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Abstract

The PyVCI program package is a general purpose open-source code for simulat-
ing accurate molecular spectra, based upon force field expansions of the poten-
tial energy surface in normal mode coordinates. It includes harmonic normal
coordinate analysis and vibrational configuration interaction (VCI) algorithms,
implemented primarily in Python for accessibility but with time-consuming rou-
tines written in C. Coriolis coupling terms may be optionally included in the vi-
brational Hamiltonian. Non-negligible VCI matrix elements are stored in sparse
matrix format to alleviate the diagonalization problem. CPU and memory re-
quirements may be further controlled by algorithmic choices and/or numerical
screening procedures, and recommended values are established by benchmarking
using a test set of 44 molecules for which accurate analytical potential energy
surfaces are available.

Force fields in normal mode coordinates are obtained from the PyPES library
of high quality analytical potential energy surfaces (to 6th order) or by numer-
ical differentiation of analytic second derivatives generated using the GAMESS
quantum chemical program package (to 4th order).
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1. Program Summary

Manuscript Title: PyVCI: a flexible open-source code for calculating accurate molec-

ular infrared spectra

Authors: M. Sibaev and D. L. Crittenden

Program Title: PyVCI5

Journal Reference:

Catalogue identifier:

Licensing provisions: Public Domain release

Programming language: Python, C

Computer: PC10

Operating system: Linux, MacOSX, Windows

RAM: varies widely

Number of processors used: 1-16

Supplementary material: User Manual and examples (tutes) included

Keywords: Vibrational configuration interaction, nuclear vibrational problem, har-15

monic oscillator basis, sparse matrix, parallel

Classification: 16.3 Molecular Vibrations

External routines/libraries: Numpy, Scipy, Cython

Nature of problem: The simulation of accurate molecular vibrational spectra is a sig-20

nificant and long-standing problem in computational chemistry. There are two major

challenges: constructing an accurate ab initio potential energy surface and solving the

nuclear vibrational problem. Both scale poorly with respect to molecular size, requir-

ing large amounts of CPU time and memory.

25

Solution method: We have implemented a straightforward numerical differentiation

algorithm to construct quartic force fields in normal mode coordinates using second

derivatives of the energy with respect to nuclear displacement obtained from ab initio

quantum chemical calculations, for nuclear vibrational structure algorithm develop-

ment and testing purposes. We have also provided an interface to the PyPES library30

of high quality semi-global potential energy surfaces, which enable quantitative pre-

diction of molecular vibrational spectra. To solve the nuclear vibrational problem, we

use a vibrational configuration interaction algorithm in a harmonic oscillator basis.

Unusual features: One of the unusual features of our code is its flexibility, with mul-35

tiple ways of generating or supplying force field data, dynamic memory allocation,

adjustable screening thresholds, and explicit user control over terms in the VCI wave-

function (maximum excitation level and extent of mode-coupling). We employ sparse

matrix linear algebra libraries to reduce the memory required for VCI matrix storage

and diagonalization, and provide for parallel VCI matrix construction to reduce re-40

quired wall times.

Running time: varies widely
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2. Introduction45

The simulation of accurate molecular vibrational spectra has historically been
limited by the difficulty and computational cost associated with modelling how
the energy changes as the molecule vibrates, i.e. constructing multidimensional
anharmonic potential energy surfaces (PES).

High quality semi-global potential energy surfaces for small molecules are avail-50

able in the literature, and a number of these have been compiled into PES
libraries.[1, 2, 3, 4, 5, 6, 7, 8, 9] However, the scalability of this approach is
primarily limited by the need to construct an appropriate curvilinear internal
coordinate set in which to represent the PES that appropriately accounts for
molecular symmetry. Choosing and parameterising appropriate PES functional55

forms is also non-trivial.

A more pragmatic approach is to focus on simulating only the fundamental
vibrational transitions required to model experimental infrared spectra. Quan-
titative assignment of IR spectra is an important and longstanding problem of
widespread interest within the general chemistry community. Predicting funda-60

mental frequencies requires only the low energy region of the PES in the vicinity
of the minimum to be accurately described. This can be achieved using a local
expansion of the potential energy surface about equilibrium, which does not
necessarily need to be formulated in internal coordinates.

