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ABSTRACT 

For a job shop, there has been very little research 

done on the accurate prediction of lead times, despite of 

the importance of and the advantages to be gained from the 

ability to predict lead times accurately. 

In job shop scheduling using integer programming 

method, etc., to produce fixed schedules, the lead time 

estimates can be obtained directly from the schedules. 

But none of these methods is of any appreciable 

use to industry. 

Heuristic job shop scheduling, on the other hand, 

has been implemented and performs satisfactorily. 

However, the means of predicting the lead times has 

to be formulated separate 

This work investigates existing methods of predicting 

lead times, for a job shop employing heuristic scheduling. 

It evaluates their stability, system response rates, 

and their accuracy under steady state conditions. 

Before a method can be implemented for a real life 

job shop, it must be tested under dynamic conditions 

extensively, and found to be stable. 



The accuracy of the lead time predicted under such 

condition, must also be acceptable. 

Hence, the method with the best accuracy from the 

evaluation was subjected to such dynamic tests. 

The results of the tests showed that this method 

was stable under all the dynamic conditions tested, and 

predicted lead time with very good accuracy. 

A new version of this method is formulated. 

Testing under similar steady state and dynamic 

conditions, 

version. 

showed that it was superior to the original 

2. 
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CHAPTER 1 

INTRODUCTION 

The success of a manufacturer depends on his ability 

to produce high quality goods at a competitive ce, as well 

as his ability to keep up with delivery promises. 

Not only are customers !!becoming increas particular 

about the capability of contracting firms to meet their 

promised de 1 dates" , "in some cases, a reliable guarantee 

of delivery can win an order for a supplier in the face of 

competition from lower-priced competitors, even where these 

2 can demonstrate equal technical competencell • 

Lateness in the completion of goods not only causes 

irreparable damage to the customer goodwill, it also results 

in unwelcome additions to fixed manufacturing expenses, with 

space, plant and men committed beyond the economic timespan. 

Yet manufacturers are far less successful in delivering 

the goods consistently on time, although they may be very 

effective in order taking3 . 

The situ.ation in batch production of the job nature 

is the worst, due to the inherent complexity aris from the 

,vide variety of product mix and material. 

The failure to meet due dates may be caused by the 

unexpected breakdown of machines or the delay of raw material 

from suppliers. But more often, it is caused by the lack 

of a sound basis on which to predict the lead times accurately. 
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Lead time is defined as the time elapsed between placing 

an order and taking delivery of the goods. 

In batch production, this is very obvious. Some firms 

estimate lead times by "intuition" • others estimate the lead 

time of a part as the total operation time multiplied by a 

constant. still others allocate a week towards lead time 

for each operation. The last two methods are invariant 

with respect to the state of congestion in the machine shop, 

and are optimistic when the load in the shop is light. 

The problem is: how can lead times be predicted 

accurately, in a job shop in particular? 

There has been very little research done on lead time 

prediction. 

In job shop scheduling using integer programming 

method, branch and bound method or network method, the 

information on lead times can be obtained directly from the 

schedules produced. But none of these methods can optimise 

efficiently large-sized problems, and the reported progress 

is not sufficient to be of any appreciable use to industry4. 

In heuristic job shop scheduling, where a priority rule 

is used to select, from a queue, a batch to be loaded onto 

the corresponding machine, no schedules are produced. Hence 

a means of predicting lead time has to be formulated. 

Unlike the integer programming method, the branch and bound 

method or the network method, the heuristic scheduling system 

is quite feasible for implementation. 

The EI Segundo Division of Hughes Aircraft Company, 

a firm who had a heuristic scheduling system installed in its 
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job shop reported a significant reduction in work-in-progress 

inventory and the number of orders late, and a significant 

increase in manpower and machine utilisation5 • 

In view of the success achieved by the heuristic 

scheduling system, this work proposes to investigate the 

prediction of lead times for a job shop employing such a 

scheduling system. 

Eilon and HOdgson6 suggested a method of "quoting more 

realistic lead time", in a paper entitled "Job Shop Scheduling 

With Due Dates", 1967. But their investigation dealt with 

a machine shop with only two identical machines. The method 

derived has very limited application. 

At Nottingham University, McCallion, Horsnell, Davies 

and Brittain7 ,8,9 investigated a few methods of lead time 

prediction, for a job shop with heuristic scheduling. The 

methods involved "learning", achieved through the use of 

exponential smoothing. Some degree of success was attained. 

The research work presented here, is a continuation of 

the investigation at Nottingham University. It examined the 

work done at Nottingham University, and attempted to find 

better means of predicting job lead times for a job shop 

with heuristic scheduling. 



CHAPTER 2 

LITERATURE SURVEY 

A survey of the current literature sho\vs that no 

published work has done much research on the lead time 

prediction for a job shop with heuristic scheduling. 

Eilon and Hodgson (1967)~ in their investigation into 

the performance of priority rules in scheduling with due 

dates, suggested hmv lead times could be determined more 

realistically. 

They used a job shop consistin~ of two identical machines 

operating in parallel. Each job required one operation only. 

The lead time of a job was assigned as the process time 

multiplied by a constant K. For a particular loading, the 

optimum value, K , of K was one that gave zero as the mean 
o 

of the lImissed due date distribution". 

The missed due date distribution is a distribution of 

the amount of time a job is late or with respect to 

the ass due date. Hence it included jobs which were 

finished late, as well as those early. 

For a particular loading (i.e. average utilisation) of 

the job shop and a priority rule used, a full scale simulation 

of the job shop was made for each value of K. 

The means of the missed due date distributions obtained 

were plotted against the K values to K , by interpolation. 
o 
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The model used 'vas far too simple for the average job 

shop. Consequently, the result obtained, with re to 

lead time prediction, is of limited use. 

Davies (1969)7, in his Ph.D. thesis, invest 

methods of lead time prediction: 

(a) The adaptive lead time method and 

(b) The adaptive queueing time method. 

(a) The Adaptive Lead Time Method 

ed two 

This method was based on the follo"wing reasoning: 

If a human scheduler loads a part onto a machine shop 

and it emerges either grossly late or gros , he will 

alter the lead time accordingly. 

The method of adjusting the lead times could be 

formalised and built into a scheduling system. 

For this, he used the exponential smoothing prediction 

formula: 

new estimated lead time = (1-a)x old estimated lead time 

+ a x actual manufacturing time 

where a is the exponential constant, and 0 C( 1 

This method ,vauld automatically adjust the lead times 

to the best value consistent with the machine shop utilisation. 



Lead time of a part may be defined as the sum of the 

service times plus the sum of the queueing times. 

the service time distribution of a part is known. 

Assuming 

Then, 

the accuracy uf the lead time predicted depends largely on 

the queueing time prediction. 

To formalise the queueing time prediction, the exponential 

smoothing prediction formula was again used. 

A scheduling system using such an approach ,,,ould update 

the queueing time estimate at a machine group for lead time 

prediction as soon as a batch was loaded onto a machine of 

the group. Whereas in the previous approach, it was necessary 

for a batch to be completely finished, before information 

could be fed back to modify the lead time estimate. The 

system response is therefore increased. 

The job shop model used by Davies consisted of five 

functionally different machine groups~ Four of the groups 

had one machine each, and the remaining group had two 

identical machines. 

The heuristic scheduling system he used for the lead 

time investigation employed the minimum float rule as the 

queueing discipline. 

To obtain a steady initial state of the machine shop, 

he used a procedure developed by Brittain~. 

will be described in Chapter 4. 

This procedure 

Twenty different parts ,,,ere produced by the job shop. 
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Orders for parts were loaded into the job shop on the 

basis of minimising shortages: Whenever the quantity demanded 

of a part during the estimated lead time period was expected to 

exceed the_stock level plus the quantity in work in progress, a 

standard batch of the part was introduced into the job shop. 

To vary the utilisation of the job shop the shift length 

was varied. 

To form a basis for comparison, a method with fixed 

lead times was used. 

In this method, the predicted lead time of a part was 

assigned as the total service time required multiplied by a 

constant. 

The constant used was 2.5. 

This method was referred to as the Constant Lead Time 

Method. 

Graphs 2-1 to 2-4 and Tables 2-1 to 2-3 are reproduced 

from Davies' thesis. 

Davies' findings are summarised as below: 

(a) The Adaptive Lead Time Method Vs. The Constant Lead 

Time Method: 

With reference to Graphs 2-1 and 2-2:-

Over the range of job shop utilisation investigated,the 

adaptive lead time method improved the standard deviations 

of the "lead time error ll histograms considerably. 

In addition, above 86% shop utilisation, there were 

varying degrees of reduction in the lIobjective function", 



Minimum Float Rule - values of objective function for various 

Shift length 
(hours) 

Utilisation 
per cent 

Unused Machine 
Time cost 

Work in progress 
cost 

Shortage cost 

Total cost 
(i/wk) 

Standard 
deviation of lead 
time error 
histograms(shifts) 

utilisations stock buffer level for 

each part 2 hours usage per operation 

on each part 

3.0 2.8 2.6 2.5 2.4 2.3 2.2 

72.5 77.7 83.0 86.0 89.4 93.0 96.0 

111 .0 84.0 60.0 47.0 34.0 23.0 11 .0 

4.4 4.4 4.1 4.0 3.8 3.6 3.3 

6.8 7.2 9.9 8.1 23.9 58.5 149.3 

122.2 95.6 74.0 59.1 61.7 .1 163.6 

11 .39 11 .09 10.76 9.63 8.96 6.92 5.16 

*Reproduced from Davies's Thesis7 . 

11 . 
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Minimum Float Rule - objective function versus utilisation 

stock buffer level 2 hours usage per 

operation per part, exponentially smoothed 

lead time prediction a = 0.1. 

Shift length 3.0 2.8 2.6 2.5 2.4 2.3 2.2 
(hours) 

Utilisation 71 .3 76.2 82.6 85.6 89.5 94.0 -
per cent 

Unused Machine 115.0 89.0 61 .0 48.0 38.0 20.0 -
Time cost 

Work in progress 3.7 3.7 3.7 3.7 3.9 3.9 -
cost 

Shortage cost 6.0 6.3 8.4 8.2 13.4 25.5 -

Total cost 
(£/wk) 124.7 99.0 73.3 59.9 55.3 49.4 -

Standard 
deviation of lead 3.18 3.18 3.47 4.58 3.31 3.63 -
time error 
histogram(shifts) 

*Reproduced from Davies!s Thesis7 . 



Minimum Float Rule - objective function versus utilisation, 

prediction of machine queueing time by 

exponential smoothing, smoothing constant 

0.1, fixed stock buffer level of 2 hours 

usage per operation per part. 

Shift length 
(hours) 3.0 2.8 2.6 2.5 2.4 2.3 2.2 

Utilisation 
per cent 70.0 75.0 80.9 84.4 88.4 92.8 94.5 

Unused Machine 
time cost 121 .5 94.5 67.2 52.8 38.5 24.9 17.0 

Work in Progress 
cost 3.8 4.1 l~. 4 4.5 4.7 5.3 5.5 

Shortage cost 0.3 2.7 2.9 3.2 1 .3 4.2 1.9 

Total cost 
(,£/wk) 1 .6 ~ 01 .3 74.5 60.5 44.5 34.4 24.4 

Standard 
deviation of lead 
time error 3.004 3.154 3.103 3.038 3.069 3.985 3.849 
histogram(shifts) 

Average queueing 
time (hours) 1. 77 2.99 4.18 4 42 4.04 5.82 10.5 

*Reproduced from Davies's Thesis7 . 
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and the reduction increased with increasing shop utilisation. 

But belo,,, this shop utilisation, the two objective function 

curves coincided. 

(b) The Adaptive Queueing Time Method Vs. The Adaptive 

Lead Time Method: 

With reference to Graphs 2-3 and 2-4 and Tables 2-2 and 

2 . . -
Over the range of shop utilisation tested, the two 

methods produced very similar standard deviations of the lead 

time error histograms. 

