}. Without loss of generality, let C1 = {a1, a2, e, f},
for some f /∈ T ∗1 ∪ T ∗2 . Similarly, M has a 4-element circuit C2 = {a2, a3, e, g}, for some
g /∈ T ∗2 . Note that f 6= g, as then e ∈ cl(T ∗1 ), which contradicts the fact that M/e is
3-connected.

Suppose f is contained in a triad. Since e is not contained in a triad, orthogonality implies
this triad is {a1, b1, f}. But this contradicts Lemma 3.8.3. Thus, f , and similarly g, is not
contained in a triad of M . Now, M\f is 3-connected by Lemma 3.4.4. By Lemma 3.4.5,
there is a 4-element cocircuit C∗ of M containing either {e, f} or {f, g}. We prove that
there is a 4-element cocircuit of M containing {f, g}, so first suppose that {e, f} ⊆ C∗.
If C∗ also contains g, then we have the desired result. Otherwise, orthogonality with C2

implies that either a2 ∈ C∗ or a3 ∈ C∗. It follows that C∗ = {ai, bi, e, f}, with i ∈ {2, 3},
so λ(T ∗1 ∪T ∗2 ∪{e, f}) = 2. In particular, λM\f (T ∗1 ∪T ∗2 ∪{e}) = 2 and g ∈ cl(T ∗1 ∪T ∗2 ∪{e}).
Thus, since M\f\g is not 3-connected, the element g is contained in a triad of M\f , and
thus {f, g} is contained in a cocircuit of M .

In all cases, there is a 4-element cocircuit of M containing {f, g}. Suppose e is not contained
in this cocircuit. Then orthogonality with C1 and C2 implies that M has a cocircuit
{a2, b2, f, g}. But now λ(T ∗1 ∪T ∗2 ∪{f, g}) = 2 and ({a2}, {a1, a3}, {b2, f, g}) is a contractable
collection. This is a contradiction, since M/e is 3-connected. It follows that M has a
cocircuit {e, f, g, h} with h /∈ T ∗1 ∪ T ∗2 ∪ {e, f, g}.

Suppose h is contained in a triangle T . By orthogonality, T contains one of {e, f, g},
and e /∈ T since e is not contained in a triangle. Suppose T contains exactly one of f
and g. Say f ∈ T but g /∈ T , so that T = {f, h, x} for some x /∈ T ∗1 ∪ T ∗2 ∪ {e, f, g, h}.
Then Lemma 3.4.3 implies that M has a 4-element cocircuit D∗ containing {g, x}. The
cocircuit D∗ contains one of {f, h} and, by orthogonality with C2, we have that e ∈
D∗. Thus, either D∗ = {e, f, g, x} or D∗ = {e, g, h, x}. But cocircuit elimination with
{e, f, g, h} implies that M has a cocircuit contained in {f, g, h, x}, which is a contradiction
to orthogonality. Thus, T = {f, g, h}. Furthermore, u({e, f}, T ∗1 ) = u({e, g}, T ∗1 ) = 1,
so {e, f, g, h} is a type-B quad-petal relative to T ∗1 and, similarly, {e, f, g, h} is a type-
B quad-petal relative to T ∗2 . Now, ({f}, {g, h}, {e, a1, a2}) is a deletable collection, and
λ(T ∗1 ∪ {e, f, g, h}) = 2. Additionally, e ∈ cl∗({f, g, h}) and thus, by Lemma 3.4.10, every
element of E(M)− (T ∗1 ∪ {e, f, g, h}) is contained in a triad.

