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Abstract

This thesis considers the practical problem of constrained and unconstrained local

optimization. This subject has been well studied when the objective function f is

assumed to smooth. However, nonsmooth problems occur naturally and frequently

in practice. Here f is assumed to be nonsmooth or discontinuous without forcing

smoothness assumptions near, or at, a potential solution. Various methods have been

presented by others to solve nonsmooth optimization problems, however only partial

convergence results are possible for these methods.

In this thesis, an optimization method which use a series of local and localized

global optimization phases is proposed. The local phase searches for a local minimum

and gives the methods numerical performance on parts of f which are smooth. The

localized global phase exhaustively searches for points of descent in a neighborhood

of cluster points. It is the localized global phase which provides strong theoretical

convergence results on nonsmooth problems.

Algorithms are presented for solving bound constrained, unconstrained and con-

strained nonlinear nonsmooth optimization problems. These algorithms use direct

search methods in the local phase as they can be applied directly to nonsmooth prob-

lems because gradients are not explicitly required. The localized global optimization

phase uses a new partitioning random search algorithm to direct random sampling into

promising subsets of Rn. The partition is formed using classification and regression

trees (CART) from statistical pattern recognition. The CART partition defines desir-

able subsets where f is relatively low, based on previous sampling, from which further

samples are drawn directly. For each algorithm, convergence to an essential local min-

imizer of f is demonstrated under mild conditions. That is, a point x∗ for which the

set of all feasible points with lower f values has Lebesgue measure zero for all suffi-

ciently small neighborhoods of x∗. Stopping rules are derived for each algorithm giving

practical convergence to estimates of essential local minimizers. Numerical results are

presented on a range of nonsmooth test problems for 2 to 10 dimensions showing the

methods are effective in practice.
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Chapter 1

Introduction

So what exactly is optimization? The online dictionary Wiktionary defines the word

optimization as:

the design and operation of a system or process to make it as good as possible in

some defined sense.

Thus, one may think of optimization as the art or science of determining the best so-

lution to certain mathematically defined problems. An objective function defined by

a set of independent decision variables is used to determine the goodness of a solution.

The optimal value of the objective function represents the best solution to the problem.

Many practical problems can be modeled by an objective function and hence, optimiza-

tion problems can occur in many areas of research [76]. An economist, for example,

may wish to maximize profits whereas an engineer may be interested in minimizing

drag on a performance car.

The field of optimization is an interesting mix of mathematical theory and experi-

mental simulations. One can study the field from a purely mathematical point of view,

or use a blend of heuristic and theoretical ideas to construct and test practically im-

plementable algorithms. In this thesis, the field is studied from the latter perspective.

Nonsmooth phenomena in mathematics and optimization occur naturally and fre-

quently [13]. The interested reader is referred to [13] for examples of nonsmooth opti-

mization problems. These problems are pulled from various fields including chemistry,

physics, economics, engineering and of course mathematics, showing an extremely di-

verse range of practical situations. Thus, there is a need for provably convergent,

implementable algorithms to solve such problems.

The main focus of this thesis is to develop practical algorithms for solving nons-

mooth optimization problems. Currently, there exist algorithms which can be applied

1



2 Chapter 1. Introduction

to nonsmooth problems, however, only partial convergence results on nonsmooth prob-

lems are possible for these methods. Here practical algorithms with strong theoretical

convergence to optimal points of nonsmooth problems are presented.

The remainder of this chapter is organized as follows. Firstly, the local optimiza-

tion problem is introduced along with definitions of what points are considered optimal

in this thesis. Sections 1.2 and 1.3 review direct search methods for local optimiza-

tion. These methods are of interest here because no gradient information is required

and hence, they can be applied to nonsmooth problems and partial nonsmooth con-

vergence results exist for some methods. A brief introduction to trajectory following

optimization is given in Section 1.4 as these methods have advantageous properties for

nonsmooth problems. Section 1.5 introduces the global optimization problem and Sec-

tion 1.6 shows a connection between nonsmooth local optimization and global optimiza-

tion. This connection is exploited in Section 1.7 to provide an algorithmic framework

for nonsmooth problems. The chapter concludes with a thesis overview.

1.1 Local Optimization

This thesis considers the local minimization problem. Given an objective function f

that maps Rn → R, the general unconstrained minimization problem is written as

min
x
f(x) subject to x ∈ Rn. (1.1)

To find a local solution to (1.1) it is sufficient to find a point x∗ ∈ Rn such that

f(x∗) ≤ f(x) for all x ∈ B(x∗, ϵ), (1.2)

where B(x∗, ϵ) = {x ∈ Rn : ∥x − x∗∥ < ϵ} is an open ball with center x∗ and radius

ϵ > 0. A point x∗ satisfying (1.2) is called a local minimizer of f and f(x∗) is called a

local minimum.

The problem of finding a local maximum is an equivalent problem since

min{f(x) : x ∈ Rn} = −max{−f(x) : x ∈ Rn}.

Both problems are referred to as optimization and throughout this thesis, unless oth-

erwise stated, optimization implies minimization.

For the case where derivative information is available (even if it comes at large
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computational expense) and f is smooth and free of noise, the local optimization

problem has been well studied. Many efficient and provably convergent algorithms

have been presented to solve such problems. Examples include Newton’s Method,

Quasi-Newton methods and Conjugate Gradient methods [55]. However, for the case

when f is assumed to be nonsmooth or discontinuous, these existing methods are no

longer provably convergent. In this thesis these problems are of primary interest. In

particular, objective functions f that map Rn → R ∪ {+∞}, where f is assumed to

be nonsmooth or discontinuous are considered. The inclusion of {+∞} means the

methods proposed here can be applied to certain constrained optimization problems

directly using an extreme barrier function, of the form,

B(x) =

{
f(x) if x ∈ N
+∞ otherwise,

where N ⊂ Rn is a feasible region with positive Lebesgue measure and a minimizer

over N is sought. It is not necessary to evaluate f at points outside N , rather the

barrier function assigns the value +∞. In addition, functions which are not defined

everywhere can be considered by assigning the value +∞ where f is undefined.

Since f is assumed to be nonsmooth or discontinuous the standard definition of a

local minimizer is modified.

Definition 1. (Essential local minimizer). A point x∗ ∈ Rn for which the set

E(x∗, ϵ) = {x ∈ Rn : f(x) < f(x∗) and ∥x− x∗∥ < ϵ} (1.3)

has Lebesgue measure zero for all sufficiently small positive ϵ is called an essential local

minimizer of f .

Definition 2. (Essential local minimum). If a point x∗ ∈ Rn is an essential local

minimizer of f , then f(x∗) is called an essential local minimum of f .

If the objective function is continuous at x∗, then x∗ is also a local minimizer in the

classical sense. If x ∈ Rn is not an essential local minimizer of f , then there exists a

lower region with positive measure arbitrarily close to x. For completeness, a descent

direction is defined.

Definition 3. (Descent direction). The direction vector d ∈ Rn is a descent direc-

tion for f at x if there exists a λ̂ > 0 such that

f(x+ λd) < f(x) for all λ ∈ (0, λ̂].
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1.2 Direct Search Local Optimization

Direct search methods are of interest here because they do not require the explicit cal-

culation of derivatives and thus can be applied to nonsmooth optimization problems.

Although there is some ambiguity regarding which methods can be classified as direct

search (see [41] for an interesting discussion), any method that does not calculate the

gradient of f (∇f) directly is considered direct search. Therefore, a method which re-

places derivative information with finite difference approximations to ∇f is considered

direct search here, to the dismay of some authors.

Direct search methods date back to the 1950s but the field blossomed during the

1960s with the development of various algorithms, including the Hooke and Jeeves al-

gorithm [35] for which the phrase direct search was first used. These early algorithms

became popular amongst practitioners because their heuristic form was easy to under-

stand and they often performed well in practice. Despite their popularity, by the early

1970s these methods were largely dismissed by the optimization community. Numerical

optimizers became less interested in heuristics and more interested in formal theories of

convergence [44]. Derivative based methods with convergence results then took center

stage within the optimization community. These methods also offered superior perfor-

mance on smooth problems, for example the quasi-Newton methods, whose success is

now undisputed [44].

In 1991, direct search methods become popular once again when Torczon [79] de-

veloped a general convergence theory for a class of direct search methods. This lead to

the development of a variety of new, provably convergent direct search algorithms. The

interested reader is referred to [41] for a comprehensive review of the state-of-the-art

in direct search until circa 2003. Further advances in the field until just recently can

be found in [14].

This section concludes by briefly introducing simplex based methods, due to their

undeniable popularity among practitioners when gradient information is not available

or unreliable. Interestingly, the original Nelder-Mead simplex method [52] has become

an official Science Citation Classic. Directional direct search methods are also consid-

ered because partial convergence results have been developed by others on nonsmooth

problems. Furthermore, a method proposed in Chapter 5 for nonsmooth minimization

uses a directional direct search method. These methods are considered in the next

section.
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1.2.1 Simplex Based Methods

A simplex is an n dimensional analog of a triangle, defined as the convex hull of n+ 1

independent points in Rn. Unless otherwise stated, each simplex is assumed to be

non-degenerate.

Definition 4. (Non-Degenerate Simplex). A non-degenerate simplex in Rn is the

convex hull of n+1 linearly independent points, where the set of edges from any vertex

forms a basis for Rn.

If all points are mutually equidistant from each other, then the simplex is said to be

regular. Therefore, an equilateral triangle and a regular tetrahedron define a regular

simplex in R2 and R3 respectively.

Simplicial direct search methods are motivated by the fact that only n+1 function

evaluations are required to approximate the gradient (for example via finite differences)

and hence, can be used to approximate a direction of descent if f is continuously

differentiable. Given an initial simplex, these methods transform and scale the simplex

by replacing a vertex at each iteration. Rather than trying to reduce f at each iteration,

these methods aim to replace the vertex with the largest function value.

The first simplex based method is due to Spendley, Hext and Himsworth [75] in

1962. Their method has two modes of operation: reflection and scaling. Given a regular

simplex at iteration k, Sk, a new (regular) simplex is generated by reflecting the vertex

with the largest function value through the centroid of the remaining n points. If the

new vertex no longer has the largest function value, the simplex is accepted giving

Sk+1 and the method repeats. Otherwise, the vertex in Sk with second largest vertex

is reflected and so on, until no descent is forthcoming or if cycling occurs. Cycling

is evident when the vertex with the lowest function value remains constant for many

iterations, see [44] for details. The authors suggest two alternatives at this stage,

either reduce the side lengths of the simplex toward the vertex with the lowest function

value (see Figure 1.2) and repeat, or employ a convergent local search method in the

neighborhood identified by the simplex.

1.2.1.1 Nelder-Mead Method

The Nelder-Mead simplex method [52] is a generalization of the Spendley, Hext and

Himsworth Algorithm. The interested reader is referred to [14] for a detailed description

of this method and a clear algorithmic diagram. This section illustrates the basic
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methodology of the Nelder-Mead method and explains how it can fail to converge to a

local minimizer of f .

Like the Spendley, Hext and Himsworth Algorithm, the Nelder-Mead method pro-

ceeds by generating a new simplex from the previous. Let the simplex be defined by

the sorted set of n+ 1 independent points

S = {x1, x2, . . . , xn+1}, (1.4)

such that f(xi) ≤ f(xi+1) for 1 ≤ i ≤ n. Rather than simply reflecting xn+1 to generate

the next simplex, the Nelder-Mead method considers a set of points on the line

l = x̄+ θ(x̄− xn+1) such that θ ∈ R, (1.5)

where x̄ denotes the geometric centroid of the remaining points, given by 1/n
∑n

i=1 xi.

The typical points to consider are given by θ ∈ {−1/2, 1/2, 1, 2} [14]. With θ = 1

the reflection move of Spendley, Hext and Himsworth is conducted leaving the simplex

shape unchanged. An expansion move is conducted with θ = 2, elongating the simplex

in the direction x̄ − xn+1. For both cases θ = ±1/2 a contraction move is conducted,

reducing the measure of the simplex. These moves are illustrated in Figure 1.1. The

details and logic of which simplex is chosen at each iteration is left to others (see

for example [14]) and note that a variety of simplicial shapes can be generated over

successive iterations. If these moves fail to reduce f(xn+1) below f(xn), then the

simplex is shrunk towards the vertex with the lowest function value, usually by a factor

of a 1/2 as shown in Figure 1.2. The method terminates when the simplex diameter

falls below a tolerance specified by the user.

Definition 5. (Simplex diameter). Let S be a simplex in Rn and i, j ∈ {1, 2, . . . , n+
1}, then the simplex diameter is defined as

diam(S) = max
i,j
∥xi − xj∥. (1.6)

Other termination rules for the method can be found in [10, 14].

Allowing the simplex to deform means the simplex can adapt to the local landscape

of the objective function taking a variety of simplicial shapes. For example, elongating

down valleys and contracting around minimizers. Although this can lead to methods

performing rather well in practice, it can have disastrous consequences. In particular,

the simplices can become numerically degenerate or arbitrarily flat. McKinnon [48]
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Figure 1.1: Possible simplices obtained for the Nelder-Mead method. The initial simplex is shown
in bold and the reflection line is bold dashed. Points z1 and z2 define simplices from contraction
moves. Point z3 defines the simplex from the reflection move and z4 is the simplex produced from the
expansion move.
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Figure 1.2: Simplex shrinking move of the Nelder-Mead method. The new simplex is shown in bold.

derived a family of functions for which this degeneracy is observed, causing the method

to fail. Surprisingly this family includes a twice continuously differentiable convex

function in R2. For this reason alone it is not possible to show that Nelder-Mead

method converges to a minimizer of f and therefore, can only be considered a heuristic

method.

Various authors have provided modified versions of the classical method for which

convergence can be demonstrated, see for example [14, 59]. These results rely on f being

continuously differentiable (and others) and do not extend to nonsmooth problems in

an obvious way. Although any direct search method can be applied to nonsmooth

problems, the author sees no advantageous reason in choosing a simplex method and

they are considered no further in this thesis.
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1.3 Directional Direct Search Methods

Directional direct search methods are methods where sampling is guided by sets of

directions with appropriate features. The name is borrowed from [14] where a gen-

eral algorithmic framework for this class of direct search methods is provided. Similar

frameworks have been provided by others. Kolda, Lewis, and Torczon [41] provide a

convergent framework on twice continuously differentiable functions called Generating

Set Search. A popular algorithm conforming to both frameworks is called Mesh Adap-

tive Direct Search (MADS) [5]. The interested reader is referred to [5, 14] for further

details. The MADS algorithm is of interest because it has partial convergence results

on nonsmooth problems (see Section 1.3.3).

Of particular interest in this thesis are grid based optimization methods, where

sampling is guided by points on a lattice. Before discussing these methods, Positive

Bases are introduced, an underlying structure used in this approach.

1.3.1 Positive Bases

In 1954 Davis [19] introduced the theory of positive bases. Positive bases and positive

spanning sets are a key feature in grid and frame based optimization methods [10].

The interested reader is referred to [14, 19] for a full treatment on the subject. Here a

brief introduction is presented and a result which is used in the convergence analysis

in Chapter 5 is given.

Definition 6. (Positive basis). A positive basis V+ for Rn is a set of vectors for

which the following conditions hold:

(a) Every vector in Rn can be written as a non-negative linear combination of vectors

in V+;

(b) No member of V+ is expressible as a non-negative linear combination of the re-

maining vectors in V+.

A finite set of vectors which satisfy condition (a), but not necessarily (b), is called

a positive spanning set for Rn. Interesting, the cardinality of a positive basis is n+1 ≤
|V+| ≤ 2n, unlike a basis for Rn which has exactly n vectors [85]. Positive bases with

n + 1 and 2n vectors are called minimal and maximal positive bases respectively. For

example, if {ν1, ν2, . . . , νn} is a basis for Rn, then{
ν1, ν2, . . . , νn,−

n∑
i=1

νi

}
and {ν1, ν2, . . . , νn,−ν1,−ν2, . . . ,−νn} , (1.7)
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are minimal and maximal positive bases for Rn.

Two attractive properties of positive bases for smooth optimization are made clear

from the following theorem and corollary. For clarity the notation ∇f(x) = g is used

and all vectors are column vectors.

Theorem 7. If the set of vectors V+ forms a positive basis for Rn, then

νTg ≥ 0 for all ν ∈ V+ ⇒ g = 0. (1.8)

Proof. Let V+ = {νi}, where i = 1, 2, . . . , |V+|. Since any vector in Rn can be written

as a non-negative linear combination of vectors in V+ let

−g =
|V+|∑
i=1

λiνi,

where each λi ≥ 0 and i = 1, 2, . . . , |V+|. From (1.8) we have νTi g ≥ 0 for each νi ∈ V+

and so

0 ≤
|V+|∑
i=1

λiν
T
i g = −gTg ≤ 0.

The only possibility is g = 0.

Thus, positive bases can be used to confirm whether a point x ∈ Rn is a local

minimizer of a smooth objective function or not. In addition, positive bases can be

used to define a descent direction of a continuously differentiable function, if one exists.

Corollary 8. Let f be a continuously differentiable function with ∇f(x) ̸= 0 for some

x ∈ Rn. Then given a positive basis V+, there exists a ν ∈ V+ such that

−∇f(x)Tν > 0.

Proof. Let g = −∇f(x) where x ∈ Rn. Noting that gTg > 0 for all non-zero g and

g = λ1ν1 + λ2ν2 + . . .+ λiνi,

where νi ∈ V+, and λi is a non-negative scalar for i = 1, 2, . . . , |V+|. Hence,

gT(λ1ν1 + λ2ν2 + . . .+ λiνi) > 0 (1.9)

and so there is at least one element of (1.9) for which gTνi > 0, as required.
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Another way of thinking about Corollary 8 is that there exists at least one vector

from a positive basis probing any open half space.

1.3.2 Grid Based Methods

Grid based direct search methods are a generalization of pattern search methods [16].

Grids can be generalized further into frame based methods. The interested reader is

referred to [10, 15, 18, 60] for details on frame based methods and we consider them

no further.

At each iteration, grid based methods evaluate f at a finite set of points on a

rational lattice or grid. Each grid G(x0, h,V) is defined by a point x0 on the grid, a

mesh size parameter h > 0 and a set of n linearly independent basis vectors V = {νi}
so that

G(x0, h,V) =
{
x ∈ Rn : x = x0 + h

n∑
i=1

λiνi for all λi ∈ Z
}
.

The mesh size parameter h is adjusted from time to time to ensure a succession of

finer grids is generated by the algorithm. This property is crucial for establishing

convergence on smooth problems.

Coope and Price [16] provide a convergent template for grid based methods. Their

framework generates a sequence of grid local minimizers.

Definition 9. (Grid Local Minimizer). A point x ∈ G(x0, h,V) is a grid local

minimizer of an objective function f with respect to a positive basis V+ if

f(x+ hν) ≥ f(x) for all ν ∈ V+.

From Theorem 7,

νT∇f(x) ≥ 0 for all ν ∈ V+ ⇒ ∇f(x) = 0

and thus, a grid local minimizer is a finite difference approximation to this. Under

appropriate conditions, the convergence result shows that an infinite sequence of grid

local minimizers are generated, for which each cluster point is a local minimizer of f .

Furthermore, each cluster point has the same function value because the sequence of

iterates have monotonically decreasing function values.

The framework provided by Coope and Price is quite flexible. Convergence holds

even if the grids are arbitrarily translated, rotated or sheared relative to one another



1.3. Directional Direct Search Methods 11

and each grid axis may be rescaled independently of the others [16]. This means the

grids can try to incorporate second order curvature information, for example, align

the grid axes with respect to the principle axes of an approximation quadratic. The

pattern search framework in [79] has a single set of grid axes, only rational scaling of

the grid is allowed and arbitrary translations are not permitted. Thus, there is greater

flexibility in the grid based framework.

1.3.2.1 Hooke and Jeeves Algorithm

This subsection introduces the classical direct search method of Hooke and Jeeves [35].

This method is of particular interest because no gradient information is required and

has potential benefits on nonsmooth problems. These potential benefits are discussed

in sections 1.4.1 and 1.4.2. An altered Hooke and Jeeves algorithm is presented in

Chapter 5 which is provably convergent on nonsmooth problems.

A precise statement of the Hooke and Jeeves algorithm is given in Figure 1.3. The

algorithm consists of three loops. The two inner loops (steps 2—3 and steps 2—4)

search for points of descent on a grid G(x0, h,V), where V is the canonical basis for

Rn. The outer loop (steps 2—5) reduces the mesh parameter h (typically by a factor

of 10 [17]) when a grid local minimizer has been located. With x0 and V fixed for all

iterations, the sequence of grids is nested.

1. Initialize: Set k = 0 and v0 = 0. Choose x0, h0 > 0 and hmin > 0.

2. Exploratory Move: Calculate f(xk + vk) and form the exploratory

vector Ek from xk + vk.

3. Pattern Move: If f(xk + vk + Ek) < f(xk), then set

xk+1 = xk + vk + Ek and vk+1 = vk + Ek,

increment k and go to Step 2.

4. If vk ̸= 0, set vk = 0 and go to Step 2.

5. If hk = hmin stop. Otherwise, select hmin ≤ hk+1 < hk, increment k

and go to Step 2.

Figure 1.3: Hooke and Jeeves algorithm
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Step 1 sets the iteration counter k = 0 and the initial Hooke and Jeeves pattern

move v0 to the zero vector. An initial point x0 ∈ Rn (which is also the grid center), an

initial mesh size h0 > 0 and a minimum mesh size hmin are chosen by the user.

Step 2 conducts the exploratory phase of the Hooke and Jeeves algorithm [35].

Each exploratory phase tries to reduce f by altering each coordinate of the current

exploratory search point z = xk+vk in turn. Each element zi of z is treated as follows.

Firstly zi is increased by h. If this yields a reduction in f then this increase is retained

and the method moves on to the next coordinate. Otherwise the increase is removed,

and zi is decreased by h from its original value. Again, if this reduces f the decrease

is retained, otherwise it is abandoned. In either case the process moves on to the next

coordinate of z. The exploratory steps are retained in the vector Ek, where initially

Ek = 0, as demonstrated in Figure 1.4.
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Figure 1.4: Hooke and Jeeves exploratory steps: Increasing z by he1 gives descent and the step is
retained. For the next coordinate z + he1 is increased by he2. This step increases f and the step
is removed. z + he1 is then decreased by he2, which gives descent, and the step is retained. Thus,
Ek = [h,−h] in this example.

Step 3 is executed if descent is found, f(xk + vk +Ek) < f(xk). This step performs

a pattern move, probing the promising direction of descent given by previous successful

moves. Otherwise, no descent is found and the first inner loop terminates.

Step 4 is executed if vk is non-zero and sets vk to the zero vector. This means an

exploratory phase is conducted from xk at Step 2. Otherwise, vk is the zero vector and

a grid local minimizer has been located, terminating the inner loops.

The Hooke and Jeeves algorithm terminates when a grid local minimizer on G(x0, hmin,V)
has been located. The final iterate, xk, is the estimate of a local minimizer of f .

The Hooke and Jeeves algorithm is shown to converge to a local minimizer of a

continuously differentiable function in [17]. Furthermore, relaxations to the grid are
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made in [17], without affecting convergence.

1.3.3 Partial Nonsmooth Convergence Results

This section considers partial convergence results on nonsmooth problems that have

been presented by others and shows these results are not sufficient for ensuring conver-

gence to an essential local minimizer. These results are partial in the sense that they

guarantee the non-negativity of the Clarke derivative [13] in all relevant directions at

each cluster point of the sequence of iterates generated by an algorithm. The Clarke

generalized derivative is the generalized directional derivative of f in the direction d,

defined by

f o(x; d) = lim sup
z→x
λ↓0

f(z + λd)− f(z)
λ

, (1.10)

where z ∈ Rn and λ is a positive scalar. However, the non-negativity of the Clarke

derivative in all relevant directions (or indeed all directions) does not guarantee the

non-existence of a set of descent directions from a cluster point.

In [14] a weak nonsmooth convergence result is presented for the Directional Direct

Search framework. Under basic assumptions, the authors show that the sequence of

iterates generated has a limit point x∗ for which

f o(x∗, ν) > 0, for all ν ∈ V+, (1.11)

where V+ is a positive basis for Rn. However, (1.11) does not guarantee the non-

existence of descent directions from x∗. This can be seen by considering, for example,

the function

f(x) = max{aTx, bTx} such that x ∈ R2, (1.12)

where a ̸= −b are unit vectors. The restriction a ̸= −b ensures there exists a descent

direction for all values of x. Consider using the maximal canonical positive basis V+,

choosing a = [0.14,−0.98], b = [−0.85, 0.53] in (1.12) and trying to locate descent from

a point x such that aTx = bTx. The reader can immediately see from Figure 1.5 that

a large cone of descent directions exists in such a situation. However, the directional

derivative is positive in all directions ν ∈ V+ (bold cross in Figure 1.5), which implies

the Clarke derivative is also positive for all ν ∈ V+. Note, this result is independent of

the length of ν, i.e. it holds for λν, where λ > 0 and finite and ν ∈ V+.

A stronger convergence result is proposed by Audet and Dennis for the MADS

algorithm [5]. Their method looks asymptotically in all directions at each cluster point
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Figure 1.5: Contour plot of (1.12) with a = [0.14,−0.98] and b = [−0.85, 0.53]. A large cone of
descent directions from a point x exists (shaded region), centered on the line aTz = bTz where z ∈ R2.

x∗ of the sequence of iterates generated by the algorithm. They go on to show that

f o(x∗, d) > 0, for all d ∈ Rn. (1.13)

However, the non-negativity of the Clarke derivative in all directions still does not

guarantee the non-existence of descent directions from x∗.

The non-negativity of the Clarke derivative in all directions at x is a necessary, but

not a sufficient condition for x to be an essential local minimizer of f [62]. Consider a

directionally differentiable function f . If f o(x, d) < 0 for some direction d, then from

the definition of the Clarke derivative we have

f(x+ ϵd) < f(x) +
ϵ

2
f o(x, d), (1.14)

for all sufficiently small ϵ > 0. Hence, there exists a descent direction at x in the

direction d. Therefore, f o(x, d) ≥ 0 is a necessary condition for x to be an essential

local minimizer of f .

It can be seen that f o(x, d) ≥ 0 is not sufficient by considering, for example, the
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function f = −|x| in one dimension. The Clarke derivative at the origin is given by

f o(0, d) = lim sup
z→0
λ↓0

−|z + λd|+ |z|
λ

.

For d > 0 choose z = −2λd and the limit becomes

f o(0, d) = lim sup
λ↓0

−(λd) + (2λd)

λ
= d = |d|. (d > 0)

Similarly for d < 0 choose z = −2λd giving

f o(0, d) = lim sup
λ↓0

+(λd)− (2λd)

λ
= −d = |d|. (d < 0)

Hence, the Clarke derivative is positive in all non-zero directions from the origin, even

though every non-zero d is a descent direction at x = 0. Therefore, f o(x, d) ≥ 0 is not

a sufficient condition for x to be an essential local minimizer of f .

A more interesting function is presented by Price, Robertson and Reale [62],

f =

3(2|x2| − x1) + (0.9 +
√
5/2)x1 x1 ≥ 2|x2|

0.9x1 +
√
x21 + x22 otherwise.

(1.15)

The Clarke derivative at the origin, f o(0, d), is positive in all non-zero directions d.

However, there is a set of descent directions centered on e1 emanating from the origin

for which the directional derivative is negative, see Figure 1.6.

For general problems, the non-negativity of the Clarke derivative will not give

convergence to essential local minimizers. Another way to obtain convergence, albeit

a computationally intensive one, is to eventually look everywhere in the neighborhood

of the terminating iterate xk. However, although checking

f(xk + d) ≥ f(xk) for all ∥d∥ < ϵ (1.16)

requires an n dimensional global optimization, checking f o(xk, d) ≥ 0 for all d unit

in Rn (n > 1), requires an n − 1 dimensional global optimization. Thus, even for

relatively small n, the computational effort for both methods is similar. If (1.16) is

satisfied no descent is found and xk is an essential local minimizer of f . To this end,

the Clarke derivative approach is replaced with a method that searches directly for

points of descent using global optimization methods, details of which follow in Section
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Figure 1.6: The contour plot and graph of the two dimensional function (1.15), where the Clarke
derivative is positive in all directions at x = 0, is shown. The directional derivative along e1 is negative
and so there exists a cone of descent directions, indicated by the shaded region in the contour plot.
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1.7.

1.4 Trajectory Following Optimization

This section considers trajectory following local optimization methods and illustrates a

potential usage for nonsmooth optimization. These methods solve (1.1) by following a

solution curve x(t) of a system of ordinary differential equations (ODE). The interested

reader is referred to [9, 67, 72] and references therein for a survey of trajectory following

algorithms and numerical integration methods to obtain x(t).

Trajectory following methods can be grouped into two categories depending on the

order of the ODE that is used. Here ẋ, ẍ ∈ Rn are vectors with elements dxi/dt and

d2xi/dt
2 for 1 ≤ i ≤ n, respectively.

Definition 10. (First order ODE method.) A trajectory following optimization

method that solves an equation of the form ẋ = y(x(t)), with t > 0 and x(0) = 0 is

called a first order ODE method.

Definition 11. (Second order ODE method.) A trajectory following optimization

method that solves an equation of the form ẍ = y(x(t)), with t > 0, x(0) = 0 and

ẋ(0) = 0 is called a second order ODE method.

The first order ODE method defined by choosing y(x(t)) = −∇f(x(t)), yields the
continuous steepest descent trajectory [9]. Furthermore, with

y(x(t)) = −G−1(x(t))∇f(x(t))

the continuous Newton trajectory [9] is obtained, where G is the (non-singular) Hessian

matrix. Assuming f is twice continuously differentiable and G(x(t)) is positive definite,

both the Newton and steepest descent trajectory define a path x(t) to a local minimizer

of f .

The primary interest here is minimizing nonsmooth objective functions. Therefore,

having a first order ODE optimization method that replies on having derivative in-

formation (possibly second order) is problematic. Although this information can be

approximated using finite differences, it is the author’s opinion that there is no ad-

vantage in doing so for nonsmooth minimization. For these reasons, first order ODE

methods are considered no further. However, second order ODE methods do have

an interesting property which can be exploited in nonsmooth minimization, details of

which follow in the next subsection.
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1.4.1 Physical Analog to Function Minimization

This subsection considers a physical analog to function minimization proposed by Sny-

man [70], where the motion of a particle of unit mass in an n-dimensional conservative

force field is considered. Here, the objective function f represents the potential en-

ergy of the particle and the total energy, consisting of potential and kinetic energy, is

conserved. The motion of such a particle is described by the second order system

ẍ = −∇f(x(t)), (1.17)

x(0) = x0, ẋ(0) = 0, t ≥ 0.

The conservation of energy condition in the system leads to,

KE(xt) + PE(xt) = KE(x0) + PE(x0) = f(x0), (1.18)

where

KE(x) =
1

2
∥ẋ∥2 and PE(x) = f(x) (1.19)

define the kinetic and potential energy of the particle respectively. From (1.18), the

particle is in continuous motion and bounded above by the initial function value f(x0)

(KE = 0 and PE is maximized). Therefore, the trajectory can surmount ridges with

function values less than f(x0) and hence leave the neighborhood of local minimizer

if visited by the trajectory. To ensure motion towards a local minimizer an artificial

damping term λẋ, where λ is a positive constant, can be added to the left hand side

of (1.17). However, the choice of λ can be problematic. Too small and the particle

may endure a long period of oscillation about a local minimizer x∗. Whereas, for λ too

large ẍ+ λẋ ≈ λẋ, which reduces the system to

ẋ ≈ −∇f(x(t))/λ.

Thus, for large λ intolerably slow progress is made. From (1.18) and considering two

consecutive times on the trajectory, the following relation is obtained

−∆f(x) = ∆KE(x). (1.20)

Therefore, by monitoring the sign and magnitude of ∆KE(x) motion toward a min-

imizer can be obtained. For example, if KE(xi) − KE(xi+1) < 0 is observed, then

restarting from xi with KE(xi) set to zero forces motion toward x∗ provided x(t) is
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bounded.

For nonsmooth minimization there may be some merit in allowing the second order

trajectory to follow its natural path allowing f to increase along x(t). The second order

term gives the particle momentum, allowing the particle to potentially roll though

nonsmooth regions of f because uphill steps are possible. Provided some damping

is applied to the system, an interesting optimization method is proposed. This is

investigated further in Chapter 5. The interested reader is referred to Figure 5.3,

where the relative merits of the second order trajectory are shown on a nonsmooth

function.

1.4.2 Connections with Classical Direct Search

This subsection proposes a derivative free approximation to a second order trajectory

following optimization method. With the dependence on derivative information re-

moved, this method can be applied to nonsmooth problems. Interestingly, this method

is a special case of the classical Hooke and Jeeves algorithm [35].

Consider the second order trajectory defined by (1.17). Solving equation (1.17)

using a central difference approximation for ẍ, one obtains a trajectory defined by

xk+1 − 2xk + xk−1 = −h2∇f(xk). (1.21)

Replacing the right hand side of (1.21) with the vector of the Hooke and Jeeves ex-

ploratory moves Ek (see Section 1.3.2.1) operating on a grid G(x0, h) with canonical

basis vectors, a crude approximation to the direction and magnitude of h2∇f(xk) is

obtained. Substituting Ek into (1.21) we have

xk+1 = 2xk − xk−1 + Ek. (1.22)

Using (1.22) and terminating when xk+1 = xk and Ek = 0, an iterative grid based

approximation to a second order trajectory is obtained. Noting that (1.22) can be

expressed by the following system

xk+1 = xk + vk + Ek, and vk+1 = vk + Ek,

where v0 = 0, the trajectory defined by (1.22) is that of the Hooke and Jeeves algorithm.

It is simply one iteration (fixed h) of the classical algorithm whereby uphill steps are

taken. Using this connection the classical Hooke and Jeeves algorithm is extended into
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a non-descent algorithm in Chapter 5. Furthermore, the relative merits of allowing for

uphill steps are empirically analyzed in Chapter 7.

1.5 Global Optimization

Although this thesis is primary interested in local nonsmooth optimization, the method

proposed uses global optimization techniques. The problem of global optimization has

a deceptively simple mathematical description,

min
x
f(x) such that x ∈ Ω, (1.23)

where the objective function f maps Rn → R. Here Ω is a compact subset of Rn

and is called the optimization region. If Ω ≡ Rn then (1.23) is called an unconstrained

problem, otherwise the problem is referred to as constrained. Finding a global optimum

is usually harder than finding a local optimum. To solve (1.23) a global minimizer is

sought.

Definition 12. (Global Minimizer). Let Ω ⊂ Rn. A point x∗ ∈ Ω such that

f(x∗) ≤ f(x) for all x ∈ Ω, (1.24)

is called a global minimizer of f .

Definition 13. (Global Minimum). If a point x∗ ∈ Ω is a global minimizer of f ,

then f(x∗) is called the global minimum of f .

There can only be one global minimum for an objective function f , but there can

be multiple global minimizers. The notation f(x∗) = f∗ is used throughout the thesis

to denote the minimum function value.

In practice the problem is somewhat relaxed to finding a global minimum to within

ϵ, i.e. given an ϵ > 0 find a function value f∗ such that f∗ ≤ f(x) + ϵ for all x ∈ Ω. A

point x∗ such that f(x∗) is a global minimum to within ϵ is called a global minimizer

to within ϵ. A further relaxation is to find a global minimum to within ϵ with high

probability.

There have been many methods proposed to solve (1.23). These methods can be

largely classified as being either deterministic or stochastic. Stochastic methods have

an element of randomness whereas deterministic methods do not.
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Two popular deterministic methods amongst practitioners are Interval methods and

Branch and Bound methods. Interval methods use interval arithmetic [50] to provide

bounds on functions by means of interval operations. An example of such a method

is the interval Newton algorithm proposed by Moore [50]. Such methods are beyond

the scope of this thesis, but the interested reader is referred to [53] for details. Interval

arithmetic can also be applied to the Branch and Bound framework. These methods

divide Ω into finitely many sub-domains and bounds on the global minimum in each

sub-domain are calculated. This information is used to reject sub-domains that cannot

contain the global minimum of Ω. Eventually only sub-domains containing the global

minimum remain. The interested reader is referred to [76] for further details on Branch

and Bound methods.

Another deterministic approach is to sample Ω using a quasi-random sequence of

numbers. The use of quasi-random sequences is revisited in Section 3.6.

Stochastic methods have become popular amongst practitioners. The element of

randomness in these methods can make them very successful on problems for which

deterministic methods fail. The interested reader is referred to [28] for a detailed

review of three popular stochastic methods: Simulated Annealing (see later), Tabu

Search and Genetic algorithms. Of particular interest in this thesis are Random Search

global optimization methods. These methods require no gradient information and thus,

can be directly applied to nonsmooth or discontinuous problems. In particular, these

methods can be applied to Barrier functions.

Random Search methods are discussed in more depth in Chapter 2 where a parti-

tioning Random Search framework is presented.

1.6 Nonsmooth Local Optimization vs Global Op-

timization

This section shows that the problem of finding a descent direction of a nonsmooth

function in Rn is closely related to global optimization in (n − 1)−dimensions. This

connection was first proposed by Price, Reale and Robertson [61] and is included here

for completeness of the thesis. Exploiting this connection provides a powerful method

to solve nonsmooth optimization problems, details of which follow in the next section.

Consider the global optimization problem

min y(x) subject to x ∈ [−1, 1]n−1, (1.25)
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Figure 1.7: The top figure shows ψ and bottom shows Ψ with y(x) defined by (1.26). From ψ it is
clear that two global minimizers with negative function values exist. The connection between finding
a descent direction from the origin of Ψ and the global minimum of ψ is clear from the front left edge
of the graph of Ψ.
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with a global minimum y∗. To solve (1.25) a point to within ϵ > 0 of y∗ is sought, i.e.

a function value no more than y∗ − ϵ. Noting that the addition of a constant to (1.25)

leaves the optimization problem unchanged, y∗ − ϵ is subtracted from y. Now any

negative function value is also a global minimum to within ϵ of (1.25). This problem

can be expressed as the problem of finding a descent direction of a nonsmooth function

in n dimensions. The nonsmooth function Ψ(t, z) is defined in terms of an intermediate

function

ψ(x) =

{
y(x), ∥x∥∞ ≤ 1,

(∥x∥∞ − 1)λ+ (2− ∥x∥∞)y(x/∥x∥∞), 1 < ∥x∥∞ ≤ 2,

where λ is a positive constant such that

λ > max y(x) subject to x ∈ [−1, 1]n−1.

The continuous function ψ extends y to [−2, 2]n−1 in such a way that y remains un-

changed on [−1, 1]n−1. Outside this region ψ rises linearly to λ, where ∥x∥∞ = 2 (see

Figure 1.7). Using x = (t, z) where z ∈ R, define

Ψ(ψ) =

{
ψ(2t/z)

√
z2 + ∥t∥2 ∥t∥∞ < z

λ
√
z2 + ∥t∥2 otherwise.

Ψ is linear along each ray emanating from the origin and so locating a descent direction

for Ψ is equivalent to locating a point (t, z) such that Ψ(t, z) < 0. Clearly Ψ(t, z) < 0

if and only if ψ(2t/z) < 0, which can only occur when ∥t∥∞ < z. From the form of ψ

there are two ways ψ(2t/z) < 0 depending on the magnitude of ∥2t/z∥∞. If 2∥t∥∞ ≤ z

then we require y(2t/z) < 0, otherwise y(t/∥t∥∞) < 0 is required. In both cases a

solution to (1.25) is obtained (the (n− 1)−dimensional global optimization problem).

The reader is referred to Figure 1.7 for an illustrative example of Ψ(t, z) in 2 di-

mensions to accompany the description above. The objective function y(x) in the 1

dimensional global optimization problem is given by

y(x) = 16.5 + 20x sin(20x) on x ∈ [−1, 1]. (1.26)

The positive constant λ = 45 has been used in ψ(x).

Applying a global optimization method to the (n−1)−dimensional set of directions

emanating from a point x ∈ Rn can locate a descent direction. However, this assumes

that f is directionally differentiable at x. To remove this restriction a global optimiza-
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tion method is applied to an n−dimensional neighborhood of x, which aims to locate

a point of descent directly. This type of optimization is referred to as localized global

optimization.

1.7 Optimization Method

This section presents the general method for solving nonsmooth optimization problems

used throughout this thesis. These methods replace the Clarke derivative approach of

Audet and Dennis [5] with one using a series of localized global optimization phases.

Recall from Section 1.3.3 that in the Clarke derivative approach, only partial nons-

mooth convergence results are possible. In particular, the non-negativity of the Clarke

derivative in all directions at x∗ is necessary, but not sufficient for x∗ to be an essential

local minimizer f and implicity requires (n− 1)−dimensional global optimization. In

our approach an exhaustive search is performed in an n−neighborhood of a cluster

point, x∗. The exhaustive search ensures x∗ is an essential local minimizer of f .

The methods proposed in this thesis have two modes of operation: a local phase and

a localized global phase. A precise statement of the framework is given in Figure 1.8. At

each local phase, a local optimization method is applied until no descent is forthcoming

from an iterate xi∗ . A localized global optimization phase is then performed in a

neighborhood Ω of xi∗ such that xi∗ ∈ Ω and m(Ω) > 0. If a point z ∈ Ω such that

f(z) < f(xi∗) is located, the localized global optimization phase terminates. A new

local phase is then initiated from the point z. Otherwise, no points of descent are found

in Ω, confirming that xi∗ is an essential local minimizer of f .

The local phase in this approach is used to potentially increase the numerical per-

formance of the framework on parts of f which are smooth. Typically local search

algorithms are computationally cheaper than global algorithms. Therefore, it is advan-

tageous to make as much progress toward an essential local minimizer of f as possible

before conducting the computationally expensive localized global optimization phase.