HOl-Iever, the adaptive queueing time method reduced the 

objective function significantly, throughout the same range 

of shop utilisation. Of the three costs that constituted 

the objective function, the shortage cost was affected most. 

At 94% shop utilisation, it was reduced from 25.5 to 1.9 units. 

Lead time error is defined as the predicted lead time 

minus the actual lead time. A positive lead time error 

signifies that a batch was finished earlier than expected. 

And a ive value corresponds to a batch which is late. 

The lead time error histogram contains the distribution 

of the amount of time a batch is late or early. 

The objective flli~ction, a performance criterion used 

by Davies in his research, is defined as the sum of unused 

machine time cost, shortage cost and work in progress cost. 



Davies made two deductions and used them to analyse 

the results to reach conclusions: 

1) "The standard deviation of this (lead time error) 

histogram reflects the degree of control that exists 

on the simulation model. A tight histogram represents 

a high e of control and vice versa". Therefore 

a lower standard deviation corresponds to more accurate 

lead time prediction. 

2) In view of 1), "when the standard deviation is 1mV', the 

contribution of shortage cost and work in progress 

cost to the Qbjective function is also 10,.,11. 

In other words, a method that gives lower standard 

deviation will also give lower shortage cost and work in 

progress cost. 

He concluded implicitly that: 

1 ) The adaptive lead time was predicting lead times more 

accurate than the constant lead time method, (since 

the standard deviations were reduced); 

2) The adaptive queueing time method did not predict lead 

times more accurately than the adaptive lead time 

method, (since the standard deviations were very similar). 

He did not account adequately the reductions in the 

objective function, particularly the shortage cost. 

Perhaps, this is because the results contradict his 

second deduction: 



1) With reference to Graphs 2 1 and 2-2, and Tables 2~1 

and 2-2: ..... 

20 

Below 82% shop utilisation, substantially lower standard 

deviations only gave rise to insignificant reduction in the 

shortage cost and the w·ork in progress cost. 

2) 1'1i th reference to Graphs 2-3 and 2-'4, and Tables 2-1 

The standard deviations produced by the two methods 

were not significantly different, over the range of shop 

utilisation tested. 

Yet with the adaptive queueing time method, the 

reductions in the shortage cost was quite considerab~e. 

A review of his thesis showed that he had not recorded 

or taken into account the mean of the lead time error hist6....; 

gram. 

The mean may not be zero. 

Depending on the constant used, the constant lead time 

method will give a positive mean at a low uti~isation, and 

a negative value at a high utilisation. Therefore, in 

general, both the mean and the standard deviation have to be 

used, to assess the accuracy of the lead time predicted. 

Since he considered the standard deviations only, his 

conclusions on the relative accuracies of the methods could 

not be held valid. 

And in the absence of any mean figures in his thesis, 

the relative accuracies cannot be assessed. 



In Figures 2-2, the shape of the standard deviation 

curve produced by the constant lead time method differs 

completely from the general shape according to class~cal 

queueing theory. 

21 • 

The constant lead time produces zero mean at a particular 

utilisation depending on the value Qf the constant used, and 

positive and negative means belo1v and above that utilisation 

respectively" 

Hence, the of the curve may be explained by 

assuming the means of the lead time error histograms to be 

zero, and calculate the standard deviations accordingly. 

If this procedure was adopted, a distribution 1vi th 

majority of the batches completed late could be given the 

same standard deviation value as one with majority of the 

batches early. 

But the shortage cost associated with the former is 

expected to be 

And since, in the thesis, the standard deviations due 

to a late majority distribution could not be distinguished 

from the ones due to the other, the standard deviation 

figures produced should not be used for deductions on shortage 

cost reductions. 

This work ,viII re-investigate the lead time prediction 

methods reported by Davies. 

Davies used buffer stocks in his simulations. 

It is not clear how buffer stocks affected his results. 
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To carry out a more flllldamental research, buffer stocks 

will not be used in this research. 

McCallion, Horsnell, Davies and Brittain (1970)8 

investigated a lead time prediction method which employed, 

in a modified form, the classical queueing theory. 

Essentially, the method involved adjust the queueing 

time estimate at a machine group for lead time prediction, 

using the expected utilisation of the facility. 

In batch production, the demand upon the finished parts 

is often known for several months into the future. 1Vi th this 

information, the expected utilisation of each machine group 

over that time could be computed, using the current expected 

queueing time to allocate approximately the resources over 

that time. 

The queueing time estimate W was adjusted according 

to the expression: 

where: U was the average utilisation of the machine group; 

the subscripts "0" and "i!! referred to times to and 

t1 respectively; and 

to being the reference time and t1 being the future 

time at ,,,hich the queueing time ,viII apply. 

For their investigation, they used an actual light 

machine shop with 39 groups of machines. Altogether, there 



were 57 machines: 7 operating on the day shift only, 13 on 

the night shift only, and 37 on both shifts. 226 individual 

parts in predetermined batch quantities were produced. 

Like Davies, the queueing discipline used for the 

heuristic scheduling system was the minimum float rule. 

And orders for parts were loaded into the job shop on 

the basis of minimising shortages. 

To obtain a steady initial state of the machine shop, 

Brittain's procedure was again used. 

In the simulation, the load on each machine group was 

predicted using the reference waiting times Wo and the kno,qu 

future demand for finished parts. This "forward load" w"as 

averaged over an eight week period to obtain the average 

utilisation expected of each machine group. 

Using Equation (1), the corresponding values of Wi' 

were calculated, for use in placing orders in the first four 

weeks of the above eight ,,,eek period. 

This process was repeated every four weeks. 

The preliminary tests showed an undesirable behaviour. 

When this was alleviated, by a biased exponential 

smoothing of Wi' - this method ,,,as compared with one under 

the same load pattern, but using the reference waiting time 

Wo for load time prediction. The comparison was made at an 

average shop utilisation of 76%. 

It \"as found that for the t\"O hundred ,,,eeks of shop 

operation simulated, the system based on smoothed variable 

waiting times consistently had lower overall costs than the 
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one based on reference waiting times. 

But the reductions in shortage cost was not mentioned. 

Neither were the means and standard deviations of the load 

time error histograms. 

The undesirable behaviour was that: when the utilisation 

dropped, the allowed lead times shortened, and the work load 

pattern was disturbed to the extent that highly utilised 

machines became id1e for prolong periods. This loss of 

production could not be made up, and large shortage costs 

resulted later. 

To alleviate that, the W"1 values were exponentially 

smoothed, and biased to respond more rapidly to increases 

in the expected utilisation than to decreases. 

A careful examination of the computer program used 

reveals the following: 

(a) The subroutine that compiled the forward load information 

did not take the current work load (i. e. >vork in progress) 

into account, and therefore would under-estimate the 

utilisations of the machines. 

A lmver predicted utilisation gives a low"er predicted 

queueing time according to Equation (1), and the allowed 

lead times are shorter than the actual@ 

This under-allocation of lead times amounted to the 

batches being late, and shortages, incurred. 



(b) The subroutine that compiled the forward load information 

also failed to take the shortages in the forward period 

into account. 

This reduced the number of batches loaded, and further 

under-estimated the utilisations of the machines. 

The end result was the same as in (a). 

These two factors acting together, made the shortages 

soar. 

By biasing the exponential smoothing process to respond 

more rapidly to increases in demanded utilisation than decreases, 

the queueing time estimates become larger than othe~vise. 

And this was found sufficient to remedy the situation. 

The version to be tested in this research ,viII not use 

a biased exponential smoothing, but will instead have the 

situations (a) and (b) corrected. 

It will be seen that this method, after the corrections, 

does not experience the undesirable behaviour mentioned. 



CHAPI'ER 3 

THE SIMl~ATION PROGRAM 

3.1 INTRODUCTION 

In this chapter, the machine shop model and the 

simulation program used are described. 

3.2 THE MACHINE SHOP MODEL 

26. 

The simulation program was written by Brittain (1969)9, 

in Atlas Antocode. 

In constructing the machine shop model for the simulation 

program, Brittain made the following assumptions: 

(a) No machine may perform more than one operation at a 

time. 

(b) Machines never breakdown and manpower of uniform ability 

is always available. 

(c) For each operation, all materials, jigs and tools are 

available when required. 

(d) Each operation takes a known finite time to perform. 

(e) An operation, once started, must be performed to 

completion (no pre-emptive priorities). 

(f) Each batch is an entity and may not be processed by 

more than one machine at a time. 



(g) Each batch. has only one route through the machine 

groups, alternative routes being prohibited. 

(h) A batch, once started, must be finished ( no order 

cancellations). 

(i) Batches may be placed in a queue before any machine 

group. 

(j) Perfect parts are consistently produced. 

(k) Transport times beh..reen machines are negligible. 

(1) Due dates for each batch, once calculated, remain 

fixed. 

(m) There is no overtime ·working. 

These assumptions are typical of those usually made 

by workers in the machine shop simulation field. 

27 

They are over simplification of real life, and some are 

questionable. However, they ,..rere introduced to make the 

model easier for progranooing. 

For this investigation, the assumptions are considered 

to be appropriate, and no changes are made. 

The machine shop model constructed by Brittain consists 

of machines formed into groups. 

Machines in a machine group are functionally identical, 

but machines from different groups are not. This means that 

a particular operation that can be performed by a machine of 

a group, can also be performed by other machines of the group, 

but not by any machine from other group 
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Batches ent the machine shop are put into a queue 

at the machine group of their first operation. \fuen a 

machine finishes a job, the highest priority batch is selected 

from the queue at the group of which the machine is a member, 

and loaded to the machine. 

The finished job joins the queue appropriate to its 

next operation. 

Thus, a batch ,vill be loaded in the correct sequence 

to every machine group associated with the operations required 

of it and will eventually complete its final operations and 

leaves the machine shop. 

A batch, when completely manufactured, is added to 

the stores quantity of the corresponding part. 

At weekly intervals, a quantity equals to the average 

weekly usage is subtracted from the stores quantity of the 

part. 

lfuenever the quantity of a part in ,<{ork plus the 

quantity in stores drops to the quantity that will be used 

during the expected lead time, the "batch loader!! introduces 

a new batch of the part into the machine shop. 

No safety stocks are held, and failure of a batch to 

meet its due date will result in a shortage. 



29 

3.3 THE SIMULATION PROGRAN 

Brittain's program was later translated into Fortran. 

The Fortran version which appeared in Aswed's thesis10 , 

was modified and simplified extensively for this research. 

Its present size is about half of its original size. 

It is run on both IBM 360/44 and Burroughs B6700. 

Besides the main program, there are 13 subroutines and three 

functions. 

Total core storage required is about 8500 words: 

1500 for program code and 7000 for arraysd 

The flow chart of the main program is shown in Figll:I'e 3 ... 1. 

The key and a copy of the simulation program are given in the 

Appendix 2. 

At the beginning of a simulation run, the program reads 

in: the information about the parts to be produced by the 

machine shop, the size and the initial state of the machine 

shop, as w"ell as the number of' "w"eeks to be simulated, the 

number of shifts in each week and the length of each shift. 

Batches are loaded into the shop to avoid shortage, and 

progressed through the machine shop in the manner described. 

Completed batches are added to the stores. 

intervals, parts are drawn to meet demand. 

And at weekly 

Before the termination of the simulation, the state of 

the machine shop is printed out. 

The program also outputs the histograms of' actual 
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wai ting times, actual lead times, and the histogram of' the 

lead time errors. 

3.3.2 

(a) SUBROUTINE BLOAD 

This is called at the beginning of each shift by the 

main program. 

It loads a nmy batch of fixed quantity of a part if 

the quantity in stores plus the quantity in work in progress 

drops to the expected demand during the lead time period. 

For a batch loaded, it calls FUNCTION BCHADD to allocate 

storage area in BDATA array for informations relating to the 

batch. After updating the stock control file, its calls 

SUBROUTINE FORMQ to place the batch in the queue for its 

first operation. 

(b) SUBROUTINE FILTIM 

Called by SUBROUTINE FWLOAD, this subroutine allocates 

the resources demanded by a batch. 

