
No. 154 

Rapid evaluation of Least Squares and 
Minimum Evolution Criteria on 

Phylogenetic Trees 

David Bryant and Peter Waddell 

Biomathematics Research Centre 

University of Canterbury, Christchurch 

New Zealand 

June, 1997 

Keywords. Least squares method - Minimum Evolution - Phylogenetic inference -

Algorithms. 



Abstract 

We present fast new algorithms for evaluating trees with respect to least 
squares and minimum evolution (ME), the most commonly used criteria for 
inferring phylogenetic trees from distance data. These include: an optimal 
O(N2 ) time algorithm for calculating the branch (edge) lengths on a tree 
according to ordinary or unweighted least squares (OLS); an O(N3) time 
algorithm for edge lengths under weighted least squares (WLS) and the Fitch­
Margoliash method; and an optimal O(N4) time algorithm for generalised 
least squares edge lengths. The Minimum Evolution criterion is based on the 
sum of edge lengths. Consequently, the edge lengths algorithms presented 
here lead directly to O(N2), O(N3) and O(N4) time algorithms for ME under 
OLS, WLS and GLS respectively. These algorithms are substantially faster 
than all those previously published, and the algorithms for OLS and GLS are 
the fastest possible (with respect to order of computational complexity). 

An optimal algorithm for determining path lengths in a tree with given 
edge lengths is also developed. This leads to an optimal O(N2

) algorithm 
for OLS sums of squares evaluation and corresponding O(N3 ) and O(N4) 

time algorithms for WLS and GLS sums of squares, respectively. The GLS 
algorithm is time optimal if the covariance matrix is already inverted. The 
considerable increases in speed enable far more extensive tree searches and 
statistical evaluations (e.g. bootstrap, parametric bootstrap or jackknife). 
Hopefully, the fast algorithms for WLS and GLS will encourage their use for 
evaluating trees and their edge lengths ( e.g. for approximate divergence time 
estimates), since they should be more statistically efficient than OLS. 
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Introduction 

Distance based methods of evolutionary tree reconstruction are presently the 
default methods for the analysis of many data sets. They allow the imple­
mentation of a wide range of model based corrections, including the popu­
lar LogDet transformation which compensates for variable base composition 
(Lake 1994, Lockhart et al. 1994). They are considerably faster than other 
model-based criteria such as maximum likelihood (ML) on sequences (Felsen­
stein 1981, Swofford et al. 1996). Furthermore, some data sets, such as DNA 
hybridization experiments, originate only as distances. Consequently, dis­
tance based tree analyses appear in most papers on, or involving, phylogenetic 
evaluation. 

Distance based clustering algorithms such as UPGMA and Neighbor Join­
ing have been very popular (e.g. see Nei 1987, Swofford et al. 1996). However, 
it is generally more desirable to optimise the fit of data to an assumed model, 
rather than simply apply an algorithm (see Swofford et al. 1996). Examples 
of fit criteria for trees include ordinary, or unweighted, least squares (OLS); 
weighted least squares (WLS); and generalised least squares (GLS). This 
last criterion is closely related to the maximum likelihood tree estimation of 
Felsenstein (1981), assuming that the only data available are the distances 
(see Felsenstein 1988, Waddell et al. 1997 for further discussion). 

Another set of optimality criteria emerge when least squares is used to 
estimate the edge lengths of each tree, but the optimal tree is identified 
as that with the minimum sum of edge lengths. These are called 'Minimum 
Evolution' (ME) methods and have a long history in phylogenetics ( e.g. Kidd 
and Sgaramella-Zonta 1971, Saitou and Imanishi 1989, Rzhetsky and Nei 
1992a, Swofford et al. 1996, Waddell et al. 1997). We denote these methods 
by ''ME' followed by the optimality criterion used to estimate edge lengths, 
e.g. ME(OLS) is the minimum evolution method studied by Rzhetsky and Nei 
(1992a, 1992b, 1993), and recently made available in PAUP* 4.0 (Swofford 
1997). 

Tree searching requires the evaluation of many trees, the total number of 
which grows exponentially with respect to the number of taxa N (Felsenstein 
1978, Swofford et al. 1996). This makes speedy evaluation of the selection 
criteria for each tree highly desirable. 

