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Abstract
Materials or structures made of polymers or composites often exhibit non-viscous damping behavior. The non-viscous

damping forces that depend on the history velocity can be expressed by the exponential non-viscous damping model. Some

polymer or composite materials can be used as damping materials for kinetic energy absorption in the dynamic systems.

Vibration isolator and absorber are usually considered for shock absorption. In this study, transfer ratios of vibration

isolator and absorber with exponential non-viscous damping system are derived by using the Laplace transform. The

dimensionless amplitude of vibration absorber with exponential non-viscous damping is derived too. Compared to viscous

damping system, transfer ratio and dimensionless amplitude of exponential non-viscous damping system are influenced by

the ratio of the relaxation parameter and natural frequency or the frequency of the external load. With the non-viscous

damping material used in vibration control, the ratio is therefore a non-negligible factor which should be considered in

analysis.
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1. Introduction

Dynamic analysis has important applications in civil and
mechanical engineering. Damping force is crucial for the
dynamic analysis in structures. Viscous damping model is
widely used in dynamic analysis for its simplicity and
mathematical convenience. Mathematical studies related to
the viscous damping model dynamics system also do some
help for the application of viscous damping model in en-
gineering. The viscous damping model could not represent
real engineering materials accurately. Whether the calcu-
lation of the response or the vibration control of a system
both need the precise damping model to represent the
materials and the structures of a system (Lee, 2020a).
Dynamic analysis needs a suitable damping model (Lee,
2020b; Wu et al., 2019). Several researchers (Bandstra,
1983; Papoulia and Kelly, 1997; Palmeri and Muscolino,
2011) may use different damping models such as the ideal
hysteretic model (Crandall, 1970), fractional derivatives
model (Gaul et al., 1991) and frequency-dependent model
(Naylor, 1970) in different engineering fields. The con-
volution damping model is the most generalized model in
the scope of linear models (Woodhouse, 1998). The non-
viscous damping model can be expressed as:

fdðtÞ ¼ c

Z t

0

gðt � τÞ � _xðτÞdτ (1)

In this equation, c represents the damping coefficient, g(t)
represents the damping kernel function, and _xðτÞ represents
the velocity. The kernel function g(t) is a weighting func-
tion. Non-viscous damping model is generalized within the
scope of linear models that can describe the local time or the
non-local time damping mechanism by choosing different
kernel functions. The non-viscous damping force is ex-
pressed by equation (1). The fractional derivatives of
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displacement damping model also can be obtained by
choosing properly kernel function (Li et al., 2020). The
exponential kernel function is the promising and widely
studied by many researchers. The damping force with
exponential kernel function is expressed as:

fdðtÞ ¼
Xn

k¼1
ck

Z t

0

μke
�μk ðt�τÞ � _xðτÞdτ (2)

Several researchers have done research on the system
with exponential kernel function. Many methods are pro-
posed for the calculation of the responses of the non-viscous
damping system such as state-space method(Li and Hu,
2016; Wagner and Adhikari, 2003; Wang and Wang, 2018),
direct integration method(Cortés et al., 2009; Liu, 2014;
Shen et al., 2019; Puthanpurayil et al., 2014), and weak
form Galerkin method(Shen et al., 2021). Some researchers
do some research on the calculation of the eigenvalue of the
non-viscous damping system by using iterative method(Lin
and Ng, 2019), perturbation method(Adhikari, 2001), and
damping sensitivity(Lázaro, 2016).

In addition, critical damping(Adhikari, 2005; Lázaro,
2019a, 2019b), closed-form solution for free vi-
bration(Garcı́a-Barruetabeña et al., 2012), and other dy-
namic characteristics of the non-viscous damping
linear(Adhikari, 2008) and non-linear(Sieber et al., 2008)
system are analyzed by researchers in recent years. Some
researchers proposed identification methods such as linear
least square method(Adhikari and Woodhouse, 2001), pa-
rameter iterative method(Pan andWang, 2015), and Kalamn
filtering method(Reggio et al., 2013) for non-viscous
damping system in frequency domain(Su et al., 2019)
and in time domain(Shen et al., 2020).

