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A range of two- and three-dimensional problems is explored featuring the gravity-driven
flow of a continuous thin liquid film over a non-porous inclined flat surface containing
well-defined topography. These are analysed principally within the framework of the
lubrication approximation, where accurate numerical solution of the governing nonlinear
equations is achieved using an efficient multigrid solver.

Results for flow over one-dimensional steep-sided topographies are shown to be in very
good agreement with previously-reported data. The accuracy of the lubrication approx-
imation in the context of such topographies is assessed and quantified by comparison
with finite element solutions of the full Navier-Stokes equations, and results support
the consensus that lubrication theory provides an accurate description of these flows
even when its inherent assumptions are not strictly satisfied. The Navier-Stokes solu-
tions also illustrate the effect of Reynolds number on the capillary ridge/trough and the
two-dimensional flow structures caused by steep topography.

Solutions obtained for flow over localised topography are shown to be in excellent
agreement with the recent experimental results of Decré & Baret (2003) for the motion
of thin water films over finite trenches. The spread of the ‘bow wave’, as measured
by the positions of spanwise local extrema in free-surface height, is shown to be well-
represented both upstream and downstream of the topography by an inverse hyperbolic
cosine function.

An explanation, in terms of local flow rate, is given for the presence of the ‘downstream
surge’ following square trenches, and its evolution as trench aspect ratio is increased is
discussed. Unlike the upstream capillary ridge, this feature cannot be suppressed by
increasing the normal component of gravity. The linearity of free-surface response to
topographies is explored by superposition of the free surfaces corresponding to two ‘equal-
but-opposite’ topographies. Results confirm the findings of Decré & Baret (2003) that,
under the conditions considered, the responses behave in a near-linear fashion.

1. Introduction

The behaviour of thin liquid films, whether forced to spread or deposited as a distinct
pattern on the surface of a non-porous substrate, is of enormous significance to many
manufacturing processes. Much is known about the deposition of such films on flat homo-
geneous surfaces, see for example Kistler & Schweizer (1997), but considerable interest
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has been generated of late concerning the case of thin liquid films that are forced (grav-
itationally or centrifugally) to flow over, or encounter, surfaces containing topographical
features. The latter may be regular and desired (patterned) or unwanted (a random
scratch or speck of dust). Similarly, many manufactured products, particularly in the
electronics sector (micro-devices, sensors, printed circuits, displays, etc.) usually involve
the successive deposition of several thin liquid layers, combined with photolithography
at each stage. Therefore, in the subsequent formation of the desired component/surface
each layer is influenced by the one deposited and cured previously which, if non-uniform,
presents the current wet layer with a surface that may lead to variations in coating
thickness or even instabilities. Whatever the situation, increasing demands concerning
quality and finish have promoted the need for better understanding of the mechanisms
leading to free-surface non-uniformities and how to control/suppress the occurrence of
their attendant undesirable defects.

Most previous investigations have concerned thin film flows over two-dimensional to-
pography. Important early examples are the combined theoretical and experimental stud-
ies of Stillwagon & Larson (1987, 1988, 1990) and Pritchard, Scott & Tavener (1992) who
considered radial outflow during spin coating and gravity driven flow down an inclined
plane, respectively. Both sets of authors demonstrated lubrication theory to be surpris-
ingly accurate for modelling purposes even for cases where it is not strictly valid, as for
the flow over shallow trenches. Stillwagon & Larson (1990) are also credited with being
the first to obtain a one-dimensional analytical expression for the standing capillary wave
at the leading edge of a trench and its associated downstream exponential decay. Of note
also is the work of Roy & Schwartz (1997) which extended the one-dimensional lubrica-
tion approach to general curved substrates with topography by expressing the problem in
curvilinear coordinates. Following a different tack, Decré, Fernandez-Parent & Lammers
(1999) revisited the flow studied by Stillwagon & Larson (1990) and presented a Green’s
function formulation to the problem. The second order term contained therein has the
effect of locating the capillary ridge further upstream of the topography, the deeper the
trench becomes.

More recently, Kalliadasis, Bielarz & Homsy (2000) returned to the problem of the
flow over a trench under the action of an external body force, solving the assumed gov-
erning one-dimensional long wavelength, or lubrication, approximation numerically as a
means of analysing further the case of trench depths comparable with, or larger than, the
associated unperturbed film thickness. Their results show that deep trenches produce an
asymmetry, with the step-down leading to a comparatively more pronounced capillary
ridge than the step-up. They also explored the effect of gravity, showing that it could re-
sult in the disappearance of capillary ridges. The stability of the latter was considered in
a subsequent article, Kalliadisis & Homsy (2001). The picture was essentially completed
by Mazouchi & Homsy (2001) who solved the corresponding Stokes problem numerically
using a boundary element method and compared the results with those obtained us-
ing lubrication theory. They demonstrated the importance of the capillary number, Ca,
and in particular that increasing it leads to a diminution or flattening of the capillary
ridge, with the free-surface correspondingly conforming more to the topography of the
substrate.

Not surprisingly, flow over three-dimensional topography has received considerably less
attention both experimentally and theoretically, each representing a significant challenge
in its own right. The work of Pozrikidis & Thoroddsen (1991) is an early and important
contribution in this respect for the case of gravity driven flow of full liquid films over a
particle-like topography. Using a boundary element formulation to solve the governing
Stokes equations numerically they showed even a small particle to result in a significant
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upstream and downstream disturbance to the free-surface profile of the film, in quali-
tative agreement with the one-dimensional cases cited above. That is, a standing ‘bow
wave’ capillary ridge upstream of the particle together with an exponentially decaying,
‘horseshoe’-shaped capillary wake downstream. Other work of note is that of Peurrung
& Graves (1991, 1993) for the case of spin coating over topography. Their experimental
and numerical results are found to be in qualitative agreement, but for shallow topogra-
phies of the order of 1 µm deep the absolute accuracy of their experimental data is
questionable. Hayes, O’Brien & Lammers (2000) formulated a Green’s function for the
linearised two-dimensional lubrication equations for the flow over a shallow topography
which allowed the surface responses to arbitrary finite topographies to be calculated.

The motivation for the present work is provided by the recently reported painstaking
quantitative experimental results of Decré & Baret (2003) for the case of gravity driven
flow of thin water films over topography. Building on earlier work (Messé & Decré 1997;
Decré et al. 1998, 1999; Lucéa & Decré 1999), they used phase-stepped interferometry to
obtain detailed free-surface maps for thin films of water flowing down an inclined plate
containing a range of topographies. In all cases, results compare well with those of earlier
studies and, in the case of flow over three-dimensional topography, with the results of
Hayes et al. (2000) for the linearised problem. A consequence of the latter is that linear
superposition may be used to construct an approximate free surface response to a complex
topography from knowledge of the responses to regular elementary topographies.

2. Problem specification and mathematical formulation

The case of flow of a continuous film of liquid, flux Q0, over a plane surface (streamwise
extent LP and span width WP ) inclined at an angle θ to the horizontal arises as part of
many manufacturing processes, with the case of flow over a smooth homogeneous surface
being surely now recognised as a classical problem in fluid mechanics. If the liquid is
assumed Newtonian and incompressible, with constant density ρ, viscosity µ and surface
tension σ, its steady motion in the general sense is governed by the Navier-Stokes and
continuity equations:

ρU .∇U = −∇P + µ∇2U + ρg , (2.1)

∇.U = 0, (2.2)

where U = (U, V,W ) and P are the fluid velocity and pressure respectively and g =
(g sin θ, 0,−g cos θ) is the acceleration due to gravity.