Ideally an algorithm conforming to the above framework spends most of its time in

the local phase. There is great freedom in choosing which local search method to use,

however, some methods are preferred over others. Choosing a direct search method,

for example, is advantageous because no gradient information is required and here f is

assumed to be nonsmooth. The implementation of the local search is unspecified. For

example, one could run the local search until its stopping conditions are satisfied, or

terminate, for example, before a mesh reduction. There are many possibilities.
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1. Initialize: Choose z0 ∈ Rn and set k = 0.

2. Local phase: Execute iterations of a local optimization procedure

from zk, generating a sequence of iterates {xi}i
∗
i=1.

3. Localized global phase: Execute a global optimization procedure

(GP) in a neighborhood Ω of xi∗ until a point z such that

f(z) < f(xi∗) is located, or the stopping conditions of GP are

satisfied.

4. If stopping conditions of GP are satisfied, terminate algorithm

with x∗ = xi∗. Otherwise set zk+1 = z, increment k and goto (2).

Figure 1.8: Nonsmooth optimization framework

The computationally expensive localized global phase gives convergence on nons-

mooth or discontinuous problems, provided the sequence of iterates generated in the

local phase {xi} is bounded. In fact, the local phase can be replaced with: set xi∗ = zk,

effectively removing the local phase, without affecting convergence properties. Conver-

gence is demonstrated in both Chapters 3 and 5, where two algorithms conforming to

this framework are presented.

1.8 Thesis Overview

This chapter concludes with a brief overview of the remainder of this thesis. Chapter 2

considers the localized global optimization phase explicitly, where a new random search

algorithm is presented. This algorithm is extended further in Chapter 3, producing a

nonsmooth local optimization algorithm called CARTopt. Stopping rules are developed

in Chapter 4 to make CARTopt a practical algorithm. Chapter 5 develops a trajectory

following nonsmooth local optimization method. This algorithm uses an altered Hooke

and Jeeves algorithm as the local search procedure and the CARTopt algorithm as

a localized global optimization phase. Chapter 6 extends the CARTopt algorithm

into a filter based algorithm for solving nonsmooth nonlinear programming problems.

Empirical testing of the algorithms on a variety of nonsmooth optimization problems

is given in Chapter 7. The thesis concludes with a summary and future research ideas.
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Chapter 2

Localized Global Phase

This chapter considers the localized global optimization phase in the two phase ap-

proach to nonsmooth minimization (see Section 1.7). The use of global optimization

here is strange in the sense that a series of such problems are solved. The objective

function remains the same in each problem, but the search region over which opti-

mization occurs changes. The latter fact can make the use of deterministic methods

problematic. Consider, for example, exploring the search region using a quasi-random

number sequence like the Halton sequence [31] (see also Section 3.6.1). This sequence is

very efficient at covering a space in low dimensions. In our approach successive search

regions may overlap, displacing various parts of the Halton sequence relative to one

another. This can potentially destroy the efficiency of the covering, leaving parts of

the search region unexplored for multiple iterations. The use of stochastic methods

removes this problem, particularly random search methods.

Each localized global optimization phase is conducted in a subset of the optimization

region S ⊂ Rn centered on xk, defined by the set

Ω = {x ∈ S : ℓi ≤ xi ≤ ui for all i = 1, . . . , n},

where ℓi < ui are finite. Here xk is an iterate for which no descent was forthcoming

in the local phase. Interestingly, there is only one localized global phase in which the

actual global minimum f∗ is sought, where f∗ ≤ f(x) for all x ∈ Ω. For all other

localized global phases only a point of descent is required, from which a new local

phase is started. This chapter considers locating the global minimum on Ω. Although

there is only one global minimum for f , there can be multiple global minimizers. The

primary goal of the localized global optimization phase is to confirm that an essential

local minimizer has been located and so locating any global minimizer x∗ is sufficient.

27
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Firstly, existing random search global optimization algorithms are considered. Sec-

tion 2.2 reviews partitioning random search algorithms. A new partitioning strategy

based on classification techniques from statistical pattern recognition is introduced in

Section 2.3. Section 2.4 proposes a particular partition based on Classification and

Regression Trees (CART). This partition has desirable properties and can be used in

a new global optimization framework, Adaptive Partition Random Search (APRS),

presented in Section 2.5. A particular APRS algorithm, CARTopt, is developed in

Chapter 3 and an algorithm in Chapter 5 uses CARTopt for the localized global opti-

mization phase. The APRS algorithm is shown to converge to a globally optimal point

when the objective function is assumed to be nonsmooth.

2.1 Random Search Optimization

Random search global optimization methods are of interest here because they do not

require the use of gradients and thus, can be directly applied to nonsmooth or discon-

tinuous problems. Furthermore, they are not affected by a succession of overlapping

search regions. This section and the next provide a review of random search methods,

which is by no means exhaustive. The interested reader is referred to [2, 74, 83, 89]

and references therein for more algorithms and to [91] for a comprehensive treatment

of random search.

The simplest and most robust of all random search algorithms is Pure Random

Search (PRS) [38]. PRS samples the objective function f uniformly over Ω and when

stopping conditions are satisfied, the lowest function value obtained is the estimate of

the global minimum. Although PRS can be shown to converge to the global minimum

with probability one, notoriously it is often slow in practice. PRS can be generalized

by sampling f from a non-uniform distribution over Ω. Such an algorithm can be

used when (i) information about f is available, allowing for subsets of Ω to be consid-

ered more promising than others, or when (ii) the sampling problem for the uniform

distribution on Ω is hard or practically impossible.

There has been considerable work done by numerous authors to increase the effi-

ciency of PRS yielding a variety of random search algorithms. One method that has

gained prominence in the optimization community is the Multi-Start algorithm [38].

Multi-Start alternates between local and global phases. Each global phase generates a

batch of points from a uniform distribution over Ω, where each point is called a seed.

A local search procedure is then conducted from each seed, yielding a local minimum
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if the objective function is smooth, completing the local phase. If stopping conditions

are not satisfied another global phase is conducted and the method repeats. Other-

wise, the local minimum with the smallest function value is the estimate for the global

minimum.

The Multi-Start algorithm has also been extended to more advanced algorithms,

for example, Multi-Level Single Linkage [38, 39]. The main idea behind these methods

is to apply a clustering technique to the batch of random points. The clustering aims

to group points together that would share the same local minimizer, if a local search

procedure was applied from each element of the cluster. Each cluster is defined by one

seed point and hence, only one local search is performed from each cluster.

There have also been various point-to-point random search methods. These meth-

ods generate a single point using some randomized scheme and a decision is made on

whether to accept the point as the next iterate or generate another. One popular

method is the Simulated Annealing (SA) algorithm [91]. This algorithm mimics the

behavior of the physical process of annealing in metallurgy. At each iteration, the cur-

rent sample point is replaced by a nearby point, chosen with a probability that depends

on the difference between the corresponding function values and on a global parameter

t (temperature). Initially t is large meaning points are chosen at random (including

points of ascent) but as the algorithm proceeds, t → 0 and only points of descent are

accepted. Allowing for points of ascent potentially stops the algorithm getting stuck

at local minima.

Another method, Accelerated Random Search [3, 63], systematically reduces the

hypercube shaped search region (initially Ω) over the current point xk with the lowest

function value. Points are generated in the successively smaller search regions centered

on xk until descent is made, the search then returns back to Ω. This counter intuitive

approach allows the algorithm to focus the search in the neighborhood of local minima,

yielding high accuracy solutions. An automatic restart feature occurs when a minimum

search region size is reached, returning the search to Ω. This feature reduces the risk

of missing the global solution.

Recursive Random Search [86] also systematically reduces the search region. This

algorithm applies PRS until the probability of reducing f further is sufficiently small.

The search region is then reduced and centered over the point with the lowest function

value. PRS is applied in the new, smaller search region until the probability of reducing

f further is sufficiently small once again. The method repeats until the smallest search

region is obtained. The main idea behind this algorithm is to keep PRS searching in

the high efficiency phase of random sampling. The idea of high efficiency sampling is
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investigated further in Section 3.5.1 of this thesis.

To conclude this section the largely theoretical algorithm Pure Adaptive Search

(PAS) [88] is mentioned. Although this algorithm can only be implemented efficiently

on very special functions, it provides a theoretical ideal for random search. At the kth

iteration PAS evaluates f(zk), where zk is drawn from a uniform distribution over the

level set

L(zk−1) = {zk ∈ Ω : f(zk) < f(zk−1)}.

If the set level set of f(zk)− ϵ is empty, then a global minimum to within ϵ is known

and the algorithm terminates.

To implement PAS efficiently it is necessary to know all the level sets of f and a

point must be drawn uniformly from a level set, both non-trivial requirements. PAS

can be implemented, although extremely inefficiently, by simply applying PRS and

only accepting points which reduce the current lowest function value. Attempts have

been made to construct realizations of PAS. These include the Hit and Run algorithm

[87], Hide and Seek algorithm [65] and Somewhat Adaptive Search [6]. The interested

reader is referred to the papers above for details and also to Z. B. Zabinsky’s book,

Stochastic Adaptive Search for Global Optimization [89]. In Section 2.5, a new al-

gorithmic framework is presented, which may be considered as a new realization of

PAS.

2.2 Partitioning Algorithms

Another technique for increasing the efficiency of random search algorithms is to form a

partition on Ω. To illustrate the advantages of forming a partition consider maximizing

an objective function f using the following two approaches:

(i) applying PRS on Ω using N points; and

(ii) partitioning Ω into N sub-regions Ai of equal positive measure and drawing one

point randomly from each, where 1 ≤ i ≤ N .

Let F (y) and Fi(y) be the cumulative distribution functions of objective function values

induced from uniform sampling over Ω and each Ai, respectively, so that

F (y) =
1

N

N∑
i=1

Fi(y).



2.2. Partitioning Algorithms 31

Let fmax denote the largest function value obtained out of N draws over Ω. Then for

approach (i) and approach (ii) after N draws we have

Pr(fmax ≤ y|approach (i)) =

(
1

N

N∑
i=1

Fi(y)

)N

(2.1)

and

Pr(fmax ≤ y|approach (ii)) =
N∏
i=1

Fi(y). (2.2)

Noting that the arithmetic mean of a list of non-negative real numbers is greater than

or equal to the geometric mean of the same list,

1

N

N∑
i=1

Fi(y) ≥

[
N∏
i=1

Fi(y)

]1/N
(2.3)

and

Pr(fmax > y) = 1− F (y), (2.4)

we have

Pr(fmax > y|approach (i)) ≤ Pr(fmax > y|approach (ii)). (2.5)

That is,

E(fmax|approach (i)) ≤ E(fmax|approach (ii)),

where E(.) denotes mathematical expectation. Therefore, we would expect to obtain

a larger f value by simply partitioning Ω into a set of sub-regions of equal positive

measure and drawing one sample from each. Furthermore, with

min{f(x) : x ∈ Ω} ≡ −max{−f(x) : x ∈ Ω}, (2.6)

a similar result is obtained for minimization,

E(fmin|approach (i)) ≥ E(fmin|approach (ii)),

where fmin is the lowest value obtained from sampling. Thus, the efficiency of random

search can be increased by forming a partition on Ω.

The partition can also be used to identify promising subsets of Ω where f is found to

be relatively low. The sampling distribution can then be updated accordingly, drawing

more samples from promising sub-regions, rather than simply sampling Ω uniformly.
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These partitioning algorithms can be either adaptive, whereby the partition is updated

at each iteration, or use a fixed partition defined during the first iteration.

To successfully implement a fixed partition random search algorithm information

about the objective function f is usually required in advance, however, such information

is usually not available. To gain information about f a general partition is imposed,

often a collection of i > 1 hyper-rectangular sub-regions Ai of equal positive measure

such that ∪
i

Ai = Ω and Ai ∩ Aj = ∅ for all i ̸= j.

A phase of random sampling is usually performed in each sub-region giving an indica-

tion of the behavior of f . This information is used to identify promising subsets of Ω.

One method, for example, is Stratified Random Search [25]. Using both the partition

and function values from the random sampling phase, a non-uniform sampling distri-

bution is obtained. All subsequent samples are drawn from the updated distribution,

concentrating numerical effort where f is relatively low.

Adaptive partitioning algorithms update the partition at each iteration by dividing

promising subsets of Ω further. Thus, a sequence of nested partitions is generated by

the algorithm. Choosing which sub-region(s) to partition further gives rise to a variety

of algorithms, many based on partitioning sub-regions with relatively low objective

function values further. The interested reader is referred to [20, 54, 78] for a variety

of promise measures for selecting which sub-regions to partition further and a host of

algorithms. Interestingly, Shi et al. [69] introduced the Nested Partitions algorithm

which combines a global and local search phase in a similar way to the Multi-Start

algorithm. Each sub-region of the partition is sampled, followed by a local search from

each point generated. The set of points produced from each local search are used to

determine which regions are promising and require further partitioning.

Partitioning random search algorithms are of interest here not only because they

increase the efficiency of random search, but because they provide an efficient way of

identifying promising subsets of Ω at minimal cost. For most iterations, the localized

global optimization phase is only required to locate a point of descent. Therefore,

adapting the sampling distribution to increase computational effort in promising sub-

regions is advantageous, rather than sampling Ω uniformly. However, the use of nested

(hyper-rectangular) partitions, as described above, is somewhat restrictive. Here a

more dynamic partitioning strategy is considered, where an entirely new partition is

formed at each iteration using useful information obtained about f from previous iter-

ations. Furthermore, each partition is not necessarily nested with respect to previous
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partitions. This partition on Ω is formed using classification methods from statistical

pattern recognition.

2.3 Classification and Pattern Recognition

Statistical classification is a procedure for assigning unknown objects to one of sev-

eral predefined categories using quantitative information inherent to the objects and

a training data set of previously classified objects. The finite set of categories has the

form C = {ω1, ω2, . . . , ωj}, with each ωi referred to as a category label. This thesis is

interested in optimization and so the objects to be classified are sample points x ∈ Ω.

A classifier is the mapping T that assigns a category label to each x ∈ Ω, more formally

T (x) : Ω→ C. Another way to think about a classifier is to define Ai as the subset of

Ω on which T (x) = ωi, that is,

Ai = {x ∈ Ω : T (x) = ωi}.

The sets Ai, where 1 ≤ i ≤ j, are disjoint and ∪iAi = Ω, forming a partition on

Ω. The purpose of the partition is to define subsets on Ω where f is relatively low.

Here we choose two categories C = {ωL, ωH}, points with relatively low and high

function values, respectively. Therefore, Ω is partitioned into two categories. A more

sophisticated partition could be formed by choosing more categories. However, for

optimization purposes two is sufficient and simple.

There have been many classifiers proposed, however, there is no general classifier

that performs best on a general classification problem. Usually the user decides upon

which technique may best suit the problem, exploiting known structure or employing

a method which gives a desired structure in the partition. Examples of classifiers

include decision tree classifiers, neural networks, support vector machines and k-nearest

neighbor [24, 77]. Each classification method produces a different partition on Ω.

However, decision tree classifiers form a partition with a desirable structure that can

be exploited and other classifiers are considered no further.

2.3.1 Classification Trees

An intuitive way to classify an object is through a sequence of questions, where by

the next question depends on the previous answer. Such a procedure is displayed in

a directed decision tree, or simply a tree. A decision or classification tree represents
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a multi-stage decision process, whereby a decision is made at each node. Trees have

either binary or multivalued decisions at each node. Binary decisions produce binary

splits giving two descendent nodes, whereas, multivalued decisions produce multiple

(greater than 2) descendent nodes. However, any tree can be represented using just

binary decisions and thus, only binary splits are required. These trees are referred

to as binary trees. The interested reader is referred to [21] for a particular mapping,

oldest-child/next-sibling binary tree, which maps a multivalued tree onto an equivalent

binary tree. Thus, without loss of generality, binary trees are used.

2.3.1.1 Tree Anatomy

The tree consists of nodes and branches, where by convention the first or root node is

at the top of the tree. Nodes are linked to other nodes with branches. A node is either

internal or terminal, where internal nodes have descendant or child nodes. Internal

nodes branch to left and right child nodes, while terminal nodes have no descendant

nodes. Each terminal node has an associated category and observations that end on a

particular terminal node are assigned to that category.

2.3.1.2 Using a Tree as a Classifier

Starting from the root node, a particular object x ∈ Ω is classified in the following way.

A binary decision ‘true/false’ is made with respect to a particular variable s ∈ R. If

the decision is true proceed to the left child node, otherwise proceed to the right child

node. Continuing in this manner, eventually reaching a terminal node, the object x is

given the category ωi ∈ C of that terminal node.

2.3.1.3 Unique Node Numbering

Here all descendant nodes are numbered with reference to their parent node. Specifi-

cally, if node(D) is internal then the left and right child nodes are numbered node(2D)

and node(2D + 1), respectively. Hence, if a node number is even, the decision at the

parent node was true. This unique numbering facilitates a backtracking strategy to

determine the unique path from the root node to each terminal node, using only the

terminal node number. This means the bounds on each sub-region of the partition can

be determined in a straightforward manner. Details are left until Section 2.4.4.



2.3. Classification and Pattern Recognition 35

2.3.2 Induced Partitions on Ω

Classification trees partition Ω into sub-regions using hyperplane decision boundaries,

where each node in a classification tree represents a sub-region of Ω. The root node

represents Ω itself and all descendent nodes satisfy the following requirements. If

node(D) represents the sub-region A, with descendent nodes 2D, 2D + 1 with sub-

regions a1, a2 respectively, then A = a1 ∪ a2 and a1 ∩ a2 = ∅. Hence, the union of

all sub-regions Ai defined by terminal nodes alone, where i = 1, . . . , |terminal nodes|,
partitions Ω into |terminal nodes| non-empty sub-regions, with ∪iAi = Ω.

Each tree method produces a different partition on Ω based on the form of the

decision or query at each node. The reader is referred to Figure 2.1, where various

partitions resulting from different queries on the same data set is shown. The notation

xj is used to denote the jth coordinate of a point x ∈ Ω and s ∈ R is a scalar splitting

value. The simplest approach to consider is binary classification trees, which use queries

of the form: Is xj < s? Such queries lead to hyper-rectangular sub-regions parallel to

the coordinate axes. Binary Space Partition Trees (BSP) use queries of the form: Is

λ1x1 + λ2x2 + . . . + λnxn < s? This partitions Ω into convex polyhedral sub-regions.

Although there is more flexibility in how Ω is partitioned, evaluating many linear

combinations can be computationally expensive in practice. Another approach, sphere

trees, uses queries of the form: Is ∥x− z∥ < s? (where z ∈ Ω is chosen at each node).

The resulting partition on Ω has sub-regions defined by pieces of spheres.

To construct an efficient adaptive partitioning random search algorithm, the parti-

tion must be computationally cheap to evaluate and it would be advantageous if the

sub-regions were simple to draw samples from. The choice is obvious, binary classi-

fication trees, as they are computationally cheap and produce hyper-rectangular sub-

regions. Thus, samples can be drawn directly from a uniform distribution over each

sub-region. Other partitions would require an acceptance/rejection sampling method

to draw samples from a particular sub-region.

Drawing samples from a uniform distribution over sub-regions using an accep-

tance/rejection sampling technique can be inefficient, even in relatively low dimensions

in Rn. Consider, for example, drawing samples from a hyper-spherical sub-region A of

unit radius by applying acceptance/rejection sampling in a hypercube of equal radius.

The probability of drawing a sample from A is obtained by comparing the measure of

A and the cube, given by

Pr(x ∈ A) = 1

2n
πn/2

Γ(n/2 + 1)
, (2.7)
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Figure 2.1: Partitions induced from a binary tree (a), BSP tree (b) and sphere tree (c) on data of
two categories, denoted . and N.

where Γ is the Gamma function. It is clear from (2.7) that as dimension n increases,

the probability of generating an x ∈ A decreases rather quickly. Evaluating (2.7)

for n = 2, 4, 10 the probabilities 0.8, 0.3, 0.002 are obtained, respectively. Clearly, the

acceptance/rejection sampling technique becomes increasingly inefficient and is largely

impractical even at dimension 10. Hence, the hyper-rectangular structure obtained

from binary classification trees is desirable here as samples can be drawn directly from

each sub-region. One sampling strategy is described in Section 3.5 of the next chapter.

2.4 CART

The practical question of how to build a binary classification tree using a training data

set is now considered. This section uses a training data set T of N > 0 sample points

x, defined by

T = {x(i) ∈ Ω : i = 1, . . . , N}.
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T is assumed to be the union of two classified non-empty sets {ωL} and {ωH}. The

notation x
(i)
j is used to denote the jth coordinate of the ith sample point.

In principle, many different binary classification trees can be constructed from a

training data set however, some efficient algorithms exist. These algorithms proceed

in a greedy manner, whereby a series of locally optimal decisions are made. Such algo-

rithms include ID3, C4.5, and classification and regression trees (CART) [8, 24]. The

latter is considered here. CART provides a general framework that can be implemented

in many ways to produce different classification trees. A particular strategy designed

for partitioning optimization spaces is considered here. In this approach, four general

questions arise:

1. Where are potential splits in the training data?

2. Which potential split should be used to split a node?

3. When should a node be declared a terminal node?

4. How are the bounds of each sub-region obtained?

Each of these questions is considered in the subsections which follow.

2.4.1 Locating Potential Splitting Hyperplanes

The partition on Ω is formed using a set of hyperplanes, each orthogonal to a coordinate

axis. There are up to n(N−1) possible splitting hyperplanes (splits) in a training data

set consisting of N distinct points. If the training data set consists of N randomly

generated points, there are n(N − 1) possible splits with probability one because the

probability of two points having the same coordinate value is zero. Often all the possible

splits in T are considered potential in CART tree growing procedures [24]. However,

as both N and n increase this method can become computationally expensive. All

potential splits in the data occur between an element from {ωL} and an element from

{ωH} — not between two elements from the same set. Thus, if |{ωH}|, |{ωL}| are
vastly different, considering all possible splits is computationally wasteful. Here we use

a method which considers splits of the form s = (xj + zj)/2 such that x ∈ {ωL} and
z ∈ {ωH}, where xj denotes the jth coordinate of a point x ∈ T .

The method proposed here uses the Matlab functions ‘sort’ and ‘find’ [47]. For

the reader who is unfamiliar with Matlab we provide some simple examples to aid

the discussion: Let A be the vector A = [7, 9, 6, 3] and let B be the vector of sorted
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(ascending) elements. Using the sort function:

[B, I] = sort(A)

we obtain B = [3, 6, 7, 9]. The sort function also outputs an index vector I = [4, 3, 1, 2].

This index vector gives the position in A that each element of B holds. For example,

the first element of B is the fourth element in A, that is,

3 = B(1) = A(I(1)) = A(4) = 3.

The Matlab notation for reordering elements of a vector is also used. For example,

A(I) = A([4, 3, 1, 2]) reorders the vector A so that the fourth element becomes the first

element, the third element becomes the second element and so on. Using the Matlab

reordering notation we see that, B = A(I).

The other Matlab function we use is the ‘find’ function. Let A = [1, 2, 3, 2, 3], for

example, and let’s say we want to know the position of all the 3’s in A. The command:

I = find(A == 3)

will return the index vector I = [3, 5] — the third and fifth elements of A are 3’s.

Using the Matlab functions and notation our method for locating potential splits can

be described.

Consider locating all potential splits in the jth dimension. The notation 1λ (2λ) is

used to denote a vector of ones (twos) with length λ. Let Tj denote the set consisting

of the jth coordinates of each element from the set T = {x ∈ ωL, z ∈ ωH} and let

TO
j be the ordered set (ascending) of Tj with index vector IT such that TO

j = Tj(IT ).
Setting three vectors

I1 = [1|ωL|,2|ωH |], I2 = [I1(IT ), 0] and I3 = [0, I1(IT )],

the position of each potential split in TO
j is related to the position of the 3’s in the

vector sum I2 + I3. Using the ‘find’ command

I = find(I2 + I3 == 3)
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each potential split is located at minimal cost using the set

Is = {I(i) : 1 ≤ i ≤ dim I},

where dim I is the dimension of I. Specifically, for each i ∈ Is a potential split occurs

at

s = (TO
j (i) + TO

j (i− 1))/2. (2.8)

Applying the above procedure for all n dimensions of f , potential splits in the training

data are located at minimal cost. This procedure is illustrated in the next subsection.

2.4.1.1 Locating Potential Splits Example

To illustrate the above procedure we consider locating potential splits in one dimension

using the following training data set:

ωL = {1, 9, 11, 15, 17} and ωH = {3, 5, 7, 13, 19}.

Combining the classified sets ωL and ωH we obtain

T1 = {ωL, ωH} = [1, 9, 11, 15, 17, 3, 5, 7, 13, 19]

and sorting into ascending order gives

TO
1 = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

with index vector

IT = [1, 6, 7, 8, 2, 3, 9, 4, 5, 10].

Setting the three vectors I1, I2 and I3 we obtain

I1 = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2];

I2 = [1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 0]; and

I3 = [0, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2].

All potential splits in TO
1 are related to the position the 3’s in the vector sum I2 + I3,

given by the set Is = {2, 5, 7, 8, 10}. Therefore, there are five potential splits in the
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training data. Using (2.8) we see a split occurs at

s =
TO
1 (7) + TO

1 (6)

2
=

13 + 11

2
= 12.

Furthermore, we see that TO
1 (6) ∈ ωL and TO

1 (7) ∈ ωH — different categories — as

required.

2.4.2 Choosing a Potential Split and Node Impurity

When growing a classification tree the fundamental principle is that of simplicity.

Specifically, decisions that lead to a compact tree with few nodes are preferred. Thus,

at each node(D) the split that makes descendant nodes as pure as possible is sought.

By convention a node’s impurity is measured rather than how pure it is. There are

various measures of node impurities, all of which satisfy the following requirements.

Let i(D) denote the impurity at node(D), then i(D) must be zero when node(D) is

pure and a maximum when the categories are equally represented. Impurity measures

include Gini, Classification Error and Entropy [24]. Here the most popular measure,

entropy measure, is used

i(D) = −P (ωL) log2 P (ωL)− P (ωH) log2 P (ωH), (2.9)

where P (ωL) is the fraction of points at node(D) which are elements of the set {ωL}
and similarly for P (ωH). Here 0 log2(0) = 0 in entropy calculations.

Given a partial tree down to node(D), the question now arises: which split is

optimal? There are up to n(N − 1) potential splits to consider. Each query is of the

form “Is x
(i)
j ≤ s?”, where s ∈ R is the scalar splitting value given by (2.8). Using a

greedy strategy, the split that decreases the impurity as much as possible is chosen.

The drop in impurity is simply,

∆i(D) = i(D)− PLi(DL)− (1− PL)i(DR), (2.10)

where DL and DR are left and right child nodes, i(DL) and i(DR) their impurities and

PL is the fraction of points at node(D) that will go to DL after the split. By means

of exhaustive search over all potential splits, the optimal split which maximizes (2.10)

is found. Sometimes there are several optimal splits which yield the same ∆i(D), in

which case the first instance is usually chosen, as is done here. Although each split is

locally optimal, the fully grown tree is not necessarily optimal, i.e. a series of locally
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optimal decisions does not imply global optimality. To obtain a more optimal tree

pruning methods can be employed. The interested reader is referred to, for example,

[24] for further details on pruning. Relatively small data sets are used here (small

trees) and pruning is considered no further.

There are two general splits that can be considered in tree growing algorithms.

Firstly, the forced split, where a split in the jth dimension is required. The jth dimension

split which maximizes (2.10) is chosen as the optimal split. Secondly, the free split,

where a split from any dimension is chosen to maximize (2.10). Here only free splits

are used.

2.4.3 When to Stop Node Splitting

The problem of when to stop node splitting is now considered. One strategy is to

continue splitting nodes until all terminal nodes are pure. However, such a strategy can

lead to large complicated trees with many nodes and hence, a complicated partition on

Ω. Another method is to stop splitting when a predefined maximum number of nodes

is reached. Here splitting continues until an optimal partition is achieved, defined

formally in the following definition.

Definition 14. (Optimal partition). Let |{ωL(D)}|, |{ωH(D)}| denote the number

of low/high points at node(D) and let 0 < τi < 1 be an impurity tolerance. Then an

optimal partition is achieved if each terminal node(D) in the current tree satisfies one

of the following conditions:

• i(D) = 0, the node is pure; or

• |{ωL(D)}| > |{ωH(D)}| and i(D) < τi.

Definition 14 allows some terminal nodes to be impure by misclassifying high points.

This onesided misclassification is used to potentially simplify the partition on Ω. Here

function minimization is of primary interest and hence, if a few rogue high points over

complicate the model they could be ignored. Misclassifying low points can simplify the

partition but may be problematic for optimization purposes. Consider, for example,

an x ∈ {ωL} such that ∥x − x∗∥ < ϵ, where ϵ is a sufficiently small positive constant

and x∗ ∈ Ω a global minimizer. Misclassifying x could result in the classification model

asserting points sufficiently close to the solution have relatively high function values,

even though a point with an exceedingly low function value has been sampled there.
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A tolerance value τi = 0.45 is used herein. Thus, a terminal node with |{wL}| ≥ 10

and |{wH}| = 1 would be split no further and the corresponding low sub-region on Ω

would contain one point with a relatively high function value.

2.4.4 Defining CART Sub-Regions

Each terminal node in the classification tree corresponds to a sub-region of the partition

on Ω. As mentioned earlier, each node has a unique node number associated with it

(see Section 2.3.1.3). Such numbering facilitates a backtracking procedure to obtain

the bounds on each sub-region of the CART partition by retracing the unique path

from each terminal node to the root node.

The unique path vector P to a terminal node(D), is calculated as follows. Set

P(1) = D. Calculate each internal node number on the path sequentially using P(j) =

⌊P(j − 1)/2⌋ for integer j > 1, until the root node is found, ⌊P(j)⌋ = 1. Here ⌊λ⌋ is
the largest integer not exceeding the real number λ. Sorting P into ascending order

gives the unique path from the root node to terminal node(D).

A matrix B is used to store the bounds on each sub-region Ai. The notation Bi is

used to denote the ith row of the matrix B. The size of B is |terminal nodes| by 2n

and each row has the following structure,

Bi = [b1, . . . , bn, bn+1, . . . , b2n].

Here bj, bj+n ∈ {Bi(q) : 1 ≤ q ≤ 2n}, where 1 ≤ j ≤ n, denote lower and upper bounds

for sub-region Ai in dimension j, respectively. Initially each row of B contains the

bounds of the optimization region Ω,

B =


ℓ1 ℓ2 . . . ℓn u1 u2 . . . un
...

...
...

...
...

...

ℓ1 ℓ2 . . . ℓn u1 u2 . . . un

 .
Each row Bi is updated iteratively using queries along the unique path vector Pi to

the terminal node corresponding to sub-region Ai. Each query at an internal node(D)

is of the form: Is xj < s. Thus, if node(2D) ∈ Pi (left child node) the query at node(D)

was true. That is, s is an upper bound for the jth dimension of Ai and so Bi(n+j) = s.

Otherwise node(2D + 1) ∈ Pi, in which case Bi(j) = s, a new lower bound. Elements

of Bi are updated until the terminal node is reached. In this approach an element of

Bi may be updated more than once. This procedure is demonstrated in Section 2.4.6.
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2.4.5 CART Algorithm

The specific CART tree growing algorithm using a training data set T is now presented.

A precise statement of the algorithm is given in Figure 2.2. The notation T (D) is used

to denote the elements of T that satisfy each query on the unique path to node(D).

The algorithm contains two nested loops. The outer loop (steps 2 - 5) grows the

tree by considering splitting each terminal node of the current tree. The inner loop

(Step 2) searches for an optimal split which maximizes (2.10) at the current terminal

node(D). Step 4 splits the training data T (D) using the optimal split found at Step

3, creating two new terminal nodes in the current tree. The tree is fully grown when

an optimal partition is found (see Definition 14) and no further splitting is performed.

Step 6 defines the lower and upper bounds on each hyper-rectangular sub-region of the

partition on Ω, as described in the previous section.

1. Initialize: Set misclassification tolerance τi > 0. Define

training data at root node T (1) = {ωL, ωH} = T.

2. If a terminal node(D) in the current tree fails the optimal

partition requirements, then search for the best split in data

T (D). For j = 1, 2, . . . , n do

(a) Determine all potential splits in the jth dimension using

(2.8).

(b) Choose the split that maximizes ∆i(D). Increment j and goto

2(a).

3. Out of the n best splits in Step 2, split node(D) on the one that

maximizes ∆i(D) over all n dimensions.

4. For the split found in Step 3, determine T (2D) and T (2D + 1),

points that go to the left and right child nodes.

5. Repeat steps 2 through 4 until an optimal partition is obtained

and then goto Step 6.

6. Define bounds on each hyper-rectangular sub-region of the

partition on Ω and store in matrix B.

Figure 2.2: CART tree growing algorithm
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2.4.6 Classification Tree and Partition on Ω
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Figure 2.3: Classification tree grown by CART procedure and the resulting partition on Ω. Here
x ∈ {wL} and z ∈ {wH} are denoted . and N, respectively.
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To conclude this section, a classification tree is grown using the CART algorithm

given in Figure 2.2. The training data set T was obtained by drawing 20 points from

a uniform distribution over Ω = [−1, 1]2 and applying a two category classification as

follows;

ωL =

{
−0.62 −0.74 −0.92 0.30 −0.14 −0.42 0.64 0.70 0.38 0.88

−0.48 −0.12 −0.76 0.08 0.40 −0.20 −0.82 0.34 0.21 −0.95

}

and

ωH =

{
−0.50 −0.86 −0.96 −0.01 0.54 0.02 −0.30 −0.10 0.44 0.66

0.62 0.52 0.90 0.50 −0.74 −0.94 0.00 −0.62 0.86 0.76

}
.

Figure (2.3) shows the fully grown classification tree and the corresponding partition

on Ω. Each hyperplane decision boundary corresponds to a particular query at an

internal node of the tree. Four hyperplanes, each orthogonal to one coordinate axis,

have partitioned Ω into five hyper-rectangular sub-regions Ai, where i = 1, 2, . . . , 5.

The set {x ∈ A2 ∪ A3 ∪ A5} is classified as ωL and the set {x ∈ A1 ∪ A4} is classified
as ωH .

Using the backtracking procedure, the bound calculations on sub-region A5 (ter-

minal node(21)) is demonstrated. The unique path to node(21) is given by P =

[1, 2, 5, 10, 21] and so the queries at node(1) and node(5) are upper bounds, and the

queries at node(2) and node(10) are lower bounds. Thus,

B5 = [0.59,−1.00, 1.00, 0.04],

where 0.59 < x1 < 1.00 and −1.00 < x2 < 0.04 for sub-region A5.

2.5 Global Optimization Algorithmic Framework

This section provides a general framework for a class of Adaptive Partitioning Ran-

dom Search global optimization algorithms (APRS). This framework is quite flexible

allowing for a variety of algorithms to be constructed with only mild conditions to be

satisfied, details of which follow. A specific algorithm conforming to this framework is

given in the next chapter.

A general statement of APRS is given in Figure 2.4. The method consists of an

initialization step and then alternates between two phases: a partition phase and a
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1. Initialize: Choose N > 0, Tmax > 0 and 1/N ≤ χ ≤ (N − 1)/N.

Generate a batch of N points x ∈ Ω, X1, and set x1 as the point

with the lowest function value in X1. Set k = 1 and T1 = X1.

2. Classification: Classify a fraction of elements from Tk with the

least function values as low, ωL, and the rest of the points in Tk

as high, ωH, such that {ωL}, {ωH} ̸= ∅ and xk ∈ {ωL}.

3. Partition phase: Form a partition on Ω using the classified

training data set Tk = {ωL, ωH} and a statistical classification

method which is a finite process.

4. Sampling phase: Generate ⌈(1 − χ)N⌉ points uniformly from the low

sub-regions of the partition and ⌈χN⌉ points uniformly from the

high sub-regions using a finite procedure sampling method. Call

the new batch of points Xk.

5. Update T: Set Tk+1 = Tk ∪ Xk and xk+1 = argmin{f(x) : x ∈ Tk+1}. If

|Tk+1| > Tmax discard a fraction of points with the largest function

values. If stopping conditions are satisfied stop, otherwise

increment k and go to Step 2.

Figure 2.4: Adaptive Partitioning Random Search algorithm

sampling phase. The user chooses the batch size N > 0, an upper bound on the

training data set Tmax > 0 and χ (the parameter determining the fraction of samples

to be drawn from the high sub-regions). The initialization phase is completed by

drawing a batch of N points, X1 ∈ Ω, and evaluating f at each point. This initial

batch of points gives the initial unclassified training data set T1. The point with the

lowest function value is set as the initial iterate x1.

Step 2 classifies the training data set Tk into two categories: points with relatively

low function values {ωL} and points with relatively high function values {ωH}, where
both {ωL} and {ωH} are non-empty and xk ∈ {ωL}. The training data set is re-

classified at each iteration by choosing {ωL} as the fraction of elements from T with

the least function values. The remaining elements of Tk are classified as high points,

{ωH} = Tk \{ωL}. It is advantageous to promote clustering in {ωL} to allow successive

partitions to focus down on low sub-regions. Choosing |{ωH}| > |{ωL}|, for example,
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can cause {ωL} to cluster, potentially in subsets of Ω where f is low. Promoting

clustering in {ωL} is investigated further in the next chapter. More categories can be

included in the classification and the algorithm is updated in the obvious way.

The partition phase at Step 3 forms a partition on Ω using a finite procedure

statistical pattern recognition technique. For example, the CART technique described

in the previous sections could be used although other choices are possible. The only

requirement is that the union of all sub-regions is Ω itself so sampling both the low and

high sub-regions is equivalent to sampling Ω. This property is crucial for establishing

convergence to a global minimizer of f .

The sampling phase at Step 4 draws samples uniformly from either the low or the

high sub-regions of the partition. The sampling method depends explicitly on which

partition method is chosen in Step 3 and may require an acceptance/rejection sampling

method to draw samples uniformly from particular sub-regions. Any finite procedure

sampling method that draws samples uniformly from the low and high sub-regions

of the partition is sufficient. If the CART partition is used, sampling sub-regions

uniformly is straightforward due to the hyper-rectangular structure of the partition,

see for example, Section 3.5 for a sample point delivery method.

The user chooses a fraction χ of sample points to be drawn from the high sub-regions

of the partition, where
1

N
≤ χ ≤ N − 1

N
. (2.11)

Choosing χ < 0.5 concentrates numerical effort where f is presumed to be relatively

low based on the partition, potentially increasing the rate of convergence. With χ

satisfying (2.11), at least one element is drawn from a uniform distribution over each

of the two classified subsets of the partition at each iteration. Thus at each iteration,

there exists a non-zero probability of sampling any subset of Ω with positive measure,

a property crucial for convergence.

Step 5 updates the training data using the new batch of points Xk and existing

sample points in Tk. All sample points are retained until a maximum training data set

size of Tmax is reached. Once reached, a fraction of points with the largest function

values are discarded to ensure T remains bounded.

The treatment of stopping rules is deferred to Chapter 4, but when a rule is satisfied

the estimate for a global minimizer is

x∗ = argmin{f(x) : x ∈ Tk}.
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2.5.1 Analogs with Pure Adaptive Search

There are similarities between APRS and PAS [88] ( see Section 2.1). To implement

PAS level sets of f must be known in advance and each level set requires a point to

be drawn from a uniform distribution over it. Using the partition obtained from the

chosen classification technique, an approximation to a level set can be obtained, defined

by the set

A = {x ∈ Ω : T (x) = ωL}.

That is, A is the set of sub-regions classified as low in the partition. Furthermore, if

the CART partition is used, A is a union of hyper-rectangles which is simple to sample.

Thus, although APRS with the CART partition cannot guarantee each sample point

is drawn from successively lower level sets, level sets can be approximated and samples

can be drawn from them. At each iteration the level set approximation is updated,

potentially defining a lower approximate level set from which samples can be drawn

uniformly. Thus, one may consider APRS with the CART partition as a practical

variant of the PAS algorithm.

2.5.2 Convergence

The convergence properties of APRS are analyzed with the stopping conditions re-

moved. This allows us to examine the asymptotic properties of the sequence of iterates

generated by the algorithm. The convergence result shows that every cluster point of

the sequence {xk} is an essential global minimizer of f with probability one.

Definition 15. (Essential global minimizer). An essential global minimizer x∗ is

a point for which the set

L(x∗) = {x ∈ Ω : f(x) < f(x∗)} (2.12)

has Lebesgue measure zero.

If the objective function is continuous, then f(x∗) is also a global minimum in the

classical sense.

Assumption 16. Let the following conditions hold:

(a) The sequence of function values {f(xk)} is bounded below,

(b) The objective function f is lower semi-continuous.
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The first condition of Assumption 16 ensures f(xk) ̸→ −∞ as k →∞. The second

condition precludes the existence of a sequence {xk} converging to a point x∗ for which

f(x∗) > f(x) for all ∥x− x∗∥ ≤ ϵ, where ϵ > 0 and sufficiently small.

Theorem 17. The sequence of iterates {xk} generated by the APRS algorithm is an

infinite sequence.

Proof. For {xk} to be an infinite sequence the main loop of the APRS algorithm (steps

2—5) must be a finite process. The cardinality of the training data set Tk is bounded

above by Tmax and so steps 2 and 5 are finite processes. The partition phase uses a

finite training data set and the classification method is a finite process so Step 3 is a

finite process. Step 4 uses a finite process sampling method to draw N points from Ω

and so Step 4 is a finite process.

Theorem 18. Let Assumption 16 hold. Each cluster point x∗ of the sequence {xk}
generated by APRS is an essential global minimizer of f with probability one.