Advances in hardware and software capability [10, 11, 12, 13, 14, 15, 16, 17, 18,65

4, 19] now enable quartic force field expansions in orthonormal rectilinear coor-
dinate sets to be routinely generated for larger molecules, in a straightforward
although time-consuming manner. Recently, we have developed a coordinate
transformation procedure that enables sextic force fields in rectilinear normal
mode coordinates to be generated in a numerically stable and computationally70

efficient manner, taking advantage of the rapid convergence of force field expan-
sions in curvilinear internal coordinates.[20] This makes simulating fundamental
modes of infrared spectra possible for a larger range of chemically interesting
molecules.

A recent review by Roy and Gerber [21] provides a comprehensive overview of75

methods based upon expanding the nuclear vibrational wavefunction in terms
of products of single-mode functions in normal mode coordinates. Formulating
the nuclear vibrational Schrödinger equation in normal mode coordinates confers
two major advantages; separability of the kinetic energy operator and potential
energy integrals that can be evaluated analytically.80

A hierarchy of approximations yield a series of methods including normal mode
analysis (NMA) [22], vibrational self-consistent field theory (VSCF) [23, 24, 25,
26, 27, 28, 18, 29, 30], vibrational perturbation theory (VPT) [31, 32, 33, 34,
30, 35, 36, 37, 38, 39, 40, 41, 42], vibrational configuration interaction (VCI)
[43, 30, 44] and vibrational coupled cluster theory (VCC) [45, 30, 46, 47, 48].85
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Analogous to their electronic structure theory counterparts, the quality of each
method is generally commensurate with its computational cost.[30, 16, 48]

Despite the extensive efforts that have gone into developing anharmonic nuclear
vibrational structure theories,[31, 32, 33, 34, 49, 30, 35, 36, 37, 38, 39, 40, 41,
42, 43, 30, 44, 45, 30, 46, 47, 48] they remain under-utilized within the wider90

computational chemistry community. This can be traced back to a number of
factors including: the ubiquity, ease of use and relatively low computational
cost of harmonic normal mode analysis and, conversely, the complexity and
computational cost associated with obtaining appropriate PES representations
and interfacing with specialized nuclear structure codes [50, 28, 51, 52, 53]; ex-95

perimental reference data biased by interactions with solvent molecules limiting
the utility of highly accurate gas phase vibrational structure models, and; the
need to customize anharmonic nuclear vibrational theories for larger molecules
to make them computationally tractable.

In this paper, we primarily address the first of these issues. Although some100

nuclear vibrational structure methods are included in some quantum chemical
software packages, e.g. VPT2 is implemented in GAUSSIAN[38], VSCF and
VPT2 in GAMESS[54, 31] and VCI in Q-Chem[16], they vary in both how the
PES is represented and how the nuclear vibrational problem is solved. This
makes comparing results between different programs both difficult and time-105

consuming. To ensure reproducibility, it is necessary to be able to specify and/or
control both the PES representation and the nuclear vibrational algorithm.

As a starting point, we present the PyVCI package, a general and open-source
vibrational configuration interaction code in which the potential energy surface
is represented as a Taylor series expansion up to 6th order in normal mode110

coordinates. PyVCI is unique in providing a number of user-friendly ways of
generating or specifying potential energy surfaces. PyVCI can import force
field data from the PyPES library of analytical potential energy surfaces,[1, 2,
55, 20] or directly generate quartic force fields by numerical differentiation of
second derivative data obtained from ab initio calculations. Currently, only the115

GAMESS quantum chemistry program package is supported, as it is the only
freely available quantum chemical program package that outputs high precision
derivative data by default.