The speed of an algorithm is usually described in terms of order notation 
0(). For example, the algorithm for OLS edge lengths presented here takes 
O(N2) time where previously developed algorithms took at best O(N3 ) time 
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(e.g. Sattath and Tversky 1977, Yach 1989, Yach and Degens 1991, Rzhetsky 
and Nei 1993). When N is large, say N > 100, an O(N3 ) time algorithm 
takes at most C1N 3 operations, for some constant 0 1, while an O(N2

) time 
algorithm takes at most C2N 2 operations, for some constant 0 2 • Practically, 
this means that O(N2) time algorithms will run much quicker on large taxa 
sets then an O(N3

) algorithm, a:nd faster algorithms mean larger taxa sets 
can be processed and more extensive tree searches completed. Note that 
the exact speeds, and the values for C1 and 0 2, are always dependent upon 
aspects of computer architecture and algorithm implementation. 

By 'time optimal' we mean that no algorithm can have a lower order of 
complexity. Fitch's algorithm (1971) was the first time optimal algorithm for 
parsimony. The algorithms we describe here are the first optimal algorithms 
for least squares and ME tree evaluation. Any future method will take, at 
best, O(N2 ) time to evaluate least squares and ME criteria. Of course the 
order notation 0() can obscure 'hidden constants' and massive overheads that 
make algorithms unattractive for realistic data sets. However the algorithms 
presented here are extremely efficient with minimal overheads. We expect 
them to run N times faster than existing algorithms for even small N: that 
means approximately 100 times faster on data sets of 100 taxa and 200 times 
faster on data sets of 200 taxa, and so on. 

Recent advances in sequencing technology have given rise to increasingly 
large data sets. The analyses of large numbers of sequences not only provide a 
more comprehensive evolutionary history; research indicates that larger taxa 
sets can lead to improved accuracy. Biases caused by long edges in trees 
can lead to inconsistency of distance based methods (e.g. Jin and Nei 1989, 
Lockhart et al. 1996) just as with parsimony (Felsenstein 1978a, Swofford 
et al. 1996). Trees on larger sets of taxa have these longer edges broken 
up so are much less susceptible to biases due to the process of evolution not 
matching the assumed model ( e.g. Swofford et al. 1996). 

Presently, the most popular distance based criteria are OLS, Fitch Mar­
goliash least squares (FM, a form of WLS), and ME( OLS), available in pack­
ages such as Phylip 3.5 (Felsenstein 1993) and PAUP*4.0 (Swofford 1997). 
We hope that the fast algorithms in this paper will encourage the use of WLS 
and GLS, criteria which are predicted to be more accurate for tree estima­
tion ( e.g. Bulmer 1991, Kuhner and Felsenstein 1994, Swofford et al. 1996, 
Waddell et al. 1997). An. additional advantage of WLS and GLS estimation 
is that they give more reliable estimates of a trees edge lengths than OLS 
( e.g. Bulmer 1991, Kuhner and Felsenstein 1994). This can be useful when 
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inferring approximate relative divergence times or determining which genes 
have evolved faster. 

Methods and definitions 

Least Squares Criteria 

We begin with a number of definitions. Throughout this paper we will adopt 
the vector notation used by (Rzhetsky and Nei 1992a) and others. Let L 
be the set of taxa and put N = ILi, A distance on L, possibly given 
by an evolutionary distance, is represented by a column vector with N(~ -l) 

entries. Each entry corresponds to a different pair of taxa. For example, 
when L = {1, 2, 3, 4} we have d = (d12, d13, d14, d23, d24, ds4f, where the 
superscript T denotes transpose. 

Another useful concept is that of the topological matrix of a phyloge­
netic tree, here denoted by the matrix A. The columns of A correspond to 
edges of T and the rows of A correspond to pairs of leaves in L. If the path 
connecting two leaves i and j passes though edge k then we put a one in row 
ij, column k, otherwise we put a zero. Using this notation we can write the 
relationship between branch lengths and leaf to leaf distances: 

p=Ab. (1) 

Here p is the column vector for the leaf to leaf distances, A is the topological 
matrix, and b is a column vector of branch lengths. 

A split AIB is a partition of the set of taxa into two parts, A and B. 
Splits are especially useful when working with phylogenetic trees. Each edge 
e of a tree corresponds to a unique split because removing that edge divides 
the tree, and consequently the leaf set of the tree, into two parts. This 
split is called the split corresponding to the edge e. The set of splits 
corresponding to the edges of a tree T is called the splits of T. A tree can 
be constructed in linear time from its set of splits (Gusfield 1991). 