Otherwise, h is not contained in a triangle. By Lemma 3.8.6, the matroid M/h is 3-
connected, which means that M has a 4-element circuit containing {a1, h}, and one of
{a2, a3} and one of {e, f, g}. Circuit elimination with either {a1, a2, e, f} or {a1, a3, e, g}
implies that {e, f, g, h} is a quad.
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Now, for all x ∈ {e, f, g, h}, we have that M/x is 3-connected, by Lemma 3.4.2. Hence,
M has a 4-element circuit C ′ containing {a1, x}, and one of {a2, a3}, and an element
x′ ∈ {e, f, g, h} − {x}. Similarly, M has a 4-element circuit containing x and the unique
element of T ∗1 −C ′, and another element of T ∗1 , and an element x′′ ∈ {e, f, g, h}−{x}. Note
that x′ 6= x′′ since x /∈ cl(T ∗1 ). Thus, u({x, x′}, T ∗1 ) = u({x, x′′}, T ∗1 ) = 1, which implies that
{e, f, g, h} is a type-A quad-petal relative to T ∗1 , and, similarly, {e, f, g, h} is a type-A quad-
petal relative to T ∗2 . Now, ({e}, {f, g, h}, {f, a1, a2}, {g, a2, a3}) is a deletable collection,
and a1 ∈ cl∗({a2, a3}). By Lemma 3.4.10, every element of E(M) − (T ∗1 ∪ {e, f, g, h}) is
contained in a triad.

Lemma 3.8.8. Let M be a 3-connected matroid with no detachable pairs and no 4-element
fans such that |E(M)| ≥ 13. Let T ∗1 and T ∗2 be disjoint triads of M , and let e be an element
of M such that e is not contained in a triangle or a triad and M/e is 3-connected. Then M
has a paddle (P1, P2, . . . , Pm) such that M\P1

∼= M(K3,m−1) and for all i ∈ {2, 3, . . . ,m},
the set Pi is a triad and P1 is a quad-petal relative to Pi.

Proof. By Lemma 3.8.7, there exists X ⊆ E(M) such that X is a quad-petal relative to
T ∗1 and T ∗2 . Furthermore, for all x /∈ X ∪T ∗1 ∪T ∗2 , the element x is contained in a triad T ∗.
By orthogonality, T ∗ is disjoint from X ∪ T ∗1 ∪ T ∗2 . Hence, Lemma 3.8.7 implies that X is
a quad-petal relative to T ∗, and Lemma 3.4.18 implies that M |(T ∗1 ∪ T ∗2 ∪ T ∗) ∼= M(K3,3).
It follows that E(M) can be partitioned into P1, P2, P3, . . . , Pm such that P1 = X and
M\P1

∼= M(K3,m−1) and, for all i ∈ {2, 3, . . . ,m}, the set Pi is a triad and X is a quad-
petal relative to Pi. Lemma 3.4.19 implies that (P1, P2, . . . , Pm) is a paddle of M , and
completes the proof.

Lemma 3.8.9. Let M be a 3-connected matroid with no 4-element fans such that |E(M)| ≥
11. Suppose that, for all x ∈ E(M), if x is not contained in a triad, then M/x is not 3-
connected. Let T ∗1 and T ∗2 be disjoint triads of M , and let e and f be distinct elements of
E(M) which are not contained in a triangle or a triad. Then M has a detachable pair.

Proof. By Lemma 3.4.18, we have that T ∗1 = {a1, a2, a3} and T ∗2 = {b1, b2, b3} such that,
for all distinct i, j ∈ {1, 2, 3}, the set {ai, aj , bi, bj} is a circuit. By Lemma 3.8.4, there
exists a 4-element cocircuit C∗ containing {e, f} and a triad T ∗ such that C∗ ∩ T ∗ = {g},
where M/g is 3-connected.

