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Abstract

Mathematical models, that depict the dynamics of a candepapulation growing out of the human
body (in vitro) in unconstrained microenvironment conditions, are aersid in this thesis. Cancer
cellsin vitro grow and divide much faster than cancer cells in the humaw,libdrefore, the féects

of various cancer treatments applied to them can be idahtifiech faster. These cell populations,
when not exposed to any cancer treatment, exhibit expaignowth that we refer to as the balanced
exponential growth (BEG) state. This observation has leskt@ral €ective methods of estimating
parameters that thereafter are not required to be detedneixerimentally.

We present derivation of the age-structured model and é@erétical analysis of the existence
of the solution. Furthermore, we have obtained the comditts BEG existence using the Perron-
Frobenius theorem. A mathematical description of the@gdle control is shown for one-compartment
and two-compartment populations, where a compartmentsrede cell population consisting of cells
that exhibit similar kinetic properties. We have incorgedhinto our mathematical model the required
growing/aging times in each phase of the cell cycle for the biologigability. Moreover, we have
derived analytical formulae for vital parameters in carresearch, such as population doubling time,
the average cell-cycle age, and the average removal ageaftpimases, which we argue is the average
cell-cycle time of the population. An estimate of the averagll-cycle time is of a particular interest
for biologists and clinicians, and for patient survival gnoses as it is considered that short cell-cycle
times correlate with poor survival prognoses for patients.

Applications of our mathematical model to experimentabdadve been shown. First, we have
derived algebraic expressions to determine the populat@rbling time from single experimental
observation as an alternative to empirically constructemvth curve. This result is applicable to
various types of cancer cell lines. One option to extend thiglel would be to derive the cell-
cycle time from a single experimental measurement. Secerdhave applied our mathematical
model to interpret and derive dynamic-depicting paransetérfive melanoma cell lines exposed to
radiotherapy. The mathematical result suggests thereharécemings in the experimental methods
and provides an insight into the cancer cell population dyina during post radiotherapy. Finally, a
mathematical model depicting a theoretical cancer celufatipn that comprises two sub-populations
with different kinetic properties is presented to describe theitram®f a primary culture to a cell
line cell population.
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Chapter 1

Introduction

1.1 Mathematics in cancer research

The role of mathematics in cancer research has steadilgased over time and the future of this
discipline is both exciting and critical as new patients @isgnosed with cancer every day. In New
Zealand, around 51 people are diagnosed with cancer evgrgrdharound 22 cancer deaths occur
(statistics provided by the Cancer Society of New Zealangywweancernz.org.nz). Multidisciplinary
collaboration in cancer research is essential and matlwahapplications can contribute significantly
to many areas of cancer research. Mathematical models oa@iinsight and establish a framework
for understanding properties of cancer cells, e.g., by tindehe biochemical behaviour within a
single cancer cell or by modelling a tumour growth. This th@sesents the mathematical modelling
of the cancer cell population grown out of human body, catieltllines. Several mathematical mod-
els that have been derived in close collaboration with thekfand Cancer Society Research Centre
serve as an additional tool for biologists. These modelsheansed to either give understanding of a
plausible dynamics of cancer cell populations or to gainerdfective methods of estimating param-
eters depicting the dynamics of cancer cell populations.skiéd continue by introducing biological
concepts that will be frequently referred to in the subsatjabapters.

1.2 Cell cycle and apoptosis

A cell cycle is a progression of a cell through steps of graavtti chromosome duplication to complete
cell division. The cell cycle of a eukaryotic cell is traditially divided in four phasesG;,, S, G»
and M. Phases$5;, S andG; together are called the interphase. A gap plaséG for gap) is an
interval before the DNA synthesiS{phase) that is followed by another gap phase na@gdvhere
the cell keeps growing until mitosis takes plad&-phase). A cell cycle consists of various cyclins and
cyclin-dependent kinases that have to react at certaircgelé control checkpoints. During its cell
cycle, a cell makes two vital decisions: first, the decisibfentering into S-phase” is made in late
G1-phase, calle@; checkpoint. DNA replication begins when the cell is readyidergo the entire
cell cycle. Second decision is the “entry into mitosis”, esis will proceed through all its stages once
initiated, calledG, checkpoint. The cell-cycle control system, the key praaifithe control system,
initiates and controls the progression of the cell cycle e arrest it at specific checkpoints. Cells
in a cell cycle are called dividing or proliferating cell.dfcell is non-dividing or quiescent it is said to
be inGp-phase. A cell if5p-phase can return to th&;-phase again under the influence of mitogenic
signals (growth factors, tumour viruses etc.), 8égertset al. (1994. A diagram outlining cell-cycle
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G2 checkpoint G1 checkpoint

G2

Figure 1.1: The cell-cycle control diagram. Duri@g-phase cell grows then DNA is replicated and
new chromatin is formed, denoted &phase. Durings»-phase cell prepares for mitosis ldrphase,
where it divides into two daughter cells. A cell passing thgio the cell-cycle control checkpoints in
G; andG; phases and completing cell division is called prolifergti®@g depicts the non-proliferating
cell phase.

control with key checkpoints is shown in Figurel. Some non-dividing cells like neurons and skeletal
muscle fibre cells are unable to re-enter the cell cycle. Gthike fibroblasts and lymphocytes are
ordinarily in theGg - phase but can be activated by external agents.

Cells have the potential to undergo genetically programpetiddeath, or apoptosis. Apoptosis
is the “tidy” breakdown and disposal of cells without cagsan inflammatory response in the body.
Apoptosis is common during embryonic development, but atsmirs in a response to severe cellular
damage, viral infections and somatic mutations. Apoptissisprotective mechanism that eliminates
many virus-infected and genetically altered celldeisenberg & Simmong1998.

We continue by introducing two parameters: doubling time egll-cycle time. Doubling time is
defined as the time required to double in number. Cell-cynie is the time required to complete a
cell cycle. For a single cell, doubling time and cell-cydlme are evidently equal. However, in the
case of a cancer cell population, this is not necessarily, tne investigate this closer in Chapter
Cell-cycle length varies greatly during interphase frorh twecell with M-phase duration considered
to be short compared to the other phases.

1.3 Cancer cell population: primary culture and cell line

Gene mutation can turn a normal cell into a cancer cell. Wakingechanisms exactly trigger these
mutations is unclear. A cancer cell is considered to be mggeessive and faster growing than a
cell from normal tissue. Tumour cells divide without intibn, i.e., they do not stop dividing after
they come into contact with neighbouring cells, and indregdg act as individuals with the goal of
maximizing their own proliferation, seeagl (2006. Great variation in the duration of tl@&;-phase
among diferent cancer cells produces a variety of cell-cycle timah@tancer cells thatfiectively,
influence the response to any type of cancer treatment.

In this thesis, our interest in cancer cell populations Wél mainly focused oin vitro (out of
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1.4 Mathematical modelling of the growth of a cell populatiam

body) cell populations, and melanoma cell populations itigaar. Cancer cells, taken from a tumour
tissue sample (removed at surgery), to be examimeiro are called primary culture. Tumour tissue
can be grown in culture and measurements of primary cultaliecgcle times show a range of 3
days to several weeks, which is similar to that obselvedvo (in body), seeBaguley & Marshall
(2009; Furneauxet al. (2008. After several months, by a variety of culture techniquesighed to
preserve the viability of tumour cells and suppress the tr@fhost cells, particularly of fibroblasts,
which are naturally activated in the wounding response igaag by the tissue disaggregation, the
clinical tumour material exhibits stable growth and is regd to as cell linesBaguleyet al. (2002).
Established cancer cell lines exhibit shorter cell-cythes thus reacting to the treatment much faster
than cells in the primary cultures. It is considered thatscigl cell lines divide indefinitely. The
patients from whom the tissue samples were collected age ofttlived by cancer cell lines.

Human tumour cell lines have been used extensively in tredisy and characterisation of new
chemotherapeutic drugBaguley & Marshall(2004 2008. A potential disadvantage of cancer cell
lines is that they may have lost important properties oaliynpresentin vivo. Cell-cycle times are
different between tumours and cell lines, and, as mentionedeyefell-cycle times of primary cul-
tures cover the same wide range as estimatailo cell-cycle times. Responses of primary cultures
to cancer treatment alsoftér from those of cell lines, suggesting that the processwldping a cell
line can result in the loss of important cellular respon3de identification of cell lines that preserve
potential targets is an important goal in cancer biology r@seéarch. Using primary cultures will help
in this identificationBaguley & Marshall(2004).

Mathematical models have been applied to cancer cell ptpatataken from cell lines in this
thesis. However, further work is necessary to extend theetsqutesented in the subsequent chapters
to describe the dynamics of cells in a primary culture, tHusig more insight intdn vivo population
growth and response to treatments.

Stem cells dter from other cells by two properties: firstly, stem cells ha®lf renewal property,
meaning they can go through cell division many times whitssprving their undierentiated state.
Secondly, stem cells have the potential tfatientiate into other types of cells. It is hypothesised
that a small proportion of cancer stem cells drive the grasftbancer in humanBittmat & Zanker
(2009; Schatton & FranK2007); Soleet al. (2009. In Chapters, we develop a mathematical model
that describes the behaviour of system with two cell popratwith diferent kinetic characteristics,
to provide a framework for understanding the behaviour ateatissue that is sustained by a minor
population of proliferating stem cells.

1.4 Mathematical modelling of the growth of a cell populatio

The mathematical models are often predetermined by thiabl@iexperimental data. Bteel(1977),
G.G. Steel presented two principles that prevent unréstrimodel-building. First, Occam’s Razor
states: “We should always choose the simplest model thbsatisfactorily fit the data. Any increase
in sophistication beyond this takes us into the realm of imetgpn rather than science”. Second,
Principle of Analogy: “A model whose parameters relate tpagimentally measurable quantities is
to be preferred to one that has abstract parameters. A ntatdsta close analogue to the actual cell
system more readily enables predictions to be made aboet amgietected responses”.

With an objective to model a cell population taken from a tie##, we first must observe that such
a population does not respond to spatial constraints, iheshibits balanced exponential growth
(BEG), Bell (1968. We note here that cells in primary cultures do not exhikfiamential growth.
Applied mathematics presents various methods of examaxpgnentially growing populations such
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Figure 1.2: Diagram of the cell-cycle controliofvitro tumour cells showing the proportions in each
phase. Parameters described in the Glossary.

as discrete and continuous, deterministic and stochastibads.

Our choice lies in continuous deterministic models, withoeus on age-structured population
models. Our mathematical model is initially designed toickegtne growth of cancer cell population
in the BEG state, i.e., population that has not been expa@sadyt cancer treatment. We assume that
all cells in the population are proliferating and can be é@dvas subdivided among phasgs S, G»,
andM. Due to presented experimental data, explained in Setti§mwe combine subpopulations in
G, andM phases and refer to it & M-phase. Cells move from one phase to the next with a certain
transition probability rater§. Age () is considered to be the time spent by a given cell in its cuirre
phase. Thus, each cell is at age zero when entering into a nase f cell growth. No cells are in
the non-proliferating state @o-phase. Although cells from cell lines exhibit immortalfiyoperties,
we have incorporated a probability of apoptosis in each@l@gs Figurel.2 presents a schematically
illustrated cancer cell population in BEG.