Proof. Theorem 17 and the fact that Ω is bounded ensure the existence of cluster points

in {xk}.
The proof is by contradiction. Assume x∗ is not an essential global minimizer of

f . Then there exists a subset L(x∗) = {z ∈ Ω : f(z) < f(x∗)} with positive Lebesgue

measure. The probability that L is sampled from a single draw at iteration k is bounded

below by:

Pr(z ∈ L) = Pr(z ∈ L ∩ ωL) + Pr(z ∈ L ∩ ωH)

= Pr(z ∈ ωL)Pr(z ∈ L|z ∈ ωL) + Pr(z ∈ ωH)Pr(z ∈ L|z ∈ ωH)

= (1− χ)m(L ∩ ωL)

m(ωL)
+ χ

m(L ∩ ωH)

m(ωH)

≥ (1− χ)m(L ∩ ωL)

m(Ω)
+ χ

m(L ∩ ωH)

m(Ω)

≥ 1

N

m(L)

m(Ω)
> 0,

where 1/N is the lowest value χ, or 1−χ can take. At iteration k, the probability that

at least one sample is drawn from L after k batches is bounded below by

1−
(
1− 1

N

m(L)

m(Ω)

)kN

. (2.13)
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Since there is an infinite number of iterations, as k tends to infinity, (2.13) tends to

one and L is sampled almost surely. Hence, in the limit as k → ∞, f(xk) < f(x∗)

almost surely, contradicting Assumption 16(b). Thus, x∗ must be an essential global

minimizer of f , almost surely.

Although this convergence result is strong, it is similar to the Pure Random Search

result in the sense that as k →∞ every subset of Ω with positive measure is sampled

with probability one. Therefore, one may consider such a method computationally

expensive. However, it is the author’s opinion that APRS would be more efficient in

practice when most of the samples are drawn from low sub-regions (χ > 0.5 say). This

claim is empirically backed up for a particular APRS algorithm (presented in the next

chapter) in the numerical results chapter of this thesis.



Chapter 3

CARTopt: A Random Search

Nonsmooth Optimization Method

This chapter introduces a new method called CARTopt to solve the nonsmooth min-

imization problem given by (1.1), where the objective function f : S → R ∪ {+∞}.
Here S is called the optimization region and both bound constrained and unconstrained

regions are considered. With S = Rn, a method for unconstrained minimization is pre-

sented. The bound constrained version searches in an n-dimensional box of the form

S = {x ∈ Rn : ℓi ≤ x ≤ ui for all i = 1, . . . , n},

where ℓi < ui are finite. Under appropriate scaling, the constrained optimization

region can be modified to S = [−1, 1]n. Therefore, without loss of generality, the

bound constrained method is described with reference to S = [−1, 1]n.
The methods conform to the framework described in Section 1.7, whereby, a series

of local and localized global phases are conducted. The local phase of the algorithm

forms a partition on S, using the CART method described in the previous chapter. The

localized global phase performs Pure Random Search (PRS) on a subset of S defined

by the partition.

Firstly, the bound constrained version of the CARTopt method is introduced. Sec-

tion 3.2 defines the training data set which is used to form a partition on S. An

invertible training data transformation is proposed in Section 3.3, which potentially

simplifies the partition on S. The partition itself is introduced in Section 3.4. A sam-

pling method is presented in Section 3.5, which draws samples from various parts of

the partition. Section 3.6 introduces a deterministic instance of CARTopt using the

Halton sequence [31]. The algorithm is then generalized to an unconstrained method

51
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in Section 3.7. This chapter concludes with a convergence analysis for all stochas-

tic instances of the CARTopt method, where the objective function is assumed to be

nonsmooth or discontinuous.

3.1 Bound Constrained CARTopt

In this section the bound constrained CARTopt algorithm is presented. The uncon-

strained instance proposed later differs slightly. However, as most of what follows

applies to both methods the term bound constrained is dropped. Section 3.7 makes it

explicitly clear where the methods differ.

CARTopt is a random search method that uses classification methods to form a

partition on S. As the name suggests, Classification and Regression Trees (CART)

[24] is the method used to form the partition. Recall from the previous chapter, that

such a partition divides S into a set of non-empty hyperrectangular sub-regions. Fur-

thermore, sub-regions of the partition can be classified based on observed function

values contained in each. In particular, each sub-region can be classified as either high

or low. Using the CART partition, an approximate level set L is obtained, defined

formally below.

Definition 19. (Approximate level set). Let Ai denote the ith low sub-region of

the CART partition on S, where 1 ≤ i ≤ |low sub-regions|, then an approximate level

set is

L = {x ∈
∪
i

Ai}. (3.1)

The approximate level set defines a subset of S where f is relatively low, based on

where f has been sampled. An extremely useful property of L is that it consists of a

union of hyperrectangles. Thus, it is simple to draw further samples from L. Therefore,
alternating between partition and sampling phases in an algorithmic manner provides

a method for sampling subsets of S which are relatively low, based on known function

values. This is the basis for the new method.

A statement of CARTopt is given in Figure (3.1). The algorithm consists of an

initialization phase (steps 1 and 2) and a single loop (Step 3). Step 1 sets the iteration

counter k = 1, the batch size N > 0 and a minimum hyperrectangle radius δ > 0.

Choosing δ > 0 ensuresm(L) > 0 for all iterations — a property needed for convergence

on nonsmooth problems. In addition, an input training data set T1 with at least one

finite function value is chosen if the user has a priori knowledge of f . If no input
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1. Initialize: Set k = 1. Choose N > 0, δ > 0 and T1 ⊂ S.

2. Generate max{2N − |T1|, 0} random sample points x ∈ S, store in X1,

and evaluate f(x) at each x ∈ X1. If f(x) = ∞ for each x continue

sampling until one finite value is obtained. Set z1 = argmin{f(x) :

x ∈ X1}.

3. while stopping conditions are not satisfied do

(a) Update the training data set: Tk+1 ⊂ {Xk ∪ Tk} (see Section

3.2)

(b) Classify Tk+1: Set {ωL} as the min{⌊0.8N⌋, |{x ∈ Tk+1 : f(x) ̸=
∞}|} elements of Tk+1 with the least function values, and set

{ωH} = Tk+1 \ {ωL}.

(c) Transform Training data set: Calculate the Householder matrix

Hk and set

T̂ =
1

φ
HkT

T
k+1 where φ = max

i=1,...,n

n∑
j=1

|Hk(ij)|.

(d) Partition optimization region with CART using T̂ to identify

low sub-regions whose union is Lk.

(e) Localized Global Phase: Generate next batch of N random

points Xk+1 totally, or mainly in Lk.

(f) Apply inverse transform: Set Xk+1 = φHkX
T
k+1.

(g) Evaluate f(x) at each x ∈ Xk+1 and call the best point x̂. If

f(x̂) < f(zk), set zk+1 = x̂, otherwise zk+1 = zk. Check stopping

conditions and increment k.

end

Figure 3.1: CARTopt algorithm
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training data exists, T1 is set as empty. Step 2 generates the first set of points X1,

drawn from a uniform distribution over S and corresponding objective function values.

At least one element of X1 has a finite function value. Each point is stored as a row

vector of the matrix X1.

The loop generates a sequence of iterates {zk}∞k=1 ⊂ S. Each iterate zk+1 is gen-

erated from its predecessor zk by evaluating f at a finite set of points. Rather than

simply evaluating f uniformly over S, f is evaluated mainly or totally in the approx-

imate level set Lk, defined at Step 3(d) from the CART partition. An attempt to

simplify the partition is made at Step 3(c), where a transformation is applied to the

training data. Before f is evaluated at the new points generated in Step 3(e), an inverse

transform is applied so f is evaluated in the original space. The loop is executed until

the stopping conditions are satisfied, where the estimate of an essential local minimizer

is zk+1.

The steps of the loop are discussed in detail in the sections that follow. The stopping

conditions are described in Chapter 4.

3.2 Training Data and Classification

The training data set T is used as a model from which CART forms a partition of S.
Here a dynamic training data set which reflects information about f obtained during

the previous sampling phase is proposed. Of particular interest is locating subsets of

S where f is relatively low. Sampling such sets further and updating the training data

set allows a new partition to be formed, defining a new subset to be explored.

An initial classification must be placed on T before any partition can be formed.

There is a great deal of freedom when imposing a classification on T . Here two cat-

egories C = {ωL, ωH}, points with relatively low and relatively high function values

respectively are chosen, defined formally below. The notation ⌊λ⌋ denotes the greatest
integer less than or equal to λ.

Definition 20. (Low points). Given 0 < β < 1, the min{⌊βN⌋, |{x ∈ T : f(x) ̸=
∞}|} elements of T with the least function values are classified as low and form the

set {ωL}.

Definition 21. (High points). The set of points T \ {ωL} is classified as high and

form the set {ωH}.

If f is finite at all training data points, {ωL} is simply the βN elements of T with

the least function values. The best iterate, zk, is always included in {ωL}. Furthermore,



3.2. Training Data and Classification 55

each element of {ωL} is finite and {ωL} ̸= ∅ (see Figure 3.1 Step 2). Hereafter, β = 0.8

used although other choices are possible. Therefore, |{ωL}| ≤ 0.8N for all k, which has

two important consequences. Firstly, the number of distinct low sub-regions is bounded

by 0.8N , even if |T | becomes large. Secondly, |{ωL}| < |{ωH}| for all k, which can

cause {ωL} to cluster as k increases.

Let us now consider how T is updated. The primary interest here is local (not

global) optimization and so it is sufficient for T to reflect local information about f .

Forming the kth partition using all (k+1)N points generated from all k sampling phases

(global information), can complicate the partition and is computationally expensive.

A sufficient number of high points near {ωL} are required to define the approximate

level set L effectively. Loosely speaking, at least 2n high points are required to de-

fine each low hyperrectangular sub-region, one for each face. Therefore, as dimension

increases, CART requires a larger training data set to effectively partition S. Fortu-

nately the number of faces grows linearly with n, as does the maximum training data

size used here. Numerical simulations performed by the author found a maximum size

|T | ≤ max{2N, 2(n− 1)N}, performed well in practice on a variety of problems. The

interested reader is referred to Appendix A for details on these problems.

Definition 22. (Full size training data). A training data set T such that,

|T | = max{2N, 2(n− 1)N}, (3.2)

is called a full size training data set.

The training data is updated iteratively using the batch of newly generated points

Xk via Tk+1 = {Xk, Tk}. The most recent sample points appear first in the update.

This gives an indication of the age of points as T grows. When Tk+1 = {Xk, Tk}
exceeds full size, the oldest points with relatively high function values are discarded.

Specifically, Tk+1 = {Xγ, XR}, where Xγ ⊂ {Xk ∪ Tk} is the γ > 0 sample points with

the least function values and XR ⊂ {Xk ∪ Tk} \ Xγ are the most recent points. This

update ensures Tk+1 is full size. Hereafter γ = 2N is chosen, which is the number

of function values required for the stopping condition (see Chapter 4). Numerical

simulations performed by the author support this choice of γ although other choices

are possible.

Ideally, updating and classifying T causes {ωL} to cluster in the neighborhood of an

essential local minimizer x∗. Fixing |{ωL}|, keeping points with the least f values and

the most recent sample points tries to achieve this. Numerical simulations performed
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by the author found that although initially {ωL} may be disjoint, {ωL} tends to cluster

into a hyper-elliptical cloud, eventually in the neighborhood of x∗.

3.3 Transforming Training Data Sets

When forming a partition on S the fundamental principle is that of simplicity. The

CART partition performs best, when the components of T have an alignment with the

coordinate axes. Since all potential splits are orthogonal to the coordinate axes, such an

alignment can simplify the partition on S. Multivariate splits, as in BSP (see Section

2.3.2), can also simplify the partition on S. However, such splits are computationally

expensive and it is difficult to draw samples directly from sub-regions of the partition

(see Section 2.3.2). Another approach is preprocessing T before the partition is formed.

However, choosing a transform to simplify the partition for a general problem is often

difficult. The interested reader is referred to [24] for various preprocessing techniques.

Ideally, a transform D : x ∈ T → T̂ is desired such that, the partition induced

from T̂ is simpler than one using T . Here simpler means fewer splits in the training

data and hence, less sub-regions in the partition. The CARTopt approach, alternates

between partition and sampling phases. Therefore, the transform D must be invertible

so f can be evaluated at points generated in the transformed space.

Numerical simulations performed by the author found that although initially {ωL}
may be disconnected, {ωL} often forms a hyper-elliptical cloud of points. Thus,

transforming T so that principle axis of the hyper-elliptical cloud aligns with a co-

ordinate axis can be advantageous. Such a transform can dramatically simplify the

partition, particularly in the neighborhood of some essential local minimizers where

hyper-elliptical contours are present. This is illustrated in Figure 3.2.

The principle axes of the hyper-elliptical cloud {ωL} are obtained using Princi-

ple Components Analysis (PCA) [24]. Using ω
(i)
L to denote the ith element of {ωL},

expressed as a row vector, the scatter matrix is defined by

M =

|ωL|∑
i=1

[ω
(i)
L − ω̄L]

T[ω
(i)
L − ω̄L],

where ω̄L is the sample mean,

ω̄L =
1

|ωL|

|ωL|∑
i=1

ω
(i)
L .
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Figure 3.2: The first figure shows the level curves of f = 2|x1 − x2|+ x1x2, along with the training
data set T = [ωL, ωH ], with x ∈ {ωL} and z ∈ {ωH} denoted ., N respectively. The six low
sub-regions formed in the CART partition are shown as black boxes. The second figure shows the
transformed training data using (3.6). The transformed boundary of T is shown by the dotted lines.
The transformation simplifies the partition to one sub-region, producing a good approximate level set
Lk.
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The dominant eigenvector d, of the scatter matrix M, is the direction vector for the

principle axis of the hyper-elliptical cloud.

Using the Householder transformation,

H = I − 2uuT,

u = (e1 − d)/∥e1 − d∥, (3.3)

the x1 axis is set parallel to d, i.e. He1 = d. Pre-multiplying each element of T with

H gives the desired transformed training data T̂ . This transformation is not only

appealing because it keeps the coordinate directions orthogonal, but also the inverse

transformation is trivial. Let, x̂ = Hx be a point in the transformed space, then

multiplying both sides by H,

(I − 2uuT)x̂ = (I − 2uuT)(I − 2uuT)x, (3.4)

where u is defined in (3.3). Simplifying the right hand side of (3.4),

(I − 2uuT)x̂ =
(
I − 4uuT + 4(uuT)(uuT)

)
x

=
(
I − 4uuT + 4u(uTu)uT

)
x

= x,

where uTu = 1 (u is a unit vector). That is, Hx̂ = x and hence, f is evaluated at

points generated in the transformed space at minimal cost.

However, pre-multiplying by H can reflect elements of T outside the [−1, 1] opti-
mization box. This is not problematic for the unconstrained instance of CARTopt, but

for the bound constrained version it is convenient to operate in [−1, 1]n. This allows

post partition modifications to be made (see next section). Furthermore, always oper-

ating in [−1, 1]n makes it simple to ensure the search remains in the bound constrained

region S after the transform.

To ensure all transformed points remain elements of [−1, 1]n, each transformed

point is multiplied by the scalar 1/φ, defined as follows. The Householder matrix H is

an elementary reflector which reflects points in the hyperplane given by (3.3). Noting

that ∥Hx∥2 = ∥x∥2, the points reflected the greatest distance outside S (in the infinity

norm sense) are elements of the vertex set

V = {z ∈ [−1, 1]n : ∥z∥ =
√
n}.
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Therefore, multiplying by the reciprocal of

max
z
∥Hz∥∞, (3.5)

where z ∈ V, will give the desired scaling. Noting that zj ∈ {−1, 1}, where j = 1, . . . , n,

solving (3.5) is simple. Specifically,

φ = max
z
∥Hz∥∞ = max

i=1,...,n

n∑
j=1

|Hij|,

the maximum absolute row sum of H. The elements of V which solve (3.5) are given

by z = ±sign(Hi), where i is a row with maximum absolute row sum. The scalar φ

takes values 1 ≤ φ ≤
√
n and gives the minimal scaling such that 1/φHx ∈ [−1, 1]n for

all x ∈ S. The reader is referred to Figure 3.2 for an example of the minimal scaling

of the transformed space.

In summary, the transformed training data T̂ is defined as

D =
1

φ
HTT = T̂ , (3.6)

which is implemented in Step 3(c) of CARTopt. The inverse transform is simply

D−1 = φT̂TH = T, (3.7)

which is implemented in Step 3(f) of CARTopt. Numerical simulations performed by

the author found this transform to be extremely effective in practice, increasing the

numerical performance of the algorithm significantly.

3.4 Partitioning the Optimization Region

CART partitions S into a set of non-empty hyperrectangular sub-regions Ai, such that

∪iAi = S and Ai∩Aj = ∅. The interested reader is referred to Chapter 2 for a detailed

description of the partition (see Section 2.4). CARTopt uses the same partition, but also

performs post-partition modifications. Each modification is chosen to either increase

the numerical performance of CARTopt, or ensure the algorithm is provably convergent

on nonsmooth optimization problems. The modifications are simple to implement and

keep the hyperrectangular structure of the partition. Furthermore, these modifications

are not necessarily implemented at each iteration, only when required. Each is discussed
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in the subsections which follow.

The matrix B, which contains the bounds of each sub-region Ai of the partition,

is reintroduced here for convenience. Each row of B defines the lower and upper

dimension bounds of Ai and has the following structure

Bi = [b1, . . . , bn, bn+1, . . . , b2n], (3.8)

where bj ≤ xj ≤ bj+n for all x ∈ Ai and j = 1, . . . , n.

3.4.1 Defining Low Sub-Regions Only

Sampling subsets of S where f is known to be relatively low is of primary interest.

Therefore, to increase computational efficiency low sub-regions are included in B and

S is set as a single high region. In addition, drawing a point from a uniform distribution

over S is cheaper than uniformly sampling the union of high sub-regions.

This simplification is reasonable because, typically, m(Lk)≪ m(S) for sufficiently

large k. The probability of sampling Lk from drawing a sample from a uniform distri-

bution over S is given by

Pr(x ∈ Lk) =
m(Lk)

m(S)
. (3.9)

Hence, with m(Lk) ≪ m(S), (3.9) is small and a high region is sampled uniformly

simply by drawing an x ∈ S. Furthermore, it would be efficient to apply accep-

tance/rejection sampling if required.

3.4.2 Minimum Sub-Region Radius

To exploit the connection between nonsmooth local optimization and global optimiza-

tion (see Section 1.4.2), it is necessary for the m(Lk) to be bounded away from zero

for all k. Therefore, pure random search is applied in a subset of S with positive mea-

sure for all iterations. To enforce this condition a minimum splitting distance between

elements of {ωL} and {ωH} is imposed, post-partition.

Recall from Section 2.4.1, the partition on S is formed by considering a splitting

hyperplane in each dimension j of the form, s = (xj + zj)/2, where x ∈ {ωL} and

z ∈ {ωH}. A minimum splitting distance 2δ > 0 between elements of {ωL} and {ωH}
is imposed in CARTopt, after the CART partition phase is complete. Formally, for

each low sub-region Ai, min ∥x − z∥ ≥ δ such that x ∈ {ωL ∩ Ai} and z ∈ S \ Ai is

required. For sufficiently close splits, the splitting hyperplane is pushed away from the
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closest x ∈ {ωL ∩ Ai}. Specifically, each lower bound bj ∈ {Bi(j) : 1 ≤ j ≤ n} and

each upper bound bj+n ∈ {Bi(j + n) : 1 ≤ j ≤ n} is set to

Bi(j) = min{bj,max{−1, x−j − δ}}, (3.10)

Bi(j + n) = max{bj+n,min{1, x+j + δ}}, (3.11)

for each Ai, where j = 1, . . . , n. Here the notation x+j = max(xj ∈ {ωL ∩ Ai}), and
x−j = min(xj ∈ {ωL∩Ai}), has been used. The constants −1 and 1 in (3.10) and (3.11)

ensure each bound is not extended beyond the [−1, 1]n bound constrained CARTopt

optimization region.

The update given by (3.10) and (3.11) has two important consequences. Firstly, it

removes the possibility of samples converging to an impassable hyperplane boundary.

Secondly, a minimum sub-region radius δ > 0 on each Ai is forced. Therefore, m(Lk) ≥
δn for all k and so is bounded away from zero as required. The latter giving convergence

on nonsmooth problems, see Section 3.8. Hereon in δ = 1e-10 is chosen.

Unfortunately, applying the minimum sub-region radius update can destroy the

desirable property, Ai ∩ Aj = ∅ for all i ̸= j, inherent to the CART partition. To

remove this problem the boundary of L could be extended, rather than individual sub-

regions. However, this update is usually only applied when m(L) is approaching the

limiting size and has no adverse effects on the algorithm.

3.4.3 Updating Problematic Sub-Region Bounds

Numerical simulations performed by the author identified a weakness in the CART

partition for optimization purposes. The CARTopt algorithm would be making great

progress, consistently reducing f , then without warning, long periods of stagnation

endured before f was reduced further. The problem stemmed directly from the training

data set. Specifically, there did not exist an element(s) from {ωH} between the cloud

of points {ωL} and some bound(s) of S in the partition. Therefore, a bound of S would

also be a bound of some Ai. This can dramatically increase the measure of Lk+1 from

iteration k, forcing the algorithm to search away from the neighborhood of the known

points with low function values. This is illustrated in 2-dimensions in Figure (3.3)

The partition considered here is always conducted in the [−1, 1]n box. Therefore, if

|b| ∈ {Bi(q) : 1 ≤ q ≤ 2n} = 1 there is no x ∈ {ωH} used to define the corresponding

boundary of Ai. Such a bound is considered problematic, defined formally below.

Definition 23. (Problematic bound). A sub-region bound b ∈ {Bi(q) : 1 ≤ q ≤ 2n}
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Figure 3.3: The level curves of f = 5|x2 + 0.5|+ x21, along with the training data set T = [ωL, ωH ],
with x ∈ {wL} and z ∈ {wH} denoted ., N respectively, is shown. Note how the lack of an x ∈ {ωH},
between the elliptical cloud of points {ωL} and the x2 upper bound, has resulted in a poorly defined
L.

for a low sub-region Ai is considered a problematic bound if |b| = 1.

All problematic bounds warrant further investigation. Here two distinct low sub-

regions that can be formed with the CART partition are considered.

Definition 24. (Singleton sub-region). A low sub-region Ai is considered a single-

ton sub-region if |{x : x ∈ ωL ∩ Ai}| = 1.

Definition 25. (Non-singleton sub-region). A low sub-region Ai is considered a

non-singleton sub-region if |{x : x ∈ ωL ∩ Ai}| > 1.

Firstly, non-singleton low sub-regions with problematic bounds are considered and

singleton low sub-regions are left until the next subsection.

To remove problematic bounds from non-singleton low sub-regions Ai the following

method is used. The method is computationally cheap to evaluate and maintains the

hyperrectangular structure of L. Each problematic bound is replaced by a new bound

which fits the training data best. The reader is referred to Figure 3.4 to accompany

the description.

Consider a low sub-region Ai with at least one problematic bound. Each problem-

atic bound corresponds to a face on the hyperrectangle which defines Ai. Initially, each
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Figure 3.4: The level curves of f = x21 + 3|x2 + 0.4| + |x1 − x2| are shown. Figure (a) shows the
initial phase of the non-singleton sub-region update. Note all bounds are problematic for illustrative
purposes (a situation not possible in practice). Figure (b) shows the completed update with the new
sub-region shown in bold. Points of ascent and descent are denoted N, . respectively, where each
point is drawn randomly from each face.
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problematic lower bound bj ∈ {Bi(j) : 1 ≤ j ≤ n} is updated to

Bi(j) = max{−1, x−j − αmax(rj, δ)} (3.12)

and each problematic upper bound bj+n ∈ {Bi(j + n) : 1 ≤ j ≤ n} is updated to

Bi(j + n) = min{1, x+j + αmax(rj, δ)}, (3.13)

where α = 1
3
, δ is the minimum hyperrectangle radius and rj = x+j −x−j is the range in

dimension j of the set {x : x ∈ ωL ∩Ai}. Other choices of α > 0 are possible provided

they are finite. This initial step brings all problematic bounds closer to the convex hull

of points in Ai (see Figure 3.4 (a)).

If |bj| or |bj+n| = 1 after this initial step, the bound is fixed by (3.12) or (3.13) and

is not considered problematic for the remainder of the update. Otherwise, the updated

bounds are tested by drawing a point x from a uniform distribution over each updated

face of Ai and evaluating f(x).

Definition 26. (Upper-face). For a low sub-region Ai with bounds Bi, the face

defined by setting bj ← bj+n, where bj, bj+n ∈ {Bi(q) : 1 ≤ q ≤ 2n} and 1 ≤ j ≤ n, is

called the jth upper-face of Ai.

Definition 27. (Lower-face). For a low sub-region Ai with bounds Bi, the face

defined by setting bj+n ← bj, where bj, bj+n ∈ {Bi(q) : 1 ≤ q ≤ 2n} and 1 ≤ j ≤ n, is

called the jth lower-face of Ai.

The jth upper and lower-faces define subsets of the hyperplanes xj = bj+n and

xj = bj respectively. Therefore, generating an x uniformly on jth face is equivalent to

uniformly sampling Ai with the jth coordinate fixed(see Section 3.5.2). If a delivered

point on the jth upper or lower-face is an element of the set {x : ∥φHkx∥∞ > 1}, then
x /∈ S with m(Ai \ S) > 0. In this case, the updated bound is fixed and no longer

considered problematic as it is sufficiently close to the bounds of S. Otherwise, f(x)

is evaluated at each x on the remaining faces. If f(x) > f(x+j ) on the jth upper-face

of Ai, a higher function value has been generated and x is included in {ωH}. In this

case the upper bound bj+n is fixed (by 3.13). Similarly, if f(x) > f(x−j ) on the jth

lower-face, the lower bound bj is fixed (by 3.12). Otherwise, descent was made, x is

added to {ωL} and the bound remains problematic.

For all remaining problematic bounds, α is increased iteratively in (3.12) and (3.13),

in a standard forward-tracking manner. Here the sequence α = 1
3
, 1, 3, . . . , 310 is used
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although other choices are possible. The method terminates when either every b ∈
{Bi(q) : 1 ≤ q ≤ 2n} is not considered problematic, or 310 is reached. Each non-

singleton Ai ⊂ Lk is considered in turn and the update is applied. The points generated

throughout the update are retained and included in the training data set as recent

points. Including these points in T reduces the risk of having problematic bounds

when the next CART partition is formed.

Numerical simulations performed by the author found that the CART partition

generally works well, resulting in few problematic bounds. However, for the few cases

where a problematic bound occurs, the performance of CARTopt is dramatically re-

duced if the update is not applied. The reader is referred to Figure 3.3 once more,

where the x2 upper bound is problematic. From the contours of f , it is clear that any

point generated on the first upper-face (α = 1/3) would be a point of ascent. Thus,

the boundary is fixed at the cost of one function evaluation and the updated L now

matches the training data. If the boundary is not fixed, the probability that a point

drawn uniformly from L is an element of {ωH} exceeds 90%, compromising efficiency.

3.4.4 Singleton Low Sub-Regions

The CART method can form a partition on S such that, singleton low sub-regions

exist. These sub-regions can be problematic as they are often defined by two close,

parallel hyperplanes that extend to the boundary of S (see Figure 3.5). Thus, the

inclusion of these sub-regions in L can give a poor approximate level set. Furthermore,

a singleton low sub-region can have relatively huge measure, when compared to the

measure of the union of non-singleton sub-regions. Therefore, sampling Lk uniformly

can mislead the algorithm, drawing most samples from the singleton sub-region. To

maintain algorithm efficiency, directing the search in the neighborhood of points with

known relatively low function values, a post-partition modification is made.

In the extremely unlikely case when every low sub-region is a singleton sub-region,

the partition is updated as follows. For each x ∈ {ωL}, a hypercube of radius r and

center x defines each sub-region Ai, where i = 1, . . . , |{ωL}|. The hypercube radius r

at iteration k is defined as

r =
1

2
max

{(
m(Lk−1)

|{ωL}|

)1/n

, δ

}
,

where L0 = S and δ > 0 is the minimum sub-region radius. The approximate level

set Lk is defined by the union of hypercubes. The inclusion of δ ensures m(Lk) > 0
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Figure 3.5: The level curves of f = 5|x1|+(x2+0.5)2 , along with the training data set T = [ωL, ωH ],
with x ∈ {wL} and z ∈ {wH} denoted ., N respectively, is shown. Note how the singleton low sub-
region is defined by a thin band, resulting in a poor approximate level set.

for all k. Basing each hypercube radius on m(Lk−1) ensures the algorithm searches at

a similar level to the previous iteration, keeping the search focused. Each singleton

sub-region has equal measure and hence, has equal probability of being sampled during

the next sampling phase (see next section).

When there exists at least one non-singleton low sub-region, the partition is updated

as follows. The notation Ai is used to denote a singleton sub-region of Lk. For each

x ∈ {ωL ∩ Ai}, a hypercube replaces each Ai with center x and radius r, defined by

r =
1

2
max

{(
m(Lk)−m(A)
|ωL| − |A|

)1/n

, δ

}
, (3.14)

where m(A) and |A| denote the measure and number of singleton sub-regions, re-

spectively. Replacing each Ai with a hypercube, Lk is updated as the union of low

sub-regions. After applying (3.14), each singleton sub-region occupies approximately

1/|{ωL}| of the total measure of Lk. This is chosen because the x ∈ Ai occupies

1/|{ωL}| of the point space of {ωL}.
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3.5 Generating The Next Batch

At each iteration the batch of N points Xk is distributed mainly or totally into the

approximate level set Lk. At the user’s discretion, a specified number of samples ⌊χN⌋
can be distributed into the high region S, where 0 ≤ χ ≤ 1. Furthermore, the user

can specify the number of iterations KS ≥ 0 for which sampling S is required. With

χ > 0.5 the algorithm generates more samples in S and becomes more of a global,

rather than local optimization method. In fact, with χ = 1 and KS = ∞, CARTopt

reduces to Pure Random Search.

Local nonsmooth optimization is of primary interest here, rather than global opti-

mization. Therefore, a greedy strategy of sampling only Lk at each iteration (χ = 0) is

used hereafter. This increases the chance of reducing f and the measure of L at each

iteration. Ideally, each L would be nested. However, as each is an approximate level

set this is usually not true.

3.5.1 Batch Size

Before describing how each batch of points is generated, the batch size N > 0 is chosen.

To choose a suitable N the efficiency of uniform sampling over L is considered. Firstly,

let us define the η-percentage set of L.

Definition 28. (η-percentage set). Let f∗ and f ∗ denote the minimum and maxi-

mum of f on L, respectively. For any η ∈ [0, 1], assume there exists an fη ∈ [f∗, f
∗]

for which the set

S(η) = {x ∈ L : f(x) < fη},

has m(S)/m(L) = η. Such a set is called the η-percentage set of L.

Therefore, S(1) = L and in the limit as ϵ → 0, S(ϵ) converges to the set of

minimizers {x ∈ L : f(x) = f∗}.
Let us now consider how many sample points are required to generate at least one

point in each S(η) as η is decreased. The probability that there exists at least one

point x ∈ S(η) out of N uniform draws over L, is given by,

Pr = 1− (1− η)N . (3.15)

Choosing a high probability, Pr = 0.99 and rearranging (3.15) with respect to N ,

N =
ln(0.01)

ln(1− η)
,
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the expected number of points required to generate an x ∈ S(η) is obtained.
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Figure 3.6: The expected number of sample points required to generate an x ∈ S(η) from uniform
sampling over L, with probability 0.99.

From Figure 3.6 it is clear that uniform sampling is very effective at reducing f in the

early stages of sampling, only requiring 44 sample points to generate an x ∈ S(0.1) with
probability 0.99. However, to reduce f significantly further, generating an x ∈ S(0.05)
say, an extremely large sample size is required.

At each iteration Lk is sampled using a near-uniform distribution. Therefore, to

maintain algorithm efficiency, it would be advantageous to alternate between partition

and sampling phases with relatively small batch sizes. Sampling Lk for too long would

cause CARTopt to become inefficient, with a large number of samples generated in Lk

failing to reduce f below the current lowest function value. Furthermore, each partition

phase defines a new, possibly smaller, promising subset of S to search. Here the value

N = 20 is chosen. Hence, Lk is sampled until an x ∈ S(0.2) has been obtained with

probability 0.99, before another partition phase is implemented. Numerical simulations

performed by the author supports this batch size.

For the initial batch 2N = 40 samples are used. Therefore, a point x ∈ S(0.1)
will be an element of L1 with high probability. This gives the algorithm at least one

sufficiently low point in the initial partition and hence, a promising sub-region to begin

the search for an optimal point.
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3.5.2 Delivery Method

Generating samples in the high region (if required) is trivial, simply, ⌊χN⌋ points are
drawn uniformly from the set {x : x ∈ [−1, 1]n}. These points need not be generated

in the transformed space and can simply be generated after the inverse transform in

Step 3(f) of CARTopt (see Figure 3.1).

To sample the approximate level set, a near-uniform distribution over Lk is used.

The delivery method requires a two stage process. Firstly a low sub-region Ai ⊂ Lk is

selected, then a point x is drawn from a uniform distribution over Ai. To select each Ai,

a simple discrete inverse transform method is used [46]. The cumulative distribution

function F for the sub-region measure of Lk is given by

F (Ai) =
i∑

q=1

m(Aq)/m(Lk), (3.16)

where m(.) denotes Lebesgue measure. The measure for each Ai is given by m(Ai) =∏n
j=1 (bn+j − bj), where bj, bj+n ∈ {Bi(q) : 1 ≤ q ≤ 2n}. A particular Ai is selected

using

Ai = max(i : U ≤ F (Ai)), (3.17)

where U ∈ [0, 1] is a random variable. Hence, more samples are expected to be drawn

from larger sub-regions of Lk.

Upon selecting a low sub-region Ai a point x ∈ Ai is delivered using

x = [bn+1 − b1, . . . , b2n − bn]Un + [b1, . . . , bn],

where Un is a diagonal matrix of rank n with each non-zero element ujj ∈ [0, 1] a

random variable. The method is repeated until the batch of N (or ⌊(1 − χ)N⌋ if

sampling S) points are obtained.

Performing the partition in the transformed space (Step 3(c) of CARTopt) means

the set

{y ∈ Lk : φHky ̸∈ S} (3.18)

can have positive measure at iteration k. To ensure f is evaluated only at points within

S, an acceptance/rejection sampling method is applied. Specifically, a delivered point

belonging to the set {x ∈ Ai : ∥φHkx∥∞ > 1} is rejected and the process repeats,

selecting a new sub-region. In practice, the measure of (3.18) tends to be small (if

it exists at all) and so acceptance/rejection sampling is an effective strategy. Clearly,
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if S ≡ Rn (unconstrained CARTopt algorithm) acceptance/rejection sampling is not

required.

If no post-partition modifications were required at iteration k, Ai ∩ Aj = ∅ for

all i ̸= j. Therefore, the proposed delivery method samples Lk uniformly. Whereas,

a modified partition can have an overlap such that Ai ∩ Aj ̸= ∅. All overlaps have a

greater probability of being sampled as they can be sampled from multiple sub-regions.

However, such an overlap tends to be small, giving near-uniform sampling on Lk and

does not have any adverse effects on the algorithm.

In both cases, the sampling method generates N points in Lk∩S, a property needed

for convergence.

Proposition 29. The sampling method described above generates N points in the fea-

sible approximate level set Lk ∩ S with probability one.

Proof. Clearly if {Lk ∩ S} = Lk each sample drawn is feasible and the result follows.

Otherwise, {Lk ∩ S} ≠ Lk and acceptance/rejection sampling is required to reject

infeasible samples. Generating a feasible point is a Bernoulli trial — a feasible point is

generated or not — where the probability of generating a feasible sample is given by

P =
1∑|A|

i=1m(Ai)

|A|∑
i=1

m(Ai ∩ S) > 0,

where |A| is the number of low sub-regions. Noting that repeated trials are independent

with constant probability P , the number of points generated in {Lk ∩ S} after j trials
is a Binomial Random Variable. Thus, the probability that at least N samples are

drawn from {Lk ∩ S} after j > N trials is

Pr(number of feasible points ≥ N) = 1−
N−1∑
q=0

j!

q!(j − q)!
P q(1− P )j−q. (3.19)

The proposed sampling method draws samples from Lk indefinitely until N are ob-

tained. Therefore, we consider the limit of (3.19) as j →∞. That is, the limit of each

term in the summation of (3.19), given by

P q

q!
lim
j→∞

j!

(j − q)!
(1− P )j−q. (3.20)
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Expanding the numerator of (3.20)

P q

q!
lim
j→∞

j(j − 1) . . . (j − (q + 1))(j − q)!
(j − q)!

(1− P )j−q

and simplifying, the limit is expressed as

P q

q!
lim
j→∞

j(j − 1) . . . (j − (q + 1))
1

(1−P )j−q

. (3.21)

The numerator of (3.21) is a polynomial of degree jq+2 and hence, in the limit as j →∞
the numerator tends to infinity. With (1− P ) < 1 and 0 < q < N < j, in the limit as

j →∞, (1− P )j−q → 0 and so the denominator of (3.21) also tends to infinity. That

is, (3.21) is in indeterminant form and thus, applying l′Hôpital’s rule q + 2 times we

obtain
P q

q!
lim
j→∞

(q + 2)!
(− ln(1−P ))q+2

(1−P )j−q

,

which simplifies to
(q + 2)(q + 1)P q

(− ln(1− P ))q+2
lim
j→∞

(1− P )j−q = 0.

Hence, each term of the summation in (3.19) tends to zero in the limit as j →∞ and

thus, N feasible points are drawn from Lk ∩ S with probability one.

3.5.3 Effectiveness of Distribution Method

This sub-section illustrates the effectiveness of the distribution method via an example.

Consider, for example, solving the nonsmooth Rosenbrock function, given by,

f(x) = |10(x2 − x21)|+ |1− x1| such that x ∈ [−2, 2]2, (3.22)

with x∗ = (1, 1) the unique essential local minimizer. With reference to Figure 3.7 it is

clear that after only ten iterations (240 points) the algorithm has successfully identified

a subset containing x∗, where the density of points is greatest. As the greedy sampling

strategy is applied here, all subsequent samples will be drawn in the neighborhood of

x∗ refining the current estimate of x∗. Clearly this sampling strategy is more effective

than uniform sampling over [−2, 2]2. To obtain a similar density of points in the

neighborhood of x∗, far more points would be required.
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Figure 3.7: Ten iterations of the CARTopt method applied to (3.22), showing all points generated
using the greedy sampling strategy. The essential local minimizer x∗ = (1, 1) is shown in red.

3.6 A Deterministic CARTopt Instance

This section considers sampling the approximate level set L as evenly as possible.

Previously, CARTopt was described using uniform random sampling on Lk. Here a

deterministic approach to try and achieve a more even covering of Lk is considered. In

doing so, a deterministic instance of the CARTopt method is proposed. For simplicity,

let Lk be a unit hypercube in what follows.

Intuitively, one may think the most uniformly distributed set in a hypercube is

given by a regular, rational lattice of points. However, this is only true for n = 1 and

is far from best for n ≥ 2 [73]. Consider minimizing a function f of n variables, which

depends largely on n̂ < n leading variables, a situation common in practice. Evaluating

f on a regular lattice of N points in the hypercube would only give approximately N n̂/n

different function values, due to the linearity of weakly interacting variables. Therefore,

if f is computationally expensive to evaluate, efficiency is lost and many evaluations

are wasted. The use of uniform random sampling avoids this and embedding a regular

lattice on Lk is considered no further.

Uniform random sampling on Lk is an efficient way to obtain information about
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f , but clustering can occur leaving subsets unexplored. One approach to remove clus-

tering is to discard points falling too close to already accepted points. The interested

reader is referred to [80] for further details. However, these methods can struggle to

generate samples in the later stages of sampling, discarding many generated points.

Furthermore, deciding on which points are deemed too close can be problematic [81].

Another approach is to sample Lk using a quasi-random sequence. Quasi-random

sequences satisfy dispersion conditions, the net effect generating points in a highly

correlated manner, giving a more even distribution. For example, for sufficiently large

N , uniform random sampling in a hypercube can potentially leave a half space empty,

whereas, a quasi-random sequence will not. Here the Halton sequence [31] is of partic-

ular interest.

3.6.1 Halton Sequence

The Halton sequence is a quasi-random sequence of numbers which generates evenly

distributed points in low dimensions. These sequences are based on van der Corput

sequences. The van der Corput sequence in base p (p ≥ 2) is constructed by reversing

the base p representation of the sequence of natural numbers. More precisely, the

sequence {x1, x2, . . .} with xk = ϕp(k) for all k ≥ 1, where ϕp(k) is the radical inverse

function

ϕp(k) =
∞∑
j=0

λj(k)

p1+j

and λj(k) ∈ Z+ are the unique coefficients of the base p expansion of k

k =
∞∑
j=0

λj(k)p
j.

For example, consider the binary system with p = 2. The binary expansion of k = 6

is 110 with radical inverse ϕ2(6) = 0.011 and converting back to the decimal system,

x6 = 3/8. The first ten members of the van der Corput sequence with base 2 and 3 are

given by the sets {
1

2
,
1

4
,
3

4
,
1

8
,
5

8
,
3

8
,
7

8
,
1

16
,
9

16
,
5

16

}
and {

1

3
,
2

3
,
1

9
,
4

9
,
7

9
,
2

9
,
5

9
,
8

9
,
1

27
,
10

27

}
.

Thus, the van der Corput sequence partitions the unit interval with respect to the
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chosen base. In particular, 1/p, 1/p2, 1/p3 etc. Furthermore, the sequence generates a

dense set of points in (0, 1) [1].

The Halton sequence in Rn is

{ϕp1(k), ϕp2(k), . . . , ϕpn(k)}∞k=1, (3.23)

where p1 = 2, p2 = 3 and pj is the jth prime. The sequence for 100 points in [0, 1]2

is shown in Figure 3.8. The covering is more even than that obtained from uniform

random sampling.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.8: Uniform random distribution (left) and Halton sequence (right) for 100 points in [0, 1]2.