Any given split has an associated split metric, a distance on L where 
two taxa are distance one apart if they are on different sides of the split and 
distance zero apart if they are on the same side of the split. The columns 
of the topological matrix A of a tree are exactly the split metrics associated 
with splits in the tree. Column k of the matrix is the split metric for the split 
corresponding to edge ek. 
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Ordinary Least Squares (OLS) 

The problem: we are given an unrooted tree T with leaf set L and we want 
to assign lengths to the edges of T so that the leaf to leaf metric of T most 
closely approximates a given metric d, the measure of approximation being 
the sum of squares distance. In terms of our vector notation, we want to find 
b that minimises 

SS(OLS) = (Ab - df (Ab - d) (2) 

where the elements of b may take on any real value (including zero or negative 
values). 

The problem was apparently first introduced, and solved, by Cavalli­
Sforza and Edwards (1967). Straightforward projection theory gives the so­
lution 

(3) 

but direct application of this formula leads to an inefficient algorithm with 
complexity O(N4). Sattath and Tversky (1977) propose a more efficient 
method, though they leave out the details. It seems reasonable to conclude 
from their description that the method they used is the same as the O(N3 ) 

method described explicitly by Rzhetsky and Nei (1993). Formulae for cal­
culating edge lengths have also been developed by Yach 1989 (see also Yach 
and Degens 1991). 

Weighted Least Squares (WLS) 

The weighted least squares method for calculating edge lengths involves the 
minimisation of 

SS(W LS) = (Ab - dfW(Ab - d) (4) 

where W is a given diagonal matrix with strictly positive entries on the 
diagonal and b can have negative entries (e.g. Bulmer 1991, Swofford et 
al. 1996). The minimum is given directly by the formula 

(5) 

If we use standard matrix multiplication then this vector can be calculated 
in O(N4

) time. We show later that this bound can be improved to O(N3 ) 

time. 
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Generalised Least Squares (GLS) 

The function to be minimised when using generalised least squares is 

SS(GLS) = (Ab - dfV-1(Ab - d) (6) 

where V, and hence v-1 is a strictly positive definite symmetric matrix and, 
as before, b can have negative entries (Bulmer 1991, Swofford et al. 1996). 
The direct solution is 

(7) 

Now Vis an (f) x (f) matrix so calculating v-1 takes O(N6
) time. It must 

be remembered that this calculation is performed only once for each data 
set, whereas the edge length calculation is repeated for every tree assessed. 
Therefore we assume that this inverse has been computed during prepro­
cessing, before the execution of the edge lengths algorithm. Even without 
calculating the inverse the above formula for b still takes O ( N 5 ) time to 
compute. We improve this bound to O(N4). 

The variance-covariance matrix of edge length estimates under GLS are 
given by Agresti (1990), pg. 460-462 (for any multi-variate model), Hasegawa 
et al. (1985) and Bulmer (1991) (for trees) as 

(8) 

This formula takes O(N5 ) time using standard matrix multiplication. We 
improve this bound to O ( N 4) time, though in practice this matrix will be 
calculated as part of the evaluation of GLS edge length estimates. 

Results 

The main results of this paper are as follows: 

1. An algorithm to calculate AT d in minimal time. 

2. Application of this to the calculation of 018, WLS and GLS edge 
lengths, giving a fast algorithm for WLS and a time optimal algorithm 
for GLS. 
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3. The description of a very fast, time optimal, O(N2 ) time algorithm 
for calculating OLS edge lengths, leading directly to a time optimal 
algorithm for evaluating the ME(OLS) criterion on a tree. 

4. A time optimal algorithm for calculating path distances in a tree when 
edge lengths are given. 

5. Application of the above to give a time optimal algorithm for the eval­
uation of least squares on trees. 

Calculating AT d in minimal time 

Notice that the equations (3), (5) and (7) all involved the multiplication of 
the topological matrix AT with some vector, be it d, Wd or v-1a. Us­
ing standard matrix multiplication, this calculation takes O(N3

) time, which 
is not surprising since A has O(N3) entries. However the topological ma­
trix contains a lot of redundant information. After all, it takes only O (N) 
information to define a tree (i.e. the vertices and edges). We show how to cal­
culate the vector AT d directly from the tree T and the vector d, completely 
bypassing the topological matrix. 

C1 (i) (ii) 
:' .. ~ ... ··: 

w .. 

.... • ..... 
x z 

Cin · .... 

