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Improving space-time code performance in slow
fading channels using reconfigurable antennas
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Abstract— Space-time block codes typically only span a small
number of time slots. However, error control coding spanning
hundreds or thousands of symbol periods is often used with
space-time coding. In this case, slow fading channels significantly
degrade performance. In this letter, we show that performance
can be significantly improved in slow fading conditions by using
reconfigurable antennas. We propose switching the transmit
antenna states during transmission so that the error control
code experiences several different channel conditions over the
transmission period. Hence, it can achieve higher diversity and
the superior performance expected of a faster fading channel due
to reconfigurable antenna state switching. If we also allow the
receiver to select the reconfigurable receive antenna states based
on channel energy, then an antenna state selection gain is also
achieved.

I. INTRODUCTION

Reconfigurable antennas are able to change the manner in
which they radiate, by altering properties such as frequency,
polarization and radiation pattern [2], producing different
radiation states. Changing the radiation state also changes
the channel characteristics experienced in the communication
system [2]. In [2], it was shown that reconfigurable antennas
can be used to improve the performance of orthogonal space-
time block coded transmission over quasi-static flat Rayleigh
fading channels. Then, in [1], the reconfigurable antenna states
were used as a dimension in designing space-time-state block
coded multiple-input multiple-output (MIMO) systems.

Space-time block codes typically span only a small number
of time slots. They are usually simulated assuming quasi-static
channel models, which are constant over the length of the
space-time code and vary independently between codewords.
However, error control codes spanning hundreds or thousands
of symbol periods are often used in conjunction with space-
time coding. Now, the quasi-static channel spans the length of
the error control code and corresponds to much slower fad-
ing. Slow fading channels significantly degrade performance
[6]. Alternatively, the channel could be modeled to change
independently for every space time codeword, but this implies
the use of a large channel interleaver employed over multiple
error control codewords, which is unattractive from a practical
viewpoint.

In this letter, we show that the degradation in performance
caused by slow fading can be significantly reduced by using
reconfigurable antennas. We propose changing the antenna
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states (antenna state switching) during transmission in order
to improve the performance of long space-time codes or
MIMO transmissions using long outer error control codes.
This allows the code to experience several different channel
conditions over the transmission period. Note that antenna
state switching is used in a predefined manner to alter the
channel rather than to increase SNR. As a result, the system
achieves higher diversity and the performance expected in
much faster fading conditions. In addition, we investigate how
selecting the antenna state based on the channel energy can
provide signal to noise ratio (SNR) gains. From a practical
viewpoint, we will show that the combination of antenna state
switching at the transmitter and antenna state selection at the
receiver is attractive.

This letter is organized as follows. Section II describes
the space-time system considered. Section III proposes both
antenna state selection and antenna state switching schemes for
space-time coded systems. Simulation results are also included
in Section III. Finally, conclusions are drawn in Section IV.

II. SYSTEM DESCRIPTION

We consider space-time systems with Nt transmit antennas
and Nr receive antennas. The (1×Nr) received vector at time
t can be written as

rt = stHt + nt, (1)

where st is the (1 × Nt) transmitted vector at time t and
nt is the (1 × Nr) additive white Gaussian noise (AWGN)
vector at time t. The complex Nt × Nr channel matrix at
time t is denoted Ht, where the element representing the
subchannel from the ith transmit antenna to the jth receive
antenna is denoted ht,i,j . We assume that all transmit to
receive antenna sub-channels are independent and that we have
ideal channel state information (CSI) at the receiver, but none
at the transmitter. There is no feedback path from receiver to
transmitter unless otherwise stated.

Two flat Rayleigh fading channel models are used in this
letter. We consider a temporally correlated fading channel,
where the speed of the fading is defined by the normalized fade
rate, fDT , fD is the Doppler frequency and T is the symbol
period. A 3rd order Butterworth filter with cutoff frequency fD
is used to generate the fading gains, ht,i,j , for each subchannel.
We also consider an independent or ideally interleaved flat
Rayleigh fading channel. In this case, the fading channel
gains change independently in each time slot and each ht,i,j

is a complex Gaussian random variable with zero mean and
unit variance. This approximates very fast fading or a system
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with sufficient interleaving to result in temporally uncorrelated
received symbols.