(c) SUBROUTINE FORMQ 

For a batch that has just completed its last operation, 

this subroutine places it into the stores. 

For a batch that has just completed an operation other 

than the last, this subroutine places it in the queue of the 

appropriate machine group. 
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( d) SUBROUTINE F't'/LOAD 

This subroutine predicts the distribution of demand 

on each of the machine groups, for a given of time. 

(e) SUBROUTINE INPUT 

Called at the beginning of a simulation, it reads in the 

information of the parts to be produced. 

(f) SUBROUTINE JOBLD 

When a machine becomes available, this subroutine loads 

onto it a job selected from the queue. 

(g) SUBROUTINE OPHIST 

It prints out the histograms with their means and 

standard deviations. 

(h) SUBROUTINE OUTPUT 

This subroutine prints out the ,state of the machine 

shop. 

For each machine, it prints out the total machining 

time performed, and the current job on the machine. 

For each queue, it prints out the number of batches, 

and the informations associated ,vi th each batch. 

(i) SUBROUTINE PRIOR 

Called by SUBROUTINE JOBLD, it calculates the priority 

parameters, and selects the batch with the highest priority 

from a given queue, according to a pri rule specified. 



(j) SUBROUTINE RELOAD 

This subroutine reads in the initial state of the 

machine shop and of the stores, at the beginning of a 

simulation. 

(k) SUBROUTINE STOCAL. 

It calculates the mean and standard deviation of a 

histogram. 

(1) SUBROUTINE STORES 

, 33. 

Called by SUBROUTINE FORMQ when a batch has its final 

operation completed, this subroutine updates the stock control 

file. 

(m) SUBROUTINE STRLQE 

This is used to store, in the LQE array, the actual 

waiting times, the actual lead times and the lead time errors. 

The Functions. 

(a) INTEGER FUNCTION BCHADD 

This is called by SUBROUTINE BLOAD to allocate areas, 

in the BDATA array, i'or informations relating to a batch 

that has just been loaded into the machine shop. 

(b) INTEGER FUNCTION LOCATE 

It locates the position of a part in the stock control 

file, given the position in the PARTT array_ 



(c) INTEGER FUNCTION OPTIME 

For a given operation of a batch, it calculates the 

total time required. 
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CHAPTER 4 

THE ENVIRONMENT OF THE SIMULATION NODEL 

4.1 INTRODUCTION 

This chapter describes the data used for the simulation 

program outlined in the last chapter. 

It also describes a method of setting up the initial 

steady-state condition for the simulation. 

4.2 DATA 

For this research, all the data used were generated 

from the distributions of actual shop operat 

by Brittain. 

data obtained 

The actual shop operating data consisted of 226 engine 

parts manufactured in the light machine shop of Mirrlees 

National Ltd., using non-specialised machines. 

The distributions which appeared in Brittain's thesis, 

are reproduced here. Figure 4-1 is the distribution of the 

total number of operation of a part, and Figure h-2 is the 

distribution of the service time of an operation. 

No information was available on the quantity in the 

standard batch of each part. So this was generated randomly, 

assuming a uniform distribution with a minimum of 20 and a 

maximum of 100. 
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There was no information on the weekly demand of each 

part either. This was also generated randomly, but adjusted 

later with liberty to achieve a realistic and desired level 

of shop utilisation. Once this is achieved, the weekly 

demand figures remain fixed. 

For this research, the size of the machine shop was 

limited to 10 machine groups, with one machine in each group. 

Three sets of data ,,,ere generated. 

Data Set 1 was used for majority of the tests. 

Data Sets 2 and J were used to examine the effect of 

job mix on the mean and the standard deviation of the lead 

time error histogram. 

All the data sets gave rise to unevenly loaded machine 

shops. 

Table 4-1 gives, for each data set, the average 

utilisations of the machine groups, at a shift length of 

8.00 hours. 

Appendix 1 describes the manner, in which the total 

number of operations for a part and the operation time of 

each operation are generated from Brittain1s distributions. 



OF THE MACHIhTE 

00 HOURS. 

~1ACHINE AVERAGE UTILISATION 

GROUP NO, DATA SET 1 DATA SET 2 DATA SET 3 

1 60% 65% 45% 

2 26% 38% 46% 

3 30% 34% 39% 

4 18% 23% 32% 

5 37% 52% 45% 

6 56% 61% 56% 

7 48% 50% 30% 

8 51% 31% 47% 

9 32% 52% 28% 

10 49% 47% 35% 
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4.3 

The disturbance due to starting a simulation with an 

empty machine shop takes a considerable time to settle down. 

To overcome this long and unproductive simulation 

before the steady condition could be arrived at, Brittain 

developed a forward load predictor procedure, described as 

below. 

In this procedure, the lead time of a part is assumed 

to be 2.5 times the total processing time. The initial store 

quantity is assigned as the usage during the estimated lead 

time plus a randomly generated amount of up to 10 weeks' 

usage. Initially, there is no work in progress, i.e. the 

machine shop is empty. 

From the weekly usage of a part and its estimated lead 

time, the dates, on ,,,hich new batches have to be loaded to 

avoid shortage, can be determined. 

suming each batch has to wait at a machine group for 

a length of time equal to the float per operation, and 

unlimited capacity on each machine group, the start 

of operations can be determined. 

times 

With these assumptions all orders are kept exactly to 

schedule, and new orders are placed in time to meet the future 

demand. 

This forl"ard load predict or is run for 1 00 ,,,eek period. 

The distribution of batches at the end of the period are 

modified, if necessary, to account for the finite capacity of 



each machine group. The modification is such that: any 

batch loaded to a machine group '"hich is above its capacity, 

is returned to the queue. 

In this thesis, the state of machine shop obtained will 

be referred to as the First Generation Initial Steady-St~te 

condition. 

A simulation run using this initial steady-state 

c ondi t ion is performed over·a 50 ,,,eek period, t 0 give a 

proper estimate of the waiting times. 

In this thesis, the simulation run will be referred 

to as the First Generation Simulation Run. 

The forward load predictor is modified slightly, and 

re-run for 100 weeks. Instead of assuming the 'vai ting time 

for each operation as the average float per operation, the 

waiting time estimates obtained from the first generation 

simulation run are used. 

The usual adjustment to account for the finite machine 

capacity is also carried out. 

In this thesis, the state of machine shop thus obtained 

is referred to as the Second Generation Initial Steady-State 

Condition. 

It is used as the initial state for the simulation 

proper, referred to as the Second Generation Simulation Run 

in this thesis. 

It will be seen that steady-state conditions are achieved 

in the Second Generation Simulation Runs. 



CHAPTER .5 

PART I 

.5.1 INTRODUCTION 

The four lead time prediction methods described in 

Chapter 2 are: 

1 ) The constant lead time method 

2) The adaptive lead time method 

3) The adaptive queue time method, and 

4) The queue theory wi th f or'vard load method. 

Davies showed that Method 2) gave a lower objective 

function than Method 1), and Method 3) gave a lower objective 

function than Method 2). 

But he did not account for the reductions adequately. 

Also, he did not produce or mention the means of the lead 

time error histograms And the standard deviations he 

produced are questionable. 

It is proposed to re-simulate and re-investigate the 

three methods in this and the next chapter. 

McCallion et ale reported that Method 4) gave a lower 

objective function than a method using fixed \vai ting times. 



But no information on the means and the standard deviations 

'vas given, and the original version of Method 4) gave a 

soaring shortage cost. 

It is also proposed to re-simulate and re-investigate 

Method 4) in this and the next chapter, and to compare its 

performance with that of Methods 1), 2) and J). 

It is decided to test the original version of Method 41 
with the errors, described in Chapter 2, rectified, instead 

of the version used by McCallion ~ 

Exponential smoothing will be applied to the queue 

times obtained by using Equation 2-1, but only to reduce the 

variability. 

The method with reference queue times, used by 

McCallion et al. merely as a basis of comparison, will not be 

investigated in this research. 

In the investigations that follow, the priority rule 

to be used will be the minimum float rule, the same as. that 

used by Davies and McCallion et 

This rule states that: load next the batch with 

the minimum float. And float is defined as the time to due 

date less the time of operations not yet performed. 

In this chapter, the system response rate and the 

stability are examined. 

In the next chapter, the accuracy of the lead times 

predicted by each method is examined. 



5.2 SYSTEM RESPONSE RATE 

The system response rate concerns the rapidity \'lith 

which changes in the state of a machine shop are monitored 

for lead time prediction. 

44. 

In the constant lead time method, the lead time estimates 

are not updated at all. The system response rate may be 

considered to be infinitely slow. 

In the adaptive lead time method, the influence on the 

lead time of a part, due to the changes in the machine shop, 

can only be monitored when a batch of the part has been 

finished. 

Thus, a considerable length of time may have elapsed 

before the changes are monitored and the system response is 

considered sluggish. 

In the adaptive queueing time method, any change in 

the state of a machine shop is monitored when a job is loaded 

onto a machine. 

The system response rate is therefore increased. 

However, like all forecasting systems using exponential 

smoothing, the last hro methods give predicted values that 

lag the actual. 

In the queue time with forward load method, 

in the state of a machine shop are monitored in advance. 



The lead time estimates are expected to 

rather than to the actual lead times. 

pace with, 

Thus, the system 

response rate can be considered to be further increased. 

But, any local deviation of the load pattern from the 

predicted cannot be fed back for adjusting the queueing time 

estimates, until the next forward load prediction is performed. 

This inability to adapt immediately to any deviation 

may be regarded as a reduction on the system response rate. 

Hence, the overall system response rate may not be faster 

than that of the last two methods. 

Also, the accuracy of the lead times predicted in the 

periods where deviation occurs, ,,/ill be reduced 

To show the relative response rates of methods 2), J) 

and 4), a series of first generation simulation runs was 

carried out. 

The lead time estimates in the starting condition of 

the above simulation runs are generally not the steady-state 

values. But provided the methods are stable, the lead time 

estimates will reach their st tate values. 

The tests were carried out at a shift length of 6.00 

hours. Data Set 1 was used. 

For each method, two values of the exponential smoothing 

constant, a , were used. 



5.4 RESULTS AND DISCUSSION OF RESULTS 

Graphs 5-1 to 5-4 show the actual and the predicted 

lead times of two typical parts, using the adaptive lead 

time method, for two values of the exponential smoothing 

constant 

Graphs 5-5 to 5-8 show the same, using the adaptive 

queueing time method. 

46. 

And Graphs 5-9 to 5-12 show the ~ame, using the queueing 

theory with forward load method. 

In each graph, the lead time estimate goes through a 

transition period and arrives at a steady-state level. 

Examination of the graphs at the steady-state regions 

shows that in general, a = 0.10 gives smoother operations 

than a = 0.30. This value, a = 0,10, will therefore be 

used for further research and analysis. 

Note that the value a = 0.10 for both the adaptive 

lead time method and the adaptive queueing time method is in 

agreement with Davies. 

With reference to Graphs 5-1 and 5-2, for the adaptive 

lead time method:-

The lead time of part A is estimated correctly at the 

18th attempt, and that of part B at the 16th attempt. 

With reference to Graphs 5-5 and 5-6, for the adaptive 

queueing time method:-

The lead time of part A is estimated correctly at the 

8th attempt, and that of part B at the 9th attempt. 
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With reference to Graphs 5-9 and 5-10, for the queueing 

theory 'vi th forward load method: ~ 

The lead time of part A is predicted correctly at the 

14th attempt, but that of part B at the 8th attempt. 

The above results confirm that the adaptive queueing 

time method has a faster system response than the adaptive 

lead time method. 

The results also show that the system response rate of 

the queueing theory 'vi th forw'ard load method is faster than 

that of the adaptive lead time method, but it may not be 

faster than that of the adaptive queueing time method. 

5.5 SYSTEM STABILITY 

For an iterative system of this kind, the question 

of stability must be examined. 