In the problems of interest here, the inclined substrate contains well-defined topo-
graphical features of amplitude S0 and form S(X,Y ), with streamwise extent LT and
span width WT , centred at (XT , YT ). These features may completely span the domain (in
which case WT = WP and LT ¿ LP , leading to two-dimensional flow), or be localised
(i.e. WT ¿ WP and LT ¿ LP , giving three-dimensional flow). The former problem
reduces conveniently to solving for the flow in a streamwise cross-section only, provided
WP is sufficiently large for end effects to be negligible. In both cases the topography may
be a protrusion (S0 > 0) or a depression (S0 < 0) as sketched in figure 1. These are often
referred to as ‘peaks’ and ‘trenches’ respectively.

2.1. Full-width topography

The associated two-dimensional flow is analysed by solving equations (2.1) and (2.2)
numerically, and solutions are compared against both theoretical and experimental results
of other authors, and also those obtained from solving the corresponding lubrication
formulation of the problem given below. Apart from generating new results, this analysis
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is fundamental to determining the validity of the lubrication approximation as a suitable
means of solving three-dimensional flow over localised steep-sided topography.

Following Aksel (2000), an appropriate length scale for non-dimensionalisation pur-
poses is the undisturbed fully-developed film thickness:

H0 =

(

3µQ0

ρg sin θ

)1/3

, (2.3)

while the characteristic velocity U0 is taken to be the surface velocity of the fully-
developed film:

U0 =
3Q0

2H0

. (2.4)

Implicit in the choice of scales (2.3) and (2.4) is the assumption that θ 6= 0, i.e. the
substrate is never horizontal. Scaling velocities, axial coordinates and pressure by U0, H0

and µU0/H0 respectively, and noting the absence of any Y dependence, allows equations
(2.1) and (2.2) to be rewritten in the form:

Re u .∇u = ∇.τ + St ĝ , (2.5)

∇.u = 0, (2.6)

where u = (u,w) is the non-dimensional velocity in the dimensionless x − z plane,
Re = ρU0H0/µ = 3ρQ0/2µ is the Reynolds number, τ = −pI + ∇u + (∇u)T is the

non-dimensional Newtonian stress tensor, and St = ρgH2
0/µU0 = 2/ sin θ is the Stokes

number.
The boundary conditions which close the problem are shown in figure 2. On the sub-

strate the no-slip condition u = w = 0 is applied and at the inflow and outflow planes a
fully-developed velocity profile is assumed:

u = 1

2
St sin θ(2z − z2), w = 0. (2.7)

On the free surface the usual stress and kinematic conditions,

n .τ =
1

Ca

dt

ds
and n .u = 0, (2.8)

are imposed (where n and t are the unit normal and tangent to the free surface, and s
is arc length along it). Using scales (2.3) and (2.4), the capillary number is given by

Ca = µU0/σ =
1

2

(

9µ2ρg sin θ

σ3

)1/3

Q
2/3

0 . (2.9)

Finally, at each end of the domain the dimensionless film thickness is set equal to one,
i.e the fully-developed thickness.

2.2. Localised topography

Three-dimensional steady flow over localised topography is analysed using a lubrication
approximation. The problem to be solved results from a long-wave expansion of equa-
tions (2.1) and (2.2) under the assumption that ε = H0/L0 is small, where L0 is the
characteristic in-plane length scale. Retaining U0 and H0 as defined above, the resul-
tant lubrication equations for the film thickness H(X,Y ) and pressure field P (X,Y ) are
formulated in terms of the following non-dimensional variables:

h(x, y) =
H(X,Y )

H0

, s(x, y) =
S(X,Y )

H0

, (x, y) =
(X,Y )

L0

,
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z =
Z

H0

, p(x, y) =
2P (X,Y )

ρgL0 sin θ
, (u, v, w) = (

U

U0

,
V

U0

,
W

εU0

).

Note that the surface of the substrate is given in terms of the topography function s(x, y)
so that the fluid film lies between z = s and z = h + s. Introducing the above scalings
into the governing equations and neglecting terms O(ε2) yields:

∂2u

∂z2
=

∂p

∂x
− 2, (2.10a)

∂2v

∂z2
=

∂p

∂y
, (2.10b)

∂p

∂z
= −2ε cot θ. (2.10c)

Equations (2.10a,b) are solved subject to the no-slip condition (u, v) = (0, 0) on the
substrate, z = s, and zero tangential stress at the film surface, i.e.

∂u

∂z
=

∂v

∂z
= 0 at z = h+ s. (2.11)

Integrating equations (2.10a,b) twice with respect to z over the film thickness z ∈ [s, h+s]
subject to the above boundary conditions yields

u =

(

∂p

∂x
− 2

)

(z − s)

(

1

2
(z − s)− h

)

, (2.12a)

v =

(

∂p

∂y

)

(z − s)

(

1

2
(z − s)− h

)

. (2.12b)

That mass is conserved throughout the solution domain gives rise to the constraint

∇.Q = 0, (2.13)

where Q =
∫ h+s

s
(u, v)T dz. Integrating equations (2.12a,b) to form Q and substituting

into equation (2.13) yields the following steady-state lubrication equation for h in terms
of the pressure field, p:

0 =
∂

∂x

[

h3

3

(

∂p

∂x
− 2

)]

+
∂

∂y

[

h3

3

(

∂p

∂y

)]

. (2.14)

The pressure field throughout the film is obtained by integrating equation (2.10c) with
respect to z, with the constant of integration (setting the pressure datum to zero) deter-
mined by

− ε3

Ca
∇2(h+ s) on z = h+ s, (2.15)

hence,

p = − ε3

Ca
∇2(h+ s) + 2ε(h+ s− z) cot θ. (2.16)

Note that the z-dependence in equation (2.16) due to the 2εz cot θ term does not have
any influence on the film thickness h since its partial derivative with respect to both x
and y is zero. Accordingly, this term is omitted in what follows.

So far, the choice of length scale L0 has been arbitrary, but choosing it to be equal to
the capillary length, Lc, viz.

L0 = Lc =

(

σH0

3ρg sin θ

)1/3

=
H0

(6Ca)
1
3

, (2.17)



6 P. H. Gaskell, P. K. Jimack, M. Sellier, H. M. Thompson and M. C. T. Wilson

enables the pressure, equation (2.16), to be rewritten as

p = −6∇2(h+ s) + 2
3
√
6N(h+ s), (2.18)

i.e. in terms of the parameter N = Ca1/3 cot θ, which measures the relative importance
of the normal component of gravity (Bertozzi & Brenner 1997). Note that if N ¿ 1 the
normal component of gravity becomes negligible (Troian et al. 1989), and equation (2.18)
becomes parameter-free in the sense that the behaviour of the thin film will depend only
on the topographic features.

Following others (e.g. Stillwagon & Larson 1990; Peurrung & Graves 1993; Kalliadasis
et al. 2000), s(x, y) is defined via arctangent functions, enabling the steepness of the to-
pography sides to be controlled easily. For comparison purposes later it is convenient to
define a coordinate system (x∗, y∗) whose origin is at the centre, (xt, yt), of the topogra-
phy. With (x∗, y∗) = (x− xt, y− yt) such that h∗(x∗, y∗) = [h(x∗, y∗)+ s(x∗, y∗)− 1]/s0,
s(x, y) is given by:

s(x, y) =
s0

b0

(

tan−1

(

x∗ − wt/2

γwt

)

+ tan−1

(−x∗ − wt/2

γwt

))

×
(

tan−1

(

y∗ − lt/2

γwt

)

+ tan−1

(−y∗ − lt/2

γwt

))

, (2.19)

where γ is an adjustable parameter which defines the steepness of the topography, A =
wt/lt is the aspect ratio of the topography, and

b0 = 4 tan−1

(

1

2γ

)

tan−1

(

A

2γ

)

. (2.20)

The following boundary conditions, resulting from the assumption that the flow is fully
developed both upstream and downstream,

h(0, y) = 1,
∂h

∂x
|x=0 = 0,

∂h

∂x
|x=1 =

∂p

∂x
|x=1 = 0, (2.21)

together with the requirement of zero flux at the boundaries in the spanwise direction,

∂p

∂y
|y=0 =

∂p

∂y
|y=1 =

∂h

∂y
|y=0 =

∂h

∂y
|y=1 = 0, (2.22)

effectively close the problem.