Apoptosis is genetically programmed cell death withoutiminatory breakdown and disposal of
cells. Cell necrosis occurs due to physical or chemical dgmda hroughout this thesis, we define
cell death or loss as a process of cells undergoing apoptteisieclare that cells are proliferating or
non-proliferating until they undergo apoptosis. We remnthek notions cell death, apoptosis and cell
loss are interchangeable in this thesis.

Detailed derivation of an age-structured model can be fonri¢hapter2. Potential cancer treat-
ment dfects can be incorporated into mathematical equations byieiag the éfect of the treatment
on the cell-cycle control. For example, a chemotherapairtig, that is said to stop mitosis, can be
incorporated into the mathematical model by setting thesiteon probability rate fromM-phase to
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G;-phase to zero. Similarly, after ionised radiation DNA dgmaan occur and cells might repair it
and re-enter the cell cycle or might undergo apoptosis (B&eprotein - the product of tumour sup-
pressor gene - promotes apoptosis and thus helps to elenttiatiefective cell). Thesdfects can be
incorporated into our model by altering the transition sdietween respective phases.

With the aim of providing “shortcuts” to estimate paramstirat are experimentally unobtainable
or not sifficiently accurate, we have derived mathematical modelsifaifowing chapters that would
be beneficial for biologists and clinicians. We have kept indrOccam’s Razor and Principle of
Analogy when simplifying a more general model in Chap&r$, 5 in order to fit experimental data.

1.5 Flow cytometry

We have dedicated this section to introduce an experimergaksurement technique with flow cytom-
etry apparatus. Analysis of a cell population in a state plication can be achieved by fluorescence
labelling of the cell nuclei in suspension and subsequemtiglysing the fluorescence properties of
each cell in the populatiorG;-phase cells will have one copy of DNA and will therefore haxehe
fluorescence intensity. Cells in ti@& andM phases will have two copies of DNA and, accordingly,
will have 2x the intensity. Flow cytometry cannot distinglubetwees, andM phases, therefore, we
combine them for our mathematical models, derived in tHeviehg chapters, and refer to it & M-
phase. Because the cells in tBephase are synthesizing DNA, they will have fluorescencaesl
between 1x and 2x the population’s. The flow cytometry histogshown in Figurd..3 (in blue) is
obtained from labelled cells transiting through the lassarh and their fluorescence signal ultimately
generating a voltage pulse by the fluorescence detectotdipiodtiplier tube). The horizontal axis in
Figurel.3depicts the total cell fluorescence noted in the literatarel2-A (“A” for area). The verti-
cal axis shows the number of cells with a respective totatdiscence value. We can extract estimates
of population proportions in each phase from the flow cytoynptofiles. Population distribution in
the respective phases is shown in coloured-in segmentshidrittesis, we analyse flow cytometry
profiles using Cylchred software provided by Cytonet, UK. lpopulation is unexposed to the can-
cer treatment, i.e., exhibiting BEG, the flow cytometry gesfiremain unchanged at all experimental
observation points. We discuss steady population-digtdh conditions in Chaptet.

1.6 Thesis outline

Chapter 2

In this chapter, we derive and analyse an age-structurégaelilation model. We show an implicit
analytical solution of the McKendrick-von Foerster pdrtieferential equation (PDE) with side con-
ditions: an initial condition and a boundary condition. Mover, we prove the existence of that
solution using methods developed for the Volterra integoplation of the second kind. We examine
two kinds of transition probability rates between two cangizve phases of the cell cycle: constant
and piecewise constant. A piecewise constant transititmnisabiologically more relevant because
cells must grow (age) in particular phases of the cell cyelote being able to transit into the next
phase. Because a cancer cell population, when taken fromcarceell line culture, exhibits the BEG
state, we demonstrate a condition for the existence of BEGshng the Perron-Frobenius theorem.
Later in this process, we derived formulae of the constapuladion proportions among cell cycle
phases at BEG state. We show the reduction of a PDE model todamaoy diferential equation
(ODE) system and a delayftirential equation (DDE) system. A general PDE model allosvowle-
rive vital parameters in cancer research, such as popuoldtiobling time and average cell-cycle time.

5
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Number of cells

DNA content

Figure 1.3: An example of a flow cytometryprofile of an unpdyéd cell line population. The pro-
portions of cell population in th&,, S, andG,M phases are shown in the diagram. The horizontal
axis label FL2-A (“A” for area) depicts the total cell fluooesce. The vertical axis shows the number
of cells with a respective total fluorescence value.

Results of this chapter provide an insight into the relatiop between population doubling time and
average cell-cycle time. A mathematical distinction isvghdetween two biological understandings:
the expected average age in the phase and the expected fémeviaom the phase.

Chapter 3

This chapter introduces a new approach of determining paipal doubling time using a single exper-
imental observation. A method for experimental estimatibaell-cycle times or doubling times of
cultured cancer cell populations, based on addition ofifa&ell (an inhibitor of cell division) has been
proposed in literature. We use a mathematical model toiigzgs relationships between essential pa-
rameters of the cell division cycle following inhibition oéll division. The reduction in the number
of cells engaged in DNA replication reaches a plateau asdheentration of paclitaxel is increased,;
this can be determined experimentally. From our model, we lilerived a plateau log reduction
formula for proliferating cells and established that thare linear relationships between the plateau
log reduction values and the reciprocal of doubling times (growth rates of the populations). We
have therefore provided theoretical justification of anamant experimental technique to determine
cell doubling times. Furthermore, we have applied MontdcCaxperiments to justify the suggested
linear relationships used to estimate doubling time frode$-cell culture assays. We show that our
results are applicable to cancer cell populations withloe present. Our mathematical model result
provides a shortcut for estimating the population doubtinge and we hope to extend this model for
the cell-cycle estimation from a single experimental mezment.

Most of the results presented in this chapter have beenghadliinDauksteet al. (2012).

Chapter 4

In this chapter, we examine the response of a cancer cellgiogputo a one-time ionised irradiation
dose treatment. We show that, by changing the PDE systeneaiumber density function to the
probability density function, our model tracks the varidpiof proportions in each phase of the cell
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1.6 Thesis outline

cycle and is compatible with the experimental estimatesropgrtions in each phase after a variety
of cancer treatments. Our results agree with the previadiest of irradiated cancer cell lines, i.e.,

a cancer cell population undergoes little apoptosis aétdiotherapy. Therefore, this study’s experi-
mentally observed decrease in the expected number of salisa to the long-term arrest of the cell

cycle. Our model provides an interval of the initial surmigifraction of the cell population for each

cell line, i.e., the proportion of cells that keep prolifémg after the application of radiotherapy. In the
discussion section, we explain why the survival fractiotinested via our mathematical model does
not agree with the experimentally estimated one.

Chapter 5

This chapter examines the application of the two-poputatitodel. This mathematical model de-

scribes the behaviour of a system with two cell populatioitk different kinetic characteristics. The

results provide a framework for understanding the growtieliur of cancer tissue that is sustained
by a minor population of proliferating stem cells. The PafFrobenius theorem is used to prove the
existence of a BEG state of a two population model.

The results from this chapter have been publishedanksteet al. (2009.
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Chapter 2

One-Compartment Age-Structured
Model of Cancer Cell Population Growth

In this chapter, we derive and analyse an age-structurégaalilation model. We show an implicit
analytical solution of the McKendrick-von Foerster pdrtieferential equation (PDE) with side con-
ditions: an initial condition and a boundary condition. Mover, we prove the existence of that
solution using methods developed for the Volterra integoplation of the second kind. We examine
two kinds of transition probability rates between two candgive phases of the cell cycle: constant
and piecewise constant. A piecewise constant transititmisabiologically more relevant because
cells must grow (age) in particular phases of the cell cyelote being able to transit into the next
phase. Because cancer cell population, when taken fronatieec cell line culture, exhibits the bal-
anced exponential growth (BEG) state, we demonstrate atamébr the existence of BEG by using
the Perron-Frobenius theorem. Later in the process, weatkformulae of the constant population
proportions among cell cycle phases at BEG state. This mattieal model allows us to derive vital
parameters in cancer research, such as population douiniegand average cell-cycle time. Results
of this chapter provide an insight into the relationshipwstn population doubling time and aver-
age cell-cycle time. A mathematical distinction is showiwsen two biological understandings: the
expected average age in the phase and the expected remwmdidm the phase.

2.1 Introduction

Our objective is to mathematically model the dynamics of acea cell population taken from the
cancer cell line culture. The mathematical modelling of acea cell population taken from the
primary culture, which fiectively exhibitdn vivo properties, is of great interest in the cancer research;
however, because such a population does not demonstratecbdl exponential growth (BE®el!
(1968 properties, our main focus will stay on cell line culturbsoughout this thesis.

The criteria for developing the mathematical models preeskim the following chapters (such as
those posed iMetz & Diekmann(1986) are the biological relevance and mathematical tradtgbil
Mathematical modelling has been applied to a large spectiuthe cancer cell proliferation prob-
lems, starting from the cycle-control biochemical modgjliof a single cell to the modelling of the
cancer cell population, looking into botfnvivo andin vitro cases. A single cell growth models open
prospects for the multiscale modelling. Review paprsie (2010; Deisboecket al. (2011) on can-
cer tumour modelling can be found in the literature. An oi@svpaper on structured cell population
dynamicsArino (1995 stated that during the 1970s, mathematical modelling waerfocused on
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nonlinear equation (such as Gompertz equation) applitatio cancer cell population growth. In the
1980s, focus switched to the linear age-structured modétear partial diferential equations have
an advantage of being simple for analysis and are also aydico the mathematical modelling of
the cancer cell population.

A cell compartment method can analyse the formation of aaredés from stem cells. iGanguly
& Puri (2009, it was concluded that mutations in stem cells rather timagairlly progeny cells lead
to faster growth of the abnormal progeny. Moreover, a models that a repeated insult to mature
cells leads to an increased growth rate of the abnormal pyogells.

Compartmentalized cell population by cell kinetic projeest e.g. assuming that cells exit in one
of two kinetic states: proliferating and non-prolifergfinas been used to examine cell motion in the
tumour, Tindalla & Pleas€2007). It is assumed that the dominant mechanism for cell mosatue to
chemical gradients. Multicellular tumour spheroids areduim this study because they exhibit many
of the characteristics afi vivotumours. The model iffindalla & Pleas€2007) shows the commonly
held view of the cell cycle distributions within spheroidgreliferating cells are near the boundary
and the quiescent cells are in the core.