Although the VCI method we have implemented within PyVCI is general, it
is not completely unique; other variants are possible through different algo-120

rithmic choices and alternative approaches to truncating the full ro-vibrational
Hamiltonian.[56, 28, 57]

For example, the wavefunction may be expanded in a basis of normal mode
harmonic oscillator functions[56, 57] or VSCF modals[56, 28], the complexity
of the wavefunction expansion may be limited by either limiting the dimen-125

sionality of the system[56], or restricting the extent of mode-coupling within
the wavefunction[28] or the maximum extent of excitation within the VCI basis
states[57, 28]. Similarly, the Hamiltonian may include[56, 28] or omit[57]Coriolis
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coupling and/or Watson terms.

Therefore, in this paper we provide complete details of our VCI implementa-130

tion before benchmarking its performance using the PyPES library of potential
energy surfaces.[1, 2]

3. VCI theory and algorithm

Nuclear vibrational structure theories are defined and differentiated by the form
of the Hamiltonian operator and representation of the wavefunction. In the
interests of computational efficiency, we employ the Watson Hamiltonian and
expand both the wavefunction and potential energy surface in terms of normal
mode coordinates about the global minimum. Coriolis rotational coupling terms
may be optionally included:

Ĥ = Ĥvib + ĤCor (1)
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The kinetic energy operator is separable in normal mode coordinates, and the
potential energy surface is given as a Taylor series expansion:
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where the summation indices run from 1 through to the number of vibrational
modes. The force constants, F , are the derivatives of the potential with re-135

spect to the normal coordinates. The normal coordinates are defined as linear
combinations of Cartesian displacements that diagonalize the Hessian in mass-
weighted Cartesian coordinates.[22] This produces a coordinate system in which
the first order and off-diagonal second order force constants are zero at equi-
librium. For completeness, the details of our implementation are provided in140

Appendix A.

This approach yields the diagonal second order force constants, but the higher
order derivatives must generally be calculated via numerical differentiation. For
this reason, the PES expansion is usually truncated at fourth order, to keep the
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computational cost of generating the force field manageable. However, we have145

implemented a library of analytical potential energy surfaces for benchmarking
and testing, so also employ sextic force field expansions for these molecules.

Equilibrium rotational and Coriolis coupling constants, Bα and ζαij , about each
principal axis, α, are required to calculate the overall Coriolis coupling. Ro-
tational constants are obtained by diagonalising the inertia tensor[22] and ζ150

matrices calculated according to the method of Meal and Polo.[58, 59] These
algorithms are detailed in Appendix B.

For computational expedience, we construct the VCI wavefunction from Hartree
products of harmonic oscillator basis functions:

Φn (Q1, ..., QM ) =

M∏

i=1

φni(Qi) (5)

where n is a string of quantum numbers n1, ..., ni, ...nM , specifying the vibra-
tional state across all M modes. The strings that define the VCI basis states
are generated by specifying a maximum value for the sum of the vibrational155

quantum numbers, which will henceforth be referred to as the excitation level,
with its value denoted in round brackets, e.g. VCI(8) matrix is indexed by
configurations with a sum of vibrational quantum numbers of 8 or less.

Finally, it remains to evaluate and store the VCI matrix elements:

〈Φn (Q1, ..., QM )| Ĥvib + ĤCor |Φn’ (Q1, ..., QM )〉 (6)

for all unique combinations of Hartree product basis functions, then diagonalise
the VCI matrix. The fundamental integrals required to evaluate both the vibra-160

tional and Coriolis correction terms are given in Tables 1 and 2. Sparse matrix
array structures are used to store the VCI matrix elements.

The final VCI wavefunction for each state Ψn (Q1, ..., QM ) is a linear combina-
tion of Hartree product basis states Φn’ (Q1, ..., QM ). The coefficients, cn,n’, are
the eigenvectors of the VCI matrix, and the energy levels, εn, its eigenvalues.
These solutions are generated using the sparse matrix diagonalization routines
implemented in SciPy, to minimize memory and CPU time requirements.

