

Incident Management Modelling Using Microsimulation with Adaptive Signal Control

> ITS Asia-Pacific Bangkok, Thailand 9 July, 2009

Presenter

Susan McMillan PhD Candidate Department of Civil Engineering University of Canterbury Christchurch, New Zealand

-10

Carlos and the second

Outline

Research Objectives

Background

Methodology

Conclusions

Further Work

Acknowledgements

Research Objectives

 PhD Research: Evaluate how various ITS treatments can detect and respond to traffic incidents

 This Presentation: Determine how adaptive signal control can be used as an incident management tool

Background

Incident Management

- Incident detection
- Motorway/Arterial network

ITS

- SCATS
- VMS

Background

Microsimulation Modelling
 Test bed for incidents
 Link to SCATS with FUSE

the second states of the second secon

10

Wairau Model

10.10

CE.

Link to SCATS with FUSE

🖴 (1) 1909 - Northcote Rd, C	Dnramp, Offramp : Takapuna (NSCC) - NSCC 💦 📒	
Show Configure Options		
Find Monitor Subsystem Strategic Monitor Northcote On/Off Ramps		
1909 - Alarms ST BO DZ	NSCC Subsystem 14 Degree of saturation 0 SCATS 6	
Split plan 3 Masterlink	System plan 3 Married + Cycle generator (20
Offset plan 4 Offset 0, 0 F	Link plan 4 Link 0, 0 E 1204 Active link 0 E 120)4
Special facilities Z3,6	Cycle plan none Cycle time 100 Required cycle time	ie 82
XSF	TCS 1909	S 🔊
 ⟨A> 28% 28 B 10% 10 C 10% 10 	NSCC SS=14	
D 30% 30 E 15% 15 F 7% 7 G		Ý
C Site operation	2 (12 2/2) · · · · · · · · · · · · · · · · · ·	
E F G		
Active offset 0 F Site Fallback 8	ß	
MSS Isolated	B	

PAR LORD

UNIVERSITY OF CANTERBURY Te Whare Wananga o Waitaba

Methodology

Incident Modelling

Scenarios

- Base
- Incident on Motorway

- 10°

- SCATS adapting as usual
- SCATS with operator intervention

A Charles of the state of the

10

Taharoto diversion

CE.

ALL DES

Northcote diversion

CE.

A Start Ale

Taharoto Diversion

CT.

20

The case

2

Northcote Diversion

CT.

SCATS adapting as usual
Adapts, but not quickly
Priority not given to diversion route
SCATS operator intervention
Small improvement over SCATS as usual

Diversions routes can be optimised with SCATS

 Spare capacity on arterial network will affect effectiveness of diversion

Further Work

- Data collection
- Expand Model
- Additional Incident Scenarios
- Additional ITS Treatments
- Incident Calibration
- Incident Detection
- Network reliability performance measures

Acknowledgements

University of Canterbury

- Professor Alan Nicholson
- Glen Koorey
- New Zealand Transport Agency (NZTA)

- Technical Advisors and Peer Reviewers
- Industry Steering Group

Auckland Traffic Management Centre