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ABSTRACT 

The influences of processing parameters and tool feature on the microstructure of AA1100 and AA3003 

aluminium alloys were investigated using bobbin friction stir welding (BFSW). The research includes flow 

visualization and microstructural evolution of the weld texture using the metallographic measurement method. 

Results indicated that the operational parameters of the welding (e.g. feed rate, rotating speed) and the geometry 

of the tool can directly affect the flow patterns of the weld structure. The microscopic details revealed by the 

optical and electron microscope imply the dynamic recrystallization including grain refinement and precipitation 

mechanisms within the stirring zone of the weld region. The microscopic observations for the weld samples show 

a better performance of the fully-featured tool (tri-flat threaded pin and scrolled shoulders) compared to the 

simple tool without inscribed surface features. The fully-featured tool resulted in a more uniform 

thermomechanical plastic deformation within the weld structure along with the precipitation hardening and the 

homogeneity of the microstructure. 
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INTRODUCTION 
 
 

Bobbin Friction Stir Welding (BFSW) is a relatively new joining technique [1-3] which 

has been received significant attention by industry for solid-state processing of deformable 

materials, e.g. aluminium alloys [4]. Compared to convention FSW (CFSW) [5], the BFSW 

technique is an innovative variant of the tool design [6-8]. However, to optimise the weld 

quality, the process parameters and operational variables need to still be fully understood.   

Regarding the quality control of the weld, the CFSW also has inherent problems which 

need technical consideration to obtain a sound weld [9-11]. For instance, regarding the stirring 

zone (SZ), the improper engagement of the pin tool and the workpiece causes incomplete 

penetration to occur, creating discontinuity defects within the weld structure [12-14]. Moreover, 

the vibration disturbance needs to be avoided during the process, which requires anvil and 

clamping rigidity [15]. The BFSW technique as a self-reactive FSW process does not 
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necessarily require the complex and relatively costly fixture and backing anvil to compensate 

the reactive forces to induce sufficient and effective material flow within the SZ [16]. Unlike 

BFSW, CFSW requires exact plunged depth for the tool so that formation of the root flaws can 

be avoided [17]. However, not only BFSW, but also CFSW are excellent candidates to join the 

aluminium alloys as the other processes of welding such as fusion welding are rarely used on 

such active alloys [2]. Porosity and hot cracking usually occur if the aluminium alloys discussed 

are fusion welded [18].  

BFSW is known as a variant of FSW, however, it has very different characteristics within 

the weld structure, where the plastic flow regimes and the relevant microstructure is different 

from the physics accepted for the CFSW process [18]. The general geometry of BFSW’s tool 

consists of two cylindrical shoulders with a pin in the middle. By rotation of this single-piece 

tool, the mechanical interaction between the tool components and the workpiece generates the 

frictional heat and plastic stirring in the contact surfaces [19]. In BFSW process the backing 

anvil is replaced with a rotating bottom shoulder, whereby the heat input and the plastic flow 

are elevated compared to the CFSW [8,20]. Moreover, the axial force required in CFSW is not 

required in BFSW. Instead, the compression ratio is used as the variance between the actual 

thickness of the workpiece and the biting gap at the edge of shoulders. This provides enough 

engagement between the mass and the tool during the stirring action, while the rotating tool 

moves along the butt-joint interface [6]. The geometry of the bobbin-tool can provide 

approximately symmetrical microstructure as the tool is perpendicular to the welding direction, 

and simultaneously rotates and advances between the advancing side (AS) and retreating side 

(RS) of the welding locus [7]. Eventually, the interaction between the tool and the workpiece 

at the working region (stirring zone, SZ) forms a symmetrical flow-pattern in the top and bottom 

portions of the SZ, at the proximity of the rotating tool [21]. This is observable as an hourglass 

pattern at the cross-section of the weld, which is different from the basin-shaped pattern of the 

weld-region in CFSW weld samples [22]. The special double-sided bobbin tool design can work 

on a material which has up to 25mm thickness, because of sufficient heat which is created and 

maintained by the double rotating shoulders, connected by a centred-pin in the middle [23]. 

However, all these add complexity in flow-structure and microscopic details of the BFSW weld 

[24,25], compared to the CFSW. Thus, there is more investigation required regarding 

identifying the effective variables of the BFSW process, to obtain the necessary defect-free 

weldment under optimized welding condition.  

To achieve the higher quality in the manufacturing, the variables of the process, for 

instance, the design of the tool, appropriate processing parameters and the simulation of 

material flows need to be optimized [26]. In this paper, the potential development of BFSW is 

the subject of investigation, where the weld structure and internal flow details are studied for 

two grades of aluminium alloy. By applying different welding speeds (rotational and 

advancing), and different bobbin-tool designs, the effect of the tool’s features and processing 

parameters are compared between AA1100 and AA3003 aluminium plates with the same 

thickness. The metallographic analysis (optical and electron microscopy) can reveal the details 

of the microscopic evolution and flow mechanism within the weld region. 

The comparison between the microscopic characteristics of the weld region, internal flow 

features, and the anatomy of the defects (e.g. tunnel void) can give better understanding of the 

mechanism of the bobbin friction stir welding. The alteration of the weld microstructure in the 

middle of the stirring zone, compared to the transition regions (thermomechanically affected 

zone and heat affected zone) can explain the mechanical grain refinement caused by the stirring 

action. Also the void formation originated from the inconsistency of the welding parameters 

can explain the insufficient material flow within the stirring zone, induced by the rotating tool. 
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Therefore, obtaining a defect-free weldment with a uniform grain structure can indicate the 

optimum welding parameters for the BFSW process.   

 

 
EXPERIMENTAL 

 
 

Characteristics of AA1100 and AA3003 aluminium plates 

AA1100 is a commercially pure aluminium alloy from the 1xxx series of wrought 

aluminium-based alloys. The AA1100 alloy with a standard element composition was chosen 

as the best candidate for the FSW process, because of excellent deformability characteristics. 