Figure 1 : (i) 'Generic' edge i with its adjacent edges and subtrees. (ii) Four ta:xa 
example tree. 
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We label the edges of T by e1, ... , eK. The matrix A has exactly K 
columns, one for every edge of T. Denote these columns by 81, 62, ... , 8K; thus 
81 is the split metric for the split corresponding to edge e1. The elements of 
AT d are the values 8f d, 8f d, ... , 8fd. Algorithm CALCULATEAD calculates 
all of these values in O(N2) time. 

Procedure CALCULATEAD (T, d) 

1. Calculate c5[d directly for all external edges. 

2. REPEAT UNTIL 8[ d has been calculated for all i = 1, ... , K 

3. Choose an internal vertex a such that exactly one of the 

adjacent edges has not had its 8[d value calculated. 

4. 

Let i be the index of this edge and let j 1, ... ,Jm be the 

indices of the remaining edges adjacent to a. For each 

l = i,j1,}2, ... ,Jm let Cz be the set of leaves on the other 

side of edge ez from a (figure 1 (i)). 

5. END(REPEAT) 

6. END. 

Algorithm 1 : CALCULATEAD 

In Appendix 1 we prove that the algorithm CALCULATEAD calculates 
AT d correctly and that it does so in O(N2) time. Since d has O(N2 ) non­
redundant elements this algorithm is time optimal. 

As an illustration, consider the four taxa tree (figure 1 (ii)) and the dis­
tance vector d = (dwx, dwy, <lwz, dxy, <lxz, <lyzf = (1, 3, 2, 5, 2, 4)T. We calcu­
late 8[ d for the external edges directly: for example c5f d = <lwx+<lwy+<lwz = 
6. Similarly 8f d = 8, c5f d = 12 and 8T d = 8. 

The next step is to choose a vertex adjacent to exactly one edge ei for 
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which or d has not been calculated. In this case there are two candidates, u 
and v. We will choose u. From line 4 of the algorithm we obtain 

of d + o[ d - 2dwx 

6+8-2xl 
12. 

(9) 
(10) 
(11) 

Fast algorithms for OLS, WLS and GLS edge lengths 

The fast algorithm for calculating AT d leads straight away to fast algorithms 
for calculating edge lengths. 

Ordinary least squares 

Edge lengths under 018 are given by the projection formula 

(12) 

As mentioned earlier, this calculation takes O ( N 4 ) time using standard matrix 
multiplication, where N is the number of taxa. However, using the algorithm 
CALCULATEAd we can compute ATx in O(N2) time for any vector x of 
the appropriate size. Thus for each column oi of A we can calculate AT oi 
in O(N2) time, so AT A can be computed in O(N3 ) time. The inversion 
takes O(N3 ) time and the calculation of AT d takes O(N2) time so the entire 
calculation of edge lengths can be completed in O(N3 ) time. 

We can go even faster! Below we describe an optimal O(N2 ) time algo­
rithm for 018 edge lengths. 

Weighted least squares 

Edge lengths under W18 are given by the projection formula 

(13) 

Using standard matrix multiplication this calculation takes O ( N 4) time. Once 
again, a speed-up is possible. 

Working from right to left, we can calculate Wd in O(N2) time, assuming 
that the input contains only the diagonal elements of W. The vector A TW d 
can then be calculated in O(N2

) time using the CALCULATEAD algorithm. 
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The matrix (WA) is equal to A with the rows scaled, so can be calculated 
in O(N3 ) time. We can then calculate AT(WA) by applying the algorithm 
CALCULATEAD to each of the O(N) columns of (WA), so that ATWA is 
calculated in O(N3 ) time. This matrix is N x N so its inverse can be calcu­
lated in O(N3 ) time. Therefore the vector b of edge lengths can be retrieved 
in O(N3 ) time. This method works for binary and non-binary trees . 

. We have good reason to believe that the O(N2
) time speed-up for OLS 

below does not extend to weighted least squares. The OLS formulae takes 
advantage of symmetries that disappear with the introduction of a scaling 
matrix W. 

Felsenstein (1997) has recently published an algorithm for calculating edge 
lengths under WLS. It also takes at least O(N3 ) time, but unlike the exact 
algorithm presented here, Felsenstein's algorithm is iterative and is not guar­
anteed to return the solution in this time. 

Generalised least squares 

Edge lengths under GLS are given by the projection formula 

h = (Arv-1A)-1ATv-1d. (14) 

Using standard matrix multiplication this calculation takes O(N5) time. We 
show how to complete it in O(N4

) time. 
We begin by using O(N2

) applications of CALCULATEAD to construct 
A rv-1 = (v-1 Af. Then A rv-1d takes a further O(N3 ) operations, and 
O(N2 ) more applications of CALCULATEAD gives (Arv- 1 A). 