The lead time of a part may be regarded as a random 

variable, because machining times vary, setting~up times 

vary and queueing times before machines vary. And according 

to the Central Limit Theory, the distribution of the lead 

time can be assumed to be normal 

Assume that the machining times, etc., are normally 

distributed, and that the machines have identical standard 

deviations. Then the standard deviation of the lead time 

distribution is proportional to the square root of the total 

number of operations of the part, as shmffi below: 
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N N N 

LT QT. + MCT. + L SUT. 
1 1 1 

i=1 i=1 i=1 a " (I €I ••••• (2) 

N 21 N 
2 

N 2 

°QT. + L °MCT. + °SUT. 
1 1 i=1 1 i=1 i=1 .•••••• (3) 

2 2 
N ([ + N U

MCT QT 

(Assume: UQT 
, 

°MCT. 
1 

= 

+ N 

= UMCT 

2 
+ "MCT 

2 
0 

SUT 

' OsUT. 
1 

2 
+ USUT 

N total number of' operations; 

where: LT lead time of' the part; 

QT queueing time; 

MCT machining time; 

SUT Setting up time; 

= OgUT 

and subscript IIi!! denotes the machine concerned. 

, f'or 

Thus, the total number of' operations of' a part, 

the mean lead time and the standard deviations of' queue 

times, etc., a set of' normally distributed lead times of the 

part can be generated. 

By c this to a similar set generated by a lead 

time prediction method, one may conclude on the stability of 

the method: if' the two sets lie close to each other, the 

method is stable~ 

i .t.. N) 
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the investigation of the stability of the adaptive 

lead time method, Davies found that the two sets of lead 

times "exhibited very similar behaviour ll • 

In this research, however, the stability of ,the three 

adaptive systems were tested by running the respective systems 

for 200 shifts of steady-state operation, and applying a step 

increase of about 37% in the weekly demand of the parts at 

the 201 th shift and maintaining the increased demand onw'ards. 

Graphs 5-23, 5-25 and 5-27 show'ed the lead times of a 

part of 10 operations (Part A) plotted against the number of 

loading, i.e. the occasion the part was Loaded, for the various 

adaptive systems. 

Graphs 5-24, 5-26 and 5-28 showed the same for a part 

of five operations (Part B). 

The shift length used was 8.00 hours. The values of 

the exponentially smoothing constants used were indicated on 

the graphs. 

In all the graphs, the actual lead time produced by 

the simulation rises after the step increase, to a nei\T level 

which appears to be steady-state. The same behaviour is 

exhibited by the predicted lead time. Hence it may be 

concluded that the adaptive systems tested are stable. 

During the 200 shifts of steady-state operations, 

part A i\TaS loaded approximately 10 times; so was part B. 

Hence the step increase in demand affected the batches of 

partsA and B loaded on and after the 11 th' occasion. 
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CHAPTER 6 

EVALUATION OF THE FOUR LEAD TI~m 

PREDICTION :tvlETHODS - PART II 

6.1 INTRODUCTION 

68. 

In previous research of methods (a), (b), (c) and (d), 

the mean of the lead time error histogram lvas not mentioned. 

In this chapter, simulations using different methods 

will be made, under identieal conditions, to produce lead 

time error histograms for comparison and analysis. 

A range of average shop utilisations were simulated. 

6.2 

Data Set 1 lvas used. This gave rise to an unevenly 

loaded machine shop (see Chapter 4). 

By shortening the shift length from 8.00 hours to 5.00 

hours, in steps of 0.50 hour, the average machine shop 

utilisation increased from 41% to 65%, approximately. 

At a shift length less than 5.00 hours, the machine shop1s 

behaviour became unstable. 

Each test consisted of 800 shifts of operations. For 

a machine shop ope rat 

three years' operation. 

five shifts a week, this represents 



The results of the simulation runs are shown in 

Table 

The means and the standard deviations of the lead time 

error histograms produced by the methods are plotted against 

the average shop utilisation in Graphs 6-1 and respective 

The means and the standard deviations of the lead time 

histograms are plotted against the same in Graphs 6~J and 6-4 

respect 

A theoretical curve of the mean of the lead times 

obtained by using Equation (2), (p, 60), is also plotted 

in Graph 6 for comparison. 

To obtain the average queue time per machine groUp 

for each method, at each shift length, the sum of the average 

queueing times at the machine groups 'vas divided by the number 

of groups. The results thus obtained are plotted against 

the average shop utilisation in Graph 6~5. 

Note that the range of shop utilisation obtained is 

much lower than that obtained by Davies. In particular, 

this machine shop became unstable at a shop utilisation above 

65%, whereas Davies' became unstable only at a shop 

utilisation above 94% or more. 

This is due to the fact that the loading on the machine 

shop used in this simulation is not balanced, whereas 

Davies' 'vas. 

HcCallion 'vhen a balanc ed shop 

was replaced by an unbalanced, the corresponding result 

occurred at a lower utilisation. 



TABLE 6-1. 

Shi:ft length 8.00 7.50 7.00 6.50 6.00 5.50 5.00 
¢l 

1.94 0.63 0.34 E 0.90 0.33 0.04 -1.41 .r! 
+' 

't:I error 2.50 2.77 3.28 3.69 4.12 4.21 4.56 
oj 
¢l ..., 10.99 11 .65 13.00 14.30 17.30 19.60 26.20 .., Lead time 5.10 5.46 6.02 6.79 7.77 8.59 11.20 
a't:l 

histogram 
+' 0 
Ul.<1 Average shop utilisation (%) 41.10 43.68 46.79 50.29 54.74 59.00 65.40 >::.;..> 
o III 

(shifts) \;) E 0.65 0.86 1.00 1.11 1.23 1.52 2.05 
er 

<ll -Q.39 -0.11 -0.01 -0.20 -0.30 -0.60 s 
.r! Lead 2.80 3.)5 3.89 4.46 .;..> 2.23 2.52 5.97 0 error 
"O-ro 

{MeanEShi:ftS) <ll0 10.40 11.60 12.80 14.50 17.10 19.80 28.00 ..., II 

Clti 
Lead time Standard 5.02 5.59 5.96 6.63 8.05 8.74 11.50 

::- histogram 
deviation(shifts) 'r! 't:I 

+' 0 
1:1..<1 Average shop 
(\!+' 

utilisation (%) 41.00 43.00 46.00 50.00 5'-1.00 59.00 65.00 
't:I OJ (j.81 0.82 0.87 1.07 1 .1.1 1.58 2.01 
"" E 

-0.27 -0.21 -0.21 -0.12 -0.20 -0.29 -0.13 
'til Lead >:: 2.23 2.52 3.05 3.72 4.)8 4.94 5.59 'N error 
aJ 
::l 
<ll 

{Mean(ShiftS ) 10. 11.50 12.68 14.29 16.10 19.90 25.60 ::l't:l 
0'00 Lead time h.88 5.78 6.79 7.69 8.89 .<1~ 

hi~toC'ra.m 
Sfmldard 5.19 11.20 

aJ+> deviations(shifts :> '" 0 -M E Ii 
(%) .., Average shop utilisation if 0.96 43.}8 46.41 50.17 54.07 58.80 65.10 p. aJ':o-

ro E 
A.verage QueueinG time (shii'ts) 0.75 0.8} 0.97 1.00 1.07 1.50 1.97 "0 ·M 

<:+' per machine rou) 
.<1 

{MCan(ShiftS) -0.94 -1.04 -0.82 0.·44 -0.72 1.10 +''t:I -0.53 
'M 0 

Lead tir?e 'Standard ;Jt.<1 2.16 2.56 2.89 3.24 3.63 3.97 4.60 +' 
>,<lJ error h~stogram deviations . 
~ E 
0 

rem,( shifts) 9.82 12.70 15.}0 16.60 18.60 27.40 o't:l 11.70 
.<1 (\! Lead time .., 0 Standard 4.75 5.39 5.78 6.74 7.80 8.42 11.00 ...,0 histogram 
~ ~ deviations 
>::"d 

'M .... 0 Average shop utilisation (%) 40.79 4}.68 46.72 50.10 54.2} 58.88 65.21 .c> co: n 
g~tl Average Queueing time (shifts) 0.78 0.86 0.93 0.93 1. 04 1. 36 1.69 ::l 0 
0''''' per machine rou 
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6.4 DISCUSSION 

With reference to Graph 6-3: --

The four methods produced very similar means of the lead 

time histograms, at the same shop utilisation. 

It can be seen that the mean curves follow closely the 

one obtained theoretically. 

With reference to Graph 6-4: -

The four methods also produced very similar standard 

deviations of the lead time histograms, at the same shop 

utilisation. 

With reference to Graph 6-2.for the standard deviations 

of the lead time error histograms: --

The standard deviation curves produced by the four 

methods are not significantly different. 

Recall that in Davies' thesis the standard deviations 

produced by the constant lead time method differed vastly 

from those produced by the adaptive lead time method. 

The results here showed otherwise. Also contrary to 

his results, the standard deviations produced by the constant 

lead time method conform to the general shape according to 

the classical queueing theory. 
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So it may be concluded that Davies' stffildard deviation 

figures for the constant lead time method are erroneous. 

Further it seems that he used the procedure described in 

Chapter 2, to calculate the standard deviations for the 

constant lead time method, and for the other two methods he 

investigated. 

With reference to Graph 6-1 ,for the means of the lead 

time error histograms:-

The mean produced by the constant lead time method 

becomes zero at (approx.) 61% average shop utilisation. 

For average shop utilisations lower than 61%, the means 

are positive, i.e. on average, batches are finished early. 

And for average shop utilisation higher than 61%, the reverse 

is true. 

The means produced by the adaptive lead time method are 

ne ive throughout the range of shop utilisation tested. 

However, except at very high shop utilisations, the 

means are greater than -0.4 shift. 

In other words, on average, the batches are late, but 

only by 0.4 shift or less, except at very high shop 

utilisations. 

In general, the means produced by this method are closer 

to zero than the corresponding ones produced by the constant 

lead time method. 



This indicates that the adaptive lead time method 

predicts lead time more accurately. 
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The means produced by the adaptive queue time method 

are also negative, but all greater than -0.3 shift. 

For utilisations up to 54% (approx) the means produced 

by this method are very similar to the corresponding ones 

produced by the adaptive lead time method. 

Above this utilisation, the adaptive queueing time 

method predicts more accurately. 

The means produced by the queueing theory with forward 

load method fluctuates between + 1 shift. 

The large errors are due to the inability of the method 

to respond to deviations from the predicted conditions, as 

described in the last chapter. 

The system response rates and the accuracy of the lead 

times predicted by the methods have been invest 

compared. 

ed and 

In the following sections, their effect on the operating 

cost of a machine shop will be examined. 

Assume that the operating cost of a machine shop 

consists of: the cost of unused machine time, the shortage 

cost and the work in progress cost. 

The unused machine time cost is a function of the machine 

utilisation, and is not affected by the system response rate 

or the accuracy of the lead times predicted. 
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The shortaga cost is affected more by the amount of 

lateness than the accuracy of the lead times predicted, as 

discussed in Chapter 2. 

But is it also affected by the system response rate? 

And if so, how? 

The work in progress cost may be affected by the system 

response rate, and/or by the accuracy of the lead times 

predicted. But how? 

If any of the relationship in question exists, it 

would be reflected in Davies' results on costs. 

Hence by examining and analys Davies' results, it 

may be possible to detect if any of the relationships in 

question exists, and to establish the exact nature of those 

relationships that exist. 

. 1 • 

(a)(i) 

With reference to Tables 2-1, 2-2 and 2-3:­

Davies' results on shortage costs show that: 

Up to (approxJ 86% shop utilisation, the adaptive 

lead time method produced a slightly lower shortage 

cost than the constant lead time method, at the same 

shop utilisation. 

(ii) Above (approx.) 86% shop utilisation, the amount 

of reduction in shortage cost increased greatly. 

Likewise, up to (approx.) 86% shop utilisation, the 

adaptive queueing time method produced a lower shortage 
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cost than the adaptive lead time method, at the same 

shop utilisation. 

(ii) Above (approx.) 86% shop utilisation, the runount 

of reduction in shortage cost increased greatly. 