Cell compartment method has also been used to analyse thedimd dose-dependerftexrts of
antitumour agent RHPS4 on the cancer cell line HCT116]ainnsoret al. (2011). In this study,
experimental estimates of quite a few parameters have tmsh ue., the proportions in each phase
as well as the proportion of senescent cells, the total numibeells at certain time and the overall
population growth rate. Idohnsoret al. (2011), telomerase inhibition RHPS4 increases the rate at
which cells become senescent state but, rather surpsisiagtually inhibits the rate of cell death
detects.

Mathematical models derived in this thesis have been pusljioexamined to some extent in
Basse & Ubeziq2007); Basseet al. (2003 20043b, 2009. In this chapter, we introduce a theoretical
background of the age-structured models and extend it ldetrenanalytical derivations published in
other literature including models Basse & Ubeziq2007); Basseet al. (2003 20043b, 2005. We
have derived analytical expressions for the average celirathe phase and the average removal or
transit time through the phase, which is a novel result aschbabeen published before. The existence
and the uniqueness of the solution have been shown in thatlite before just as the conditions for
the balanced exponential growth. We have shown resulthépiecewise-constant transition rates
and analytically derived formulae for dynamical parangetek DDE system has been derived from
an age-structured system as usedsbymset al. (2012).

As mentioned before, cancer cell population taken from dreer cell line culture exhibits BEG
if unexposed to any cancer treatment methods. In the literaBEG is also referred to as an asyn-
chronous exponential growth (AEG), the steady-stateiligton (SSD), or steady age distribution
(SAD), but we will use notion BEG throughout the thesis. Aggeictured models have the capacity
to describe the underlying structure of a cancer cell pdjmuiaat BEG and provide an opportunity to
estimate vital parameters in cancer research via matheashatbdels as an alternative to experimental
observations.

Solely for the purposes of the experimental data used inasg@arch, we subdivide cell cycle into
the respectivé&sy, S, and a combine@,M phases, as shown in Figuie? in the Introduction. Our
models are to be utilised for flow cytometry profiles, and liseahe flow cytometry apparatogethod
cannot distinguish the fierence between th@, and M phases (due to the fact that DNA contents
in both phases are twice that 8fphase), phaseS, and M are combined in &,M-phase in our
mathematical model.

In this chapter, we present the derivation of the one-paiouidalso denoted as a one-compartment,
in this thesis term compartment does not refer to a phasesafah cycle) age-structured model and
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the proof of the existence for the solution from the theorthef\olterra equations of the second kind.
Furthermore, the existence of the BEG state is proved byRdfrobenius theorem. Later, we express
parameters that depict the dynamics of a cancer cell pépujatuch as population doubling time and
expected or average cell-cycle time of the cancer cell fagjou, that have not been exposed to any
cancer treatment. From the results obtained in this chaptgain an insight into the relationship
between population doubling time and average cell-cyohe ti

2.2 Age-structured model of a cancer cell population

Our objective is to model the dynamics of a cancer cell pdmrian order to derive parameters that
describe the kinetics of the population, which has not beposed to treatment, as well as parameters
that describe theffects of various cancer treatments.

A cell cycle of cancer cell population is modelled assumimat tells from this cancer cell pop-
ulation produce daughter cells with similar kinetic prdjges. In our model, cell cycle is subdivided
into three phasessy, S, andGoM (with combined phase&, and M because we apply our model
to flow cytometry [FC] profiles, and FC measurements canrstingjuish betweefs, andM phases
because DNA contents in both phases are twice th&-pliase). Age is considered to be the time
spent by a given cell in its current phase. Thus, each cethpazero when entering into a new phase
of cell growth.

Derivation of an age-structured partiafidrential equation is as follows. First, let us assume that
there is a continuous functian(t, 7) that represents the number density of the cancer cell ptipal
and is a vector quantity, with

n(t.7) = [ne,(t.7) ns(t.7) nem(t 7" (2.2.1)

Here vector componentsy(t, 7) with p € {G1, S, GoM} are continuous functions, wheng : [0, o) x

[0, T) — [0, ), that shows the number density of cells with age timet in a cell cycle phase. Age

7 states the duration of a cell in particular phagsaNVe impose a maximum age of cells,> 0, after
which cells are assumed to have died. In facyjitro studies are seldom longer than 2 weeks, so most
of the time,T need not be larger than this numlizaguley & Marshall(2004). The assumption of a
maximum age is for mathematical simplicify/;can be set arbitrarily large. Furthermore, derivatives
of ny(t, 7) exist and are also continuous functions onef)) x [0, T). If time t is increased by units
(and we assume that time utit= At = Ar), then cells have aged Hbyunits. Given that function
np(t, 7) has a continuous derivative, then we obtain the followiggation:

o npt+ht+h) —npt,7)  npt+ht+h)—npt,7+h) npt,7+h)—npt,7)
[im = lim +
h—0 h h—0 h h

0

Second, let us assume that the probability rate at which tedlve phase is given by termbp(t, 7).
Assumptions that the transition probability depends oretimnd ager and is a non-negative piece-
wise continuous function, are comprehensible in bioldgieams. Here, transition ratey(t, r) with
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p € {G1, S, GoM} is defined as follows:

b, (t, 7) = rg,-s(t, 7) + uc, (t, 7), (2.2.2)
bs(t, 7) = rs—e,m(t, 7) + us(t, 1),
be,m(t, 7) = re,m—c, (L, 7) + uc,m(t, 7),

whererg,s(t, 1), rsse,m(t, 7), andrg,m-c, (t, 7) are the transition probability rates (probability per
time unit per cell) between two consecutive phasessti r) depicts the death rate from the phase
p. Description of variables used in our mathematical modat tras been schematically depicted
in Figure 1.2 have been explained in the Glossary. We have assumed, forthaiMhe transition
probability rates and death rates are dependent onttand ager. We also assume that cancer cells
taken from cancer cell lines have a potential undergoingsis at any phase of the cell cycle. The
conservation law states that the variation of the populatiamber density ip phase in time is caused
by a transition to the next phase or death; thus, the follgwivear partial diferential equation can be
derived:

P P
20t 7) + 5-Mp(t ) = ~bp(t. Ip(t 7). (2.2.3)

Conservation between the various phases and the death piask is not explicitly modelled, fol-
lows from the continuity of the derivatives on the domain.isTis particularly important when con-
sidering proportions in each phase rather than number Isf cel
Third, additional conditions for equatio.@.3 are provided: the initial number density distribu-
tion and renewal condition (also called Lotka equation)each phase. The initial age distribution is
defined as:
np(t = 0,7) = nY(1), (2.2.4)

with the initial distributionn3(z) in (L* N L*)[0, T). Lotka showed otka (1929 that a boundary
condition expressed as an integral with respect to cell ladipn age will then result in the solution
being depend on the boundary condition itself. The Lotkanblany condition turns the problem de-
scribed with 2.2.3 and @.2.4) into a bounded and, subsequently, a compact problem. Tinedlaoy

or renewal condition states that cells in each phase start ige zero. Furthermore, all cells at age
zero have transferred from the previous phase and are ergres follows:

-
np(t,7=0) = f ap-1(t, )np_1(t, 7) dr, (2.2.5)
0
where transition ratap(t, 7) with p € {G1, S,GoM} is defined as:

ag,(t,7) =rg,-s(t, 7), (2.2.6)
a.s(t, T) = r5_>G2M(t, T),
anM(t’ T) = 2rG2M—>G1(t7 T)'

Cells are presumed to be in tlig-phase immediately after division. Here, subscpptl in equation
(2.2.5 is taken to signify the following:

G1-1=G;M; S-1=G;; G,;M-1=5S.

12
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We note that for th&; - phase, the renewal conditio.2.5 is as follows:

T
ne,(t,7=0) = f 2rg,Mm—a, (t, 7)ne,m(t, 7)dr, (2.2.7)
0

where 2 refers to each cell that has completed mitosis piegtero daughter cells.

Itis assumed that,, p+1, up € C1([0, 00) x [0, T)) for all p € {G1, S, G,M}, and, in addition, they
are bounded and strictly positive. We also assume thatata®s ofr,_,.1(t, 7) andup(t, ) for all
p € {G1, S, GoM} are bounded and piecewise continuousamdr. Finally, we assume that there ex-
ists a positive lower bound. Note that for biological remljsve also assumey(t, 7) is non-negative.
The simplicity of the model is due to the linearity that is @Bt when dealing with a cancer cell
population that grow vitro exponentially without any environmental constraints.ha subsequent
sections, we provide the analytical solution of the prob(8rd.3 - (2.2.95 and show the condition for
the existence of such solution.

2.2.1 Analytical solution of an age-structured model
2.2.1.1 Single-phase model

We focus on a single-phase model in this section to demdadtra derivation of the analytical solu-
tion via the method of characteristics. We impose changaiimbles: now argumentsandr depend
on parametez. Thus, the number density function can be rewritten asvalo

Np(2 = Np(t(2), 7(2)). (2.2.8)
Hence, the derivative of,(2) with respect to new variabtecan be expressed as follows:

(’)np dt anp dr

dnp
= _— + —_———
ot dz  or dZ’

T2 = L. ) =

wherez varies along the following characteristic lines:

dt dr
o1 T (2.2.9)
r=z+t (2.2.10)

Thus, equation4.2.3 can be rewritten as
dn, _
E(Z) +bp(t(2), 7(2)np(2) = 0. (2.2.11)

We choose pointt, 7o) along the characteristic line&.¢.9. This point can be any point in the first
quadrant, as shown in Figugel. Thus, the following expressions are derived:

t=1th+2 T=7T0t+2
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To - (to, 70)

np(t,T = 0) t

Figure 2.1: Characteristic lines of McKendrick-von Foerstquation analytical solution, where num-
ber density functiomy(t, ) on horizontal axis represents the renewal condition,rg(iciz) on vertical
axis depicts the initial condition.

For simplicity, we define the number density functignat point ¢o, 7o) asnp(to, 7o) = no. Therefore,
equation 2.2.1] can be solved by integrating along the characteristicslamefollows:

Mo(2) = no e b DoOTENE _ g o= [bolloérore) o

_ TO+Z _
= npe ko Pe(Sto-Togds (2.2.12)

wheres = 1g + £. Further, we subdivide analysis of the solution into twoesas < T andt > 7, as
depicted in Figure. 1 In the case of < 7, we express solution afy(2) as:

t=0+2z 71=1+2
Np(2) = Np(z 70 +2) = Np(0,70) € k" bp(s-T09ds
Thus, the number density(t, ) for the caseé < 7 can be expressed as follows:
n(t,7) = np(0, 7 — t) e Jbe(srt-mds ¢ 7 (2.2.13)

We note that the analytical solution of the proble2(3 - (2.2.9, in the case of > 7, portrays the
growth of the cancer cell population taken from the cancédioe culture, i.e., the time it takes for
the cell population to grow is longer than the agbat cells have spend in phageFor the case > T,
solution ofny(2) is as follows:

t=th+z 71=2

ﬁp = np(to + Z Z) = np(tO, O) e_ fosz(S+to,s)ds.
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Here, the variable change gives us cell number density iftmo}(t, 7), for the casé > 7, as:

N(t, 7) = Np(t — 7,0) e ko be(s+t-rds ¢ 7 (2.2.14)
Thus, by using the renewal conditioR.2.5, equation 2.2.14 can be rewritten in its general form as
a representation of the asymptotic solution of the probl2ra.g - (2.2.9 as follows:

T T
np(t, 7) = fo ap1(t— 7.9 Npa(t—7.5)ds € b DolsH-r9ds ¢ 7 (2.2.15)

2.2.1.2 Multiple-phase model

For the purposes of mathematical analysis in the subsegaetibns, we rewrite the problem of cancer
cell population growth with more general notation usingtgegunctionn(t, 7), as defined inZ.2.7).