Ψn (Q1, ..., QM ) =
∑

n′

cn,n’Φn’ (Q1, ..., QM ) (7)

The VCI fundamental frequencies are identified according to the extent of wave-
function overlap with Hartree product singly excited basis states. Leading co-
efficients in the VCI wavefunction for all states with frequencies below 4000165

cm−1 are printed by default and may be used to resolve ambiguities in state
assignments when they arise.
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4. Methods

Our test set comprises 44 polyatomic molecules containing up to 6 atoms for
which accurate quartic and sextic force fields in normal mode coordinates are170

available through the PyPES library.[1, 2] This test set is used to explore con-
vergence of calculated fundamental frequencies with respect to:

• number of configurations in the VCI expansion,

• threshold for storage of non-negligible VCI matrix elements,

• threshold for inclusion of non-negligible force constants in the PES expan-175

sion, and

• order of the PES expansion.

A further 6 tetra-atomics with low barrier torsional modes are used to quantify
the effect of excluding divergent modes from the VCI expansion a priori.

VCI calculations include all configurations with an ‘excitation level’ (specified180

sum of vibrational quantum numbers) up to a maximum of 10, denoted VCI(10).
Coriolis coupling terms are included in the Hamiltonian throughout. The excita-
tion level is increased until all fundamental frequencies are converged to within
1 cm−1 for each molecule. The screening threshold for storing non-negligible
VCI matrix elements is set to 10−15 for benchmark calculations and tested at185

a range of values between 1 × 10−7 and 5 × 10−5. The screening threshold for
retaining non-negligible force constants in dimensionless normal mode coordi-
nates is set to zero during benchmark calculations, then tested at values of 0.1,
0.5, 1 and 2 cm−1.

Sextic force fields are used in all convergence and threshold testing calculations.190

Benchmark results for quartic force fields are also generated without screening.

Statistical data are summarized using box-and-whisker plots, with boxes ex-
tending one quartile in each direction from the median, and whiskers extending
out by 1.5 × the interquartile range in each direction, or to the limits of the
data, whichever comes first. Any data points outside this range are considered195

outliers and marked using crosses. Frequency data are expressed in units of
reciprocal centimeters (cm−1) throughout.

The PyVCI program package may be freely downloaded from:
http://sourceforge.net/projects/PyVCI.
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5. Results200

5.1. VCI convergence with respect to excitation level

Reference results were generated using a sextic force field at VCI(10) for tri-
atomics and C3H2, VCI(9) for all other 4 and 5 atom molecules, and VCI(8)
for C3H3

+ and C2H4, to ensure convergence of all fundamental frequencies to
within 1 cm−1.205

Errors in fundamental frequencies at each excitation level, n, are then calculated
as:

∆SFF
VCI(n) = νref − νSFFVCI(n) (8)

∆QFF
VCI(n) = νref − νQFF

VCI(n) (9)

Mean and maximum absolute errors across all fundamental frequencies of the
44 molecules with restricted torsional motion in the PyPES library, for each
excitation level, are presented in Table 1.

Table 1: Mean and maximum absolute errors due to VCI wavefunction truncation, using
both sextic (SFF) and quartic (QFF) force field expansions in normal mode coordinates to
represent the potential energy surface. Reference results are generated using a sextic force
field, increasing excitation level until all fundamental frequencies are converged to within 1
cm−1.

〈
|∆SFF

VCI(n)|
〉
|∆SFF

VCI(n)|max

〈
|∆QFF

VCI(n)|
〉
|∆QFF

VCI(n)|max

n (cm−1) (cm−1) (cm−1) (cm−1)
1 92.9 515.5 92.4 498.2
2 16.2 85.9 16.8 92.8
3 31.1 139.1 32.8 140.6
4 5.6 29.4 6.9 51.0
5 1.0 9.1 5.0 39.7
6 0.6 6.0 4.8 38.9
7 0.2 6.6 5.2 54.9
8 0.04 2.4 6.3 219.0

For excitation levels lower than 4, errors are large and convergence behaviour
erratic, for both QFF- and SFF-derived results. At these lower excitation levels,210

QFF and SFF force fields provide equally accurate descriptions of the PES, and
therefore produce similar fundamental frequencies that have similar errors.