Using the Halton sequence in high dimensions can be problematic. When using

particular primes, individual Halton sequences can be highly correlated for lengthy

periods. The interested reader is referred to [81] for further details and to [33] for

modified sequences, including the scrambled and shuffled Halton sequences, which aim

to minimize correlation. However, relatively low dimensions and relatively small sub-

sequences of the Halton sequence are used here and the modified versions are considered

no further.

3.6.2 Implementation

Deterministic CARTopt uses elements of the Halton sequence, rather than uniform

random sampling, to generate each sample point and replaces each instance where a

random variable is used. The algorithm is essentially the same as that given in Figure
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3.1 and only differs at steps 2 and 3(d,e). The method draws elements sequentially

from the one dimensional Halton sequence

{ϕp1(m)}∞m=1 = {r1, r2, . . .} on [0, 1] (3.24)

and the n dimension Halton sequence

{ϕp2(m), ϕp3(m), . . . , ϕpn+1(m)}∞m=1 = {x1, x2, . . .} on [0, 1]n, (3.25)

where p1 = 2, p2 = 3, p3 = 5 and pj is the jth prime number. Here (3.24) and (3.25)

are indexed with m, where initially m = 1.

The first 2N elements of (3.25) are extended to S = [−1, 1]n, using the scaling

2xm − 1, to give the initial batch of points (see Step 2, Figure 3.1) and the sequence

index counter is set to m = 1 + 2N .

To remove the stochastic sampling of Lk (Step 3(e), Figure 3.1), each approximate

level set is sampled using a similar approach to the method proposed in Section 3.5.2.

Here the mth element of (3.24) selects a sub-region Ai ⊂ Lk and the mth element of

(3.25) is used to sample Ai. Consider generating a point z ∈ Lk. Firstly, a sub-region

is selected using

Ai = max(i : rm ≤ F (Ai)),

where F (Ai) is the sub-region measure CDF of Lk (see (3.16)). A point z is then

delivered into Ai using

z = [bn+1 − b1, . . . , b2n − bn]Un + [b1, . . . , bn], (3.26)

where Un is a diagonal matrix with Ujj = xm(j) and bj, bj+n are the lower/upper

bounds in dimension j of Ai. Increment m. If ∥φHkz∥∞ > 1, the delivered point is not

an element of S and z is rejected. The process repeats until N points are generated.

Rather than restarting the sequence for each batch, m is incremented indefinitely.

This is done from a practical point of view. If successive approximate level sets are

similar in shape, size and location, using the same subsequence of the Halton sequence

can generate similar iterates. This is discussed further in Section 3.6.3.

The sampling method is illustrated in Figure 3.9, where an approximate level set in

R2 is shown. The proposed sampling method generates an even covering over L, despite
its irregular shape. Sampling successive approximate level sets may displace various

parts of the Halton sequence relative to one another, thus potentially destroying the
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efficiency of the covering over successive sampling phases. However, it does provide an

even covering at each iteration and provides an interesting deterministic method for

sampling Lk. Furthermore, this method generates a dense set of points in L. To prove

this result, the following proposition from [1] is used.
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Figure 3.9: Uniform random distribution method (left) and Halton sequence method (right) for
generating 50 points in L (bold region).

Proposition 30. The Halton sequence (3.23) is dense in [0, 1]n.

The interested reader is referred to [1] for a simple proof and [31] for a more detailed

proof.

The reader is referred to Figure 3.10 to accompany the proof of the following propo-

sition.

Proposition 31. The proposed deterministic sampling method is dense in Lk if sam-

pling is performed indefinitely.

Proof. It is sufficient to show that the proposed sampling method is equivalent to

sampling [0, 1]n+1 using the Halton sequence. At each iteration, rm selects a sub-region

and a point xm is delivered (under appropriate scaling, see (3.26)). The pair {rm, xm}
is simply the mth element of the n + 1 dimensional Halton sequence. Proposition 30

states the sequence

{rm, xm}∞m=1

is dense in [0, 1]n+1. Clearly, if a finite number of elements are removed from a dense

set, the set of remaining elements form a dense set. Thus, the subset of the Halton



3.6. A Deterministic CARTopt Instance 77

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

φ

φ
φ

p

p
p
1

2

3

l1
1u

Figure 3.10: [0, 1]n+1 search space for sampling the approximate level set Lk given in Figure 3.9.
The ϕp1 axis denotes the normalized measure of each sub-region 0 < m(Ai) ≤ 1 and the ϕp2 , ϕp3 axes
give the normalized x1, x2 sides of each sub-region.

sequence

{rm, xm}∞m=λ (3.27)

is also dense in [0, 1]n+1, where λ is the sequence index counter of the Halton sequence

used by the deterministic CARTopt algorithm. That is, the current position in the

Halton sequence at iteration k.

With the number of sub-regions finite, 1 ≤ |A| ≤ |{ωL}|, and m(Ai) > 0 for each

Ai ⊂ Lk, selecting and sampling a sub-region Ai is simply a subset of [0, 1]n+1 with

positive measure. Specifically, for an Ai it is the set

{[ℓ1, u1], [0, 1]n}, (3.28)

where

[ℓ1, u1] =

[
1∑|A|

i=1m(Ai)

(
i−1∑
j=0

m(Aj),
i∑

j=1

m(Aj)

)]
and m(A0) = 0 (see Figure 3.10). Therefore, (3.27) is also dense in the subset (3.28).

That is, each sub-region Ai is selected infinitely many times and densely sampled. With

Lk = ∪Ai, the proposed sampling method is dense in Lk.
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To remove all stochastic components from CARTopt, elements of (3.25) are used to

remove problematic bounds during the partition phase (Step 3(d), Figure 3.1). Recall

from Section 3.4.3, a sample needs to be drawn from the upper/lower face of a sub-

region Ai if the upper/lower bound on Ai is problematic. Given the current position m

in the sequence (3.25), the element xm is scaled to fit the face and m is incremented.

All the required points are drawn from (3.25) until the post-partition modification is

complete.

With all the stochastic elements of the CARTopt method removed, a deterministic

CARTopt instance is established.

3.6.3 Notes on Convergence

The current form of the deterministic instance of the CARTopt algorithm has no con-

vergence proof. This is because approximate level sets are offset relative to each other.

This can cause various parts of the Halton sequence to be displaced relative to one an-

other, which can potentially leave parts of the search region unexplored. Using Propo-

sition 31 and fixing Lk for some sufficiently large k, one could establish convergence

to a minimizer of f . However, one would have to assume z∗ ∈ Lk, which is difficult

to verify on general functions. Thus, choosing a sufficiently large k is problematic in

practice.

Although no convergence result is given, the deterministic instance of CARTopt

performs well in practice. When stopping conditions are included (see Chapter 4), the

algorithm terminates at accurate approximations to essential local minimizers. The

reader is referred to the numerical results chapter of this thesis for further details.

3.7 An Unconstrained CARTopt Instance

This section introduces the unconstrained instance of CARTopt, where S = Rn is used.

Like the deterministic instance described in the previous section, the unconstrained

algorithm only differs slightly from the algorithm in Figure 3.1. Each change is detailed

in the sections which follow, as they appear in Figure 3.1. Combining the ideas from

this and the previous section in the obvious way, gives an unconstrained deterministic

CARTopt instance.



3.7. An Unconstrained CARTopt Instance 79

3.7.1 Initialization

Unconstrained CARTopt generates an initial training data set T1, in Step 1. To get an

initial batch of points the user chooses an x0 ∈ Rn and draws a further 2N − 1 points

X0, uniformly from the set

X = {x ∈ Rn : ∥x− x0∥∞ < h}, (3.29)

where h is a finite positive constant. If all elements of X have infinite functions values,

continue sampling until at least one finite function value exists. Setting T1 = {X0∪x0},
gives CARTopt an initial training data set to form a partition on Rn. With |T1| ≥ 2N ,

Step 2 of the algorithm is not implemented.

3.7.2 Training Data Transformation

The transformation given in Section 3.3 is still applied to the training data set to

potentially simplify the partition on Rn. However, the scalar φ in equations (3.6)

and (3.7) are no longer needed because S is now unconstrained. There is no need to

restrict the partition to [−1, 1]n as any x ∈ Rn is also an element of S. Hence, with 1/φ

removed from Step 3(c), φ is also removed from Step 3(f) where the inverse transform

is applied.

3.7.3 CART Partition

The CART partition can be applied to Rn because the hyperplane decision boundaries

that form the partition are infinite in extent. The matrix B in Section 2.4.4 containing

the bounds of S is now replaced with

B =


−∞ . . . −∞ +∞ . . . +∞
...

...
...

...

−∞ . . . −∞ +∞ . . . +∞

 ,
because S is unconstrained. Thus, sub-region bounds given by (3.8) can contain infinite

elements however, the post-partition modifications described in Section 3.4 are applied

to remove such elements.

The minimum sub-region radius δ > 0, given by equations (3.10) and (3.11), is still

needed to ensure m(Lk) is non-zero for all iterations. However, the bounds of [−1, 1]n

are dropped because S = Rn. Therefore, for each sub-region Ai ⊂ Lk, the bounds Bi
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are updated using

Bi(j) = min{bj, x−j − δ}

and

Bi(j + n) = max{bj+n, x
+
j + δ},

where j = 1, . . . , n.

To remove problematic bounds the same methods described in sections 3.4.3 and

3.4.4 are used. However, with S = Rn, problematic bounds now have the values ±∞,

rather than ±1 as in the constrained case.

For non-singleton sub-regions with problematic bounds the method proposed in

Section 3.4.3 is used. However, the dependence on [−1, 1]n is removed from the update.

Initially, the updates given by (3.12) and (3.13) are replaced with

Bi(j) = x−j − αmax{rj, δ}

and

Bi(j + n) = x+j + αmax{rj, δ},

where j = 1, . . . , n. Operating in Rn means all problematic bounds are extended in

the standard forward-tracking manner until ascent is made, or α = 310 is reached.

Non-singleton sub-regions are updated as described in Section 3.4.4. However, in

the extremely unlikely case when every sub-region is singleton at the first iteration

(k = 1), the measure of each individual hypercube is based on m(L0) = m(X) rather

than m(S), where X is defined by (3.29).

The post-partition modifications ensure that all problematic bounds are removed.

Thus, the approximate level set L is a finitely bounded subset of Rn.

3.7.4 Sampling Phase

With each bound of Lk finite, the sampling method described in Section 3.5 is applied.

However, every x ∈ Lk is also an element of Rn and so acceptance/rejection sampling

is not required in the unconstrained method.

3.8 Convergence Analysis

The convergence properties of CARTopt are analyzed with the stopping conditions

removed. This allows us to examine the asymptotic properties of the sequence of
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iterates generated by the algorithm. Stopping conditions are included from a practical

point of view (see Chapter 4 for details).

In the sections which follow, convergence results for the bound constrained and

unconstrained stochastic instances of CARTopt are presented. Note, Theorem 18 can-

not be applied to the CARTopt method proposed here. Theorem 18 requires the high

region to be sampled and demonstrates convergence to a globally optimal point. The

results here demonstrate convergence to locally optimal points. Convergence of the de-

terministic instances of CARTopt cannot be demonstrated without modifications (see

Section 3.6.3). However, we show that an infinite sequence of iterates is generated by

the deterministic instances of CARTopt and numerical simulations performed by the

author show that the algorithm produces final iterates that are good approximations

to essential local minimizers.

Before the results are presented, we show that each instance of CARTopt generates

an infinite sequence of iterates.

Theorem 32. The sequence {zk} generated by each stochastic instance of CARTopt is

an infinite sequence with probability one.

Proof. For {zk} to be an infinite sequence, Step 3 of CARTopt must be a finite process.

Noting that |Tk| is finite for all k, steps 3(a, b, c, f, g) are finite processes.

The CART partition in Step 3(d) uses a finite data set Tk and only considers a

finite number splits from the set {s = (xj + zj)/2 : x, z ∈ Tk}. The resulting partition

on S is a finite set of non-empty hyperrectangles, where the number of distinct low

sub-regions is bounded by |{ωL}| = ⌊βN⌋. Each low sub-region update requires only a

finite number of steps. Therefore, the partition phase is a finite process and thus, Step

3(d) is finite.

Proposition 29 ensures that N points are drawn from Lk ∩ S with probability one.

Thus, the sampling phase in Step 3(e) terminates almost surely.

If the sequence of iterates {zk} is bounded, it follows from Theorem 32 that cluster

points exist in {zk} almost surely. In practice the stochastic CARTopt algorithm does

generate an infinite sequence of iterates because random number generators satisfy

various dispersion conditions. To ensure cluster points exist one could, for example,

divide Lk into N sub-regions of equal measure and draw one sample from each. If

N feasible points are not obtained, continue dividing Lk into a set of nested sub-

regions and draw one sample from each until they are obtained. This would ensure the

sampling phase in Step 3(e) terminates surely. The following assumption is made to

ensure cluster points exist in the sequence {zk}.
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Assumption 33. The acceptance/rejection sampling technique in Step 3(e) of the

CARTopt algorithm generates N points surely.

The unconstrained stochastic CARTopt algorithm does not require Assumption 33

because acceptance/rejection sampling is not required.

Corollary 34. The sequence {zk} generated by the unconstrained stochastic CARTopt

algorithm is an infinite sequence.

Proof. The proof is similar to Theorem 32. Steps 3(a,b,c,d,f,g) are finite processes as

demonstrated in Theorem 32.

The unconstrained CARTopt algorithm has S ≡ Rn and so the approximate level

set is feasible for all iterations. Hence, no acceptance/rejection sampling is required

and N points are drawn from L — Step 3(e) is a finite process.

Theorem 35. The sequence {zk} generated by each deterministic instance of CARTopt

is an infinite sequence.

Proof. The proof is similar to Theorem 32. Steps 3(a, b, c, d, f, g) are finite process

as demonstrated in Theorem 32.

Proposition 31 ensures a dense set of points is generated in Lk ∩ S if sampling is

performed indefinitely. Thus, N samples are drawn from Lk ∩ S and Step 3(e) is a

finite process.

The convergence results for the bound constrained and unconstrained stochastic

CARTopt algorithms can now be given. To establish convergence to an essential local

minimizer the following assumption on f is required.

Assumption 36. The objective function f is lower semi-continuous.

Assumption 36 ensures that

lim inf
z→z∗

f(z) ≥ f(z∗).

Without Assumption 36, the CARTopt algorithm does not always converge to an es-

sential local minimizer. Consider, for example, the function

f(x) =

∥x∥ x ̸= 0

1 x = 0.
(3.30)
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The origin is not an essential local minimizer of (3.30), but the algorithm will give

{zk} → 0 as k →∞ almost surely. Modifying (3.30) so that f = −1 at x = 0 makes f

lower semi-continuous and the origin is now an essential local minimizer.

3.8.1 Bound Constrained Nonsmooth Result

The convergence result for the constrained CARTopt algorithm shows that every cluster

point of the sequence {zk} is an essential local minimizer of f with probability one. In

this section the standard definition of an essential local minimizer is slightly modified

because S = [−1, 1]n, rather than Rn.

Definition 37. (Essential local minimizer). A point x∗ ∈ [−1, 1]n for which the

set

E(x∗, ϵ) = {x ∈ [−1, 1]n : f(x) < f(x∗) and ∥x− x∗∥ < ϵ}

has Lebesgue measure zero for all sufficiently small positive ϵ is called an essential local

minimizer of f .

The convergence result is now given. For convenience let m(.) denote the Lebesgue

measure.

Theorem 38. Let Assumptions 36 and 33 hold. Each cluster point z∗ of the sequence

{zk} is an essential local minimizer of f with probability one.

Proof. Theorem 32, Assumption 33 and the fact that S is bounded ensure the existence

of cluster points in {zk}.
The proof is by contradiction. Assume z∗ is not an essential local minimizer of f .

Then, there exists a set

E ⊂ {z ∈ [−1, 1]n : f(z) < f(z∗) and ∥z − z∗∥ < δ/2}, (3.31)

with m(E) > 0. Also there exists an infinite subsequence K ⊂ Z+ such that

∥zk − z∗∥ < δ/2 for all k ∈ K, (3.32)

where all members of K are sufficiently large to ensure (3.32) holds. Then,

∥zk − z∥ ≤ ∥zk − z∗∥+ ∥z∗ − z∥ < δ
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for all z ∈ E. For all k sufficiently large, CARTopt samples near-uniformly in the set

{x ∈ [−1, 1]n : ∥zk − x∥ < δ} (3.33)

with probability density greater than or equal to (|{ωL}|.m(Lk))
−1. Therefore, CAR-

Topt samples in E with probability

Pr(x ∈ E) ≥ m(E)

|{ωL}|.m(Lk)
> 0

for all sufficiently large k. Hence, in the limit as k →∞, f(zk) < f(z∗) almost surely,

contradicting Assumption 36. Thus, z∗ must be an essential local minimizer of f ,

almost surely.

3.8.2 Unconstrained Result

The unconstrained stochastic instance of CARTopt is now considered. This result

follows directly from the constrained results. In order to establish convergence we

require the following assumptions.

Assumption 39. The following conditions hold:

(a) The points at which f is evaluated at lie in a compact subset of Rn; and

(b) The sequence of function values {f(zk)} is bounded below.

These assumptions ensure {zk} is bounded and excludes the case where f(zk) →
−∞ as k →∞.

Theorem 40. Let Assumptions 36 and 39 hold. Each cluster point z∗ of the sequence

{zk} is an essential local minimizer of f with probability one.

Proof. The proof is similar to Theorem 38. Assumption 39 and Corollary 34 ensure

the existence of cluster points in {zk}.
Replacing [−1, 1]n in both (3.31) and (3.33) with Rn gives the desired proof.



Chapter 4

Sequential Stopping Rule

This chapter considers the practical problem of deriving a stopping rule for the CAR-

Topt algorithm. Although the stopping rule is derived for the convergent stochastic

instances of CARTopt, it is also applicable to the deterministic instances. Asymp-

totically, convergence to an essential local minimizer z∗ of f is demonstrated for the

stochastic instances of CARTopt (see theorems 38 and 40). Appropriate stopping rules

are vital to ensure these theoretical results are maintained in practice. However, it is

often difficult to know whether the sequence {zk} has converged to a z∗ of f .

To achieve practical convergence to an essential local minimizer z∗ on a general

nonsmooth function f : Rn → R ∪ {+∞}, one must verify that there does not exist

a subset arbitrarily close to z∗ of positive measure with lower f values. This is a

constrained global optimization problem of the form

min f(x) such that x ∈ Ω, (4.1)

where Ω is a compact subset of Rn and z∗ ∈ Ω.

At each iteration k, CARTopt samples an approximate level set Lk using a near-

uniform distribution. If zk∗ = z∗ at iteration k
∗, then there exists an open ball B(zk∗ , δ)

in the dynamic region

Ωk∗ = {x ∈
∪
Lk ∩ S : k = k∗, k∗ + 1, k∗ + 2, . . .}, (4.2)

for which CARTopt has a non-zero probability of sampling for all further iterations,

where δ > 0 is the minimum sub-region radius. That is, CARTopt searches globally

in the neighborhood of an essential local minimizer with probability one. The union

of successive level sets is used to define Ωk∗ rather than just Lk∗ because each L is

85
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not necessarily nested. However, Lk is sampled near-uniformly at each iteration rather

than the neighborhood of z∗ directly. Thus, if a global minimizer of Ωk∗ is found,

there does not exist a subset of lower points with positive measure in Ωk∗ . That is,

an essential local minimizer of f is found and hence, a good place to terminate the

CARTopt algorithm.

Unfortunately, no algorithm can solve (4.1) exactly because numerical procedures

only obtain approximate answers. Thus, (4.1) is considered solved if an x ∈ Ωfϵ is

located, defined by

Ωfϵ = {x ∈ Ω : f(x) ≤ f(z∗) + ϵ}, (4.3)

where ϵ > 0 and sufficiently small. However, lower semi-continuous functions are

considered here and hence, (4.3) can be a set of measure zero. A simple function, for

example, is

f(x) =

∥x∥ x ̸= 0

−2ϵ otherwise,
(4.4)

where f(x∗) = −2ϵ. The probability of generating a point in Ωfϵ from random sampling

is zero. Hence, an approximate solution to the global minimum of (4.4) is not obtained.

From a practical point of view, the definition of an essential local minimum is

modified so (4.3) always has positive measure and hence, an approximate solution can

be obtained. The definition of an essential local minimizer remains the same.

Definition 41. (Essential local minimizer). A point z∗ ∈ S for which the set

E(z∗, ζ) = {x ∈ S : f(x) < f(z∗) and ∥x− z∗∥ < ζ} (4.5)

has Lebesgue measure zero for all sufficiently small positive ζ is called an essential local

minimizer of f .

To define the essential local minimum, let

finf = inf{f# : m(L(f#, z∗, ζ)) > 0} (4.6)

where

L(f#, z∗, ζ) = {x ∈ Ω : f(x) < f# and ∥x− z∗∥ < ζ}.

Definition 42. (Essential local minimum). Let z∗ ∈ Ω be an essential local mini-

mizer of f , then f(z∗) = finf is an essential local minimum of f .
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For practical reasons this definition makes sense. If zk → z∗, then ∥zk−z∗∥ becomes

small, but the function values may be vastly different. Using Definition 2, f = −2ϵ is
an essential local minimum of (4.4), whereas Definition 42 has f = 0 as an essential

local minimum. For sufficiently small ϵ these values are similar, but for large ϵ they

are not.

It is clear from (4.6) that the modified definition of an essential local minimum

ensures (4.3) is a set of positive measure for all ϵ > 0. Under mild conditions, the

stochastic instances of CARTopt will sample (4.3) with probability one (see theorems

38 and 40). The global minimum of (4.1) to within ϵ is a good approximation to an

essential local minimum of f because even if the measure of {E(z∗, ζ)∩Ωfϵ} is non-zero,
the function values in this set only differ by ϵ at most. Furthermore, with ϵ sufficiently

less than ζ, the m({E(z∗, ζ) ∩ Ωfϵ}) is typically small.

Firstly, existing stopping rules for random search methods are introduced and com-

ments on their effectiveness for general nonsmooth minimization are made. In Section

4.3 a new stopping rule is introduced based on an expected distribution of f values

in the neighborhood of an essential local minimizer. This rule is developed over the

sections which follow and explicitly stated in Section 4.8.

4.1 Resource Based Stopping Rules

A simple way to terminate an optimization algorithm is to halt when a predetermined

finite resource quantity is reached. Examples include run algorithm for a finite num-

ber of iterations, finite CPU time, or a finite number of function evaluations. These

stopping rules make no reference to valuable information obtained from previous it-

erations, for example, objective function values. Such methods often overestimate, or

underestimate the work required to solve a general problem to the desired standard.

However, these rules can be used as an upper bound, terminating an algorithm if a

more sophisticated rule fails to halt within user resources, or if the sequence of iterates

is unbounded.

4.2 Sequential Stopping Rules

Sequential stopping rules for global optimization algorithms use valuable information

obtained about f at each iteration of an algorithm. These rules are often tested at

each iteration. They should require minimal storage and be computationally cheap to
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evaluate. Thus, not compromising the overall performance of an algorithm.

Here, sequential stopping rules for random search methods are of particular interest

because CARTopt is a random search method on a subset of Rn. The interested reader

is referred to [22, 23, 30, 32, 42] for a variety of stopping rules. These rules use statistics

of extreme values to calculate an associated confidence in the current candidate for the

global minimum. The algorithm halts when sufficient confidence is reached. These

rules can be broadly classified into two categories.

Definition 43. (Type A). A Type A sequential stopping rule is a rule based on the

probability of sampling the ϵ-level set, given by (4.3).

Definition 44. (Type B). A Type B sequential stopping rule is a rule based on the

probability of sampling the ϵ-neighborhood of a global minimizer x∗, defined by the set

Ωϵ = {x ∈ Ω : ∥x− x∗∥ ≤ ϵ}.

Of particular interest are rules for the Pure Random Search algorithm (PRS). PRS

generates a sequence of iterates {zk, fk} as follows. Let x1, x2, . . . be independent

and identically distributed vectors with common distribution Φ on Ω, with {z0, f0} =
{x1, f(x1)}. Then, {zk+1, fk+1} = {xk+1, f(xk+1)} if f(xk+1) ≤ fk, and {zk+1, fk+1} =
{zk, fk} otherwise. Thus, PRS generates a decreasing sequence of function values, only

updating the current function value when descent is made.

4.2.1 Existing Stopping Rules

Dorea [23] develops sequential stopping rules for PRS. Dorea’s rules are based on the

probability that Ωfϵ or Ωϵ is sampled in a single step (Type A and Type B rules

respectively). In what follows, it is assumed that Ω is simply a compact subset of Rn

with positive measure.

Dorea’s Type B rule terminates the PRS algorithm at iteration k when, given an

ϵ > 0 and 0 < β < 1,

k ≥ −m(Ω) log(β)

ϵ
. (4.7)

Dorea goes on the show that if (4.7) is satisfied, then

Pr(∥xk − x∗∥ ≤ ϵ) ≈ 1− β.

However, (4.7) can require an extremely large number of iterations to terminate PRS

when ϵ is sufficiently small. Consider, for example, Ω defined by the unit hypercube
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with β = 0.01, then k ≈ 4.6 ∗ 101/ϵ is required to solve f to within ϵ. In addition, the

derivation of the rule requires the following assumption.

Assumption 45. Assume Ω ⊂ Rn with m(Ω) > 0 and that Φ is the uniform distribu-

tion on Ω. Moreover,

1. There exists a unique interior point x∗ of Ω such that f(x∗) = f∗.

2. There exists a positive function v(t), t > 0, and a constant λ > 0 such that for

all β > 0, limt↓0(v(βt)/v(t)) = β1/λ and the following limit

U(z) = lim
t↓0

f(x∗ + tz)− f∗
v(t)

exists and is strictly positive and finite for all z ̸= 0.

Assumption 45 is too strong for general nonsmooth minimization. Consider, for

example, the function

f = |x1|+ x22. (4.8)

Let (x1, x2) = (at, bt), where a, b ∈ R and t > 0, giving f = t|a| + t2b2. f is linear in

t when t is sufficiently small unless a = 0 (where f is quadratic). However, when t is

large, f is quadratic in t unless b = 0 (where f is linear). Hence, f follows a power law

in all directions where a, b ̸= 0, although the power changes as t is increased. Thus,

there does not exist the positive function v(t), t > 0, and a constant λ > 0 such that for

all β > 0, limt↓0(v(βt)/v(t)) = β1/λ — failing the second requirement of Assumption

45. In addition, Assumption 45 requires each sample to be drawn from a uniform

distribution Φ on Ω.

The CARTopt method is designed for nonsmooth minimization and thus, functions

like (4.8) are of primary interest. In addition, the CARTopt method uses a non-

uniform distribution on a subset of Rn defined by a union of approximate level sets

which potentially changes from iteration to iteration, rather than uniform distribution

over a fixed region Ω. For these reasons alone, rule (4.7) is considered no further.

Dorea [23] also provides two Type A stopping rules which can be applied to general

nonsmooth problems. Furthermore, these rules do not require a uniform distribution Φ

on Ω, only that each sample be independent and identically distributed with a common

distribution Φ on Ω. The probability that fk is an element of Ωfϵ is approximated using

the number of samples that are within ϵ of the lowest objective function value obtained.

Formally,

ρk(ϵ) = sup{i : τi > 0, fτi ≤ fk + ϵ}
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and for j = 1, 2, . . . , k − 1 we define

τj+1 = τj+1(k) =

0 if {i : 1 ≤ i ≤ τj, fi ̸= fτj} = ∅

sup{i : 1 ≤ i ≤ τj, fi ̸= fτj} otherwise,

with τ1(k) = k. The first rule terminates PRS at iteration k ≥ 2, if given an ϵ > 0 and

0 < β < 1

k ≥ log(β)/ log

(
1− ρk(ϵ)

k

)
. (4.9)

The second rule terminates at iteration k ≥ 2 if fk is repeated for the next m steps,

that is, fk = fk+j where j = 1, 2, . . . ,m, and m satisfies

k ≥ log(β)

log
(
1− ρk(ϵ)

k

) −m. (4.10)

Dorea shows that if stopping rule (4.9) is applied, then

Pr(fk − f∗ ≤ ϵ) ≥ 1− β

and if stopping rule (4.10) is applied then

Pr(fk − f∗ ≤ ϵ : fk = fk+j, j = 0, 1, . . . ,m) ≥ 1− β.

Dorea’s Type A stopping rules, given by (4.9) and (4.10), have been investigated

by Hart [32]. Hart identified some deficiencies in Dorea’s rules which can terminate

PRS either too late or too early in particular situations. Firstly, consider f1 − f∗ ≤ ϵ

where ϵ > 0 and sufficiently small. Rearranging (4.9) and taking exponentials of both

sides we obtain (
1− ρk(ϵ)

k

)k

≤ β. (4.11)

If a lower point is not found by the kth iteration, then f1 = fk, with ρk(ϵ) = 1. Noting

that

lim
k→∞

(1− 1/k)k = e−1 ≈ 0.368,

the left hand side of (4.11) is bounded below by ≈ 0.368, while ρk(ϵ) = 1. Therefore,

even at a modest accuracy of β = 0.1, a point xj ∈ Ω such that f(xj) < f1 is required
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to terminate PRS. The probability of PRS finding a lower point is given by,

Pr(f < f1) =
m(Ωfϵ)

m(Ω)
, (4.12)

where Ωfϵ is defined by (4.3). With ϵ > 0 and sufficiently small, a large number of

iterations may be required to locate xj, even though a point to within ϵ of f∗ has been

located. Thus, PRS can halt too late using (4.9). Secondly, consider f1 > f2 where

f1 − f2 ≤ ϵ. Substituting ρ2(ϵ) = 2 into (4.11), PRS is terminated at the current

iteration if 0 ≤ β. Since 0 < β < 1 PRS is terminated after only two points are

sampled, even if f2 − f∗ is large. Therefore, PRS can halt too early using (4.9). In

addition, Hart shows empirically that rule (4.10) is less reliable than rule (4.9) [32].

To remedy the problems described above, Hart modifies Dorea’s rules by introduc-

ing two additional parameters. Hart argues the first modification yields a more accurate

approximation to the probability that fk is an element of Ωfϵ than Dorea’s approxima-

tion ρk(ϵ). The second forces k to be sufficiently large to avoid early termination. The

interested reader is referred to [32] for details. Empirical evidence provided by Hart

suggests the modified rules perform better in practice on the test problems used.

Unfortunately, the sequential stopping rules of Dorea and Hart cannot be applied

directly to the CARTopt method. Each rule requires a random sample point to be

drawn from a common distribution Φ over the global optimization region Ω. However,

this is not the case for the CARTopt method. At each iteration, a batch of random

points is drawn from a near-uniform distribution over an approximate level set Lk.

Furthermore, the construction of each Lk is conditionally dependent on the sample

points generated in previous iterations. Thus, CARTopt uses a different conditional

distribution on a subset of Rn at each iteration, rather than a common distribution over

a fixed region Ω. Therefore, neither Hart’s or Dorea’s stopping rules can be applied to

CARTopt.

4.3 New Sequential Stopping Rule

This section introduces the stopping rule for the CARTopt method. At iteration k, the

rule approximates the probability of reducing f below f(zk) (lowest observed function

value), based on observed function values up until iteration k. If this probability

is sufficiently small, the algorithm terminates and f(zk) is an approximation to an

essential local minimum of f .
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To develop the new rule, the following assumptions are made so the sequence of

iterates generated by the CARTopt method have interesting properties.

Assumption 46. The following conditions hold:

(a) The points at which f is evaluated at lie in a compact subset of Rn; and

(b) The sequence of function values {f(xk)} generated by the CARTopt method is

bounded below.

These assumptions ensure the existence of cluster points in {zm}, asymptotically.

Thus, the algorithm is converging to something, rather than having {zm} unbounded.
For the unbounded case, a resource based rule halts the algorithm. Also, the case

where f(xk)→ −∞ as k →∞ is excluded.

4.3.1 Empirical Data

The CARTopt method operates using a training data set Tk which provides valuable

information about f . For k > max{2, 2(n−1)}, CARTopt uses a full size training data

set containing max{2N, 2(n − 1)N} elements. Recall from Section 3.2, Tk is updated

iteratively, keeping the γ = 2N points with the least function values and most recent

sample points. Let

Y = {f1, f2, . . . , fγ} (4.13)

denote the ordered γ least function values from Tk, where fi ≤ fi+1. The set Y is

automatically updated during the CARTopt method. However, Barrier functions are

considered here and thus, Y can contain infinite function values. The rule proposed

here is not implemented if Y contains infinite function values. For the purposes of

developing the rule, it is assumed Y contains only finite function values.

The set Y is used to test whether f(zk) is a global minimum to within ϵ on a subset

of

Ωk = {x ∈
∪
Lj ∩ S : j = 1, 2, . . . , k}, (4.14)

with positive measure. That is, a subset of the union of all approximate level sets. If

f(zk) is the global minimum to within ϵ on a subset of Ωk, a good approximation to

an essential local minimum of f has been located because any sufficiently close sets of

lower points only differ by ϵ in f . Verifying f(zk) is an essential local minimizer is a

global optimization problem, so finding a value within ϵ is sufficient in practice. To

test the suitability of zk, an assumption about the expected cumulative distribution of

function values in the neighborhood of an essential local minimizer(s) z∗ is made.
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Assumption 47. The cumulative distribution of function values of points randomly

generated in the level set

L(z∗, ζ) = {x ∈ Ωk : f(x) ≤ f(z∗) + ζ}, (4.15)

where ζ > 0 and sufficiently small, will follow a power law distribution.

Assumption 47 is not too restrictive, in fact, f can be discontinuous at z∗. Consider,

for example, the function

f(x) =

{
∥x∥ if x1 ≥ 0

∞ otherwise,

in two dimensions, where z∗ = 0. Clearly, all sufficiently low level sets are semi-circles

in the positive half plane (x1 ≥ 0). The rate at which the area of each semi-circles grow

as the radius increases follows squared power law. Thus, the cumulative distribution

of function values is expected to also follow a squared power law also.

The example above also illustrates the applicability of the rule to Barrier functions.

Specifically, the boundary of S can be dealt with directly using a discontinuous penalty

for all x ̸∈ S on particular constrained nonsmooth optimization problems. This use of

barrier functions is investigated further in the numerical results chapter of this thesis.

Using Assumption 47, the expected cumulative distribution of Y in the neighbor-

hood less than or equal to fγ of an essential local minimizer is of the form

F (f, κ) = Pr(fi ≤ f) =

(
f − f∗
fγ − f∗

)κ

, (4.16)

where f∗ is the essential local minimum (Assumption 46 ensures f∗ is finite). From

(4.16), the probability of finding a lower point f1 − ϵ is obtained and if sufficiently

small, zk is assumed to be a global minimizer to within ϵ on a subset of Ωk. That is, an

estimate of an essential local minimizer of f . However, to approximate this probability

a power law function must be fitted to the empirical data Y . The data fitting problem

is considered in the next section and this section concludes with the expected range of

κ values.

4.3.2 Expected κ Values

Considering the rate at which the level sets of f grow, as f is increased from an essential

local minimizer(s) z∗, gives an expected range on κ values. The analysis requires the
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following assumption.

Assumption 48. The following conditions hold;

(a) The rate θ at which f grows along any ray emanating from z∗ in all sufficiently

low level sets is bounded by 1/2 ≤ θ ≤ 2; and

(b) Each sufficiently low level set of f in the neighborhood of an essential local min-

imizer z∗ are scaled copies of each other.

Part (a) of Assumption 48 assumes most essential local minimizers fall within the

range of being either a quadratic bowl, or a cusp type minimizer (see Figure 4.1). Part

(b) does not assume hyper-spherical contours and thus, ill-conditioned minimizers and

nonsmooth contours are considered. In what follows, let L(fδ) denote a sufficiently low

level set of f , where z∗ ∈ L(fδ) and let m(.) denote the Lebesgue measure.

Figure 4.1: Quadratic bowl and cusp type essential local minimizers.

For a smooth quadratic bowl type z∗, f is approximately quadratic in all directions

from z∗ with

∥λx− z∗∥ ≈ (f(λx)− f∗)1/2M(x), (4.17)

where λ > 0 is sufficiently small and M(x) is a positive, bounded scaling function for

all x ∈ Rn. Choosing M ≡ 1 gives the general quadratic and M(x) extends to non-

quadratic varieties. Consider increasing fδ to fδ+ϵ, where ϵ > 0, along a ray emanating

from z∗. Using the ratio ∥xδ + ϵ− z∗∥/∥xδ− z∗∥ and (4.17) the one dimensional scaling

is obtained and raising to the nth power, the scaling of Lebesgue measure, given by

m(L(fδ + ϵ)) ≈
(
1 +

ϵ

fδ − f∗

)n/2

m(L(fδ)).
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Hence, the rate at which level sets grow from z∗ follows a power law. The rate at which

the measure of the level sets grow approximates the CDF of the expected distribution

of objective function values in the neighborhood of z∗. Thus, the expected CDF of

function values is given by

F ≈
(
f − f∗
fγ − f∗

)n/2

.

Whereas, for a nonsmooth cusp type z∗, we have

∥λx− z∗∥ ≈ (f(λx)− f∗)2M(x).

A similar argument to that above shows that

m(L(fδ + ϵ)) ≈
(
1 +

ϵ

fδ − f∗

)2n

m(L(fδ)).

Again the rate at which level sets of f grow follows a power law and the distribution

of f values in the neighborhood of z∗ is expected to be of the form

F ≈
(
f − f∗
fγ − f∗

)2n

.

Thus, if Assumption 48 holds, most essential local minimizers are expected to have

n/2 ≤ κ ≤ 2n. If the user anticipates minimizers outside the range considered here, the

analysis is easily updated by changing Assumption 48 (a). However, in what follows

only this range is considered.

It should be noted that Assumption 48 is only required to determine the expected

range of κ values. Minimizers failing Assumption 48 can also follow a power law within

this range. Consider, for example, the function

f = |x1|+ x22 (4.18)

at the origin. This type minimizer fails Assumption 48 (b). However, the cumulative

distribution of function values in L(z∗, ζ) (see (4.15)) does follow a power law. Further-

more, with (4.18) quadratic in all directions other than x2 = 0 (where f is linear on

a set of measure zero, that is, a set that is not sampled with probability one) a linear

cumulative distribution of objective function values is expected, within the proposed

range.
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4.4 Fitting the Empirical Data

This section considers fitting a smooth curve to the empirical data Y . Firstly, the

essential local minimum f∗ is approximated with a variable f̂∗. A method for choosing

an optimal power κ∗ for the empirical data is proposed in Section 4.4.2. This gives a

the theoretical CDF for Y , of the form

F (f, f̂∗, κ) = Pr(fi ≤ f) =

(
f − f̂∗
fγ − f̂∗

)κ∗

. (4.19)

From (4.19), the probability of finding a lower function value f1−ϵ can be approximated,

where ϵ > 0.

4.4.1 Approximating f∗

Choosing a suitable f̂∗ for (4.19) is crucial for determining tail probabilities, of primary

interest here. Although the nature of an essential local minimizer is not known in

advance, n/2 ≤ κ ≤ 2n is expected. A general f̂∗ for all essential local minimizers can

be problematic as tail behavior varies a lot with respect to κ. Here a set of values is

considered, rather than a single f̂∗ value.

The set of possible f̂∗ values is simply based on the range of observed objective

function values,

f̂∗ ∈ {f1 −R, f1 −R/2, f1 −R/4}, (4.20)

where R = max{fγ − f1, ϵ/2}. With f̂∗ < f1 for all f̂∗ values, there exists a non-zero

probability of finding a function value less than f1. With (4.19) passing through f̂∗,

the set of values give a range of fits, one of which best fits the data Y .

The apparently crude set of f̂∗ values given by (4.20) performs rather well in prac-

tice. The author considered various methods for approximating f∗, however, each

method gave clustered f̂∗ values at some iterations giving similar fits. Thus, a range

of potential fits were not considered in general, whereas (4.20) consistently provided a

range of possible fits relative to the data at each iteration.

4.4.2 Optimal Power Fit

Given an approximation f̂∗ to the essential local minimum, a smooth curve is fitted

through the empirical data Y ∪ f̂∗ to approximate the distribution of observed function

values. An approximation to the distribution is obtained using the γ-sample empirical
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distribution function (EDF). The EDF is the discrete distribution function which puts

a probability mass of 1/γ at each sample point fi ∈ Y , given by

F̂ =
1

γ

γ∑
i=1

I(fi ≤ f), (4.21)

where I is an indicator function defined by

I(fi ≤ f) =

{
1 if fi ≤ f

0 otherwise.

Asymptotically, as the number independent and identically distributed observations

grows, (4.21) describes the true distribution function.

Theorem 49. (Glivenko-Cantelli) If f1, . . . , fγ are independent and identically dis-

tributed random variables with cumulative distribution function F and empirical dis-

tribution function F̂ , then

Pr

(
lim
γ→∞

sup
t
|F̂ (t)− F (t)| = 0

)
= 1.

The proof is omitted here but can be found in many elementary statistics textbooks.

The interested reader is referred to [84] for details.

To obtain the smooth optimal power fit for the empirical data, minimizing various

norm measures between (4.19) and (4.21) are considered, given by

P(f̂∗, κ) = min
κ
∥F (f, f̂∗, κ)− F̂ (f)∥.

Here the 1, 2 and ∞ norm measures are used.

Firstly, the 1-norm measure between F and F̂ is considered — the absolute area

between the two curves. Noting that the EDF is piecewise continuous, the problem is

formulated as a sum of integrals. An optimal κ is found by solving

P1(f̂∗, κ) = min
κ

γ−1∑
i=0

∫ fi+1

fi

∣∣∣∣∣
(
f − f̂∗
fγ − f̂∗

)κ

− i

γ

∣∣∣∣∣ df, (4.22)

where fi, fi+1 ∈ Y are the order statistics given by (4.13).