The chemical purity and stabilized microstructure can easily reveal any flow-based defects or 

weld contamination during the FSW process. If the applied welding parameters lead to 

unsatisfactory results for this alloy, it likely will not be suitable for obtaining a sound weld for 

other grades [27].  

AA3003 from 3xxx series is considered a wrought aluminium alloy with good 

machinability, formability, weldability, resistance of atmospheric corrosion, and moderate 

strength. AA3003 is wildly used in a range of industries such as chemical and food, as well as 

many building products. Even though AA3003 belongs to the wrought aluminium-manganese 

family, it is a non-heat-treatable alloy, and the microstructure cannot be adversely affected by 

the plastic deformation or heat-input during the FSW process.  Compared to the 1xxx series, 

AA3003 has higher tensile and elongation strength at elevated temperature. All these make it a 

good candidate to be investigated for the microstructural and flow-induced properties under the 

FSW processing.  

The chemical composition of the AA1100 and AA3003 aluminium alloys, analysed in 

elemental details, are listed in Table 1. 
 

 
Table 1. Chemical composition of the AA1100 and AA3003 aluminium alloys,  

measured in elemental detail (wt. %) 

AA1100 Aluminium Alloy AA3003 Aluminium Alloy 

Chemical Element Composition (wt.%) Chemical Element Composition (wt.%) 

Zinc (Zn) 0.006 Zinc (Zn) 0.10 

Manganese (Mn) 0.016 Manganese (Mn) 1.20 

Silicon (Si) 0.138 Silicon (Si) 0.60 

Copper (Cu) 0.090 Copper (Cu) 0.12 

Iron (Fe) 0.182 Iron (Fe) 0.70 

Chromium (Cr) 0.030 Zirconium (Zr) 0.10 

Magnesium (Mg) 0.007 Cobalt (Co) 0.10 

Aluminium (Al) Balance Aluminium (Al) Balance 

 

 

The features of the Bobbin-tool 

The significant components of the bobbin-tool are a pin, connected between the top and 

bottom shoulders. For a uniform flow regime induced by the tool action, the pin is required to 

have a symmetrical design. To increase the efficiency of stirring action, a thread like feature is 

usually required as it can benefit the vertical material flow circulation at the proximity of the 
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pin. However, it cannot be excessively coarse on the pin, because of the consequence of 

excessive flash, or clogging by the plastic mass. The existence of grooves could create vertical 

resistance and cause remnants of material on the pin, which is also known as cutting effect [28]. 

As a result, while the tool is keeping adequate heat to break the boundary of grains when it 

transverses to certain welding directions, the material in the SZ does not fully bond with 

adjacent portions. Also, threads in the pin should be designed either only on clockwise or anti-

clockwise, otherwise the material flow could be stalled or delivered from the centre to the 

surface and increase defects such as incomplete joints, voids and beads, as inappropriate flows 

are produced by unsuitable direction of the threads. The flat feature helps the bonding process, 

which has a similar function during the stirring as the thread but in the horizontal direction [29]. 

Another well-known feature is the scroll patterns which inscribe a spiral pattern on each of the 

shoulders [30-33]. The process of recrystallization and reforming grains is affected significantly 

by the shoulder, as the heat which is created from the friction of the shoulder and also the pin. 

The spiral scrolls on the shoulder, similar to the pin threads can conduct the mass flow inwards, 

and avoid the escaping of the plastic mass from between the shoulder and workpiece, while the 

rotating tool moves forward through the weld-line. Consequently, the compression ratio for the 

spacing of the gap between shoulders is particularly important to produce the compression of 

the mass flow mixing from the AS and RS at the proximity of the pin, while the rotating tool 

travels forward. 

Two variants of BFSW tools are used in this experimental work, while the tool dimensions 

are the same, the surface geometrical features are different (Figure 1). A single-piece bobbin-

tool without any surface features were utilized for BFSW welding of AA1100 plates, as it is 

considered the basic soft material will show the principles of this solid-state processing (Figure 

1a). A fully-featured fixed-gap bobbin-tool comprises a tri-flat threaded pin, and scrolled 

shoulders were considered for the processing of the AA3003 plates (Figure 1b). Both bobbin-

tools were made of H13 tool steel, with hardness of 560 HV. The geometric details of the 

bobbin-tools are listed in Table 2. 

 

 

Fig. 1. 3D schematic of the bobbin-tools, utilised for the welding of the aluminium plates; (a) single-

piece bobbin-tool without surface features, utilised for BFSW processing of the AA1100 aluminium 

plates,  (b) fully featured (threaded tri-flat pin, with scrolled shouldered) fixed-gap bobbin-tool (threads 

that run in one direction), used to weld the AA3003 aluminium plates 
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Table 2. Geometric details of the bobbin-tools utilised for BFSW processing of AA1100 and AA3003 
aluminium plates 

Bobbin-tool Simple tool 

(used for AA1100) 

Fully-featured tool 

(used for AA3003) 

Tool holder 12 mm (diameter),  

26 mm (height) 

12 mm (diameter),  

26 mm (height) 

Top shoulder 18 mm (diameter),  

20 mm (height) 

18 mm (diameter),  

20 mm (height) 

Pin 8.5 mm (diameter), 

5.8 mm (height) 

8.5 mm (diameter),  

5.8 mm (height) 

Bottom shoulder 18 mm (diameter),  

7 mm (height) 

18 mm (diameter),  

7 mm (height) 

Number of threads None 3 

Number of flats None 3 

Compression ratio 3.75% 3.75% 

 

Welding processing 

The AA1100 and AA3003 aluminium plates of 6 mm thickness were used as the workpiece 

material for two sets of 1xxx and 3xxx welding trials, respectively. For each welding test, two 

plates were arranged side-by-side, with the dimensions of 250 mm (length) × 75 mm (width) × 