However, if the means and the standard deviations of 

the lead time error histograms are used to deduce the relative 

(a)(i) 

costs, the following are expected: 

iVi th reference to Graphs 6-1 and 6-2:-

Up to (approx.) 61% shop utilisation, the adaptive 

lead time method will give a higher shortage cost than 

the constant lead time method, at the same shop 

utilisation. 

This is because the standard deviations produced by the 

t"\V'o methods are similar, but the means produced by the 

adaptive lead time method are less than those produced 

by the constant lead time method, at the same shop 

utilisation. 

Hence a larger amount of lateness is produced by the 

adaptive lead time method. 

(Similar reasonings are used to derive the rest of the 

deductions). 

(ii) Above (approx.) 61% shop utilisation, the reverse 

will be true. 
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Up to (approx.) 59% shop utilisation, the adaptive 

queueing time method will produce a shortage cost 

similar to that produced by the adaptive lead time 

method, at the same shop utilisation. 

(ii) Above (approx.) 59% shop utilisation, the adaptive 

queueing time method will give a lower shortage cost 

than the adaptive lead time method, at the same shop 

utilisation. 

According to McCallion et al., when a balanced machine 

shop is replaced by an unbalanced one, the corresponding 

result occurs at a lower shop utilisation. 

Hence, it is reasonable to assume that the results up 

to (approx.) 59% or 61% shop utilisation, obtained in this 

research, correspond to the results up to (approx.) 86% shop 

utilisation, obtained by Davies; and likewise for results 

above the shop utilisation figures quoted. 

It can be seen that deductions (a)(i) and (b)(i) disagree 

'\'lith Davies' results (a)(i) and (b)(i) respectively, although 

deductions (a)(ii) and (b)(ii) agree with Davies' results 

(a)(ii) and (b)(ii) respectively. 

In other words, the mean and the standard deviation of 

the lead time error histogram above cannot account for the 

relative shortage costs obtained by Davies. 

Other factors must be operating. 
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Obviously, the delay in the loading of a new batch will 

often result in a shortage, even if the lead time is estimated 

correct when the batch is eventually loaded. 

Hence the additional factor is thought to be the ability 

to detect the possibility of a shortage sufficiently early, so 

that a new batch can be loaded to avoid the shortage. 

Deduction (b)(i) and Davies' result (b)(i) seem to 

suggest that for two lead time prediction methods giving the 

same amoLmt of lateness, the method with a faster system 

response rate has a better ability to detect possible 

shortages early. 

To explain Davies' result (a)(i): 

At anyone average shop utilisation, the lead times of 

parts fluctuate ,vith time. 

The fixed lead time estimates used in the constant lead 

time method may be equal to or larger than most of the actual 

lead times, for most of the time. But unless the fixed 

lead time estimates used are very large, there are occasions 

where the actual lead times exceed the fixed estimates. 

Very often, the failure to load new batches immediately 

in these occasions will result in shortages. 

The constant lead time method cannot assess shortage/ 

surplus aceording to the changing levels of the actual lead 

times, and therefore cannot detect possible shortages in 

these occasions. 

Al though the batches in question '''ill be loaded 

eventually, the delay of the loading, in itself, ,"ill result 

in shortages. 
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On the other hand, due to its adaptive nature the 

adaptive lead time method is able to detect shortages in 

these occasions, as well as in all the other occasions, and 

load new batches accordingly. 

Hence, although the constant lead time method gives a 

smaller amount of lateness than the adaptive lead time method, 

the former's inability to load ne1.". batches immediately in the 

occasions mentioned resulted in an overall shortage cost 

higher than that of the latter. 

The ability to detect shortages early can also be used 

to account for part of the large reductions in the shortage 

cost results (a)(ii) and (b)(ii). (The rest of the reductions 

is due to the differences in the amount of batches finished 

late) .• 

Davies used buffer stock in his research. 

However, the buffer stock used is expected to give the 

methods, the same degree of protection against shortages. 

Hence the foregoing reasoning is not affected by the 

use of buffer stock in his simulation. 

2. 

The work in progress cost provided by Davies is the sum 

of the cost due to the finished parts in the stores, and the 

cost due to the work in progress in the shop. 

Since neither of the two costs is given, analysis is 

made difficult. 



The demand on parts is fixed, so the same number of 

parts will be manufactured no matter which method is used 

to predict lead times, over a sufficiently long period. 
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But if' one method gives higher average waiting times than 

another, it will produce a larger amount of work in progress 

in the shop. 

1h th reference to Graph 6-5:-

The four methods have very similar average waiting times 

per machine group, at the same utilisations. 

Hence, the amount of work in progress in the shop is 

expected to be the same for the methods. 

Davies' result is not expected to differ. 

The amount of finished parts in the stores depends on 

the amount of batches finished late and the level of buffer 

stocks. 

The buffer stock used by Davies was two hours per 

op~ration per part. 

Assuming on average, there are four operations per 

part, then, on overage, the buffer stock is eight hours per 

part. 

At a shift length of three hours, on average, the buffer 

stock will reduce shortages due to lateness of up to 2.7 shifts, 

and at a shift length of two hours, up to 4 shifts. 

Thus, the margin of protection against lateness is set 

higher at a shorter shift length, where the utilisation is 

higher. 
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As a result, the storage cost 'viII be higher at a higher 

utilisation. 

1Vi th reference to Tables 2~1, 2-2 and 2-3:-

Both the adaptive lead time method and the adaptive 

queueing time method produced "work in progress cost" that 

increased with increasing utilisation. 

This can be explained by the increase in storage cost 

due to the increase in buffer stock \vith increasing utilisation. 

Note that the average queueing time increases with 

increasing utilisation. 

Thus, the cost due to the work in progress in the shop 

will also increase with increasing utilisation. 

The reversing of this trend found with the constant lead 

time method, is thought to be caused by: the rapid decrease 

of the mean of the lead time error histogram with increasing 

average shop utilisation from a fairly large positive value, 

t@ a fairly large negative value. 

In other words, with increasing average shop utilisation, 

the situation changes from one with a large number of batches 

finished early, to one with a large number of batches late. 

As a result the storage cost falls rapidly with 

increasing utilisation. 



CHAPTER '7 

THE EFFECT OF CHANGING THE JOB MIX ON THE ~lliAN AND THE 

STANDARD DEVIATION OF THE LEAD TIME ERROR HISTOGRA}I 

7. 1 INTRODUCTION 
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It is possible that the results obtained in Chapter 6 

are dependent on the characteristics of the job mix used. 

This Chapter will investigate the effect of varying the 

characteristics of the job mix, on the mean and the standard 

deviation of the lead time error histogram. 

'7.2 TESTS 

Only the adaptive queueing time method was used for the 

investigation. 

The tests involved were very similar to those described 

in Chapter 6. The only variant being the data set. 

Data Sets 1, 2 and 3 were used to investigate the effect 

of reducing only the mean, the effect of reducing only the 

standard deviation, and the effect of reduc 

lead time histogram. 

both1 of the 

The results are shown in Tables '7-1 and 7-2. 

Graph '7-1 shows the mean of the lead time error histogram 



Data Set 2. 

Adaptive Queueing Time Method a = 0.10 

Shift length (hours) 8.00 7.50 7.00 6.50 6.00 5.50 

Mean(shifts} -0.13 -0.18 -0.17 -0.24 -0.37 -0.21 
Lead Time 
error '" Standard 
histogram deviation 2.37 2.82 3.19 3.57 J+, 41 5.00 

"'(shifts} 

.... Mean( shifts} 10.90 12.20 13.90 16.30 19.20 22.70 
Lead time 
histogram rtandard 

deviation 3.47 3.84 4.67 5.73 6.97 7.89 
(shifts) 

Average shop utilisation 

(%) 45.20 48.12 51 .54 55.61 60.11 65.30 

Average queueing time 
(shifts) 0.5 0.8 0.97 1.14 1 .48 1. 74 
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Data Set 3. 

Adaptive queueing time method a = 0.10. 

Shift length 8.00 7.00 6.00 5.00 
(hrs) 

.... 
Lead time Mean(shifts) - 0.17 - 0.22 - 0.34 0.38 
error 
histogram ~ Standard 

L~eviation 2.13 2.58 3.33 5.02 
(shifts) 

..... Mean( shifts) 10.20 12.60 16.20 24.00 
Lead time 
histogram -< Standard 

deviation 2.97 3.92 5.10 8.70 
!.J shifts) 

Average shop 40.36 46.15 53.73 64 . L~ 7 
utilisation (%) 

Average queueing 
time (shifts) 0.74 0.71 1 .54 2.39 
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plotted against the average shop utilisation, for the three 

data sets. 
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Graph 7~2 shows the standard deviation of the lead time 

error histogram plotted against the same, for the three data 

sets. 

Graph 7-3 shows the mean of the lead time histogram 

plotted against the same, for the three data sets. 

And Graph 7-h shows the standard deviation of the lead 

time histogram plotted against the same, for the three data 

sets. 

From Graphs and 7-h, it can be seen that Data Set 2 

gives a lower mean and a lower standard deviation of the lead 

time histogram than Data Set 1, at the .same average shop 

utilisation. 

And Data Set 3 s a lower standard deviation of the 

lead time histogram than Data Set 1, but a similar mean at the 

same average shop utilisation. 

Also, Data Set 3 gives a higher mean of the lead time 

histogram than Data Set 2, but a similar standard deviation, 

at the same average utilisation. 

lH th reference to Graph 7-1: ~ 

The three different data sets give very similar means 

of the lead time error histograms, at the same average shop 

utilisation. 

In other words, changing the mean and/or the standard 

deviation of the lead time histogram has no effect on the mean 



of the lead time error histogram. 

With reference to Graph 7~2:~ 

Data Set J gives a lower standard deviation of the 

error histogram than Data Set 1, at the srune average shop 

utilisation. 
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The decrease of the standard deviation is caused by the 

decrease of the standard deviation in lead time histogram, 

since the two data sets give similar means of the lead time 

histograms, at the same average shop utilisation. 

Data Sets 2 artd J give very similar standard deviations 

of the error histograms, at the same average shop utilisation. 

As seen;earlier, the two data sets gives very similar 

standard deviatibrts, but very different means of the lead time 

histograms, at the same average shop utilisation. 

Hence, changing only the mean of the lead time histogram 

has no effect on the standard deviation (or the mean) of the 

error histogram. 

Like Data Set J, Data Set 2 also gives a lower standard 

deviation of the error histogram than Data Set 1, at the same 

average shop utilisation. 

As seen earlier, Data Set 2 gives a lower mean, as well 

as a lower standard deviation, of the lead time histogram 

than Data Set 1, at the same average shop utilisation. 

However since: 

(i) the reduction in the standard deviation of the lead 

time histogram by Data Set 2 is similar to the 
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reduction by Data Set 3, and 

(ii) the reduction in the standard deviation of the error 

histogram by Data Set 2 is similar to the reduction by 

Data Set 3, 

it is the reduction in the standard deviation, not the mean, 

of the lead time histogram that has caused the reduction in 

the error histogram. 

It was found that with the reduction in the standard 

deviation of the lead time histogram, the standard deviations 

of the service time distributions at the machine groups were 

reduced. 

Hence, it can be further concluded that a reduction in 

the standard deviation of the lead time histogram caused a 

reduction in the standard deviation of the error histogram. 
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CHAPTER 8 

8.1 INTRODUCTION 

The f'our lead time prediction methods have been tested 

f'or their system response rates and accuracy in Chapters 5 

and 6. 

The test f'or accuracy was perf'ormed using a machine shop 

in a steady-state condition. 

However, in real lif'e, due to f'luctuating demands and 

other disturbances, a steady-state condition is seldom 

achieved in a machine shop. 

Theref'ore, bef'ore any of' the methods can be implemented 

f'or a real lif'e machine shop, its perf'ormance in a dynamic 

situation must be tested, and f'ound acceptable. 

Of' the f'our methods tested, the adaptive queueing time 

method has shmv-n to be the most promising. 

Under a steady-state condition, it produced very 

accurate lead time estimates. 