3. Method of solution

3.1. Finite element formulation

The finite element (FE) method used to solve equations (2.5) and (2.6) in two dimen-
sions, subject to the given boundary conditions, employs a popular Bubnov-Galerkin
weighted residual formulation that has been applied successfully to a wide variety of
incompressible flow problems. Since it has been described in detail elsewhere, see for ex-
ample Christodoulou, Kistler & Schunk (1997), only a very brief overview is given here.
The free surface of the film is parametrised by a ‘spinal’ algebraic mesh generation algo-
rithm, Kistler & Scriven (1983), and the two-dimensional flow domain is tessellated using
V6/P3 triangular elements (Gaskell et al. 1995; Summers et al. 2003) giving a piecewise
quadratic velocity field and a piecewise linear pressure field. Note also that topographies
in the FE analysis are completely sharp, i.e. corners are perfect right angles, since there is
no need to use the approximating arctangent functions as in equations (2.19) and (2.20).
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The free surface kinematic condition n .u = 0 is used to determine the free surface lo-
cation while the free surface stress conditions enter the FE formulation via a boundary
integral arising in the weak form of equation (2.5) — see Kistler & Scriven (1983) for
further details.

The nonlinear weighted residual equations are solved using Newton iteration coupled
to a Frontal algorithm (Hood 1976) ideally suited to the long, thin nature of the com-
putational domain. Since the film profiles are of primary interest here, the accuracy of
these was used as the main criterion in establishing the minimum density and extent of
the computational mesh. The number of elements in the mesh was systematically dou-
bled until the maximum change in the film profiles on consecutive meshes was less than
0.05% when measured in the way described in §4.1. For each mesh the locations of the
inflow and outflow boundaries were checked to confirm that they had a negligible effect
on the solution. This is particularly important upstream, because the free surface always
features a wave which decays with distance upstream from the topography. Hence the
inflow boundary should be located where the amplitude of the wave is sufficiently small
so that the imposition of h = 1 does not unduly distort the free surface.

For all the parameter values used in the simulations involving full-width topogra-
phies, it was found (by considering a much larger domain) that the amplitude of the
upstream capillary wave reduces to O(10−7) at a distance of 30Lc upstream of the to-
pography. Downstream of the topography the free surface relaxes monotonically to the
fully-developed film thickness such that after a distance of 15Lc the free surface height
is within 10−7 of the asymptotic height. These positions were therefore taken to be suf-
ficient to guarantee the accuracy of the solution of the whole domain. The first two
wavelengths of the capillary wave lie typically within 15 or 20Lc of the topography, and
so this could be considered as a minimum domain size. Note that localised topographies
produce effects which are felt further downstream than in the full-width case, and there-
fore a larger domain size is needed to produce the results in §4.2. In the step-up/-down
and trench problems domain tessellations comprising respectively 5650 and 5900 elements
were utilised; in each case 701 spines were used to parametrise the free surface position.

3.2. Finite difference formulation

Although using a lubrication approximation to model the flow over localised topography
effectively reduces the dimensionality of the problem by one, solution of the resultant
equations still poses a considerable computational challenge due to the stiffness intro-
duced via the surface tension. Accordingly, the recently-derived accurate and robust Full
Approximation Storage (FAS) multigrid approach of Gaskell et al. (2003) is employed
since its fully-implicit nature has already been demonstrated to offer increased efficiency,
particularly when fine grid resolution is essential. In addition, rather than substituting
equations (2.16) or (2.18) for the pressure into equation (2.14) to yield a fourth order
partial differential equation for the film thickness h, these two coupled equations are
retained and solved in their present form since they are simpler to incorporate into the
FAS multigrid solution strategy.

Equations (2.14) and (2.18) are discretised using second order accurate central differ-
ences on a square computational domain so that (x, y) ∈ Ω = (0, 1) × (0, 1). The mesh
is uniformly structured with (2k + 1) nodes in each direction. Unless stated k takes the
value 10, yielding solutions on a 1025 × 1025 mesh containing in excess of one million
grid points. The corresponding coupled algebraic analogues are:

0 =
1

∆2

[

pi+1,j
h3

3
|i+ 1

2
,j + pi−1,j

h3

3
|i− 1

2
,j − pi,j

(

h3

3
|i+ 1

2
,j +

h3

3
|i− 1

2
,j

)
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− 2∆

(

h3

3
|i+ 1

2
,j −

h3

3
|i− 1

2
,j

)

+ pi,j+1

h3

3
|i,j+ 1

2
+

pi,j−1

h3

3
|i,j− 1

2
− pi,j

(

h3

3
|i,j+ 1

2
+

h3

3
|i,j− 1

2

)]

, (3.1)

pi,j +
6

∆2

[

(hi+1,j + si+1,j) + (hi−1,j + si−1,j) + (hi,j+1 + si,j+1) +

(hi,j−1 + si,j−1)− 4(hi,j + si,j)

]

− 2
3
√
6N(hi,j + si,j) = 0 , (3.2)

for each (i, j) in the computational domain where ∆ = 2−k is the spatial increment. The

terms h3

3
|i± 1

2
,j± 1

2
, sometimes referred to as prefactors, result from linear interpolation

between the neighbouring vertices,

h3

3
|i+ 1

2
,j =

1

2

(

h3
i+1,j

3
+

h3
i,j

3

)

, (3.3)

with analogous expressions for the other prefactors.

Boundary conditions (2.21) and (2.22) are eliminated from equations (3.1) and (3.2),
as opposed to introducing ghost nodes at the boundary, since this is found to reduce the
bandwidth of the matrix to be inverted. A computational domain extending over 100
capillary lengths was found to be sufficient to ensure accurate solutions. The resulting
system of nonlinear algebraic equations is solved for hi,j and pi,j using a FAS multigrid
algorithm with V-cycling (Brandt 1977). In brief, Gauss-Seidel relaxation is employed
with a ‘red-black’ ordering of the nodes. At each level, down to the coarsest, a fixed
number of sweeps is applied to a linearised form of the equations in order to update
previous estimates of the solution on that grid. At the coarsest level, the system of
algebraic equations is solved exactly using Newton iteration. A further series of Gauss-
Seidel post-smoothes is then applied on successively finer grids in order to complete the
V-cycle. The reader is directed to the recent comprehensive article by Gaskell et al. (2003)
for a more detailed explanation of the methodology.

