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Abstract 

Deliberate practice within a coached environment is required for skill acquisition and 
mastery. Intelligent Tutoring Systems (ITSs) provide such an environment. A goal in 
ITS development is to find means to maximise effective learning. This provides the 
motivation for the project presented. 

This paper proposes the notion of problem templates. These mental constructs 
extend the idea of memory templates, and allow experts in a domain to store vast 
amounts of domain-specific information that are easily accessible when faced with a 
problem. This research aims to examine the validity of such a construct and 
investigate its role in regards to effective learning within ITSs.   

After extensive background research, an evaluation study was performed at the 
University of Canterbury. Physical representations of problem templates were formed 
in Structured Query Language (SQL). These were used to model students, select 
problems, and provide customised feedback in the experimental version of SQL-
Tutor, an Intelligent Tutoring System. The control group used the original version of 
SQL-Tutor where pedagogical (problem selection and feedback) and modelling 
decisions were based on constraints. Preliminary results show that such a construct 
could exist; furthermore, it could be used to help students attain high levels of 
expertise within a domain. Students using template based ITS showed high levels of 
learning within short periods of time. The author suggests further evaluation studies 
to investigate the extent and detail of its effect on learning. 
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1 Introduction 

1.1 The Importance of Learning 
Learning and instruction have been studied in various fields such as Psychology, 
Education, Neuroscience, Artificial Intelligence, and more recently Intelligent 
Tutoring Systems. Learning is defined as the process leading to relatively permanent 
or potential behavioural change; it is the increased likelihood of a response to a 
stimulus as a consequence of experience [1]. It affects the way we perceive a 
particular environment, the way we interpret incoming stimuli, and consequently 
how we interact or behave in a given situation. As a result, learning is an imperative 
part of practically every aspect of our lives. Furthermore, most sectors of our society, 
be it businesses, governments, military organisations, or individuals, are striving to 
increase the effectiveness of learning in an attempt to increase productivity and 
efficiency, and provide and retain a 
comp s behaviourism, cognitivism, and 

he effects of learning on the brain and neurological systems 
als

ods we use to facilitate learning are far from perfect. Some researchers 
eve

, pupil interaction 
is l

achieve goals (organisational or individual), 
etitive edge. Various learning theories, such a

constructivism, have been proposed to try to understand the processes involved in 
learning. Research into t

o continue in an aid to study learning from a physiological perspective [2-4].  

1.2 Problems in the Education System 
Although learning is of great importance in our society, our education systems are 
fraught with problems.  

The meth
n claim that there is a crisis in the education field and that education as a whole is 

on a decline [5]. Irrespective of their position on the state or trend of education today, 
researchers seem to agree on how little we know about the complex processes and 
interaction between teaching techniques, the content, the learning process, and the 
learner [6].  

Funding issues, amongst other factors often lead to high student-to-teacher ratios 
[7] and inadequate resources. A large proportion of the teacher’s role, energy, and 
time is now devoted to being a disciplinarian, organiser, and even peacemaker, rather 
than primarily focussing on teaching. In an attempt to tailor the course work to a 
large group of students, the teacher is compelled to aim the course content and set 
the speed of progress at the ‘average’ student level, thereby providing the ideal level 
for only a small percentage of students. With high student numbers

ow. The teaching process turns into one of knowledge transfer, where declarative 
knowledge is transferred from the teacher to the passive student. The role of practice 
with adequate feedback is denigrated. Deep learning however, requires the student to 
play an active role, involving high participation and interaction between the student 
and the teacher. Practice is an essential part of skill acquisition [8]. 

1 
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Most models used in education systems today view both the student and content 

as static entities [6]. These models force all students to trace the same path through a 
pre-defined curriculum at a pre-set pace. However, neither students nor content are 
static entities. Students have differing initial knowledge levels. They also have 
diff

should be 
continually monitored and customised to the knowledge level and expertise of the 
stude ction, and feedback for the novice and 

vel are used to customise and create each 
stu

main goal of ITS development is to increase the 
effectiveness of learning within the ITS. It is this goal that provides the impetus for 
this r ing this goal exist. First, modules within 

g through a tree of all 
pos

ering capabilities that vary between sub domains. This means that the ideal 
learning environment should be customised to each individual student. Each 
student’s entry position into the course material should be at a position appropriate 
to his or her knowledge level. They should also be able to follow their own path 
through the content at their own pace dependent on their current and updated level. 

Psychological studies show that students could learn and retain more information 
from discovery than from direct instruction [9]. The school system has been criticised 
for removing the ability for students to learn by discovery; instead, it forces students 
to learn by memorising facts prescribed by the curriculum. A call to re-evaluate the 
education system from an epistemological point of view and empower the student’s 
ideas thereby providing opportunities for discovery is given in [10]. However, it has 
also been noted that the amount learned from unguided exploration or deviation 
from a set path is usually proportional to expertise. In other words, experts could 
benefit from learning through exploration, whereas novices could get overwhelmed 
and lose direction with unguided exploration [7]. This implies that learning 

nt; providing more guidance, dire
allowing greater freedom for exploration and choice as expertise increases. This level 
of monitoring and customising is only possible in either one-to-one human tutoring 
or with Intelligent Tutoring Systems (ITSs), the latter being more practical. 

1.3 Motivation for the Research 
ITSs are computer-based, interactive, adaptive, learning environments that allow 
students to practice domain-specific skills whilst receiving explicit feedback to their 
solutions. Each student’s knowledge of various portions of the domain is recorded in 
a student model. From this, a knowledge level is continually calculated and updated. 
Both the model and the knowledge le

dent’s path through the course material. ITSs shift the focus from knowledge 
transfer to knowledge communication [7]; the student is no longer a passive recipient 
of knowledge. Instead, they are actively involved in the learning process that has been 
adapted to their current knowledge and capabilities. ITSs provide a good solution to 
the problems mentioned in Section 1.2. 

Although ITSs have been used successfully in a number of domains achieving high 
learning rates within short periods [11-13], the learning rates are still not as high as 
one-to-one human tutoring [14]. A 

esearch. Two main methods of achiev
the ITS can be enhanced to increase effectiveness. Second, conjectures regarding 
various aspects of learning can be made and evaluated. This research attempts both, 
with greater emphasis on the latter. 

1.4 An Overview of the Research 
How do experts differ from novices? De Groot [15] was one of the first to try and 
fathom how chess experts were able to find the best move from within a vast range of 
possibilities. Researchers have found that instead of searchin

sible moves as novices do, chess masters are able to recognise chess 
configurations and attach meaningful representations to these patterns helping them 
plan ahead [8]. It is as if they had developed a library of configurations or patterns or 
templates. This has been supported by  Chase and Simon’s Chunking Theory [16, 17] 
and more recently the Template Theory of Memory (TT) [18].  
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The TT proposes that experts store domain information in templates in long-term 
memory. Templates, like chunks, are groups of meaningfully related information. 
Templates contain slots that either store domain information (such as recognisable 
patterns of problem states, or solutions) or pointers to other templates. Pointers to 
templates are held in short-term memory, thereby enabling almost instantaneous 
retrieval of vast amounts of information with the same short-term memory 
con

ciated with 
the

and is able to generate 
app

 to make pedagogical and modelling decisions, and an 
experimental version using templates. Participants for the study were students from 
an un ed the system for the second term in 2006. 

Sec

and hypothesis of the research are outlined in Section 3. Problem 
templates and existing examples are described in Section 3.3. Section 4 contains the 
design and implementation of the research study, while the description of the 
evaluation is given in Section 5. A discussion also follows the reporting of the results. 
Finally, a few probable extensions to the research are proposed after the conclusion 
in Section 6.  

straints. This information allows the expert to quickly recognise the problem 
state, associate common solution strategies, and even predict future paths. According 
to the TT, experts are those that have formed a mental library of templates. This 
enables experts to recognise certain types of problems, and link relevant problem-
solving information to the template.  

From personal observation, templates are used in a wide range of domains in 
human tutoring to enable novices to learn problem solving skills and associate 
techniques with particular parts of a problem. For example, when learning to drive, 
the student creates and adds to a set (mental library) of templates, which aids in 
solving a particular problem. These templates include hill starts, three point turns, 
parallel parking, uncontrolled intersections, etc. Cues to recognise the template in a 
problem, and strategies or techniques to solve the problem are stored in the template 
slots. When presented with a problem (e.g. drive from university to home), the 
student accesses the relevant templates, and uses the techniques asso

m to solve the overall problem. This reduces the number of items the student 
holds in working memory, and provides a quicker, more efficient method of accessing 
related ‘chunks’ of information. The human driving instructor maintains a student 
model based on the student’s knowledge of the template, 

ropriate problems containing templates that require further practice. 
We hypothesise that when learning on an ITS based on templates, non-experts, 

who already have basic instruction in the domain, would be able to learn more 
effectively. More specifically, students should be able to recall greater amounts of 
domain knowledge while still having high rates of learning.  

To evaluate this hypothesis, an evaluation study was conducted. Templates for the 
chosen domain, Structured Query Language (SQL) were compiled. Two versions of a 
Constraint-Based ITS (SQL-Tutor [19]) were implemented: a control version in which 
constraints were used

dergraduate database course who us
Data such as pre and post-tests, student models, and logs were recorded and later 
statistically analysed; learning curves were plotted. A detailed account of the research 
is given in this report. 

1.5 The Structure of the Report 
tion 2 of this report looks at relevant background information related to this 

project. It overviews ITSs, theories of memory, and notions on how experts differ 
from novices. It is not an exhaustive list of the extensive background knowledge 
required to comprehend this field. However, it contains references to articles, 
providing the reader with links to further research if required.  