6 mm (thickness), in the butt-joint position with no gap between the plates. To compare the 

weld structure in different conditions of the welding process, a variety of the welding speeds, 

clockwise rotational speed, ω, and advancing longitudinal speed, V, were applied for the study 

of the weld texture and flow behaviour in different stirring regimes. In this regard, a set of tests 

were run at ω (350–600 rpm) and V (150–400 mm/min). Six sets of speed values (ω, V) were 

selected for AA1100 and AA3003 plates, applied in identical welding condition, only with 

different bobbin-tool designs for each grade. Table 3 presents the condition of welding trials in 

detail. A 3-axis CNC machine (model MX-45VAE, OKUMA brand, Japan) was utilized for 

welding of the plates, rigidly fixed under the fixture and strap clamps, with no pre-heating or 

post-heating treatment during the process. After conducting a single-pass weld-line, the 

weldments were cut along the transverse direction, at the middle of the weld locus for the 

metallographic measurements. 

 
Table 3. Specification of the operation parameters for the AA1100 and AA3003 BFSW weld sample 

Welding Speed Sets Aluminium Grade Tool feature Tool 

Material 

Tool 

Entry 

Working 

Temperature ω  

rpm 

V 

mm/min 

Advance per 

Revolution 

(APR) mm 

350 150 0.428 AA1100 AA3003 Simple bobbin-

tool 

(AA1100) 

H13 

Tool 

Steel 

Plate Edge 18 °C 

400 200 0.500 

450 250 0.555 

500 300 0.600 Full-featured 

bobbin-tool 

(AA3003) 

H13 

Tool 

Steel 

Plate Edge 18 °C 

550 350 0.636 

600 400 0.666 
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Metallography procedure 

To achieve the required standard of smooth mirror surface for etching and metallographic 

measurements, all the samples were manually ground and micro-polished. Then, using different 

etching solutions the microscopic details and flow structures were revealed. By using the light 

optical microscope (Olympus Metallurgical Microscope, Tokyo, Japan), and Scanning Electron 

Microscope (SEM) machine  (JEOL 6100, JEOL Inc., Peabody, MA, USA) equipped with the  

Electron Backscatter Diffraction (EBSD) detector (HKL Nordlys III, Oxford Instruments plc, 

UK), the details of the microstructure were analysed via micrograph images. The details of the 

metallographic measurement are introduced in the next section. Figure 2 shows the analysing 

procedure. 

The cross-section samples were mounted using EpoFix resin to be safe from any physical 

distortion and increase the efficiency of the polishing procedure. The mixed resin powder and 

hardener were cast in a cylindrical mould container, while the sample was placed faced down 

in the container, fully covered by the resin material. The Buehler Grinder was used for the entire 

process of grinding and miro-polishing of the mounted samples. Initially, the trial of grinding 

was conducted via the fixture (Figure 3) followed by the manual polishing, according to the 

instruction listed in Table 4. The smooth mirror surface was attained through the micro-

polishing procedure with a series of Polycrystalline Diamond Suspensions (PDS) from 9µm to 

0.6 µm (1sec. spray and 30sec. off). For the final step of micro-polishing, the samples were 

polished with a micro-cloth pad with Master Met (Colloidal Silica Polishing Suspension) and a 

stream of deionised water instead of PDS. The final polished samples were washed by ethyl 

alcohol, and then dried using hot air.   
 

 

Fig. 2. The flow of the metallography procedure indicated how the trial is done 

 

  

Fig. 3. Grinding of mounted samples; (a) Fixture of the automatic grinder; (b) Mounted samples 
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The AA1100 weld samples were etched by a direct immersion the Keller’s etchant (95 mL 

H2O, 2.5 mL HNO3, 1.5 mL HCl, 1.0 mL HF), for 30 seconds at 50°C. The AA3003 weld 

samples were etched using a reagent solution of (25 mL CH3OH, 25 mL HCl, 25 mL HNO3, 

and 1 drop HF), for 60 seconds at 70°C. 

 
Table 4. Details of grinding and polishing procedures for the samples preparation required for 

metallographic measurements 

Grinding stage Surface Rotating speed Direction Force on sample Time 

P180-grit 120 rpm +90° Around 6 Lbs. 2 min/pad or till 

plane P280-grit 

P400-grit Around 5 Lbs. 3 min/pad or till 

plane P600-grit 

Polishing stage Polishing 

suspension 

Rotating speed  Direction Force on sample Time 

9 µm PDS 120 rpm +90° Around 5 Lbs. 3 min/ PDS or till 

smooth surface  6 µm PDS 

3 µm PDS 

1 µm PDS 

0.6 µm PDS  Around 8Lbs 3 min/ PDS or till 

mirror surface 

Final micro-

polishing stage 

(MasterMet) 3 min 

 

 

 
RESULTS AND DISCUSSION 

 

Material flow mechanism 

Figures 4 and 5 show the macro-etched cross-sections of the AA1100 and AA3003 weld 

samples, respectively. In each set of cross-sections, different welding speeds were tested to 

compare the differences of internal flow features within the weld structure, altered by the 

various stirring conditions. 

As shown in Figure 4 for the AA1100 BFSW welds, the plastic flow patterns are observed 

at the centre of the SZ towards the AS border. These flow patterns reveal the flow lines of the 

deposited mass at the traverse section of the trailing edge of the tool, once it leaves the location 

of the stirring action.  

Three different flow patterns can be generally categorized from the macro-etch 

observations of the AA1100; S-line-shape flow (Figures 4a,b), ellipse-flow (Figures 4c,d), 

swirling-flow (Figures 4e,f). As shown by hatch-lines in the middle of the SZ (Figures 4a,b), 

the S-line in lower speeds represents the stirring action with a concentration at the proximity of 

the tool. The flow pattern has more depth in the mid-SZ, rather than the sub-shoulder area. 

Therefore, the S-line flow is mostly induced by the pin action at the centre of the weld breadth. 