Even at very high shop utilisations, where all the other 

methods perf'ormed badly, the adaptive queueing time method 

still produced very accurate lead time estimates. 



Further, in terms of the total operat cost of a 

machine shop, Davies has sho,~ that the adaptive queueing 

time method performed better than the constant lead time 

method and the adaptive lead time method. 

Hence, the adaptive queueing time method is investigated 

further, for its performance in the dynamic operation of a 

machine shop. 

In this chapter, a machine shop us the adaptive 

queueing time method will be subjected to different types of 

fluctuating demands. 

The means and the standard deviations of the lead time 

error histograms obtained will be analysed. 

In forecasting systems using exponential smoothing, it 

is customary to use a small value (e.g. 0.2 or less) for the 

exponential smoothing constant, a , to filter out the major 

part of the noise in the input. 

However, when the system encounters a sudden genuine 

change in the underlying process, with a 10\\1' value of ex 

it will take a considerably long time to home in to the new 

level. Biased forecasts will occur, and will continue for 

some time. 

Trigg11 proposed a method which will automatically 

increase the value of a , when forecasts go out of control. 

This gives more weight to recent data, and hence more rapid 
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homing in to the new situation. 

Once the system has homed in, it will also automatically 

reduce the value of a , in order to filter out the noise. 

Trigg! s method is knmV11 as the "Exponential Smoothing 

With Ada,ptive Response Rate", 

It computes a as follo\vs: 

a = modulus ) 
e error 

where: ne,v smoothed errol;' 

- Yx error +(1-y):x(0Id smoothed error) 

new smoothed absolute error 

= Y x{absolute error)+(1-y)x{0Id smoothed absolute errOl. 

and error = (actua1 value of' series at time t) 

- (predicted value of series for time t), 

an exponential smoothing constant with a fixed 

value. 

Y is another exponential smoothing constant, (0'S.Y!;1) 

It is felt that for a dynamic situation, it is more 

beneficial to use the adaptive response rate than the fixed. 

Hence, the adaptive response rate will be incorporated 

into the adaptive queueing time method. 

And this version of the adaptive queueing time method 

will be tested against the original version, under identical 

dynamic conditions. 

A test under identical steady~state conditions at a shift 

length of' 8,,00 hours will also be performed. 



By using the adaptive response rate instead of the 

fixed, the system response rate of the adaptive queueing 

time method will be increased. 

To show the increase in the system response rate, a 

first generation simulation rLll for the modified version of 

the adaptive queueing time method was performed, using 

conditions identical to those used for testing the original 

version in Chapter 5. 

The value used for y was 0.05. 

Graphs 8-1 and show the actual and the predicted 

lead times of two typical parts. 

It can be seen that the lead time of Part A is 

estimated correctly at the 8th attempt, which is the same 

as for the original version. 

However, the lead time of Part B is estimated correctly 

at the 2nd attelnpt, a reduction of seven attempts over the 

original version. 
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8.3 

To subject the machine shop to dynamic changes, the 

following patterns of demands on parts Ivere used: 

(a) STEP DEMAND 

102. 

With a step increase of: (i) 20%, (ii) 40% and (iii) 60% 

on the original demand of each part. 

The step demand Ivas applied at the start of the 

simulations. 

(b) SI~~SOIDAL DE~~ND 

With a period of: (i) 20 shifts, (ii) 40 shifts, 

(iii) 120 shifts and (iv) 240 shifts. 

On the basis of five shifts a week, these correspond 

to (approx.) (i) monthly, (ii) 2 monthly, (iii) half~yearly 

and (iv) yearly cycles respectively. 

The (peak-to-trough) amplitude was '120% of the original 

demand. This was superimposed on the demand, so that the 

highest and the low'est demands in the simulations \vere '160% 

and 40% respectively of the original demand. 

The sinusoidal demand was also applied at the start of 

the simulations 0 

The initial state for each simulation run was steady-

state obtained as described in Chapter 4. 

Each test was run for 800 shifts, at a shift length of 

8.00 hours. 

Data Set 1 was used. 



For the adaptive queueing time method with fixed 

response rate, a = 0.10 was used. 
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For the version with adaptive response rate, y= 0.05 

and YO."j 0 were used. 

8.4 RESULTS AND DISCUSSION 

The results are tabulated, as in Table 8-1. 

With reference to the results for the adaptive queueing 

time method with fixed response rate, in Table 8-1:-

As the step size is increased from 20% to 60% of the 

original demand, the mean of the lead time error histogram 

decreases from -0.38 shift to -0, shift. 

For the 60% step size, the most heavily loaded machine 

had a utilisation of 96% averaged over the whole simulation 

period. .' 

The dynamic disturbances caused by such a violent step 

increase in demand must be considerable. 

Yet the adaptive queueing time method was able not only 

to remain stable, but also to predict lead times quite 

accurately, as indicated by the mean obtained. 

For any of the sinusoidal demand simulated, the mean 

obtained is very close to zero. 

At the peak of the demand, the demanded utilisation of 

the most heavily utilised machine was about 96%; and at the 

trough, about 24%. 

Thus, despite the sustained large disturbances, the 

method again remained stable, and produced very accurate 

lead times. 



TABLE 8-1. The adaptive queueing time method with fixed and adaptive response rates. 

Shift length = 8.00 hours. 

Demand Step increase (%) Fixed Response Rate Adaptive Response Rate Adaptive Response Rate 
or Period a= 0.10 y= 0.05 . y= 0.10 

Pcak-to-trough (shifts) Lead Time Error Lead Time Error Lead Time Error 
amplitude(%) Histogram Histogram Histor:r;-;m 

Mean Standard Hean Standard Mean Standard 
daviation deviation deviation 

(shifts) (shifts) (shifts) (shilts) (shilts) (shif"ts) 

Constant -0.27 2.23 0.17 2.23 0.31 2.1.0 

20 - 0.38 2.85 0.10 3.00 0.40 3.12 

Step 40 - 0.51 3.13 0.18 3.49 0.47 3.53 

I 60 - 0.82 3.59 ·0.70 3.85 1.26 4.24 

{ 
20 - 0.20 2.20 0.11 2.49 0.38 2.90 

Sinusoidal 120 
40 - 0.23 2.81 0.16 2.75 0.22 3.41 

120 - 0.35 3.71 -0.28 3.93 -0.15 4.07 

240 - 0.17 3.68 0.02 3.68 OoJO 3035 
m 
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Hence the adaptive queueing time method with fixed 

response rate can be used for a dynamic real life job shop. 

With reference to the results for the adaptive queueing 

time method with adaptive response rate: y = 0.05 in Table 

8-1 :- The means produced by this version are higher than the 

corresponding ones produced by the version with fixed response 

rate. 

The means are also closer to zero. 

times produced are more accurate. 

Thus, the lead 

As the step size is increased from 20% to 60% of the 

original demand, the mean increases from 0.10 to 0.70 shift. 

From a manufacturer' point of view, these increases in 

the mean with increasing step disturbance are preferable to 

the reverse, as it is with the version with fixed response 

rate. 

For the sinusoidal disturbances, all the means (except 

one) are slightly positive. 

For the constant demand or steady-state case, the mean 

is also slightly positive. 

The standard deviations produced by this version are, 

in general, slightly higher than the corresponding ones 

produced by the version with fixed response rate. 

However, this version is preferred to the version with 

fixed response rate, because of the better accuracy of the 

lead times predicted, and the preference of a slight earliness 

to a, s.light lateness. 
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. With reference to the results for the adaptive queueing 

time method with adaptive response rate: y 
Table 8 1; 

0.10, in 

The means and the standard deviations are higher than 

the corresponding ones for Y = 0,05. 

Thus, should higher means be preferred, Y could be 

increased to achieve it, at the expense of increasing the 

standard deviations. 



CHAPTER 9 

CONCLUSIONS fu~D RECOMMENDATIONS 

9.1 CONCLUSIONS 

The conclusions reached in this research may be 

summarised briefly as the following: 

1 • Testing under similar steady-state conditions show'S 

that: of the four lead time prediction methods 

reported by Davies and McCallion et al., the adaptive 

queue time method gives the best accuracy. 

2. Its system response rate is at least as fast as that 

of the queueing theory with forward load method, 

and is faster than that of the adaptive lead time 

method. 

3. Testing under dynamic conditions, created by varying 

the pattern of demand, shows that it is able to remain 

stable and to give very accurate lead time estimates, 

even when subjected to very large and sustained 

disturbances. 

4. By changing the response rate of the exponential 

smoothing, used in the adaptive queueing time method 

from fixed to adaptive, the system response rate is 

increased. 



The mean of' the lead time error histogram is also 

increased at the expense of' increasing the standard 
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deviation slightly This is true f'or the steady-state 

conditions as well as the dynamic conditions. 

5. For the adaptive queueing time method using adaptive 

response rate, the increase of' the mean of' the lead 

time error histogram (and the accompanying increase of' 

the standard deviation), depends on the value chosen 

f'or y : the larger the Y , the larger the increase of' 

the mean. 

6. By changing f'rom fixed to adaptive response rate, the 

accuracy 

improved. 

of' the adaptive queueing time method is 

9.2 RECO~~NDATIONS 

Based on the f'indings of' this research, the author 

recommends that the next stage of' the research be the 

implementation of' the adaptive queueing time method with 

adaptive response rate in a real lif'e machine shop, f'or the 

accurate prediction of' lead times. 



APPENDIX 1 

Since the following informations for the parts used 

by Brittain was not available, it was generated randomly 

as below: 

(a)(i) The Random Generation of the Total Number of 

Operations for a Part. 

Graph 4-1 is the distribution of the total number of 

operations for a part, reproduced from Brittain's 

thesis. 

The cumulative distribution of the distribution was 

plotted, as in Graph A1-1. 

The right hand side of the distribution was assigned 

a linear scale of between 0 and 1. 

A random number generator, which generated random 

numbers on the scale 0-1, was used to produce random 

numbers. 

For each random number generated, a line was drawn 

horizontally to intersect with the distribution, to 

determine the total number of operations for a part. 

(ii) The Random Generation of the Operation Time for 

Each operation. 

Graph 4-2 is the distribution of the service time 

for an operation, reproduced from Brittain's thesis. 

The cumulative distribution of the distribution was 

plotted as in Graph A1-2. 

Then the operation time for each operation was 

109. 
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determined from the cumulative histogram, in the 

same manner as the total number of operation for a 

part. 

(b) The Selection of Parts For Data Sets 2 and J. 

To investigate the effect of job mix on the lead time 

error histogram, two sets of data, with characteristics 

different from that of Data Set 1, were generated. 

Data Set 2 has a lower mean, as well as a lower 

standard deviation, of the lead time histogram, than Data 

Set 1. 

Data Set J has a lower standard deviation, only, of 

the lead time histogrrun, than Data Set 1. 

To select parts for Data Sets 2 and J, the total 

operation times of the parts in Data Set 1 were averaged, 

and the value obtained used as a reference. 

Ne"\v parts w·ere generated, and their total operation 

times ·were compared with the reference. 

The new parts, whose total operation times were 

smaller than the reference, but were fairly close to each 

other, were selected for Data Set 2. 

When 20 parts "\vere selected, a simulation run was 

performed to see if the reductions in the mean and the 

standard deviation of the lead time histogrrun were achieved. 

If not, some parts were replaced by more suitable ones, 

until the simulation run showed that the reductions were 

achieved. 

112. 



The new parts, \\Those total operation times \\Tere 

slightly larger or slightly smaller than the reference, 

\\Tere selected for Data Set J. 

Similarly, \\Then 20 parts were selected, simulation 

runs were performed and parts replaced by more suitable 

ones, until the reduction in the standard deviation, only, 

of the lead time histogram was achieved. 