Some materials exhibit non-viscous damping behavior
such as polymer materials and composite materials structures
(Liu, 2018). The use of the polymer materials and composite
materials in engineering is much greater than before (Wu
et al., 2019). The composite damping materials are used in
some engineering fields such as navigation (Mouritz et al.,
2001), vehicle transport (Fan et al., 2009), aerospace
(Ghiringhelli et al., 2013), and electronics industries (Rao,
2003; Zhou et al., 2016). The non-viscous damping takes the
complete velocity history into account through a convolution
over an exponentially decaying kernel function. Non-viscous
damping model is more likely to have a better match with
experimental data of composite damping materials for the
non-local character of time (Li et al., 2014, 2015).

Composite damping materials can be used as the vi-
bration isolator material and the vibration absorber material.
Thus, the passive vibration control for the system with the
exponential non-viscous damping is discussed in this paper.
The vibration isolator and absorber are widely used in
engineering. The transfer ratio of the vibration isolator
system and the amplitude of the vibration absorber are
discussed in detail

2. Background

2.1. Vibration isolator for system with viscous
damping

It is well known that the vibration transfer ratio of the
system with viscous damping shown in Figure 1 can be
expressed as follows:

Tvis ¼
���� k þ iωc
k � ω2mþ iωc

���� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð2ζ λÞ2�
1� λ2

�2 þ ð2ζ λÞ2

vuut (3)

The system is under harmonic load F ¼ F0eiωt. The natural
frequency of the system is ωn ¼

ffiffiffi
k
m

q
. The frequency ratio λ

is equal to ω
ωn
. The viscous damping ratio ζ is equal to c

2mωn
. It

is well known when the frequency ratio λ is equal to 1, and
the damping ratio is the only factor which influences the
vibration transfer ratio.

2.2. Vibration absorber for system with viscous
damping

Figure 2 shows the primary system of the vibration ab-
sorber. The mass spring systemm2 reduces or eliminates the
vibration on the vibration object m1 that is under harmonic
external load.

The system is under harmonic load F ¼ F0eiωt. The
amplitude of the main system with viscous damping shown
in the Figure 2 can be expressed as follows:

Figure 1. Vibration isolator of the dynamic system.
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A1 ¼ F0

h�
k2 � m2ω

2
�2 þ ðcωÞ2

i1
2

×
n��

k1 � m1ω
2
��
k2 � m2ω

2
�� k2m2ω

2
�2

þ �
cω

�
k1 � m1ω

2 � m2ω
2
��2o�1

2

(4)

The dimensionless amplitude A1 can be rewritten as
follows:

A1 ¼
h�
γ2 � α2

�2 þ ð2ζ γÞ2
i1
2

×

�h�
γ2 � 1

��
γ2 � α2

�� μγ2α2
i2

þ
h
ð2ζ γÞ2

	
γ2 � 1þ μγ2


i2��1
2

(5)

The natural frequency of the system, respectively, are:ω1 ¼ffiffiffiffi
k1
m1

q
and ω2 ¼

ffiffiffiffi
k2
m2

q
. The frequency ratio γ is equal to ω

ω1
.

The parameter α is equal to ω2
ω1
. The mass ratio μ is equal to

m2
m1
. The damping ratio ζ is equal to c

2m2ω1
.

The tuned condition can be expressed as: γ ¼ 1
1þμ. With

the condition, the maximum dimensionless amplitude is

equal to
ffiffiffiffiffiffi
2þμ
μ

q
. The corresponding frequency ratios are:

1
1þμ � 1

1þμ

ffiffiffiffiffiffi
μ

2þμ

q
. The damping ratio condition is:ffiffiffiffiffiffiffiffiffiffiffiffi

3μ
8ð1þμÞ3

q
.

3. Vibration isolator for exponential
non-viscous damping system

In Figure 1, when the damping model is viscous damping,
the damping force can be expressed as: fd ¼ cv. When the
damping model is exponential non-viscous damping, the
damping force can be expressed as equation (2).