Suppose that C∗ and T ∗1 ∪ T ∗2 are disjoint. This means that g /∈ T ∗1 ∪ T ∗2 , so T ∗ 6= T ∗1
and T ∗ 6= T ∗2 . Therefore, Lemma 3.8.3 implies that T ∗ is disjoint from T ∗1 and T ∗2 , so
M |(T ∗ ∪ T ∗1 ∪ T ∗2 ) ∼= M(K3,3). In particular, M has a 4-element C containing g, another
element of T ∗, and two elements of T ∗1 . But |C∗ ∩ T ∗| = 1 and |C∗ ∩ T ∗1 | = 0, so C and C∗

intersect in one element, a contradiction to orthogonality.
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Otherwise, C∗ ∩ (T ∗1 ∪ T ∗2 ) 6= ∅. Orthogonality implies that C∗ = {ai, bi, e, f}, for some
i ∈ {1, 2, 3}. Now, M/e is not 3-connected, so M has a vertical 3-separation (X, {e}, Y ).
Without loss of generality, assume that T ∗1 ⊆ X. If T ∗2 ⊆ X, then either f ∈ X, which
means e ∈ cl∗(X), and so M\e is not 3-connected, or f ∈ Y , which means f ∈ cl∗(X∪{e}),
and so M\f is not 3-connected. Either case is a contradiction, so T ∗2 ⊆ Y . Now, either
f ∈ X or f ∈ Y . We may assume, without loss of generality, the former. It follows that
λ(X ∪ {e} ∪ T ∗2 ) < 2, which implies that |Y − T ∗2 | = 1. Hence, Y = T ∗2 ∪ {z}, for some
element z. Since λ(Y ) = 2, either z ∈ cl(T ∗2 ) or z ∈ cl∗(T ∗2 ). If z ∈ cl(T ∗2 ), then T ∗2 ∪ {z} is
a 4-element circuit, which contradicts orthogonality with C∗. Otherwise, r∗(T ∗2 ∪{z}) = 2,
contradicting Lemma 3.4.16 and completing the proof.

Lemma 3.8.10. Let M be a 3-connected matroid with no detachable pairs and no 4-element
fans such that |E(M)| ≥ 9. Let T ∗1 and T ∗2 be disjoint triads of M , let T be a triangle of
M , and let e be an element of E(M) which is not contained in a triangle or a triad. Then
there exists f ∈ E(M) such that f is not contained in a triangle or a triad and M/f is
3-connected.

Proof. If M/e is 3-connected, then clearly the result holds. Otherwise, M\e is 3-connected.
By Lemma 3.4.3, there is a 4-element cocircuit C∗ = {e, f, g, h} such that {g, h} ⊆ T and
f /∈ T .

Suppose f is contained in a triangle T ′. By orthogonality, T ′ contains one of {e, f, g}.
Furthermore, e is not contained in a triangle, so T ∩T ′ 6= ∅. But M\e is 3-connected, which
contradicts Lemma 3.8.2. Next, suppose f is contained in a triad T ∗. If T ∗ intersects T ∗1 ,
then, by Lemma 3.8.3, we have that T ∗ = T ∗1 . Similarly, if T ∗ intersects T ∗2 , then T ∗ = T ∗2 .
This means that T ∗ is disjoint from at least one of T ∗1 and T ∗2 . By Lemma 3.4.18, there is
a 4-element circuit C of M containing f and another element of T ∗ and two elements of
either T ∗1 or T ∗2 . But e is not contained in a triad, and f and g are not contained in triads
since M has no 4-element fans. Therefore, C intersects C∗ in one element, a contradiction
which implies that f is contained in neither a triangle nor a triad. Lemma 3.4.4 implies
that M/f is 3-connected, as desired.

Lemma 3.8.11. Let M be a 3-connected matroid with no detachable pairs and no 4-element
fans such that |E(M)| ≥ 11. Suppose that, for all x ∈ E(M), if x is not contained in a
triad, then M/x is not 3-connected. Let T ∗1 and T ∗2 be disjoint triads of M , and let e be
an element of M which is not contained in a triangle or a triad. Then M has a paddle
(P1, P2, . . . , Pm) such that M\e ∼= M(K3,m) and for all i ∈ {1, 2, . . . ,m} the set Pi − {e}
is a triad and e ∈ cl(Pi − {e}).