The goals 

 



2 Background 

2.1 Intelligent Tutoring System (ITS) 
Many factors accentuate the need for ITSs in learning situations. Three of the main 
factors are described below. 

First, one-to-one human tutoring provides the optimal learning environment [14]. 
However, due to many factors including resource and practical constraints, most 
aca

udents 
tra

 
classroom situation makes ITSs the ideal 

els of feedback or forward hints can be given at 

f an ITS 
Th cture of an ITS is often divided into four main components: the student 
model, the pedagogical module, the domain knowledge module, and the 

demic institutions fall short of this optimum with high student-to-teacher ratios 
[5]. ITSs are a solution to this problem as they provide a learning environment that 
can be customised to each individual by maintaining an updated student model. The 
ITS also allows the student to learn at their own pace without being restricted by that 
of the class.  

Second, practice is a central part of learning and skill acquisition [20]. Regular, 
optimised, deliberate practice within a structured (coached) environment is required 
to maximise learning and attain mastery [8]. Ideal learning scenarios emphasise this 
by presenting the learner with a target task that is part of a customised training 
sequence and presented within a task environment suited for the particular domain-
dependent context. The target task should always be within the individual's zone of 
proximal development [21] i.e. difficult enough to be challenging, yet not too difficult 
or too easy to be de-motivating. The training sequence should be continually adapting 
to the individual’s current and updated knowledge level, such that no two st

ce the same path through the system. The task environment should not only 
present the tasks and solution space in such a manner as to keep the cognitive load 
on the student at a manageable level, but also present the context of the particular 
task. Here again, the ITS is the ideal solution as it presents the student with tasks 
based on the individual’s student model in the appropriate task environment.  

Third, “rewards and punishments … are crucial ingredients of learning, as is 
contact with, and manipulation of, the environment” ([1]  p.565). This implies that for 
effective learning to occur, the student needs to have precise feedback at the correct 
level of detail, adapted to the student’s solution. It also re-states the need for hands-
on practice in the correct context. The impracticality of this (usually due to high
student-to-teacher ratios) in a normal 
solution to this need. Various lev
either user-requested or ITS- specified points during the task. This feedback could be 
adaptive (dependent on the student’s knowledge) and scaffolded (where the detail of 
feedback presented is inversely proportional to the student’s level of expertise) [22]. 

2.1.1 Architecture o
e stru

4 



2. Background 5 

commu ed 
[23].  the 
componen

 

nication module. Often a fifth component, the expert module, is also includ
Figure 2 shows the overall architecture and relationships between

ts in the ITS. 

 
Figure 1: The architecture of an ITS 

 “The student model is a representation of the computer system’s beliefs about the 
learner and is, therefore, an abstract representation of the learner in the system.” 
[24] The student model contains an estimation of the level of domain (or sub 
domain) mastery for each student. It is this model that the system utilises to make 
pedagogical decisions that are customised to each student. For instance, a long-term 
student model containing the student’s entire history on the ITS can be used to 
govern high level decisions such as problem selection, while a short-term student 
model can be used to guide decisions regarding feedback on the current solution. 
What information should be stored in a student model has been long questioned. Self 
in [25] talks about the intractability of building detailed and precise student models. 
He suggests that the ITS needs not possess such detailed models to be able to tutor 
the student satisfactorily. For instance, student models in a Constraint-Based 
Modelling (CBM) tutor could hold problem histories of both attempted and solved 
problems, constraint histories, current feedback levels, and the student’s current step 
in the current problem. Two popular modelling techniques, Model Tracing (MT) and 
CBM, are described in Section 2.1.2. The student modeller evaluates student solutions 
and dynamically updates the student models. 

The pedagogical module is responsible for the tutoring decisions made by the ITS 
i.e. what to instruct, and how to support the student. It usually performs these 
decisions using information from the individual student models. These decisions are 
commonly reflected in problem selection and feedback. For problem selection, the 

 



6 Investigating the Effectiveness of Problem Templates on Learning in ITS 

 
pedagogical module employs strategies to select the next best (ideally suited) 
problem for the student. The strategies implemented can vary between ITSs and are 
generally in line with educational strategies chosen by the designers of the system. 
For feedback, decisions regarding when and how to intervene, the level of detail of 
feedback, and the degree of scaffolding are made. For instance, MT tutors generally 
provide feedback at every step of a student’s solution, interrupting the student’s 
incorrect progress and forcing adherence to the correct solution at every step; 
whereas CBM tutors generally provide feedback on submission of a problem. ITSs 
can employ various strategies for level of feedback. Strategies can range from manual 
sel

oduction rules in MT tutors (e.g. 600 rules in the ANDES tutor [26]) and 
con

instance, 
students with high spatial ability could benefit from communications that include 

rthermore the dual Cognitive Theory of Multimedia 

Two main types of modelling approaches are common in ITSs today: Model Tracing 
d Modelling (CBM). The evaluation study was performed 

ative knowledge to task goals i.e. by 
pra

MT utilises production rules for each step of a procedure. A production rule is a 
goal-o ts of a goal, a situation or context in which this 

ection, where the student chooses the level required, to a fully automated level, 
where the ITS decides the level based on factors such as the student model. Strategies 
for scaffolding feedback, or reducing feedback as the expertise increases, can also be 
implemented. 

The domain module contains domain knowledge, problems, and optionally 
associated ideal solutions. Domain knowledge can be represented in various ways 
such as pr

straints in CBM tutors (e.g. 81 constraints in NORMIT tutor [27]). In some 
instances, the domain module can contain an expert system or problem solver that is 
able to generate the correct solution according to the path chosen by the student (e.g. 
[28, 29]). 

The communication module contains both the interface and optionally, a stored 
representation of the communication knowledge. The interface is the means by which 
the student communicates with the ITS. It presents the problem, associated 
information, and solution space within the task environment. A goal of the interface 
is to present the information in such a manner that minimises the cognitive load on 
the student. Interfaces can also contain different tools such as calculators, diagram 
constructors, and equation lists [26]. Help (both domain help and ITS-specific help) 
can be made available to the student via the interface. The communication knowledge 
contains strategies to communicate adequately with the student. For 

pictorial representations; fu
Learning states that certain students could benefit from various multimedia 
representations of communication e.g. the dual channels assumption [30].  

2.1.2 Modelling in ITS 

(MT) and Constraint-Base
on SQL-Tutor, a CBM tutor. For a comparison of the techniques, see [31]. A brief 
description of both approaches is given below. 

2.1.2.1 Model Tracing 
The MT technique is a short-term student modelling approach derived from the ACT-
R [9] cognitive theory (formerly the ACT* theory [32]). This theory makes a clear 
distinction between declarative and procedural knowledge, and outlines three 
learning phases: the acquisition of declarative knowledge, knowledge compilation, 
and strengthening. The acquisition of declarative knowledge is the transfer of 
domain-related facts to the student. Knowledge compilation is the transformation of 
the declarative knowledge into procedural knowledge. It occurs when problem-
solving behaviour is created by relating declar

ctice. It is seen as the most important phase of learning. During this process, 
production rules (rule-based representations of procedural knowledge) are formed. It 
is this step that MT targets. Finally, the strengthening of both declarative and 
procedural knowledge occurs with practice.  

riented if-then rule that consis
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rule i tudent from the current situation 
to the roduction rule is of the form: 

and the current situation is <situation>, then 

An

ma

(KT) approach [33, 35]. Estimates of each student’s knowledge of 
production rules are held as probabilities in the model. While MT determines the 

nt step within the problem procedure, KT 

 large; it is 
mu

l action [38]. Each 
constraint is an ordered pair (Cr, Cs), where Cr is the relevance condition and Cs is the 
satisf blem states in which the constraint is 
releva  be satisfied or true for the 
probl is of the form: 

<satisfaction condition> had better also be true, 

s applied, and an action required to take the s
 required goal. The p

If the required goal is <goal>  

perform <action>. 

 example of a production rule could be: 

If the required goal is to have “light in a room”, 
and the current situation is “the light switch is turned off”, then 
perform the action “turn the light switch on”. 

An MT tutor contains production rules to generate paths to correct solutions that 
the designer has implemented. The MT tutor also contains production rules to 
generate possible incorrect actions that the student could make while solving the 
problem, and stores them as a library of buggy rules. The libraries of correct and 
buggy production rules are not exhaustive; they merely signify the procedures that 
the designer of the system has implemented. They might not allow for novel and 
creative correct solutions entered by the user, or incorrect actions unanticipated by 
the designer. At each step of the solution procedure, the student’s rule is matched 
against the set of rules applicable for that particular goal and situation. If the 

tching rule is correct (i.e. the appropriate action for that situation to reach the goal 
was taken), the student is allowed to continue; if not, the procedure is interrupted 
and a feedback message (from the buggy rule that was matched) is presented to the 
student. See [33, 34] for more information on the MT approach and associated ITSs. 

Long term student models in cognitive tutors are implemented using the 
Knowledge Tracing 

immediate feedback received on the curre
controls the path taken by the student through the course material by governing 
problem selection.  

2.1.2.2 Constraint-Based Modelling 

CBM [36] is a student modelling approach proposed by Ohlsson and is based on the 
theory of learning from performance errors [37]. According to this theory, students 
learn using two cognitive functions: error detection and error correction. Detecting 
the error requires domain-specific, declarative knowledge, while correcting the error 
requires the student to modify their internal rule set. An ITS should model what is 
correct in the domain (declarative knowledge), detect any errors made by the student, 
and allow novel and creative solutions. The space of false knowledge is very

ch greater than the space of correct knowledge [38]. Modelling domain knowledge 
using the bug library system, the machine learning approach, or the model tracing 
technique severely restricts the capability of both the ITS and the student in the 
learning environment (see [36] for a comparison of the three techniques). 