Although researchers proposed analytical and numerical
methods for non-viscous damping system, some funda-
mental dynamics characteristics of non-viscous damping
system cannot be obtained just from the point of view of
viscous damping system. Adhikari (2008) addressed dy-
namic response characteristics including critical damping
factor, frequency response function, and response amplitude
of non-viscous damping system by considering two pa-
rameters non-viscous model with k ¼ 1 in equation (2). In
this paper, authors address characteristics of passive vi-
bration control for exponential non-viscous damping sys-
tem also based on two parameters non-viscous model for the
following reasons. Two parameters model is the simple and
fundamental model of exponential kernel function. Basic
characteristics of passive vibration control for exponential
non-viscous damping system can be obtained through the
study of two parameters model. In addition, with two pa-
rameters exponential non-viscous model considered in the
identification procedure, damping parameters of the can-
tilever beam can be well estimated with a small error (Shen
et al., 2022). Two parameters exponential non-viscous
model is able to embodies damping mechanism of the
simple structure. Two parameters non-viscous damping
model is therefore considered in this paper.

The equation of motion with two parameters exponential
non-viscous damping system first considered by Adhikari
(2008) can be expressed as follows:

m€xþ c

Z t

0

μe�μðt�τÞ � _xðτÞdτ þ kx ¼ f (6)

Transforming equation (6) into the Laplace domain, one
obtains:

�
ms2 þ c

μs
sþ μ

þ k



xðsÞ ¼ f ðsÞ (7)

The foundation bears the impact force which can be
expressed as follows:

p ¼ c

Z t

0

μe�μðt�τÞ � _xðτÞdτ þ kx (8)

The Laplace transform of equation (7) is shown as
follows:

pðsÞ ¼
�
c

μs
sþ μ

þ k



xðsÞ (9)

Figure 2. Vibration absorber of the dynamic system.
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3.1. Result of vibration transfer ratio

The vibration transfer ratio of the system with non-viscous
damping can be obtained by using equations (7) and (9).

Tnon ¼
����pf
���� ¼

���� ðcμþ kÞsþ kμ
ms3 þ μms2 þ ðcμþ kÞsþ kμ

����
¼

�������
	
c
k μþ 1



sþ μ

m
k s

3 þ μ m
k s

2 þ
	
c
k μþ 1



sþ μ

�������
(10)

In equation (10), the Laplace variable s is equal to iθ. In
addition, the natural frequency ωn ¼

ffiffiffi
k
m

q
, the damping ratio

ζ ¼ c
2mωn

, frequency ratio β ¼ θ
ωn
, and the ratio of the re-

laxation parameter μ and natural frequency ωn, νiso ¼ μ
ωn

are
introduced. The unit of the parameter μ is the rad/s. The unit
of the natural frequency ωn is rad/s. The νiso is a di-
mensionless ratio. Equation (10) can be rewritten as:

Tnon ¼

��������

�
2ζ
ωn

μþ 1

�
iθ þ μ

�1

ω2
n

iθ3 þ μ
�1

ω2
n

θ2 þ
�
2ζ
ωn

μþ 1

�
iθ þ μ

��������
¼

���� ð2ζ νiso þ 1Þiβ þ νiso
�iβ3 � νisoβ

2 þ ð2ζ νiso þ 1Þiβ þ νiso

����
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð2ζ νiso þ 1ÞβÞ2 þ ν2iso�

2ζ νisoβ þ β � β3
�2 þ �

νiso � νisoβ
2
�2

vuut

(11)

3.2. Discussion on vibration transfer ratio

The transfer ratio of the system with viscous damping can
be plotted in the Figure 3. When the frequency ratio is less
than

ffiffiffi
2

p
, the vibration isolator will magnify the amplitude

of vibration. Especially, with the frequency ratio is identical
to 1, the system is resonance and the damping ratio is the
only factor that affects the transfer ratio. To decrease the
amplitude of vibration, the frequency ratio must be more
than

ffiffiffi
2

p
(Inman, 1994).The frequency ratio β usually ranges

from 2.5 to 5 in engineering application (Wu, 2008). In
order to increase the performance of the vibration isolation,
the damping ratio could not be too large when the β ranges
from 2.5 to 5.