The cancer cell population taken from the cancer cell linkuoal exhibits BEG state. Because
there are no environmental constraints on the cancer cplilation growth, a linear partial filer-
ential equation is suitable for depicting such cell popatatdynamics. In more general notation,
McKendrick - von Foerster equatio.2.3 can be rewritten as:

0 0

an(t, T) + En(t, 7) = —=Doudt, 7)N(t,7), O<t<oo, O0<7<T, (2.2.16)
with respective side conditions defined as follows:

n(t = 0,7) = n%(x), initial age distribution (2.2.17)

T
n(t,T:O):f Din(t,7)n(t,7)dr, t>0, renewal distribution (2.2.18)
0

The matrixDgy: represents the loss of cells from the various phases vidn @t transfer to other
phases, and is defined as:

rG-s + UG, 0 0
Dout(ta T) = 0 s—G,m + Us 0 (t, T). (2.2.19)
0 0 erM—>G1 + HGoM

The renewal matrij, represents the gain of cells at age 0 in each phase and is caused by transfer
from other phase®j, is defined as:

0 0 2G,M5G,
Din(t,7) = | re,-s 0 0 (t, 7). (2.2.20)
0 rsoem 0

Transition ratesp,p.1 andup for p € {G1, S,GoM} are described in the Glossary, with the cell-
cycle control depicted in Figuré.2. Solution to the governing fierential equation2.2.16 along
the characteristic lines, already expressed for each coemaf vector functiom(t, r) in equations
(2.2.13 and @Q.2.19, is as follows:

T
T

(L7 = exp(~ [, Dou(s+t-1.9 dgnor-1), O<t<r, (2221
exp(_ fo Dout(s+t—1,9) dS) nit-70), 0<7t<t.
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2.3 Existence of a unique solution

Analytical solution of McKendrick-von Foerster equatidh4.1§ assumes that the solution on the
boundaryr = 0 has been given. However, in our problem, we are given thenahboundary con-
dition (2.2.19. Substituting the formal solution fron22.2)) into the boundary condition2(2.19
gives us a Volterra integral equation of the second kindh{tr0):

n(t,0) = F(t) + ft K(t, 9)n(s,0) ds (2.3.1)
0

where -
F@) = f Din(t,7) exp(—f Dout(s+t—1,9) ds) n%(r - t) dr, (2.3.2)
t 71
and kernel of integro-equation is defined as follows:

t—S
K(t.9 = Dn(L.t— 9 exp(— [ oaste+ s df)- (2.3.3)

By the assumptions made in our problem, we know Enai(t, 7) andDjs(t, 7) are piecewise continu-
ous: thereforeK(t, s) is piecewise continuous. Furthermore, because the coempofn®(r) are in
(L N L*)[0, T) and the components &y(t, 7) are bounded, we find th&i(t) exists. We observe, by
the piecewise continuity dDo,; andDi,, thatF(t) is continuous. Because kerri€(t, s) is piecewise
continuous, we use method of continuation to first estaleliéstence and uniqueness in some interval
[0, T1], and then show that this solution can be continued to ssaeetervals T, To], [T2, T3],
and so on. Eventually the whole interval T0 is covered. We rewrite kern&(t, s) asp(t, S)K(t, s),
whereK(t, s) is continuous ang(t, s) represents the piecewise continuous patetively p(t, ) is

the same as equatiof.8.3); thus, we may apply theorem frobinz (1985, showed in the Appendix
A.1, which tells us there is a unique continuous solution to #qud2.3.1) on [0, T) for any T > 0.

Theorem 2.3.1. There exists a unique non-negative solutitfh ) (along characteristic lines) to
problem(2.2.16 such that each component oft, 7) belongs to(L! N L*)([0, ) x [0, T)) for any
T > 0, and each component oft, -) belongs tgL* N L*)[0, o) for all t > 0. The solution is given by
equation(2.2.21), wheren(t, 0) is continuous for all t> 0.

2.4 Steady age distribution at BEG state

We now show the existence of steady age distributions, givainproblem 2.2.19-(2.2.19 has age-
dependent transition probability rates. We note here thabuld not be possible to show BEG state
for time-dependent transition rates. This correspondsi¢ounperturbed, i.e., unexposed to cancer
treatment, proliferating cancer cell line colonies that exhibiting BEG, s®j, andDg, are possible
functions ofr. We apply the results from Secti@3to show that steady age distributions, referred to
asn(r), exist and are stable whéh,; andDj, are functions of age only. We find in Theoren?.4.1
proved by the Perron-Frobenius theorem that given anyainitinditions in (L* N L*)[0, T))3, the
shape of the solution(t, 7) to the problem will tend to a steady age distribufi{m) (different methods

of proof can be found iBasse & Ubeziq2007); Begget al. (2010). As the renewal (boundary)
equation involves a compact operator, a consequence ssgliiairacterized by a discrete spectrum of
eigenvalues and the solution can be expressed as a sufierposiigenfunctionskeyfitz & Keyfitz
(1997. A positive dominant eigenvalue depicts the asymptotimvgin rate of the population, i.e., the
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population growth rate at BEG state. This will mean thatehisra constant proportion of cells in
each phase: a fact that is observed experimenimaliyitro. This result is important in showing our
mathematical model exhibits a unique steady age distabutis is observed experimentaityvitro
via cell flow cytometry. In Figur@.5, we show an example of such a steady age distribution steictu
Observe the exponential decay in the population as the ag@meels. It should be noted that by finding
stationary solutions to our problem, we are finding solgitmthe problem of the following form:

n(t, 7) = e"n(r), (2.4.1)

and, thereforen(z) is a steady age distribution of the problem because the iagribdtion of cells,
n(t, 7), retains the same shapér), whereas the overall number of cells may be growing or dagay
depending upon the sign of growth constanfalso called Malthusian parameter). This scenario
corresponds to the unperturbed cancer cell line, whereréimsition and death probabilities in each
phase are purely a function of the age in that phase.

Theorem 2.4.1. There exists some doul{léy, n) such thatig is a real, positive dominant eigenvalue
to the characteristic equation @) = 1, andn(-) € (L' n L*®)3[0, T) is a strictly positive stationary
solution to(2.4.7).

When the ansat2(4.]) is substituted into equatior2 3.1), we obtain the following expression:
[A(/l) - HA]’rT(O) 0, (2.4.2)
with F(t) — 0, ast —» o andA = 1. Thus, a necessary condition for the solutiégm(l) to exist is

the existence of suchthat the nonlinear eigenvalue probleth4.2 admits an eigenvalua = 1 for
somed. The matrixA is defined as follows:

A= fo " Dl exp(— fo Dou(s) +I[/l]d§)ds (2.4.3)

Thus, we need to know if there is/a = 1 for the parametei = 1g. Now it can be shown that the
structure ofA > O is as:

0 0 «g,m
A = KG, 0 o |, (2.4.4)
0 «s 0
wherexp denotes a positive element and is defined as follows:
T S
Kp = fo ap(9) exp(— fo [bo(&) + ] dg) ds (2.4.5)

with p € {G1, S, GoM} anday, by defined in equation2(2.9 and @.2.9, respectively. We note that
transition probability rates, andby, are now assumed to be a functionobnly. A non-negative
matrix is irreducible if and only if its life cycle graph caibs a path from every node to every other
nodeCaswell(2001). We can see that matrix is irreducible, as its strongly connected graph shows
in Figure 2.2, This matrix is imprimitive, see Sectiof.2 in the Appendix for more detail. Thus,
from the Perron-Frobenius theorem on irreducibe but impiienmatricesA.2.1, there exists a real
positive eigenvaluelp, which is a simple root of the characteristic equation &ét) — IA] = 0 and

the associated eigenvector, name{f), is positive. Expression de§[1) — IA] = 0 reduces to the
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KG,M

KGq

;®
Figure 2.2: Diagram of irreducible matrix.

following equality:
1=A%=0Q(), (2.4.6)

where

T s
-] [ atoenn(- [ oo+ ce) as 2.a7)

The equation4.4.9 states that the necessary condition for existence of a BEfgscribed by the
following characteristic equation:
Q) = 1. (2.4.8)

Solution @.2.2) with only age-dependent transition rates can be rewrdtefollows:

nit,7) = exp(— fT Dout(S) ds) nt-r0), 7<t (2.4.9)
0

Taking into account equatior? ¢4.1), we can express the steady age distribution of the candler ce
population at BEG state as:

n() = exp(— fo T(Dout(s) + A0 ds)ﬁ(O). (2.4.10)

This shows that(r) will effectively have compact support providég(s) + AI > 0. Later, we
derive a characteristic equati@(1) = 1 for constant and piecewise constant transition rateshdn t
following sections, we show derivations of numerous patanseghat are used frequently in the cancer
research.

2.5 Parameters: constant proportions, doubling time, and ell-cycle
time

For further analysis of the unperturbed cancer cell pomuriagxhibiting BEG, we assume that tran-
sition ratesrp_,p,1 and death rateg,, are piecewise continuous functions with respect tmly. On

the premise that each proliferating cell grows (age§1nS andG,M phases before transferring into
the next phase, we find that by defining transition probahbilites as piecewise constant adds to our
mathematical model viability. Further, we derive several\parameters in the cancer research.

18
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Figure 2.3: Piecewise constant transition mgtep.1(7).