Ohlsson proposed a technique whereby domain knowledge is modelled in the 
form of a set of constraints. Constraints define sets of equivalent problem states; they 
are pedagogically equivalent and trigger the same instructiona

action condition. Cr identifies the pro
nt. Cs asserts additional conditions that must

em state to be correct. A constraint therefore 

“If <relevance condition> is true then 
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otherwise something has gone wrong.” [29] 

An dition could be: 

must 
als

compilation of a bug library, a task that 
necessitates extensive studies into student errors. It can be used in a variety of 

 structured to open-ended. Using CBM, modelling is reduced to 

anges and evaluations (see 
[39

L) for 
ma

wed by clicking on the table name. From within the ITS, students can query a 
sample database with their solution and view the results of their query. An ideal 
solution for each problem is also stored in the domain module. As the domain is 
modelled using constraints, all correct variations of the solution are accepted by the 
ITS. 

 

                                                       

 example of a constraint in the domain of fraction ad

If the denominators in the problem are different, then  
it better be that the denominator of the solution is the lowest common 
denominator, otherwise something has gone wrong. 

If the student’s solution state is the same as the relevance condition, then it 
o be in the same state as is described by the satisfaction correction for it to be 

correct. Often, a feedback message (or set of messages) can also be included with 
every constraint to present on violation of the constraint. Using this technique, a 
student can be modelled according to their knowledge and usage of constraints. 

CBM is an effective and efficient means of modelling both the domain and the 
student within an ITS. It does not require the 

domains ranging from
a series of simple pattern matching procedures. Patterns can be then represented in 
compiled forms such as RETE networks [38]. 

2.1.3 SQL-Tutor1 
SQL-Tutor [7, 19] is a web-based, CBM ITS developed and maintained by the 
Intelligent Computer Tutoring Group2 at the University of Canterbury. Since its 
conception in 1996, SQL-Tutor has undergone many ch

, 40] for more information). It provides the student with a customised problem-
solving environment in the Structured Query Language (SQL) domain. The 
assumption is that SQL-Tutor is used to complement classroom instruction for 
students who have undergone direct instruction in SQL. 

SQL is a relational database standard which evolved from Structured English 
Query Language (SEQUEL) [41], a language developed for System R at the IBM 
Research Labs in San Jose in the early 1970’s. It became an ANSI standard in 1986, 
and an ISO standard the following year. SQL contains three components: a data 
definition language (DDL) for manipulating database objects, a view definition 
language (VDL) for defining views, and a data manipulation language (DM

nipulating data within the database. Although there could be multiple solutions 
for the same problem, SQL is a very structured language that conforms to set rules 
and specifications. SQL-Tutor focuses on the database querying, perhaps the largest 
and most used component of SQL. See [42] for a more thorough look at SQL.  

Currently, SQL-Tutor has approximately 300 problems, each belonging to one of 
13 databases. The databases provide the student with contextual information 
regarding the problem. In the task environment [see Figure 2], the student is 
presented with the problem text and the database schema information. Additional 
information about each relation, such as attribute names, description, and types can 
be vie

 
1 SQL-Tutor available at http://ictg.cosc.canterbury.ac.nz:8000. 
2 ICTG: http://ictg.cosc.canterbury.ac.nz. 
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Figure 2: The task environment in SQL-Tutor 

Students can enter their solution into the solution space provided and submit it at 
any stage. Upon submission, the individual student model is updated, and feedback 
specific to the task is provided in the feedback pane. Six levels of feedback exist: 
Simple feedback, error flag, hint, partial solution, list all errors, and full solution (in 
ascending order of detail). The feedback level automatically increases on each 
submission to a maximum of hint. Any of the feedback levels can be manually 
selected by the student. See [22, 39, 43] for more information on various strategies of 
problem selection and feedback that have been used within SQL-Tutor. 

Student knowledge is modelled using constraints. SQL-Tutor utilises an open 
student model [44, 45] which can be displayed in both a textual and graphical form. 
The current session history, showing problem attempts can also be viewed at any 
time within each session.  

The architecture of SQL-Tutor is similar to the general architecture of an ITS, and 
is shown in Figure 3. The databases, problems, and their associated ideal solutions 
are held in the domain module. The SQL domain is modelled using a set of 
approximately 700 constraints. Each constraint has a feedback message associated 
with it. On violation of that particular constraint, the feedback message could be 
displayed depending on the pedagogical strategy chosen. Individual student models 
are stored for each student. The student modeller evaluates student solutions, and 
updates the student models. The pedagogical module invokes pedagogical strategies 
for both problem choice and type of feedback, and with the student model provides a 
customised training sequence. Information such as problem attempts, time, student, 
and ITS decisions (e.g. problem choice), level of feedback, etc are recorded in 
individual student logs. The session manager is responsible for maintaining each 
online learning session. It also enables the handling of states in HTML, a stateless 
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protocol. Finally, SQL-Tutor is run on the AllegroServe3 web server, and is made 
available to students via the Internet. Students can log into SQL-Tutor using their 
web browser. In-depth information regarding the SQL architecture can be found in 
[19]. 

 
Figure 3: Architecture of SQL-Tutor [19]. 

2.2 

                                                       

Learning, Memory, and Expertise 
Hippocrates (c. 460 BC) was the first to propose that both thought and knowledge 
were housed in the brain. Today we know that the cerebral cortex supports short-
term memory while the long-term memory involves the limbic system [1]; recent 
experiences and learning alter parts of the neocortex [46, 47].  Research into learning 
has followed two, sometimes intertwined paths, to create theories and models of 
learning. The first looks at learning externally from a behavioural and psychophysical 
point of view. The second views the internal mechanisms and physiological changes 
in the brain due to learning, using technology such as PET4, MRI5, or CAT6 scans. 
The research described in this section primarily reflects the first path; that of creating 
models and theories based on experimental observations on the learner, the content, 
and the environment or context. More specifically, we look at how experts view their 
domain, how they learn, and how they use domain knowledge to solve common 
problems within their domain. Theories such as molecular theory (investigates how 
RNA and protein molecules are changed within the neurons due to learning) and 
morphological theory (investigates changes in the relationship between cells) have 
been constructed under the second path of research. See [1, 48] for information on 
the second path. 

2.2.1 Theories of Expert Memory 
The ability of experts to memorise a significantly greater amount of domain-related 
information than non-experts, termed the expertise effect in memory recall, has been 

 
3 Available from Franz Inc.: http://www.franz.com. 
4 Positron Emission Tomography. 
5 Magnetic Resonance Imaging, formerly Magnetic Resonance Topography (MRT) or Nuclear 

Magnetic Resonance (NMR). 
6 Computed Axial Tomography or Computed Tomography (CT) Imaging.  
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the subject of much research and debate in the field of psychology [49]. De Groot [15] 
was the first to report this effect in 1946. Since then, a number of process and 
ecological theories have been proposed to account for this phenomenon. These 
theories often encompass information from a variety of fields such as cognition, 
memory, expertise research, learning, epistemology, etc. Although much of the 
research was done in the domain of chess, the expertise effect has also been observed 
in other domains such as games, mnemonics, music, sciences, and sports [50-53]. 
The remainder of this subsection provides an overview of the relevant theories. 

In his experiments involving problem-solving tasks in the domain of chess, De 
Groot found no significant differences in the types of search patterns employed by 
players, such as depth of search, number of moves considered, or the heuristics used. 
However, when briefly presented with domain-specific information, experts were 
vastly superior at memorising this information than non-experts. Experts were also 
able to handle a far greater amount of domain information. Since then, research has 
shown that experts demonstrate superior performance at tasks that require the ability 
to memorise, recall, and retrieve vast amounts of domain-specific data. For example, 
[54] analyses the memory skill of a waiter who could take up to 20 dinner orders 
without notes. In [50], after two years of training and practice, a subject was able to 
memorise and recall up to 82 digits that were read aloud; with no training, most 
humans are able to recall 7 digits [55]. It was initially believed that this was due to 
certain individuals possessing exceptional processing and cognitive skills. However, 
this notion has been dismissed after further investigation revealed that experts 
largely have the same cognitive and memory constraints as non-experts [17]. (See 
[56] for an argument that working memory is an important component of general 
fluid intelligence).  

There are two main memory storage areas: short-term memory (STM), and a 
long-term storage area. Although the exact size of STM is still largely unknown, it is 
accepted that its capacity is relatively small; between 2 to 9 chunks [53, 55, 57]. Long-
term memory (LTM) has a very large capacity, and is much more durable than STM 
[58]. Most cognitive psychologists today also allow for an area with limited capacity 
that is distinct from the LTM, called working memory (WM) which was originally 
proposed in [59]. The WM contains a complex set of interacting subsystems used for 
short-term recall.  

For many years, Chase and Simon’s influential chunking theory of memory [17] 
was used to explain the expertise effect.  This theory proposes that memorising and 
recall involves the use of two main elements: a chunk and a pointer. A chunk is a 
group of logically related information seen by the individual as a single unit and is 
stored in the LTM. It is a group of elements that have strong links or associations to 
each other, but weak links to elements within other chunks [60]. A pointer (or label) 
to this information takes up one slot in the STM. According to this theory both the 
expert and novice have 7±2 slots in STM (as suggested by Miller [55]). However, the 
novice has each slot filled with a single item of data, whereas the expert has pointers 
to each chunk in LTM. This gives the expert the ability to encode information rapidly 
by merely adding pointers to the STM. It also allows the expert access to a far greater 
amount of information almost instantaneously, such as identification of a good move 
in chess [53]. Chase and Simon proposed that chess experts have over many years, 
stored a large number of specific patterns of chess plays or chunks in LTM. They also 
found that the effect of expertise was eliminated when chess boards with randomly 
arranged pieces were used in their recall experiments; novices and experts performed 
similarly on recall in these experiments. 