By the increase in welding speeds ratio, the plastic flow pattern changes to an ellipse-shaped 

flow, which extends from the centre of the weld towards the underneath of the shoulders 

(Figures 4c,d). The ellipse flow shows a more uniform thermomechanical deformation feature, 

compared to the primary S-line flow pattern. The third flow pattern at the butting surface of the 
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AA1100 weld is the swirling flow lines. This splitting shaped of the flow lines is mostly similar 

to the onion ring patterns of the CFSW weld [34,35]. The macrostructure of the BFSW welds 

(Figures 4e,f) shows the segregation bands morphology at the middle of the SZ, elongated 

towards the top and bottom shoulders. It is attributed to the increase of the welding speeds, 

where the shoulder –because of more contact surface, compared to the pin– has a dominant role 

in the stirring action. Therefore, the ellipse-shaped flow patterns of the swirling plastic region 

are revealed in the sub-shoulder regions. The flow partitioning within the swirling structure 

reduces the integrity of the flow regimes. This leads to the emergence of discontinuity defects, 

e.g. tunnel void, within the stirring zone, as it observed in Figure 6e. 

Figure 5 shows the weld cross-sections of the AA3003 aluminium alloy in different sets of 

speeds, similar to the AA1100 samples, processed by a fully-featured bobbin-tool. The lack of 

plastic flow at the stirring zone of the weld points to the homogeneity of the mass flow induced 

by the proper tool performance. The fully-featured tool can create more severe frictional heat 

because of the increased contact surface between the tool components and the workpiece 

materials. Therefore for the AA3003 samples, the heat input generated at specific welding 

speeds is higher than the stirring action observed of the AA1100 samples with the plain tool. 

This can form more uniform plastic deformation, with more sufficient intermixing between the 

plastic layers flowing within the stirring zone. Therefore, the flow band structures are mostly 

unified without any segregation effect which can be delineated with the etchant reagent. 

However, still, the hourglass borders of the stirring zone are distinct from the base metal region, 

distinguishing the intense plastic deformation through the etched cross-sections. 

However, at the elevated speeds (Figures 5e,f), the segregated flow-arms are observed 

widespread around the emerged tunnel void towards the AS border. This can be because of the 

higher strength of the material (AA3003, compared to AA1100), affecting the viscoplasticity 

of the plastic mass at higher speeds. Moreover, the elevated welding speeds can cause a relative 

flow inconsistency at the leading and trailing edge of the rotating tool. The simultaneous 

rotation and advancement of the tool along the joint-line causes a plasticized mass flow 

circulating around the rotating pin which needs enough time to spatially be deposited at the 

trailing edge of the tool. The elevated feeding rate probably interrupts the refilling process of 

the mass on the AS position of the weld, therefore the flow discontinuity occurs at the tunnel 

void defect region, which is revealed in Figures 5e,f. 

The tunnel void opens by the increase of the welding speed, surrounded by the flow patterns 

elongated upwards and downwards on the AS border. At the elevated speeds (rotational and 

advancing), the plastic mass flow is mostly transferred by the shoulder action, rather than 

pumping by the rotating pin in the middle of the SZ. Therefore, because the pin action is not 

enough to overcome the inducing flows by the symmetrical shoulders, the refilling mechanism 

cannot form uniform flow integrity during the mass deposition at the trailing edge of the tool. 

This causes a gap between the flow layers near the pin abutting, where is the location of the 

tunnel void discontinuity, while the surrounding flow-arms are gradually elongated to both top 

and bottom sub-shoulder surface regions. 

For both AA1100 and AA3003, the material flow patterns in maximum speeds (600 rpm, 

400 mm/min) have a suitable uniformity and visibility within the SZ matrix. The visualization 

of the micro-flow patterns in higher magnification can reveal more details of the flow 

mechanism during the stirring action of the weld. Figure 6 shows two typical flow pattern 

selected from the stirring zone of the AA1100 and AA3003 welds, both processed at 600 rpm 

and 400 mm/min, but with different bobbin tools. Figure 6a demonstrated the swirling flow 

pattern for the AA1100 sample. Figure 6b shows the ellipse-shaped flow pattern for the flow-

arms within the SZ of the AA3003 weld sample. Both layered flow patterns show an onion ring 

shape, similar to the CFSW weld. However, the shear bands are mostly bending as extending 
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upwards and downwards towards the sub-shoulder regions. Higher magnification of the flow-

arms for respective samples (Figure 6c,d) reveal similar morphology for the micro-flow packets 

forming the deposited mass layers. This implies the similarity of the stirring flow mechanism 

in both samples with different material and tool features. In fact, it shows the micro-flow 

mechanism mostly is depended on the welding speeds rather than the workpiece material or 

geometrical features of the tool components. However, on the macro-scale level, the flow 

patterns have different shapes. 

While the vertical flow features appear to be spaced at the approximately correct distance 

per revolution (See Figures 4c and 4d), the further flow patterns indicate the crack formation 

within the stirring structure (See Figures 5e and 5f).  

This can be explained as below: In the first steps of the mass flow deposition, the defect-

free weld flow lines uniformly are dispersed from the mid-SZ towards the hourglass border at 

AS. However, the presence of a forging force induced by the rotating shoulders [36] can affect 

the refilling of the flow lines to form a bent-shaped hourglass boundary. The intensified 

shoulder-driven forging force can eventually cause a failure in refilling deposition of the flow 

regimes. Consequently, un-bonded layers of the refilled mass cause a discontinuity in the form 

of an open tunnel void. 

The microstructural measurements for the most extreme processing condition (600 rpm, 

400 mm/min) shows the formation of the tunnel void defect and the severe DRX mechanism in 

resulting in precipitation. Although there is no solid theory regarding these mechanisms, we 

provide some interpretation based on the microscopy observations.  

The macro-scale flow patterns within the cross-sections (Figures 5e and 5f) confirm the 

occurrence of the actual void at the elevated speeds (600 rpm, 400 mm/min) of the rotating tool. 