2.5.1 The total number of cells

The total number of cells in each phasedenoted by, is defined by integrating the number density
over the age as follows:

.
Np(t) = j; no(t, 7) dr, (2.5.1)

where the total cell number of the population at any giveretindenoted ad\qt, is the sum of the
total cell number over the phases of the cell cycle, desdréssfollows:

Nt(®) = Y Np(), with pe (Gy,S,GoM}. (2.5.2)
p

We note here that at the total number of cell population at BE® is as follows:

Niot(t) = Niot(0)e. (2.5.3)

2.5.2 Piecewise constant transition probability rates

We define piecewise constant transition probability rataking into account that cells have zero
transition probability while they grow (age) for a certaimé (denoted asy), as follows:

Foopea(T) = { 0 fr<tp. (2.5.4)

wherep € {G;, S, GoM}, as depicted in Figurg.3.
We have assumed that death probability yaies a piecewise constant function, i.e., cells may
undergo apoptosis only after growing for timgin each phase, thus,

0, ifr<tp,

7 itrs (2.5.5)

o) = {
wherep € {G1, S, GoM}.
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2. ONE-COMPARTMENT AGE-STRUCTURED MODEL OF CANCER CELL
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We remark that transition rates andb,, defined in equations2(2.9 and @.2.2), respectively, are
then expressed as follows:

[0, ifr<Tp,
ap(r) = { 3, if 73T, (2.5.6)

0, ifr<ry
bp(7) = { Ep, v > 7. (2.5.7)

Although biologically age-dependent transition rates armore realistic option, it is not simple
enough for numerical calculations with the experimentahdaovided. Thus, we do neglect this
in our model applications in Chaptess4 and5 because of the lack of experimental estimates that
would be needed if one would want to include a minimum timénheza! averagely spends in a phase
before leaving the phase. By taking the limit whgn— 0, we can transfer from piecewise constant
transition rates_,p,1(7) to constant transition probability rat€g .1, thus stating that cells can
possibly transfer to the consecutive phase as soon as tteypeesent phase.

2.5.3 Characteristic equation

Characteristic equatior2(4.8 is a condition imposed on our model that describes the atipul
at BEG state. In the case of the piecewise transition rates;am show from equatior? @.7) this
condition explicitly as the following nonlinear transcemtal expression:

QU = ———eisfen
(bg, + A)(bs + V) (bg,m + 1)

We remind the reader that cells have a probability of trarisig to the consecutive phase or die after
agesrg,, 7s, andrg,m in G1, S andG,M phases, respectively.

By taking potential aging times, in every phase equal to zero, we can derive the BEG condition
for the constant transition probability rates, depicte&igure?2.4, as follows:

exp( - A[TGl +7s + TGZM]) =1 (2.5.8)

aG,asaG,M _1
(bg, + A)(bs + A)(bo,m + )

Q) = (2.5.9)
For the simplicity in numerical simulations later in thesie introduce new variablE (1) and define
it as: 1
FQ)= — =1 (2.5.10)
Q1)

Examination of equation2(5.10Q shows the following evaluations:

lim F() = eo,  lim F(2) = —co, (2.5.11)

and becausé& (1) is a continuous function, the intermediate value theorbows that at least one
solution to the equatio®(1) = 1 exists. Figure?.4 illustrates the characteristic equation for three
theoretical cell lines with constant transition rates.

2.5.4 Constant proportions of cell population at BEG

To derive constant proportion formulae, we start by inticdg a new notation: the probability density
function z(t, 7) that depicts the probability density for a certain cell #ib the phase of ager at
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Figure 2.4: Characteristic equatiéi{(1) = 1 is plotted for three random sets of constant transition
rates, wher&g,s < fsgm. Here red dotted line depicts a cell line with transitioresdiz, = 0.025,

Ts = 0.25 andrg,m = 1.9. Blue solid linerg, = 0.009,7s = 0.11 andrg,m = 1.1. Green dashed line
FGl =0.02,rs =0.35 andFGzM =12.

time t. From equationsZ.4.1) and @.5.2, the probability density function, in the general case of
population growth, is defined as humber density divided leyttital mass of the system as follows:

np(t, 7)
Niot(t)

From equationsZ.5.1), (2.5.9, and @.5.19, the proportion inp phase, denoted dk(t), is given by
the following expression:

mp(t, 1) = (2.5.12)

T
T f np(t,7)dr  Ny(b)
My(t) = t,7)dr = 2> = B2 2.5.13
o0 L mo(t.7) dr Niot(t) Niot(t) ( )
thus, the following identity (essential in our later modelases:
T
> f mp(tT)dr = Y Mpt) =1, for t>0, (2.5.14)
p VO P

wherep € {G1, S, GoM}.
We continue by showing that, for the case of population in Bia®e, from equation®(5.129 and
(2.5.3, the probability density function, denotedggr), is expressed as follows:

(2.5.15)
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observing that from equatior2 @.1), we can express numerical density function at BEG statadh e
phasep as follows:
Np(t, 7) = ep (7). (2.5.16)

We proceed by presenting the constant population formérae, equations4.5.13 and @.5.19, for
the population at BEG as follows:

T [ p(r) de
My= | 7()dr=2""""""" where I, = 1. 2.5.17
p j; 7Tp(T) T Ntot(o) ; p ( )

We go on to explicitly show the number density, the probgbdiensity functions, and, subsequently,
formulae of the constant proportions in each phase on theymée. Remembering that the transition
probability ratesa, andbp are assumed to be piecewise constant functions, as discusSection
25.2

We begin by rewriting general steady age-distribution équna2.4.10Q for each phase of the
cell cycle separately, whegge {G;, S, G,M} as follows:

T T
Tip(7) = f ap-1(9Tp1(9)ds € b®e+Dds 5 7 (2.5.18)
0

From Sectior.5.1, we show that the total cell number in the respective phaas isllows:
T
Np(t) = f np(t, T) dT,
0
-
=l f Np(7) dr,
0

T T
_ f "n(t,7) dr + f no(t, ) dr.
0 Tp

= Np(t) + Np(t),
= e"(Np + Np),

where we defineN’p = foTp’ﬁp(s)ds as the total cell number in phageat ager < 7, and Np =

f:’ﬁp(s)dsas the cell number in phageat ager > 7, whenT is assumed to be very large. Thus,
wpe can rewrite steady age-distribution equatiarb (19 for each phase of the cell cycle, depicted in
Figure2.5as:

1, T<Tp

(2.5.19)

= = —ATN|
No(7) = ap_1€ “"Np_ -
p() -1 -1 {e‘bp(T‘TP), T2 Tp.

We note here that to obtain the number density function feictise of constant transition probability

rates, the growth age in each phagés set to zero, thus givingp(7) = ép_lﬁp_le‘(BP”)T. By taking
into account that lim,t €™ = 0, whereT is the maximum age in a phase (as would be seen in the
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Figure 2.5: A diagram showing the piecewiséelientiable number densiby(7) at the BEG state for
piecewise constant transition raegsandby,.

case ofT — ), the total number of cells ip phase at timé can be expressed as follows:

Np(t) = Np(t) + Np(t),

_ 1-— e—/l‘rp e—/l‘rp
= eﬂtap_le_l[ +——| (2.5.20)
Z A+ by
From equationZ.5.20, we can establish thal, = a5, 1Np_1 262 andNj, = 8, 1Np 1 &=

A+bp
We proceed by writing out population number density fundifor phase&;, S, andG,M ag follows:

o |Te (0, T <1y,
NG, (1) = {ﬁel ) (2.5.21)
— .+ |a,Ng,e™, T<7Ts,
Ns(7) = {ée NoefeBC9), 131 (2.5.22)
— _ |asNse™, T < TG,M»
nG2|\/|(T) - {asﬁge_’lTe_BGzM(T_TGZM), T > Te,M, (2'5'23)
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whereng, (0) = ag,mNg,wm, see Figure.5. Furthermore, we can exprelig, as:

)
NGI:f Ng,(s)ds
76,
0= (2.5.24)
=Tg, (0)= , 2.5.24

' bg, + 4

1

and therNg as follows: ~
Ns = fig, (0) 0L g-(ro, +7s), (2.5.25)
(b, + A)(bs + 1)

Thus, from equations2(5.20, (2.5.29,(2.5.29 and taking into account thak, (0) = éGZMNGZM, the
total number inG,, S, andG,M phases for the population at BEG are given as follows:

1-— —ATG —ATG
No(® = €', O —— + —| (2.5.26)
A /l+b(;1
a 1= —ATs —ATs
Ns(t) = e’“ﬁGl(O)Lje‘ﬂml[ e L & ] (2.5.27)
A+bg A A+ bg
3 a 1- —ATG, M —ATG, M
New() = e'fig,(0)——1 e-ﬂﬁeﬁfs)[ =L 8 2| (2528
(/l+bG1)(/1+bS) 1 /1+bGzM

We remind here that transition rates are define@zs-= Tg,.s, as = Fs-c,M, ac,m = 2Fe,M-c, and
Ep = Tpop+1 + Hp With p € {Gy, S, G2M}. BecauséNior(t) = Ng, (t) + Ns(t) + Na,m(t), we can rewrite
equation 2.5.3 as follows:

Niot(t) = &', (0)Ca. (2.5.29)

observing thatNio(0) = Ng,(0)C, andng, (0) = EGZMNGZM. Furthermore, our constaf, is defined
as follows:

C/I _ 1-— e—/lTGl . e—/lTGl . §G1 e—/l‘z'Gl [ 1-— e—/l‘rs . e—/lTS ]+
A A+bg,  A+Dbg, 4 A+ bs
+ _éGlaS g Alre +Ts)[ 1-e o + e_A:GZM ] (2.5.30)
(4 + b, )(A + bs) 1 A+ beyu

We have to note here that by using characteristic equafiéng, after some algebraic manipulation,
we can show that equatiof.6.30 can be simplified to the following identity:

Ci=—. 2.5.31
=5 (2.5.31)

From equations.5.129 and @.5.2]) to (2.5.25, the probability density functions f@,, S, andG,M
phases can be expressed as follows:

P LA T<Ten (2.5.32)
G1 CiebelTel e—(b(;1+/l)'r’ T> 16, ol
) = ’
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CilB:Gi/le—/ITGl e—/lT’ T<Ts,
(1) = ! _ _ 2.5.33
s(7) 1 %y o ire, psts g (Bs+r > 715 ( )
C/l bGl+/l ) = )
Ci%e—ﬂ(mlﬁs)e—h’ T < TG,M»
_ J ©a (b, +)(bs+2) 2.5.34
TGoM (T) - ag, a ( e )

1 8613 o-Arg, +75) ghe,MTeom g(bom+A)T ,

C. = T<T .
Cu (b, +4)(bs +1) GeM

We introduce new variablef?ip andﬁp, Whereﬁp shows the proportion of the population in a partic-

ular phase that is in the required phase growing stateﬁ@rtﬂanotes the proportion of the population
that is able to transition onto the next phase. These nodomdefined as follows:

fi, = f " () o, (2.5.35)
0

_ T

Hp:f np(7) dr, (2.5.36)
Tp

with the total proportion in each phaselds = ﬁp +1p. Finally, the constant proportions in each cell
cycle phase for the population at BEG state are expressadl@ass:

17l-egte gt
Mg, = —[ L & ] (2.5.37)
Ca 1 A+ bg,
1 a 1-egts  gtrs
5= = % e‘ﬁTGl[ +— ] (2.5.38)
Caa+bg, A A+ bs
1 A~ A 1- —ATGoM —ATG,M
lg,m = — _aGl S e—/l(Tel+Ts)[ € = + © — ’ , (2.5.39)
Ca (2 + bg,)(1 + bs) A A+ be,um

wherell, is the first term of the sum, ard, is the second term of the summation in the square brack-
ets for corresponding phasps {G1, S, GoM}.