Chunking can occur in two ways. The first is a deliberate process, consciously 
implemented by the learner. This is called goal-oriented chunking. The second is an 
automatic chunking mechanism that occurs during perception called perceptual 
chunking [60]. 

 



12 Investigating the Effectiveness of Problem Templates on Learning in ITS 

 
A modification of the theory was given by Ericsson and Kintch (the LT-WM 

theory), that involves two components of working memory: a short-term working 
memory (ST-WM), and a long-term working memory (LT-WM). The ST-WM is a 
temporary storage area that contains pointers to information stored in the LT-WM, a 
more durable area of working memory [58]. It postulates the presence of schemas 
and patterns to aid in memorisation and recall. 

A number of partitioning experiments were also conducted. These experiments 
showed that subjects were quicker at tasks involving grouped or partitioned clusters. 
It also showed that experts had larger groups in all levels of partitioning, and the 
group size increased as the positions became more typical [53]. 

TT [18] is an extension of the chunking theory. It suggests that information is 
hierarchically organised into chunks; chunks can recursively contain sub-chunks. 
They are also indexed by a hierarchical discrimination network. More frequently 
occurring chunks are converted to higher-level structures called templates. These 
templates are stored in LTM, while pointers to them can be held in STM. Each 
template can have many slots. Each slot can contain either related information or a 
pointer to another template. Learning domain information takes the same amount of 
time as specified by the chunking theory however, rapid LTM encoding of the slots in 
the templates occurs [53]. Due to the fact that the template slots can be filled quickly 
and that templates can contain other templates recursively, the amount of 
information able to be recalled as a single chunk can be very large. This allows 
experts over time to attach a large amount of relevant information to each problem 
state. In chess, this allows Grand Masters to have enough information to recognise, 
memorise, and recall a particular game board and even produce all the possible 
moves from that point forward. A comparison of theories is given in [51]. 

2.2.2 Points from the Theories of Expert Memory Relevant to this 
Research 

Although each theory differs subtly, common points exist that are relevant to this 
research. 

First, domain knowledge not cognitive ability defines expertise. Second, humans 
use patterns and schemas to organise domain information. Meaningfully related 
items are grouped together into partitions. Furthermore, experts have larger sizes of 
partitions i.e. they are able to link more related items together. Third, experts store 
information regarding problem states in recursively contained chunks or templates. 
Chunk size is proportional to the level of expertise. These templates contain 
information to recognise the problem state, and common strategies to solve the 
current problem. This not only allows for quick recognition of the state and almost 
instantaneous recall of solutions, but also allows for prediction and planning. Fourth, 
learning information takes time; however, encoding of information into template 
slots can occur rapidly. Templates are usually built with practice in the domain. 
Lastly, chunks either can be deliberately and explicitly created or learned 
automatically and implicitly. 
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1. That the notion of problem templates and their usefulness in learning 
situations would be supported by related research and current examples of 
use, 

2. that physical representations of problem templates could be created 
within domains, 

3. that students could be modelled using problem templates. Furthermore, 
pedagogical strategies such as problem selection and feedback could be 
based on problem templates, 

4. that with an adequately long learning period, the learning rates would be 
higher in the template-based ITS, and  

5. that after a sufficiently long period of practice, the recall of applica
domain-specific knowledge 
than those in a non te

We propose that although templates take effort and time to compile, associate, 
and learn, teaching students “expert knowledge” in the form of problem templates 
would enable them to reach higher levels of expertise in shorter amounts of time. 

13 
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3.3  Problem Templates 
Problem templates, as defined in this paper, are chunks of domain-specific 
knowledge, compiled mentally by experts, and used to solve commonly occurring 
problems in a particular domain. We believe that problem templates are an extension 
to memory templates as proposed by the TT. These templates are therefore stored in 
LTM with pointers referring to them in STM. This paper proposes that within 
problem templates, experts potentially hold three types of information. First, 
problem templates contain information to recognise particular problem states. This 
is seen in the many chess experiments described in prior research. Second, they 
contain common strategies to solve the problem (i.e. take the user from the current 
state to an intended solution state). Finally, a list of tools and associated information 
required to implement these solutions could be included. As with memory templates, 
problem templates can also hold pointers to other templates. Because of these 
templates, experts have access to vast amounts of domain-specific information 
applicable to the current context. They are able to almost instantaneously recognise 
problem states within their domain, and seemingly effortlessly implement solutions. 

In [61], Shanteau reviews a variety of research to describe many traits of experts. 
Amongst these, there are a few interesting themes to consider. First, expertise is 
domain-specific i.e. an expert is only an expert in his or her domain. Second, experts 
use heuristics to solve problems. As expertise increases, they use less deduction-
based thinking and more pattern-matching type strategies. Third, experts are able to 
quickly retrieve a large amount of domain-specific information. They not only keep 
up-to-date with declarative information, but also are able to access relevant 
information to quickly alter strategies for various situations including exceptional 
circumstances. Experts even associate irrelevant information that can sometimes be 
used in decision making, to their detriment. Fourth, they are able to break complex 
problems into simpler tasks and utilise common strategies to solve them using a 
divide and conquer approach.  

We believe that the themes specified in the paragraph above, support experts’ use 
of problem templates. First, problem templates are domain-specific. Second, experts 
utilise pattern-matching strategies to recognise the problem state, and implement 
appropriate solution strategies. In other words, experts use information in problem 
templates. Third, the TT suggests that experts can hold vast amounts of data using 
templates, where slots within each template can recursively contain pointers to other 
templates. Because the expert is dealing with lightweight pointers rather than large 
amounts of data, it is easier for them to quickly alter their strategy by retrieving 
another pointer. This way they can account for exceptional or varying circumstances. 
Categorising information into separate chunks is dependent on the expert; templates 
could easily contain pointers to irrelevant data, which would be accessed when the 
template is accessed. This could be detrimental in making decisions. Fourth, when a 
complex problem is encountered, the template retrieved could recursively have its 
slots filled with pointers to other templates, each of which hold information to solve 
portions of the original problem. Just the simple procedure of retrieving the 
templates breaks complex problems into simpler ones. The process of retrieving and 
implementing the strategies for each template would automatically be utilising the 
divide and conquer approach. 

Research into expert performance suggests that while novices reason backwards 
from a goal, experts proceed by forward reasoning (cited in [8]). This enables experts 
to not only plan, but also to anticipate future moves or problem states. We believe 
that problem templates explain this phenomenon. The hierarchical nature of 
templates creates a tree-like structure; where internal templates predominantly carry 
pointers and leaf-node templates carry associated data. Using these pointers, the 
internal structure of the tree is relatively lightweight, and thus easy to traverse. From 
the root node, it is easy to follow any of the paths leading from pointers to templates 
to predict future problem states. Given a tree of possible paths and states, the expert 
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is 

g this behaviour. Novices have a 
ver

edge and compiled procedural knowledge 
needs to be encoded into templates and stored in LTM. Pointers to these templates 
also n s. Experts require successful and fast 

ter the route 
as 

able to progress by strategically planning ahead. As novices do not have this 
structure created in memory, they have to envision the goal, and create paths back to 
the current problem state. Because they are dealing with data rather than pointers, 
their cognitive load is very high, increasing the time and effort required to solve the 
problem. The lack of associated templates severely restricts the novice’s ability to 
plan. 

In certain domains, unnecessary, high risk-taking behaviour that causes severe 
safety concerns has been attributed to inexperience. As the level of experience 
increases, this behaviour seems to decrease rapidly. For instance, in the driving 
domain, road safety is often compromised by inexperienced drivers engaging in high 
risk-taking behaviour. See [62] and [63] for differences in this behaviour between 
novices and experts in the fields of driving and aviation respectively. The theory of 
problem templates could go a long way in explainin

y limited template set. This severely restricts their ability to predict or plan future 
scenarios. The high cognitive load described in the previous paragraph, also 
decreases their capability to envision probable future consequences of present 
actions, thus eliciting high-risk behaviours. Programmes such as driver education are 
created in an effort to increase experience; or in our view, impart template 
information in the form of coached, expert training. 

The key to gaining expert levels of performance is deliberate practice [8, 64]. This 
practice has to be goal-oriented, focused, active, of long duration (usually many 
years), and under the supervision of an expert teacher or coach [64].  In the context 
of problem templates, the reasons for this seem clear. Not only do the three steps for 
learning [see Section 2] need to be traversed, but templates also need to be compiled. 
Information such as declarative knowl

eed to be stored in the associated template
retrieval of appropriate information applicable to the task. Thus, the adequate 
placement of these pointers would then determine the level of expertise. The 
placement of these pointers could occur through experience or through coaching by 
teachers who are experts in the domain. 

3.4 Examples of Existing Templates 
As discussed earlier, learning affects nearly every aspect of our life. As such, examples 
of problem templates and their use are readily visible in our daily life; a few of which 
are given below. 