For simplicity, we consider a direct transmission scheme
[5], [6] where a low density parity check (LDPC) code is
modulated onto 16-QAM and the resulting signal is multi-
plexed across Nt transmit antennas. We denote its code rate as
Recc. LDPC codes were chosen due to their good performance
and the availability of a simple iterative decoding algorithm
(belief propagation). However, many other classes of codes
could be used. The LDPC codes used here are designed using
the near optimal degree sequences for the AWGN channel
based on techniques in [7]. Specifically, the codes are designed
for maximum girth using a progressive edge growth algorithm
[4], which ensures an upper triangular parity check matrix for
linear time encoding. The decoder uses belief propagation [3]
operating in the log-domain [8]. The maximum number of
decoding iterations for the LDPC code is 100, although the
LDPC decoder will terminate early if a codeword is found. A
bit interleaver is used after the LDPC encoder.

Note that other space-time coded or MIMO systems could
be used with the proposed reconfigurable approach. Gains
are expected from systems with coding (error control and/
or space-time) spanning hundreds or thousands of symbol
periods. For example, space-time trellis codes transmitted over
slow fading channels should benefit from our approach.

Assuming M -ary signalling, the 1-D noise variance is
defined as [6]

σ2
n =

NtEs

2 log2(M)Recc100.1SNR
, (2)

where SNR is the average signal to noise ratio (Eb/N0) in
decibels (dB), Es is the average energy of a constellation point,
Eb is the average energy per data bit and N0 is the 2-sided
noise spectral density. The rate of the space-time code is then
defined as Rstc = ReccNt, giving the number of 2-D data
constellation points transmitted per time slot.

III. RECONFIGURABLE ANTENNAS

In this section, we investigate simple design guidelines
for using reconfigurable antennas with space-time systems
that have coded blocks spanning hundreds or thousands of
symbol periods. We assume St radiation states per transmit
antenna and Sr radiation states per receive antenna. We assume
uncorrelated radiation states and antennas. We will look at
both switching antenna radiation states and selecting antenna
radiation states.

The simulation results presented use a binary (16384, 8192)
LDPC code Gray mapped to 16-QAM across Nt = 4 transmit
antennas and L = 1024 time slots. We consider a critically
loaded system with Nr = 4 receive antennas. This space-time
LDPC (ST-LDPC) code uses the soft output list sphere decoder
of [5] with a list size of 512. Performance of the ST-LDPC
code degrades as the fade rate decreases [6].

A. Antenna State Switching

We use the term antenna state switching to mean that
some or all antenna radiation states are switched in a pre-
defined pattern without the need for any channel information.

Fig. 1. Channel matrix changes (shaded squares) from antenna switching
when Nt = Nr = 4. In the top example we switch states for transmit
antennas (rows) 1 and 3, and for receive antennas (columns) 2 and 3. As can
be seen, there are still 4 matrix elements that are highly correlated with the
corresponding previous channel matrix elements due to slow fading. If instead
we switch the states of all transmit antennas or all receive antennas (bottom
figure), then the whole channel matrix has changed independently from time
t to t+ 1.

Switching could occur adaptively, when certain conditions are
detected, but here we will use fixed switching times and a fixed
pattern of states to switch between. In looking at antenna state
switching, we begin by looking at how often we should switch
antenna states and the gains possible.

In Fig. 1 we show the elements of the channel matrix that
change when different antennas switch states (changes are
denoted by shaded squares). If the state at transmit antenna i or
receive antenna j is not switched and fading is slow, then ht,i,j

and ht+1,i,j will be highly correlated. All values in Ht change
if all transmit or all receive antenna states are changed at the
same time as shown in Fig. 1. Therefore, this channel matrix
will be independent from the previous one due to our channel
assumptions. Since we assume uncorrelated antenna states and
antennas, there are StSr independent channel matrices that can
be generated from the original Ht by changing all transmit
(row) or receive (column) antenna states. The total number
of possible channel matrices is P = SNt

t SNr
r , labeled Ht(i),

i = 1, 2, · · · , P .
Let L denote the number of symbol periods spanned by

the error control code. Then, we can use a new independent
channel matrix every

Tcmax = L/(StSr) (3)

symbol periods. In [9], it was shown that symbols separated
by β symbol periods may be regarded as uncorrelated on SISO
fading channels when