Proof. By Lemma 3.8.10, the matroid M has no triangles. If there exists f 6= e such that f
is not contained in a triangle or a triad, then Lemma 3.8.9 implies that M has a detachable
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pair. So every element of E(M)−{e} is contained in a triad. Furthermore, by Lemma 3.8.3,
there are no intersecting triads of M . Therefore, E(M) − {e} can be partitioned into
P1, P2, . . . , Pm such that M\e ∼= M(K3,m) and, for all i ∈ {1, 2, . . . ,m}, the set Pi is a
triad. Additionally, M\(Pi ∪ {e}) ∼= M(K3,m−1). Therefore, λ(E(M)− (Pi ∪ {e})) = 2, so
λ(Pi ∪ {e}) = 2. By Lemma 3.4.16, we have that e /∈ cl∗(Pi), so e ∈ cl(Pi). This completes
the proof.

Lemma 3.8.12. Let M be a 3-connected matroid with no detachable pairs and no 4-element
fans such that |E(M)| ≥ 10. Let T ∗1 and T ∗2 be disjoint triads of M , and suppose that every
element of M is contained in a triangle or a triad. Then either M ∼= M(K3,m), or there
exists X ⊆M and s, t ≥ 2 such that M |X ∼= M(K3,s) and M\X ∼= M∗(K3,t).

Proof. By Lemma 3.8.3, there is no pair of intersecting triads of M . We have that
T ∗1 = {a1, a2, a3} and T ∗2 = {b1, b2, b3} such that, for all distinct i, j ∈ {1, 2, 3}, the set
{ai, aj , bi, bj} is a circuit. Moreover, if X is the set of elements of M which are contained
in triads, then M |X ∼= M(K3,s), for some s ≥ 2. If E(M) = X, then M ∼= M(K3,m) and
the result holds. Otherwise, there exists a triangle T disjoint from X.

We consider the case where E(M) = X ∪ T . Now, λ(X − T ∗1 ) = 2, and so λ(T ∗1 ∪ T ) = 2.
Suppose there exists x ∈ T such that x ∈ cl∗((T ∗1 ∪T )−{x}). Then there is a cocircuit C∗

of M contained in T ∗1 ∪ T which contains x and an element of T ∗1 . But orthogonality with
the circuits {ai, aj , bi, bj} implies that T ∗1 ⊆ C∗, a contradiction. Since λ(T ∗1 ∪ T ) = 2, it
follows that x ∈ cl(T ∗1 ), for all x ∈ T . In particular, for all distinct x, y ∈ T , Lemma 3.4.3
implies there is a 4-element cocircuit of M containing x and y. But this cocircuit contains
at least one element of X. Since |E(M)| ≥ 10, the set X contains at least three triads, so
this is a contradiction to orthogonality.

Therefore, M has triangle T ′ distinct from T . Suppose T and T ′ are not disjoint. By
Lemma 3.8.3, there are no other elements of M contained in a triangle, and so E(M) =
X ∪T ∪T ′. Since |T ∩T ′| = 1, Tutte’s Triangle Lemma implies that there exists x ∈ T −T ′
such that M\x is 3-connected. So, for y ∈ T ′, Lemma 3.4.3 implies that there is a 4-element
cocircuit C∗1 of M containing {x, y}. Orthogonality implies that C∗1 ⊆ T ∪ T ′. Also note
that either C∗1 contains a triangle or C∗1 is a quad. Hence, λ(C∗1 ) = 2. Let z be the unique
element of T ∪ T ′ − C∗1 . Now, z ∈ cl(C∗1 ), so M\z is 3-connected. Again, Lemma 3.4.3
implies that M has a 4-element cocircuit C∗2 containing z, and C∗2 ⊆ T ∪ T ′. But now
z ∈ cl(C∗1 ) and z ∈ cl∗(C∗1 ), a contradiction.