ALPHA 

AVEQT ( ) 

AVEUTL ( ) 

BDATA ( ) 

BDL 

BNUM 

BQ 

FIN 

FLOAT 

FLT 

FPO 

11 It. 

APPENDIX 2 

KEY TO THE SnmLATION PROGRAM 

Exponential smoothing constant 

Real array containing exponent 
queueing times 

smoothed 

Real array containing average utilisations 
of the machine groups (%) 

Integer array containing batch details BDATA(1) 
contains number of works current used 
in array. The remainder is divided into 
eight ,yord blocks: 

I

i) 
.. ) 
~~.) 
111 

iV) 

~~l) 
(Vii) 

(viii) 

Batch number 
Location in PARTT ( ) 
(Not used) . 
Remaining machining time of current 

operation 
Initial float 
Time elapsed since batch was placed 

into the machine shop 
Queueing time of batch at the current 

machine group 
Lead time to which batch 'vas originally 

loaded. 

Length of BDATA ( ) 

Number of batches completed so far 

Batch quantities 

Upper limit of the LQE ( ) 

Float on a batch 

Float on a batch 

Float per operation 



FWQ ( ) 

FWU ( ) 

HR 

L 

LCN 

LF 

LQ;E ( 

LQ;EINT 

LT 

LTE 

M 

MAXQ 

MACHS ( 

MCS 

MCSET 

MIN 

) 

) 

Integer array containing 'vai t times at the 
machine groups as predicted by the forward 
load program 

Integer array containing utilisations of the 
machine groups as predicted by the forward 
load program 

Clock counter, in hundred hour steps. 

Location in BDATA ( ) 

Location used in LQ;E ( ) 

Load factor = 0 
=:.: 1 

a change of state 
no change of state 

Integer array containing histograms of lead 
time, queueing time and of their errors 

Time interval used in ( ) 

Lead time 

Lead time error 

Location in PARTT ( ) 

Maximum number allowed in any queue 

array containing six items of informa­
tion for each machine: 

l
iii) 
iV) 
v) 
vi) 

Counter 

Counter 

Machine set number 
Total machining time done by the 

machine 
~ 0 if no job is on the machine 
Operation number of current job 
Float of current job 
Machining time ·left on current job 

since the start of the current 
operation 

Time increment in the machine shop 



]l.fPRO 

MTI:ME 

MN 

N 

NO 

OPNO 

OPS 

OPT 

PARTT ( ) 

PRD 

-10 sets 
of 3 

QSET ( ) 

QT 

QTE 

QUEUE 

RULE 

Maximwn period of forward loading 

Machining time done on each group 

Mean of the lead time histogram, queueing 
time histogram, or their error histograms 

Location of machine set in PARTT ( ) 

Number of parts used in each simulation 

The number of an operation 

Total number of operations of a part 

Operation time 

Integer array containing the information 
about the parts, divided into blocks of 
35 words: 

i) Part number 
ii) Total number of operations 
iii) Batch quantities 
iV) Raw batch value 
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v) Finished part value 

{

vi) Machine group number for 1st operation 
Vii) Operation time per piece 

_ Viii) Cost of machining time on the machine 
group 

Counter 

Queue location for each of the machine groups. 
Each location contains three items of 
informations: 

Location in BDATA ( ) 
The number of current operation 
Current float 

Queueing time 

Queueing time error 

The length of the queue at a machine group 

Rule number 



SCF ( ) 

SETNO 

SFWQ ( ) 

SH 

SL 

ST 

STD 

STSET ( ) 

TOTMCS 

USE 

WTP 

Stock control file ~ eight items of information 
for 20 parts 

i) 
ii) 
iii) 
iV) 
v) 
vi) 
vii) 
viii) 

Location in PARTT ( ) 
Shortage cost 
Current stock level 
Shortages 
Usage or demand 
Lead time 
Finished batch value 
Quanti ty in w·ork-in-progress 

Total number of machine groups 

Integer array containing smoothed waiting 
times obtained from the for,v-ard load 
predictor 

Shortages 

Stock level 

Lower limit of LQE ( ) 

Standard deviation of the lead time histogram, 
queueing time histogram, or their error 
histograms 

Integer array containing information about 
each machine group: 

(not used) !i) .. ) 
~~.) 
111 

Total number of machines in the group 
Load factor = 1 all machines occupied 

= 0 not all machines 
occupied 

(iV) (not used) 
(v) Queue length 

Total number of machines 

Demand or usage of stock 

Quantity in work in progress 
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APPENDIX 3 

LISTING OF THE SI}rrTLATION PROGRAM 



c 
c c c c 

c 

c 
c c 

MACHINE SHelP sr'-IULAT[Uf.4 
*~****~~**awa.*a*aa ****u****~~~*w.~.*. *.* • 
• APPROACH 0SINij AUAPT1VE "Alrl~G TIME 
• IGT=AL~HA.I~T.( t.-ALPHA).AVEQTC~CS) 

DIMENSIOtl AVEQT( lO)JAVEuTL( 10)lt:lOATA(IIOul )lrliQC lO)JF"WU( 10) 
1 p Ii u MAC t I ( I 0 ) I l. U A Ij ( 1 0. 100 ) p L '" [ ( ') 1 J <! 2 ) , MAC H S ( lOp 6 ) p M TIM E ( 10) 
2 IPAHTT(1150),Q~Er(lO.LOOp3)pKANKC1UO).SCf(50.9)'5FHQ'1U) 
l .. 5T(!(JCl()JST~Ef(lOp'.'>)PuTIL( LO) 

COMMON /Cl/AlPHA.AVl~T.AVlUrl'RUATA~HETA,CAPpFLOATpfWQJFriUJHRJLOAD 
1 JluEl~TILT'LTSF'MACHS'MlN.M~'MTlMl .. OPT,PARTT'PROINT,Q~ET 
2 'HLUA~,SCF,SFn~,ST0,5TUJ,SrSET,~[PT'WU~K 

COMMON /L2/bOL/~~,F1N,F~'11fT'HUMA~~'IP'L'LCN,~F~LUE'lTS'M'HAXQ,MCS 
5 'HC~(lpMPri~'N'NU'NKTUNU'O~NO'UP~,~Hu'wUtUE'HANKIRULE,~ETNU 
6 » ~ L , S rt1 5111 F T , ::, Ii L , :, T , T u T I~ C ::, I :J S t. , 11 I P , \1 K , rl K L. 

INTEGER AvlaT'8nATA.CAP,FLnAT,Frl1.F~U.HH'LOAO'LQEINT'LT 
1 , HAC 11 S , r·: 1 N , r~ TIM t.: I UP T • [) P TT I t-I, ~ ti: U 1 NT, PAr( TT • Q ~ E T H~ LOA U 
2 p S U' , Sf l'i Il , S T [) Q • !:l T S t: T, _/ 1 PT. ~1 OIO( 
J ,opTIH[ 
• 'Bul'~Y.FIN,FSrlIFT'HUMACH'!P'l,LCN'LF'LQE'LTS~M'MAXQ'MCS 
1 'MtSlT'~PHD,~.:~U.N~TUNO,OPNO'OPS,PRD,QUEuE.RAN~'HULE 
2 , S £: TN 0 , S L , ~ H • S tI 1fT, S ti L • S T , 10 T Me S , u:) £ , HIP, vi K , W K I. 
.3 ,UUiA[)lJ,LOCAH 

REAL L TSF"MN.STlJ.I.jNHI15.~TDHHS 
REAO(Sp5) HULE.SETNO.TUTM~5'NOp~DL'~AXQ,FSHIFT,NxrBNO 

REAU(S.S) LCEINT,PROINT.MPRD,ST.FIN,$HL 
RlAOC5.~} ALPHA,lTSf 
READ(5.~} (AVEaTCI),I=l,SETNO) 
REAU(5,~) (SfwQ(!),l~ll~~TNO) 
REAU(S,5) (AVEuTL(I).I~l,SETNOJ 

5 FORMAT< 10(13.2) 
~RITE(b,9) (AVEUTL(l).I~l,SET"O) 

9 fORMATC/5X,'AVEUTL=',10ulO.2) . 
WHITE(6.20) (AV£UT(I)'I~l,S£TNO) 

20 rORMATC/SX, tAVlYT~',10G10) 
WKITE(6.10) RIJLE,SETNU.TJT~CS'NO,aQL'MAXQ,rSHIFT'NxrBNO 

10 f 0 fHI A T ( / ':J X, I f{U L £ '" ' , \14,2 X, I S ~ r NO'" ' , G 'I, 2 X, ' TOT 'I C 5:: I, G 1+ , 2 X, • NO'" • )I Gil.ll 
1 2X,'lJUL= I,Ci4,2X .. '/1AX,..l:: ',G'1.2X,'FSHIFT",',G41 
i2 2x,'NXTllN(]::',G4) 

WRITEC6,(1) lQEIHT,PRI1[Nf,MPKD,FIN,sT,SHL,ALPrlA,LTSF 
11 fOR M A TC 15 X, , L Q E I r-, T:: , , li 5)1 5 X, , P R [) I NT" t , Ci ,:), 5 X .. ' M P R D" I , G 5 ~ 5 X, 

1 'fIN'" ',GS,~x,'ST::: ',(j5,5X,'SHl.'" ',651 
2 15X,'ALPHA=t',G7.Z,5X,'LTSF:',G7.2) 

TO REAU IN INFOHHATIUN~ AlJUUT JJdS .- SET UP PARTT ARRAY 
C ALL INPuT 

READ IN THE INITIAL STATES OF THE MACHINES AND INFORMATIONS ABOUT 
THE 8ATCHES 

I'iKL=5·St1L 
ROAT IIC 1 )~BOL 
00 12 I::I2,BUI. 

12 BOATA<I)=O 
DO 13 I=l;SETNO 
DO 13 JnlpMAXQ 
00 13 Kal'] 

13 QSETCIpJpK):>O 
. SET UP STSET,MACrlS,rlUMACtl ARRAYS. AND SCF,dUATA,QSET ARRAYS 

CALL RfLOAO 
DO 23 IJ mlpTUTMC5 

23 MT 11'1[( [J)l<IQ 
JS"!:.ETNIJ"'2+2 
DO 30 1"1.-51 no 30 J"'\'J~ 

30 UIE<I,J):'110 

00 200 IP s l,fSHIfT 
I'IRITU6,47} IP 

47 FORHATC/1X,·START OF SHIFT t ,15,' •••••••••••••••••••••••••••••••• , 
fiR Rq) 

To LOAD BATCHES INTO THE MACHINE SHOP'" SET UP BOATA ARRAY 
118 CALL !:lLOAD 

TO lO-O JO~S ONTO TH£ MACHINES FROM YUEUES USING A PRlunlTY RULE 
50 I<!INmSHL"'Hk· 



c c 

c c 

c c 

c 
c 

c c 

c 
c 

rrCMIN.LE.O) GO TO ll0 
CALL JOBLO 

TO DEl NEXT EVENT 
60 no HO uCS~l,ToTMCS 

Ir(M~CHS(HCS,3).£QeO) GU TO dO 
If(MACHS(MC~,6).GT.MIN) GU Ta 80 
MIN'" MAC Ii SCM l, S jI 6 ) 

60 CUNTINUE 
HK"lHR+MIN 

To ADJUsT PARAMETERS OF HATCHES E~ QUEuES 
00 100 I"l,St::TNU 
~UEUE~STS[T(II5) 
If(QU[u[.[Q.O) GO To 100 
o 0 9 J J ,. 1 } (HI t: U E 
QSET( I'JpJ)"'OSEH I,JI3)"HIN 
LIllQS(TC I,J,l) 
BDArA(L+5)~tiDATA(L+5)+MIN 
BOATACL.6)D~UATA(L.D).MIN 

90 CONTINUE 
100 CONTINUE 

110 

120 

125 

130 

141 

142 
143 

210 

153 

154 

155 

To AnJusT PARAMETERS OF BATCHES oN MACHINES 
no 125 MCS=l,TOTMCS 
Li:t-IACHS01CS,3) 
OPNUgMACHSCMCS,q) 
IF(L.EQ,0) GO TO 125 
~ACtlS(MCS .. 6)=HACHS(MCS}6)"MIN 
MACHS(MCS,2J=MACHSCMCS,2)+MIN 
~TIH[(~CS)·MTI~f(MCS).MIN 
BOATA(L+3J a uOATACL+3}-MIN 
8DATA(L.5)·~UATA(L.~).MIN 

To ADJUST PARAMEYERS If AN OPERATION 15 COMPLETED 
IF(MACHS(MCS,6}.NE.O)GO To 125 
FlOATaMACHSCMCS,S> 
DO 120 J= 3.d) 
MACt1S(4C:)I'J)tlIO 
CONTINUE 
MCSlTDMACHS(MCS,l) 
STSETCMCSET,3)=O 
[lPNU::::OPNU1'l 
CALL FOHNQ 
CONTINUE 
GO TO SO 
CONTINUE 

120 



c 
( 

C 
C 
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c 

c 

c 

c c 

c 
c 

122. 