It suggests an inconsistency between the stirring and the refilling processes during the mass 

flow transportation at the proximity of the pin tool in sub-shoulder regions. Therefore, the 

difficulties in controlling the refilling of the stirred layers lead to the deteriorating of the 

integrity of the deposited mass. This creates a discontinuity-shaped of the voids. 

 

Figure 7 shows the schematic of different plastic flow mechanisms observed in the stirring 

zone of the AA1100 and AA3003 BFSW weld samples. These schematic flow patterns are 

drawn based on the macroscopic observations of the weld cross-sections in Figures 4-6. The 

dark hatched-lines are representative of the shearing bands forming the flow-arms existing 

within the plasticised mass between the mid-SZ and the AS border. The arrows elucidate the 

refilling process at the trailing edge of the tool during the deposition of the stirred mass. 

Different processing condition comprises the geometrical features of the bobbin tool, welding 

speed or workpiece material, can influence the nature of the plastic flow mechanism in macro-

scale and construct different flow pattern morphologies within the cross-section of the SZ. The 

backward flow profile is the inherent pattern observable from the metallography of the weld; 

therefore, regardless the flow situation at the leading edge of the tool, our interpretation only 

considers the flow transportation related to the mass deposition behind the tool, from the RS 

towards the AS. The details of the formation mechanism of the flow-induced defects are also 

absent in our flow interpretation, as there was not enough elucidating evidence for it in our 

microstructural observation.  
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Fig. 4. Macro-etched cross-section of the AA1100 BFSW welds in different welding speeds; (a)  

350 rpm, 150 mm/min, (b) 400 rpm, 200 mm/min, (c) 450 rpm, 250 mm/min, (d) 500 rpm, 300 mm/min, 

(e) 550 rpm, 350 mm/min, (f) 600 rpm, 400 mm/min. (SP: shoulder position, PP: pin position) 

Mid-SZ 

Mid-SZ 

Mid-SZ 

Mid-SZ 

Mid-SZ 

Mid-SZ 

SP PP SP PP 



50                                    ADVANCES IN MATERIALS SCIENCE, Vol. 21, No. 2 (68), June 2021 

 

 

Fig. 5. Macro-etched cross-section of the AA3003 BFSW welds in different welding speeds; (a)  

350 rpm, 150 mm/min, (b) 400 rpm, 200 mm/min, (c) 450 rpm, 250 mm/min, (d) 500 rpm, 300 mm/min, 

(e) 550 rpm, 350 mm/min, (f) 600 rpm, 400 mm/min. (SP: shoulder position, PP: pin position) 

Mid-SZ 

Mid-SZ 

Mid-SZ 

Mid-SZ 

Mid-SZ 

Mid-SZ 

SP PP SP PP 
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Fig. 6. Optical microscopy of micro-flow arms for the AA1100 (a, c) and AA3003 (b, d) weld samples, 

both processed at the welding set of (600 rpm, 400 mm/min) 

 

The flow bonding is the general result of the simultaneous effect of the tool components 

(symmetrical shoulders and the centered pin), generating the plasticization and shearing 

through the stirring mass. The heat input as the direct outcome of the mechanical stirring softens 

the mass and the subsequent rotation and movement induced by the tool activate the shearing 

flow through the yielded mass. The intercalation of the plasticised layers forms the intermixing 

between the bonding layers as they are transported to the trailing edge of the tool. In this 

situation, the rotating tool can cause a repeatable periodic structure within the depositing mass 

layers. The uniformity of these flow patterns depends on the consistency of the mechanical 

shearing bonds induced by the tool components (pin and shoulders) and the relevant 

homogeneity in material positioning. In this research, three flow distinct patterns were observed 

within the stirring zone at the cross-sections of the weld; S-line flow pattern (Figure 7a), 

swirling flow pattern (Figure 7b), and ellipse-shaped flow pattern (Figure 7c). All these three 

patterns were observed for the AA1100 samples, while the AA3003 weld samples only 

demonstrated the ellipse-shaped pattern at the highest applied speeds. For the AA1100 the 

maximum welding speeds led to the formation of the swirling flow pattern, elongated towards 

the sub-shoulder regions. This attributed to the effect of the shoulder rotation which is dominant 

in higher speeds, compared to the pin rotation in inducing of the mass flow. The shoulders have 

a wider contact surface with the workpiece material, and the intensified speeds can generate 

more frictional heat, and induce more stirring flow. This is a general interpretation, and the flow 

mechanism can be affected by the materials properties or the geometrical features on the tool 

surface (threads, flats, scrolls). 

500 μm 

500 μm 

100 μm 

100 μm 
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Fig. 7. Schematic of the flow patterns formed during the BFSW process within the SZ, observed for the 

AA1100 and AA3003 samples in this research; (a) S-line flow pattern, (b) Swirling-shape flow pattern, 

(c) ellipse-shaped flow pattern 

 

The effect of each welding parameter cannot be elucidated separately, as the 

macrostructure results cannot distinguish the combination of the welding parameters roles on 

the flow mechanism. However, the higher resolution of the flow patterns in higher speeds 

implies the importance of the welding speeds compared to the tool geometry and mechanical 

behaviour of the material. Splitting of the flow (flow segregation or partitioning) at higher 

speeds also shows the greater role of the shoulder performance, compared to the effect of the 

rotating pin. This is where defects occur at higher speeds, as the pin cannot adopt the mass 

transportation inconsistency with the flow induced by the shoulders. Therefore, interruption of 

the integrity between the deposited flow layers fails the refilling and emerging of the tunnel 

void discontinuity between the pin position and the AS border. 
 