The only other feature of importance to note is that the problems of interest here
are steady-state. Obtaining such solutions is a little more demanding than in the case of
transient behaviour where a small fixed number of V-cycles is sufficient to reduce residuals
by a constant factor for successive time steps (Gaskell et al. 2003). Accordingly, the
nonlinearity in the discrete algebraic system is found to be more severe than experienced
in the case of implicit time stepping, and the quality of the initial guess is much poorer,
which in turn means that typically more V-cycles are required. Accordingly, it was found
that a total of about 15 V-cycles is necessary to reduce residuals to within that of the
discretisation error, 10−6, on the prescribed finest 1025×1025 mesh level. However, even
with such a necessary large number of V-cycles the multigrid algorithm proves to be a
robust and efficient scheme, with its rate of convergence independent of the final specified
finest mesh. As a check, the problems considered in §4.1 were also solved using the time
adaptive scheme described in Gaskell et al. (2003) starting from an initial condition of a
flat free surface profile. In all cases these solutions evolved to correspond exactly with their
steady-state counterparts, as shown in figure 3. Unsurprisingly, although the transient
method of solution requires significantly fewer V-cycles per iteration the overall time
required to reach steady-state is significantly more due to controlling the time step in
order to achieve accurate solutions to a specified temporal error tolerance.
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4. Results and discussion

4.1. Flow over full-width spanwise topographies

First, comparisons are made with the theoretical predictions of Mazouchi & Homsy (2001)
who used the boundary element (BE) method to study the Stokes flow of a thin liquid
film over a one-dimensional trench. In fact, the trench was wide enough to ensure that
the flow could be considered as that over a step-down topography followed by flow over
an effectively independent step-up. In this case the substrate was vertical, i.e. θ = 90◦.
Figure 4 compares Mazouchi & Homsy’s computed free surface profile, for Ca = 0.005
and 0.05, with corresponding solutions found using the FE method with Re set to 0. Note
that, due to a different choice of velocity scale, the capillary number used throughout the
present work is one half of that defined by Mazouchi & Homsy (2001). It is clear from
the figure that excellent agreement is achieved between the FE and BE predictions when
Re = 0.

Also shown in the figure are two FE-generated profiles indicating the effect that in-
creasing Re to 10 has on the free-surface shape. Increasing Re increases the velocity of
the fluid travelling down the inclined plane, and this results in a shortening of the wave-
length of the capillary wave propagated upstream from each step face. The first peak
(trough) of each wave is also pushed towards its step face by the increased inertia, and
the amplitude of each wave is noticeably increased. This enlargement of the capillary
ridge provides an increased capillary pressure which helps to decelerate the fluid in the
x direction and deflect the film round the corner of the step. Similar effects have been
observed in slide coating (Christodoulou & Scriven 1989) and also in the flexible-walled
channel flow studied by Heil (2000), where the shape of the flexible wall containing the
flow exhibits a comparable behaviour to that of the free surface in figure 4 in response
to an increase in fluid inertia.

Decré & Baret’s (2003) recent experimental study of thin water films flowing down an
inclined plane with topographies is another valuable source of data to compare numerical
predictions against. Figure 5 presents a comparison of FE and lubrication solutions for
free surface profiles with those found experimentally by Decré & Baret (2003) for the cases
of flow over a small one-dimensional step-down, a step-up and a trench. The Reynolds
number was 2.45 for the steps and 2.84 for the trench. Note that in this and subsequent
comparisons in this section, liquid properties are taken as µ = 0.001 Pa s, ρ = 1000
kgm−3 and σ = 0.07 Nm−1, and the inclination angle is set to θ = 30◦. In all three cases
the FE and lubrication solutions are seen to be practically indistinguishable (see below),
to agree well with experiment and to reproduce accurately the main features of the film
thickness profiles, such as the characteristic free surface trough and capillary ridge just
upstream of the step topographies and the free surface depression characteristic of flow
over the trench.

Since the FE solutions do not have the inherent limitations of those based on lubrica-
tion theory, they can be used to assess the accuracy of the long-wave approximation in
relation to flow over topography. Figures 6 and 7 show contours which quantify the dis-
crepancy between the two types of solution as step height and flow rate are varied in flow
over both step-up and step-down topography. The difference is defined as the maximum
distance between the predicted lubrication film thickness and its Navier-Stokes counter-
part, measured normal to the lubrication profile. This measure is preferred to one based
on a r.m.s. distance since both profiles satisfy the same boundary conditions far upstream
and downstream of the topography so that the latter measure would be unduly influ-
enced by the long asymptotic regions of the domain where the two profiles are practically
indistinguishable. Note that in making the comparisons, the asymptotic film thickness,
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H0, is used as the length scale in both the x and z directions. The contours therefore
give the error between lubrication theory and finite element analysis as a percentage of
H0. For both step-up and step-down topography the position of the maximum difference
between corresponding profiles is near the top of the steeply sloping part of the profile,
as indicated by the arrows in figures 5(a) and (b). The difference in the predictions of
the height (depth) of the capillary ridge (trough) is typically much smaller, roughly 1/4
of the maximum difference. Note that the vertical scales in figures 6 and 7 indicate both
the value of the Reynolds number and corresponding flow rate; Ca therefore also varies
(from 5.4× 10−5 to 1.2× 10−3) as the flow rate increases.

In both cases the contours are as expected. For small step size and flow rate, the error is
very small, but increases substantially with |s0| and Q0 There is, however, an interesting
difference between the two configurations: the contours in the step-down case (figure 7)
are rather more steep than those for the step-up. This indicates that the relative step
size is very much the dominant source of error in lubrication theory modelling of flow
over a downward step; neglecting fluid inertia makes only a small difference, at least for
smaller topographies and flow rates. In the step-up flow, the contours are still quite steep,
but noticeably less so than those in figure 7. Hence inertia effects have a comparatively
larger influence on the lubrication theory error in this case. These results are intriguing
when one observes that for flow over a step-up topography, fluid inertia has only a minor
influence on the extent of the eddy region, while it has a much more pronounced effect
for flow over a step-down — see the streamline plots in figures 6 and 7. Interestingly,
no lubrication solutions beyond |s0| = 0.8 were obtainable for the step-down case using
the steady-state multigrid lubrication solver; equilibrium solutions for |s0| > 0.8 were
determined using the time-dependent variant of the method mentioned in §3.2.

As a final observation for flow over one-dimensional spanwise topographies, figure 8
illustrates the nature of the eddy structure present within a trench for the case Re = 1.5.
When the width : depth aspect ratio of the trench is sufficiently large, two separate disjoint
corner eddies are observed. At a critical aspect ratio of approximately 2.18 they meet
to form a separatrix spanning the entire trench width. Within this is seen the double-
eddy flow structure reported in several cavity flow studies, see for example Kelmanson
& Lonsdale (1996), Gaskell et al. (1997, 1998), or Fawehinmi et al. (2001). At smaller
aspect ratios the structure becomes a single eddy centre, reminiscent of the classical lid-
driven cavity problem (Shankar & Deshpande 2000). Higdon (1985) also reported such
structures in his study of semi-infinite shear flow over a trench, but his critical aspect
ratio (between 3 and 4) for the separation of the corner eddies differs from that found
here mainly due to the finite thickness of the film passing over the trench. Reducing
the depth of the trench relative to the film thickness shifts the critical value towards
Higdon’s.

4.2. Flow over localised topography

The results of the previous section support the consensus that lubrication theory provides
remarkably good solutions to ‘thin film’ problems, even when it is applied to situations
where it is strictly-speaking not valid — such as the flow over steep topographies con-
sidered here. The lubrication formulation is now used to explore free-surface responses
to localised peaks and trenches with reference to Decré & Baret’s (2003) experimental
measurements for the trench cases.

Except where otherwise stated, flows are over a substrate inclined at 30◦ to the hori-
zontal. The liquid parameters are those for water as listed in the previous section, while
the asymptotic film thickness H0 = 100 µm. These parameters yield N = 0.12 and
Lc = 0.78 mm. The small value of N indicates that the normal component of gravity
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will have little effect on the free-surface shape. The topography steepness parameter in
equations (2.19) and (2.20) is set to γ = 0.05, a value below which it is found to have no
discernible effect on the numerical predictions. The Reynolds number for the flow is 2.45
and the topography depth/height is |s0| = 0.25. Figures 6 and 7 therefore suggest that
Navier-Stokes solutions would differ only slightly from the lubrication theory predictions.