The matrix Arv-1 A is of size N x N so the inversion takes O(N3 ) time, 
giving a total time complexity for calculating edge lengths, and edge length 
variances and covariances, of O(N4

). This is time optimal because there are 
O(N4) entries in v-1, none of which are redundant. 

One useful improvement to these methods would be a technique that 
somehow bypassed the need to calculate v-1. This would not, as explained 
above, accelerate the evaluation of each tree. 

An unusually fast algorithm for OLS edge lengths 

We have described an O(N3
) algorithm for calculating OLS edge lengths. 

This is fast, but only as fast as several existing methods. In this section we 
develop an even faster O(N2

) time method. Because the number of entries in 
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the input distance is O(N2) this method is time optimal: the fastest possible 
hypothetical algorithms must take at least O(N2) time. 

Returning again to equation (3), the projection formula for 018 edge 
lengths, we see that the major obstacle to an O(N2 ) algorithm is the con­
struction and inversion of the matrix (AT At1. We need to explore and utilise 
the properties of this matrix so that we can avoid the matrix altogether. 

The first, and perhaps most important, observation we can make about 
the matrix (AT A)-1 is that it is mainly zeros. The reason is that the length 
assigned to an edge ei under 018 is not affected by the shape of a tree beyond 
those edges directly adjacent to ei. Consequently the length of an edge ei 
under 018 can be written in terms of or d, { of d : ej1 adjacent to ei } and the 
numbers of leaves in the corresponding subtrees. This observation was made 
in slightly different terminology by Yach (1989) and later, independently, by 
Bryant (1997). 

The actual formula is achieved by constructing, and solving, an appropri­
ate set of linear equations. See Yach (1989) or Bryant (1997), pg. 131-137, 
for two ways of doing this. Rzhetsky and Nei (1993) employed a quite differ­
ent, and more involved, technique to derive a formula for 018 edge lengths 
in binary trees. 

We must consider two cases when presenting the 018 edge length formu­
las: internal edges and external edges. Diagram (i) in figure 2 represents a 
generic example of an internal edge ei. Let a and /3 be the endpoints of ei. 
Let ej1 , eh, ... eik be the remaining edges adjacent to a and let eiHi' ... , eim 
be the rema~ning edges adjacent to /3. The dotted circles represent the sub­
trees branching off the respective edges. Let C1 , ... , Cm be the leaf sets of 
these subtrees and put Ni = ICd for l = 1, ... , m. Put No. = "E,f=1 N1 and 
Nf3 = "E,~k+l Nz. Let v be the vector with Nf3 in positions 1, ... , k and No. in 
positions k + 1, ... , m. 

We use similar labelling in the case of an external edge ei, a generic 
example of which is given in figure 2 (ii). Let ej1 , ••• , eim be the edges adjacent 
to ei, let C1, ... , Cm be their associated leaf sets and put N1 = ICd for all 
l = 1, ... , m. Let v be a vector of m ones, put No.= N - 1 and N13 = 1. 

One formula, equation (15), suffices for both internal and external edges. 
What it might lack in aesthetic appeal it makes up for in usefulness. 

Theorem 1 Let ei be an external or internal edge with adjacent edges and 
subtrees as described. The optimal edge length bi for ei under OLS is given 
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C1 
(i) cm c (ii) 

.... ...... 
C2 ' : : : ! 

C2 .. 

,···· ..... . ' ... . , · .... 

' . . ... · ... 

Figure 2 : Representation of the four generic cases for calculating edge lengths. (i) 
Internal edge in a non-binary tree. (ii) External edge in a non-binary tree. 

by: 
J'!' d - wTN-1 P 

b·--t~~~~~-
t - No.N/3 - wTv 

(15) 

where N is the number of taxa, 

(16) 

and 
(17) 

The matrix U is the m x m matrix of ones, N is the diagonal matrix with 
diagonal N1 , N2, ... , Nm and I is the identity matrix. 

See Vach (1989) and Bryant (1997) for two alternative derivations of this 
result as well as the proof in Bryant (1997) that the matrix ( NN-1 - 2I + U) 
is invertible. 