β >
0.3

fDT
. (4)

This was used in [9] to choose the block interleaver length.
In Fig. 2, we can see the bit error rate (BER) performance

as it changes with fDT for a ST-LDPC code using single
state antennas, i.e. St = Sr = 1. As seen in [9], performance
improves with increased fade rate until approximately fDT =
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Fig. 2. BER versus fDT curves for a Rstc = 2 ST-LDPC code using
traditional antennas (St = Sr = 1) at Eb/N0 = 8, · · · , 10dB. Each antenna
transmits points from 16-QAM.

0.3. This validates the use of (4) in our MIMO reconfigurable
antenna system design.

Say we are experiencing a fade rate fDT (1), but we want
the performance of fade rate fDT (2) > fDT (1). Here, we
need

Tcmax <
0.3

fDT (2)
, (5)

which will give us a new channel every Tcmax symbol periods.
Therefore, based on substituting (3) into (5), we propose
choosing the values of St and Sr to satisfy

StSr >
fDT (2)L

0.3
. (6)

In Fig. 3, we look at the effective fade rate, fDT (2),
achieved by changing the channel matrix independently every
Tc symbol periods. Using StSr = 4 or StSr = 16 we can form
an independent channel matrix every Tc = L/(StSr) = 256
or Tc = 64 symbol periods, respectively, using antenna state
switching every Tc symbol periods. We show the performance
for fDT = 0.0001 with the channel matrix changed inde-
pendently every Tc = 1, 64 or 256 symbol periods. For
comparison purposes, the performance of a ST-LDPC code
using single state antennas St = Sr = 1 is shown for
various normalized fade rates, fDT . We observe that the
fDT = 0.0001 simulations with Tc = 256 (and StSr = 4)
and Tc = 64 (and StSr = 16) provide performance results
close to those for St = Sr = 1 with fDT = 0.001 and
fDT = 0.005, respectively. Therefore, although not precise,
(5) provides a rough estimate of the achievable effective fade
rate, fDT (2), and hence the diversity gain for a given value
of Tc. In addition, (6) estimates the required value of StSr.

So, we have seen that switching reconfigurable antenna
states every Tc symbol periods to provide independent chan-
nels can provide diversity gains, also called antenna state
switching gains, and hence the performance expected of a
higher fade rate.
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Fig. 3. BER of a Rstc = 2 ST-LDPC code using traditional antennas
(St = Sr = 1) versus performance using independent (“indep”) channel
matrices every Tc = 1, 64 or 256 symbol periods. Each antenna transmits
points from 16-QAM. The “indep” simulations use fDT = 0.0001.

5 6 7 8 9 10 11 12
10

−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R

 

 
indep T

c
=256

indep T
c
=64

f
D

T=0.0001

H256ind
H64ind
sw24tx64
swHtx64
sw24_64
H64

Fig. 4. BER of a Rstc = 2 ST-LDPC code using various antenna approaches.
Each antenna transmits points from 16-QAM. We use fDT = 0.0001.

B. Antenna State Selection

Now we consider selecting the antenna state rather than
switching it at predefined times. This provides a more adaptive
approach and allows us to achieve significant SNR gains. To
this end, some example selection schemes are presented. In
these examples, we assume fDT = 0.0001 and St = Sr = 2
giving StSr = 4 independent channel matrices and a large
number of correlated channel matrices. For comparison pur-
poses, we include the transmit antenna state switching scheme
of section III.A, which switches to an independent channel
every Tc = 256 symbol periods, denoted“indep Tc = 256” in
Fig. 4. The original fDT = 0.0001 curve is also shown in
Fig. 4.

In order to explore the possible SNR gain, also called
antenna state selection gain, we consider selecting the antenna
states at both the transmitter and receiver. We select the
transmit and receive antenna states every Tc = 64 symbol
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periods1 according to the channel matrix energy at the start
of each block of Tc symbol periods and keep the choice fixed
over the block. Specifically, we choose the channel matrix with
index2 [2]

pmax = argmax
p

Nt∑
i=1

Nr∑
j=1

|ht,i,j(p)|2, (7)

where t is the symbol period index at the start of the block.
Note that this requires a feedback channel from receiver to
transmitter. This gives the “H64” result in Fig. 4. Although, an
SNR gain is achieved, this is at the cost of diversity. This loss
in diversity is due to the channel varying sufficiently slowly
so that a new value of pmax and hence a new channel matrix
is not chosen for every block of Tc = 64 symbol periods.