Consider the case of flow over a square trench located at (xt, yt) = (30.77, 50) with
|s0| = 0.25 and wt = 1.54. Decré & Baret (2003) have already demonstrated that stream-
wise and spanwise profiles of the free surface produced by this flow agree well with those
predicted by the linear lubrication theory of Hayes et al. (2000). Hence it is not surprising
that the experimental data is also well-matched by the predictions of the present formu-
lation, as demonstrated in figure 9, which compares corresponding streamwise profiles.

A complete three-dimensional visualisation of the free surface is given in figure 10(a),
clearly showing the characteristic ‘horseshoe’-shaped ‘bow wave’ and the deeper depres-
sion over the trench itself, followed by a peak which Decré & Baret (2003) refer to as
the ‘downstream surge’. This latter feature does not have an equivalent in the flow over
one-dimensional topographies, and Decré & Baret (2003) admitted that its cause is not
properly understood. The present authors believe that an explanation is provided by
considering the flow rate into and out of the trench. Since the trench is finite in length
and width, fluid will enter the trench both in the streamwise direction (over the upstream
wall) and in the spanwise direction (over the side walls) due to lateral pressure gradients
resulting from the spanwise curvature of the free surface. Since in a steady flow the fluid
entering the trench must then leave it (over the downstream wall), the downstream surge
simply arises to allow the fluid to exit the trench across a shorter width than that across
which it entered. In the one-dimensional case there is no difference in the widths over
which fluid enters and leaves the trench and therefore no cause for a downstream ridge.

Figure 10(b) gives the view corresponding to flow over an ‘equal-but-opposite’ square
peak topography, where the free surface appears to be a straightforward inversion of that
over the trench. Decré & Baret (2003) did not consider peak-type topographies, but the
plot in figure 10(b) is very similar to figure 3 in Hayes et al. (2000) which gives the free
surface produced in response to a Dirac delta peak topography. Note that the downstream
surge is now replaced by a depression (though this is not visible from the viewpoint in
figure 10b). The above flow-rate argument can explain this feature too: fluid which passes
over the top of the topography ascends the peak in the streamwise direction over the
upstream wall, but is shed off the topography symmetrically by spanwise components
over the side walls, leading to a reduced flow rate per unit width over the middle of the
downstream wall and the consequent reduction in film thickness there.

Figures 10(c) and (d) show contour plots of free-surface height for the two topogra-
phies. The contour values are chosen to be equal in magnitude but opposite in sign, and
show that the patterns produced are indeed very similar, but the surfaces are not quite
mutual inverses. Again, the figures compare well with Decré & Baret’s figure 7 and figure
8 in Hayes et al. (2000) respectively.

The flows can be explored in more quantitative detail by examining the positions of
spanwise local extrema in film thickness calculated by finding where ∂h∗/∂y∗ = 0. Figure
11(a) shows the extrema for the trench and peak flows on the same plot, from which it
is easy to see that the patterns produced are extremely close in shape but that there is
a slight downstream shift between the two. This feature will be considered again later.

Guided by the form of Hayes et al.’s (2000) linear lubrication theory, Decré & Baret
(2003) noted the self-similar behaviour of the film thickness with respect to y/x1/4 far
downstream of the topography. This suggests that the downstream spread of the extrema
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Square trench Square peak

A0 A1 A2 K Curve A0 A1 A2 K

7.0 8.7 15.0 9.50 1 7.3 9.0 14.4 9.78
4.5 5.3 21.4 6.50 2 7.8 6.5 17.3 6.75
2.4 2.3 27.9 3.28 3 3.3 2.6 27.0 3.41

Table 1. Curve fitting parameters for equations (4.1) and (4.2) corresponding to the curves
labelled in figure 11. Note that the square peak parameters are given for comparison only: the
curves are not plotted in figure 11.

could be fitted by a power-law of the form

y∗ = K(x∗)0.25. (4.1)

However, while this expression does indeed describe the behaviour far enough downstream
of the topography, it is of course not valid close to the origin (i.e. the topography) and
can not describe the shape of the bow wave upstream of the topography. An alternative
fitting function takes the form

y = ±A1 cosh
−1

(

x−A2

A0

)

+ yt, (4.2)

where x and y are the unshifted coordinates with origin as shown in figure 1. For the case
of flow over the square trench, figure 11(b) shows the location of the spanwise free surface
extrema together with fitting curves following equation (4.2). The fitting parameters are
given in table 1 and, as can be seen, the curves fit the data extremely well over the entire
solution domain, 0 ≤ x, y ≤ 100. Note that in this figure, curves 1 and 3 correspond to
spanwise local minima and curve 2 to the spanwise maxima of the upstream capillary
ridge (cf figure 10a). The data points to the left of curve 1 in figure 11(a,b) correspond
to very slight ridges and depressions which cannot be resolved in figure 10(a) and are
not considered further.

The two fitting expressions (4.1) and (4.2) are compared in figure 11(c). From approx-
imately 10 capillary lengths downstream of the topography, the two sets of curves are
practically indistinguishable. However, the clear distinction between the plots is that the
inverse function (4.2) describes the positions of the spanwise extrema upstream of the
topography and thus over the entire flow domain.

The function (4.2) provides useful insight into the behaviour of the capillary waves since
the latter are predicted to meet the centreline y = yt = 50 at x = A0 +A2 or, in physical
coordinates, X0 = (A0+A2)Lc. As the topography is centred at (Xt, Yt) = (30.77, 50)Lc,
it follows that the distance, d say — see figure 11(b) — between the point where the
capillary wave intersects the centreline and the topography will be proportional to the
capillary length and is given by d = Lc|30.77 − (A0 + A2)|. This means that waves
upstream of the topography are shifted further upstream when Lc increases while those
downstream of it are shifted further downstream. The former prediction is consistent with
Mazouchi & Homsy’s (2001) finding, for one-dimensional topographies, that as capillary
number decreases (i.e. Lc increases via equation 2.17) the capillary ridge moves further
upstream. Note that expression (4.2) applies equally well to the free-surface extrema in
the flow over a square peak. Though not shown graphically, the fitting parameters for
the peak are also given in table 1 for completeness.

While providing a very good description of wave spread, it should be noted that the
function (4.2) does, however, have the disadvantage of requiring three parameters rather
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θ H0 Ld U0 wt s0 N
(µm) (mm) (mms−1)

60◦ 83.3 0.612 29.5 1.96 0.30 0.04
30◦ 100.0 0.781 24.5 1.54 0.25 0.12
10◦ 142.3 1.249 17.2 0.96 0.18 0.36
5◦ 179.0 1.697 13.7 0.71 0.14 0.66
1◦ 306.0 3.468 8.0 0.35 0.08 2.78

Table 2. Influence of inclination angle on various other parameters. The fluid properties and
the flow rate per unit width are for all angles fixed at the following values: ρ = 1000 kgm−3,
µ = 0.001Pa s, σ = 0.07Nm−1 and Q0 = 1.635× 10−6 m2 s−1.

than one to provide a fit, and of course it does not predict the streamwise decay in
amplitude available from the self-similar asymptotics.