SU8HOUTINE uLOAD 
OIMtNSluN AV£Of(lO),AVEuTLC10),BDATA(q001),FHQ(IO),rwUC10) 

1 'HUM~CM(IO)pLOAU(lu.IOO),L~E(~1,22),NACHS(IO,6)'MTIME(10) 
2 ,PAPTT(17~O),U~lr(.O,IUO,3)'"A~~(100),SCf(~O,8),Sr"Q(1u) 
J .. STUQ(lO),:';TSET<lO.~,i) 
CO~1MON ICI/ALPHA'AV£QT'AvlUTL'~DAT4p~ETA,CAP,FLOAT'fHQ,fwu'HR,LUAQ 

1 'LQ[lhT;LT}LT~f'MACHS'Ml~'~~'MTIMt'Opr,PA~TT'PRDINT.Q~ET 
:2 , k L U A II, S cr , Sf t'1'~ , S T J, S T:l J, S T SET, " I IJ T , rl U R ~ 

COM MeN I C 2 ( b D U tH,,J F I,,, F ~ '1 1 F T , H u ~ A C >'i, [P, U LeN, t, F ~ L Q E , L T ~ , M, M A ~ Y ... Me S 
5 , He S E. J , M P II D , N, r j Up ;j x 1 d h J; rJ P rH) , l; i"' S , I" tW , U U t. u E • K AN K , H U l. E , ~ ErN tJ 
6 ,SL'SH,SHIFT'S~l,~T,T~TMCS,USl,"IP,nK'HKL 

INTEGEH AV(QT,bOATA.CAP,FLOAT.Frl~.Fnu.rl~'lOAU'LQEINT,LT 
1 ~MACHS}~IN.~TIM~.Orl,o~rTI~'~RulNT,PAKTTjQ~ET~kLOAO 
2 ... SCf.SFhQ'5TC,.STSET.~IPT.~OrlK 
J ,u~TIM~ . 
• ,BUL,8Q,FIN,fSHlfT,HU4ACH.IP'L,LCN.LF.LGE.LTS,M.MAXQ,MCS 
1 'MCSET'MPHU'N'NU.NXT~NO,OPNO'OPS,P~O,~UEuE,RAN~,RULE 
2 ,S[T~O'SL'S~.SnIFT,SHL,ST'TUT~CS,US(.rlIP'~K'WKL 
3 ,~CHADU'LOCATE 

REAL LTSf,MN,STU 

DO /10 Jc l.dJG 
MgSCF(.J,l) 
SLlilSCF( Jd) 
SHc:::.CF(JII!) 
USE"SCFtJ,S) 
liIP"SCFCJ .. a) 

OPS2:PARTTCM+l) 
. ISUMeO . 

00 5 l:l,OPS 
NElM'l' 311 1+2 
MCSmPARTTCN) . 
ISUM~ISUM+AVEOT<MCS)+OPTIME(M'N,PARTT) 

5 CONTll'.U£ 
LT .. ISUM 
LTS=CISUM.O.999~SHL)/SHL 
SCfCJ.6)"LT 
lTU=LTS*USE 

8 If{SL+Wlp·SH.GE.LTU) GO TO 40 
l"'8CHADIH ~OATA) 
FlDATA(L)=fiXTBNO 
N X T 11 ~j at: N X T b NO'" 1 
BDATA(L+l)=M 
BDATACL+2)-PAHTTCM+]) 
N"'Mi'5 
BDATACl+3)=UPTIM£(M;NIPARTT) 

!~ esc PAR T T( N ) 
f"LOATuO 
IOPT=O 
00 25 r .. l,oPS 
N"~1+3j1rI+2 
MCS"PARTHN) 

15 nPT=OPTIME(M,N,PARTT) 
{OPT"IOfT+OPT 
fLOAT=FLOAT+AVEGT(MCS) 

25 CONTINUE 
RDATA(Lt4)=flOAT 
BOATACL",S)<30 
BDAlA(Ltb)"'O 
l T"lGPT+Fl.OAT . 
80ATA(L+7)=l.T 

UPDATE wORK IN PROGRESS I 

A Q '" PAR T T , ~l '" 2 } 
I~Ip"'\'.IP+BO 
SCf{J,e )"wIP 

PLACE THE bATCH INTO TME APPRQPRIATE QuEuE. 
OPNO·d 
CALL FORMQ 

40 28Nf?N8E 
WRIT[(6,45) NXTSNO 
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c 
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c 
e 
c 

c 
c 

c c 

c c 

128. 

SU8kOUTI"'E PRIOt{ 
DIMENSIuN AVloT(10),AVEuTLC10),BOATAC4001},fwQCIO).rwUC10) 

.. HUIHCt-t( 10).LOAO( lUI 1(0),LiJ«,)lp22),~ACHSC 10p6)p~TIME(10) 
,PAHTTtI7~O)/U~[TCIOJ100.1)'HANKtlUO).SCFC50,8J,SFnQ<10) 
,STOoC 10),::.15[1 (Hu:;) 

OM~~ON ICI/Al.PHp'AVEOT'A~~yTL'HOATA,8ETA,CAP'FLOAT'fWQ.fWU}H~'lOAO 
1 , L i..l I I'< TIL 1 , l T !> ~ I Mile 11 S, "1 ! N I 'lIU M TIM U uP T • P A H rr • P R DIN T , Q:, ET 
2 .RLUAU.SCf,Sf"~,SIO/5TOQ/ST!>ET,~IPT'wU~~ 
COM~, 0 N I C 2 luG L • b (J , F 1/11 F :.. H 1FT , ! 1 U 'I A C ..j. Ii", L , L C 1'0 L f .. L 0 ( , l T S , M , M A X Q , Me S 

5 'MCSET'HP~n,N/r'O'hXlbNO,OP~~.u~s,P~u,~U(UEpHANK,HULE.:,ETNU 
b , ~ LIS 11 , S H 1FT, S II L , ~ T , T :J r .~ C S IUS t. , Yl I r' , N K I ~i ~ L 

IN T [G ERA V (Q T p flO AT" » CAP p F L. J AT p F rll , F)I U, H t-l p LOA U p L Q E IN T , L T 
1 'MACHS'MIN,~TIME,OPT'OPTTI~'PHDINT,PARTJ,QSET,"LOAD 
2 ,SCf.SF~Q'~~OQ,5TSET'rllPT'~OriK 
l ,OPTIN~ 
• 'AaL'B~'FIN,FSHlfT'HUMACH'lP'l,LCN,Lr'LQE'LTS'M'MAXQ'MCS 
1 'MC~ET,~PHD,N'NU'~XT~~G,Oo~U,OP~,PHU,QUEUE,RANK,RULE 
6>! , S £. T N rjp !) L • S Ii , :, 11 ! f T , S H L " 5 T , r Q T Me !H U:> E , Ij 1 P , ~iI\.~ \~ I<L. 
3 '8l~ADU'LOCATE 

REAL LT~F'HN,STo 
Kal 
IFCQU[UE.EQ.l) GO TO 15 

GO TO Cl,3,s,r,,9,11),RUlE 

MINI"lUM FLOAT RIIl.E (Ill) 
IMIN"IOOOOOO 
DO <: r"l,QuEUE 
FLOAT=QSET(~CSET,I,l) 
IfC~lOAT.GE.IMIN) GO TO 2 
KOlI 
I M Ifj !l FLO A T 

2 CON1INU[· 
GO TO 15 

1 ST BATCH VALuE RULE (~2J 
:3 IMlr~IlO 

DO 4 Iml,QU[UE 
L=OSETCMCSf.T,I,l) 
M"'8UATA(l+1) 
FPVcPARTT (M+4) 
BVALUE=fPV*bDATA(L+S)/BUATACL.t, 
IF{bVALuE.L[&!M!N) GO Tu ~ 
KIJI 
IM!Ng:8VALUE 

4 CONTINUE 
GO TO 15 

2 NO BATCH VALUE RuLE (a) 
5 IM!J''Is.O 

DO b !ll:1..QUEU( 
L=O!>ETCMCSETpIJ1) 
M"'BLJATACL+l) 
FPV=PtdHT<M+4) 
BVALuEgFPV*(HDAIACL+S)/HOATACL+l» •• 2 
IFCbVALul.LE.IM w) GO Tu 6 . 
K=I 
IM!t,:;:BVAlUE 

6 CONTINUE 
GO TO 15 

SH~RTEST IMMINENT OPERATION RULE (~qJ 
7 !MIh=10000QO 

DO e l"'lpQtJlUE 
lIJQ&ET(MCSET.I~l) 
1I~ M lJ P N"' t:3 D A T At L '" 3 ) 
IF(lHMOPNtG(IIMIN) GO Tu 8 
Kill 
1M 11'01 I MMOPN 

6 CONTINUE 
GO TO 15 



c 
c 

c 
c 

c 
c 

MI1IBDJllACL+i) 
OP~U~QStT(MCSlTplj2) 
OPSnPAfiTTOli'l) 
REMACH"O 
00 100 J a OPNO,OP5 
N""1'I']*J+2 

100 REHACHmfjlMACH+OPTIM[CM,N.PARTT) 
IfCHEMACH.Gl.XMIN) GO TU 1Q 
Ka l 
IMI~"R[M;\CH 

10 CONTINU£ 
GO TO 15 

flkST COME fIRST SERVEO RULE (g6) 
11 IM1","'0 

00 12 l:d p QU(UE 
L"Q~ET(MCSET,I,l) 
rCO~E~BOATA{L+6) 
If(fCOME.L£.lMIN) GO TO 12 
K"l 
IMINtlfCO"1E 

12 CONTINUE 

INFORMATIONS REGARDING THE'8ATCH SELECTED& 
15 LmQ~£T(HCSETpKpl) 

OPNU~QSET(MCS(TpK,2) 
rLOAT=JStr(~CSEr;K'3) 
Ir(K.EQ.QUEuE) GO TO 25 
If(QUEUE.Eo.l) iju TO 25 

ADJUST QSET AfTER A ~ArCH IS SELECTEO. 
J=QuEUE"'l 
DO 20 r:::K,J 
QSE1(MCSET,I'1):Q~ET(~C5ET'I+l,1) 
QSET(MCSET,i'2)·Q5Er(~C~ET .. I.l,2) 

20 QSE1(HCS(T.I,3)=QSET(MC~ET'1.1,l) 
25 QSET(MCSET,uUEU(,l)=O 

QSET(MCSlT.uuE0E,2):O 
QSET(MCSET9UUEUE_3)~O 

30 RETuRN 
END 
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c 

c 

INTEGER FUNCTIUN ACHAOOtBOATA) 
lNHGER 8UArAt4001)pH.JulL. 
8DL=AOATAC 1) 
OU 10 [L"~?pt;[)L'!L 
IFCHDATACIL)oN[on) ~O TU 10 
FlCHADO"IL 
RET URi~ 

10 CONTlNU( 

WRITE(6,20) 
20 FORI~AT(//5X) '[30ATA OVERFLOli') 

W R I T E ( 6 , J 0) CUD A T A C 1 ) , [ :: .! ) tJ U L ) 
30 FORNATC/SX,'BDATAn',C/lx,1618'» 

STOP 
EN\) 

INTEGER FUNCTION OPTIMEtM,N,PARTT> 
INTEGF.H PARYT(1750)p~)N 
npTIMEcPARTTCM.2)~PARTTtN.l) 
RETURN 
[ND 

-1 JJ. 
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