At higher excitation levels, differences between quartic and sextic force fields be-
come apparent in the calculated VCI fundamental frequencies. Between VCI(4)
and VCI(6), both QFF and SFF-derived fundamental frequencies appear to be215

converging to their respective VCI limits, as illustrated in Figures 1 and 2.
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Figure 1: The magnitude and range of absolute errors in fundamental frequencies calculated
using truncated VCI expansions with a sextic force field (SFF) are shown using the boxplot
format. Data are aggregated across all molecules without low-barrier torsional modes within
the PyPES library, at each excitation level.
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Figure 2: The magnitude and range of absolute errors in fundamental frequencies calculated
using truncated VCI expansions with a quartic force field (QFF) are shown using the boxplot
format. Data are aggregated across all molecules without low-barrier torsional modes within
the PyPES library, at each excitation level. The y axis maximum is restricted to 100 cm−1,
excluding an additional outlying data point at VCI(8) with a value of 219.0 cm−1.
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Beyond VCI(6), SFF-derived fundamental frequencies all eventually converge
to a limiting value. Most are converged to within 1 cm−1 by VCI(8), with
the exception of the symmetric C–H stretching mode of C3H2 and the inversion
mode of NH3. In general, C–H stretches exhibit slowest convergence with respect220

to VCI excitation level. This is due to their highly anharmonic nature with
strong coupling to molecular bending modes.

Although the majority of QFF-derived fundamental frequencies converge to a
limiting value, divergence is observed in a small number of pathological cases.
These include the low frequency bending modes of C3H2, the low frequency225

‘ring-breathing’ mode of C3H3
+, and the inversion and N–H stretching modes

of NH3. Excluding these pathological cases, QFF-derived frequencies deviate
from SFF results by 4.7 cm−1 on average, and up to 39 cm−1 at most.

We note that this behaviour is consistent with previous observations that VPT2
often outperforms VCI when the PES expansion is truncated at fourth order.[12]230

However, a detailed analysis of this observation is outside the scope of the
current work.

5.2. Negligible VCI matrix element threshold testing

The major computational bottleneck in VCI calculations on larger molecules
at higher excitation levels is the memory required to store and diagonalize the235

VCI matrix. This can potentially be reduced by taking advantage of sparse
matrix storage and diagonalization routines, provided enough negligible matrix
elements can be excluded by VCI matrix screening.

The accuracy implications of discarding negligible elements from VCI matrices
generated using sextic force fields with a range of different screening thresholds,
are summarized in Table 2 and Figure 3, where:

∆VCI(n)
screen = νSFFVCI(n) − νSFFVCI(n),screened (10)

The fractional reduction in number of matrix elements across the test data set
is represented in Figure 4 and broken down by molecule size in Figure 5.240

Overall, a screening threshold of 2 × 10−5 achieves a good balance between
accuracy and computational cost, reducing the number of matrix elements to
be stored by more than half, while introducing errors of 0.2 cm−1 on average
and 1.7 cm−1 at most. Even more fortunately, the fraction of non-negligible
elements decreases as the molecule size increases (Figure 5). Therefore, matrix245

element screening becomes more useful the larger the VCI matrix and harder
the diagonalization problem.

However, the size of the VCI matrix grows much faster with molecule size than
the extent of screening, particularly at high excitation levels. Even with matrix
element screening, VCI(8) calculations are not practicable for molecules with250

more than 7 or 8 atoms. For larger molecules, it will be necessary to truncate the
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Table 2: Mean and maximum absolute errors arising from VCI matrix element screening with
tabulated threshold values.

Threshold
〈
|∆VCI(8)

screen |
〉
|∆VCI(8)

screen |max

〈
|∆VCI(4)

screen |
〉
|∆VCI(4)