There are explicit formulae for the elements of w, with two cases to con­
sider. 
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If N1 =I- N/2 for all l = 1, ... , m then 

1 
Wz = (N/N1 - 2) ('y + v1) (18) 

h '-'m N· d -1 '-'m v· 
w ere K = 1 + Llj=l ~ an 'Y = -;;- Llj=l (N/N;-2) · 

If there is some). E {1, ... , m} such that N>-. = N/2 then for all l =I- A we 
have 

Vz-V>-. 
Wz=---

N/Nz -2 
(19) 

whereas 

W).. = V).. + I: (-NjVj + Nj). 
#>-. N-2Ni 

(20) 

Note that for any external or internal edge there can be at most one adjacent 
subtree with N/2 leaves, so there can be at most one). such that N>-. = N/2. 

In both cases it takes only O(m) to calculate all of the entries of w. 
Looking at equation (15) we see that the length bi can therefore be calculated 
in O(m) time, provided that 8[d and the values 8J;d in Pare already known. 
We can calculate all of these values in O(N2) time during preprocessing using 
the algorithm CALCULATEAd, before we evaluate individual edge lengths. 
For each edge we have m :::; N so the calculation of all of the edge lengths can 
be completed in O(N2

) time. We summarise the entire process in algorithm 
CALCULATEEDGELENGTHS. 

As an illustration we now calculate OLS edge lengths for the four taxa tree 
in figure 1 (ii), with a given distance vector d = (dwx, dwy, dwz, dxy, dxz, dyzf = 
(1, 3, 2, 5, 2, 4f. As before, we calculate the values 8f d = 6, 8[ d = 8, 
8f d = 12, 8T d = 8 and o[ d = 12 using the algorithm CALCULATEAd. 

First consider edge e1. The adjacent edges are ej1 = e2 and eh = e5. 
Thus N1 = 1, N2 = 2, Na = 3, N13 = 1 and v = (1, lf. From line 12 we get 
w 1 = 0 and from line 14, w2 = 1. In line 22 we obtain 

1 x 12 
h1 = (6 - (0 + 

2 
))/2 = 0. (21) 

Similarly b2 = 1, b3 = 3 and b4 = 1. 
When i = 5 we get Na= N13 = 2 and v = (2, 2, 2, 2f. From lines 16 and 

17: 

1 1 1 1 -1 2 2 2 2 -4 
"'= 1 + (2 + 2 + 2 + 2) = 3 and 'Y = 3(2 + 2 + 2 + 2) = 3 (22) 

12 
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Procedure CALCULATEEDGELENGTHS (T, d) 

1. Count the number of leaves on each side of each edge. 

2. Calculate o[ d for each edge using CALCULATEAD. 

3. FOR each edge~ DO 

4. IF ei is internal THEN 

5. Let a and f3 be· the endpoints of ei. Let ej1 , ••• , ejk be the 

edges adjacent to ei at a and let ejk+1 , ••• , ejm be the edges 

adjacent to ei at (3. For each l let lv1 be the number of 

leaves on the other side of ej1 from ei (See figure 2 (i)). 

Let lva and lvp be the number of leaves on either side of 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

ei. 

ELSE 

Let ej1 , ••• , ejm be the edges adjacent to ei. For each l let 

lv1 be the number of leaves on the other side of ej1 from ei. 

Put k = m, lva = n - 1 and lvp = 1. 
END(IF-ELSE) 

Let v be the vector. with lvp in positions l, ... ,k and lva in 

positions k + 1, ... , m. 
IF there is A such that !YA =lv/2 THEN 

FOR l = 1, ... , m except A DO 
vz-vx 

W! +- N/Ni-2 

END(FOR) 

m N· 
K, +- 1 + I:j=l ~ 

-1 m v· 
'Y f- 7 I:j=l (N/Nj-2) 

FOR l = 1, ... , m DO 

W1 +- (N/Jz-2) ( 'Y + v1) 

END(FOR) 

END(IF-ELSE) 
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-

and from line 19, w = (f, f, f, }f. Finally, in line 22, 

( 12 - (f + f +; + i)) ( 2 x 2 - ~ - ~) 

1/2. 

Calculating leaf to leaf distances in minimal time 

(23) 

(24) 

We have now shown how to calculate edge lengths in O(N2) time for OLS, 
O(N3) time for WLS and O(N4 ) time for GLS. These algorithms, followed by 
a linear O ( N) summation of the edge lengths, give optimal time algorithms 
for minimum evolution (e.g. ME(OLS), ME(FM), ME(GLS)). However other 
popular tree selection criteria, namely sums of squares, require the calcula­
tion of the leaf to leaf distance in the tree with these edge lengths. Given any 
two leaves, it takes O(N) time to find the distance between them by tracing 
the path connecting them, and hence O(N3) time to calculate all (f) pair­
wise distances. Alternatively, direct application of equation (1) also takes 
O(N3 ) time. While this time bound is acceptable for WLS and GLS it is 
unacceptable for OLS: we are aiming for an O(N2) time evaluation method. 