Microstructure evolution 

Figure 8 shows the optical microscopy measurements for the microstructure of the mid-SZ 

for the AA1100 and AA3003 weld samples at (600 rpm, 400 mm/min) speeds set. The fine-

grained morphologies show the equiaxed recrystallization, under the tool performance and the 

induced severe plastic deformation. However, due to the magnification limitation of the optical 

microscopy, the grain boundary contrast is not pronounced enough for the uniform ultrafine 

grains of the mid-SZ. Hence, to overcome these limitations (magnification and resolution and 

contrast between the microscopic details of the grain structure), electron microscopy was 

utilized for the rest of the microstructure observations.  
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Fig. 8. Optical microscopy of the etched cross-section of the aluminium weld samples, at the mid-SZ;  

(a, b, c) the AA1100 weld sample, and (d, e, f) the AA3003 weld sample, selected regions at different 

magnifications. Both aluminium weld samples were processed at the welding speeds set of (600 rpm, 

400 mm/min) 

 

 

Figures 9 and 10 show the SEM micrographs from selected frames of the mid-SZ, for the 

AA1100 and AA3003 weld samples, respectively. According to the material flow visualization, 

for each alloy, three sets of speed -(400 rpm, 200 mm/min), (500 rpm, 300 mm/min), (600 rpm, 

400 mm/min)- were chosen for the SEM analysis. The comparison between the microstructures 

shows that the grain morphology has a similar trend in the coarseness of the morphological 

features with the increase of the welding speeds. Although the dynamic recrystallized structure 

was formed for all the samples, the differences in apparent coarseness of the grain size indicate 

more severe plastic deformation has been increased by elevating the welding speeds [27,37]. 

Figure 9c and Figure 10c demonstrate a morphological comparison of the AA1100 and AA3003 

samples in the maximum speeds (600 rpm and 400 mm/min), respectively.  The micrographs 

indicate that within the deformed structure, greater extent recrystallization occurs in AA3003 

sample, compared to the AA1100. This can be attributed to the mechanical tool action, where 

the fully-featured bobbin tool applied for AA3003 (comprises a tri-flat threaded pin and scrolled 

shoulders) creates more uniform plastic deformation during the stirring process. The etched 

samples contain some pitting features which make it hard to inspect the grain boundaries for 

precipitation details within the microstructure. Therefore, SEM imaging needs to meet more 

advanced imaging modes to increase the resolution of the microscopic details. 
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Fig. 9. SEM micrographs of the AA1100 weld samples, at the mid-SZ region, processed with different 
sets of speed; (a) 400 rpm, 200 mm/min, (b) 500 rpm, 300 mm/min, (c) 600 rpm, 400 mm/min 

 

 

Fig. 10. SEM micrographs of the AA3003 weld samples, at the mid-SZ region, processed with different 
sets of speed; (a) 400 rpm, 200 mm/min, (b) 500 rpm, 300 mm/min, (c) 600 rpm, 400 mm/min 
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SEM images produced by the secondary electrons (SE) process can provide better contrast 

in surface topography, therefore it enables showing of the grain boundaries ultrafine 

microstructures. The secondary electron imaging (SEI) applied in Figure 11, shows the 

morphology of the mid-SZ area for AA1100 and AA3003 weld samples processed in speeds 

set of (600 rpm, 400 mm/min). The grain boundary contrast is shown for both samples, where 

it shows the average grain size of the 5 μm for the dynamic recrystallized structure of the stirred 

zone. The grain boundaries network for the AA3003 samples shows a better contrast compared 

to the grain, which can be related to the physical properties of the alloy or completion of the 

dynamic recrystallization (DRX) by the fully-featured tool, compared to the AA1100 sample 

with the featureless tool. 
 

 

Fig. 11. The SEM micrographs (SE imaging mode) of the aluminium weld samples, at the mid-SZ;  

(a) the AA1100 weld sample, and (b) the AA3003 weld sample. Both aluminium weld samples were 

processed at the welding speeds set of (600 rpm, 400 mm/min) 

 

 

Precipitate particles with the ultrafine structure in a sub-micron scale need higher 

magnification to be properly observed through the micrographs. Backscattered electrons (BSE) 

have higher sensitivity in atomic numbers and can provide more details in phase contrast. 

Therefore, the BSE imaging can show the precipitates distinguishable from the Al-matrix.  

Figure 12 shows the SEM micrographs in BSE imaging mode, with a better phase-contrast 

revealing the details of precipitation. The ultrafine precipitates are observed for both AA1100 

and AA3003 at the mid-SZ, processed in speeds set of (600 rpm, 400 mm/min). The 

morphological observations demonstrate three different kinds of precipitates; ultrafine 

precipitates in sub-micron scale (zone 1), micro-size precipitates (zone 2), and the corroded 

particles (zone 3). The nature of the precipitates, chemical composition and formation 

mechanism is not clear in this stage. However, it can be concluded that the variety of size and 

morphology of the precipitates depends on different stages of the grain growth, occurring during 

the DRX mechanism. The corroded particles (region 3) have been partially removed within the 

surface area, affecting by the etching procedure. This is happening because of the selective 

dissolving of the silicon-compounds by the corrosive chemicals of the etchant reagents. 

For a more quantitative analysis of the precipitation mechanism, the BSE results data have 

been processed to measure the details of the particle size and distribution as the secondary phase 

within the Al-phase matrix.   
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Figure 13 shows the graphs of the BSE data processed by STATISTICA, elucidating the 

details of the precipitation; particles size and distribution, for the AA1100 and AA3003 

samples, in mid-SZ (extracted from the micrographs in Figure 12).  

The comparison between the information of the AA1100 and AA3003 samples shows that 

the average size of the precipitates in AA1100 sample (6.5 μm), is more than those in the 

AA3003 sample (1 μm). However, regarding the area occupied by the precipitates, the AA3003 

has more precipitate content (7.5 vol.%) compared to the AA1100 (1.8 vol.%). This can cause 

better precipitate hardening for the AA3003 sample, as the finer distributed particles (with the 

average size of 1 μm) allocate more volume portion of the structure (7.5 vol%). This increases 

the surface-to-volume ratio of the secondary phase as the hardening particle and thus increasing 

their effectiveness as barriers to the movement of the dislocations [38]. Therefore, the finer 

precipitates can block more dislocations, create a pinning effect on the dislocation transitions, 

and subsequently act as a strengthening mechanism during the grain refinement caused by the 

DRX. 