The second fit considered P2, is based on the 2-norm distance between F and F̂ —

the squared area between the curves. Once again the minimization problem is written

as a sum of integrals, where the absolute value bars in (4.22) are replaced by (.)2.
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The final power fits use the infinity norm distance. Here two variations are consid-

ered. The infinity norm measures the maximum vertical displacement between F and

F̂ which occurs either just before, or just after a step in F̂ . Therefore, minimizing the

infinity norm is equivalent to solving

P∞(f̂∗, κ) = min
κ

(
max

i=1,...,γ

(
max

{
F (fi, κ)−

i− 1

γ
,
i

γ
− F (fi, κ)

}))
. (4.23)

Secondly, minimizing the sum of local infinity norm measures for each continuous part

of F̂ is considered, defined by

P4(f̂∗, κ) = min
κ

γ∑
i=1

max

{
F (fi, κ)−

i− 1

γ
,
i− 1

γ
− F (fi−1, κ)

}
.

4.4.2.1 Discussion

Numerical simulations performed by the author suggest each power fit method performs

similarly in practice yielding similar values for κ. However, the computational effort

required for each fit is not similar. Here the infinity norm power fit P∞ is chosen because

no integral evaluations are required, it is computationally inexpensive to calculate and

it can be used as a goodness of fit measure (see Section 4.6). Furthermore, the following

theorem shows the infinity norm minimization problem has a unique solution. For

convenience let

g+(κ) = max
i=1,...,n

(
i

γ
− F (fi, κ)

)
and

g−(κ) = max
i=1,...,n

(
F (fi, κ)−

i− 1

γ

)
,

denote the maximum vertical displacement between F and F̂ above and below F ,

respectively. Furthermore, let i∗ be the i which maximizes max{g+, g−} with objective

function value fi∗ .

Theorem 50. The minimization problem given by (4.23) has a unique solution for

κ ≥ 1.

Proof: Differentiating F with respect to κ we obtain

F ′(κ) = ln

(
y − f̂∗
fγ − f̂∗

)(
y − f̂∗
fγ − f̂∗

)κ

< 0
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for all y such that f̂∗ < y < fγ. Therefore, F is strictly monotonically decreasing with

respect to κ such that F (y, 1) > F (y, κ) for all κ > 1. Hence, g+(κ) and g−(κ) are

monotonically increasing and decreasing with respect to κ, respectively.

Firstly, consider g+(1) ≥ g−(1). Now F (fi∗ , 1) > F (fi∗ , κ) and so g+(1) < g+(κ)

for all κ > 1. Since g+(κ) is monotonically increasing and g+(1) ≥ g−(1), κ = 1 is a

unique minimizer of (4.23).

Secondly, consider g+(1) < g−(1). Since g+(κ) and g−(κ) are monotonically in-

creasing and decreasing functions on the positive real line, respectively, there exits

a unique intersection point (κ∗, g∗) such that g+(κ∗) = g−(κ∗) = g∗. Furthermore,

g+(κ+ ϵ) > g−(κ+ ϵ) for all ϵ > 0, with g∗ < g+(κ+ ϵ), and g−(κ− ϵ) > g+(κ− ϵ) for
all ϵ > 0, with g∗ < g−(κ− ϵ). Thus, κ = κ∗ is the unique minimizer of (4.23). �

4.5 Solving the ∞-norm Fit

To solve the minimization problem given by (4.23), the 1-dimensional optimization

technique, Golden Section Search (GSS) [56] is used. This method is chosen because

Theorem 50 ensures (4.23) has a unique solution and (4.23) is nonsmooth at the so-

lution. Thus, the use of derivative based methods may be problematic. A precise

statement of GSS is given in Figure (4.2).

GSS generates a sequence of nested brackets, each containing the desired solution κ∗.

Each bracket is defined by three distinct points. Consider an interval [a, b] containing

κ∗ and a point â ∈ (a, b), with

P∞(a) > P∞(b) > P∞(â). (4.24)

P∞ is continuous on the compact set [a, b] which implies P∞ is bounded and hence,

P∞(x) has an infimum where x ∈ [a, b]. The continuity of P∞ and compactness of [a, b]

ensures P∞ achieves this infimum and thus, a minimum exists. Furthermore, from

(4.24) the minimum is not at a or b. The interval [a, b] is said to bracket κ∗.

Each nested bracket is obtained by considering two symmetric points âk < b̂k ∈
(ak, bk). To shrink a bracket {a, â, b}, P∞ is evaluated at a fourth point b̂ where

a < â < b̂ < b. If P∞(â) < P∞(b̂), then {a, â, b̂} forms a bracket, otherwise {â, b̂, b}
forms a bracket. Placing these points at

âk = ak + (1− Ξ)(bk − ak) and b̂k = bk − (1− Ξ)(bk − ak),
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1. Initialize: Compute initial bracket [a0, b0] containing κ∗. Set k =

0 and choose τb > 0.

2. Compute the pair of symmetric points,

âk = ak + (1− Ξ)(bk − ak); and

b̂k = bk − (1− Ξ)(bk − ak),

where Ξ = 1
2
(
√
5− 1).

3. If P∞(b̂k) ≤ min{P∞(âk),P∞(bk)} set

ak+1 = âk and bk+1 = bk.

Otherwise set

ak+1 = ak and bk+1 = b̂k.

4. If bk+1 − ak+1 < τb, set κ∗ = argmin{P∞(âk),P∞(b̂k)} and stop.

Otherwise, increment k and goto Step (2).

Figure 4.2: Golden Section Search algorithm

where Ξ = 1
2
(
√
5− 1), ensures that either âk = âk+1 or b̂k = b̂k+1 holds. Thus, at each

iteration three points with known function values are recycled and only one function

evaluation is required to define the new nested bracket.

The algorithm terminates at iteration k when the minimal bracket size bk−ak ≤ τb

is reached. Hereafter τb = 0.001 is chosen, giving κ∗ to at least four significant figures.

4.5.1 Initial Bracket

The initial bracket is calculated from the expected range of κ values [n/2, 2n], with

a0 = 1 and b0 = 2n. Fixing a0 = 1 for all n allows for a wide range of possible κ∗

values, one of which best fits the data. Fixing b0 = 2n is crucial for the reliability of

the stopping rule. In particular, allowing κ∗ > 2n can give a false indication of zk being

an essential local minimizer of f . Firstly consider f1 ≪ f2. This suggests CARTopt

has got lucky, generating a point with a significantly lower function value than other

elements of Y . To yield an optimal fit an extremely large power is often required,
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resulting in F (f1 − ϵ) being extremely small. Thus, the probability of reducing f

further is extremely small suggesting zk is an essential local minimizer of f , even if only

a single low function value has been located. Secondly, consider CARTopt generating

a set {y ⊂ Y } with exceedingly similar function values. This can result in a large

jump in the empirical distribution function F̂ . Therefore, minimizing (4.23) reduces

to minimizing the difference between F and F̂ in the neighborhood of the large jump

in F̂ . This can potentially give large powers and result in F (f1 − ϵ) being extremely

small, giving a false indication of f1 being an essential local minimum of f .

Choosing the initial bracket as defined above may result in the interval [1, 2n] not

bracketing κ∗, suggesting a large power is required to fit F̂ . Thus, before the GSS

algorithm is implemented, if

P∞(2n− λ) > P∞(2n),

where 0 < λ < τb, then κ∗ ≥ 2n to within tolerance. In this case it is assumed the

power is too large and κ∗ is set to 2n (maximum value) and no optimization is required.

4.5.2 Choosing the Optimal κ∗

The GSS algorithm is applied using each value of f̂∗ (defined in (4.20)), solving the

minimization problem given by (4.23) three times producing the set,

{P(i)
∞ = P∞(κ(i), f̂ (i)

∗ ) : i = 1, 2, 3},

where κ(i) denotes the power which minimizes (4.23) using f̂
(i)
∗ . The optimal power

fit is chosen as P∗
∞ = mini{P(i)

∞ } with corresponding κ∗ and f̂ ∗
∗ values. Thus, the

theoretical CDF is given by

F (f, κ∗, f̂∗
∗ ) =

(
f − f̂∗

∗

fγ − f̂∗
∗

)κ∗

, (4.25)

from which, the probability of reducing f further is calculated. Note, with f̂∗ < f1

this probability is non-zero. The reader is referred to Figure 4.3 for an example of an

optimal power fit.



102 Chapter 4. Sequential Stopping Rule

4.5.3 Computational Efficiency

The sequential stopping must be computationally cheap to evaluate so the overall

efficiency of the CARTopt algorithm is not compromised. To this end, the optimization

required in the fitting process must be computationally inexpensive. The construction

of each bracket in GSS linearly shrinks the bracket range containing κ∗ to zero at

constant rate Ξ = 1
2
(
√
5− 1). Therefore, at the kth iteration

bk − ak = Ξk(2n− 1),

where b0 − a0 = 2n− 1. To obtain the termination bracket range of 0.001,

k ≥ ln (0.001/(2n− 1)) / ln(Ξ)

iterations are required. Thus, for n = 2, 10, 100 the required number of iterations to

locate κ∗ to the desired accuracy are k = 17, 21, 27 respectively. Hence, the compu-

tational effort required to solve (4.23) is minimal and not adversely effected by the

dimension of the objective function f .

4.6 Goodness of Fit

The theoretical optimal power fit (4.25) provides the best theoretical model for the

empirical data Y . However, the best theoretical model does not necessarily fit the

data well and a measure of goodness of fit is needed. If the fit is poor, probabilities

calculated from (4.25) cannot be trusted and the rule fails to halt the algorithm.

Here, the Kolmogorov Smirnov (KS) test for continuous data is used to compare

the EDF given by (4.21) to the theoretical CDF given by (4.25). The test is conducted

under the null hypothesis that the two distributions are the same. The KS test statistic

for continuous data is

ξ = sup |F (f, κ∗, f̂ ∗
∗ )− F̂ (f)|,

the largest deviation between the postulated and observed data. The test is conducted

with respect to the critical value ξη,γ of the distribution of the KS statistic, i.e. Pr(ξ ≥
ξη,γ) = η, where η is the level of significance and γ is the number of sample points.

The popular choice η = 0.05 is used. If ξ ≥ ξη,γ , then the null hypothesis is rejected at

the η level of significance.

Critical values ξη,γ can be found in tables (see for example [90]) or approximated
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by

ξη,γ ≈

√
− ln(η/2)

2γ
− 0.16693

γ
. (4.26)

When dealing with small sample sizes (say γ ≤ 25) the effectiveness of the KS test can

be increased using a correction factor [90]. However, for γ = 2N = 40 (sample size

used here) the two methods are indistinguishable.

This test is chosen because is it extremely cheap to calculate. The KS statistic is

given by ξ = P∗
∞(κ∗, f̂ ∗

∗ ), requiring no additional calculations and ξη,γ < 1 is constant.

Thus, the goodness of fit is essentially free.

A good fit suggests the distribution of Y follows a power law and probabilities are

determined from (4.25) with confidence. An example of a good fit is shown in Figure

4.3. Whereas, a poor fit indicates one of two things. Either, CARTopt is not sampling

in a sufficiently small neighborhood of an essential local minimizer, or the distribution

of function values near the essential local minimizer does not follow a power law. In

either case, more random sampling is required in the neighborhood of zk to obtain

more information about f .
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Figure 4.3: Empirical distribution function (blue staircase) and optimal power fit (smooth curve).
This example illustrates an optimal power fit which terminated the CARTopt algorithm on the non-
smooth Rosenbrock function (3.22), where f∗ = 0. The fit is good and the probability of reducing f
below f1 − ϵ is sufficiently small for ϵ = 1e-8.
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4.7 Deterministic Instances of CARTopt

Convergence results for the deterministic instances of the CARTopt method have not

been derived. Therefore, convergence to an essential local minimizer of f cannot be

guaranteed. The only difference between the stochastic and deterministic methods is

how sample points are generated. Thus, the deterministic instances of CARTopt also

generate a non-empty set of sample points with the least function values and thus, the

rule proposed in the next section can also be applied.

4.8 Stopping Rule for the CARTopt Method

The sequential stopping rule for the CARTopt method is now presented. The rule is

implemented at Step 3(g) in the main loop of the CARTopt algorithm (see Figure 3.1)

when Tk is full size i.e. k > max{2, 2(n− 1)}. Furthermore, if f is a Barrier function,

the rule requires Tk to be full size with at least 2N finite function values.

Definition 51. (Stopping rule). Terminate the CARTopt algorithm at iteration k

if Tk is full size with |{x ∈ Tk : f(x) ̸=∞}| ≥ 2N and one of the following conditions

holds:

(a) given an ϵ > 0 and 0 < β < 1
γ
, if P∗

∞(f̂ ∗
∗ , κ

∗) < ξη,γ and F (f1− ϵ, f̂∗
∗ , κ

∗) < β, or

(b) k > kmax.

Here ξη,γ is calculated from (4.26) and kmax ≫ 1 is a finite resource quantity chosen

by the user. The default value is kmax = max{1000, 100n2}. Thus, if Assumption

46 does not hold (the sequence of iterates {zk} is unbounded) the CARTopt method

terminates.

Proposition 52. The proposed stopping rule halts the CARTopt algorithm at iteration

k ≤ kmax.

Proof. From Theorem 32, the main loop of the CARTopt (see Figure 3.1, Step 3) is

a finite process. This loop is implemented indefinitely until stopping conditions are

satisfied. Thus, the algorithm halts at iteration k ≤ kmax, if not before.

In summary, CARTopt is terminated at iteration k if the distribution of objective

function values in a neighborhood of f(zk), given by Y , follows a power law and the

probability of finding a point with function value f1 − ϵ is sufficiently small, or if user
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resource limits are reached. If CARTopt halts before kmax is reached, (4.25) asserts

that the probability of reducing f(zk) further is small and f(zk) is an estimate of an

essential local minimum of f . The reader is referred to Figure 4.3 for an example

of a optimal power fit which halted CARTopt. Numerical simulations performed by

the author found that choosing ϵ relative to the required decimal place accuracy and

setting β = 1e-6 performed well in practice. Choosing ϵ = 1e-8, for example, gave

approximately eight decimal accuracy on the nonsmooth problems considered.

Although this rule has been developed primarily for the CARTopt method, it can

be applied to many random search algorithms. The only requirement is that a set of

non-repeating, γ > 0 least function values are retained by the algorithm. With γ = 40,

minimal additional storage is required to implement the rule on a different algorithm.
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Chapter 5

Hooke and Jeeves / CARTopt

Hybrid Method

This chapter introduces a new algorithm which finds a local solution to the uncon-

strained minimization problem given by (1.1). Here, the objective function f : Rn →
R ∪ {+∞} is assumed to be nonsmooth and may be discontinuous. The method con-

forms to the framework described in Section 1.7, where a series of local and localized

global optimization phases are applied. The local phase of this algorithm is a modified

Hooke and Jeeves method, which builds upon ideas described in Section 1.4 on trajec-

tory following optimization. The localized global phase performs Pure Random Search

on a subset of Rn. This subset is defined and sampled using the bound constrained

CARTopt algorithm. Choosing the CARTopt algorithm means the convergence results

developed in Chapter 3 can be used to establish convergence on nonsmooth problems

for this hybrid algorithm.

Firstly, the new algorithm’s structure is introduced, where sections 5.1 – 5.4 detail

the local phase and Section 5.5 describes the localized global phase. A method for

generating a new search grid is proposed in Section 5.6. The chapter concludes with

convergence results for both smooth and nonsmooth objective functions.

5.1 The Algorithm

The algorithm proposed here is a variant of the classical direct search algorithm of

Hooke and Jeeves [35] (see Section 1.3.2.1). The new algorithm differs from the classi-

cal version in three major ways. Firstly, the algorithm allows for both grid perturba-

tions and rotations as opposed to operating on a fixed grid. Secondly, the sequence of

107
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objective function values {f(xk)}∞k=1 generated by the algorithm is not necessarily de-

creasing. Potential uphill steps are taken so the sequence of iterates {xk} approximates

the path of a second order trajectory following method (see Section 1.4). Finally, the

algorithm conducts a series of localized global optimization phases in a neighborhood of

xk before the reducing the grid mesh size. It is the localized global optimization phases

that give convergence on nonsmooth optimization problems, by exploiting the connec-

tion between local nonsmooth optimization and global optimization [61] (described in

Section 1.6).

5.1.1 Grid Structure

The local phase of the algorithm proposed here reduces f by searching on a succession

of finer grids, indexed by m. Each grid Gm is defined by a mesh size hm > 0, a grid

center Om (on the grid) and a set of n vectors Vm spanning Rn, where

Vm =
{
ν(i)m = Hmei : i = 1, . . . , n

}
.

Here Hm is a Householder matrix and ei is the i
th column of the identity matrix. Points

on the grid Gm are given by

Gm =

{
x ∈ Rn : x = Om + hm

n∑
i=1

λiν
(i)
m

}
,

where each λi is an integer. The vectors in Vm are parallel to the axes of the grid

and steps between adjacent grid points are given by the vectors hmν
(1)
m , . . . , hmν

(n)
m .

The sequence of centers Om means each grid can be offset relative to one another and

the sequence of matrices Hm means each grid can be rotated relative to one another.

Hence, the succession of finer grids is not necessarily nested. In the classical algorithm

of Hooke and Jeeves, O is fixed and H is the identity matrix for all iterations.

The set of vectors

V+ = {Vm,−Vm} (5.1)

form a positive basis for Rn [85] and hence, any vector in Rn can be written as a

non-negative linear combination of vectors in V+. Using (5.1) a grid local minimizer is

defined.

Definition 53. (Grid Local Minimizer). A point x ∈ G(O, h,V) is a grid local
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minimizer of an objective function f with respect to a positive basis V+ if

f(x+ hν) ≥ f(x) for all ν ∈ V+.

5.1.2 Algorithm Details

A precise statement of the main algorithm is given in Figure 5.1. The algorithm consists

of an initialization phase and two nested loops. An exploratory phase (Step 3(a)) and

a localized global phase (Step 3(e)) are listed as separate subroutines in sections 5.2

and 5.5 respectively. The dependence on Om is suppressed in the following as Om is

the origin of Gm. The notation fk = f(xk) has been used for convenience.

The initialization phase sets the iteration counters k andm to zero, the Householder

matrix H0 is set as the identity matrix, a lower bound hmin > 0 on the mesh size and v0

to the zero vector. The user chooses an initial mesh size h0 > hmin and an initial point

x0 ∈ Rn, which is also set to the grid center O0. The initial velocity vector v0 does not

necessarily need to be set to zero. Setting a non-zero v0 gives an initial velocity to the

system, which may produce a different trajectory exploring different regions of Rn and

possibly locating different minima.

The inner loop (steps 3(a) - 3(d), indexed by k) searches on the grid Gm until a grid

local minimizer is found. Step 3(d) implements a Hooke and Jeeves automatic restart,

removing unsuccessful pattern moves by setting vk+1 = 0. This forces an exploratory

phase from xk+1 = xk, a successful iterate. The outer loop (steps 3(a) - 3(f), indexed

by m) defines the new grid Gm+1 for the inner loop to search over. The grid is aligned

with a promising direction of descent, xk+1−xk, using a Householder matrix Hk, where

xk+1 is generated in Step 3(e). This alignment potentially reduces the number of grid

local minimizers and can increase the computational efficiency of the method. Each

component of Step 3 is discussed in the sections which follow.

The algorithm terminates when either hm ≤ hmin or if the stopping conditions of

CARTopt are satisfied. Once terminated, zm is the candidate solution for an essential

local minimizer of f .

5.2 Exploratory Phase

The exploratory phase considered here is a slightly modified version of the classical

Hooke and Jeeves exploratory phase [35]. A precise statement of the subroutine is

given in Figure 5.2. At each execution, f is evaluated at a finite number of points
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1. Initialize: Set k = m = 0, v0 = 0, H0 to the identity matrix and

hmin > 0. Choose x0 = O0 ∈ Rn and h(0) > hmin.

2. Evaluate the objective function f0, and set U0 = f0.

3. while stopping conditions do not hold, do

(a) Exploratory phase: Calculate the exploratory vector Ek from

xk + vk.

(b) Sinking lid: If f(xk + vk + Ek) ≥ fk and Uk ̸= fk, then choose

Uk+1 ∈ [fk,Uk), else Uk+1 = Uk.

(c) Pattern move: If f(xk + vk + Ek) < Uk+1 then set

xk+1 = xk + vk + Ek and vk+1 = vk + Ek,

increment k and goto (a).

(d) If vk ̸= 0 set vk+1 = 0, and goto (a).

(e) Localized global optimization phase: Set zm = xk. Choose

Ωm ⊂ Rn such that zm ∈ Ωm and m(Ωm) > 0. Execute CARTopt

in Ωm until a lower point xk+1 is found or stopping conditions

are satisfied.

(f) Choose hm+1, form Hm+1 and set Om+1 = xk+1. Increment k and

m and goto (a).

end

Figure 5.1: The main algorithm of the Hooke and Jeeves / CARTopt hybrid method
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to define the exploratory vector Ek. This requires at least n, but no more than 2n

function evaluations. In what follows, the m subscripts have been omitted on h and H

as they remain unchanged throughout this subroutine.

Each exploratory phase is conducted from z = xk + vk. While operating on the

grid Gm, the following method is used to potentially reduce the number of function

evaluations. If the decision variable zi was successfully decremented during the previous

exploratory phase, zi is decremented first in the current exploratory. The classical

exploratory phase increments each decision variable first, with no reference to previous

iterations. Including this additional heuristic potentially saves n function evaluations

at each phase, simply by exploring the promising direction defined by the trajectory

first. To indicate which directions to explore first a diagonal matrix IE is used, where

the non-zero elements are given by

IE(i, i) = sign(HEk−1(i)), (k ≥ 1)

where E0 = 0 and

sign(x) =

{
1 if x ≥ 0

−1 otherwise.

The notation IE(:, i) and Ek(i) is used to denote the ith column vector of IE and ith

element of Ek respectively. When a new grid Gm+1 is formed and for the special case

k = 0, no promising direction exists and IE is set as the identity matrix.

5.3 Sinking Lid

The sinking lid (Step 3(b)) is a strategy used to ensure the trajectory does not os-

cillate or cycle endlessly if the sequence {xk} is bounded. This behavior can occur

when multiple uphill steps are taken. Recall that the sequence {xk} approximates a

particle moving in conservative force field (see Section 1.4.1) and without damping

can be in continual motion. The sinking lid systematically reduces an upper bound

U on allowable function values each time ascent is made, creating a sequence of non-

increasing upper bounds {Uk}. Thus, at iteration k the trajectory cannot surmount

ridges where f(x) > Uk. Provided {xk} bounded, the lid eventually traps the particle in

the neighborhood of an essential local minimizer, or at least terminates the trajectory

in reasonable time.

Initially U0 = f0 and thus, f cannot be increased above the initial function value.
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1. Initialize: Set Ek = 0, z = xk + vk, and fE = f(z).

2. For i = 1, . . . , n do

(a) Set z = z + hHIE(:, i). If f(z) < fE, then set

fE = f(z) and Ek = Ek + hHIE(:, i).

Increment i and goto end.

(b) Set z = z − 2hHIE(:, i). If f(z) < fE, then set

fE = f(z) and Ek = Ek − hHIE(:, i).

Increment i and goto end.

(c) Set z = z + hHIE(:, i) and increment i.

end

3. Return to main algorithm with exploratory vector Ek.

Figure 5.2: Modified exploratory phase of the Hooke and Jeeves algorithm

If descent is made (f(xk + vk + Ek) < fk) the upper bound remains unchanged with

Uk+1 = Uk. (5.2)

Otherwise, f(xk + vk + Ek) ≥ fk and the upper bound is systematically reduced as

follows. If f(xk + vk + Ek) < Uk and ∥vk∥ ̸= 0

Uk+1 = (Uk + f(xk + vk + Ek))/2, (5.3)

else

Uk+1 = fk. (5.4)

Equation (5.3) sets the new upper bound halfway between the previous upper bound

and the objective evaluated at the point of ascent. Whereas, (5.4) sets the upper bound

to the previous successful iterate if the objective is increased above the current upper

bound. Thus, the pattern move is rejected in Step 3(c) if (5.4) is satisfied.

The trajectory produced using this method can leave locally optimal points found
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along the path. However, the primary interest here is in local optimization and hence

locating any optimal point is sufficient. Setting Uk+1 = fk for all k gives a strictly

descent version of the modified Hooke and Jeeves algorithm.

5.4 Pattern Move

The Hooke and Jeeves pattern move may be expressed by the pair of equations

xk+1 = xk + vk + Ek, and vk+1 = θ(vk + Ek), (5.5)

where Ek is the exploratory vector, v0 = 0 and θ is a positive integer. The pattern

move used here differs from the classical move in two ways. Firstly, by choosing θ > 1

a more aggressive pattern move is achieved, allowing the algorithm to transverse large

distances in Rn in less iterations. Secondly, uphill steps are accepted provided f is not

increased above the current upper bound Uk. This allows f to temporarily increase

along the trajectory approximating the path of a second order ODE trajectory (see

Section 1.4). The relative merits of such an approach are illustrated in the following

example.

5.4.1 Uphill Steps

Potential benefits of allowing uphill steps in a trajectory produced using the inner loop

of the main algorithm with θ = 1 in (5.5) is demonstrated. The problem considered

here is a nonsmooth version of Rosenbrock’s function, given by

f(x) = |10(x2 − x21)|+ |1− x1|, (5.6)

starting from x0 = [−0.5, 1.3], with x∗ = [1, 1] the unique essential local minimizer.

This nonsmooth version of Rosenbrock’s function shares all the difficulties of its smooth

counterpart with an added sharp valley floor where f is non-differentiable. The reader

is referred to Figure 5.3 where a contour plot of (5.6) is shown.

The benefits of allowing uphill steps are clear from Figure 5.3. Initially, both the

classical and modified Hooke and Jeeves methods share the same trajectory. However,

upon first contact with the nonsmooth valley floor the classical algorithm terminates

at xHJ
∗ . The classical algorithm then experiences a period of stagnation, requiring a

series of mesh reductions before any progress is made toward x∗. Whereas, the modified

algorithm rolls over the nonsmooth valley floor multiple times making progress toward
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Figure 5.3: Trajectory generated by the inner loop of the main algorithm (dotted curve) for minimiz-
ing (5.6), terminating at xM∗ . The classical algorithm terminates at xHJ

∗ . The dashed curve indicates
the nonsmooth valley floor.

x∗ while operating on the same grid. Although the trajectory terminates at xM∗ , still

some distance from x∗, much more progress is made. Therefore, the first localized

global optimization phase is performed closer to x∗, exploiting the fast local search

component of the algorithmic framework better. In addition, Figure 5.3 illustrates

the potential for this algorithm to escape local nonsmooth wedges in f , potentially

reducing the risk of stagnation, when f is largely smooth.

5.5 Localized Global Phase

At each iteration of the localized global phase (Step 3(e)) the random search algorithm

CARTopt is employed to either find a point of descent, or confirm that zm is an essential

local minimizer of f . The interested reader is referred to the three previous chapters

for details on this optimization method, particulary Chapter 3.

Each localized global optimization phase is conducted in a sequence of hypercube
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search regions Ωm ⊂ Rn centered on zm, defined by

Ωm = {x ∈ Rn : ∥HΩx− zm∥∞ ≤ ρ} , (5.7)

where

ρ = max{
√
nhm, hΩ} (5.8)

is the hypercube radius and hΩ > 0 is a minimum radius imposed on Ω. The minimum

radius ensures m(Ω) is bounded away from zero for all iterations, which is crucial for

convergence on nonsmooth problems. If the objective function is known to be smooth,

then ρ =
√
nhm is used. This allowsm(Ω) to tend to zero as h tends to zero, potentially

increasing the rate of convergence on smooth problems. The Householder matrix HΩ

in (5.7) is used to rotate the hypercube optimization region (see Figure 5.4), where

HΩ = I − 2

∥e1 − w∥2
(e1 − w)(e1 − w)T

and

w =
1√
3 + n

Hm[2, 1, . . . , 1]
T. (5.9)

This apparently strange transformation is used to remove collinear points from the in-

put training data set that CARTopt uses, details of which follow in the next subsection.

The localized global phase can terminate in two ways. Firstly, if a point x ∈ Ωm is

found such that f(x) < f(zm), then x is set to the next iterate xk+1 and a new local

phase begins. Secondly, if the stopping conditions of CARTopt are satisfied. The latter

confirming zm as an essential local minimizer of f , terminating the whole algorithm.

5.5.1 Recycling Points

Most of the computational effort in the approach to nonsmooth optimization proposed

here is performed during the localized global phase. Therefore, to increase the nu-

merical performance of CARTopt, points with known function values are reused where

appropriate. This gives CARTopt an initial training data set from which a CART

partition on Ωm is formed.

Each localized global phase is conducted in the neighborhood of xk, where an ex-

ploratory phase failed. Thus, there are at least 2n + 1 points with known function

values in the neighborhood of xk, defined by the set

XE = {xk, xk + hmνm : νm ∈ V+
m}.
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Figure 5.4: The localized global optimization region Ω is shown in bold. The dotted lines define
the grid upon which the Hooke and Jeeves Exploratory phase failed, shown as the bold cross. Note,
there does not exist two points from the cross which are collinear and parallel to boundaries of Ω.
Two potential splitting hyperplanes are shown in red.

Noting that ∥x − xk∥ ≤ hm for all x ∈ XE and Householder transformations preserve

the lengths of vectors,

∥HΩx∥∞ ≤ hm ≤
√
nhm for all x ∈ XE.

Thus, XE ⊂ Ωm for all m.

Collinear points parallel to a boundary face of Ωm can be problematic during a

partition phase, particulary if they are in different categories — a point from {ωL}
and {ωH}. Recall that all potential splitting hyperplanes are orthogonal to boundary

faces of Ωm and between elements of different categories. Thus, there exists a potential

hyperplane orientation for which no split exists. However, using HΩ to define Ωm

ensures all collinear points in XE are not parallel to any boundary face of Ωm, see

Figure 5.4. The direction vector w defined by (5.9) is chosen so that the minimum

distance between potential splitting points in XE is bounded above zero, see Figure

5.4.
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In addition, if Ωm−1 ∩ Ωm ̸= ∅ (m ≥ 2) there may be many points with known

function values in Ωm from previous localized global phases. Let T ∗
m denote the ter-

minating training data set from the mth (m ≥ 1) localized global phase with T ∗
0 = ∅,

then the input training data set is defined by

Tm = {x ∈ T ∗
m−1 ∩ Ωm} ∪XE. (5.10)

Reusing or recycling these points can greatly increase the efficiency of CARTopt as

a full size training data set may be known. With the input training data satisfying

2n+ 1 ≤ |Tm| ≤ 2(n− 1)N + 2n+ 1,

where N is batch size used in CARTopt, less (or no) function evaluations are required

to form the initial partition on Ωm. Therefore, promising subsets of Ωm can be sampled

directly, without having to randomly sample Ωm first.

5.6 Generating the Next Grid

The outer loop (steps 3(a) - 3(f) indexed by m) of the main algorithm generates a

new grid for the inner loop to search over. In this section it is assumed that Step

3(e) is a finite process and a point of descent xk+1 is located. Therefore, Step 3(f)

is implemented and a new grid is generated. Rather than simply having all grids

nested, as in the classical algorithm, each grid is perturbed, rotated and scaled. Each

is discussed in the subsections which follow.

5.6.1 Perturbation

The grid perturbation is straight forward, setting the grid center Om+1 = xk+1, the

newly generated point of descent from the localized global phase. Since xk+1 is gener-

ated from randomly sampling subsets of Ωm, Om+1 ̸∈ Gm+1 (m({x ∈ Gm}) = 0) and

so Gm+1 is offset relative to Gm with probability one. Hence, the modified Hooke and

Jeeves algorithm is not confined to searching an admissible set of points.

5.6.2 Rotation

Each time a grid local minimizer is located, the computationally expensive localized

global phase is initiated. Therefore, if transforming the grid has the potential to reduce
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the number of grid local minimizers, the number of localized global phases can also

be reduced. The interested reader is referred to [11] where the number of grid local

minimizers for a strictly convex quadratic function in two dimensions is considered as

the grid is transformed. In [11] it is shown that conjugate grids greatly reduce the

number of grid local minimizers on such functions. Although these ideas could have

potential here, a new approach is developed which potentially yields the same desired

result.

The iterate xk+1 not only gives a point of descent, but also a promising direction of

descent, given by d = (xk+1−xk)/∥xk+1−xk∥. Using the Householder transformation,

Hm = I − 2uuT, (5.11)

u = (e1 − d)/∥e1 − d∥,

the x1 axis of the grid Gm+1 is set parallel to d, i.e. Hme1 = d. Such a transformation

can dramatically reduce the number of grid local minimizers and allow the modified

Hooke and Jeeves component of the algorithm to make more progress.
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Figure 5.5: Grid perturbation with no rotation and grid perturbation with rotation. Points of
descent and ascent are denoted ., o respectively and the shaded region indicates points of descent
from xk.

To illustrate the relative merits of such a transformation consider, for example, the

function

f = max{aTx, bTx} such that x ∈ R2, (5.12)

where a = [0.7,−0.7] and b = [−0.9, 0.5]. The reader is referred to Figure 5.5 where
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the contours of (5.12) are shown. With xk a grid local minimizer of f , a localized

global optimization phase is performed in the neighborhood of xk, locating a point

of descent xk+1. If only grid perturbations are performed, xk+1 remains a grid local

minimizer of f and another localized global phase is conducted. This can repeat for

many iterations, making this method computationally expensive. However, xk+1 is no

longer a grid local minimizer if the grid is transformed using (5.11). The modified

Hooke and Jeeves exploratory moves have succeeded in locating a point of descent

and a new trajectory is produced. Although only a heuristic, the grid transformation

can dramatically increase the numerical performance of the algorithm, executing less

localized global phases. This was observed during numerical simulations performed by

the author.

5.6.3 Scaling

The mesh scaling heuristic used here is made with respect to the iterate xk+1 generated

in the localized global phase. Firstly, consider the case when f is assumed to be

nonsmooth. If

∥xk+1 − xk∥2 ≥ hm, (5.13)

then hm+1 = hm, otherwise

hm+1 = max{hm/τh, ∥xk+1 − xk∥}, (5.14)

where τh is a positive mesh reduction coefficient. Hereafter τh = 3 is chosen, although

any finite positive constant can be used. If (5.13) is satisfied it suggests there is still

potential in operating with the current mesh size and no reduction is made. This may

result in hm not tending to zero as m tends to infinity, but convergence is still obtained

through CARTopt with probability one. Otherwise the mesh is reduced using (5.14).

The term hm/τh is used as a bound on mesh reduction per iteration to prevent an

unjustifiably small value for hm+1, which may cause the algorithm to terminate early.

If f is known to be smooth, then the mesh size is updated using

hm+1 = max

{
hm
τh
,
∥xk+1 − xk∥

n+ ϵ

}
, (5.15)

where ϵ is a small positive constant. This choice of h ensures a mesh reduction after

each successful global optimization phase, a property needed for convergence on smooth

problems.
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Proposition 54. If f is assumed to be smooth and the sequence of grid local minimizers

{zm} is infinite, then hm → 0 as m→∞ for all τh > 1.

Proof. Clearly if hm+1 = hm/τh, the mesh size h is reduced for all τh > 1.

For the second term in the maximization, the largest possible h value is obtained

when ∥xk+1 − xk∥ is maximized. From the definition of Ωm (5.7) and noting that

Householder transformations preserve the length of vectors, this distance is maximized

at the corners of Ωm. With f assumed to be smooth, the radius of Ωm is
√
nhm (see

(5.8)) for all k and hence,

max ∥xk+1 − xk∥ =
√
n(
√
nhm)2 = nhm. (5.16)

Substituting (5.16) into the second term of (5.15) we have

hm+1 =
n

n+ ϵ
hm.

Therefore, both terms in the maximization reduce h at each pass and with {zm} an

infinite sequence the result follows.

5.7 Convergence

In this section it is assumed that the stopping rules for both CARTopt and the mod-

ified Hooke and Jeeves algorithm are never invoked. This allows us to examine the

asymptotic properties of the full sequence of iterates generated by the algorithm. The

stopping conditions are included in the algorithms from a practical point of view.

5.7.1 Smooth Results

Firstly, let us consider the case when the objective function is known to be smooth.

These results is of interest here because the smooth version of the algorithm potentially

converges faster on smooth problems than the nonsmooth version would. In order to

establish the smooth convergence results the following assumptions are required.

Assumption 55. The following conditions hold:

(a) The points at which f is evaluated at lie in a compact subset of Rn; and

(b) The sequence of function values {f(xk)} is bounded below.
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These assumptions ensure the existence of cluster points in {zm} and excludes the

case where f(xk)→ −∞ as k →∞.

The next theorem establishes the basic convergence result and follows closely from

the results in [61]. This result uses Clarke’s generalized derivative [13], which is, the

generalized directional derivative of f in the direction d, defined by

f o(x; d) = lim sup
z→x
λ↓0

f(z + λd)− f(z)
λ

,

where z ∈ Rn and λ is a positive scalar.

First we show that there exists a dense set points in neighborhood of zm with larger

f values if the mth execution of Step 3(e) is infinite.

Proposition 56. If Step 3(e) of the Hooke and Jeeves / CARTopt hybrid algorithm is

an infinite process, then there exists a dense set of points with larger f values in the

neighborhood of zm with probability one.

Proof. Step 3(e) is an infinite process and so CARTopt fails to generate a point with

a function value less than f(zm). Noting that zm is an element of CARTopt’s input

training data and no lower points are generated, the sequence of iterates {zk}∞k=1 gen-

erated by CARTopt remains constant with zk = zm for all k (see Step 3(g) in Figure

3.1). Hence, zm is a cluster point. It follows directly from Theorem 38 that zm is an

essential local minimizer of f with probability one. From the definition of an essential

local minimizer (see Definition 1), the set

E(zm, ϵ) = {x ∈ Ωm : f(x) < f(zm) and ∥x− zm∥ < ϵ} (5.17)

has Lebesgue measure zero for all sufficiently small ϵ > 0. That is, there exists a dense

set of points with larger f values in the neighborhood of zm with probability one.

The convergence result for the smooth version can now be given.

Theorem 57.

(a) Assume the sequences {zm} and {xk} are finite. If f is strictly differentiable at

the final value zm∗ of {zm}, then ∇f(zm∗) = 0.

(b) Let f be locally Lipshitz at z∗. If z∗ is a cluster point of the sequence of grid local

minimizers {zm} and if f is strictly differentiable at z∗, then ∇f(z∗) = 0.
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Proof. For part (a) the only way that the sequences {zm} and {xk} are finite is if Step
3(e) is an infinite process. Noting that f is strictly differentiable [13] at zm∗ , we have

∃w ∈ Rn such that f o(zm∗ ; d) = wTd for all d ∈ Rn. (5.18)

Proposition 56 implies that there exists a dense set of points in the neighborhood of zm∗

such that f(zm∗) ≤ f(x) for all ∥x − zm∗∥ < ϵ. Therefore, the generalized directional

derivative exists in all directions and is non-negative. From (5.18) the only possibility

is w = 0, or equivalently ∇f(zm∗) = 0.

For part (b) we restrict our attention to a subsequence {zj} for which the corre-

sponding subsequence {zj,V+
j } converges uniquely to (z∗,V). In what follows, νj is

an element of the positive basis V+
j (see (5.1)). Using the definition of a grid local

minimizer we have,

f(zj + hjνj)− f(zj) ≥ 0 for all νj. (5.19)

Rewriting (5.19), dividing by hj and taking the limit we have

lim sup
j→∞

f(zj + hj(wj + ν))− f(zj + hjwj) + f(zj + hjwj)− f(zj)
hj

≥ 0,

where wj = νj − ν. Noting that wj → 0, zj → z∗ and hj ↓ 0 (Proposition 54) as

j →∞, the first two terms give Clarke’s generalized derivative at z∗ and so we have

f o(z∗; ν) + lim sup
j→∞

f(zj + hjwj)− f(zj)
hj

≥ 0. (5.20)

With f locally Lipschitz at z∗ we have

|f(zj + hjwj)− f(zj)| ≤ K∥zj + hjwj − zj∥,

for a positive scalar K. Thus, after applying the Lipschitz condition and evaluating

the limit, the second term of (5.20) vanishes leaving

f o(z∗; ν) ≥ 0. (5.21)

Recall that all smooth functions have an open half space of descent directions centered

on x if ∇f(x) ̸= 0. Strict differentiability at z∗ implies

∃w ∈ Rn such that f o(z∗; ν) = wTν for all ν ∈ Rn
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and so if w is non-zero, there exists an open half space for which wTν < 0. However,

every positive basis has at least one vector probing any open half space (Theorem 8)

and (5.21) states that all such directions have wTν ≥ 0. Therefore, w must be the zero

vector and hence, ∇f(z∗) = 0 as required.

5.7.2 Nonsmooth Result

The nonsmooth convergence result is now given.

Theorem 58. Exactly one of the following possibilities holds:

(a) {zm} is an infinite sequence and each cluster point z∗ of the sequence is an es-

sential local minimizer of f with probability one; or

(b) both {zm} and {xk} are finite sequences and the final zm is an essential local

minimizer of f with probability one; or

(c) {zm} is finite and {xk} is an infinite unbounded sequence.

Proof. Noting that a sequence cannot be both infinite and finite only one of these

possibilities can hold.

Case (a) is a direct consequence of Theorem 38.

Let {zm} be a finite sequence and let m∗ be the final value of m. There are two

possible ways this can happen; either the inner loop is an infinite process or the localized

global phase is an infinite process. For the former we consider two cases. Firstly, if

the upper bound Uk on f is eventually constant i.e. Uk = Uk∗ for all k > k∗, we have

f(xk) ≤ f(xk−1) for all k > k∗ by (5.2) and all xk ∈ Gm∗ for all k sufficiently large.