In this simple example, we look at a common task that is often taken for granted; 
that of compiling a route between two frequently visited places, such as between one’s 
workplace and home. When the need for this route is first established (e.g. a new job), 
one has to learn the various routes between work and home. This not only includes 
the declarative knowledge to get there (e.g. from looking at a map), but also the 
procedural knowledge (from practice). Associated information for each street or part 
of the route is also learned. This includes the distance, speed that one can travel, best 
or worst time of day to use this route, the flow of traffic, etc. Strategies to solve 
common problems that are related to that street or part of the route (for instance, 
traffic congestions during school drop-off times or very busy intersections) are also 
stored within the same template. Once these templates are compiled mentally, 
driving from home to work at any hour of the day becomes an almost automatic 
behaviour. Pointers to various associated templates make it easy to choose adjoining 
streets (or parts of routes) while still continuing in the intended direction. Whilst 
novices on the route might flounder with problems (either common or exceptional), 
experts effortlessly traverse the route. They manoeuvre through traffic, al

necessary (using related pointers), and are able to plan ahead (e.g. expecting and 
avoiding route-related events), without even thinking about it. Problem templates 
give experts the ability to manipulate vast amounts of information using heuristics 
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and patterns. This ability becomes second nature to such an extent that the expert 
could have very little conscious knowledge of the drive. This is seen when people keep 
driving back to their old home on “auto pilot” after having moved house. 

We believe that another example of using problem templates occurs in practical 
driving instruction. When teaching driving, two methods could be employed: teach 
the precise technical details of driving, or teach using what we believe to be problem 
tem

ing to do a hill-start 
(co

e is also taught. This could involve the correct use of 
gea

 solving commonly occurring problems in software 
des

stance, are 
collaborative strategies used by members of a sports team to recognise a particular 

      

plates. Using the first method, driving instruction would consist of teaching 
technical values for variables for different driving topics. For instance, the beginner 
might learn the various RPM7 values and ranges for the various vehicle velocities, at 
different vehicle weights and angles of inclination, etc., for each gear change in a 
manual shift. Devices such as accelerometers could be installed on the dashboard to 
aid in precise driving.  

The second method of instruction seems much less precise and technical; in fact it 
seems to be based on patterns and heuristics created by experts. Instructors select 
certain commonly occurring high-level problems, and present common solution 
strategies, that have over time, been compiled by experts. Students are taught to 
recognise the problem state, apply common strategies to solve the problem, and 
select and use the appropriate tools. We see these as being problem templates. In the 
driving domain, these templates are named: hill-start, three-point turn, uncontrolled 
intersection, parallel parking, etc. As an example, when learn

mpiling the hill-start problem template), the student is taught to recognise the 
problem state which demands the need for the hill-start solution. They are then 
instructed in the appropriate common strategy8 for solving this problem. The tools 
required, and their correct usag

rs, indicators, etc. The instructor then gives complex problems such as “drive from 
work to home”, requiring the use of many associated templates. 

Although the first method seems to be more specific and theoretically complete, it 
is surprisingly not used; it was created by the author for comparison. It is the second 
method that is taught as standard practice. After learning about problem templates, 
one can easily understand why. 

Many examples of problem templates can be found in sport related domains. The 
ability of grandmasters in chess as described in research indicates the use of problem 
templates. The domain of golf utilises problem templates extensively. At any problem 
stage (e.g. the sand bunker, green, fairway, etc), the expert is able to immediately 
recognise the state, select the correct tool (e.g. sand wedge, putter, driver -
irons/woods), and implement the correct strategy (e.g. wedge shot, putt, drive). 

The field of Object-Oriented (OO) software design has embraced the idea of 
compiling strategies that experts use to solve common problems. These strategies are 
in the form of patterns. These patterns were most influentially described by 
Christopher Alexander in the architectural domain [65, 66]. Patterns such as the 
Gang of Four Design Patterns [67] have influenced the way in which novices in the 
field of software engineering are taught. In this context, patterns are reusable 
strategies, compiled by experts, for

ign. Since then, analysis patterns [68] have looked at strategies from a higher-
level domain perspective (such as accounting, medicine, etc), rather than from a low-
level implementation perspective. These patterns allow students to recognise 
particular problem states that are common to their domain, and use the strategies 
described to solve the problems. They also contain associated relevant information 
such as pointers to other patterns. 

Collaborative problem templates are also found in domains such as sports. These 
are problem templates that are shared amongst individuals, with the purpose of 
solving a problem collaboratively. Game-plays (pattern-plays) for in

                                                  
7 RPM: Revolutions Per Minute 
8 http://www.johnfoote.co.uk/manouevres/hillstarts.htm 
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game state, implement a specified strategy to solve the problem, list the usage of the 
tools (equipment), and associated information to aid in the solution. Problem 
templates allow these strategies to be very complex, contain changeable elements 
(such as player positions), and be altered dynamically as necessary. Game-plays are 
common in most team sports, such as basketball9, hockey10, football, etc. 

  

                                                        
9 http://www.guidetocoachingbasketball.com/stations.htm 
10 http://www.jes-soft.com/hockey/downplay.html 
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articular domain. This could take years of refining and perfecting the 
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 The Choice of Domain and ITS 
To conduct this research, an appropriate domain had to be chosen. An ITS also had to 
either be built or modified to include the new components of the system. The domain 
chosen was SQL, and the decision was made to modify an existing tutor rather than 
build a new one. The reasons for the decisions are listed below.  

The main goals of this research was to see if physical representations of temp
ld be created, if pedagogical decisions could be based on them, and if students’ 

domain knowledge could be modelled using them. Furthermore, there was a 
requirement to be able to harvest sufficient expert domain knowledge to compile 
templates. SQL is a rich domain, with a sufficiently wide range of different concepts 
making it a good choice for constructing a variety of templates for our research. 

Reasons for choosing SQL-Tutor as the ITS for evaluation, are listed below. First, 
this research required an evaluation study to be performed whereby students in both 
the control and experimental groups could use the tutor for adequate periods in 
realistic learning situations. The ICTG maintains ITSs that are used in certain 
undergraduate courses at the University of Canterbury. Using one of these tutors for 
the study provided the setting to conduct the evaluation study in a real learning 
environment. Second, building an ITS (which includes modelling the domain and 
creating problems and solutions) requires time and expertise in the domain. 
Moreover, the creation of the ITS does not add anything to this research. Due to this 
reason, it was perspicacious to opt for modifying an existing tutor that was to be us

 undergraduate course. Third, SQL
rement for creating the template s

tutor used in the course, and unlike the other sub domains taught in the course, is 
followed by a lab test in SQL. This not only ensured time for implementation, but also 
provided an incentive (the lab test) for students to make adequate use of the tutor. 

4.2 The Creation of Templates 
Ideally, templates for the most common problems would be compiled by a group of 
experts in the p

plates, creating associated links and patterns, and categorising templates 
involving much discussion and debate. See Ward’s Wiki11 for a similar process 
applied to the field of Object Oriented Software Engineering. Unfortunately, neither 

 
11 Ward’s Wiki: http://urchin.earth.li/cgi-bin/twic/wiki/view.pl?page=WardsWiki 
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the level of expertise nor the time required for the process described was available for 
this research.  

Thus, the creation of templates was based on an assumption: that the expertise 
required for this research was embedded in the domain module of SQL-Tutor; more 
specifically in the problem and ideal solution sets. SQL-Tutor contains problems and 
ass

pertise. Furthermore, 
tha

functions, keywords, and similarity of conceptual actions on the database 
(e.g

d; problems and associated solutions having the same result 
(i.e. they were the same with respect to the criterion) were grouped into the same 
category. 

For ex uld categorise queries 1 and 
2 shown below el of nesting = 1), and query 3 into another 
(level of nesting

1. 
2. 

er.id = account.customer  
3. select director.number, lname, fname 

. 
To do this, relations and associated attributes were replaced by generic variables as 
shown in am atement 1 describes a relation and generically names it 
rel1. State nt  regular attribute for the relation generically named rel1. 
Statemen ary key attribute for the relation generically named rel2. 
Statement 4 des eign key attribute for the relation generically named rel1. 

 38 generic statements representing common 
solution strategies labelled as ideal solutions by experts, for all the problems in SQL-

ociated ideal solutions written by experts since 1996, specifically for the students 
in an undergraduate database course. This could mean that the problem set contains 
the most common problems in SQL for that range of student ex

t the solution strategies to fill the slots of the template are found in the set of ideal 
solutions.  

Once this assumption was made, various strategies were used to find correlations 
between problems and between solutions. Categorising was done both 
programmatically (using functions we created) and manually.  

In the grouping strategy implemented, problems were recursively categorised into 
various groups, and then sub groups, using a different criterion on each pass. Criteria 
chosen ranged from level of nested statements in the solution, clauses contained in 
the solution, the number of relations and associated attributes involved, types of 
attributes involved (such as primary key, foreign key, non-key attribute, etc), 
aggregate 

. a join on two tables can either be done in the from clause, or the where clause), 
etc. All solutions were evaluated against each criterion such that on each pass, one 
criterion was evaluate

ample, the level of nested statements criteria wo
into the same group (lev
 = 2). 

select surname from customer   
select account_type and customer.name  
from account, customer  
where custom

From director join movie on director.number=director 
Group by director.number, lname, fname 
Having count (*) >= (select count (*) from movie where 
director=15) 

On completion of the passes, the problems and solutions were classified into 38 
groups, whereby each solution within the group had the same overall structure either 
in physical structure or in conceptual logic (i.e. the end result of the query would yield 
the same results). The next step was to create one generic solution for each category

 ex ples below. St
me 2 describes a
t 3 describes a prim

cribes a for

1. <rel1>  
2. <rel1.att1> 
3. <rel2.pk> 
4. <rel1.fk> 

At this stage, we were left with
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Tutor. To complete the formation of the templates, these statements were
sequentially numbered, and a feedback message attached to each. This feedback
message would be shown to the student on violation of the template. Examples of 
templates are shown in Appendices. 

 

 
 

 
Figure 4: Confirming the user's deviation from system choice 

4.3 The Introduction of Template Groups 
The SQL problem templates were categorised into eight template groups. The reasons 
for creating template groups are given below. 