So M has no intersecting triangles. This means that E(M) − X can be partitioned into
disjoint triangles, and thus, by Lemma 3.4.18, we have that M\X ∼= M∗(K3,t), for some
t ≥ 2.
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3.8.3 Triad and no triangles

The final case we need to consider is when M has exactly one triad and at most one
triangle.

Lemma 3.8.13. Let M be a 3-connected matroid with no 4-element fans such that |E(M)| ≥
11. Let T ∗ be a triad of M and let T be a triangle of M such that M has no other triads or
triangles. Let e ∈ E(M)− (T ∪ T ∗) such that M/e is 3-connected. Then T ∗ = {a1, a2, a3}
and T = {b1, b2, b3} such that {a1, a2, e, b1} and {a2, a3, e, b3} are circuits.

Proof. By Lemma 3.4.3, we have that T ∗ = {a1, a2, a3} such that {a1, a2, e, f} and {a2, a3, e, g}
are circuits for some f, g /∈ T ∗ ∪ {e}. Now, f and g are not contained in triads, so,
by Lemma 3.4.4, we have that M\f and M\g are both 3-connected. Suppose f /∈ T .
Then T = {b1, b2, b3} such that M has a 4-element cocircuit C∗1 containing {b1, b2, f}
and a 4-element cocircuit C∗2 containing {b2, b3, f}. Orthogonality implies that C∗1 and
C∗2 each contain an element of {a1, a2, e}. If g ∈ T , then λ(T ∗ ∪ T ∪ {e, f}) = 2 and
({g}, T − {g}, {a2, a3, e}) is a deletable collection. But a1 ∈ cl∗({a2, a3}), and, for all
i ∈ {1, 2, 3}, we have that ai ∈ cl((T ∗−{ai})∪T ∪{e, f}). This contradicts Lemma 3.4.10.
Otherwise, g /∈ T , and orthogonality with {a2, a3, e, g} implies that M has cocircuits
C∗1 = {b1, b2, f, a1} and C∗2 = {b2, b3, f, a1} are cocircuits. Cocircuit elimination implies
that M has a cocircuit contained in {b1, b2, b3, f} and so, by orthogonality, M has a co-
circuit contained in {b1, b2, b3}. This is a contradiction which implies that f ∈ T and,
similarly, g ∈ T .

Lemma 3.8.14. Let M be a 3-connected matroid with no 4-element fans such that |E(M)| ≥
11. Let T ∗ be a triad of M and let T be a triangle of M such that M has no other triangles
or triads. Then M has a detachable pair.

Proof. Let e /∈ T ∪ T ∗. Either M/e or M\e is 3-connected. Up to duality, we may assume
the former. By Lemma 3.8.13, we have that T ∗ = {a1, a2, a3} and T = {b1, b2, b3} such
that {a1, a2, e, b1} and {a2, a3, e, b3} are circuits. Note that ({b1}, {b2, b3}, T ∗ ∪ {e}) is a
deletable collection.

Let f /∈ T ∪ T ∗ ∪ {e}. Suppose M\f is 3-connected. The dual of Lemma 3.8.13, and
orthogonality, implies that M has cocircuits {b1, b2, f, a1} and {b2, b3, f, a3}. But now
λ(T ∪ T ∗ ∪ {e, f}) = 2 and ({a1}, {a2, a3}, T ∪ {f}) is a contractable collection. This
contradicts Lemma 3.4.14.

Otherwise, M\f is not 3-connected, so M has a cyclic 3-separation (X, {f}, Y ) such that
T ∗ ⊆ X. Furthermore, Bixby’s Lemma implies that M/f is 3-connected, and Lemma 3.8.13
implies that T ⊆ cl(T ∗ ∪ {f}). Also, e ∈ cl(T ∗ ∪ T ), so e ∈ cl(T ∗ ∪ {f}). If T ⊆ X, then
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f ∈ cl(X), a contradiction. Therefore, T ⊆ Y . Since T 6⊆ cl(X), we have that e ∈ Y . But
now e ∈ cl(X ∪ {f}), which contradicts the fact that M/e is 3-connected.