 

Fig. 12. The SEM micrographs (BSE imaging mode) of the aluminium weld samples, at the mid-SZ;  

(a) the AA1100 weld sample, and (b) the AA3003 weld sample. Region 1; ultrafine precipitates, region 

2; micro-size precipitates, region 3; corroded precipitates. Both aluminium weld samples were 

processed at the welding speeds set of (600 rpm, 400 mm/min) 
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Fig. 13. Quantitative analysis of the backscattered electrons data, for the precipitation mechanism at 

the mid-SZ of the aluminium weld samples (AA1100 and AA3003); (a) the average diameter of 

precipitates in the specimens of AA1100 and AA3003, (b) the area of the precipitates (vol.%) in the 

specimens of AA1100 and AA3003. Both aluminium weld samples were processed at the welding 

speeds set of (600 rpm, 400 mm/min) 

 

    Grain refinement and DRX are the direct outcomes of the thermomechanical plastic 

deformation and the subsequent re-cooling after the stirring process. Alteration in grain 

boundary network, grain size and morphology and the subsequent precipitation cause a stored-

strain, induced through the weld texture, which can cause a crystallographic misorientation 

within the polycrystalline structure. Electron Backscatter Diffraction (EBSD) analysis gives 

more crystallographic measurement details of the microstructure, elucidating the grain 

misorientation in graphical maps.  

    Figure 14 shows SEM micrographs and the relevant inverse pole figure (IPF) colouring 

orientation map of the microstructure of the mid-SZ for the AA1100 and AA3003 weld 

samples, both processed at speeds set of (500 rpm, 300 mm/min). 

The mid-SZ areas in both samples demonstrate an equiaxed recrystallized grain morphology in 

average grain size of below 5 μm, similar to the SE imaging results shown in Figure 11. The 

mechanical rotation of the tool within the stirring zone fragments the grain structure, followed 

by a severe plastic deformation intensified by the frictional heat input. The subsequent DRX 

forms ultrafine equiaxed grains randomly distributed in different crystallographic orientation. 

The nature of the grain misorientation is not fully understood yet, but it is attributed to the stored 

strain within the polycrystalline texture during the stirring, releasing during re-cooling and 

DRX.  
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Fig. 14. The EBSD analysis of the aluminium weld samples, at the mid-SZ; (a, b) the SEM micrograph, 

and the relevant IPF colour map for the AA1100 weld sample, respectively; (c, d) the SEM micrograph, 

and the relevant IPF colour map for the AA3003 weld sample, respectively. Both aluminium weld 

samples were processed at the welding speeds set of (500 rpm, 300 mm/min) 

 

In figure 15, the analysis of recrystallized fractions of the mid-SZ texture shows that the 

AA3003 sample possesses more progress in recrystallization (83% fully-recrystallized and 14% 

partially-recrystallized fraction), compared to the AA1100 sample (70% fully-recrystallized 

and 18% partially-recrystallized fraction). This implies that under same welding speeds (600 

rpm, 400 mm/min), the AA3003 sample (processed by the fully-featured tool) experienced 

more effective stirring action, compared to the AA1100 sample (processed by the single-piece 

simple tool). 

The EBSD analysis can also denote the crystallographic misorientation information for the 

deformed and recrystallized grains texture. For the polycrystalline texture the main grain-

boundaries are recognised as the High-angle grain boundaries (HAGBs) threshold with a 

misorientation angle of >15 degrees [37]. Furthermore, the sub-grain scale alteration of the 

crystallographic orientation within the grains can be indicated by the sub-grain boundaries as 

the Low-angle grain boundaries (LAGBs) threshold.  The stored strain induced by the thermo-

mechanically stirring action can lead to accumulation of the dislocation within the grains 

restricted by the grain boundaries at the HAGBs. Subsequently, during the post-welding re-

cooling procedure and DRX mechanism the internal stresses in the sub-grain scale reduce by a 

self-arrangement ordering of dislocations adopted in some preferential crystallographic planes. 
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This leads to the formation of the LAGBs inside the grain, whereby resulting in a misorientation 

within the strain-relieved grains texture in sub-grain scale.  

 

 

 

Fig. 15. Quantitative analysis of the recrystallized fraction for the aluminium weld samples, at the mid-

SZ; (a) the AA1100 weld sample, and (b) the AA3003 weld sample. Both aluminium weld samples 

were processed at the welding speeds set of (600 rpm, 400 mm/min) 

 

 

As demonstrated in Figure 16, the grain boundary networks are observed in the mid-SZ 

region for both AA1100 and AA3003 aluminium weld samples, both processed in similar 

welding speeds (600 rpm, 400 mm/min). Figures 16 a,b correspond to the LAGBs network with 

the misorientation angle identified in <2 degrees, highlighted in red colour. Alternatively, the 

HAGBs network is highlighted in black colour, identified for the misorientation angle of > 15 

degrees, see Figures 16 c,d. The comparison between the misorientation maps in Figure 16 for 

the LAGBs and HAGBs distributions indicate a uniform DRX pattern occurred within the 

deformed texture of the mid-SZ, as a result of the plastic flow strain induced by the stirring pin. 

The comparison between Figures 16 a,b  shows a higher density of the LAGBs (highlighted in 

red), at the mid-SZ of the AA1100 sample (Figure 16a), compared to the AA3003 sample 

(Figure 16b). This is attributed to a higher rate of the stored strain for the AA1100 sample 

compared to the AA3003, which is responsible for the formation of the LAGBs or sub-grain 

boundaries. However, the HAGBs angle orientation (in black colour) was shown to be 

approximately similar in both AA1100 and AA3003 samples, see Figures 16 c,d. Hence, it 

appears that the formation of the LAGBs is highly attributed to the strain localisation and the 

subsequent grain misorientation during the DRX mechanism. 
 