Now we wish to achieve the diversity offered by the inde-
pendent channels (seen using antenna state switching) while
achieving the SNR gain possible by selecting the best antenna
states using (7). To this end, we cycle the transmit antenna
states through the SNt

t = 16 possible state combinations over
the codeword duration, resulting in a change every Tc = 64
symbol periods. This also means that no receiver to transmitter
feedback path is required as the transmit antenna state switch-
ing is pre-defined. At the receiver, the receive antenna state
(and hence channel matrix) is chosen every Tc = 64 symbol
periods using (7). This gives the “swHtx64” result in Fig. 4. As
can be seen, the diversity is similar to “indep Tc = 256”, while
achieving approximately 1.75dB of SNR gain at 2× 10−4.

In [1], the increase in average receive SNR, from using an-
tenna state selection instead of switching, called the selection
gain, was given by

Selection gain =
E
[
|H(pmax)|2

]
P E

[
|H(1)|4∑P

p=1 |H(p)|2

] ≥ 1, (8)

where E[·] denotes the expected value. Using simulation and
(8) we found the selection gain for St = Sr = 2, Nt = Nr = 4
and P = 256 was approximately 1.5 (or 1.76dB) around a
BER of 10−4. This is close to the SNR gain of approximately
1.75dB found in Fig. 4 when comparing the “swHtx64” and
“indep Tc=256” results at a BER of approximately 2× 10−4.
Therefore, (8) also provides a good estimate of the selection
gain in the coded case considered here, as would be expected.

Slight diversity gains beyond those shown by “indep Tc =
256” can be achieved by using channel matrices which differ in
two rows and two columns in addition to those which differ
in all 4 rows/ columns. If we use all 16 of such matrices,
one every Tc = 64 symbol periods, then we obtain the
“sw24 64” result in Fig. 4. A slight diversity gain is achieved,
but as there is no freedom in selecting antenna states, we
do not realize the antenna selection SNR gains seen when
using “swHtx64”. If instead we use only the antenna state
combinations at the transmitter to ensure 2 or 4 rows of H
change, but allow the receive antenna states to be selected
using (7), then “sw24tx64” in Fig. 4 is obtained. It achieves
similar diversity to “sw24 64”, but provides 0.88dB SNR gain

1Tc = 64 is chosen for comparison purposes.
2See [1], [2] for more information on antenna selection.

at 2×10−4 BER compared to “sw24 64”. Initially “sw24tx64”
has worse performance than “swHtx64”, but by 2×10−4 they
have similar performance.

The antenna switching gain, assuming Tc = 64, is bounded
by what could be achieved if the channel matrix changed
independently every Tc = 64 symbol periods, “indep Tc =
64” in Fig. 4. The antenna selection gain is bounded by
what could be achieved if all P channel matrices changed
independently every 256 symbol periods and we selected H
every Tc = 64 symbol periods using (7), called “H256ind” in
Fig. 4. For completeness, we also show the result assuming
independent channels are generated every 64 symbol periods,
called “H64ind”. None of these very loose lower bounds are
realizable as the actual set of channels lack the independence
assumed in these bounding simulations, but they are useful for
checking the diversity gains achieved.

IV. CONCLUSION

In this letter, we consider MIMO transmissions using space-
time codes or error control codes spanning hundreds or
thousands of symbol periods. We show that reconfigurable
antennas can be used to recover diversity losses due to slow
fading through antenna state switching. This makes the codes
effective over a much wider range of fade rates even for
low complexity (and no feedback) switching schemes. In
addition, reconfigurable antennas are shown to provide SNR
gains through antenna state selection. By using antenna state
switching at the transmitter and antenna state selection at the
receiver (e.g. “swHtx64” and “sw24tx64”) we keep complexity
feasible, avoid having a feedback path and achieve excellent
diversity and SNR gains.
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