In contrast, when the non-viscous damping system is
under the resonance state, the vibration transfer ratio is
influenced by damping ratio ζ and the ratio of the relaxation
parameter and natural frequency νiso. Equation (11) can be
rewritten as in this situation (β ¼ 1):

Tnon ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ζ νiso þ 1Þ2 þ ν2iso

ð2ζ νisoÞ2
s

(12)

It is known from the Figure 4 that the transfer ratio of the
resonant system with non-viscous damping decreases with
the increase of the ratio ν. Thus, the vibration transfer ratio is
significantly influenced by the ratio ν when the ratio ν is
small. In the non-viscous damping system, it is necessary to
avoid using the small ratio ν material or structure. The ratio
νiso ¼ μ

ωn
is determined by the relaxation parameter μ and the

natural frequency ωn. The relaxation parameter is mainly
influenced by the characteristics of the materials. The
natural frequency is influenced by the mass and stiffness.
When the β ranges from 2.5 to 5, the ratio νiso only has
a slight influence on the vibration shown in the Figure 5 and
Figure 6.

It can be concluded from the discussion above that when
the system with non-viscous damping is in the resonance
state, the transfer ratio is influenced heavily by the ratio νiso
and could be reduced to less 1. Thus, when the non-viscous
damping material is used in vibration isolator, the ratio νiso
is a non-negligible factor which should be considered in
analysis.

Figure 3. Transfer ratio of the system with viscous damping.

Figure 4. Transfer ratio of the system with non-viscous damping.
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4. Vibration absorber for exponential
non-viscous damping system

In Figure 2, when the damping model is viscous damping,
the damping force can be expressed as: fd ¼ cv. When the
damping model is exponential non-viscous damping, the
damping force can be expressed as equation (2).

The kinetic equation of the exponential non-viscous
damping system in Figure 2 can be expressed as follows:

m1€x1 þ c

Z t

0

μe�μðt�τÞ �
	
_x1ðτÞ � _x2ðτÞ



dτ þ k2ðx1 � x2Þ

þ k1x1 ¼ feiωt

(13)

m2€x2 þ c

Z t

0

μe�μðt�τÞ �
	
_x2ðτÞ � _x1ðτÞ



dτ

þ k2ðx2 � x1Þ ¼ 0

(14)

Equations (13) and (14) can be rewritten in one equation
as follows:�

m1 0

0 m2


"
€x1
€x2

#
þ
�

c �c

�c c


�
y1
y2




þ
�
k1 þ k2 �k2
�k2 k2


�
x1
x2



¼

�
f eiωt

0


 (15)

In equation (15), the y1 is equal to
R t
0 gðt � τÞ � _x1ðτÞdτ and

y2 is equal to
R t
0 gðt � τÞ � _x2ðτÞdτ.

4.1. Result of dimensionless amplitude of vibration
absorber

Transforming equation (15) into the Laplace domain and the
Laplace variable s is equal to iθ, one obtains:2
664
k1 þ k2 � θ2m1 þ cμiθ

iθ þ μ
�k2 � cμiθ

iθ þ μ

�k2 � cμiθ
iθ þ μ

k2 � θ2m2 þ cμiθ
iθ þ μ

3
775×

2
4A1

A2

3
5

¼
�
f

0



(16)

In equation (16), the A1 and A2 are respective the complex
amplitudes of response of the first degree of freedom and the
second degree of freedom.

The complex amplitudes of response of the first degree
of freedom and the second degree of freedom can be ex-
pressed as:

"
A1

A2

#
¼ f

=

k2 � θ2m2 þ cμiθ
iθ þ μ

k2 þ cμiθ
iθ þ μ

2
6664

3
7775 (17)

where the = can be expressed as:

= ¼
�
k1 þ k2 � θ2m1 þ cμiθ

iθ þ μ

��
k2 � θ2m2 þ D

cμiθ
iθ þ μ

�

�
�
�k2 � cμiθ

iθ þ μ

��
�k2 � cμiθ

iθ þ μ

�
(18)

The complex amplitude of the main system can be ex-
pressed as:

A1 ¼ f

=
×

�
k2 �θ2m2 þ cμθ2

μ2 þ θ2
þ cμ2θ

μ2 þ θ2
i

�
(19)

The amplitude of the main system can be expressed as:

Figure 5. Transfer ratio of the system with non-viscous damping

(damping ratio ζ ¼ 0:05).