We remind the reader here that in order to convert previomadtae for the population with constant
transition rates among phases, aging timgs rs, andrg,m must be set to zero.

2.5.5 Population doubling time and average cell-age

We define the doubling time of the cell population, denote@fas a time unit taken for a population
to double its cell number. When population is at the BEG statd grows at a constant ratefrom
(2.5.3, we see that Bi(0) = Niot(0)et™. Thus, we express population doubling time as follows:

3 In2

T4 = . 2.5.40
4= ( )

We continue by defining the expected cell age in each ppadenoted adJ,, of the cell population
at BEG as follows:

T T T
Tp= f trp(T)dr = f ' Trp(r)dr + f Trp(7)dr. (2.5.41)
0 0 Tp
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We can express the average cell-age for ph@seS, andG,;M as follows:

1il-ete  1g,etc 1 et 1
To, = c_[ B ] T [ o+ —— ] (2.5.42)
1 A A 1A+ bG1 A+ bGl
1 et 1-ets  rgetts) 1 Fg el 1
Ts=&7 e [ 22 ] N, +lBG )1 +D [TS T +b ] (2543
1 1 S) A+ bs
T 1 age e+ [1 —e oM gy e—”GzM] 1 1 1
GoM = = — — - + <= [T M+ f]
“" Ci(a+Dg,)(+bs) A2 A Cidg,ml " " A+ bg,m
(2.5.44)

where the characteristic equation .9 was used to simplify the second termTf,m. Thus, the
average cell-age of the cancer cell population at BEG, @ehasT,, is the sum of the average cell-
age times of each phase of the cell cycle, defined as follows:

Ta = TG1 + TS + TGZM- (2.5.45)

We expect that the average age of cells in the populdfipis smaller than the population doubling
time T4. Since the relationship between average cell Bgand population doubling tim&q is not
explicitly observable from our formulae, we created a foilog simulation: we chose random (and
biologically realistic) transition rates,-,p.1, death rateg, and aging times, for p € {Gy, S, G2M}.
The results shown in Figur2 6. The relationship between the doubling time and averadeagelis
as follows:

Ta< Tg. (2.5.46)

For the simulations shown in Figuée6, random uniformly distributed transition ratgs.p.1, ag-

ing timestp, and death rateg, were chosen. The intervals picked wég_,s € [0.00010.2],
TS—>G2M € [0.00010.2], FGZM—>G1 € [0.05,2], TG, € [3,25]rs € [2,25], TG,M € [0.01, 10], and

Hp € [1074,1073], for p € {G1, S, GoM} with units for these variables presented in the Glossary. We
remark that for Figure€.6, a constrainfTy < 168 was imposed because population doubling time
for cells growingin vitro is rarely exceeds 168 hours (or 1 week). We observe that fiquat®n
(2.5.9 the growth rate valud is afected by transition rat€s,_, .1, aging timesrp and death rates
up; therefore variations in the nine-dimension space of tt@msrates, aging times and death rates
results in stochastic like changes in doubling timevalues and the average cell afg as can be
seen in Figure.6.

2.5.6 Expected cell removal time, i.e., cell-cycle time

We introduce a new parameter - the average (expected) agdofemoved from a phase, denoted as
Tp. A cell removed from a phasgis considered as either transferred to the next ppasé or dead.
We note that the average cell-age in phpseamelyT, is not equal to the average cell removal-age
from phasep, T;,. We examine the relationship between these two terms irséuson.

The removal time is the time cells at age zero in phaseamelyn,(0), take to transit through
phasep. Let us assign some constary to the magnitude of the cell number density at age zero that
we want to track, sor = Np(0). This number density of cells will grow (age) for at leaghours and
then transfer onto the next phase or die. Because the cellgtam continues to grow for timey,
the initially observed number density; will be reduced because the total number of cells in pipase
namelyNp, would have grown at a rat& thus, scaling the initially observed number densityby
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Figure 2.6: Diagram representing relationship betweerdoeibling timeTy and average cell-age,
for theoretical cancer cell populations. Transition ratgsp.1, aging timesrp, and death rateg,
are randomly chosen from uniform distribution from the daling intervals:Tg,,s € [0.0001 0.2],
FS—>G2M € [0.000%,0.2], FGZM—>G1 € [0.05, 2], TG, € [3,25]rs € [2,25], andTGZM € [0.01, 10], with
death ratefi, € [1074,10°3], g € [1074,1073], andpg,y € [1074,1073]. A constraint ofTy < 168
hours is imposed for biological realism.

e'™. Therefore, the number density equatiop$(21-(2.5.23 have to be scaled g/ when dealing
with the removal time expressions. These normalised numibesity functions for each phase are
referred a3, sony(7) =Tp(r)e'". We define the number of cells leaving phasger unit time at age
7, denoted asi,(7), as follows:

Hp(r) =Np(0) -Np(7),  p€{G1, S,GoM}, (2.5.47)

we remark to the reader that the initially obserfiettked total number of cellsTg,(0), thus the total
cell number removed, denoted b, is H' = ir,(0) whenr — T. From equations5.29-(2.5.23
and the scaling factam,(r) = Tp(r)e', we can deriven,(r) as:

) = 1O TS (2.5.48)
OB, rx,

for p € {G1, S,G2M}. We remark thafi(0) = Np(0). We continue by introducing the rate at which
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the number density of cells changes due to removal from ppadenoted b{ﬁp(r), as follows:

dny (7)

—. (2.5.49)

hp(7) = -

The functionﬁp(r) is piecewise dterentiable with respect ta Furthermore, we introduce a variable

for the probability density function for cells that are revad at ager, refer to it asy,(7), and define

as:

hp(r) 1 dM(7)
H! ny(0) dr °

then the probability of being removed from phgsat ager, denoted a¥'(7), is defined as follows:

(2.5.50)

7p(7) =

Fo(r) = fo Fo(9ds (2.5.51)

where lim_,1 I'y(r) = 1. Considering that the probability density functignis decreasing in interval
[7p, T), we express the expected time of cell removal from plgeas follows:

T T T
Tszfc; T7p(T)dT:LpT?p(T)dT+f Typ(7)dr, (2.5.52)
Tp

Tp dmy(7) T dmy(7)
[ o[-y e

For simplicity, we define normalised number of cells in eakchgep as:

— Tp
Np :f(; Nh(n)dr, 7<7p, (2.5.53)

-
N, = f m(mdr, 72>7p
Tp

Finally, by integrating equatior2(5.52 and incorporating4.5.53, we derive the following expres-
sion for the time of removal from phage
T NE N; (2.5.54)
==+t =——=. 9.
P 1p(0)  p(0)

We proceed by deriving explicit formulae for expected realdimes in each phase. Taking into
account equation(5.49 and @.5.53, we obtain the following expressions:

1
T, =76, + —, (2.5.55)
b,
. 1
Ts=Ts+En (2.5.56)
S
. 1
Tém = TGoM + =——. (2.5.57)
oM

We remind the reader that cancer cell population is compos$euloliferating cells with some un-
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dergoing cell death; thus, all cells in each phase will eith@nsit to the next phase or die. When
comparing the average age in the particular phigswith the average removal agg,, we can see
that the following is true :

Tp>Tp.

We have not shown this result analytically. Here we definesttpected time of cell removal from all
phases, denoted agy, as the sum of the removal times of all three phases:

1 1 1
Trm:Tél"'Tg"'TéZM =TGg1+Ts+TegM+t=—+—+—. (2558)

b, bs bg,m

The relationship between the population doubling tifgeand the expected removal time from all
phased, (or expected transit time through all phases) is as follows:

We ran a Monte Carlo simulation for equatidh .59 versus population doubling time (see Figure
2.7) for theoretical cell lines with the same random values Ffar transition rates, aging times and
death rates as in Figu&6 and obtained the following expression:

Trm = er, Wlth 9 € [1, 1.3]. (2.5-60)

If no cell deathup or aging timesr, are incorporated in the model, the expressiars.6Q would
still hold as the magnitude of the growth ratecalculated from the characteristic equati@rb(g, is
affected by the apoptosis rate and aging time variations. I@l¢he average cell age in the phake
is always smaller than the average removal time of the celbchn.

The notions, the average cell-removal time and the averaljeycle time, are intertwined when
relating to cell growth times and can also be called the cafidit time through cell cycle. In the
following chapters of this thesis, we will assume that nutimf expected cell-removal time, cell-
transit time and cell-cycle time are interchangeable aridefer to it asTe, i.e., Trm = Te.

As mentioned before, the estimation of the cell-cycle tirha cancer population is of a particular
interest for biologists as it relates to patients survivalgmosis; shorter cell-cycle times relate to poor
prognoses for the cancer patient. Mathematical model thatievaluate the cell-cycle time from a
single experimental observation, would be valuable taahns.

In experimental observations, biologists often assumittigacell-cycle time is equal to the pop-
ulation doubling time, which is calculated from the coneted growth curve. This data is then used
for the empirical estimate of the transition rate prob#abitietween certain phases of the cell cycle.
We note that this empirical method does not take into accihnpossibility of cell death. Our math-
ematical model agrees that the population doubling timebeaequal to the cell-cycle time for some
cell lines. However, in general case, the average cellectigie of the population is greater or equal
to the population doubling time.

Several mathematical methods of the cell-cycle time esiimdor the cancer cell population at
the BEG state can be found in the literature. The identicptession for the average cell-cycle time
(Tc = Tym) derived from our model, shown in equatioh.§.59, can be found irBasse & Ubezio
(2007); Basseet al. (2009; Simmset al. (2012. However, in these publications, the cell-cycle time
expression has been guessed and then verified by using atdisomputational simulatioBimms
et al. (2012. An alternative method for estimating cell-cycle time danfound inChiorino et al.
(2001, where the desynchronization of the population growth been incorporated into the age-
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Figure 2.7: Diagram representing relationship betweeh dmlibling time T4 and expected re-
moval time Ty, for theoretical cancer cell populations. Transition ratgsp.1, aging timesrp,
and death rateg, are randomly chosen from uniform distribution from the daling intervals:
FG1—>S € [0.0001 0.2], FS—>G2M € [0.0001,0.2], FGZM—>G1 € [0.05, 2], TG, € [3,25]rs € [2,25], and
6,m € [0.01, 10], with death ratefg, € [107%,10°%], g € [1074,10°%], andfig,y € [1074,1073]. A
constraint ofTy < 168 hours is imposed for biological realism.

structured model and then related to the mean cell cycldidaraThe computational results of this
model showed that, for two cell lines examined, the popaitatioubling times and the average cell-
cycle times are approximately the same in their magnitudgs strongly agreeing with our model
result. We note that the model i@hiorino et al. (2001 requires many experimental observation
points to monitor the desynchronized population’s consreg to the exponential growth state. The
stochastic approach of the desynchronization rate methsdben shown iBronk et al. (1968);
Olofsson & McDonald2009. In the classic worksteel(1977), analytical methods for estimating the
duration of particular phases have been derived from arsagetured model, where phases, S
andG, have been combined into one, therefore the transition rateapilities between these phases
have not been included into the model. For example, fromrtgathod, the duration of th8-phase
can be calculated from the experimental estimates of thelohgutime, the growth rate and the la-
belling index (the number of cells in tH&phase of the growth cycle divided by the total cells in the
population, namely what we refer to Hg). Many papers utilise analytical results frdsteel(1977)

to estimate the transit times of the particular phdsesd (1973; Larssoret al.(2007); Terry & White
(2009; White & Terry (2000.
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2.6 Conversion of age distribution model to ordinary diferential equation model

2.6 Conversion of age distribution model to ordinary dfferential equa-
tion model

In further chapters of this thesis, we apply experimentah da several ODE models. Transition
from PDE to the ordinary dlierential equation (ODE) is done with the assumption of hognegy
of individual cells within the particular phasgs Taking into account equatior2.6.1), we find by
integrating McKendrick-von Foerster equatidh4.16 over 0< r < T the following ODE system:

-
% =n{t,r=0)- f Dout(t, )n(t, 7)dr, O<t < oo, (2.6.1)
0

T T
= f Din(t, 7)n(t, 7) dr — f Dout(t, 7)n(t, 7) dr, (2.6.2)
0 0

where we used expressidi(t, — T) = 0 and the renewal conditior2 .19 to derive the result
above.