Lemma 3.8.15. Let M be a 3-connected matroid. Let T ∗ = {a1, a2, a3} be a triad of M
such that M has no other triangles or triads, and let e, f be distinct elements of E(M)−T ∗
such that {a1, a2, e, f} is a circuit. Suppose there exists X such that T ∗ ∪ {e, f} ⊆ X and
λ(X) = 2 and X contains a contractable collection and |E(M)| ≥ |X|+ 3. Then M has a
detachable pair.

Proof. Note that |E(M)| ≥ |X|+ 4, as otherwise E(M)−X is a triangle or a triad. Now,
suppose M does not contain a detachable pair, and let x /∈ X. By Corollary 3.4.11, the
matroid M/x is not 3-connected, so M\x is 3-connected. Lemma 3.4.5 implies that M
has a 4-element cocircuit C∗ containing x and either e or f . Since x /∈ cl∗(X), there
exists y ∈ C∗ with y /∈ X. In M\x, we have that y ∈ cl∗(X) and |E(M\x)| ≥ |X| + 3.
Therefore, M\x/y is 3-connected. But Lemma 3.4.6 implies that M/y is 3-connected. This
is a contradiction which completes the proof.

Lemma 3.8.16. Let M be a 3-connected matroid such that |E(M)| ≥ 10. Let T ∗ =
{a1, a2, a3} be a triad of M such that M has no other triangles or triads, and let e, f, g be
distinct elements of E(M) − T ∗ such that {a1, a2, e, f} and {a2, a3, e, g} are circuits, and
{e, f, g} is contained in a 4-element cocircuit C∗. Then M has a detachable pair.

Proof. Suppose M does not have a detachable pair. If C∗ ⊆ T ∗ ∪ {e, f, g}, then λ(T ∗ ∪
{e, f, g}) = 2. Furthermore, |C∗∩T ∗| = 1, so (C∗∩T ∗, T ∗−C∗, C∗−T ∗) is a contractable
collection. But this contradicts Lemma 3.8.15. Otherwise, there exists h /∈ T ∗ ∪ {e, f, g}
such that C∗ = {e, f, g, h}. By Lemma 3.8.6, the matroid M/h is 3-connected. Therefore,
there is a 4-element circuit C of M containing {a2, h}, which contains one of {a1, a3}, and
one of {e, f, g}. Now, λ(T ∗ ∪ {e, f, g, h}) = 2. Furthermore, by circuit elimination with
{a1, a2, e, f} if a1 ∈ C or with {a2, a3, e, g} if a3 ∈ C, there is a circuit of M contained in
{e, f, g, h}. This implies that {e, f, g, h} is a quad, so ({e}, {f, g, h}, {a1, a2, f}, {a2, a3, g})
is a deletable collection. But a1 ∈ cl∗({a2, a3}) and, for all i ∈ {1, 2, 3}, we have that
ai ∈ cl(T ∗ ∪ {e, f, g, h}). But this contradicts Lemma 3.4.10 and completes the proof.

Lemma 3.8.17. Let M be a 3-connected matroid such that |E(M)| ≥ 13. Let T ∗ =
{a1, a2, a3} be a triad of M such that M has no other triangles or triads, and let e, f, g, h
be distinct elements of E(M)−T ∗ such that {a1, a2, e, f} and {a2, a3, e, g} are circuits, and
M has a cocircuit C∗ such that h ∈ C∗ and |C∗ ∩ {e, f, g}| = 2 and |C∗ ∩ T ∗| = 1. Then
M has a detachable pair.