Secondly, if Uk is not eventually constant, then from (5.3) and (5.4) there exists a

strictly decreasing subsequence {Ui}∞i=1 of {Uk} such that Ui+1 < Ui for all i. Further-
more, there exists an infinite subsequence {yi}∞i=1 of {xk} for which f(yi) ≤ Ui for all i
and all yi ∈ Gm∗ . In either case {xk} must be an infinite unbounded sequence, which

is case (c).

For the latter we have the global phase being an infinite process. Theorem 38

implies that there does not exist a set

E = {x ∈ Ωm∗ : f(x) < f(zm∗) and ∥x− zm∗∥ < ϵ}

with positive measure. Therefore, zm∗ is an essential local minimizer of f with proba-

bility one, which is case (b).
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Corollary 59. If the sequence {xk} is bounded, then every cluster point of the sequence

{zm} is an essential local minimizer of f with probability one.

Proof. With {xk} a bounded sequence, case (c) is removed from Theorem 58 and the

result follows.



Chapter 6

A CARTopt Filter Method for

Nonlinear Programming

This chapter considers finding a local solution of a Nonlinear Programming (NLP)

problem. Many practical optimization problems have restrictions placed on acceptable

solutions to the minimization problem (1.1). For example, one or more of the variables

may represent physical quantities, such as quantities of manufacturing materials, that

cannot take negative values. To enforce restrictions, a set of constraint functions {ci(x)}
are included, defining a NLP problem. The optimization problem considered here can

be written as

min
x∈Rn

f(x) such that C(x) ≤ 0 (6.1)

where f : Rn → R ∪ {∞} and C : Rn → (R ∪ {∞})m are functions with C =

(c1, c2, . . . , cm)
T. The constraints define feasible points and the set of feasible points is

called the feasible region.

Definition 60. (Feasible point). A point x ∈ Rn is feasible if and only if ci(x) ≤ 0

for all i = 1, . . . ,m.

Definition 61. (Feasible region). The feasible region N is the set of all feasible

points.

If the objective function is linear and the constraints are linear, then the optimiza-

tion problem is referred to as a linear programming problem or linear program. These

problems occur frequently in management science and operations research. If the ob-

jective function is quadratic and the constraints are linear, the optimization problem is

referred to as a quadratic programming problem or quadratic program. In this chapter,

125
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the general NLP given by (6.1) is considered, rather than forcing linear constraints, for

example.

General NLP problems can be solved using penalty function methods. Some of

these methods try to create a smooth function with a local minimum near a solution

to the constrained problem by penalizing infeasible regions. In this approach a series

of unconstrained problems of the form

min
x∈Rn

g(x, σ) = f(x) + σh(x) (6.2)

are solved. Here h is a constraint violation function and σ is a penalty parameter.

Choosing

h(x) =
m∑
i=1

(max{ci(x), 0})2,

for example, gives the quadratic penalty function. The basic algorithm is defined as

follows: Set k = 0. Given an x0 ∈ Rn and σ0 > 0, solve (6.2) starting from xk and

call the solution xk+1. Choose σk+1 > σk and solve (6.2) once more starting from

xk+1. Repeat until stopping conditions are satisfied. Increasing the penalty parameter

σ tries to drive the sequence of iterates {xk} to a solution of the constrained problem.

However, choosing σ can be problematic [26]. If σ becomes too large, solving (6.2)

can become increasingly ill conditioned, whereas too small and xk+1 can be a worse

approximation than the current iterate xk.

Other approaches include exact penalty functions and barrier methods. These

methods penalize infeasible points but leave the solution to the original NLP un-

changed. However, smoothness is lost making the use of gradient based methods (and

others) problematic. These problems can be solved using the CARTopt methods de-

scribed in the previous chapters if the following assumption is satisfied.

Assumption 62. Let the closure of the interior of the feasible region N be N itself.

Assumption 62 insures that for all x ∈ N , there exists an ϵ > 0 such that B(x, ϵ)∩N
with positive Lebesgue measure. If equality constraints are present in (6.1), Assump-

tion 62 is not satisfied and the previous CARTopt methods fail — probability of sam-

pling the feasible region is zero. Here an alternative approach using the concept of a

filter is used to solve (6.1), including the case when equality constraints are present.

Firstly, the concept of a filter is introduced and its usage in constrained optimization

is discussed. Section 6.1.2 defines the conditions imposed on the constraint violation

function and provides some examples. The CARTopt filter algorithm is introduced
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in Section 6.2 and developed over the subsections that follow. In subsection 6.2.1

the concept of a sloping filter is proposed. A stopping rule is given in Section 6.3

giving practical convergence to locally optimal points. Convergence to limit points

with desirable properties is demonstrated in Section 6.4. Here the objective function

and constraint violation function is assumed to be nonsmooth.

6.1 Filter Algorithms

Filter based algorithms were introduced by Fletcher and Leyffer [26] as a way to pro-

mote global convergence on sequential quadratic programming problems without the

use of a penalty function. Filter algorithms treat the constrained optimization prob-

lem (6.1) as biobjective — one wishes to minimize both the objective function f and

the constraint violation h. However, priority must be given to minimizing constraint

violation to promote convergence to a feasible solution.

6.1.1 Filter

To solve the biobjective optimization problem the notion of dominance from multi-

objective terminology is introduced. For a pair of distinct vectors w, ŵ with finite

elements, w dominates ŵ if and only if wi ≤ ŵi for each i and w ̸= ŵ. This is written

as w ≺ ŵ and the notation w ≼ ŵ is used to indicate that either w ≺ ŵ, or w and

ŵ are equivalent. The convention that any vector with finite elements dominates any

vector with an infinite element is used. Furthermore, two vectors containing at least

one infinite element are considered equivalent.

To simplify notation, dominance is defined for our particular situation.

Definition 63. (Dominance). A point x ∈ Rn is said to dominate z ∈ Rn, written

x ≺ z, if and only if

(h(x), f(x))T ≺ (h(z), f(z))T.

Clearly, if x ≺ z, then either h(x) < h(z) or f(x) < f(z) (or both) must hold.

Using the definition of dominance a filter is now defined.

Definition 64. (Filter). A filter is a set of points in Rn such that no point dominates

another.

The filter can be represented geometrically in the (h, f) plane as illustrated in

Figure 6.2.
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Fletcher et al. use the filter as a criterion for accepting or rejecting a step in a

sequential quadratic programming method [26]. An iterate xk is accepted by the filter

if the corresponding pair (h(xk), f(xk)) is not dominated by any point in the filter and

the filter is updated accordingly for the next iteration. Their filter method requires the

explicit use of derivatives on both the objective and constraints. Audet and Dennis

use a filter in a similar way to accept or reject points in a derivative free pattern

search method [4]. This method is of interest here because it can be applied to NLP

with discontinuous or nonsmooth objective functions. However, convergence is only

demonstrated when smoothness assumptions are placed on both f and h. Karas et

al. also provide a bundle-filter method for nonsmooth convex constrained optimization

[40]. Similarly, the filter is used as a way of accepting or rejecting a step in their method.

Convergence to optimal points is demonstrated when both f and h are assumed to be

convex [40]. The method proposed here provides strong convergence results when f ,

h, or both are assumed to be nonsmooth or discontinuous.

6.1.2 Constraint Violation Function

The constraint violation function h is measure of how feasible an iterate is. There are

many possibilities. Constraint violation functions considered here satisfy two simple

conditions. Firstly, h(x) ≥ 0 for all x. Secondly, h(x) = 0 if and only if x is a feasible

point. By convention, h(x) =∞ if any component of C(x) is infinite.

This thesis considers constraint violation functions of the form,

h(x) = ∥[C(x)]+∥,

where ∥.∥ is a vector norm and [y]+ = max{y, 0}. Clearly, these functions satisfy the

conditions stated above. Of particular interest are the standard vector norms — the

1, 2 and ∞ norm measures. The use of these constraint violation functions has been

investigated recently by Griffin et al. on penalty function methods. The interested

reader is referred to [29] for details.

The 1-norm violation gives the sum of violations

h1(x) =
m∑
i=1

[ci(x)]+. (6.3)

This choice is used by Fletcher and Leyffer in their paper introducing the filter ap-

proach, as it has convenient features exploited in their algorithm [26]. However, Audet
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and Dennis provide a simple example for which their method fails when h1 is used

[4]. In their method, each step is obtained by polling directions using a positive span-

ning set and thus, a descent direction can be missed because h1 is not differentiable

everywhere.

Two variations of the 2-norm constraint violation function

h2(x) =

(
m∑
i=1

[ci(x)]
2
+

)θ

, (6.4)

are considered here. With θ = 1/2 the standard 2-norm is obtained. With θ = 1,

h2 has the nice property of being continuously differentiable whenever C is [4]. This

choice is preferred by Audet and Dennis because if there exists a descent direction in

h2, then a positive spanning set will detect it (see Theorem 8 of this thesis) and their

method generates a successful step.

Finally, the ∞-norm constraint violation function is

h∞(x) = max
i

[ci(x)]+, (6.5)

which gives the maximum constraint violation.

6.2 A CARTopt Filter Algorithm

In this section a CARTopt filter algorithm is presented for nonlinear programming. The

algorithm is a variation on the unconstrained CARTopt instance proposed in Chapter

3 and is explicitly stated in Figure 6.1. It consists of an initialization phase (steps 1

and 2) and a single loop (Step 3).

Step 1 sets the iteration counter k = 1 and the user chooses a batch size N > 0, an

initial hypercube radius h > 0, a minimum sub-region radius δ > 0 and a constraint

violation function h with an initial penalty parameter 0 < σ1 ≤ σmax, where σmax is

finite (see Section 6.2.5). If the user has an initial set of points for which f and h are

known, an initial training data set T0 can be used. If no information is available, T0

is set as empty. To complete Step 1 an initial point x0 ∈ Rn such that both f(x0)

and h(x0) are finite is required. This can be achieved, for example, by random polling.

However, if T0 is non-empty and contains at least one point for which both the objective

and constraint violation are finite, x0 is chosen from T0. Specifically, x0 is the element

with the least h value and if more than one exists, the one with the least f value.
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1. Initialize: Set k = 1. Choose N > 0, h > 0, δ > 0, T0 and

a constraint violation function h with penalty parameter 0 < σ1 ≤
σmax. Choose an x0 ∈ Rn such that both f(x0) and h(x0) are finite.

Set T1 = [x0;T0] and z0 = x0.

2. Generate initial batch of max{2N − |T1|, 0} sample points x ∈
x0 + h[−1, 1]n and store in X1. Evaluate the objective f(x) and

the constraint violation h(x) at each x ∈ X1.

3. while stopping conditions are not satisfied do

(a) Update filter, training data set and classify:

Tk+1 ⊂ {Xk ∪ Tk} such that Tk+1 = {ω1, . . . , ωM},

where each classified subset ωi is non-empty and the

cardinality of Tk+1 is finite.

(b) Partition and sampling phase: Using Tk+1 form a CART

partition on Rn to define an approximate level set Lk of

gk(x, σk) = f(x) + σkh(x).

Draw N points from Lk, giving the next batch Xk+1.

(c) Evaluate f(x) and h(x) at each x ∈ Xk+1. Choose zk+1 and xk+1

as the elements from Tk+1 ∪ Xk+1 that minimize gk(x, σ) and h(x)

respectively.

(d) Update the penalty parameter by choosing σk ≤ σk+1 ≤ σmax.

Check stopping conditions and increment k.

end

Figure 6.1: CARTopt Filter algorithm
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Step 2 completes the initialization phase of the algorithm, generating max{2N −
|T1|, 0} points in a hypercube sub-region centered on x0, defined by x0+h[−1, 1]n. The
hypercube radius h can be any positive number, however, numerical experience suggests

that choosing a large h is advantageous. Choosing h small restricts the search space

promoting convergence to points near x0, whether they are feasible or not. Whereas,

a large h gives the algorithm a global feel in the early stages of sampling, exploring a

larger subset of Rn. Furthermore, larger steps can be taken early on rather than lots

of little ones. Noting that finding a feasible point is a global optimization problem,

such an approach promotes convergence to feasible optimal points. In addition, if T0 is

non-empty, h should be chosen such that T0 is a subset the hypercube. If a sufficiently

large input training data set is known, Step 2 is not required. When complete, an

initial (unclassified) batch of at least 2N sample points are known.

The main loop (Step 3) of the algorithm generates two infinite sequences of iterates

{zk} and {xk}. These sequences are obtained by evaluating the objective function and

constraint violation at a finite number of points Xk in a neighborhood defined by a

training data set. Each iterate of {zk} is chosen as the element from the training data

set Tk and newly generated batch of points Xk that minimizes

gk(x, σk) = f(x) + σkh(x), (6.6)

where σk is a penalty parameter (see Section 6.2.5). If more than one element from

Tk ∪Xk minimizes gk, an element that minimizes gk with the least constraint violation

is chosen. Each iterate of {xk} is chosen as an element of Tk ∪Xk that minimizes the

constraint violation h(x) and if more than one exists, the one with the least f value is

chosen. If a feasible iterate is generated at iteration k∗ (h(xk∗) = 0), the subsequence

{xk}∞k=k∗ contains only feasible iterates and is necessarily monotonically decreasing

with respect to f . Whereas, {zk} can take both feasible and infeasible iterates and

nothing can be said about f . Each component of the main loop is described in the

subsections which follow.

The algorithm terminates when stopping conditions are satisfied. The stopping rule

can be implemented with respect to either {zk} or {xk}. In either case, the terminating

iterates have desirable properties with respect to h, f , or gk(x, σk). This is discussed

further in Section 6.3.
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6.2.1 Sloping Filter

This section proposes a variation on Fletcher’s filter called the sloping filter. Both

Fletcher et al. [26] and Audet et al. [4] use the filter as a way of rejecting iterates.

That is, if a step generates a filtered iterate, it is rejected. In our approach elements

of the filter are chosen to be interior points of a subset of Rn classified as low. Such

regions are sampled further in an attempt to generate points that modify the filter,

attempting to drive feasibility from multiple points. Only infeasible points are included

in the filter and feasible points are treated separately. All feasible points are retained

in the CARTopt filter algorithm until a full size training data set is obtained so that

feasible low sub-regions are well defined in the partition, see next section.

In this approach it is important that the filter does not become too large. Here, a

maximum cardinality of 3N/4 is placed on the sloping filter, where N is the batch size.

This bound is directly related to the cardinality of desirable points classified as low,

which is N (see Section 6.2.3). To ensure the filter remains sufficiently small, elements

are systematically removed from Fletcher’s filter. In particular, elements that greatly

increase the constraint violation but only slightly reduce f are removed. The resulting

subset is called the sloping filter.

Definition 65. (Sloping filter). A sloping filter F is a set of points in Rn such that

for all x ∈ F there does not exist a z ∈ F satisfying

h(x) > h(z) and f(x) > f(z)− µ(h(x)− h(z)),

where µ is a positive scalar.

The sloping filter can be represented in the (h, f) plane as illustrated in Figure 6.2.

The sloping filter is calculated as follows. Firstly, the set of infeasible undominated

points XD from the union of the training data set and newly generated batch Tk ∪Xk

is calculated.

If |XD| ≤ 3N/4 (sufficiently small), then Fk = XD. Otherwise XD contains too

many elements and the slope parameter µ is used to remove elements from XD.

Starting with an initial 0 < µ < σk, µ is systematically increased until the cardi-

nality of Fk is sufficiently small, or σk is reached. Here σk is the penalty parameter

in gk, which is bounded for all k (see Section 6.2.5). One strategy, for example, is to

choose the sequence { σk
210

,
σk
29
, . . . ,

σk
2
, σk

}
. (6.7)
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Figure 6.2: The sloping filter is shown in red and Fletcher’s filter is shown green. Four elements
(green dots) have been removed from XD. The dashed line is an example of an exact penalty function
(6.6), which is also the upper bound on µ.

Such a sequence gives preference to shallow gradients with respect to σk, removing

elements with relatively small changes in f and relatively large increases in h first and

is used here. With µ ≤ σk, an element of XD that minimizes gk will not be removed.

If the upper bound µ = σk is reached, an element of XD that minimizes gk(x, σk)

with the least constraint violation and the 3N/4− 1 most feasible elements are chosen

to give Fk. Clearly such an approach forces |Fk| ≤ 3N/4, as required. Furthermore,

with only infeasible iterates included in the sloping filter, the most feasible infeasible

iterate is always an element of F . In addition, with (6.7) containing finitely many

elements, this update is a finite process — a property needed for convergence.

6.2.1.1 Imposing an Upper Bound on Constraint Violation

An upper bound hmax > 0 is placed on the constraint violation function. The inclusion

of an upper bound prevents the unlikely case that a sequence of points is generated

such that f(zk+1) < f(zk) and h(zk+1) > h(zk) for all k, with h(zk) → ∞ in the limit

as k → ∞. This is easily implemented by including (h, f) = (hmax,−∞) in XD (see

Figure 6.2). Furthermore, hmax can be systematically reduced to remove the most
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infeasible elements from XD. This can be achieved, for example, by setting h∞ as the

most infeasible element of the sloping filter. Numerical results herein are generated

using hmax = max{1, h(x0)}, which remains constant for all iterations.

6.2.1.2 Imposing a Lower Bound on Constraint Violation

From a practical point of view a lower bound hmin > 0 is placed on constraint viola-

tion. The inclusion of hmin precludes the existence of a sequence of infeasible iterates

such that f(xk+1) > f(xk) and h(xk+1) < h(xk) for all k, with h(xk) → 0 as k → ∞.

Numerical simulations performed by the author on equality constrained problems (fea-

sible region has measure zero) encountered such sequences, ultimately terminating the

method at undesirable points. To increase numerical performance the following strat-

egy was used. An element z ∈ XD is filtered by another element x ∈ XD if

h(x), h(z) < hmin and f(x) < f(z).

Here the value hmin = 1e-10 is used. However, if Assumption 62 is easily verified for a

given problem, hmin is set to zero. This allows the algorithm to approach the feasible

region of positive measure from the infeasible region if h(xk) → 0 as k → ∞. This

parameter is included from a practical point of view and is set to zero when convergence

properties of the method are analyzed.

6.2.2 Training Data Set

There is great freedom in defining a training data set T for the CARTopt filter based

method, only requiring mild conditions. Firstly, the cardinality of T must remain finite

and contain at least two non-empty distinct sets of classified data, from which a CART

partition on Rn can be formed, for all iterations. Secondly, the current iterates zk

and xk must be elements of Tk. Finally, there must exist a non-zero probability of

sampling a neighborhood of both zk and xk for all k. Here, as in the previous chapters

of this thesis, two sets are considered — points with relatively low and high values.

Forcing both zk and xk to be classified as low, satisfies the last condition placed on

T (see (6.17)). Previously, T was chosen to reflect local information about where f is

relatively low. However in the filter based approach, preference to feasibility is also

included in T . Ideally, partitions induced from T locate feasible sub-regions where f

is relatively low (if they exist), or modify the sloping filter to drive feasibility. This

section focuses explicitly on the training data set and classification is left until section
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which follows.

The training data set proposed here is similar to the set presented in Section 3.2.

However, here we have three sets of desirable points instead of one. These are, the

sloping filter, elements of Tk ∪ Xk with the least constraint violation and those with

the least gk(x, σk) values. The training data set is defined via three subsets with the

following structure

Tk+1 = {Fk ∪ Tγ,TR}. (6.8)

The first set is the sloping filter Fk defined in the previous section. The sloping

filter is iteratively updated with any infeasible points generated in the sampling phase,

that is

Fk ⊂ {x ∈ Tk ∪Xk : h(x) > 0}. (6.9)

Provided an infeasible iterate is generated, the sloping filter remains non-empty and

contains the most feasible infeasible solution for all iterations. If no infeasible points

are generated, the sloping filter remains unchanged. The sloping filter’s cardinality is

bounded by 3N/4 and thus, remains finite for all iterations.

The second set defines elements from Tk ∪Xk with the least constraint violation h

and those with the least gk(x, σk) values. For clarity, let Th and Tg denote the γ > 0

elements from Tk ∪Xk with the least h and gk(x, σk) values, respectively. If there exist

multiple points with the same constraint violation, then preference towards elements

with the least f values may be required to force |Th| = γ. Similarly, if multiple points

yield the same gk(x, σk) value, preference towards feasibility may be required to force

|Tg| = γ. Then, we define the set

Tγ = {Th ∪ Tg} (6.10)

where γ ≤ |Tγ| ≤ 2γ. Thus, (6.10) contains the γ best elements with respect to both h

and gk(x, σk) for all iterations. In particular, it contains the feasible point(s) with the

least function value(s) if any exist. These sets of points are used in the stopping rule

in Section 6.3.

The third set TR defines the most recent elements generated from successive sam-

pling phases. Specifically, the

min{|{Tk ∪Xk \ Fk ∪ Tγ}|, Tmax − |{Fk ∪ Tγ}|} (6.11)
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most recent elements from the set {Tk ∪Xk} \ {Fk ∪ Tγ} are retained. Here

Tmax = max{2γ +N, 2N max{1, n− 1}}, (6.12)

is an upper bound placed on the cardinality of T , although other choices are possible.

A training data set with cardinality Tmax is called full size. This definition of full size

is larger than our previous definition for small values of n to ensure the sloping filter

and Tγ are always elements of the training data set. This is crucial for the stopping

rule and defining the set of desirable points.

In summary, all points generated are retained in T until full size is reached and

then the oldest points with relatively large h and gk(x, σk) values are discarded. The

training data set contains feasible points (if they exist), the sloping filter and selected

filtered points. With the cardinality of T finite, Step 3 of the CARTopt filter algorithm

is a finite process. This property is needed to establish convergence.

6.2.3 Classification

To form a partition on Rn a classification must be imposed on the training data set.

At least two non-empty classified subsets of T are required to form a CART partition

on Rn. The classification must include the current iterates zk and xk in the set of

most desirable points so that there exists a non-zero probability of sampling a neigh-

borhood of both zk and xk during the next iteration — a property needed to establish

convergence. There are many possibilities.

The classified training data set proposed here consists of two sets — low and high

points. Attention is focused primarily on defining the set of low points {ωL}, as they
will be interior points of the subset of Rn that is explored further during the next

iteration. To this end, promoting convergence to optimal feasible points is the primary

goal. To achieve this, sampling neighborhoods of feasible points (if they exist) and

elements of sloping filter is advantageous.

The set {ωL} proposed here consists of both feasible and infeasible points. The

inclusion of infeasible points allows the method to approach an optimal point from

either the feasible or infeasible region. If at least one constraint is active at a solution

to the NLP (i.e. ci(x∗) = 0 for some 1 ≤ i ≤ m), then it can be advantageous to

classify particular infeasible iterates as low to yield a desirable partition. That is, a

partition which has x∗ as an interior point of the low sub-region. The interested reader

is referred to Figure 7.1 in the next chapter, which illustrates the relative merits of
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including infeasible points in {ωL}.
For clarity, {ωL} is defined via three subsets {ωT}, {ωF} and {ωF̄}. With zk = xk

possible, the notation λ = |{zk ∪ xk}| is used for convenience.

The first subset gives the feasible points T = {x ∈ Tk+1 ∩ N} to be included in

{ωL}. Specifically, the

min {|T|,max{⌈N/2− λ⌉, N − |Fk| − λ}} (6.13)

elements of T \ {zk, xk} with the least objective function values form the set {ωT}. If

there are no feasible points (6.13) is empty. This is the case when equality constraints

are included in the nonlinear programme, as all samples generated are infeasible with

probability one. If there are no infeasible points (Fk = ∅), the N points with the least

objective function values form {ωL}.
The second subset gives elements from the sloping filter to be included in {ωL}.

These are the

min{|Fk|, N − |T| − λ} (6.14)

elements of Fk \ {zk, xk} with the least constraint violation and form the set {ωF}.
If (6.13) is empty, then all elements of the sloping filter are included in {ωL} (|Fk| ≤
3N/4 for all k).

Finally, a subset of filtered elements F̄ ∈ {x ∈ Tk+1\{T,Fk}} are included in {ωL},
given by, the

[N − |T| − |Fk| − λ]+ (6.15)

elements of F̄ with the least gk values and form the set {ωF̄}. These points are only

included if both {ωT} and {ωF} are sufficiently small.

Definition 66. (Low points). Let ωT, ωF and ωF̄ be defined as above, then the set

of points {{zk} ∪ {xk}, ωT, ωF , ωF̄} are classified as low and form the set {ωL}.

Definition 67. (High points). The set of points Tk+1 \{ωL} is classified as high and

form the set {ωH}.

From the definitions above it is clear that both {ωL} and {ωH} are non-empty for

all k and so there exists a CART partition on Rn for all iterations. Clearly, both zk and

xk are elements of {ωL} for all iterations. The cardinality of {ωL} is N and remains

constant for all iterations. Whereas, |{ωH}| ≥ N for all iterations and holds strictly

for k > 1. Having |{ωH}| > |{ωL}| aims to promote clustering in {ωL}, see Section

3.2.
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6.2.4 Partition and Sampling Phase

Step 3(c) of the CARTopt filter algorithm conducts the CART partition and sampling

phase on Rn. For a detailed discussion the interested reader is referred to Chapter 3,

focusing particularly on the unconstrained instance of CARTopt. This section summa-

rizes important features and necessary properties for convergence.

A CART partition on Rn is performed using the classified training data set Tk,

defined in Step 3(a). Before the partition is made, a Householder transformation is

applied to Tk to potentially simplify the partition (see Section 3.3). Taking the union of

hyper-rectangular low sub-regions identified by the partition, a bounded approximate

level set Lk with respect to gk(x, σk) is defined. To ensure Lk is bounded the post-

partition modifications in Section 3.7.3 are made. However, the forward tracking face

search is conducted with respect to gk(x, σk), rather than f . That is, a problematic

bound is fixed if ascent in gk(x, σk) made. If a problematic bound is a subset of the

feasible region (h = 0), the update is equivalent to Section 3.7.3.

A minimum sub-region radius δ > 0 forces the measure of Lk to remain positive

and {ωL} to be interior points of Lk for all k (see Section 3.4.2). This is crucial for

convergence and guarantees

{x+ δ[−1, 1]n} ⊂ Lk for all x ∈ {ωL}. (6.16)

In particular, (6.16) holds for both zk and xk for all k.

To sample Lk the greedy sampling strategy proposed in Section 3.5 is used, whereby

samples are drawn directly from Lk using a near uniform distribution. No accep-

tance/rejection sampling is required because the CARTopt filter method is uncon-

strained. After N samples are drawn from Lk the batch Xk is complete and sampling

is finished. Most importantly, with reference to (6.16), there exists a non-zero proba-

bility of sampling a neighborhood of zk or xk for all k, given by

Pr(x ∈ {xk + δ[−1, 1]n}) ≥ (2δ)n

|{ωL}|.m(Lk)
> 0. (6.17)

Before f and h are evaluated at the new batch of points, the Householder transform

is applied toXk. This applies the inverse transform converting each point to the original

sample space.
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6.2.5 Penalty Parameter

The sequence of iterates {zk} generated by the CARTopt filter method is obtained by

selecting the most feasible element of Tk ∪Xk that minimizes

gk(x, σk) = f(x) + σkh(x), (6.18)

where σk is a penalty parameter. With reference to (6.18) the reader may mistake the

CARTopt filter method as a penalty function method in disguise. Clearly, generating

a feasible iterate is of primary interest, but simply updating the most feasible iterate

can be problematic — especially when a non-empty training data set exists from which

iterates can be selected. Choosing the most feasible iterates does not preclude, for

example, generating a sequence of iterates such that {f(zk)} is monotonically increasing

and {h(zk)} is monotonically decreasing. This problem was also evident to Fletcher

et al. and a North-West corner rule is introduced to the filter [26]. This rule requires

sufficient reduction in h in the leftmost corner of the filter for an element to be included

in the filter. However, such an approach can filter desirable elements if the sufficient

reduction parameter is chosen incorrectly.

Here the primary goal is to iteratively update the sloping filter and ultimately drive

feasibility. The penalty parameter is used to ensure a sequence of iterates satisfying

sufficient decrease in h are included in the training data set. However, to promote

convergence to a feasible iterate σ is increased from time to time. Here σ is bounded

above by σmax = 1e+5. It is not necessary force σmax → ∞ in limit as k → ∞, as

is common in standard penalty methods. As σ is increased, penalty methods give

preference to minimizing h rather than f . However, the sequence of least constraint

violations {xk} includes this case, where preference to minimizing h is made each

iteration.

There are many possible heuristics for updating σ. Requiring sufficient reduction in

constraint violation at each iteration, for example, would attempt to drive feasibility in

{zk}. Here elements of the sloping filter are used to approximate a suitable penalty pa-

rameter at iteration k. Firstly, a linear best fit (in the least squares sense) to the sloping

filter is calculated with slope parameter θ. If −θ > σk it suggests the penalty parame-

ter may be too small and σ is increased, otherwise σ remains unchanged. Specifically,

if |Fk| > 1 and σk < −θ
σk+1 = min{σmax, 2σk,−θ}, (6.19)

otherwise σk+1 = σk. For the special case when |Fk| = 1, any penalty parameter value
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would select the single sloping filter element and hence, σk remains unchanged.

6.3 Stopping Rule

The stopping rule used here is similar to the rule used for the unconstrained CARTopt

instance described in Chapter 4. The interested reader is referred to Chapter 4 for full

treatment on this stopping rule. This section outlines necessary changes only. There

are two modes of termination for the CARTopt filter algorithm depending on whether

a feasible iterate is obtained or not. Firstly, let us consider the case when a feasible

iterate is generated and then consider the case when Tk contains infeasible iterates

only.

Ideally, convergence to a feasible iterate is of primary interest. However, to generate

a feasible iterate the closure of the interior of N must be a set of positive measure,

from which a sample is drawn. Clearly if equality constraints are present this is not

possible. If a feasible point is drawn from NO, the training data set T keeps all feasible

points generated until at least γ are obtained. Furthermore, of these feasible points

the 3N/4 with the least function values are included in {ωL}. This feasible subset of

T is similar to the training data set that the unconstrained CARTopt instance used to

solve the NLP satisfying Assumption 62 expressed as the barrier function

B(x) =

f(x) if x ∈ N

+∞ otherwise,
(6.20)

where NO = N . Convergence to an essential local minimizer of (6.20) is demonstrated

in Chapter 3 under mild conditions (see Theorem 40) provided at least one point with

a finite function value is drawn. Furthermore, the stopping rule in Chapter 4 can be

applied to barrier functions of the same form as (6.20). Thus, if a feasible point is

generated, the existing rule can be applied directly to the CARTopt filter algorithm

using the feasible elements of T only. That is, if the probability of reducing f below

f(xk)−ϵ is sufficiently small and the γ feasible, least function values follow a power law

distribution, xk is the candidate solution for an essential local minimizer of f on NO.

The infeasible elements of T are useful in forming the partition, but are not required

for the stopping rule.

For the case when no feasible iterates exist (h(x) > 0 for all x ∈ Tk+1), the user

can choose whether driving feasibility or minimizing gk(x, σk) is of most importance.

Firstly, let us consider driving feasibility. With Tk+1 containing the γ elements with
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the least h values generated up until iteration k, the probability of reducing h further

can be approximated. The empirical data set (4.13) in Section 4.3.1 is replaced with

Y = {h(x̂1), h(x̂2), . . . , h(x̂γ) : x̂i ∈ Tk+1} (6.21)

with h(x̂i) ≤ h(x̂i+1) and x̂1 = argmin{h(x) : x ∈ Tk+1} = xk. Updating the analysis

in Chapter 4 from Section 4.3.1 onwards in the obvious way, an approximation to the

probability of reducing the constraint violation below h(xk)− ϵ is obtained, given by,

Pr (h(x) < h(xk)− ϵ) =

[(
h(xk)− ϵ− h∗∗
h(x̂γ)− h∗∗

)κ∗]
+

. (6.22)

Here κ∗ and h∗∗ are the optimal power and h∗ approximation, respectively, obtained

during fitting a power law to the empirical data (6.21). If (6.22) is sufficiently small

and the set (6.21) follows a power law distribution, then xk is a candidate solution for

an essential local minimizer of the constraint violation function.

Secondly, preference to minimizing gk(z, σk) is reflected in the stopping rule by

monitoring the γ elements with the least f +σkh values generated up until iteration k.

The training data update ensures these elements are always a subset Tk+1 (see Section

6.2.2). Replacing the empirical data (4.13) with

Y = {gk(ẑ1), gk(ẑ2), . . . , gk(ẑγ) : ẑi ∈ Tk+1} (6.23)

with gk(ẑi) ≤ gk(ẑi+1) and ẑ1 = argmin{f(z)+σkh(z) : z ∈ Tk+1} = zk, an approximate

probability of reducing gk(x, σk) below gk(zk)− ϵ is obtained. Replacing each instance

of h and x with gk and z in (6.22) gives the probability, where κ∗ and g∗∗ are the

optimal parameters obtained from fitting (6.23). If this probability is sufficiently small

and the set (6.23) follows a power law distribution, then zk is a candidate solution for

an essential local minimizer of gk(z, σ∗), where σk → σ∗ as k →∞.

The final method of termination is a resource based stopping rule. The user

can choose a predefined resource quantity to terminate the algorithm if the rules

above fail to halt within user limits. Here a maximum number of iterations kmax =

max{1000, 100n2} is used to ensure the CARTopt filter algorithm always terminates.

Numerical simulations performed by the author indicated a preference towards ter-

mination based on minimizing gk(x, σk) as opposed to minimizing h when no feasible

iterates were generated. Minimizing with respect to h fails to include valuable informa-

tion about f , terminating the algorithm at approximations to essential local minimizers
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of h far from the solution to the NLP. This method of termination is considered no

further.

6.4 Convergence Analysis

This section analyzes the convergence properties of the CARTopt filter algorithm. The

stopping conditions are removed to allow us to examine the asymptotic properties of

the sequence of iterates generated by the algorithm. In addition, the lower bound on

constraint violation hmin is set to zero. The stopping rule and hmin are included in the

algorithm from a practical point of view.

Theorem 68. The sequences of iterates {zk} and {xk} generated by the CARTopt filter

algorithm are infinite sequences.

Proof. For both {zk} and {xk} to be infinite sequences, Step 3 of the CARTopt filter

algorithm must be a finite process.

With the cardinality of Xk finite for all k, steps 3(c,d) are finite processes. The

cardinality of the training data set is bounded by

|Tk| ≤ max {2γ +N, 2N max{1, n− 1}} (6.24)

for all iterations. Thus, it follows directly from Corollary 34 that Step 3(b) is a finite

process.

The sloping filter is a subset of Tk (finite set) which is calculated using a finite set

(6.7) of slope parameters and is thus a finite process. Furthermore, with the training

data bounded above by (6.24), the training data update and classification are both

finite processes. Thus, Step 3(a) is also a finite process.

In order to establish convergence, similar assumptions to those used in the uncon-

strained instance of CARTopt are required.

Assumption 69. The following conditions hold:

(a) The objective function f and the constraint violation function h are both lower

semi-continuous;

(b) The points at which f and h are evaluated at lie in a compact subset of Rn; and
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(c) The sequences of function values {f(zk)} and {f(xk)} is bounded below.

The first assumption ensures that lim infz→z∗ f(z) ≥ f(z∗) for all cluster points. The

other assumptions ensure {zk} is bounded and excludes the case where f(zk) → −∞
as k → ∞ and similarly for {xk}. The constraint violation function is automatically

bounded below due to its non-negativity.

The first result is concerned with the constraint violation function. Examining clus-

ter points x∗ in the sequence {xk} shows that h(x∗) satisfies locally optimal properties.

Theorem 70. Let Assumption 69 hold. If x∗ is a cluster point of the sequence {xk},
then x∗ is an essential local minimizer of h with probability one.

Proof. Assumption 69 and Theorem 68 ensure the existence of cluster points in {xk}.
If x∗ is feasible h(x∗) = 0. The non-negativity of h implies the set of lower points

is the empty set. Thus, x∗ is an essential local minimizer of h.

The proof for the case when x∗ is infeasible is a direct consequence of Theorem

38.

The next result shows that cluster points z∗ in the sequence {zk} have locally

optimal properties.

Theorem 71. Let Assumption 69 hold. If z∗ is a cluster point of the sequence {zk}
and σ∗ is the terminating penalty parameter, then z∗ is an essential local minimizer of

f + σ∗h with probability one.

Proof. Assumption 69 and Theorem 68 ensure the existence of cluster points in {zk}.
The remainder of the proof is a direct consequence of Theorem 38.

The following corollaries show convergence to feasible essential local minimizers

when the feasible region satisfies Assumption 62. That is, for all x ∈ N , there exists

an ϵ > 0 such that B(x, ϵ) ∩ N with positive Lebesgue measure. Clearly, Assumption

62 removes the possibility of including equality constraints in the NLP.

Definition 72. (Feasible essential local minimizer). Let Assumption 62 hold. A

point x∗ ∈ N for which the set

E(x∗, ϵ) = {x ∈ N : f(x) < f(x∗) and ∥x− x∗∥ < ϵ}

has Lebesgue measure zero for all sufficiently small positive ϵ is called a feasible essential

local minimizer of f .
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Corollary 73. Let Assumptions 69 and 62 hold. If z∗ is a feasible cluster point of the

sequence {zk}, then z∗ is a feasible essential local minimizer of f with probability one.

Proof. Assumption 69 and Theorem 68 ensure the existence of cluster points in {zk}.
The proof is similar to Theorem 38. Assumption 62 ensures that

m(B(z∗, ϵ) ∩N ) > 0 (6.25)

for all ϵ > 0. Thus, (3.31) is a set of positive measure. Replacing [−1, 1]n in both

(3.31) and (3.33) with N gives the desired proof.

Corollary 74. Let Assumptions 69 and 62 hold. If x∗ is a feasible cluster point of the

sequence {xk}, then x∗ is a feasible essential local minimizer of f with probability one.

Proof. The proof is similar to Corollary 73. Replacing {zk} with {xk} and z∗ in (6.25)

with x∗ gives the desired result.

The final two results show that Assumption 62 can be relaxed to a local property

of N , rather than a global one, without effecting convergence.

Corollary 75. Let Assumption 69 hold. If z∗ is a feasible cluster point of the sequence

{zk} such that {B(z∗, ϵ) ∩N}O = {B(z∗, ϵ) ∩ N}, then z∗ is a feasible essential local

minimizer of f with probability one.

Proof. The proof is similar to Corollary 73. For all ϵ > 0, if {B(z∗, ϵ) ∩N}O =

{B(z∗, ϵ) ∩N} then
m(B(z∗, ζ) ∩N ) > 0

for all ζ ≤ ϵ. The result then follows directly from Corollary 73.

Corollary 76. Let Assumption 69 hold. If x∗ is a feasible cluster point of the sequence

{xk} such that {B(x∗, ϵ) ∩N}O = {B(x∗, ϵ) ∩ N}, then x∗ is a feasible essential local

minimizer of f with probability one.

Proof. The proof is similar to Corollary 75. Replacing z∗ with x∗, the result follows

directly from Corollary 74.



Chapter 7

Empirical Testing of Algorithms

This chapter empirically investigates the performance of the algorithms proposed in the

preceding chapters of this thesis. Numerical simulations are important to verify that

theoretical results are achieved in practice. Test problems are taken from Schittkowski

et al. [34, 68], Moré et al. [51] and Luksan et al. [45]. The interested reader is referred

to Appendix A for further details on the test problems considered here. The algorithms

also performed well on a selection of smooth test problems, but only nonsmooth results

are presented here as these problems are of primary interest.

To measure performance of the various algorithms the following considerations were

made. Firstly, an algorithm that produces an accurate approximation to the solution of

each test problem considered is better than an algorithm that does not. Furthermore,

an algorithm that produces more accurate approximate solutions to each problem is

better than one that provides less accurate values. Finally, an algorithm that requires

fewer function evaluations to achieve accurate approximations to the solutions of each

problem is better than one that requires more. It is the author’s view that although

keeping the number of function evaluations low is important, the primary goal of an

algorithm is to produce accurate answers on a range of problems.

Most of the nonsmooth problems considered here are nonlinear least squares prob-

lems, where the squares are replaced by absolute values. Furthermore, these problems

have optimal function values of zero. However, these modified functions can make

the results look deceptively poor. A final function value of 1e-5 on the nonsmooth

function, for example, corresponds to a function value of approximately 1e-10 on the

original problem. Therefore, any final function value less than 1e-3 is considered ac-

ceptable here. The interested reader is referred to Appendix A for full details on these

problems.
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All the algorithms and test problems have been coded in Matlab 7.9.0 [47]. The

interested reader is referred to Appendix B for complete algorithm codes. The test

problem codes are available from the author upon request. The stochastic algorithms

use the uniform pseudorandom number generator in Matlab called RAND. The se-

quence of numbers produced by RAND is determined by the internal state of the

generator that underlies RAND. To prevent results being generated from similar sub-

sequences, the initial state of the sequence was set to the sum(100*CLOCK) at each

session, where CLOCK is a six element Matlab vector [year, month, day, hour, minute,

second] in decimal form. All the stochastic results are averaged over ten runs to give

a measure of average performance.

Firstly, the bound constrained instance of CARTopt is empirically tested. Sec-

ondly, the algorithms for unconstrained optimization are considered. These are the

unconstrained CARTopt instance, and the strictly descent and non-descent versions of

the Hooke and Jeeves / CARTopt hybrid algorithm. Finally, the unconstrained CAR-

Topt instance and the CARTopt filter algorithm are empirically tested on constrained

nonlinear programming problems.

7.1 Bound Constrained Optimization using the CAR-

Topt Method

The algorithm was implemented with a batch size N = 20, cardinality of low points

|{ωL}| = 0.8N = 16 and a minimum sub-region radius δ = 1e-10. Numerical simula-

tions performed by the author found that the impurity condition (see Definition 14)

had no significant impact on the numerical results and only pure partitions are consid-

ered hereafter. That is, low sub-regions of the CART partition contain elements from

{ωL} only. However, if the user chooses a larger batch size and/or a different classifica-

tion scheme, the impurity condition may be advantageous and simplify the partition.