We introduce a simple new method, CALCULATEDISTANCE which calcu­
lates leaf to leaf distances in O(N2 ) time from a tree T and its edge lengths. 

(i) (ii) 

a c d c d 

2 3 
6 4 

b v 

b e e 

Figure 3 : An example illustrating the application of Algorithm 

CALCULATEDISTANCE 
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Procedure CALCULATEDISTANCE (T) 

1. FOR each leaf a in TDD 

2. Paa f- 0 

3. REPEAT UNTIL Pax has been calculated for all vertices x in 

T 
4. Choose a vertex v such that Pav has not been calculated 

but vis adjacent to a vertex u for which Pau has been 

calculated. 
5 . Pav f- Pau + length of edge between u and v 

6. END (REPEAT) 

7. Remove leaf a from T together with its adjacent edge. 

8. If there are vertices of degree two in T then remove them 

and replace the adjacent edges with a single edge with 

length equal to the sum of the lengths of the two adjacent 

edges. 
9. END (FOR) 

END. 

Algorithm 3 : CALCULATEDISTANCE 

For example, consider tree ( i) in figure 3. We have labelled the internal 
vertices for convenience. Starting with leaf a we calculate, in order, Pau = 1 
then Pab = Pau + 2 = 3 and Pav = Pau + 4 = 5, and then Pac = 7, Paw = 9, 
Pad = 12 and Pae = 10. We then remove a and contract vertices to obtain 
tree (ii) which is then used to calculate the remaining values of p. 

By calculating distances to internal vertices we can calculate the distance 
from a single leaf to all other vertices and leaves in just O(N) time, giving 
O(N2) time for the entire operation. The contraction in lines 7 and 8 speeds 
up the process by taking advantage of the fact that for each x and y we need 
only calculate one of Pxy and Pyx· 
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Calculating sums of squares quickly 

Using the algorithm CALCULATEDISTANCE and the fast edge length calcula­
tion methods we can speed up sum of squares (SS) evaluations of trees. 

For OLS, 

SS(OLS) = (Ab - df (Ab- d). (25) 

The optimal edge lengths b are provided already by the O(N2
) time al­

gorithm CALCULATEEDGELENGTHS, while the calculation of Ab can be re­
duced from O(N3) time to O(N2) time using the the algorithm CALCULATE­
DISTANCE. Thus the time taken for the whole calculation is reduced from 
O(N3 ) time to O(N2) time. 

For WLS (including FM), we can calculate edge lengths in O(N3 ) time. 
Calculating Ab takes O(N2) time and so the entire calculation 

SS(W LS) = (Ab - dfW(Ab - d) (26) 

takes a total of O(N3
) time. 

By a similar method the sum of squares calculation 

SS(GLS) = (Ab - dfV-1(Ab - d) (27) 

can be completed in O(N4
) time, provided that, as above, the inverse matrix 

v-1 is calculated beforehand. 

Summary of Results 

A summary of the speed increases due to our results is presented in Table 1: 
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Table 1: Summary of evaluation speed increases 
Evaluation criterion Fastest previous New speed 

Edge lengths 
OLS b - (ATA)-1ATd O(N3 ) O(N2 ) 

WLS b - (ATWA)-1ATWd O(N4 ) O(N3 ) 

GLS b - (ATv-1A)-1 ATv-1d O(N5) O(N4 ) 

Sum of squares 
OLS SS(OLS) - (Ab - df (Ab - d) O(N3 ) O(N2

) 

WLS SS(WLS) - (Ab- d)TW(Ab- d) O(N4 ) O(N3 ) 

GLS SS(GLS) - (Ab - dfV-1(Ab - d) O(N5 ) O(N4 ) 

Variance-covariance matrix for edge lengths 
GLS Var(b) - (ATV-lA)-1 O(N5) O(N4 ) 

Discussion 

The speed up of least squares tree criterion evaluation described in this pa­
per to avoid ambiguity should allow faster and more extensive tree search 
strategies for distance based methods. Rzhetsky and Nei (1992a) describe a 
localised, but often effective, method of evaluating all trees within a small 
partition distance of a good starting tree. Use of our algorithm CALCU­

LATEEDGELENGTHS makes this method run O(N) times faster. A new, 
even faster, algorithm has recently been developed for localised search with 
ME(OLS) (Bryant 1997, pg. 149-154). 