Figure 6. Transfer ratio of the system with non-viscous damping

(damping ratio ζ ¼ 0:1).
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A1¼
��A1

��¼ f ×
h��

k2�θ2m2

��
μ2þθ2

�þcμθ2
�2þ�

cμ2θ
�2i1

2

×
n��

k1k2�k1m2θ
2�k2m1θ

2

�k2m2θ
2þm1m2θ

4
��
μ2þθ2

�
þ�

k1�m1ω
2�m2ω

2
�
cμθ2

�2
þ��

k1�m1ω
2�m2ω

2
�
cμ2θ

�2o�1
2

(20)

The natural frequency of the system respective are: ω1 ¼ffiffiffiffi
k1
m1

q
andω2 ¼

ffiffiffiffi
k2
m2

q
. The frequency ratio γ is equal to θ

ω1
. The

parameter α is equal to ω2
ω1
. The mass ratio μ is equal to m2

m1
.

The damping ratio ζ is equal to c
2m2ω2

.
The dimensionless amplitude can be rewritten as

follows:

A1
f
k1

¼
h��

γ2 � α2
��
μ2 þ θ2

�þ 2ζ γμθ
�2 þ �

2ζ γμ2
�2i1

2

×

�h	�
γ2 � 1

��
γ2 � α2

�� μγ2α2

�

μ2 þ θ2
�

þ 2ζ γμθ
	
γ2 � 1þ μγ2


i2
þ
h	

γ2 � 1þ μγ2


2ζ γμ2

i2��1
2

(21)

The ratio of the relaxation parameter μ and the frequency of
the external load θ, νabs ¼ μ

θ is introduced. The unit of the
parameter μ is the rad/s. The unit of the frequency of the
external load θ is rad/s. The νabs is a dimensionless ratio.
Equation (20) can be rewritten as follows:

A1
f
k1

¼
h��

γ2 � α2
��
ν2abs þ 1

�þ 2ζ γνabs
�2 þ �

2ζ γν2abs
�2i1

2

×

�h	�
γ2 � 1

��
γ2 � α2

�� μγ2α2

�

ν2abs þ 1
�

þ 2ζ γνabs
	
γ2 � 1þ μγ2


i
2

þ
h	

γ2 � 1þ μγ2


2ζ γν2abs

i2��1
2

(22)

In the non-viscous damping system, there are two fixed
points which have nothing to do with the damping ratio. The
fixed points can be determined with the condition ζ ¼ ∞
and ζ ¼ 0.

A1
f
k1

�����
ζ¼∞

¼ A1
f
k1

�����
ζ¼0

(23)

where the A1
f
k1

���
ζ¼∞

and A1
f
k1

���
ζ¼0

can be expressed as:

A1
f
k1

�����
ζ¼∞

¼ 1

γ2 � 1þ μγ2
(24)

A1
f
k1

�����
ζ¼0

¼ ðγ2 � α2Þ
ðγ2 � 1Þðγ2 � α2Þ � μγ2α2

(25)

Equation (23) can be rewritten in detail as:

ðγ2 � α2Þ
ðγ2 � 1Þðγ2 � α2Þ � μγ2α2

¼ 1

γ2 � 1þ μγ2
(26)

4.2. Discussion on dimensionless amplitude of
vibration absorber

Equations (24), and (25) and (26) do not consist the ratio
νabs that is related to the relaxation parameter. Thus, the
dimensionless amplitude of the two fixed points is the same
as the viscous damping system. In addition, the corre-
sponding frequency ratios and the tuned condition that both
can be obtained from equations (24), (25), and (26) are the
same as the viscous damping system.

With the tuned condition α ¼ 1
1þμ, the amplitude ex-

pressed by equation (22) can be plotted in figures. In
Figure 7(a) and (b), the mass ratio is equal to 0.1.

Figure 7(a) and (b) show the dimensionless amplitude of
the system when the ratio v in different ranges. It can be
known from Figure 7 that ratio νabs has a significant in-
fluence on the amplitude when the ratio νabs is small. In
contrast, when the ratio νabs is greater than 10, the amplitude
levels off. In Figure 8(a) and (b), the mass ratio is equal to
0.05. In Figure 9 (a) and (b), the mass ratio is equal to 0.01.
The law of the amplitude in Figure 8(a) and (b), Figure 9 (a)
and (b) is similar to the amplitude in Figure 7(a) and (b).