SQL statements consist of up to six clauses; SQL also allows for nested 
stat

). In the control group users could have all the clauses in STM, whereas 
wit ) it would require at least 
five (9 X 5 = 45) transfers between LTM and STM to think of all the templates once. 
Due t ped into higher-level abstractions called 

 for novices, it could 
be 

ements. When learning SQL, students generally learn when each clause needs to 
be applied. Thus, it can be beneficial to allow students to select problems based on 
clauses. A higher abstraction of their student model can also be viewed based on their 
knowledge of SQL clauses. The problem selected by the system (system choice) could 
also be based on clause knowledge. This was implemented in the original version.  

The final experimental version comprised of 38 problem templates. To keep the 
similarity between the two versions, on problem selection, students of the 
experimental version would have to first choose a template. This would mean making 
a choice from 38 templates in the experimental version, as opposed to six clauses in 
the control version. These numbers are dissimilar not only in the amount of choice, 
but also in what can be contained in STM for adequate processing (approximately 
7±2 chunks

h an STM capability of nine (the upper limit of the STM

o these reasons, templates were grou
template groups. Internal pedagogical decisions and modelling were based on 
templates.  

Examples of template groups are shown in Appendices. 

4.4 Preference of System Choice 
For precise comparisons, all problem selection would ideally be done using only 
system choice for problem selection. This would ensure that, as much as possible, 
learning was dependent on the decisions made within the system. However, this 
raises two issues. First, users would be very constrained with no choice in selecting 
their problems. Although this restriction could be advantageous

frustrating and de-motivating as expertise increases. Second, it provides an 
artificial learning environment, where the user has no choice in what they are 
presented with to learn; whereas, this research is aimed at real learning situations. 
Due to these reasons, the decision was made to give the users choice when selecting 
problems, but providing motivation to accept the system choice. 
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Motivation to remain with system choice was done as follows. When selecting a 
problem, users were initially given a choice in the form of clauses (in the control 
group) or template-groups (in the experimental group) with the system choice 
selected. If users accepted the system choice, they were presented with a range of 
appropriate problems, with the most ideal problem highlighted. If users made a 
selection other than system choice, a dialog screen was presented asking for 
confirmation of their deviation from system choice (see Figure 4). In this dialog 
screen, the system choice and user choice were presented, with both choices clearly 
identif ey were 
prese the 
sequenc e 

 

ied and the system choice selected. Once users made their choice, th
nted with the range of appropriate problems as above. See Figure 5 for 

e followed by users in both the versions. The screenshots for this sequenc
are shown in Appendix B: Selecting Problems in the Experimental Version. 

 
Figure 5: The problem selection process in the experimental version (top) and control version 

(below) 

4.5 Problem Difficulty Level 
In SQL-Tutor, each problem is assigned a problem difficulty level ranging from one to 
nine; one being the easiest and nine being the most difficult. This difficulty level is 
assigned by the problem author.  

After creating templates, the difficulty levels of problems were compared within 
each template. The hypothesis here was that as templates signified a particular type 
of sol ve the same difficulty levels. This was found to be true, 

riginal SQL-Tutor student modelling approach. 
CB

ution, they should also ha
and all templates fell within ±1 difficulty level of each other. An average difficulty 
level was then calculated for each template, and this was used in certain pedagogical 
decisions in the experimental version.  

4.6 Student Modelling 
The control version utilised the o

M was used for short-term student modelling. Long-term models contained 
constraint histories, knowledge scores (for each constraint), and solved problems. 
Templates were used for short-term student modelling in the experimental version. 
For long-term modelling, template histories, knowledge scores (for each template), 
and solved problems were stored.  
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In odels, the experimental version also stored 

In 

e best heuristic. First, a subjective 
me

nt’s knowledge 
sco

as assumed). If each 
con

An overall knowledge level (between one and nine) was also calculated using a 
simila ent based on the difficulty level of problems that they 

SQL-Tutor. 

e 
accessible to students with knowledge levels below a certain threshold (in our case 4). 
All pr included in calculating system choice for students with higher 

 addition to the template-based m
the same long-term models as the control group version. Although these were not 
used in pedagogical decisions, there were maintained for analysis purposes. 
Comparisons between learning curves from different domain data set sizes or domain 
models could confound results [69].  

4.7 Student’s Level of Mastery 
this research, the levels of domain mastery were calculated using two separate 

measures: the knowledge scores and the overall knowledge level. We defined 
knowledge scores as a fine-grained statistic, measuring the student’s mastery of the 
knowledge components (such as constraints in the control version, and templates in 
the experimental version). The overall knowledge level gave an indication to the 
student’s mastery within the domain as a whole.  

No theories exist for calculating knowledge levels or scores in an ITS. After several 
trials using various heuristics to calculate knowledge scores, a simple heuristic based 
on probabilities that has been used previously, was employed. See Appendix C: 
Calculating Knowledge Scores for an example of two such heuristics trialled. The 
knowledge scores and knowledge level govern the speed of progress within the course 
material. Two measures were used to choose th

asure that assessed which heuristic provided sufficient time with each knowledge-
component whilst still allowing the student to progress at an adequate rate. Second, 
the heuristic of choice had to have the least number of variables or assumptions. For 
instance, Heuristic A [See Section 8.3.1] has many variables and assumptions that 
have not been tested in prior evaluations. These variables would add to the unknowns 
that could influence the results in the evaluation. 

For each version, we used a similar method of calculating the stude
res [See Heuristic B in Section 8.3.2]; for each constraint in the control version 

and for each template in the experimental version. All constraints (or templates) were 
initially given a probability of zero (i.e. no previous knowledge w

straint or template was used successfully twice in a row, it was assumed to be 
learned i.e. a knowledge score of one was assigned to it. Otherwise, an average of the 
last five attempts was used as an estimate of the student’s knowledge. 

r heuristic, for each stud
solved. This heuristic has also been successfully used previously. 

Both student’s knowledge scores and knowledge levels could fluctuate as the 
student progressed through the training sequence. We believe that this allows 
somewhat for the fluctuating nature in which students answer questions. 

4.8 Problem Selection 
Problem selection for system choice was based on the problem difficulty level (or 
template difficulty level), the student’s knowledge scores, and the student’s 
knowledge level. The problem selection was done in two steps. The strategy 
implemented for the experimental version was based on the strategy used in the 
original version of 

First, templates were partitioned into two; the partition was based on template 
difficulty levels. The threshold for partition was made at a template difficulty level of 
five. When calculating system choice, only problems from the first partition wer

oblems were 
knowledge levels. 

Second, from the partition selected in the first step, the template with the lowest 
knowledge score in order of difficulty was selected. The unsolved problems from this 
template were then displayed to the student.  
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4.9 Feedback 
All six levels of feedback (simple feedback, error flag, hint, partial solution, list all 
errors, and full solution) were available to the student. In addition to the feedback 
based participants in the experimental version also received feedback 

oups were stored as lists 
in files (see Appendices for the format of the templates and template-groups), and 
loaded into memory as objects on initialisation of SQL-Tutor. For both versions, 
student models based on constraints and logs that recorded student actions and ITS 
decisions were stored in files on the server. In addition to these, the experimental 
version also stored student models based on templates.  

                                                       

 on constraints, 
messages associated with templates for any feedback level greater than error flag. 
The feedback messages also included the generic template in text form, as included in 
the particular template. See Appendices for the format of the templates. 

4.10 Tools Used 
SQL-Tutor is written in Allegro Common Lisp12 and is run on the AllegroServe web 
server, housed on the ICTG workstation running the Microsoft Windows XP 
operating system. As such, all development for this research was implemented in 
LISP within this environment. The Integrated Development Environment (IDE) used 
to create, modify, and run the application was the Allegro CL Dynamic Object-
Oriented Programming System13. Templates and template-gr

 
12 Franz Inc: http://www.franz.com 
13 Allegro CL IDE Version 8.0, Available from Franz Inc at http://www.franz.com 

 



5 Evaluation 

5.1 Description 
An evaluation study was conducted at the University of Canterbury Computer Science 
and Software Engineering Department14 during the second term of 2006. The ITS 
used to conduct this evaluation study was SQL-Tutor [19]. At the University of 
Canter are taught SQL in a 200-level database course offered within 
the C and Software Engineering undergraduate degree structure. As 

The par he evaluation study were students from COSC 22615, an 
under atabase course at the University of Canterbury. Participation in the 

5.3

lly administered to anyone that logged in after that particular date. In 
bot

s were 
rec

                                                       

bury, students 
omputer Science 

part of the course, students were required to attend weekly lectures where they were 
taught the relevant theory. Amongst other tools, students could use SQL-Tutor to 
practice their skills in either the weekly lab sessions or at their leisure. 

5.2 Participants 
ticipants for t

graduate d
study was voluntary. Sixty-eight students enrolled in the course. Of these students, 48 
logged into SQL-Tutor and completed the pre-test. Participants comprised two 
groups: the control and the experimental.  

 Method 
Participants were allowed to log into SQL-Tutor during a scheduled laboratory 
session in the second week of May 2006. The login module within SQL-Tutor 
assigned students to either the control group or the experimental group; each student 
remained in the assigned group for the entire evaluation period. 

At first login, users were presented with one of two online pre-test questionnaires. 
On completion of the pre-test, users continued onto their first problem. On a pre-
specified date approaching the end of the evaluation period (5th June 2006), students 
were presented with one of two online post-test questionnaires. These were 
automatica

h the pre and post-tests, the questionnaires were randomly chosen by the system. 
The pre and post-tests used were tests created and used previously in SQL-Tutor. 
Each test (pre and post) contained four multi-choice questions. The pre and post-
tests were of comparable complexities. The marks for the pre and post-test

orded. 
As students used the system, their constraint and problem histories were recorded 

in individual student models. Student actions and any decisions made by the ITS 

 
14 CSSE Department, UC: http://www.cosc.canterbury.ac.nz 
15 COSC 226 information available at http://www.cosc.canterbury.ac.nz/open/teaching/ 
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were also recorded in individual student logs. For the experimental group, the history 
and usage of templates was also accounted in individual template model files. 