A wide range of alternative search strategies, offering better protection 
against being trapped in local optima, are now available in PAUP 4.0. These 
too may be accelerated using the algorithms developed here. 

It is important to note that the algorithms we describe will sometimes 
assign negative lengths to edges. It has been a long running argument whether 
this is desirable or not (e.g. Felsenstein (1984), Farris (1985), Swofford et al. 
(1996), Waddell et al. (1997)). To date there is no definitive answer and a 
good deal of disagreement. There are some who feel negative edge lengths 
should be avoided wherever possible, and propose that any tree containing 
a negative edge is automatically rejected ( e.g. Kidd and Sgaramella-Zonta 
1971). Another approach is to define the ME score of a tree as 

L I bi I instead of L bi (28) 
i i 
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thereby penalising negative edges (Kidd and Sgaramella-Zonta 1971, Swofford 
et al. 1996). 

A third approach is to calculate edge lengths on a tree subject to the 
constraint that edges lengths must be non-negative. This is not simply a 
matter of contracting negative edges to zero then optimising the remaining 
edge lengths: we have discovered a seven taxa tree for which this approach 
fails (Bryant and Waddell, unpublished results). Thus when there are two or 
more negative edge lengths in the unconstrained optimum for a tree, a more 
sophisticated method is required to guarantee constrained optima. The only 
polynomial time methods proven to give optimal edge lengths in the con­
strained case are ellipsoid and interior point algorithms for convex quadratic 
programming (e.g. Kozlov, Tarasov and Khachiyan 1979 and Goldfarb and 
Liu 1991). It is reasonable to expect that versions of these algorithms could 
be made simpler and faster when they are tailored to the specific least squares 
edge length problem on trees. 

The speed increases offered by the algorithms presented here will hopefully 
encourage the use of WLS and GLS. Since these criteria come closer to ML 
on distances than any other currently implemented, it is reasonable to expect 
they will be more statistically efficient and return the correct answer more 
often than the computationally faster OLS methods. A useful combination 
of the algorithms presented here may be fast searches of the tree space with 
SS(OLS) or ME(OLS), followed by the use of WLS or GLS to select among 
the better trees found. 
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Correctness and complexity proofs for the al­
gorithm CALCULATEAd 

Theorem 2 The algorithm CALCULATEAD correctly calculates b'[ d for all 
i = 1,2, ... ,K. 

Proof 

The algorithm calculates the values for external edges correctly. Suppose 
we have the situation as in figure 1 where the values c53i d, ~ d, ... ,l}: d have 
been calculated correctly. For all k = i,j1,j2, ... ,jm the value O'ic d equals 
the sum of all the distances going from one side to the other side of the 
corresponding split. Hence for all k = i,j1,}2, ... ,Jm 

(29) 

Furthermore 

E or, d - E Ca,JL-c,, cl,,,) (30) 

(31) 

-E (.cc5cc, d,, + acc,.,,J;(c,uc;,) d.,) (32) 
m m 

L dab + L L L dab (33) 
aEC;,bEL-Ci k=l [ = 1 aECh ,bECii 

l i= k 

<Sf d + 2 I: ( I: dab) 
k<l aECik ,bECj1 

(34) 

as required. D 

Theorem 3 Given a tree T and distance vector d we can calculate the vector 
ATd in O(N2) time, where A is the topological matrix ofT. 
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We have shown that the algorithm CALCULATEAd correctly calculates 
AT d. It remains to show that the algorithm completes the calculation in 
O(N2 ) time. 

If oi corresponds to a trivial split then the vector has exactly N - 1 ones. 
Hence of d can be calculated in O(N) time and calculating of d for all the 
trivial splits takes O(N2) time. 

The loop in lines 2 to 5 of algorithm CALCULATEAd iterates once for 
every edge in T, that is, O(N) times. Within each iteration the sum in line 4 

(35) 

takes at most O(N) time. The second part of line 4: 

2 ~ Cc,;ec,, d,,) (36) 

could potentially take O ( N 2) time per iteration. However the total amount 
of time taken by this calculation over all the iterations is O(N2), the reason 
being that each individual distance dab is added at most once. This is easily 
verified by rooting the tree along the last edge evaluated-the individual dis­
tance dab is only part of the calculation for the edge directly above the least 
common ancestor of a and b. Hence the entire algorithm takes O(N2) time. D 
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