In Figure 7(a) and (b), the damping ratio ζ is equal to
0.16 which satisfies the condition ζ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3μ

8ð1þμÞ3
q

.
Figure 10, Figure 11, Figure 12, Figure 13 and Figure 14

show the amplitudes when the damping ratio ζ are, re-
spectively, equal to 0.1527, 0.06, 0.04, 0.03, and 0.02. With
the decrease of damping ratio, the amplitudes of vibration
absorber increase.

It can be concluded from the discussion above that the
dimensionless amplitude of non-viscous damping system is
highly influenced by the ratio νabs which is the ratio of the
relaxation parameter μ and the frequency of the external
load θ. The tuned condition still exists in the non-viscous
damping vibration absorber. It is necessary to avoid the
small ratio νabs because the dimensionless amplitude is large
when the ratio νabs is small. The ratio νabs is a non-negligible
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Figure 9. (a) Dimensionless amplitude of the systemwith non-viscous damping (ratio 0:1≤ νabs ≤ 10) (b) Dimensionless amplitude of the

system with non-viscous damping (ratio 10≤ νabs ≤ 1000).

Figure 7. (a) Dimensionless amplitude of the systemwith non-viscous damping (ratio 0:1≤ νabs ≤ 10) (b) Dimensionless amplitude of the

system with non-viscous damping (ratio 10≤ νabs ≤ 1000).

Figure 8. (a) Dimensionless amplitude of the systemwith non-viscous damping (ratio 0:1≤ νabs ≤ 10) (b) Dimensionless amplitude of the

system with non-viscous damping (ratio 10≤ νabs ≤ 1000).
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factor which should be considered in analysis of vibration
absorber.

The damping parameters influence the dimensionless
amplitude. It is difficult to distinguish from the three-
dimensional figures. The large νabs that is assumed to be

1000. The dimensionless amplitude of vibration absorber
can be plotted in a plane figure. The dimensionless am-
plitudes can be obtained by equation and plotted in
Figure 15 with different damping ratios. It can be seen from
Figure 15 that the damping parameters influence the

Figure 10. Dimensionless amplitude of the system with non-viscous damping (damping ratio ζ ¼ 0:1527).

Figure 11. Dimensionless amplitude of the system with non-viscous damping (damping ratio ζ ¼ 0:06).
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Figure 12. Dimensionless amplitude of the system with non-viscous damping (damping ratio ζ ¼ 0:04).

Figure 13. Dimensionless amplitude of the system with non-viscous damping (damping ratio ζ ¼ 0:03).
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Figure 14. Dimensionless amplitude of the system with non-viscous damping (damping ratio ζ ¼ 0:02).

Figure 15. Dimensionless amplitude of vibration absorber with different damping ratios.
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dimensionless amplitude of the exponential non-viscous
damping model vibration absorber.

5. Conclusions

The vibration transfer ratio formula of the vibration isolator
of the systemwith non-viscous damping is derived based on
the Laplace transform. The vibration transfer ratio is
influenced by the damping ratio, frequency ratio, and the
ratio of the relaxation parameter and the natural frequency.
When the system is under the resonance state, the vibration
transfer ratio is significantly influenced by the ratio of the
relaxation parameter and the natural frequency. The ratio is
a non-negligible factor which should be considered in
analysis of vibration isolator.

The dimensionless amplitude formula of the vibration
absorber of system with non-viscous damping is derived
based on the Laplace transform. The tuned condition still
exists in the non-viscous damping system. The damping
ratio also satisfies the optimized condition. The ratio of the
relaxation parameter and the frequency of the external load
has a significant influence on the amplitude when the ratio is
small. It is necessary to avoid the small ratio. The ratio is
a non-negligible factor for non-viscous damping system and
it should be considered in analysis of vibration absorber.

Experimental testing of the vibration isolator and vi-
bration absorber with non-viscous damping materials will
be investigated further.
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