Kalliadasis et al. (2000) demonstrated that in the flow over one-dimensional steps up
and down, increasing the normal component of gravity could reduce or even suppress
entirely the capillary trough/ridge, making the free surface conform much more closely
to the topography. In the present formulation, the parameter controlling the relative
strength of this gravity component is N = Ca1/3 cot θ. From equation (2.9) it can be
seen that N depends on the fluid properties, the flow rate and the inclination angle. It is
therefore rather difficult to isolate the effect of N , since changing it necessarily changes
the asymptotic film thickness and the maximum velocity in the film. The scenario most
easily realised experimentally is to work with a given fluid at a fixed flow rate and to
control N by changing the inclination of the substrate. The values of various parameters
corresponding to selected angles are given in table 2, and the effect of varying N in
this way is shown in figures 12 and 13. Note that since Ld changes with θ, the in-
plane coordinates are rescaled in terms of the fixed topography width. With reference
to figure 1, the new coordinates (with origin at the topography) are given by (x̄, ȳ) =
(X −XT , Y − YT )/WT .

Consistent with Kalliadasis et al. (2000), increasing N (i.e. decreasing θ) reduces and
eventually eliminates the curved upstream capillary ridge. Other surface features are
also dramatically reduced: the depression over the trench is much shallower, yet extends
further upstream from the trench, and the downstream surge is much reduced in height,
though it is still present. When interpreting these results, however, one should bear in
mind that H0 increases as θ decreases (table 2), and the free surface is expected to
become less sensitive to the topography for thicker films.

A consequence of reducing the inclination angle at constant flow rate (or constant H0)
is a decrease in the speed of the fluid in the film. This manifests itself in the shape of
the disturbance created by the topography, as shown by the inset plot in figure 13. The
plot gives the positions of points where ∂h∗/∂ȳ = 0, and again the in-plane coordinates
are scaled with the topography width. The flow is symmetrical about ȳ = 0 but, for the
sake of clarity, only half of each curve is shown. As one would expect, the reduced film
speed leads to a wave pattern which is much more spread out, and the wavelength of the
upstream disturbance increases with decreasing inclination. The downstream surge does
not change its position, but the effect of its presence also spreads further out at smaller
θ.

Returning to the θ = 30◦, N = 0.12 flow, figure 14 demonstrates the effect of increasing
the aspect ratio, A, of the trench by extending its spanwise length. The viewpoint chosen
for these visualisations is on the opposite side of the topography to that in figures 10 and



14 P. H. Gaskell, P. K. Jimack, M. Sellier, H. M. Thompson and M. C. T. Wilson

12, giving a reverse view of the free surface disturbance. When A is increased to 5 (figure
14b), the depth of the depression over the trench is greatly increased and the height
of the curved capillary ridge upstream of the topography is also increased. The central
downstream surge is still clearly present, though it decays in amplitude more slowly than
that following the square trench. Increasing A to 8.33 widens the upstream ridge, and
introduces a bifurcation in the downstream surge such that two smaller surges lie either
side of the centreline of the topography, see figure 14(c). As A increases further, the
free surface appears to become flat in the central region just downstream of the trench;
coupled with the flattening of the top of the upstream ridge (figure 14d), this shows that
the flow near to the centreline x∗ = 0 approximates closely that over a one-dimensional
trench. The above observations are clarified by overlaying the centreline profiles as in
figure 15.

Decré & Baret (2003) showed that their measured profiles for the square trench agreed
well with linear lubrication theory, but tested the linearity of their results further by
comparing the measured profile for the trench of aspect ratio 5 with a linear superposition
of five suitably-shifted square-trench profiles. The result was that the superposition profile
approximated fairly well the measured profile, indicating that nonlinear effects are small.
The same test can be made using numerical solutions, and the result is given in figure
16, which also includes the experimental data for comparison. The plot shows that the
linear superposition of numerical solutions is indeed very close to the direct solution for
the A = 5 trench, except in the bottom of the trench where it over-predicts the depth of
the depression. In contrast, the superposition of the experimental data agrees very well
with the measured profile in terms of the depression depth, but is not so close near the
walls of the trench. Note that while they exhibit a discrepancy in the trough depth, the
full numerical solution and the numerical superposition are both still in good agreement
with the experimental data.

The near-linearity of the results in figure 16 and in Decré & Baret (2003) supports the
observation by those authors that linear superposition of the responses to elementary to-
pographies can reliably construct the response to more complex topographies — at least
for flow conditions similar to those considered here. The accuracy of the linear superposi-
tion is perhaps most rigorously tested by adding together the solutions corresponding to
a pair of equal but opposite topographies, i.e. a trench and a peak, since if the response of
the free surface to topographic features is linear, the resulting surface should be planar.
From the analysis of Stillwagon & Larson (1990), such a linear response is to be expected
in the limits of very small Ca, when the free surface is almost planar, or larger Ca if the
height (depth) of the topography is much smaller than the film thickness (i.e. |s0| ¿ 1).

Figure 17(a) shows the surface constructed by adding together the two surfaces in
figure 10(a) and (b), i.e. the responses to equal but opposite square topographies located
at the same position. Recall that in this case |s0| = 0.25. It has already been noted in the
discussion of the results in figures 10 and 11 that, although these two free surfaces are
very close to being inverses of each other, there are slight differences in features such as
the positions of the spanwise extrema. Hence it is not surprising that the surface in figure
17(a) is not planar. However, the three-dimensional visualisation does not give a true
impression of the scale of the features remaining in the surface; figure 17(b) shows the
streamwise profiles through the centreline for the two topographies together with their
sum. From this it can be seen that although there is still a disturbance in the surface, its
amplitude is only about 7% of that in the original profiles. By way of comparison, figure
17(c) shows the streamwise profiles and their sum when |s0| is reduced to 0.1. In this
case, where the response is expected to be more linear, the variation in the constructed
profile is indeed reduced — to below 2%.
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Finally, an example is given in figure 18 of an attempt to reduce the free surface dis-
turbance caused by a square peak topography by modifying the topography surrounding
the peak. In this case, a simple shallow ditch is created around the peak; the topography
sizes are given in the figure. The streamwise profile along the centreline (figure 18b) shows
that although the composite topography produces a deeper depression in the free surface,
the overall disturbance is smaller (the r.m.s. deviation over the whole domain is 0.62%
for the peak alone and 0.26% for the peak with a ditch). In addition, the film thickness
relaxes more quickly to equilibrium downstream of the ditch. The contour plots (figure
18c,d) also show that the region of maximum disturbance is smaller for the composite
topography, despite its greater extent.

The minimisation of free-surface disturbances is of great interest in the manufacturing
processes mentioned in §1, and the modification of base-layer topographies may offer a
useful alternative to other means of free-surface control such as localised heating (Gram-
lich et al. 2002). The present authors echo Decré & Baret’s (2003) closing remarks that
the inverse problem of determining topographies given a desired free surface shape would
be a useful and interesting future research area.

5. Conclusions

Thin film flow over various one- and two-dimensional topographies has been studied
by means of finite element solutions of the Navier-Stokes equations and a multigrid finite
difference solution technique. In the one-dimensional case, Stokes solutions for the flow
over a wide trench were shown to be in excellent agreement with those of Mazouchi
& Homsy (2001), and Navier-Stokes solutions with Re = 10 revealed that the effect of
increasing Re is to increase the amplitude of the free surface disturbances while slightly
reducing their wavelength.

Navier-Stokes solutions for the one-dimensional topographies and flow conditions con-
sidered by Decré & Baret (2003) showed very good agreement with those authors’ ex-
perimental measurements, as did predictions from lubrication theory. The step-up and
step-down geometries were then used to test the accuracy of the lubrication analysis rel-
ative to Navier-Stokes calculations over a range of step heights and flow rates (and hence
Reynolds numbers). Contours of constant error revealed that even when the step height
is equal to the film thickness and the flow rate is such that Re = 15 (with Ca ≈ 10−3),
the maximum error between the predicted profiles is only about 15%. This lends further
support to the general experience that lubrication theory can make good predictions even
when topographies are steep.