The only possible form of the matricéBj,, Doy}, in order to convert this equation into an ODE
system, is to have these matrices independent ibfen we obtain the following ODE system:

an()

.
5 = BNO. N(O):fo n(0,7)dr, 0<t< oo, (2.6.3)

and for theDj,, Doyt matrices also independent of tihave have the constant matrix

B= (Din - Dout),
—(Fey-s + fig,) 0 XG,M-G,
= TG5s ~(Fs-G,m + is) 0
0 TS—)GZM _(FGzM—>G1 + /_'thM)

In Chapters3 and 5, we use ODE systems as main modelling tools. In Chafstave derive an
ODE system describing the variations of cell populatiorppréions over time that with an additional
constraint, showed in equatiod.b.149, becomes a dlierential-algebraic equation (DAE) system.

2.7 Delay dfferential equation system

The transition from an age-structure model with piecewimgstant transition rates to a DDE system
is done by integrating the corresponding PDE equationstbessige (as shown in Secti@rb). Thus,
by integrating McKendrick-von Foerster equatiéh.3 over intervalr € [0, 7p), we can obtain the
following expression:

% i Np(t, 7) dr = —np(t, 7p) + Np(t, 0) — f ' bp(T)np(t, 7) dr,
0 0
dNp(t) T 7p
—gr = Me(t.T) + fo ap-1(7)Np-1(t, 7) dr — fo bp(r)Np(t, 7)dr,

with the initial conditionNp(0) = [ np(0,7) dr. We remind the reader from Secti@nb.4 notion
Np(t) is the total number of cells in phageat timet between ages 0 ang, and notioan(t) is the
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total number of cells in phageat timet after ager,,. Integrating over intervat € [t,, T], we get the
following:
o T

-
p Np(t, 7) dr = —np(t, T) + np(t, 7p) — f bp(T)np(t, 7) dr,
Tp Tp

dt
= np(t, 7p) — bpNp(b), (2.7.2)

dNp(t) Np(t, 7p) — fT bp(T)np(t, 7) dr,

with the initial condition as followNp(0) = fTZ np(0, 7) dr.
The number density of the population in phasdrom equation 2.2.15 when population is not
at BEG and transition rates are only age-dependent, is lagviol

T T
np(t, 7) = j; ap-1(Np-1(t - 7, 9) dse b boe)ds 073
= T
o1 fy Mpat-9ds <7y,
ek Do(r- (2.7.4)
ap—lfo Np-1(t — 7, 9)ds @) > -

where, from equation2(5.1), we can express the integral in equatich7(4 as Np_l(t -71) =

fOT np-1(t — 7,5)ds Thus, we can conclude that the number density of cells atrgge phasep
at timet, can be calculated as follows:

A DDE model tracks, first, the total cell number that are in guieed growth state, nameﬁp(t),

at timet in each phas@, and, second, the total cell number that are in transitiothéonext phase,
namelyﬁp(t), at timet in each phas@. We continue by deriving a DDE system, by using equations
(2.7.1), (2.7.2, and @.7.9 to express the cell number variations in time as follows:

NG,

i ac,MNG,m (1) — Bg,mNo,m(t - 76,), (2.7.6)
dN, o — _
dfl = ag,MNg,m(t — 7G,) — bg, Ng, (1), (2.7.7)
dNs _ — o
d_tS = aGlNGl(t) - aGlNGl(t - TS)’ (2-7-8)
dNs _ — _
. = 86 Ngy(t - 75) ~ BN ). (2.7.9)
dN; _ _
% = asNs(t) - asNs(t - 7g,m), (2.7.10)
dN o _
% = asNs(t — 7,m) — be,mNg,m(1), (2.7.11)

wheredg, = Tg,s, 8s = Ts56,M, 86,M = 27G,M—G,, andbp = Tppi1 +Hp, P € {G1, S,G2M}. With
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the following initial conditions:

Ne, (0) = NG, (2.7.12)
Ne, (0) = Na,. (2.7.13)
Ns(0) = N2, (2.7.14)
Ns(0) = Ng, (2.7.15)
Ne,m(0) = N v, (2.7.16)
Nem(0) = No, - (2.7.17)

Since, biologically, cells have to grgage in certain phases before transferring to the next phase,
a mathematical model incorporating this property would befgrable to the ODE model, in the
literature linear DDEs. Such mathematical models ofteruiregestimates of aging times, that
experimentally can be observed via mitotic selection nmetlaolinear DDE model investigating the
breast cancer cell line growth dynamics can be seépiimmset al. (2012. Mitotic selection is a
synchronization method that does néfeat the cell cycle. Upon entering mitosis, cells are not firml
attached to the surrounding medium and can be collectedagiiation (by shaking a culture vessel
like petri dish). This method is applicable only to cellsttijgow in monolayer culture, s¢éagano
(1995. Cells that are tightly adherent to the surface of the celutessel or to each other cannot be
synchronized by mitotic selection.
The DDE model inSimmset al. (2012 depicts a cell-cycle that has been subdivided into seven
phases, our DDE syster.(.9 verifies the model proposed in the literature as the modg&lrimms
et al. (2012 can be reduced to a six-phase DDE system. In sysiem{ three equations out of six
decouple, the total number of cells leaving the storagegshhave been incorporated into the delay
terms of the transiting number of cells. Population dynandescribed with the delay féérential
eguation system represents the population growth at BBE&. sta
We have not been provided with the experimental estimategiolg timesry, from the mitotic se-
lection for the melanoma cancer cell lines. Thus in the oty chapters, we utilise ODE systems
because the data that can be extracted from the flow cytorpeifyes is not sfficient to apply the
DDE model.
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Chapter 3

Determination of Cell Population
Dynamics Using Plateau Log Reduction
Method

Cell-cycle times are vital parameters in cancer researdrshart cell-cycle times are often related to
poor survival of cancer patients. A method for experimeastimation of cell-cycle times or doubling
times of cultured cancer cell populations, based on adddfgaclitaxel (an inhibitor of cell division)
has been proposed in literature. In this chapter, we use laematical model to investigate relation-
ships between essential parameters of the cell divisiole égiowing inhibition of cell division. The
reduction in the number of cells engaged in DNA replicatioaches a plateau as the concentration
of paclitaxel is increased; this can be determined expettatlg. From our model, we have derived a
plateau log reduction formula for proliferating cells arstadlished that there are linear relationships
between the plateau log reduction values and the recipajaddubling times (i.e., growth rates of
the populations). We have therefore provided theoretigstification of an important experimental
technique to determine cell doubling times. Furthermorehave applied Monte Carlo experiments
to justify the suggested linear relationships used to edéndoubling time from 5-day cell culture
assays. We show that our results are applicable to candgrogellations with cell loss present.

3.1 Introduction to the plateau log reduction method

In this chapter, we develop analytical methods to interfiretgrowth of cancer cells in culture, thus
providing insights into the measurement of cancer grawtlitro unexposed to any cancer treatment.
An age-structured model with constant transition ratesieé in Section2.6) has been reduced to
the ODE model and used in study of the cell population dynamic

We remind the reader that our mathematical model depictdythamics of cell population in BEG
state. Cancer cell population has no microenvironmentastcaints when growing in vitro. As dis-
cussed before, mammalian cells proliferating in cultuggpess through a series of four phases during
the cell division cycle, namel$&,, S (DNA replication), G, and M (mitosis) phases. It seems rela-
tively straightforward to determine experimentally atsetavo of the basic parameters of proliferating
cells, namely population doubling time and the proportiboeatls in each phase. The population dou-
bling time T4 can be measured by counting the number of cellsfitrdint times to produce a growth
curve, and the proportion of cells in each phase can be meghbyrstaining the DNA with a fluores-
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cent dye such as propidium iodide and analysing the populdty flow cytometry. This latter method
does not distinguisis, and M-phase cells (which have the same DNA content) and thesgsasal
therefore often measure three phaGesS and a combine®,M-phase, as discussed in SectiohA
Determination of transit times for each of the phases anaybke time of the overall population is
complicated by two issues:

1. Although the numbers of proliferating cells increaseamgntially with time, the phase transit
times are not just simply related to the proportion of cefisdatermined by flow cytometry.
A direct relationship has been thought to be so in some ofithatureBarneset al. (2001);
Taylor et al. (1983.

2. The transit times of individual mammalian cells in indival phases are variable, particularly
in G; phase. This has thdfect that in a proliferating cell population, some cells magain
for long periods inG; phase and thus appear as non-proliferating cells. In pus\studies, this
issue has been addressed by modelling the cell cycle usisiens of diferential equations and
incorporating transition probabilities from one phasertother for the onset of DNA replication
and cell divisionBasseet al. (2003 20041, and we utilise similar approach in this chapter.

A further practical issue in the determination of cell cygdgrameters of a proliferating cell population
is the incidence of apoptosBaguley(2011). Many, perhaps all, cell lines in culture have a finite
probability of undergoing this programmed cell death medra which begins within seconds with
blebbing of the cytoplasm and continues for about 3 hdurdradeet al. (2010, leading to complete
fragmentation of the cell and to loss of DNA, thus making theEimost invisible to microscopy and
DNA-based flow cytometry. Therefore, simple counting ofscelnnot estimate this cell loss factor,
which would lead to errors in the calculation of populatia@ulling times.