When selecting a new problem, users in the control group were first presented 
with a choice of SQL clauses, while users in the experimental group were presented 
with a choice of template groups as discussed in Section 4.4. In each case, the system 
choice was selected by default. If users selected a choice other than the system choice, 
they were presented with a confirmation dialogue, alerting them to their deviation 
from the system choice. Next, users were presented with the set of problems 
appropriate to their selection and their knowledge level. In this set, the system 
problem ch ghlighted; this choice could also be overridden by the user. 

e problem text with solution area was presented to the 

s could gain a maximum of four marks for either of the tests. The control 
group had a mean of 0.5 with standard deviation of 0.07. The experimental group 
h an of 0.42 with stan iation of 0.06. A t-Te ent means 

re wa difference trol and 
 results e two gr e same 

r dire  1 conta he pre-

 
Pre

oice was hi
After selecting the problem, th
user. In both versions, the user could submit the solution at any stage. Six levels of 
feedback, ranging from simple feedback to full solution, were available to the user. 

5.4 Results 

5.4.1 Pre and Post-tests 
Forty-eight students logged into SQL-Tutor and completed the pre-test. Of the 48 
students, 23 were randomly assigned to the control group, and 25 to the experimental 
group. Both the pre and post-tests contained four problems, each worth one mark; 
thus student

ad a me dard dev st for independ
was carried out. The

ental pre-test
s no significant between the con

experim . This means that th oups belonged to th
population, allowing fo
test scores.  

ct comparison. Table ins the analysis of t

-test Control Experimental 
No. of participants  23  25 
Mean  50%  42% 
Standard deviation  0.07  0.06 

Table 1: Analysis of pre-test results 

Sixteen students completed the post-test questionnaire. However, six of these 
s s had not attempted a e pr os  

ost-test resu consideration  r
tudents’ pre and pos est results are giv . 

ifference between the co nd experimenta
number of studen te comparisons. 

 
No. of participants Pre-test Post-test 

tudent ny problems between th e-test and p t-test, and we
have not taken their p

 ten s
lts into . Hence, the esults of the 

remaining
significant d

t-t
ntrol a

en in Table 2
l group. Furthermore, th

There was no 
e 

ts in the matched condition was too low for adequa

Group 
Experimental 6 38% (0.25) 62.5% (0.2)
Control 4 42% (0.30) 62.5% (0.12)

Table 2: Analysis of matched pre and post-test results 

5.4.2 Learning Curves 
On

 times it was 
use

n learning curves, see [69, 71]. 

e method of analysing whether the objects measured are related to the concepts 
learned is to plot learning curves [70]. For this, the number of times the object (in our 
case, the constraint) is relevant was plotted against the proportion of

d incorrectly.  If the object measured is being learned, a power curve should result 
(cited in [70]). Learning curves indicate whether the concepts taught in the domain 
have been learned. For more information o

 



26 Investigating the Effectiveness of Problem Templates on Learning in ITS 

 
Figure 6 shows the learning curve for the control group, while Figure 7

experimental group. The power curve equation for the control group
x-0.384, and for the experimental group it was y=0.1044x-0.4079. 

Both graphs have a good fit to the power curve (0.92 for the control, 
ntal). The learning rate (as seen by the slope) is slightly higher f

rimental group, but not significantly. 

 shows it 
for the  was 
y=0.0995

0.89 for the 
experime or the 
expe

y = 0.0995x-0.384

R2 = 0.9168
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Figure 6: The probability of constraint violations for the control group 

A learning curve was also plotted for templates (i.e. for the experimental
This is shown in Figure 8. A trend line was added to this. However, the fit to the tr
line was very poor (R2 = 0.0072). It also does not fit to a power curve. This impli

emplates were not learned by the experimental group. 
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R2 = 0.8859
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Figure 7: The probability of constraint violations for the experimental group 
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Figure 8: The probability of template violations for the experimental group 

5.5 Discussion 
In this evaluation, we were able to create physical representations of problem 
templates in the SQL domain. Templates are generally created by many experts, after 
years of practice in their domain of expertise. For this evaluation however, problem 
templates were created by recursively dividing the problem set in the SQL-Tutor 
domain module using certain heuristics that we created. The 38 templates were then 
saved in a text file and loaded into computer memory as objects when SQL-Tutor was 
initialised. Students in the experimental group were modelled using templates. 
Template histories and the knowledge scores were recorded in the long-term student 
model. Problem selection in the experimental group was done using problem 
templates. Problem templates were also used to model the students’ knowledge. 
Knowledge scores were calculated and updated. Long-term student models 
containing template histories were kept, giving the ability to make adaptive 
pedagogical decisions. Feedback regarding templates was successfully associated to 
individual problem templates and presented to the students as required. Figure 2 
shows the feedback given to participants in the control group, based on constraints; 
Figure 12 shows the specific template feedback displayed to the experimental group. 
The control group used constraints to model students and make pedagogical 
decisions such as problem selection and feedback. What is very interesting is that 
although the experimental group had problem selection based on templates, 
template-based student modelling, and template-specific feedback, they learned 
constraints (see the learning curves above). This means that template based methods 
are effective in learning domain-specific information. 

Learning templates and associating the correct information takes time, practice, 
and ideally expert coaching. This is found in many domains, such as sports and OO 
design. In OO design, so many patterns exist that they have been placed into 
catalogues depending on their use. Although it is not expected that students 
memorise these templates, learning and practising them implicitly seems to increase 
domain knowledge.  

Our study ran for a short period of time: only part of a course term. Furthermore, 
students did not tend to use the system at the same rate for the entire period; instead, 
there was a much higher level of usage towards the end of the study (before their 
exams). Generally, students require a large amount of time to learn, compile, and 
associate mental templates in domains such as sports, OO, and driving. In spite of the 
short time for evaluation time, students within the experimental group had high 
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learning rates, comparable to the control group. As expected, the learning curve of 
the template shows that they did not explicitly learn the templates; however, they 
learned domain information.  

Although there is significant difference between the pre-test and post-test scores 
of the experimental group and not of the control group, we do not conclude from this 
that the experimental version is better than the control, or that the increase in 
learning is due to templates. This statistic has to be taken with some caution. First, 
the number of students that participated in the post-test was relatively low (ten 
students in total). Second, the pre and post-test questions ask general questions 
about SQL. In hindsight, we believe that they do not measure accurately the level of 
expertise gained through use of templates. Thirdly, the significance was at p<.1.  

This preliminary evaluation shows promising results into the theory of learning 
with problem templates. Within the context of the customised ITS coaching 
environment, it could provide a powerful mechanism of transferring expert domain 
information to novices, enabling them to reach much higher levels of expertise in 
shorter amounts of time.  

 



6 Conclusions and 
Further Work 

Learning affects nearly all aspects of our life. As such, there is much interest in 
understanding the processes of learning. Restrictions, such as resource constraints do 
not

stored in 
LT

an be stored as pointers to other templates, as 
pro

vels. Students were able to progress adequately within their customised 
pat

 allow for optimal learning environments in our society. ITSs fill this need by 
providing a customised, adaptive environment, where the student can engage in 
active, deliberate, and coached learning activities. A goal of ITS development is to 
find means of maximising the effectiveness of learning within the ITS. This goal 
provided the motivation for this research. 

In this paper, we introduced the notion of problem templates. Problem templates 
are based on the various theories of expert memory described in Section 2.2. We 
proposed that problem templates allow experts access to vast amounts of information 
regarding common problem states in their domain. These templates are 

M and contain information to recognise problem states. They also contain 
common solution strategies and information regarding the tools required to solve the 
problems. Associated information c

posed by the TT. Templates can either be formed and grouped into their 
associated hierarchies over time (with experience in the domain), or taught. 

This research had six goals as listed in Section 3.1. Five hypotheses [see Section 
3.2] were also proposed. The fulfilment of these goals and their effects on our 
hypotheses are summarised below.  

First, thorough examination of relevant, prior research was conducted to assess 
the possible validity of problem templates. This included a study of the literature on 
ITSs, learning, memory, and expertise. We also looked at examples of where we 
believe problem templates are used in learning within domains such as sports, 
driving instruction, and OO software design. The notion of templates can be 
supported by these theories and examples. Second, physical representations of 
problem templates were created in a complex, rich, and relatively open-ended 
domain (SQL). Ideally, these templates would have been compiled by experts in the 
domain; however, this resource was not available to us. Instead, problem templates 
were extracted from the domain module of SQL-Tutor, using the assumption that it 
contained embedded expert knowledge. Third, students in SQL-Tutor were modelled 
using templates. Knowledge scores for each template were calculated and updated as 
the student progressed through the training session. Fourth, pedagogical decisions 
such as problem selection were based on problem templates, knowledge scores, and 
knowledge le

h of learning. Fifth, feedback associated to templates was also presented to 
students. This feedback contained information about the template in text form. 

29 
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Lastly, an evaluation study was conducted in which participants used either a control 
version of SQL-Tutor (using only constraints), or the experimental version (using 
templates).  