The greedy sampling strategy was used, whereby all samples are drawn directly from

low sub-regions only. Non-greedy methods were also investigated by the author but

all required more function evaluations to obtain solutions of similar accuracy to those

presented here.

The values ϵ = 1e-8 and β = 1e-6 were used for the stopping rule. The stopping

rule successfully terminated the CARTopt algorithm before the maximum number of

iterations was reached on all problems considered.
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The bound constrained optimization region is defined by the hypercube

(x0 + x∗)/2 + h[−1, 1]n, (7.1)

where x0 and x∗ are the optimization starting point and minimizer for the particular

problem. Here the hypercube radius h is chosen so that both x0 and x∗ are interior

points of the hypercube. The interested reader is referred to Appendix A for exact

values.

Table 7.1 lists the results for the nonsmooth problems considered. The legend for

this table is defined as follows. The first two columns list the function and its dimension.

The columns headed with f∗ and ‘nf’ list the absolute error in function value at the final

iterate (|f − f∗|) and the number of function evaluations respectively. This notation is

used consistently throughout this chapter. The final column lists results from applying

Pure Random Search (PRS) in (7.1) using 20 000 function evaluations.

Both the stochastic and deterministic instances of CARTopt were superior to PRS,

requiring fewer function evaluations to produce far more accurate approximations to

the solution of each problem. Although the deterministic instance does not have a

convergence proof, all problems were solved by the deterministic instance with similar

performance to the stochastic instance. Most importantly, no failures were observed

when generating the numerical results. These results verify that theoretical convergence

is achieved in practice for the bound constrained CARTopt algorithm.

7.2 Unconstrained Optimization

In this section the unconstrained CARTopt algorithm and Hooke and Jeeves / CAR-

Topt hybrid algorithm (with and without uphill steps) are tested on nonsmooth un-

constrained optimization problems. The deterministic instances of these algorithms

were also tested by the author and each algorithm performed similarly to the results

presented here. However, convergence was not demonstrated for these algorithms and

these results are not presented.

The Hooke and Jeeves / CARTopt hybrid algorithm was implemented with an initial

mesh size h0 = e/2, a minimum localized global optimization radius hΩ = 1e-4 and a

minimum mesh size hmin = 1e-8. This apparently strange h0 value was chosen over the

popular choice of h0 = 1 because the latter allowed the algorithm to step exactly to the

solution on some of the test problems considered. This gave a misleading impression

on the performance of the algorithm. The standard optimization starting point x0 (see
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Table 7.1: Bound Constrained Optimization using CARTopt and Pure Random Search

Stochastic CARTopt Deterministic CARTopt PRS

Problem n f∗ nf f∗ nf f∗
Beale 2 4e-9 986 8e-10 1031 0.03
CB2 2 5e-9 835 5e-9 732 0.01
QL 2 7e-10 912 2e-10 887 0.01
Rosenbrock 2 3e-9 1102 8e-10 1085 0.04
Wolfe 2 1e-9 957 8e-10 903 0.15
Gulf 3 7e-9 1869 8e-9 1896 3.90
240 3 1e-8 1800 7e-9 1862 6.01
Helical Valley 3 7e-9 1722 3e-9 1783 0.41
Powell 4 1e-8 2329 7e-9 2681 2.14
261 4 9e-9 3483 6e-9 3547 0.60
Rosen-Suzuki 4 9e-5 5359 5e-7 4591 0.78
Trigonometric 5 2e-8 3945 1e-8 3367 0.84
Variably Dim. 8 4e-8 11508 3e-8 11137 1.43
291 (Quartic) 10 9e-9 5152 7e-9 5520 2.22

Appendix A) for each problem was used as the initial point for each problem. The

localized global optimization phase uses the (stochastic) bound constrained CARTopt

instance.

The unconstrained stochastic CARTopt instance was implemented with the param-

eters defined as in the previous section. The initial hypercube search region size was

chosen relative to the first localized global phase search region in the Hooke and Jeeves

/ CARTopt Hybrid algorithm, given by

x0 +
e

2

√
n[−1, 1]n.

This choice allows us to make fair comparisons between the two methods.

Table 7.2 lists the results for the nonsmooth problems considered. The legend for

this table is defined as follows. Columns headed with ‘nf HJ’ list the number of function

evaluations performed during the Hooke and Jeeves phase of the algorithm up until

the final iterate. Columns headed with ‘term’ indicate the method of termination.

This can be either through the CARTopt algorithm ‘CART’ or if the minimum mesh

size is reached ‘HJ’. The multicolumns headed with ‘Descent’ and ‘Non-Descent’ list

the results for the strictly descent and non-descent versions of the Hooke and Jeeves

algorithm.
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The Hooke and Jeeves / CARTopt hybrid algorithm and the unconstrained CAR-

Topt instance solved all the problems considered to the desired standard. The results

show little difference between the strictly descent and non-descent versions of the Hooke

and Jeeves algorithm. The hybrid algorithm terminated when the minimum Hooke

and Jeeves mesh size was reached on approximately half the problems. Otherwise the

algorithm terminated through the CARTopt algorithm. Most of the computational

effort was conducted in the localized global optimization phase of the hybrid algo-

rithm. The only exception was the Gulf problem, where a huge number of Hooke

and Jeeves iterations were conducted between locating grid local minima. The un-

constrained CARTopt instance produced the ten most accurate approximate solutions

to the fourteen problems considered, using a similar number of function evaluations.

Thus, the unconstrained CARTopt instance is the preferred method.

The previous results show that the CARTopt based methods are effective, but are

they competitive in practice? To show these methods are competitive a comparison

between the unconstrained CARTopt instance and two direct search methods for non-

smooth unconstrained optimization from Price, Reale and Robertson [61, 62] is given

in Table 7.3. The algorithm in [61] is a frame based algorithm which performs a ray

search along either a direct search quasi-Newton direction, or along a ray through the

best frame point at each iteration. Random perturbations of the frames from time

to time gives convergence on nonsmooth problems. The algorithm in [62] is similar

to the Hooke and Jeeves / CARTopt hybrid algorithm presented in Chapter 5, using

a series of local and localized global optimization phases. The classical Hooke and

Jeeves algorithm is used in the local phase and the DIRECT algorithm of Jones, Pert-

tunen and Stuckman [37] in the localized global optimization phase. This algorithm is

deterministic and is provably convergent on nonsmooth problems [62].

The CARTopt algorithm was superior to the algorithm from [61], producing more

accurate approximate solutions on all problems and only required more function eval-

uations on the Gulf problem. However, a more accurate approximate solution was

produced by CARTopt on the Gulf problem. For all other problems approximately one

third of the function evaluations were required.

In comparison to the algorithm from [62], a slightly more accurate approximate

solution to Helical Valley problem was obtained, otherwise CARTopt produced more

accurate approximate solutions. Only the Rosenbrock function required more func-

tion evaluations although a more accurate approximate solution was produced. The

CARTopt algorithm performed much better than the algorithm from [62] in the higher

dimensional problems, particularly on the Variably Dimensioned problem requiring less
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Table 7.3: Comparison with two other Direct Search Methods for Nonsmooth Uncon-
strained Optimization

Results from [61] Results from [62] CARTopt
(Unconstrained)

Problem n f∗ nf f∗ nf f∗ nf
Beale 2 4e-8 3638 2e-8 1119 1e-9 1061
Rosenbrock 2 5e-8 4438 2e-8 1154 3e-9 1240
Gulf 3 1e-5 15583 6e-6 31306 1e-6 17252
Helical Valley 3 7e-8 8406 1e-9 2773 4e-9 1856
Powell 4 4e-7 11074 3e-3 3659 7e-9 2725
Trigonometric 5 5e-8 14209 4e-8 6678 2e-8 4652
Variably Dim. 8 2e-7 34679 5e-7 55647 6e-9 9218

than one fifth the function evaluations to produce an approximate solution two orders

of magnitude better. It is the author’s opinion that this is largely due to the fact that

the algorithm in [62] is deterministic, whereas CARTopt is stochastic and explores

higher dimensions more efficiently.

7.3 Nonlinear Programming using the CARTopt Fil-

ter Method

The CARTopt filter algorithm was implemented with the parameters similar to the

CARTopt algorithm. The only difference is the slightly larger set of low points |{ωL}| =
N = 20. The author investigated the use of various constraint violation functions but

found the squared 2-norm violation to perform the best, given by

h(x) =
m∑
i=1

[ci(x)]
2
+. (7.2)

Here all results presented use (7.2). The test problems are taken from Schittkowski et al.

[34, 68] and [45]. These problems have linear and nonlinear constraints. Furthermore,

the objective function f is made nonsmooth by replacing the sum of squares formulation

with a sum of absolute values in all cases. Hence, an approximate solution presented

here of the order 1e-5 is approximately of the order 1e-10 on the smooth version. The

interested reader is referred to Appendix A for further details on these problems and

their formulation.
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7.3.1 Inequality Constrained Problems

In this section three methods for solving nonsmooth inequality constrained nonlinear

programmes are considered. These are the CARTopt filter algorithm, the unconstrained

CARTopt algorithm — where the problem is formulated as a barrier function — and

using Pure Random Search (PRS). The closure of the interior of the feasible region N
is N itself for the problems considered. Thus, N is a set of positive measure.

The initial search region for both the filter and unconstrained CARTopt algorithms

is given by the hypercube

(x0 + x∗)/2 + h[−1, 1]n, (7.3)

where x0 and x∗ are the optimization starting point and minimizer for the particular

problem. The hypercube radius h is chosen so that both x0 and x∗ are interior points

of the hypercube. The interested reader is referred to Appendix A for exact values.

This choice allows a comparison between PRS and the CARTopt methods to be made.

The inequality constrained problems considered here can be solved using the un-

constrained CARTopt instance when the problem is expressed as a barrier function.

Specifically,

B(x) =

f(x) if h(x) = 0

+∞ otherwise.
(7.4)

Clearly, if equality constraints are present, the probability of sampling the feasible

region is zero (m(N ) = 0) and thus, all function values are infinite with probability one.

Equality constrained problems are considered in the next section. It is not necessary to

evaluate f at infeasible points, rather the barrier function assigns the value +∞. For

comparison purposes, each barrier function evaluation is considered as one function

evaluation, even though considerably less computation may be required to evaluate

(7.4).

Table 7.4 lists the results for the nonsmooth nonlinear programming problems con-

sidered. The legend is defined as follows. The first three columns list the function

name, dimension and number of inequality constraints present. The values in paren-

theses indicate the number of constraints that are nonlinear. The columns headed with

σ∗ list the penalty parameter value at the final iterate and values in parentheses state

the bound on the penalty parameter σmax. The column headed ‘nf∞’ lists the number

of times the barrier function assigned to value +∞ without evaluating f directly. The

final column lists results from applying PRS in (7.3) using 20 000 function evaluations.

The constraint violation was zero at all the final iterates and hence, are not listed.
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Both the CARTopt filter and barrier algorithms were superior to PRS, requiring

fewer function evaluations to obtain far more accurate approximate solutions to each

problem considered. The barrier method performed better than the filter method on

seven of test functions, requiring fewer function evaluations to obtain similar accuracy

approximate solutions. Furthermore, with reference to the ‘nf∞’ column, although more

barrier function evaluations were required to solve test problem 225, fewer f evalua-

tions were required. The barrier method assigns the value +∞ rather than evaluating

f directly and thus, the ‘nf’ column for the barrier method requires the computational

effort of approximately nf −nf∞ function evaluations — less computational effort com-

pared to the ‘nf’ column for the filter method.

The CARTopt filter method performed better on three of the problems considered.

Setting a larger bound on the penalty parameter of σmax = 1e+10 gave better results

for the filter algorithm. This allowed the method to perform like a barrier method in

the final stages of sampling if a constraint(s) were active at the solution, producing

good approximate solutions with fewer f evaluations.

A close inspection of the training data set on the problems for which the filter

method was superior showed that classifying some infeasible points as low was advan-

tageous. This meant subsets of the infeasible region were classified as low and hence,

were sampled further during the next iteration. This allowed the algorithm to approach

the solution from the infeasible region. In contrast, the barrier method assigned the

value +∞ to such points which resulted in the solution being bounded away from low

sub-regions. The algorithm would then make slow progress toward the solution and

ultimately terminated at modest accuracy when compared to the filter algorithm. This

behavior is illustrated in Figure 7.1 for a simple nonlinear programming problem in

2 dimensions. It is clear that the barrier approach fails to include the optimal point

x∗ in the low sub-region. Whereas, the filter based approach classifies four additional

sloping filter elements as low, producing a desirable partition which includes x∗ in the

low sub-regions. Thus, there is a non-zero probability of sampling a neighborhood of

x∗ during the next iteration for the filter approach and there is zero probability for the

barrier approach.

7.3.2 Equality Constrained Problems

In this section the CARTopt filter algorithm is used to solve nonlinear programming

problems with equality constraints present. The algorithm setup differs from the in-

equality constrained case with a lower bound of hmin = 1e-10 placed on constraint
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Figure 7.1: The figures above show the level curves of f = ∥x∥, along with two inequality constraints
c1 = x2+x

2
1 ≤ 0 and c2 = x2+0.2x1 ≤ 0. The feasible region is shaded red and solution x∗ is denoted.. The training data set T = [ωL, ωH ], with x ∈ {wL} and z ∈ {wH} denoted ., N respectively, is

shown. The low sub-region bounds from the partition are shown as black lines. The first figure shows
the barrier approach and the second shows the filter approach.

violation. The initial search region is the same hypercube defined by (7.3). However, if

(x0−x∗)/2 is feasible, the hypercube center is perturbed slightly, otherwise misleading

and uninteresting results about the most feasible iterate are obtained. Each CARTopt

algorithm evaluates f and h at (x0 − x∗)/2 and thus, if the hypercube center is feasi-

ble, xk = (x0 − x∗)/2 for all iterations because the probability of generating a feasible

iterate using CARTopt is zero. The algorithm terminates with respect to the sequence

{zk}, the iterates that minimize f + σh.

Table 7.5 lists the results for the nonsmooth equality constrained problems con-

sidered. The legend is similar to Table 7.4 and the additional columns are defined as
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Table 7.5: Nonlinear Programming using the CARTopt Filter Algorithm and Pure
Random Search

CARTopt Filter Method PRS
z∗ x∗ σ = 1e+5

Problem n EC IC f∗ h∗ σ∗ f∗ h∗ nf f∗ h∗
6 2 1(1) - 2e-9 7e-14 5e+3 2e-6 2e-16 1243 0.39 7e-7
28 3 1 - 4e-9 1e-13 9e+4 1e-4 2e-18 4225 2.43 0.08
32 3 1 4(1) 7e-6 8e-11 1e+5 1e-5 8e-17 2965 1.77 0.15
46 5 2(2) - 2e-8 2e-14 1e+5 1e-7 1e-16 9038 2.28 0.24
48 5 2 - 1e-8 2e-13 4e+4 1e-7 4e-16 8027 7.32 15.6
51 5 3 - 1e-8 1e-14 8e+4 3e-8 3e-16 6676 3.20 0.24
MAD6 7 2 9 3e-6 3e-10 1e+4 5e-5 2e-13 14170 3.18 1.20

follows. The column headed with ‘EC’ lists the number of equality constraints present

and values in parentheses indicate the number that are nonlinear. Columns headed

with h∗ list the constraint violation at the final iterate. The multicolumn headings z∗

and x∗ list the terminating f , h and σ values of the sequences {zk} and {xk}. The last
two columns list the results from applying PRS in (7.3) for 20 000 function evaluations.

The terminating iterate minimizes f + σh, where the maximum penalty σ = 1e+5 is

used. Values of σ less than 1e+5 were tested but did not change the optimal iterate

generated by PRS on all problems considered.

The CARTopt filter algorithm was superior to PRS, requiring fewer function eval-

uations to obtain far more accurate approximate solutions. The final iterate of {zk}
produced high accuracy approximations to the solution of each problem, with absolute

errors in f less than 1e-6 and constraint violations less than 1e-10. Whereas minimizing

with respect to h (the sequence {xk}) produced more feasible final iterates, but with

less accurate absolute errors in f .

7.4 Concluding Remarks

The numerical results presented show the CARTopt algorithms are effective at solving

a variety of nonsmooth optimization problems. High accuracy approximate solutions

have been produced on both constrained and unconstrained optimization problems

ranging in dimension from n = 2 to 10. Clearly, random search CARTopt methods are

vastly superior to PRS. Comparison with existing direct search nonsmooth optimization

methods show the CARTopt methods are competitive in practice.
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The assessment of efficiency (and comparison with methods in [61] and [62]) is

based on the number of function evaluations required to solve a problem to the desired

accuracy. The author is aware that the reader might be interested in how fast (in

terms of computer time) the algorithms are. Clearly, computer time is dependent on

the machine used, number of persons sharing a server, the programming language used

and the programming skills of the programmer. The results were generated on my

(modest) personal laptop, which has a 1.8GHz processor and 3GB of RAM. To give

an indication of speed, the Rosenbrock function (n = 2) took less than two seconds to

solve and the Trigonometric function (n = 5) took less than thirty seconds to solve.

Each problem considered in this thesis took less than two minutes to solve.
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Chapter 8

Summary and Conclusions

A basic introduction to both local and global optimization was presented in Chapter 1

along with a survey of algorithms. In addition, a basic introduction to the theory of

positive bases was presented. Most importantly, Chapter 1 showed that ensuring the

non-negativity of the Clarke derivative in some, or all, directions at cluster points of

an algorithm is only a partial result on nonsmooth problems and does not preclude the

existence of descent directions at such cluster points. A new algorithmic framework

was presented which replaced the Clarke derivative approach with one consisting of a

series of local and localized global optimization phases.

The localized global optimization phase was considered in Chapter 2. Stochastic

methods were chosen over deterministic methods because successive search regions po-

tentially overlap. This overlap may be problematic for deterministic methods, but not

for stochastic methods. A review of partitioning random search methods was presented

and a new algorithm, APRS, was proposed. A particular partitioning technique using

classification and regression trees (CART) was also presented. The CART partition

has the desirable property that further samples can be drawn directly from subsets of

the partition. The APRS algorithm is quite flexible and forms a new partition at each

iteration irrespective of the previous partition. Furthermore, successive partitions are

not necessarily nested. Under mild conditions, convergence to an essential global min-

imum with probability one was demonstrated when f was assumed to be nonsmooth

or discontinuous.

Chapter 3 extended the CART partitioning ideas presented in Chapter 2 into a

nonsmooth local optimization algorithm called CARTopt. A particular classification

and updating technique was applied to the training data set T to promote clustering in

{ωL}. Also, an invertible transformation was applied to T , which potentially simplified
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the partition. The partition defined a bounded subset of Rn where f was presumed

to be low, from which further samples were drawn. Alternating between partition

and sampling phases proved to be an effective method for bound constrained and

unconstrained nonsmooth optimization. Convergence to an essential local minimizer of

f with probability one was demonstrated under mild conditions, where f was assumed

to be nonsmooth or discontinuous. Deterministic instances of these algorithms were

also presented which used the Halton sequence to sample the approximate level set L,
instead of uniform random sampling, to promote more evenly distributed points in L.
Convergence was not proved for these deterministic instances.

A stopping rule for the CARTopt algorithms was presented in Chapter 4. If the

distribution of the γ least function values generated by CARTopt followed a power law

and the probability of reducing f further was sufficiently small, the algorithm termi-

nated. This rule ensured that the strong theoretical results of Chapter 3 were achieved

in practice giving practical convergence to estimates of essential local minimizers of f .

A Hooke and Jeeves / CARTopt hybrid algorithm was presented in Chapter 5.

The hybrid algorithm uses an altered Hooke and Jeeves algorithm as a local search

phase. The Hooke and Jeeves phase operates on a transformed grid and uphill steps

are permitted under certain conditions. A localized global optimization phase was

conducted in the neighborhood of a grid local minimizer, xk, found in the Hooke

and Jeeves phase. This localized global phase used the bound constrained CARTopt

algorithm to locate and sample promising sub-regions in the neighborhood of xk. If

descent was found, the method reverts back to the Hooke and Jeeves phase. Otherwise,

xk was shown to be an essential local minimizer f with probability one, where f was

assumed to be nonsmooth or discontinuous. Convergence to a local minimum was also

demonstrated when f was assumed to be smooth.

Chapter 6 extended the unconstrained CARTopt instance into an algorithm for

constrained nonsmooth nonlinear programming problems. The concept of a sloping

filter was introduced and used to define a new training data set from which a partition

on Rn was formed. Convergence to essential local minimizers of the constraint violation

function h and a penalty function gk with probability one was demonstrated under mild

conditions when both h and gk were assumed to be nonsmooth.

Numerical simulations reported in Chapter 7 showed that the CARTopt methods

solved all the test problems considered and thus, seems to be robust in practice. Com-

parison with two existing direct search methods showed that the bound constrained

and unconstrained CARTopt methods were competitive in practice. Furthermore, all

the CARTopt methods were vastly superior to Pure Random Search on all problems
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considered.

8.1 Where to Next?

In this section the author highlights some areas that could benefit from further research.

Classification

The classification imposed on the training data set T used in this thesis consisted of

two categories {ωL} and {ωH} — points with relatively low and high function values.

It would be interesting to include more stratification in T , for example, three categories

giving more detail in the relatively low points. In addition, different classifiers could

be investigated, for example, Multivariate Adaptive Regression Splines (MARS) [27].

With each classifier producing a different partition on Rn, many possibilities exist.

Sampling Phase

At each iteration a batch of points was drawn from the approximate level set L using

a near uniform distribution over L. Thus, more samples are drawn from the larger

sub-regions of the partition with probability one. It would be interesting to consider

different sampling strategies, for example, drawing more samples from sub-regions with

the least observed f values. Clearly, there are many possibilities. Furthermore, if a

different classifier is used, MARS for example, new sampling strategies may be required

to sample sub-regions of the partition efficiently.

Local Phase

In this thesis the altered Hooke and Jeeves algorithm was used as a local phase algo-

rithm to potentially increase numerical performance where f was smooth. It would

be interesting to consider other local optimization methods that can exploit derivative

information if it becomes available, but are not reliant on it. Simply using a stan-

dard forward tracking ray search in the direction of the pattern move in the Hooke

and Jeeves algorithm is worth considering. Price, Robertson and Reale made this

simple modification in another algorithm and found a significant improvement in the

algorithm’s performance [62].
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Rate Theorem for CARTopt

Strong theoretical convergence results have been presented for the CARTopt algo-

rithms, however, the rate of convergence has not been analyzed. One can empirically

analyze the rate of convergence by testing the CARTopt algorithm on a variety of

problems. However, it would be interesting to mathematically derive a lower bound on

the rate of convergence, for example, at least linear.

Global CARTopt Algorithm

Another interesting area of research would be to extend the CARTopt algorithm into a

global rather than a localized global optimization algorithm. One could, for example,

use the Multi-Start approach whereby a local search is applied from each seed point

(see Section 2.1). The unconstrained CARTopt instance could be applied from each

seed to produce a nonsmooth global optimization algorithm.

Parallel Processing

The CARTopt algorithms could be coded to exploit multiple processors, for example,

when possible splitting hyperplanes in partition phase are be calculated (see Section

2.4.1). All potential splits in each dimension are considered separately and hence, each

dimension could be treated separately on its own processor. Parallel processing may

make the CARTopt methods run faster in practice, particularly on higher dimensional

problems. Furthermore, if the Multi-Start global CARTopt algorithm was developed,

a single processor could be used for each unconstrained CARTopt instance.

Clearly, there is plenty of interesting work to be done...
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Appendix A

Test Functions

This appendix lists the test problems used to generate the numerical results in Chapter

7. These problems are taken from Schittkowski et al. [34, 68], Moré et al. [51] and

Luksan et al. [45]. The test problems are listed in the two tables which follow.

A.1 Unconstrained Test Problems

The unconstrained test problems selected from [45] are nonsmooth, of the form,

f(x) = max
1<i≤m

{fi(x)} such that x ∈ Rn, (A.1)

where m is a positive integer. The interested reader is referred to [45] for further

details.

The unconstrained test problems selected from [51] are smooth, nonlinear least

squares problems of the form,

f(x) =
m∑
i=1

f 2
i (x) such that x ∈ Rn, (A.2)

where m is a positive integer. In particular, problems with global solutions of zero were

chosen. These problems were made into nonsmooth problems by replacing the squares

in (A.2) with absolute values. The fact that fi = 0 for all i at the global minimizer

means the global solution remains unchanged in the nonsmooth version of (A.2).

The remaining unconstrained test problems were selected from Schittkowski et al.

[34, 68]. These problems are expressed in the same form as (A.2) and are made non-

smooth in the same way described above. To avoid confusion, the nonsmooth version
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of test problem 261 is listed below because it is not expressed as a sum of squares in

[68].

f(x) = |ex1 − x4|+ 10|x2 − x3|+ | tan(x3 − x4)|+ |x1|+ |x4 − 1|.

The minimizer x∗ = (0, 1, 1, 1) with minimum value f(x∗) = 0 remains the same as in

[68].

A constrained version of the Gulf problem from [34] was used to test the CARTopt

algorithm subject to bound constraints. Under the scaling,

x1 ← 99.9(x1 + 1)/2 + 0.01

x2 ← 25.6(x2 + 1)/2

x3 ← 5(x3 + 1)/2 (A.3)

optimization was performed in the x0 + [−1, 1]n box.

A.2 Nonlinear Programming Test Problems

The nonsmooth constrained problems selected from [45] are linearly constrained mini-

max objective functions with the same form as (A.1). The interested reader is referred

to [45] for further details.

The problems selected from Schittkowski et al. [34, 68] are problems expressed as a

sum of squares which were made nonsmooth by replacing squares with absolute values.

A mixture of problems with linear and nonlinear equality and inequality constraints

are considered. Bound constrained problems were avoided as they can be solved di-

rectly using the bound constrained CARTopt instance under appropriate scaling. The

interested reader is referred to [34] and [68] for further details on these problems.

Additional constrained problems from [34] and [68] were also selected. These prob-

lems had obvious nonsmooth analogs that left the feasible global solution unchanged.

Two additional problems B1 and B2 were also created by the author. These problems

are listed below to avoid confusion.

Nonsmooth version of test problem 228,

f(x) = |x1|+ x2

subject to the constraints given in [68].
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Nonsmooth version of test problem 43,

f(x) = |x1|+ |x2|+ 2|x3|+ |x4| − 5x1 − 5x2 − 21x3 + 7x4

subject to the constraints given in [34].

Nonsmooth version of test problem 46,

f(x) = |x1 − x2|+ |x3 − 1|+ |x4 − 1|+ |x5 − 1|

subject to the constraints given in [34].

The nonsmooth function B1 is defined by

f(x) = 2x1 + |x2|+ 2x3 + |x4|,

subject to xi ≥ 0 for i = 1, . . . , 4.

The nonsmooth function B2 is defined by

f(x) = 2x1 + |x2|+ 2x3 + |x4|+ 2x5 + |x6|,

subject to xi ≥ 0 for i = 1, . . . , 6.
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Appendix B

Matlab Code

This appendix contains the Matlab [47] code used to generate the numerical results

in Chapter 7. Firstly, the nonsmooth optimization algorithm CARTopt is given. This

algorithm is called as a subroutine in the Hooke and Jeeves / CARTopt hybrid algo-

rithm, which follows in the next section. Finally, the additional functions required to

implement the CARTopt filter algorithm are given in Section B.3.

B.1 CARTopt Algorithm

The function CARTOPT makes call to the functions CART, POSTPARTITION, OP-

TIMALPOWERFIT, and PTDIST. The latter is listed at the end of CARTOPT, sepa-

rated with dashed lines, while the other three are listed in the subsections which follow.

In addition, CARTopt can be implemented as filter based algorithm for nonlinear pro-

gramming. In this case CARTopt makes call to the function CARTOPT FILTER T,

which is listed in Section B.3.

function [Optimal_value,x_star,CARTopt_term,T_k,f_T,f_count] = ...
CARTopt(T_k,f_T,x_0,h_m,fname,hname,n,N,chi,k_S,f_k,f_count,H_Omega,...
Halton,subroutine,unconstrained,CARTopt_filter)

%
% CARTOPT is a random search nonsmooth optimization algorithm. The method
% forms a partition on the optimzation region using CART, directing
% computational effort in promising regions. The algorithm is implemented
% with f_k = [], H_Omega = [] and subrountine = 0. The variables f_k and
% H_Omega are only active when subroutine = 1, when CARTopt is used as the
% localized global phase of the Hooke and Jeeves / CARTopt algorithm.
% The algorithm can also be implemented as filter based method for non-
% linear programming problems. This version is implemented with f_k = [],
% H_Omega = [], subrountine = 0, unconstrained = 1 and CARTopt_filter = 1.
%

177
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% Variables:
%
% Optimal_value = essential local minimum
% x_star = essential local minimizer
% fn = total function evaluations
% CARTopt_term = Indicator variable, 1 = termination due to
% satisfied stopping rule or k_max satisfied
% T_k = training data set (set [] if not known)
% f_T = function values of T_k (set [] if not known)
% x_0 = optimization region center
% h_m = optimization region radius
% fname = function name (enter as ’string’)
% hname = constraint violation function name (enter as
% ’string’). Set [] if CARTopt_filter = 0
% n = dimension of function
% N = batch size (N>0)
% chi = fraction of points distributed into high
% region, where 0 <= chi <= 1
% k_S = number of iterations to sample high region,
% set to 0 if no sampling is required
% f_count = number of function evaluations (= 0 in CARTopt)
% Halton = Deterministic instance using Halton sequenece,
% set to 1 for Halton, 0 otherwise
% subroutine = indicator variable - 1 means CARTopt is being
% used as a subroutine in the hybrid HJ/CARTopt
% algorithm, 0 otherwise
% unconstrained = indicator variable - 1 means unconstrained
% instance of CARTopt, 0 otherwise.

% Initialize:
f_epsilon = 1e-8; % f_1 - epsilon tolerance for stopping rule
gamma = 40; % number of points for stopping rule
beta = 1e-6; % terminating probability for stopping rule
k_max = max(1000,100*(nˆ2));% maximum number of iterations
if CARTopt_filter == 1

wL_size = N; % wL size for filter method
else

wL_size = floor(0.8*N); % maximum wL size
end
sigma_k = 10; % initial penalty parameter value
frac = floor((1-chi)*N); % number of points to sample from low regions
impurity = 0.0; % misclassification allowed in partition
CARTopt_term = 0; % Updates to 1 if stopping rule satisfied
% Set post-partition vectors as empty
fn_postpart = 0; X_U = []; F_U = []; h_U = [];
% Set the scaled initial Lebesgue measure of the optimization region
measure_Lk = 2ˆn;
% Caclulate critical value for KS test in stopping rule
zeta = (-log(0.025)/(2*gamma))ˆ(1/2) - (0.16693/gamma);
% Set dimension of Halton set for deterministic instance
Halton_counter = 2;
if Halton == 1

Halton_set = haltonset(n+1);
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else
Halton_set = [];

end
if subroutine == 0 % No optimization region transformation matrix

H_Omega = eye(n,n);
end
if k_S == 0 && chi == 1

error(’Cannot sample the high region with k_S = 0 and chi = 1, increase k_S.’)
end
if CARTopt_filter == 1 && unconstrained == 0

error(’CARTopt filter method is unconstrained, set unconstrained == 1’)
end

% Genterate first batch of points for the unconstrained instance of CARTopt
% giving an input training data set.
if unconstrained == 1

if Halton == 1
T_k = 2*Halton_set(Halton_counter:Halton_counter + 2*N-2,2:n+1) - 1;
Halton_counter = Halton_counter + 2*N-1;

else
T_k = 2*rand(2*N-1,n) - 1;

end
T_k = [zeros(1,n);T_k];
% Evaluate the objective function at x_0 and each x in X_N
f_T = zeros(2*N,1); h_T = zeros(2*N,1);
for i = 1:2*N

f_T(i) = feval(fname, x_0 + h_m*(H_Omega*T_k(i,:)’)’);
f_count = f_count + 1;
if CARTopt_filter == 1 %evaluate the constraint violation at each x

h_T(i) = feval(hname, x_0 + h_m*(H_Omega*T_k(i,:)’)’);
end

end
if CARTopt_filter == 1 % Impose maximum constraint violation h(x_0)

Max_violation = h_T(1);
h_max = max(1,Max_violation);

end
end

% Generate initial batch (X_N) of 40 random pts in [-1,1]ˆn box (using input
% training data if given).

Card_f_T = length(f_T);
if Card_f_T >= 2*N

X_N = T_k; f_X = f_T; T_k = []; f_T = [];
if CARTopt_filter == 1

h_X = h_T; h_T = [];
end

else
if Halton == 1

X_N = 2*Halton_set(Halton_counter:Halton_counter + 2*N - ...
Card_f_T-1,2:n+1) - 1;

Halton_counter = Halton_counter + 2*N - Card_f_T;
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else
X_N = 2*rand(2*N - Card_f_T,n) - 1;

end
% Evaluate the objective function at each x in X_N and return to
% HJ_CARTopt if descent is made and subroutine = 1
f_X = zeros(2*N - Card_f_T,1);
for i = 1:2*N - Card_f_T

f_X(i) = feval(fname, x_0 + h_m*(H_Omega*X_N(i,:)’)’);
f_count = f_count + 1;

if subroutine == 1
if f_X(i) < f_k

% Define outputs and update output training data set
Optimal_value = f_X(i);
x_star = x_0 + h_m*(H_Omega*X_N(i,:)’)’;
T_k = [X_N(1:i-1,:); T_k]; f_T = [f_X(1:i-1); f_T];
return

end
end

end
% Set initial batch of points
X_N = [X_N;T_k]; f_X = [f_X;f_T]; T_k = []; f_T = [];

end

% Ensure there exists at least on element with finite function value
inf_count = 1;
while min(f_X) == inf

if Halton == 1
X_N(2*N+inf_count,:) = 2*Halton_set(Halton_counter,2:n+1) - 1;
Halton_counter = Halton_counter + 1;

else
X_N(2*N+inf_count,:) = 2*rand(1,n)-1;

end
f_X(2*N+inf_count) = feval(fname, x_0 + h_m*X_N(2*N+inf_count,:));
f_count = f_count + 1; inf_count = inf_count+1;
if inf_count == 1000

error(’Unable to locate a finite function value in sufficient time’)
end

end

for k = 1:k_max % main loop
k
% add all points to the training data set
T_k = [X_U; X_N; T_k]; f_T = [F_U; f_X; f_T];

% update T_k for the CARTopt filter algorithm and check stopping rule
if CARTopt_filter == 1

% update constraint violations
h_T = [h_U; h_X; h_T];
% enter training data update, classification and stopping function
[T_k,f_T,h_T,Terminate,wL,wH,F_wL,cardwL,Sloping_filter,...
x_k_info,z_k_info] = CARTopt_filter_T(T_k,f_T,n,h_T,gamma,...
N,sigma_k,zeta,f_epsilon,beta,h_max);
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if Terminate == 1 % stopping rule satisfied -- terminate algorithm
break

end

else % update T_k for CARTopt algorithm if T_k exceeds full size and
% and check stopping rule

if length(f_T) > max(2*N,2*(n-1)*N)
[FT,I_FT] = sort(f_T);
T_k_low = T_k(I_FT(1:gamma),:); F_low = FT(1:gamma);
T_k(I_FT(1:gamma),:) = []; f_T(I_FT(1:gamma),:) = [];
T_k = [T_k_low; T_k]; f_T = [F_low; f_T];
T_k = T_k(1:2*(n-1)*N,:); f_T = f_T(1:2*(n-1)*N);

% Check stopping rule as minimum number of points is reached
F = FT(1:gamma);
% Calculate optimal power fit
[kappa_star,f_0_star,KS] = optimalpowerfit(F,’infnorm’,n);

if KS < zeta % sufficient power fit
Probf_c = max(real(((F(1) - f_epsilon - f_0_star)/...

(max(F) - f_0_star))ˆkappa_star),0);
if Probf_c < beta

disp(’ ’)
disp(’Halt due to stopping condition being satisfied’)
CARTopt_term = 1;
break % terminate algorithm, prob of lower pt small

end
end

end
end

% Classify training data points into two categories wL and wH
if CARTopt_filter == 0

[Y,IT] = sort(f_T); cardwL = min(wL_size, sum(isfinite(Y)));
wL = T_k(IT(1:cardwL),:); wH = setdiff(T_k,wL,’rows’);
F_wL = f_T(IT(1:cardwL),:); % function values in wL

end

% Calculate Householder matrix H_k (data transform matrix)
m = (1/cardwL)*sum(wL);
M = (wL - ones(cardwL,1)*m)’*(wL - ones(cardwL,1)*m);
[V,D] = eig(M); v = V(:,find(sum(D) == max(sum(D))))’;
v = v(1,:); % remove eigenvectors with repeated eigenvalues
I = eye(n,n); u = (I(:,1) - v’)/norm(I(:,1) - v’);
H_k = I - 2*u*u’;
% Calculate the transformation scaling coefficient theta
if unconstrained == 1

theta = 1; % searching Rˆn -- no scaling required.
else

theta = max(sum(abs(H_k’)));
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end
% transform the training data T = [wL,wH]
wL = (1/theta)*(H_k*wL’)’; wH = (1/theta)*(H_k*wH’)’;

% Partition optimization region using CART
[B] = CART(wL,wH,impurity,n,N,unconstrained);

% Perform post-partition modifications on the CART partition
[B,X_U,F_U,fn_postpart,measure_Lk,post_descent,Halton_counter,h_U] =...

Postpartition(B,wL,n,x_0,h_m,fname,H_k,F_wL,fn_postpart,theta,...
measure_Lk,Halton,Halton_set,Halton_counter,H_Omega,subroutine,...
unconstrained,CARTopt_filter,hname,sigma_k);

% Terminate if descent was found in post-partition phase. Only possible
% if sub-routine = 1.
if post_descent == 1

[Optimal_value, O_v_I] = min(F_U);
x_star = x_0 + h_m*(H_Omega*X_U(O_v_I,:)’)’;
% Define outputs and update output training data set
F_U(O_v_I) = []; X_U(O_v_I,:) = [];
T_k = [X_U; T_k]; f_T = [F_U; f_T];
f_count = f_count + fn_postpart;
return

end

% Distribute points in low regions using a near uniform distribution
[X_N,Halton_counter] = ...

ptDist(B,N,n,frac,H_k,theta,Halton,Halton_set,...
Halton_counter,unconstrained);

% Apply inversive transform to new batch of points
X_N = theta*(H_k*X_N’)’;

%Sample high region if required, i.e. sample [-1,1]ˆn
if k_S >= k

if Halton == 1
X_N(frac+1:N,:) = 2*Halton_set...

(Halton_counter: Halton_counter + N-frac-1,2:n+1) - 1;
Halton_counter = Halton_counter + N-frac;

else
X_N(frac+1:N,:) = 2*rand(N-frac,n) - 1;

end
end
if k_S == k % Stop sampling high region

frac = N;
end

% Evaluate the objective function at each x in X_N and return to
% HJ_CARTopt if descent is made and subroutine = 1
f_X = zeros(N,1); h_X = zeros(N,1);
for i = 1:N

f_X(i) = feval(fname, x_0 + h_m*(H_Omega*X_N(i,:)’)’);
if f_X(i) == -inf
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error(’Objective function unbouned below, f(x_k) = -inf’)
end
f_count = f_count + 1;

if CARTopt_filter == 1 %evaluate the constraint violation at each x
h_X(i) = feval(hname, x_0 + h_m*(H_Omega*X_N(i,:)’)’);

end
if subroutine == 1

if f_X(i) < f_k
Optimal_value = f_X(i);
x_star = x_0 + h_m*(H_Omega*X_N(i,:)’)’;
% Define outputs and update output training data set
T_k = [X_N(1:i-1,:); T_k]; f_T = [f_X(1:i-1); f_T];
f_count = f_count + fn_postpart;
return

end
end

end

% Increase the penalty parameter if the linear approximation to the
% sloping filter is greater than the current penalty paramter
% (only required in the CARTopt_filter algorithm)
if CARTopt_filter == 1

if length(Sloping_filter(:,1)) > 1
[P,S,MU] = polyfit(Sloping_filter(:,n+2),Sloping_filter(:,n+1),1);
if -P(1)/MU(1) > sigma_k
sigma_k = min(-P(1)/MU(1), min(2*sigma_k,1e10))
end

end
end

end

% --------------------- Define outputs -----------------------------

if nargout > 0
[Y_term,I_term] = sort(f_T); Optimal_value = Y_term(1);
x_star = x_0 + h_m*T_k(I_term(1),:); f_count = f_count + fn_postpart;
CARTopt_term = 1;
if subroutine == 0 % don’t output training data

T_k = []; f_T = [];
end

else
if subroutine == 0

if CARTopt_filter == 1
% least f + sigma*h value (z_k)
Optimal_f_sigma_h_value = z_k_info(n+1) + sigma_k*z_k_info(n+2)
f_sigma_h_x_star = x_0 + h_m*z_k_info(1:n);
f_sigma_h_violation = z_k_info(n+2)
sigma_star = sigma_k
% least constraint violation (x_k)
Optimal_h_value = x_k_info(n+1)
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f_sigma_h_x_star = x_0 + h_m*x_k_info(1:n)
h_violation = x_k_info(n+2)
% total objective function evaluations
f_count = f_count + fn_postpart

else
% CARTopt algorithm
[Y_term,I_term] = sort(f_T);
Optimal_value = Y_term(1)
x_star = x_0 + h_m*T_k(I_term(1),:)
f_count = f_count + fn_postpart

end
end

end

% End of CARTOPT.m

%-------------------------------------------------------------------------

function [X_N,Halton_counter] = ...
ptDist(B,N,n,frac,H_k,theta,Halton,Halton_set,Halton_counter,unconstrained)

%
% PTDIST distributes ’frac’ points into LOW
% sub-regions. An invervse transform method is used to
% distribute the points. Outputs a matrix X_N containing
% new sample points.