(a) 

(b) 
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Fig. 16. EBSD orientation maps, corresponding to the misorientation angle distributions. (a, b) band 

contrast map for the mid-SZ of the AA1100 and AA3003 BFSW weld plates, respectively (LAGBs 

highlighted in red colour, with the misorientation angle of <2 degrees); (c, d) HAGBs network, for the 

mid-SZ of the AA1100 and AA3003 BFSW weld plates, respectively (The misorientation  

angle of >15 degrees highlighted in black colour) 

 

 

The material flow visualization measured within the cross-sections of the AA1100 and 

AA3003 BFSW weld plates revealed varieties of macro-features such as S-line shape, swirling 

like or ellipse-shaped flow patterns in the SZ. The increase in welding speeds (rotational and 

longitudinal) moves the flow towards the sub-shoulder regions, where the shoulder flow action 

seizes the majority of frictional heat generation, because of wider surface contact with the 

workpiece material, compared to the rotating pin. In this situation, the flow partitioning can 

interrupt the flow integrity where it eventually can emerge a discontinuity between the 

deposited mass layers to occur the tunnel void defect by the failure of the refilling mechanism, 

near the AS border of the SZ.  

Microscopic analysis of the etched samples delineates some thermomechanical features at 

the mid-SZ region of the weld, where the severe plastic deformation and subsequent DRX form 

an ultrafine grain structure. The SEM micrographs showed a significant grain refinement 

compared to the parent metal, forming the equiaxed morphology with the grain size below 5 

μm in mid-SZ. The DRX for the microstructures with different composition of the alloying 

elements can cause different precipitation through weld texture. During the DRX mechanism, 

the first step is the stirring action which deforms the grains by the severe fragmentation induced 

(a) (b) 

(c) (d) 
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by the rotating tool. In the second step, the generated frictional heat can rearrange the 

dislocation arrays and form a new subdivision of the LAGBs and further transform them into 

HAGBs or new grain boundaries at the end of the DRX process. In both steps, the alloying 

elements of the aluminium grades can provide different conditions for the DRX. Therefore, the 

grain size of the final weld texture can be slightly different, as it is observed larger grains in 

AA3003 microstructure compared to AA1100. 

Also, the EBSD maps confirmed a randomly distributed grain misorientation through the 

weld texture, which is because of the mechanical stirring action and the subsequent DRX. The 

DRX mechanism also forms a remarkable precipitation process within the microstructure which 

can improve the strength of the material by the precipitate hardening mechanism, different to 

the main body of the parent material. The precipitation effect in interaction with the dislocations 

in the crystalline lattice of the processed material leads to the observed grain refinement, where 

the LAGBs and HAGBs rearrange the grain boundary network. The EBSD analysis also 

indicated a high rate of the recrystallization within the SZ of the weld, where the fully-featured 

tool performed a more complete DRX within the texture, compared to the single-piece simple 

tool.    

There is an interesting question regarding the precipitation kinetics of these alloys, AA1100 

and AA3003. There are no known principles to scale all the features of the precipitation kinetics 

of the FSW-driven thermomechanical behaviour for these particular aluminium grades. In 

general, if it was possible to develop a kinetics approach to analyse the precipitation in the 

BFSW process, it would seem to require the development of a transport equation by considering 

the parameters and factors for the volume, mass, momentum, energy and others under specific 

geometry of the tool in a nonequilibrium plastic deformation for the forged/extruded material.  

Nevertheless, the real situation of the BFSW process is expected to be more complex because, 

the dynamic flow component imposes more difficulties to consider the respective coefficients 

for friction, mechanical strength, and material stiffness. Therefore, the precipitation kinetics is 

left for future work. 

The EBSD results confirmed that for the Al alloys with the FCC structure [37] the 

precipitation occurred at two positions: the HAGBs between the main grains and also within 

the grain at the LAGBs. The increased density of the participate particles deposited at the 

LAGBs contributes to strain hardening as the blocking barriers of dislocation movement.  

Our interpretation is that in severe deformation condition, the grain misorientation and the 

higher rates of the strain hardening can form the shear bands within the texture and 

consequently lead to the micro-crack emergence between the flow layers parallel to the 

deposition direction. 
 

 

SUMMARY 
 
 

This work describes the original contribution of identifying different flow patterns within 

the macro-etched cross-sections of the AA1100 and AA3003 BFSW weld plates. The material 

flow was created by the alteration of the operational parameters of the welding, e.g. feed rate, 

rotating speed and the tool geometry. The optical microscopy indicates that the interaction 

between the bobbin tool and the aluminium workpiece results in the formation of S-line, 

swirling like or ellipse-shaped flow patterns within the stirring zone of the weld structure. The 

overall interpretation is that the mutual interaction of the tool geometry and welding speeds 

influence the mass flow regimes to form different flow arm patterns during the deposition of 

the plasticized mass layers at the trailing edge of the tool, where the refilling process happens 

near the AS border of the weld. 
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The comparison of the microscopic analysis between two aluminium grades (AA1100 and 

AA3003) confirms that the DRX progressed at the mid-SZ region of the weld. This is including 

the grain refinement, formation of the ultrafine equiaxed grain morphology, with a significant 

thermomechanical precipitation process during the stirring action and the subsequent re-cooling 

procedure. While the density of the sub-grain boundaries increased by the LAGBs threshold, 

the DRX showed a significant grain misorientation representative by the manipulated HAGBs 

with the mid-SZ texture. The EBSD analysis of the weld texture confirmed a randomly 

distributed grain misorientation induced by the mechanical performance of the bobbin-tool 

during the grain fragmentation of severe plastic deformation during the stirring action. The 

stored strain released during the DRX can stabilise the grain structure by the formation of a 

uniform grain structure with a significant modification of the grain size and polycrystalline 

morphology.  
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