The discussion of three-dimensional flow focused mainly on flow over a square trench,
calculated using lubrication theory. The predicted free surface shapes agree well with the
experiments of Decré & Baret (2003), and particular thought was given to the cause of the
‘downstream surge’ which is not present in the flow over one-dimensional topographies.
A simple explanation for the elevated surface behind the trench is that fluid flows into
the trench across a greater width (i.e. over the upstream and side walls) than that across
which it must exit. The depression in the free surface behind a square peak topography
can be similarly explained. The normal component of gravity was shown to suppress
the upstream free-surface disturbance, as expected from the one-dimensional analysis of
Kalliadasis et al. (2000), but it does not inhibit the downstream surge. This is consistent
with the above explanation for the appearance of the surge. Three-dimensional rear-view
visualisations of the free surface showed how the downstream surge separates into two as
the aspect ratio of the trench is increased and how the flow over the centre of the trench
approaches the one-dimensional case.
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The positions of the spanwise local extrema in film thickness produced by flow past
a square trench and an equal but opposite square peak were plotted as a function of
the in-plane coordinates, and an inverse hyperbolic cosine function was demonstrated
to fit these loci extremely well even upstream of the topography. This gives a complete
description of the spread of the bow wave, but does not capture the rate of decay in
amplitude. The equal square peak and trench were used to test the linearity of the free
surface response to topography by superimposing the individual responses to see if the
surface produced was planar. While not being perfectly planar, there was only a slight
deviation of the order of 7% of the individual disturbances when the topography depth
was a quarter of the film thickness. Reducing the relative depth of the topography to 0.1
resulted in an even smaller deviation of the order of 2%.

An example was also given of a modification to a square peak topography which
substantially reduces the free-surface disturbance caused by it. Such modifications of
essential topographic features may help to minimise troublesome free-surface features at
later stages in manufacturing processes.

The authors are grateful to Philips Electronics, Eindhoven, for sponsoring this work
and to Michel Decré and Jean-Christophe Baret in particular for their keen interest
in the subject matter, and for providing their experimental data in electronic form for
comparison purposes.
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Figure 1. Schematic diagram of a three-dimensional thin film flowing over a substrate inclined at
angle θ to the horizontal, showing the coordinate system and parameters defining the topography.

Figure 2. Schematic diagram of flow over a one-dimensional (spanwise) topography.

Figure 3. Free surface profile for flow over a one-dimensional trench, demonstrating the
progression of the transient solution towards the solution of the steady-state equation.

Figure 4. Comparison of film profiles calculated by the FE method with the boundary element
profiles of Mazouchi & Homsy (2001). The trench has depth 2H0 and width 40H0. Note that
for ease of comparison with Mazouchi & Homsy, their axis scales are used. Hence x and h are
both scaled by H0.

Figure 5. Comparison between numerical predictions and Decré & Baret’s (2003) experimental
free surface profile data for the flow of water over one-dimensional topographies: (a) flow over a
step-up with H0 = 100 µm, |s0| = 0.2, and Re = 2.45; (b) flow over a step-down with H0 = 100
µm, |s0| = 0.2, and Re = 2.45; (c) flow over a trench with H0 = 105 µm, |s0| = 0.19, width 1.2
mm, and Re = 2.84. Legend: —— experimental data of Decré & Baret (2003); – – – lubrication
theory; - · - · - finite elements; · · · topography.

Figure 6. Contours illustrating the maximum error between the lubrication theory and
Navier-Stokes film profiles for a range of step heights and flow rates in flow over a step-up
topography. Example flow structures for |s0| = 1 are presented on the right. The upper picture
corresponds to a flow rate of 10−5 m2 s−1 (H0 = 180 µm), where the lubrication results have an
error of 14%, and the lower to Q0 = 10−7 m2 s−1 (H0 = 40 µm), where the lubrication error is
7%

Figure 7. Contours illustrating the maximum error between the lubrication theory and
Navier-Stokes film profiles for a range of step heights and flow rates in flow over a step-down
topography. Example flow structures for |s0| = 1.0 are presented on the right. The upper picture
corresponds to a flow rate of 10−5 m2 s−1 (H0 = 180 µm), where the lubrication results have
an error of 15–16%; the middle picture has a flow rate of 10−6 m2 s−1 (H0 = 85 µm), and the
lower has Q0 = 10−7 m2 s−1 (H0 = 40 µm), for which the lubrication error is 10–11%.

Figure 8. Structures seen in flow over a trench at Re=1.5. The trench depth is equal to the
asymptotic thickness of the film passing over it. The width : height aspect ratio is (a) 1.6 : 1, (b)
2 : 1, and (c) 2.2 : 1.

Figure 9. Comparison of numerical (full line) and experimental (dashed line) streamwise free
surface profile at different spanwise locations: (a) y∗ = 0; (b) y∗ = Lc/2; (c) y

∗ = Lc; (d)
y∗ = 3Lc/2; (e) y

∗ = 2Lc; (f ) y
∗ = 5Lc/2. The trench is square, and in this cross-section lies in

the region −0.77 ≤ x∗ ≤ 0.77.

Figure 10. Flow of a thin water film over square topographies with w = 1.54, A = 1, and
|s0| = 0.25. In the three-dimensional views, the flow is from bottom-left to top-right: (a) trench;
(b) peak. In the contour plots, flow is from left to right and the contours show free surface
height. Contour values are chosen to be equal in magnitude but opposite in sign: (c) trench; (d)
peak.
The crossed dashed lines indicate the centre of the topography and the arrow indicates the
direction of flow.

Figure 11. (a) Positions of extrema in film thickness for the flow past the square trench (◦)
and square peak (+) of figure 10; (b) extrema for the trench case fitted using equation (4.2)
with constants given in table 1; (c) comparison of curves fitted using equation (4.1), shown as
solid lines, and equation (4.2), shown as dashed lines. Fitting constants are given in table 1.
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Figure 12. Close-up three-dimensional cut-away views illustrating the effect of inclination angle
on the free surface generated in flow over the square trench of figure 10. (a) θ = 60◦ (N = 0.04),
(b) θ = 10◦ (N = 0.36), (c) θ = 5◦ (N = 0.66), (d) θ = 1◦ (N = 2.78). Note that since Ld

depends on θ, the in-plane coordinates are instead scaled by the (constant) topography width
(see text) while h∗ gives the deviation of the free surface from uniformity as a fraction of the
topography depth. The topography is centred at (0,0), and the direction of flow is given by the
arrow in each plot. The surface is symmetrical about ȳ = 0. See table 2 for the effect of θ on
other parameters.

Figure 13. The effect of θ on the amplitude and spread of the disturbance created by the square
trench of figure 10. As in figure 12, the in-plane coordinates are scaled with the topography width
rather than Ld since the latter is dependent on θ. The main plot shows streamwise profiles
taken along ȳ = 0, with the topography indicated by the thick solid line at the bottom — note,
however, that the height of the topography is not shown at its true value: it in fact lies at
h∗ = −1/s0. The inset graph shows the positions of local extrema in film thickness, i.e. points
at which ∂h∗/∂ȳ = 0, and the small square at (0,0) indicates the position and extent of the
topography. The same legend applies to both the main and inset graphs. The numbers 1, 2, 3
label corresponding extrema for each angle — see also figure 11(b,c).

Figure 14. Three-dimensional rear-view of the free surface generated by flow (from top-right to
bottom-left) over trenches, showing the effect of trench aspect ratio on the downstream surge.
(a) A = 1; (b) A = 5; (c) A = 8.33; (d) A = 15.

Figure 15. Effect of topography aspect ratio on (a) streamwise free surface profiles y∗ = 0,
and (b) spanwise free surface profiles along x = 0. For comparison, the profiles for flow over the
corresponding one-dimensional spanwise trench are also given.