The first, second, and third hypotheses were supported in this research. The 
validity of templates as a useful learning mechanism was demonstrated by 
background research, examples, and our evaluation. Templates were compiled into 
physical representations, and pedagogical strategies such as problem selection were 
ma

tterns, templates are catalogued into books, rather than to memory. 
Ho

at students in the evaluation 
stu lear
As explai
power cur

This r
Two of th

1. 
rather than 

2. templates in SQL. Although examples 

e models), or from a 
domain perspective (concepts, declarative or procedural knowledge). This gives us a 
basis to begin to understand the processes within the multifarious framework that 
govern the relationships between the learner, the domain, and the environment. It 
enables us to create environments (such as ITSs) that facilitate this learning process. 
In the very least, it helps us to think laterally about ourselves. 

de based on templates. Student models were also based on template 
representations. Feedback given was also specific to the templates. The fourth and 
fifth hypotheses were dependent on time, and as such, we do not have enough data to 
support these hypotheses. Nevertheless, even in short periods of training, domain 
learning occurred when templates were used, as can be seen from the learning curves. 

Analysis of results, combined with the background research, showed great 
promise of using problem templates in learning situations. We are not certain that 
the templates created were ideal. This problem is beyond the scope of this research, 
and left to the experts within their own domains. Templates also take long periods to 
master. For instance, learning templates in sports requires many years of instruction 
transferred from expert coaches. In certain domains such as OO, due to the vast 
number of pa

wever, learning to use templates still increases domain expertise. In spite of these 
restrictions on our research, learning curves showed th

dy ned domain knowledge at a high rate - as high a rate as the control group. 
ned by the time factor, the learning curve for the templates did not fit a 
ve. 
esearch opens doors to further work in education, psychology, and ITSs. 
ese proposed extensions are described below. 
An evaluation study with a longer evaluation period could be performed. 
Specific sets of pre and post-tests that test levels of expertise 
just domain knowledge could be created and administered. These tests 
could be created by domain experts working with psychologists to evaluate 
amount of relevant domain knowledge available when faced with a 
particular problem state, methods of associating templates, and cognitive 
limitations on template learning (such as memory constraints). 
In this paper, we looked at problem 
of template use were given for other domains, we are not sure if templates 
could be physically compiled for all domains. Different types of domains 
could be studied to see if template creation has limitations on certain 
domains or applications. These templates then need to be modelled in a 
form appropriate for use by the ITS. 

  For centuries, we have tried to understand the complex processes by which 
humans learn. Current research looks at this from different perspectives, such as 
neuroscience, psychology (such as behavioural and cognitiv
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8 ppendices A

8.1 Appendix A: SQL Problem Templates 
Forty-two templates were used in the experimental version of SQL-Tutor. Two of the 
templates (templates 1 and 3) are given as examples below.  

p is shown in Figure A.2. Note that the two templates shown in Figure A.1 
(templates 1 and 3) are part of the template group shown in Figure A.2 (template 
group 1). 

 
 
 
 

 

The template number 

As the implementation was done in LISP, each template was stored as a list of 
lists. The first integer in the list was the template number.  

8.1.1 Template Groups 
The templates are categorised into eight template groups. An example of a template 
grou

Figure A.1: Two templates (template 1 and 3) used in the experimental version 

(1 (1 26 59 132 135 164 168 151 199 235) 
 ("SELECT * FROM table" "Retrieve all attributes of one table”)) 

 

Problem based on this 
template 

The template in text form A short feedback message 
describing the template 

(3 (152 237 255 260) 
 ("SELECT DISTINCT attribute(s) FROM table" "You want the details 
without duplicates (DISTINCT) of the attribute(s) of a table")) 
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(1 (1 2 3 22) "Retrieving attributes from a single table." 
"Attributes from one table") 

The template group 
number 

Templates in this group 

Two feedback messages 
describing this template group 

Figure A.2: An example of a template group used in the experimental version 

 

8.2 Appendix B: Selecting Problems in the Experimental Version 
The student is presented with the choice of template-groups, with the system choice 
highlighted and selected [see Figure 9].  

 

 
Figure 9: Template-group choice in the experimental version 

 
If the student selects a problem other than the system choice, a confirmation 

screen is displayed [see Figure 10]. 
 

 
Figure 10: The confirmation dialog screen 

Once the student chooses the template, a list of problems in the template is 
displayed with the system choice highlighted [See Figure 11]. 
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Figure 11: The problem list, with the system choice highlighted 

 
After making a selection from the problem list, the problem, solution space, 

feedback area, and associated information are displayed in the task environment [see 
Figure 12]. The student can attempt to solve the problem, request feedback, request, 
help, view their student model, view their history, or run their query on a sample 
database. 

 

 
Figure 12: The task environment in the experimental group 

 
The control group undergoes the same sequence for problem choice. However, 

they choose from a set of clauses, rather than template-groups. 

 



8.3 Appendix C: Calculating Knowledge Scores 
Various heuristics for calculating the knowledge scores were created and trialled 
before one was implemented. Below are descriptions of two heuristics. The first is an 
example of a heuristic we created but did not use in the evaluation. The second is one 
that has previously been employed in SQL-Tutor, which we used in the final 
implementation. Constraint histories given below consist of zeros (constraint was 
violated) and ones (constraint was used correctly).  

8.3.1 Heuristic A: The Three Phases of Knowledge-component Mastery 
After studying constraint histories of previous long-term student models, we 
proposed that the path to knowledge-component mastery approximated three 
phases: initial learning, mastering, and proficiency.   

Student constraint histories seemed to approximate an ideal model shown below: 
0 0 0 1  (a number of 0s followed by a 1) 
0 1 1 0 1 0 (a number of 0s and 1s) 
1 1 1 1 (a number of only 1s) 
From this assumption, an algorithm was created to calculate a difficulty level 

(how difficult the student found this constraint to be) for each constraint ranging 
from one (very easy) to nine (very difficult). The algorithm consisted of three steps: 

1. The histories were divided into the three phases. The first phase comprised 
of all the attempts up to and including the first correct use of the constraint. 
Then the third phase was found, by selecting all the 1s from the end of the 
history. The period in between phase one and phase three was termed the 
learning phase. This phase consists of a number of zeros and ones. 

2. The proportion of 0s in each phase was multiplied by a phase constant to 
give the phase fraction. For the last phase, a window size of five was 
assumed. This guaranteed the change from mastering to proficiency. The 
phase fraction is each phase’s contribution to the final difficulty level of the 
constraint. 

3. The phase levels were added and normalised to fit the 1-9 scale of difficulty. 
 

8.3.1.1 Examples 
Example 1: 
Assuming a phase constant of 1/3: 
Constraint history: 0 0 0 1 :  0 1 1 0 1 0 : 1 1 1 1 1 
The three phases are separated by colons in the history given above.  
(3/4 X 1/3) + (1/2 X 1/3) + (0/5 X 1/3) = 5/12 
After normalising to a 1-9 scale, difficulty of this constraint = 4.3  
 
Example 2: 
Assuming a phase constant of 1/3 
Constraint history: 1: 1: 1 1 1 1 1 1 
The three phases are separated by colons in the history given above. 
(0 X 1/3) + (0 X 1/3) + (0 X 1/3) = 0 
After normalising to a 1-9 scale, difficulty of this constraint = 1 
 
Example 3: 
Assuming a phase constant of 1/3: 
Constraint history: 0 0 0 0 0 1 : 0 1 0 1 0  : 1 1 1 
The three phases are separated by colons in the history given above. 
(5/6 X 1/3) + (3/5 X 1/3) + (2/5 X 1/3) = 33/54 
After normalising to a 1-9 scale, difficulty of this constraint = 6 

38 
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8.3.1.2 Limitations of Heuristic A 
This heuristic seems to work relatively well with static and complete data i.e. post 
analysis. However, it was very difficult to analyse students dynamically as they 
learned i.e. “Which stage are they in now?” 

We assumed a phase constant of 1/3. In other words, we implied that each phase 
contributed equally to the difficulty level of the constraint. Further studies using large 
amounts of data would have to be done to determine a more accurate figure. 

We assumed that the third stage of learning only contains ones. This meant that it 
was very difficult for a user to be fully proficient at a knowledge-constraint.  

A window size of five was required for phase three, further restricting the 
definition of proficiency. This window size was chosen as it has been previously used 
in other heuristics successfully. Does a student have to have at least five correct 
attempts to be proficient at a knowledge component? 

How this difficulty level relates to pedagogical decisions needs to be further 
explored. When making pedagogical decisions do we always include all the phases, or 
just the most current phase? Does maintaining the initial phases in the score give a 
sense of how quickly a student mastered the knowledge-component, and therefore 
aid in future pedagogical decisions, or is that information irrelevant? 

8.3.2 Heuristic B: Dynamic Knowledge Score 
This heuristic has previously been used successfully in SQL-Tutor. This heuristic 
enlists the use of a floating window to ascertain the relevant section of the student’s 
knowledge-component history to enable pedagogical decisions based on the student’s 
current knowledge level. The result of this calculation gives the knowledge score as a 
probability (0-1) that a knowledge-component has been learnt. 

The algorithm used for this heuristic is simple. Each knowledge-component has a 
default knowledge score of zero (i.e. no knowledge is assumed initially). The window 
of relevant knowledge-components always contains the most current attempts. 
Initially a window size of two (the last two attempts) is viewed. If both the attempts 
were successful (i.e. two 1s), then the knowledge-component is said to be learned i.e. 
it has a knowledge score of one. If not, the window size is increased to contain the last 
five attempts, and an average value is taken. This average gives the knowledge score. 

The advantage of this heuristic is that it can be easily used in a dynamic 
environment, where the student models are continually changing. As the student 
progresses through the training sequence, the floating window moves to 
accommodate the student’s current knowledge.  

8.3.2.1 Examples 

Given a knowledge-component history of (0 0 1 1 0 1 0 1 1), the knowledge score 
would be 1, as the last two attempts were successful. 

Given a knowledge-component history of ( 0 0 0 1 0 0 1 1 0), the knowledge score 
would be 2/5, an average of the last five attempts. 
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