screen |max

(Eh) (cm−1) (cm−1) (cm−1) (cm−1)
5× 10−5 0.8 7.1 0.8 11.7
2× 10−5 0.2 1.7 0.2 3.1
1× 10−5 0.09 1.3 0.08 1.0
5× 10−6 0.04 0.5 0.04 0.4
2× 10−6 0.01 0.1 0.01 0.1
1× 10−6 0.006 0.06 0.004 0.05
5× 10−7 0.002 0.02 0.002 0.02
2× 10−7 0.0006 0.005 0.0004 0.004
1× 10−7 0.0003 0.002 0.0001 0.002
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Figure 3: The magnitude and range of absolute errors in fundamental frequencies due to
matrix element screening are shown using the boxplot format. Data are aggregated across all
molecules without low-barrier torsional modes within the PyPES library, for each threshold
value.
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Figure 4: The fractional number of VCI matrix elements to be stored varies significantly
with screening threshold (x-axis) and across all molecules without low-barrier torsional modes
within the PyPES library, as indicated using the boxplot format.
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Figure 5: The fractional number of VCI matrix elements to be stored at a screening threshold
of 2×10−5 is broken down by molecular size (x-axis), with collated data represented in boxplot
format.
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VCI expansion at a lower level, or use a more sophisticated screening approach
for selecting VCI matrix elements. Therefore, we test the transferability of our
threshold screening value recommendations by repeating the screening threshold
testing at VCI(4).255

The results presented in Table 2 confirm that screening errors are only weakly
dependent on VCI level, with negligible differences between average errors due
to screening in VCI(8) and VCI(4) calculations.

5.3. Negligible force constant threshold testing

Although VCI matrix diagonalization is the computational bottleneck of the260

VCI algorithm, determining whether a calculation is feasible or not, the majority
of a job’s runtime is often taken up in VCI matrix construction. A straightfor-
ward way to reduce runtime is to pre-screen the force field, removing negligible
force constants.

Errors in fundamental frequencies, due to force-constant screening during VCI(8)
calculations with a sextic force field, are calculated as:

∆SFF
screen = νSFFVCI(8) − νSFF,screenedVCI(8) (11)

Statistical analysis of the combined results, for a series of different threshold265

values, are presented in Table 3 and illustrated in Figure 6.

Table 3: Mean and maximum absolute errors arising from force constant screening with
tabulated threshold values, using a VCI(8) wavefunction expansion with a sextic force field.

Threshold
〈
|∆SFF

screen|
〉
|∆SFF

screen|max

(cm−1) (cm−1) (cm−1)
2 0.1 1.0
1 0.05 0.4

0.5 0.02 0.2
0.1 0.003 0.02

The data presented in Table 3 and Figure 6 show that force constant screening
errors converge rapidly and monotonically to the unscreened limit, with max-
imum errors around half the threshold value and average errors ∼ 20 times
lower.270

Errors due to force constant screening are expected to be largely independent of
VCI level; this is supported by our data which return the average errors listed
in Table 3 for all VCI excitation levels greater than 1. Maximum errors are
slightly more dependent on VCI excitation level, but only for higher screening
thresholds and at low excitation levels. For example, with a screening threshold275

of 2 cm−1, maximum errors are constant for 4 < n < 8, decreasing to 0.8 at
n = 3 and 0.6 at n = 2.
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Figure 6: The magnitude and range of absolute errors in fundamental frequencies due to
force constant screening are shown using the boxplot format. Data are aggregated across all
molecules without low-barrier torsional modes within the PyPES library, for each threshold
value.

5.4. Effect of excluding low-barrier torsional modes

Low-barrier torsional modes are problematic when solving the nuclear vibra-
tional problem in normal mode coordinates, due to both inaccurate represen-280

tation of the potential energy surface over a large amplitude torsional range,
and the inadequacy of the Watson Hamiltonian for describing delocalized vibra-
tional modes. The most expedient solution would be to exclude these modes
entirely from the VCI expansion, but this could decrease how accurately the
remaining fundamental frequencies could be predicted, particularly if there is285

strong coupling between torsional modes and others.