Figure 16. Streamwise free surface profiles for a spanwise trench of aspect ratio 5: comparison
between the full numerical solution and a linear superposition of five suitably-shifted solutions
for flow over a square trench. Also shown are the direct experimental measurements and corre-
sponding superposition of square-trench measurements from Decré & Baret (2003).

Figure 17. Superposition of the free surfaces generated by flows over equal but opposite square
topographies with w = 1.54. (a) Three-dimensional view of the constructed surface when
|s0| = 0.25; (b) streamwise free surface profiles along y∗ = 0 compared against those of the
individual flows with |s0| = 0.25; (c) same plot with |s0| = 0.1.

Figure 18. Reducing the free surface disturbance caused by a square peak by surrounding the
peak by a shallow ditch. (a) the geometry; (b) streamwise profile along y∗ = 0 for the square
peak alone (solid line) and the composite topography (dashed line); (c) contours of free surface
height generated by the peak alone; (d) corresponding contours for the composite topography.
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Figure 4. Comparison of film profiles calculated by the FE method with the boundary element
profiles of Mazouchi & Homsy (2001). The trench has depth 2H0 and width 40H0. Note that
for ease of comparison with Mazouchi & Homsy, their axis scales are used. Hence x and h are
both scaled by H0.



Gravity-driven flow over topographies 23

-30 -20 -10 0 10 20

x*

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

h*

-30 -20 -10 0 10 20

x*

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

h*

-20 -10 0 10 20

x*

-0.4

-0.2

0.0

h*

(a) (b)

(c)

Figure 5. Comparison between numerical predictions and Decré & Baret’s (2003) experimental
free surface profile data for the flow of water over one-dimensional topographies: (a) flow over a
step up with H0 = 100 µm, |s0| = 0.2, and Re = 2.45; (b) flow over a step down with H0 = 100
µm, |s0| = 0.2, and Re = 2.45; (c) flow over a trench with H0 = 105 µm, |s0| = 0.19, width 1.2
mm, and Re = 2.84. Legend: —— experimental data of Decré & Baret (2003); – – – lubrication
theory; - · - · - finite elements; · · · topography.
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Figure 6. Contours illustrating the maximum error between the lubrication theory and
Navier-Stokes film profiles for a range of step heights and flow rates in flow over a step-up
topography. Example flow structures for |s0| = 1.0 are presented on the right. The upper pic-
ture corresponds to a flow rate of 10−5 m2 s−1 (H0 = 180 µm), where the lubrication results
have an error of 14%, and the lower to Q0 = 10−7 m2 s−1 (H0 = 40 µm), where the lubrication
error is 7%.
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Figure 7. Contours illustrating the maximum error between the lubrication theory and
Navier-Stokes film profiles for a range of step heights and flow rates in flow over a step-down
topography. Example flow structures for |s0| = 1.0 are presented on the right. The upper picture
corresponds to a flow rate of 10−5 m2 s−1 (H0 = 180 µm), where the lubrication results have
an error of 15–16%; the middle picture has a flow rate of 10−6 m2 s−1 (H0 = 85 µm), and the
lower has Q0 = 10−7 m2 s−1 (H0 = 40 µm), for which the lubrication error is 10–11%.

(a) (b) (c)

Figure 8. Structures seen in flow over a trench at Re=1.5. The trench depth is equal to the
asymptotic thickness of the film passing over it. The width : height aspect ratio is (a) 1.6 : 1, (b)
2 : 1, and (c) 2.2 : 1.
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Figure 9. Comparison of numerical (full line) and experimental (dashed line) streamwise free
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y∗ = 3Lc/2; (e) y

∗ = 2Lc; (f ) y
∗ = 5Lc/2. The trench is square, and in this cross-section lies in

the region −0.77 ≤ x∗ ≤ 0.77.
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Figure 10. Flow of a thin water film over square topographies with w = 1.54, A = 1, |s0| = 0.25
and Re = 2.45. In the three-dimensional views, the flow is from bottom-left to top-right: (a)
trench; (b) peak. In the contour plots, flow is from left to right and the contours show free
surface height. Contour values are chosen to be equal in magnitude but opposite in sign: (c)
trench; (d) peak. The crossed dashed lines indicate the centre of the topography and the arrow
indicates the direction of flow.
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Figure 11. (a) Positions of extrema in film thickness for the flow past the square trench (◦)
and square peak (+) of figure 10; (b) extrema for the trench case fitted using equation (4.2)
with constants given in table 1; (c) comparison of curves fitted using equation (4.1), shown as
solid lines, and equation (4.2), shown as dashed lines. Fitting constants are given in table 1.



Gravity-driven flow over topographies 29

0.0

-0.1

-0.2

-0.3

10

0 -10

0

10

20

ȳ
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Figure 12. Close-up three-dimensional cut-away views illustrating the effect of inclination angle
on the free surface generated in flow over the square trench of figure 10. (a) θ = 60◦ (N = 0.04),
(b) θ = 10◦ (N = 0.36), (c) θ = 5◦ (N = 0.66), (d) θ = 1◦ (N = 2.78). Note that since Ld

depends on θ, the in-plane coordinates are instead scaled by the (constant) topography width
(see text) while h∗ gives the deviation of the free surface from uniformity as a fraction of the
topography depth. The topography is centred at (0,0), and the direction of flow is given by the
arrow in each plot. The surface is symmetrical about ȳ = 0. See table 2 for the effect of θ on
other parameters.
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Figure 13. The effect of θ on the amplitude and spread of the disturbance created by the square
trench of figure 10. As in figure 12, the in-plane coordinates are scaled with the topography width
rather than Ld since the latter is dependent on θ. The main plot shows streamwise profiles
taken along ȳ = 0, with the topography indicated by the thick solid line at the bottom — note,
however, that the height of the topography is not shown at its true value: it in fact lies at
h∗ = −1/s0. The inset graph shows the positions of local extrema in film thickness, i.e. points
at which ∂h∗/∂ȳ = 0, and the small square at (0,0) indicates the position and extent of the
topography. The same legend applies to both the main and inset graphs. The numbers 1, 2, 3
label corresponding extrema for each angle — see also figure 11(b,c).
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Figure 14. Three-dimensional rear-view of the free surface generated by flow (from top-right to
bottom-left) over trenches, showing the effect of trench aspect ratio on the downstream surge.
(a) A = 1; (b) A = 5; (c) A = 8.33; (d) A = 15.
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Figure 15. Effect of topography aspect ratio on (a) streamwise free surface profiles y∗ = 0,
and (b) spanwise free surface profiles along x = 0. For comparison, the profiles for flow over the
corresponding one-dimensional spanwise trench are also given.
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Figure 16. Streamwise free surface profiles for a spanwise trench of aspect ratio 5: comparison
between the full numerical solution and a linear superposition of five suitably-shifted solutions
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sponding superposition of square-trench measurements from Decré & Baret (2003).
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Figure 17. Superposition of the free surfaces generated by flows over equal but opposite square
topographies with w = 1.54. (a) Three-dimensional view of the constructed surface when
|s0| = 0.25; (b) streamwise free surface profiles along y∗ = 0 compared against those of the
individual flows with |s0| = 0.25; (c) same plot with |s0| = 0.1.
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Figure 18. Reducing the free surface disturbance caused by a square peak by surrounding the
peak by a shallow ditch. (a) the geometry; (b) streamwise profile along y∗ = 0 for the square
peak alone (solid line) and the composite topography (dashed line); (c) contours of free surface
height generated by the peak alone; (d) corresponding contours for the composite topography.