% Initialize:
num_regions = length(B(:,1)); X_N = zeros(N,n); k = 1;
hypervolume = zeros(1,num_regions); side = zeros(1,n);
% Calculate hypervolume of all sub-regions
for i = 1:num_regions

for j = 1:n
side(j) = B(i,n+j) - B(i,j);

end
hypervolume(i) = prod(side);

end
% Calculate hypervolume CDF for inverse transform
hyp_cdf = cumsum(hypervolume)*(1/sum(hypervolume));

while k < frac + 1

if Halton == 1
subregion = find(hyp_cdf > Halton_set(Halton_counter,1));
X_Nk = (B(subregion(1),n+1:2*n) - B(subregion(1),1:n)).*...

Halton_set(Halton_counter,2:n+1) + B(subregion(1),1:n);
Halton_counter = Halton_counter + 1;

else
subregion = find(hyp_cdf > rand(1,1));
X_Nk = (B(subregion(1),n+1:2*n) - B(subregion(1),1:n)).*rand(1,n)...

+ B(subregion(1),1:n);
end



B.1. CARTopt Algorithm 185

if unconstrained == 1

X_N(k,:) = X_Nk; k = k+1;
else

% Reject sample point if outside [-1,1]ˆn box
if norm(theta*H_k*X_Nk’,inf) < 1

X_N(k,:) = X_Nk; k = k+1;
end

end
end

% End of PTDIST.m

B.1.1 The CART Partition

The function CART makes call to the functions NODESPLIT and LOWREGIONS.

These functions are listed at the end of CART, separated by dashed lines.

function [B] = CART(wL,wH,impurity,n,N,unconstrained)
%
% CART performs a partition on Omega using Classification and Regression
% Trees. A matrix, TreeMatrix, is systematically updated by assigning points
% to particular nodes. The matrix has the following structure:
%
% TreeMatrix = [nodenumber : sample points : classification]
%
% When a terminal node is found each row of TreeMatrix corresponding to that
% terminal node is removed. The method terminates when TreeMatrix is empty.
% A matrix B containing the bounds on each low sub-region of the partition
% is the only output.
%
% Variables:
%
% wL = low points
% wH = high points
% iD_vector = vector containing impurities at each node
% node = vector containing all nodes of the tree
% termNodes = vector containing all terminal nodes of the tree
% Classification = vector containing classification of each terminal
% node, whereby wL = 0 and wH = 1
% CharSplit = Matrix containing splitting values. Each row element
% not equal to 2 is the splitting value and its column
% position is the splitting dimension.

% Initialize: Preallocate storage
termNodes = zeros(1,2*(n-1)*N); Classification = 2*ones(1,2*(n-1)*N);
iD_vector = zeros(4*(n-1)*N,2); CharSplit = zeros(4*(n-1)*N,n);
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node = zeros(1,4*(n-1)*N); node(1) = 1;
% Counters
k = 1; j = 0; i = 0;
% Sizes
Card_wL = length(wL(:,1)); Card_wH = length(wH(:,1));

% TreeMatrix at root node
TreeMatrix = [ones(Card_wL,1),wL,zeros(Card_wL,1);...

ones(Card_wH,1),wH,ones(Card_wH,1)];

% Calculate impurity at root node (Note 0*log2(0) = 0)
p_wL = Card_wL/(Card_wL + Card_wH); p_wH = Card_wH/(Card_wL + Card_wH);
iD_vector_k = -(min(0,p_wL*log2(p_wL)) + min(0,p_wH*log2(p_wH)));
iD_vector(1) = iD_vector_k;
% Grow tree until all terminal nodes are pure or satisfy the impurity cond.
while ˜isempty(TreeMatrix)

% Determine points at node(k)
node_k_wL = find(TreeMatrix(:,1) == node(k) & TreeMatrix(:,n+2) == 0);
nodek_wH = find(TreeMatrix(:,1) == node(k) & TreeMatrix(:,n+2) == 1);

if iD_vector(k) == 0 || (length(node_k_wL) > length(nodek_wH) ...
&& iD_vector(k) <= impurity)

j = j+1;
termNodes(j) = node(k);
% Update TreeMatrix by deleting rows containing terminal nodes
% which are pure or satisfy impurity condition
TermNoderows = find(TreeMatrix(:,1) == node(k));
% Classify terminal node
Classification(j) = TreeMatrix(TermNoderows(1),n+2);
TreeMatrix(TermNoderows,:) = [];
k = k + 1; % Increment iteration counter

else % Grow Tree further

wL = TreeMatrix(node_k_wL,2:n+1);
wH = TreeMatrix(nodek_wH,2:n+1);
node_k = node(k); iD_vector_k = iD_vector(k);

% Split node(k) to find child nodes
[SPLIT,ChildNodes,iD_best_k,LeftChild,RightChild] = ...

NodeSplit(wL,wH,node_k,n,iD_vector_k);

i = i+2;
iD_vector([i,i+1]) = iD_best_k;
node([i,i+1]) = ChildNodes;
CharSplit(i/2,:) = SPLIT;
% Update node(k) in TreeMatrix after split
Update_node = find(TreeMatrix(:,1) == node(k));
TreeMatrix(Update_node,1) = [LeftChild,RightChild]*ChildNodes’;

k = k + 1; % Increment iteration counter
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end
end

% Resize vectors for LowRegions input.
termNodes = termNodes(1:j); Classification = Classification(1:j);
node = node(1:i+1); CharSplit = CharSplit(1:i/2,:);

% Define matrix B with low sub-region bounds
[B] = LowRegions(n,node,CharSplit,Classification,termNodes,unconstrained);

% End of CART.m

%--------------------------------------------------------------------------

function [SPLIT,ChildNodes,iD_best_k,LeftChild,RightChild] =...
NodeSplit(wL,wH,node_k,n,iD_vector_k)

%
% NODESPLIT splits the current node using the entropy impurity
% relation -sum(P_wj*log_2(P_wj)) where j = L,H. Each
% potential split is considered between elements wL and wH.
%
% Variables:
%
% S = vector of possible splits for data
% SPLIT = optimal split, expressed as vector. Element not
% equal to 2 is the splitting value and position
% indicates which dimension is split
% LeftChild = point(s) at left child node after the split
% RightChild = point(s) at right child node after the split
% iD_best_k = vector with impurities at each child node

% Initialize:
best_impurity = 0; parentNode = node_k;
ChildNodes = [2*parentNode, 2*parentNode + 1];
Card_wL = length(wL(:,1)); Card_wH = length(wH(:,1));
num_pts = Card_wL + Card_wH;

for i = 1:n
% find all potential splits in dimension i
[Y,IY] = sort([wL(:,i);wH(:,i)]);
I_1 = [ones(Card_wL,1);2*ones(Card_wH,1)]; I_2 = [I_1(IY);0];
I_3 = [0;I_1(IY)]; I_4 = I_2 + I_3;
S = find(I_4 == 3);

for j = 1:length(S)

% Splitting value
Split = (Y(S(j)) + Y(S(j) - 1))/2;

% determine where points go after the split
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wL_left = zeros(Card_wL,1); wL_right = ones(Card_wL,1);
wH_left = zeros(Card_wH,1); wH_right = ones(Card_wH,1);

% wL points
wL_left(find(wL(:,i) < Split)) = 1;
wL_right = wL_right - wL_left;

% wH points
wH_left(find(wH(:,i) < Split)) = 1;
wH_right = wH_right - wH_left;

% define variables for change in impurity calcultion
num_wL_left = sum(wL_left); num_wH_left = sum(wH_left);
num_wL_right = sum(wL_right); num_wH_right = sum(wH_right);

p_left = (num_wL_left + num_wH_left)/num_pts;

num_pts_left = num_wL_left + num_wH_left;
num_pts_right = num_wL_right + num_wH_right;
p_wL_left = num_wL_left/num_pts_left;
p_wL_right = num_wL_right/num_pts_right;
p_wH_left = num_wH_left/num_pts_left;
p_wH_right = num_wH_right/num_pts_right;

iD_left = -(min(0,p_wL_left*log2(p_wL_left)) +...
min(0,p_wH_left*log2(p_wH_left)));

iD_right = -(min(0,p_wL_right*log2(p_wL_right)) +...
min(0,p_wH_right*log2(p_wH_right)));

% Calculate change in impurity delta_iN
delta_impurity = iD_vector_k - p_left*iD_left - (1-p_left)*iD_right;

if delta_impurity > best_impurity % better split found

% Update best impurity
best_impurity = delta_impurity;
% Update outputs
iD_best_k = [iD_left, iD_right];
SPLIT = 2*ones(1,n); SPLIT(i) = Split;
LeftChild = [wL_left;wH_left];
RightChild = [wL_right;wH_right];

end
end

end

% End of NodeSplit.m

%--------------------------------------------------------------------------

function [B] = LowRegions(n,node,CharSplit,Classification,termNodes,...
unconstrained)
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%
% LowRegions defines all low sub-regions defined in the CART partition. The
% output matrix B contains the bounds on each sub-region where each row is
% of the form: [x1_min, ... , xn_min, x1_max, ... , xn_max]

% Initialize
num_splits = length(CharSplit(:,1)); node(1) = []; % Remove root node
Odd = 1:2:2*num_splits - 1; Even = 2:2:2*num_splits;

% determine terminal nodes with classification wL
termNodes_wL = termNodes(find(Classification == 0));
% Set up initial structure for output Matrix B
if unconstrained == 1

B = [-inf*ones(length(termNodes_wL),n),inf*ones(length(termNodes_wL),n)];;
else

B = [-ones(length(termNodes_wL),n),ones(length(termNodes_wL),n)];
end

% Set up matrix Split_M such that even rows correspond to upper bounds
% and odd rows correspond to lower bounds using splitting values
MxMn = zeros(1,2*num_splits); MxMn(Odd) = 1;
Split_M = zeros(2*num_splits,n);
Split_M(Odd,:) = CharSplit; Split_M(Even,:) = CharSplit;

for k = 1:length(termNodes_wL) % Determine path to each terminal node

tN = termNodes_wL(k); Path = tN;
while floor(tN/2) > 1

tN = floor(tN/2); Path = [tN, Path];
end

% define region bounds from path
L_P = length(Path); region = zeros(L_P,n);
for j = 1:L_P

region(j,:) = Split_M(find(node == Path(j)),:);
end

% Update the output matrix B
for i = 1:L_P

if MxMn(find(node == Path(i))) == 1
B(k,n+find(region(i,:)˜=2)) = region(i,find(region(i,:)˜=2));

else
B(k,find(region(i,:)˜=2)) = region(i,find(region(i,:)˜=2));

end
end

end

% End of LowRegions.m
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B.1.2 Post-Partition Modifications

function [B,X_U,F_U,fn_postpart,measure_Lk,post_descent,Halton_counter,h_U] = ...
Postpartition(B,wL,n,x_0,h_m,fname,H_k,F_wL,fn_postpart,...
theta, measure_Lk,Halton,Halton_set,Halton_counter,H_Omega,...
subroutine,unconstrained,CARTopt_filter,hname,sigma_k)

%
% POSTPARTITION performs a post-partition modfication on the CART
% partition of Omega. The method uses the forward-tracking face search
% (FTFS) technique and defines singleton sub-regions with hypercubes. If the
% indicator variable subroutine is 1 (subroutine of the hybrid HJ/CARTopt
% algorithm), the method terminates if descent is found, returning to the
% local HJ phase. If CARTopt_filter = 1 (nonlinear programming method)
% problematic bounds are calculated with respect to f + sigma*h, not f.
%
% Variables:
%
% F_wL = f values at the set of points wL
% fn_postpart = number of f evaluations performed
% X_U = points generated in FTFS
% F_U = f values generated in FTFS
% delta = minimum subregion radius
% measure_Lk = measure of union of low sub-regions from the
% previous iteration
% post_descent = terminates post-partition phase if descent
% is found, post_descent = 1, 0 otherwise

% Initialize:
delta = 1e-10; U_counter = 0; singleton_counter = 0;
measure_counter = 0; post_descent = 0;
% Preallocate storage
X_U = zeros(length(wL)*10*n,n); F_U = zeros(length(wL)*10*n,1);
h_U = zeros(length(wL)*10*n,1);
singleton_B_i = zeros(length(wL),n+1); measure = zeros(length(wL)/2,1);

for i = 1:length(B(:,1))

pts = wL; f_pts = F_wL;
% Determine wL points in sub-region B_i along with function values
for j = 1:n

Y = find(pts(:,j) > B(i,j) & pts(:,j) < B(i,n+j));
pts = pts(Y,:); f_pts = f_pts(Y);

end

if length(pts(:,1)) == 1 % Singleton sub-region found

singleton_counter = singleton_counter + 1;
singleton_B_i(singleton_counter,:) = [pts,i];

else % Non-singleton sub-region found
% Preallocate storage
dim_range = zeros(1,2*n); dim_min_max = zeros(1,2*n);
dim_f = zeros(1,2*n);
B_i = B(i,1:2*n); % temperary updated sub-region B_i



B.1. CARTopt Algorithm 191

for j = 1:n % Find max and min points for each dimension of B_i

[min_f,mf_I] = min(pts(:,j)); [max_f,Mf_I] = max(pts(:,j));

dim_min_max(j) = min_f; dim_min_max(n+j) = max_f;
dim_f(j) = f_pts(mf_I); dim_f(n+j) = f_pts(Mf_I);
dim_range(n+j) = dim_min_max(n+j) - dim_min_max(j);
dim_range(j) = -dim_range(n+j);
% Impose minimum splitting distance, forcing minimum box size
if unconstrained == 1

B_i(j) = min(B_i(j),dim_min_max(j) - delta);
B_i(j+n) = max(B_i(j+n),dim_min_max(j+n) + delta);

else % ensure approximate level set remains in [-1,1]ˆn
B_i(j) = min(B_i(j),max(-1, dim_min_max(j) - delta));
B_i(j+n) = max(B_i(j+n),min(1, dim_min_max(j+n) + delta));

end
end

% find problematic boundaries
if unconstrained == 1

prob_bound = find(abs(B(i,:)) == inf);
else

prob_bound = find(abs(B(i,:)) == 1);
end
Update = zeros(1,2*n); Update(prob_bound) = 1;

alpha = 1/3; % initial forward-tracking value

for ij = 1:10 % Forward-tracking face search method (max 10 its)

B_i(prob_bound) = dim_min_max(prob_bound) + ...
alpha*dim_range(prob_bound);

if unconstrained == 0
% Reset nonproblematic bounds to penultermate values (-1 or 1)

nonprob_bound = find(abs(B_i) > 1);
if numel(nonprob_bound) > 0

Update(nonprob_bound) = 0;
B_i(nonprob_bound) = B(i,nonprob_bound);

end
end

if sum(Update) == 0
break % no problematic bounds, consider next sub-region

end

% Evaluate f at a randomly generated pt on each problematic face
prob_bound = find(Update > 0);
for ii = 1:length(prob_bound)

face = B_i;
if prob_bound(ii) <= n % Lowerface

face(n + prob_bound(ii)) = B_i(prob_bound(ii));
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else % Upperface
face(prob_bound(ii) - n) = B_i(prob_bound(ii));

end

% Generate a random point on face
if Halton == 1

x_face = (face(1,n+1:2*n) - face(1,1:n)).*...
Halton_set(Halton_counter,2:n+1) + face(1,1:n);

Halton_counter = Halton_counter + 1;
else

x_face = (face(1,n+1:2*n) - face(1,1:n)).*rand(1,n)...
+ face(1,1:n);

end

if unconstrained == 1

f_face = feval(fname, x_0’ + ...
theta*h_m*H_Omega*H_k*x_face’);

fn_postpart = fn_postpart + 1;

% keep point and function value for training data
U_counter = U_counter + 1;
X_U(U_counter,:) = (theta*H_k*x_face’)’;
F_U(U_counter) = f_face;
if CARTopt_filter == 1

% evaluate constraint violation
h_face = feval(hname, x_0’ + ...

theta*h_m*H_Omega*H_k*x_face’);
% keep constraint violation value for training data
h_U(U_counter,:) = h_face;
% fix face if f + sigma*h is increased
if f_face + sigma_k*h_face > dim_f(prob_bound(ii))

Update(prob_bound(ii)) = 0;
else

dim_f(prob_bound(ii)) = f_face + sigma_k*h_face;
end

else % fix face if f is increased
if f_face > dim_f(prob_bound(ii))

Update(prob_bound(ii)) = 0;
else

dim_f(prob_bound(ii)) = f_face;
end

end

else
% fix bound if x_face is not an element of Omega
if norm(theta*H_k*x_face’,inf) < 1 % in Omega

f_face = feval(fname, x_0’ + ...
theta*h_m*H_Omega*H_k*x_face’);

fn_postpart = fn_postpart + 1;

% keep point and function value for training data
U_counter = U_counter + 1;
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X_U(U_counter,:) = (theta*H_k*x_face’)’;
F_U(U_counter) = f_face;

if subroutine == 1
if f_face < F_wL(1) % terminate if descent is found

post_descent = 1;
X_U = X_U(1:U_counter,:);
F_U = F_U(1:U_counter);

return
end

end

if f_face > dim_f(prob_bound(ii))
Update(prob_bound(ii)) = 0;

else
dim_f(prob_bound(ii)) = f_face;

end
else

Update(prob_bound(ii)) = 0;
end

end
end

alpha = 3*alpha; % Increase forward-tracking coefficient
prob_bound = find(Update > 0);

end

B(i,1:2*n) = B_i; % Update sub-region bounds

% Calculate Lebesgue measure of updated sub-region
side = zeros(1,n);
for j = 1:n

side(j) = B(i,n+j) - B(i,j);
end
measure_counter = measure_counter + 1;
measure(measure_counter) = prod(side);

end
end

% Resize output vectors
singleton_B_i = singleton_B_i(1:singleton_counter,:);
measure = measure(1:measure_counter);

% Construct a hypercube for each singleton sub-region
if numel(singleton_B_i) > 0

%determine box radius
if numel(singleton_B_i) < length(wL)

cube_measure = sum(measure)/(length(wL)-length(singleton_B_i(:,1)));
cube_radius = max((cube_measureˆ(1/n))/2,delta/2);

else % All sub-regions are singleton, base hypercube on measure_Lk
cube_measure = measure_Lk/length(wL);
cube_radius = max((cube_measureˆ(1/n))/2,delta/2);
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end

for j = 1:length(singleton_B_i(:,1))
for p = 1:n

if unconstrained == 1
% update max
B(floor(singleton_B_i(j,n+1)),n+p) = ...

singleton_B_i(j,p) + cube_radius;
% update min
B(floor(singleton_B_i(j,n+1)),p) = ...

singleton_B_i(j,p) - cube_radius;
else % ensure approximate level set remains in [-1,1]ˆn

% update max
B(floor(singleton_B_i(j,n+1)),n+p) = ...

min(1, singleton_B_i(j,p) + cube_radius);
% update min
B(floor(singleton_B_i(j,n+1)),p) = ...

max(-1, singleton_B_i(j,p) - cube_radius);
end

end
end
measure_Lk = sum(measure) + numel(singleton_B_i)*cube_measure;

else
measure_Lk = sum(measure);

end

% Define outputs: Resize X_U and F_U for output
X_U = X_U(1:U_counter,:); F_U = F_U(1:U_counter);
h_U = h_U(1:U_counter);

% End of Postpartition.m

B.1.3 Stopping Rule for CARTopt

The function OPTIMALPOWERFIT makes call to the function INFNORM which is

listed immediately below OPTIMALPOWERFIT.

function [kappa_star,f_0_star,KS] = optimalpowerfit(F,fittype,n)
%
% OPTIMALPOWERFIT calculates the optimal power fit approximation to a
% theoretical CDF using the empircal data given by F. The method minimizes
% the infinity norm distance between the EDF and theoretical CDF using
% golden section search.
%
% Variables:
%
% kappa_star = optimal power for theoretical CDF
% f_0_star = optimal approximation to f_*



B.1. CARTopt Algorithm 195

% KS = the Kolomogorov Smirnov statistic
% tau_1 = termination bracket size

% Initialize:
Card_F = length(F); tau_1 = 0.001;
% determine largest distance d to smallest f_* approximation
d = F(40) - F(1);
% Define set of f_0_star values
F_0 = [F(1)- d,F(1) - d/2, F(1) - d/4];
Card_F0 = length(F_0);
kappa_best = zeros(1,Card_F0); Fnorm_best = zeros(1,Card_F0);

for j = 1:Card_F0

f_0_star = F_0(j);
f_1 = feval(fittype,1,f_0_star,F,Card_F);
f_2 = feval(fittype,2*n,f_0_star,F,Card_F);
f_e = feval(fittype,2*n - tau_1,f_0_star,F,Card_F);
% initial bracket and function values
B = [1, 2*n]; F_B = [f_1,f_2];

if f_e >= f_2 % bracket does not exist to within tolerance

L_B = 2*tau_1; % Don’t enter loop, no optimization required
B = [2*n,2*n];

else
L_B = B(2) - B(1);

end

% Apply golden section search to find optimal power kappa_star
while L_B > tau_1

aa = B(1) + (1 - 0.5*(sqrt(5) - 1))*L_B;
bb = B(2) - (1 - 0.5*(sqrt(5) - 1))*L_B;

f_aa = feval(fittype,aa,f_0_star,F,Card_F);
f_bb = feval(fittype,bb,f_0_star,F,Card_F);
% Update bracket
if f_bb <= min(f_aa, F_B(2))

B(1) = aa; F_B(1) = f_aa;
else

B(2) = bb; F_B(2) = f_bb;
end

L_B = B(2) - B(1);
end

kappa_best(j) = min(B); Fnorm_best(j) = F_B(B == min(B));
end
% Define outputs
[Y,I] = sort(Fnorm_best);
KS = Y(1); kappa_star = kappa_best(I(1)); f_0_star = F_0(I(1));
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% end of OPTIMALPOWERFIT.m

% -----------------------

function [FK] = infnorm(kappa_star,f_0_star,F,Card_F)
%
% INFNORM calculates the Infinity norm distance between CDF and EDF function

FK = zeros(1,30);
for i = 1:30

F_K = ((F(i) - f_0_star)/(F(Card_F)-f_0_star))ˆ(kappa_star);
FK(i) = norm([F_K - (i-1)/Card_F,F_K - i/Card_F],inf);

end

FK = max(FK);

% end of INFNORM.m

B.2 Hooke and Jeeves / CARTopt Hybrid Algo-

rithm

The function HJ CARTOPT makes call to the functions EXPLORE and CARTOPT.

The latter is listed in the previous section and EXPLORE is listed in the subsection

which follows.

function [f_OPT,x_OPT,f_evals,f_values_of_HJ,Global_f_values] = HJ_CARTopt...
(x_0,fname,h_min,h,n,Uphill,N,chi,k_S,Halton,Smooth)

% HJ_CARTopt is a hybrid algortihm for solving nonsmooth optimization
% problems. A modified Hooke and Jeeves local phase is used to
% give the algorithm speed and CARTopt is used as the localized global
% optimization phase. The localized global phase gives convergence on
% nonsmooth problems.
%
% Variables:
%
% x_0 = Initial sample point
% fname = Objective function name (’string’)
% h_min = Minimum mesh size
% h = Mesh size
% n = Objective function dimension
% Uphill = Set to 1 to allow for uphill steps, 0 otherwise
% N = Batch size for CARTopt
% chi = Fraction of points distributed into high
% region, where 0 <= chi <= 1
% k_S = Number of iterations to sample high region
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% Halton = Deterministic version using Halton sequenece,
% set to 1 for Halton, 0 otherwise
% Smooth = Implements the smooth algorithm if set to 1 and set
% to 0 for the nonsmooth algorithm
% f_OPT = Final function value
% x_OPT = Final point
% f_evals = Total number of function evaluations

% Initialize:
x_k = zeros(n,1); v_k = zeros(n,1); E_k = zeros(n,1);
H = eye(n,n); h_Omega = 1e-4; pattern_scalar = 1;
T_k = []; f_T = []; f_count = 0;
subroutine = 1; % Inform CARTopt that it is a subroutine of this algorithm
max_grid_reduction = 3; % Maximum grid reduction coefficient
HJ_its = 0; HJ_maxits = 50000; % HJ iterations and maximum number of HJ its
x = x_0; % Initial grid origin
% Calculate initial function value at x_0
f_k = feval(fname,x);
FE_count = 1; % HJ function evaluation counter
U_k = f_k; % Set upper bound on allowable function values
XFG = [zeros(1,n),f_k]; % Grid point with known function value
Repeat_flag = 0; % Potential repeated element in T_k flag

while h > h_min
% Conduct exploratory phase about x_k + v_k
z = x_k + v_k;
[E_k,f_E,T_E,f_TE,FE_count,XFG] = ...

Explore(fname,z,x_0,h,n,E_k,H,FE_count,XFG);
% Sinking Lid step:
if Uphill == 1 % Potential ascent algorithm

if f_E >= f_k

if U_k - f_E >= 1e-15 && norm(v_k) > 1e-13
U_k = (U_k + f_E)/2;

else
U_k = f_k;

end
end

else
U_k = f_k; % Strictly descent algorithm

end

% Pattern Move: implimented if f is less than current upper bound U_k
if f_E < U_k

x_k = x_k + v_k + E_k; v_k = pattern_scalar*(v_k + E_k);
f_k = f_E;

elseif norm(v_k) > 0

v_k = zeros(n,1);
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else % enter the localized global optimization phase

if Repeat_flag == 1 % Remove x0_hold from T_E (already in T_k)
[EK,EK_I] = min(sum(abs((T_E - ...

(x0_hold’*ones(1,length(f_TE)))’)’)));
if EK < 1e-14

T_E(EK_I,:) = []; f_TE(EK_I) = [];
end
Repeat_flag = 0;

end

% Set optimization region (Omega) radius and center
if Smooth == 1 % smooth algorithm

h_m = h*sqrt(n); % Allow Omega to shrink with h
else

h_m = max(h*sqrt(n), h_Omega); % Impose minimum Omega size.
end
x_0 = (x_0 + h*x_k)’; x_k = zeros(n,1);
x0_hold = x_0; % hold onto optimization region center

% Calculate transformation matrix H_Omega to remove colinear points
% resulting from using T_E as an input training data set
w = (1/sqrt(3+n))*H*[2;ones(n-1,1)]; I = eye(n,n);
uw = (I(:,1) - w)/norm(I(:,1) - w); H_Omega = I - 2*(uw)*uw’;

% Determine points from T_k that are elements of Omega
T_k = [T_E; T_k]; f_T = [f_TE;f_T];
T_k = (1/h_m)*(H_Omega*((T_k) - (x_0’*ones(1,length(f_T)))’)’)’;
NotIn_Omega = [];
for j = 1:length(f_T)

if norm(T_k(j,:),inf) > 1
NotIn_Omega = [NotIn_Omega, j];

end
end
T_k(NotIn_Omega,:) = []; f_T(NotIn_Omega) = [];

% Enter CARTopt with non-empty training data set
[Optimal_value,x_star,CARTopt_term,T_k,f_T,f_count] =...

CARTopt(T_k,f_T,x_0,h_m,fname,[],n,N,chi,k_S,f_k,f_count,...
H_Omega,Halton,subroutine,0,0);

% convert training data back to original coordinate system
T_k = (x_0’*ones(1,length(f_T)))’ + h_m*(H_Omega*T_k’)’;

if CARTopt_term == 1 % Essential local minimizer found by CARTopt
break % terminate algorithm

end

% Calculate grid transformation matrix H, update mesh size h and set
% the new grid center.
promising_direct = (x_star - x_0)/norm(x_star - x_0); I = eye(n,n);
u = (I(:,1) - promising_direct’)/norm(I(:,1) - promising_direct’);
H = I - 2*(u)*u’;
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if Smooth == 1 % force grid reduction for smooth version
h = max(h/max_grid_reduction, norm(x_star - x_0)/(n+10e-10));

else
if norm(x_star - x_0) < h

h = max(h/max_grid_reduction, norm(x_star - x_0));
end

end
% Update grid points with known function values matrix
if h == norm(x_star - x_0)

XFG = [zeros(1,n), Optimal_value; (1/h)*(x_0 - x_star), f_TE(1)];
Repeat_flag = 1;

else
XFG = [zeros(1,n), Optimal_value];

end
x_0 = x_star’; f_k = Optimal_value; U_k = f_k;

end
HJ_its = HJ_its + 1;
if HJ_its > HJ_maxits

disp(’ ’)
disp(’Maximum number of Hooke and Jeeves iterations reached’)
break % terminate algorithm

end
end

% Define outputs.
f_OPT = f_k; x_OPT = x_0; f_evals = f_count + FE_count;
f_values_of_HJ = FE_count; Global_f_values = f_evals - FE_count;

% End of HJ_CARTopt.m

B.2.1 Exploratory Phase

function [E_k,f_E,T_E,f_TE,FE_count,XFG] = ...
Explore(fname,z,x_0,h,n,E_k,H,FE_count,XFG)

% EXPLORE conducts the modified exploratory moves of the Hooke and Jeeves
% algorithm. Neighboring grid points are considered in turn to define a
% direction of descent. The previous exploratory vector is used to indicate
% which directions are explored first.
%
% Variables:
%
% fname = objective function name (’string’)
% z = current iterate (x_k + v_k)
% x_0 = current grid origin
% h = mesh size
% n = dimension of objective function
% H = Grid transformation Householder Matrix
% E_k = exploratory vector
% f_E = function value at f(x_k + v_k + E_k)
% T_E = training data from exploratory phase
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% f_TE = function values for training data T_E
% XFG = Known grid points and f values matrix, where
% XFG(i) = [x_i,f(x_i)] (row i)
% FE_count = function evaluation counter

%Initialize:
T_E = zeros(2*n+1,n); f_TE = zeros(2*n+1,1);
% Set up indicator matrix I, defining a promising search direction
if length(XFG(:,1)) <= 2 % new grid, no promising direction

I = eye(n,n);
else

E_k = sign(H*E_k); E_k(find(E_k == 0)) = 1; I = diag(E_k);
end
E_k = zeros(n,1);
% Evaluate f at current iterate. Check if f value is known at grid point
[XK,XK_I] = min(sum(abs((XFG(:,1:n) - (z*ones(1,length(XFG(:,1))))’)’)));

if XK < 1e-14 % known grid point
f_k = XFG(XK_I(1),n+1);

else
x = x_0 + h*z; f_k = feval(fname,x);
FE_count = FE_count + 1;
% New grid point function value is known
XFG = [z’,f_k;XFG];

end
% Update training data
T_count = 1; T_E(T_count,:) = (x_0 + h*z)’; f_TE(T_count) = f_k;

for i = 1:n % Conduct search along +/-He_i
z = z + H*I(:,i);
% Check if f value is known at grid point
[XK,XK_I] = min(sum(abs((XFG(:,1:n) - (z*ones(1,length(XFG(:,1))))’)’)));

if XK < 1e-14 % known grid point
f_E = XFG(XK_I(1),n+1);

else
x = x_0 + h*z; f_E = feval(fname,x); FE_count = FE_count + 1;
% New grid point function value known
XFG = [z’,f_E;XFG];

end
% Update training data
T_count = T_count + 1;
T_E(T_count,:) = (x_0 + h*z)’; f_TE(T_count) = f_E;

if f_E < f_k
f_k = f_E; E_k = E_k + H*I(:,i);

else % Conduct search along -/+He_i
z = z - 2*H*I(:,i);
% Check if f value is known at grid point
[XK,XK_I] = min(sum(abs((XFG(:,1:n) - ...

(z*ones(1,length(XFG(:,1))))’)’)));
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if XK < 1e-14 % known grid point
f_E = XFG(XK_I(1),n+1);

else
x = x_0 + h*z; f_E = feval(fname,x); FE_count = FE_count + 1;
% New grid point function value known
XFG = [z’,f_E;XFG];

end
% Update training data
T_count = T_count + 1;
T_E(T_count,:) = (x_0 + h*z)’; f_TE(T_count) = f_E;

if f_E < f_k
f_k = f_E; E_k = E_k -H*I(:,i);

else % No descent obtained, reset to inital value
z = z + H*I(:,i);

end
end

end

% Resize training data and define outputs
T_E = T_E(1:T_count,:); f_TE = f_TE(1:T_count); f_E = f_k;
return

% End of Explore.m

B.3 CARTopt Filter Algorithm

The function CARTOPT FILTER T makes call to the function OPTIMALPOWER-

FIT, listed in the Section B.1.3.

function [T_k,f_T,h_T,Terminate,wL,wH,F_wL,cardwL,Sloping_filter,...
x_k_info,z_k_info] = CARTopt_filter_T(T_k,f_T,n,h_T,gamma,N,...

sigma_k,zeta,f_epsilon,beta,h_max)
%
% CARTOPT_FILTER_T updates the training data set, classifies and tests
% the stopping rule for the nonlinear programming algorithm CARTopt_filter.
% The gamma elements with the least h and f + sigma*h values, the
% sloping filter and the most recent elements are retained ensuring T_k
% does not exceed full size.
%
% Variables:
%
% T_k = training data points
% f_T = objective function values of T_k
% h_T = constraint violation values of T_k
% x_k_info = point, f value and h value that minimizes h
% z_k_info = point, f value and h value that minimizes
% f + sigma*h
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% initialize:
Terminate = 0; % set termination flag to zero
tau = 0; % feasiblity tolerence parameter
cardwL = N; % cardinality of low points wL
T_max = max(2*gamma... % cardinality of full size training data set

+ N,max(2*N,(n-1)*N));

% firstly, the sloping filter is calculated from the infeasible points
X = [T_k,f_T,h_T];
X_infeasible = X(find(X(:,n+2) > 0 & X(:,n+2) < h_max),:);

% remove points that are within tau of being feasible, keeping
% the element with the lowest function value only
h_minimized = X_infeasible(find(X_infeasible(:,n+2) < tau),:);

% find element within tau with the least objective function value
if numel(h_minimized) > 0

[a,best_h_I] = min(h_minimized(:,n+1));
best_h = h_minimized(best_h_I,:);
X_infeasible = [setdiff(X_infeasible,h_minimized,’rows’); best_h];

end

% set of mu values for sloping filter
mu = [0, sigma_k/(2ˆ10), sigma_k/(2ˆ9), sigma_k/(2ˆ8), sigma_k/(2ˆ7),...

sigma_k/(2ˆ6),sigma_k/(2ˆ5),sigma_k/(2ˆ4),sigma_k/(2ˆ3),...
sigma_k/(2ˆ2),sigma_k/(2ˆ1),sigma_k];

for i = 1:length(mu)
X = X_infeasible;
Filter = zeros(size(X)); Filter_size = 0;
while numel(X) > 0

% test to see if current point is an element of the sloping filter
x_filter = X(1,:); X(1,:) = [];
% remove elements filtered by x_f
filtered = find(X(:,n+2) >= x_filter(n+2) & X(:,n+1) >= ...

x_filter(n+1) - mu(i)*(X(:,n+2) - x_filter(n+2)));
X(filtered,:) = [];
% add x_f to the filter if it is not filtered by another element
filter_element = find(X(:,n+2) < x_filter(n+2) & X(:,n+1) < ...

x_filter(n+1) - mu(i)*(X(:,n+2) - x_filter(n+2)));
if numel(filter_element) == 0

Filter_size = Filter_size + 1;
Filter(Filter_size,:) = x_filter;

end
end
% resize the filter
Filter = Filter(1:Filter_size,:);

% keep set of undominated points (mu = 0 case)
if i == 1

X_D = Filter;
end
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% test to see if filter is sufficiently small or if mu = sigma_k
if Filter_size <= 3*N/4

% sort sloping filter with respect to constraint violation
[a,order_filter_I] = sort(Filter(:,n+2));
Sloping_filter = Filter(order_filter_I,:);
break

end
if i == length(mu) % keep 3N/4 most feasible

% sort sloping filter with respect to constraint violation
[most_feasible,most_feasible_I] = sort(X_D(:,n+2));
Sloping_filter = X_D(most_feasible_I(1:3*N/4),:);
Filter_size = 3*N/4;

end
end

% ------------ the training data set is now updated ----------------------

if length(f_T) <= T_max % keep all points (including sloping filter)

T_gamma = [T_k,f_T,h_T];

% define least f + sigma*h element (z_k)
[a, f_sigma_h_best_I] = min(f_T + sigma_k*h_T);
z_k_info = T_gamma(f_sigma_h_best_I,:);
% define least h with least f value (x_k)
[h_best, h_best_I] = min(h_T);
if h_best == 0

feasible = T_gamma(find(T_gamma(:,n+2) == 0),:);
[feas,feasible_I] = min(feasible(:,n+1));
x_k_info = feasible(feasible_I,:);

else
x_k_info = T_gamma(h_best_I,:);
feasible = []; % no feasible points exist

end

else % remove elements from T_k, maintaining full size

%working matrix with all relevant elements
MatrixW = [T_k,f_T,h_T];

% firstly, keep the gamma elements with least f + sigma*h values
[f_sigma_h, f_sigma_h_I] = sort(f_T + sigma_k*h_T);
f_sigma_h_low = MatrixW(f_sigma_h_I(1:gamma),:);
% define z_k output
z_k_info = MatrixW(f_sigma_h_I(1),:);

% secondly, keep the gamma elements with least constraint violations
[a,h_T_I] = sort(h_T);
if h_T(h_T_I(gamma)) == 0 % least f values as well

feasible = MatrixW(find(MatrixW(:,n+2) == 0),:);
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[feas,feasible_I] = sort(feasible(:,n+1));
h_T_low = feasible(feasible_I(1:gamma),:);
% define x_k output
x_k_info = feasible(feasible_I(1),:);

else
h_T_low = MatrixW(h_T_I(1:gamma),:);
% define x_k output
if h_T(h_T_I(1)) == 0

feasible = MatrixW(find(MatrixW(:,n+2) == 0),:);
[feas,feasible_I] = min(feasible(:,n+1));
x_k_info = feasible(feasible_I(1),:);

else
x_k_info = MatrixW(h_T_I(1),:);
feasible = []; % no feasible points exist

end
end

% determine how many recent elements are required to keep T_k full size
T_gamma = union(f_sigma_h_low,h_T_low,’rows’);
% the sloping filter is also included in this set
T_gamma = union(T_gamma,Sloping_filter,’rows’);
card_T_gamma = length(T_gamma(:,1));
% collect unused points, preserving order
[unused_pts,unused_pts_I] = setdiff(MatrixW,T_gamma,’rows’);
[a,II] = sort(unused_pts_I); unused_pts = unused_pts(II,:);
% finally, keep the required number of recent points
recent_pts = unused_pts(1:T_max - card_T_gamma,:);

% Output training data
T_k = [T_gamma(:,1:n); recent_pts(:,1:n)];
f_T = [T_gamma(:,n+1); recent_pts(:,n+1)];
h_T = [T_gamma(:,n+2); recent_pts(:,n+2)];

% Check stopping rule. If a feasible iterate exists impliment existing
% CARTopt stopping when gamma feasible points are obtained. Otherwise
% terminate with respect to f + sigma*h.

[a,I_h_T] = sort(h_T);
if h_T(I_h_T(2)) == 0

if h_T_low(gamma,n+2) == 0 % sufficient number of feasible points
F = feas(1:gamma);

else
F = [];

end
else

F = f_sigma_h(1:gamma);
end

% Calculate optimal power fit for empirical data F
if numel(F) > 0

[kappa_star,f_0_star,KS] = optimalpowerfit(F,’infnorm’,n);

if KS < zeta % sufficient power fit
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Probf_c = max(real(((F(1) - f_epsilon - f_0_star)/...
(max(F) - f_0_star))ˆkappa_star),0);

if Probf_c < beta
disp(’ ’)
disp(’Halt due to stopping condition being satisfied’)
Terminate = 1; % terminate algorithm, prob of lower pt small

end
end

end
end

% -------- Classify the training data set into sets wL and wH ------------

% firstly, include x_k and z_k in wL
wL_xkzk = union(x_k_info,z_k_info,’rows’);
alpha = length(wL_xkzk(:,1));

% determine the feasible points to be included in wL (if they exist)
if ˜isempty(feasible)

feasible = setdiff(feasible,x_k_info,’rows’);
card_feasible = length(feasible(:,1));
[a,feasible_I] = sort(feasible(:,n+1));
wL_feas = feasible(feasible_I(1:min(card_feasible,max...

(floor(N/2 - alpha),N - Filter_size - alpha))),:);

wL_feas_size = length(wL_feas(:,1));
else

wL_feas = []; wL_feas_size = 0;
end

% determine the sloping filter elements to be in wL (if they exist)
if Filter_size > 0

wL_filter = Sloping_filter(1:min(Filter_size,...
N - wL_feas_size - alpha),:);

wL_filter = setdiff(wL_filter,wL_xkzk,’rows’);
else

wL_filter = [];
end

% define the current set of low points wL
wL = [wL_xkzk; wL_feas; wL_filter]; wL_size = length(wL(:,1));

% determine elements with the least f + sigma*h values to be included in
% wL to ensure the cardinality of wL = N
if wL_size < cardwL

X_f_sigma_h = setdiff(T_gamma,wL,’rows’);
[a,f_sigma_h_I] = sort(X_f_sigma_h(:,n+1) + sigma_k*X_f_sigma_h(:,n+2));
wL_f_sigma_h = X_f_sigma_h(f_sigma_h_I(1:N-wL_size),:);
% define wL and function values in the form f + sigma*h
F_wL = [wL(:,n+1) + sigma_k*wL(:,n+2);...
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wL_f_sigma_h(:,n+1) + sigma_k*wL_f_sigma_h(:,n+2)];
wL = [wL(:,1:n);wL_f_sigma_h(:,1:n)];

else
% define wL and function value in the form f + sigma*h
F_wL = wL(:,n+1) + sigma_k*wL(:,n+2);
wL = wL(:,1:n);

end

% define the high points as the remaining elements of the training data
wH = setdiff(T_k,wL,’rows’);

% end of CARTOPT_FILTER_T.m