To quantify this effect, we have performed VCI(8) calculations on a SFF ex-
cluding the torsional mode from the VCI expansion for each of the molecules
listed in Table 4. Errors are calculated relative to benchmark literature values:

∆tors = νref − νVCI(8) (12)

In all cases, the mean absolute error is less than 10 cm−1. Larger mean and max-
imum errors for cis-HSiOH and trans-HSiOH likely arise from the inaccuracy of
the VPT2-derived reference data, as well as the neglect of torsional modes within
our VCI calculations, and so should be considered absolute worse-case values.290

HOOH is the most anharmonic and strongly coupled, and this is reflected in
slightly poorer predictions of fundamental frequencies with the torsional mode
excluded. It also has the lowest torsional barrier, resulting in torsional splitting
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of the other modes that our VCI formulation is unable to capture. This effect
also contributes to the relatively large observed ∆tors errors for HOOH.295

Table 4: Mean and maximum absolute deviations in calculated fundamental frequencies for all
modes except low-barrier torsions, calculated at VCI(8) using a sextic force field and excluding
the torsional mode from the VCI expansion. Reference data are collated from the literature,
and are generated using a range of different methods, as implemented in; a) RVIB4, b) TROVE
[60], c) MULTIMODE [28] and d) SPECTRO [50]. ‡ For HOOH, strong tunnelling splitting
leads to doublet spectral peaks. Reference data are derived by averaging split peak positions.

Molecule Reference method, 〈|∆tors|〉 |∆tors|max

[citation] (cm−1) (cm−1)
HOOH VCIa [61] 7.3‡ 13.4‡

HSOH VCIb [62] 3.4 6.8
cis-HOCO VCIc [63] 3.2 7.8

trans-HOCO VCIc [64] 3.2 9.6
cis-HSiOH VPT2d [65] 9.2 20.2

trans-HSiOH VPT2d [65] 5.7 13.2

5.5. Recommendations

Final algorithmic recommendations are presented in Table 5. In making these
choices, we have first aimed to balance force field and VCI method accuracy,
and then ensure that errors due to screening are around an order of magnitude
lower than errors inherent in the choice of force field representation and VCI300

excitation level. Overall, we consider that these combinations will provide an
optimal balance between accuracy and computational resource demand. The
calculated cumulative errors in Table 5 are likely to be a significant overestimate,
as some error cancellation is to be expected.

We note that errors arising from discarding negligible matrix elements and force305

constants may increase somewhat for larger molecules, as the number of small
matrix elements and force constants is likely to increase. Therefore, their com-
bined contribution to the overall accuracy of the calculated fundamentals may
also increase, requiring a lower screening threshold. If accuracy is paramount,
we recommend repeating the screening analysis at VCI(4) to tailor screening310

thresholds for a given molecule.

Finally, we note that the accuracy of calculated VCI frequencies will strongly
reflect the quality of the ab initio method used to construct the force field.
Here, we have circumvented this problem by using a library of high quality
analytic potential energy surfaces. Nonetheless, the benchmark data presented315

herein will enable the user to make informed choices of VCI level and screening
threshold for the quality of the force field in hand. It also provides a useful
starting point for estimating contributions to the overall error in calculated
fundamental frequencies from approximations inherent in both electronic and
nuclear vibrational structure models.320
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Table 5: Recommended algorithmic choices and settings

matrix element force constant cumulative cumulative
FF VCI screening screening average maximum

order level threshold threshold error error
(Eh) (cm−1) (cm−1) (cm−1)

4 (QFF) 5 2× 10−5 2 5.3 43.4
6 (SFF) 7 5× 10−6 1 0.3 7.5

6. Summary of program capabilities

Our freely available, open-source PyVCI package provides:

• normal mode analysis with projection of contaminant translational and
rotational modes arising from numerical imprecision and/or incomplete
geometry optimization325

• vibrational configuration theory based upon states with an ‘excitation
level’ (maximum sum of vibrational quantum numbers) of up to 10.

• expansion of the potential up to 6th order in normal mode coordinates
and/or any orthonormal linear combination of normal modes

• Coriolis coupling corrections330

• optional exclusion of selected vibrational modes – typically low-barrier
torsional modes – from the VCI expansion

• parallel sparse matrix construction and diagonalization
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Table 6: Fundamental kinetic and potential energy integrals for vibrational mode i, 〈φn′
i
(Qi)| Ô |φni (Qi)〉 involving operators Ô =

∂2
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i
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Table 7: Fundamental Coriolis coupling integrals for vibrational mode i, 〈φn′
i
(Qi)| Ô |φni (Qi)〉

involving operators Ô =
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