Proof. Suppose M does not have a detachable pair. Let ai be the unique element of C∗∩T ∗.
Then ({ai}, T ∗−{ai}, C∗−{ai}) is a contractable collection. To begin, we show that M/h
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is 3-connected. If this is not the case, then M has a vertical 3-separation (X, {h}, Y ), and,
without loss of generality, T ∗ ⊆ X. Suppose |{e, f, g} ∩X| ≥ 1. Then {e, f, g} ⊆ cl(X), so
we may assume that {e, f, g} ⊆ X. This implies that h ∈ cl∗(X), a contradiction. Thus,
{e, f, g} ⊆ Y . But ai ∈ cl∗(Y ∪ {h}) so λ(Y ∪ {h, ai}) = 2. The circuits {a1, a2, e, f} and
{a2, a3, e, g} imply that λ(Y ∪ {h} ∪ T ∗) < 2, and so |Y ∪ T ∗| = 1. Let z be the unique
element of Y −T ∗. Then either z ∈ cl(T ∗) or z ∈ cl∗(T ∗). But the former case implies that
T ∗ ∪ {z} is a circuit, which contradicts orthogonality with C∗, and the latter case implies
that r∗(T ∗ ∪ {z}) = 2, which contradicts Lemma 3.4.16. Thus, M/h is 3-connected.

Lemma 3.4.3 implies that T ∗ = {ai, aj , ak} such that {ai, aj , h, f ′} and {ai, aj , h, g′} are
circuits. Furthermore, if f ′ ∈ T ∗ ∪ {e, f, g} or g′ ∈ T ∗ ∪ {e, f, g} or f ′ = g′, then
h ∈ cl(T ∗ ∪ {e, f, g}). This means that λ(T ∗ ∪ {e, f, g, h}) = 2, which contradicts
Lemma 3.8.15. Thus, f ′, g′ /∈ T ∗∪{e, f, g}. Lemma 3.4.4 implies that M\f ′ is 3-connected,
and Lemma 3.4.5 implies that M has a 4-element cocircuit D∗ containg either {f ′, h} or
{f ′, g′}. By Lemma 3.8.16, the cocircuit D∗ does not contain {f ′, g′, h}, so orthogonality
with {ai, aj , h, f ′} and {ai, aj , h, g′} implies that D∗ contains an element of T ∗. Now, or-
thogonality with {a1, a2, e, f} and {a2, a3, e, g} implies that D∗ contains another element
of T ∗ ∪ {e, f, g}. But this means that λ(T ∗ ∪ {e, f, g, h, f ′, g′}) = 2, again contradicting
Lemma 3.8.15.

Lemma 3.8.18. Let M be a 3-connected matroid such that |E(M)| ≥ 12. Let T ∗ be a
triad of M , and suppose M has no other triangles or triads. Let e /∈ T ∗ such that M/e is
3-connected. Then M has a detachable pair.

Proof. Suppose M does not have a detachable pair. By Lemma 3.4.3, we have that T ∗ =
{a1, a2, a3} such that {a1, a2, e, f} and {a2, a3, e, g} are circuits for some f, g /∈ T ∗ ∪{e, f}.
Furthermore, note that f 6= g, as e /∈ cl(T ∗). By Lemma 3.4.4, we have that M\f is
3-connected. By Lemma 3.4.5, there is a 4-element cocircuit C∗ of M containing either
{e, f} or {f, g}.

By Lemma 3.8.16, we have that {e, f, g} 6⊆ C∗. Therefore, orthogonality implies that C∗

contains an element of T ∗. Now, Lemma 3.8.17 implies that |C∗ ∩ T ∗| 6= 1. Therefore,
|C∗ ∩ T ∗| = 2. If {f, g} ⊆ C∗, then λ(T ∗ ∪ {f, g}) = 2. But e ∈ cl(T ∗ ∪ {f, g}), which
contradicts the fact that M/e is 3-connected. Otherwise, {e, f} ⊆ C∗. Lemma 3.4.4
implies that M\g is 3-connected, so, by Lemma 3.4.5, there is a 4-element cocircuit D∗

of M containing g and either e or f . Again, Lemma 3.8.16 and Lemma 3.8.17 imply that
|D∗ ∩ T ∗| = 2. If C∗ ∩ T ∗ = D∗ ∩ T ∗, then cocircuit elimination implies that {e, f, g}
is a triad, a contradiction. Otherwise, there is a unique element ai which is contained in
both C∗ ∩ T ∗ and D∗ ∩ T ∗. Thus, ({ai}, T ∗ − {ai}, C∗ − {ai}, D∗ − {ai}) is a contractable
collection and λ(T ∗ ∪ {e, f, g}) = 2. This contradicts Lemma 3.8.15, and completes the
proof.
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Lemma 3.8.19. Let M be a 3-connected matroid such that |E(M)| ≥ 12. Let T ∗ be a
triad of M and suppose M has no other triangles or triads. Then M has a detachable pair.

Proof. Suppose M does not have a detachable pair. By Lemma 3.8.18, for all x /∈ T ∗,
we have that M/x is not 3-connected. So let e /∈ T ∗. There is a vertical 3-separation
(X, {e}, Y ) of M such that T ∗ ⊆ X. Choose an element f ∈ X − T ∗. By Lemma 3.8.4,
there is a 4-element cocircuit C∗ of M containing {e, f} and exactly one element of T ∗.
But now |C∗ ∩ X| ≥ 2. If |C∗ ∩ X| = 3, then e ∈ cl∗(X), a contradiction. Otherwise,
|C∗ ∩X| = 2, so there is a unique element g of C∗ ∩ Y . But g ∈ cl∗(X ∪ {e}), so M/g is
3-connected, another contradiction.

3.8.4 Putting it together

We complete the proof of Theorem 3.8.1.

Proof of Theorem 3.8.1. Suppose M does not have a detachable pair. If M has no triangles
or triads whatsoever, then M is a spike by Theorem 1.6.1. If M has exactly one triad and
no triangles, then M has a detachable pair by Lemma 3.8.19, and if M has exactly one
triangle and no triads, then M has a detachable pair by the dual of Lemma 3.8.19. If M has
exactly one triangle and exactly one triad, then M has a detachable pair by Lemma 3.8.14.
Thus, for the remainder of the proof, M either has two triads or two triangles. Up to
duality, assume that M has two distinct triads T ∗1 and T ∗2 . Suppose that T ∗1 and T ∗2 are
disjoint. Let e be an element of E(M) such that e is not contained in a triangle or a triad
and M/e is 3-connected. Lemma 3.8.8 implies that (iii)(c)(II) holds. Otherwise, no such
element e exists, and thus, for all x ∈ E(M), if x is not contained in a triad, then M/x is
not 3-connected. If M has an element which is not contained in a triangle or a triad, then
(iii)(b) holds by Lemma 3.8.11. If every element of M is contained in a triangle or a triad,
then, by Lemma 3.8.12, either M ∼= M(K3,m) or (iii)(c)(I) holds.

Thus, the result holds if M has a pair of disjoint triads, and similarly if M has a pair
of disjoint triangles. Now, suppose that T ∗1 and T ∗2 intersect. By Lemma 3.8.3, there are
no other triads of M . Thus, M has exactly five elements which are contained in a triad.
Lemma 3.8.2 implies that, for all x ∈ E(M), if x is not contained in a triad then M/x is
not 3-connected. Now, Lemma 3.8.5 implies that M has at most one element which is not
contained in a triangle or a triad. Since M has no pair of disjoint triangles, Lemma 3.8.3
implies that there are at most five elements of M which are contained in a triangle. But
now |E(M)| ≤ 11, a contradiction which completes the proof.

And that’s it! Theorem 1.6.2 follows from Theorems 3.5.1, 3.6.1, 3.7.1, and 3.8.1.
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