An alternative method, from the method explained abovethfeestimation of cell cycle parame-
ters is the so-called stathmokinetic method, where thecgelk is blocked at a particular point (such
as mitosis) and the consequent changes in proportions ineth@hases are measured by flow cy-
tometry. Cell cycle can be blocked by using a mitotic intabithemotherapy drug - paclitaxel. It
interferes with the normal breakdown of microtubules dgirgell division. Because the transition
to apoptosis is thought to be essentially independent ofybie phase, this method provides a good
basis for calculating cell cycle parameters. This methadtegen previously applied by using the drug
paclitaxel, which arrests cells in mitosis and preventsdieision. A complication of this approach is
that cells arrested by paclitaxel subsequently enter a,stdtich we termed A-phase, where DNA is
slowly but progressively degraded. Basseet al. (20043, the A-phase is included to exhibit process
of slow DNA loss.

A simplification of the above stathmokinetic methodologyasneasure the incorporation of ra-
dioactive labelled thymidine’H-TdR) into cellular DNA at a selected time after additiorpatlitaxel.
This method provides an estimate of the number of cells iptipulation that have recently (less than
6 hours) entered the S-phase. The method uses comparisel pdjgulations grown in the presence
and absence of labelled thymidine to derive the cell cycta.d@omparison of measurements of the
population doubling time (by cell counting) and the desadibhymidine incorporation following ad-
dition of paclitaxel provided a significant correlationBaguleyet al. (1995. This result has led to
the development of a technique to more accurately estinmatblithg time of cell populations. More-
over, the derivation of population doubling time, by congti does not take cell loss into account.
The method based on this simplification, as outlined in thigpter, overcomes this problem by use
of the measured uptake 8H-TdR into DNA of cultured cells. Then a ‘plateau’ reductivalue
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(P_R) for 3H-TdR incorporation, at paclitaxel concentrations abowalae that completely inhibits
cell division, can be used to estimate doubling time.

We address the question here, of whether the transitionapility model can be used to de-
rive a direct relationship between cell doubling time anghildine incorporation data. This chapter
provides the theoretical justification and a further extm®f this *H-TdR technique, which was
pioneered irBaguleyet al. (1995 1999. Central to our results here, and in flow cytometry experi-
ments, is the determination of transition rates betweerphiases that are used in our mathematical
model from the measurement of percentages in each phasbendlt population doubling time. In
subsequent sections, we address the existence and ursquesrtbis mathematical mapping and its
inverse map (from the transition rates to the cell propodjo We suggest the replacement of the
direct counting measurement of the doubling time for cekunf proliferating cells by its calculation
from the plateau logarithm reduction measurement discluissee.

We provide in Sectior8.2 respective adjustments to our general mathematical maatled in
Chapter2. In Section3.2.1, we utilise the analytical formulae, from Chapfgrfor the relationships
between transition rates, total population growth rate mraportions in each phase at BEG state
in order to provide theoretical justification and extensiavhich are discussed in Secti@r3. We
show our results of a Monte Carlo simulation of the full edpag to justify the linear reciprocal
relationship betweel g and Ty derived asymptotically in in SectioB.3.2.1 In Section3.3.4we
summarise our results showing the simpféng relationship that exists betwe&p and P g. This
result is particularly important for oncology.

3.2 The model forin vitro human tumour cell population kinetics

We reduce our age-structured model (introduced in Chajtéo the ODE model due to limited
amount of experimental estimates. In Secttof it was shown that the dynamics of the total number
of cells in each phase are subsumed by the ODE model. In thés transition rate probabilities are
not functions of age. In this chapter, transition rates amestant and we refer to them ag,p.1
throughout this chapter with € {G1, S, GoM} (in Chapter2 we referred to them as,,p.1). We
observe that mathematical model has to incorporateftieets of chemotherapy drug paclitaxel, thus
appropriate adjustments to the ODE model in Secfidrhave been made. Consider a population of
cells, with structure classification &, S, GoM andA, according to their corresponding phase of
the cell cycle and with the probability that cells can trandfom one phase to the next according to
transition rategrg,,s, 's—c,M. l',M—G,. A} between phases. A cell arrest or apoptosis piaise
also included as a removal class, and this occurs fronGid-phase so that it can model thgext of
paclitaxel. In case of aA-phase consisting of arrested cancer cells, we refer tonbasproliferating
cells of the population. Whereas, for Arphase representing apoptosis we refer to it as cell death.

The resulting dynamical system, depicted in FigBuk can be described with three ODEs — one
equation for the number of cells in each phaislg, (t), Ns(t), Ng,m(t)} as a function of timetf as
follows:

dNg, (t
d;( ) = 2rg,M-6, Ng,m(t) — re,—sNg, (1), (3.2.1a)
% = I’G1—>SNG1(t) —I'ssG,M Ns(t), (3.2.1b)

dNg,m(t
étM( ) _ rs—c,MNs(t) = re,M-6,Ne,m () — FaNe,m (1), (3.2.1c)
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parameter description units

rG,-s rate transitiors; to S-phase hours
rs—-G,M rate transitiorS to GoM-phase  hourd
re,M—G, rate transitiorGoM to G;-phase hours

ra arrest or apoptosis rate houts

Table 3.1: Model parameters with descriptions and unitshdtuld be observed for biological cell
lines that generally the transition probabilities sat8fy rg,_,s < rs-ce,m < re,m-c, With the rare
exception of 0< rs_,g,m < I'g;-s < [G,M-G; -

where the transition between the phases (includeditpbase) is determined by the probability pa-
rameters as listed in TabBLl It should be noted that the 2 on the right-hand-side of egugs.2.13
indicates that 2 daughter cells are produced for every eallihg theG,M-phase. Each equation is
a conservation equation for the rate of change of the numbelis in that phase per unit time with
transition rates per unit time between phases. Furtherrdefaing

Nproiif (t) = Ng, (t) + Ns(t) + Ng,m (), (3.2.2)

where we see that the total number of proliferating c@lisoiit, in the three phases is not conserved
but grows or decays depending on the signrefy—c, — ra). The total population]Ne, in the four
classes satisfies

Niot(t) = Nproiif (t) + Na(t), (3.2.3)

where the terniNp represents the number of cells in thgphase.
The number of cells removed from the proliferating cell pagon (Na) satisfies:

dNa
—A _aN

at  rANGM: (3.2.4)
Na(0) = 0,

where it follows thatNa grows exponentially whem # 0.

3.2.1 Phase solutions in BEG with constant transition rates

When a cell line is being cultured for flow cytometry expentgethe cell population exhibits balanced
exponential growth of the form _
Np(t) = Npet, (3.2.5)

whereﬁp, p € {G1, S,G,M} is a constant for each phase. The form of the expres§iany shows
that the cell phase population grows exponentially withangin ratel and asymptotically the popula-
tion has a stable phase distribution which is independettiteohitial phase distribution. Furthermore,
itis asynchronous as the percentage of cells in each phas®tin general the same but depend upon
the transition rates. We have shown the characteristictisquor the population in the BEG state
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erM—)Gl

Figure 3.1: A diagram of cell-cycle control of a cell line lggbpulation. The population is subdivided
into G;, S, GoM and A phases with the possibility that cells can transfer from phase to the
next according to transition rates (Taldel) between phases. Response of cancer cell population to
paclitaxel is shown when transition rate,u—.g, is equal to zero.

with constant transition rates in equatioris5(9 and @.5.10. The condition for the exponential
growth of population with parameters used in syst&8m.() is as follows:

(reoMoG, + 1A+ (G- + )(rssem +4)
2rG,M—G1G1-SI'S-GyM

F(1) = 1 (3.2.6)
The functionF (1) is a cubic polynomial with zeros atg,_.s, —I's—c,m, and—(rg,m-c, +ra), and it
intersects the ordinate at {1ra/re,m-c,)/2 and moreoverF is monotone increasing for> 0. An
alternative proof has been discusse®asseet al. (20043.

Figure2.4 in Chapter2 shows a series of typical graphs I6{1). Further considerations of the
graph ofF shows that ifra < rg,m-c,, thenF (1) — 1 always has just one positive root fér and
this value determines the cell population growth. The gase rg,m-c,, Which defines constant
population growth, is the boundary value dfleading to proliferating populationNgqiit) decline
whenra > rg,m-c,. In addition, it is seen that defines the doubling time of the population cell line
through the well known equation

_In(2)

A
This time is central to understanding the dynamics of thdioel in that it also defines the population
cell-cycle time (equivalent to the population cell trartgite) as the time it takes 1 cell to become
2 cellsetc. When the proliferating cell population is considered to W&8EG, as given by equation
(3.2.9, then we can easily calculate the proportions in each phésieh will become asymptotically
constant, as shown in equatioris.3%-(2.5.39 in Chapter2. Constant proportions in the phases

Tq (3.2.7)

1See AppendixB.1 equation B.1.29
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are obtained experimentally in cell lines when the cellungl$ are maintained in exponential growth.
For simplicity in the remainder of this section we considgr= 0, so thatNyt = Nprolit. We can
reduce the constant proportion formulae5(37-(2.5.39 for the case of constat transition rates by
takingrp, — O for p € {G1, S,G,M}. Then letllg, be the proportion of cells in th&;-phase, namely
I1g, = Ng, (t)/Niwt, and similar notation for the other phases, then

1

g, = ———, 3.2.8a
Gy C/I(rGl—>S +/l) ( )
1 rG,-s
Ils = , 3.2.8b
Ci(rg,»s + 1) rsse,m +4 ( )
1= HGl +Ils + HGng (3.2.8C)
where from equation2(5.30
1 rG,-s rG1-sls=G,M
C,= + + , (3.2.9
LT reas + A4 (Fsoom + V(6,05 + ) (Fsoem + D(TeMo6, + A)(fe s + A) ( )
so that
11 re._
S -GS (3.2.10a)
g, Trsoem+A4
Ig,m _ _ TsoGoM (3.2.10b)
HS erM—>G1 + /l’
1= H(31 +Ils + HGZM- (3.2.10C)
Now Npyroiit satisfies
dNprolit
% = (rGZM_)Gl - rA)NGZM, (3.2.11)
= (rg,M-6; — 'a)llg,MNprolif » (3.2.12)

so that besides the characteristic equatib.g for the population growth rate we haxe= (rg,m—c,—
ra)llg,m.

From the equations of this section for an established asdl Ve have a relationship between
proportions in each phase, the rate transitions betweeseph#he population doubling time. The
equations §.2.9, (3.2.7, and 8.2.10 form a system of five equations in the eight variables

{rg,-s,'sse,M, F'e,M—Gy» 4, gy, s, Ilg,m, Ta)

but two of these five equations are reducible in fiigiy can be eliminated with the last of equation
(3.2.10 and similarly T4 can removed with equatior82.7). So we have an implicit three-system
of equations for the six variables in the three-groupings {rg,-s,rs-c,m,G,M-G,}, ando =
{I1g,, I1s, A} hence the implicit three-system can be written

G(r,o) =0, (3.2.13)

whereG : R3 x R® — R3, as we are only interested ih > 0. For the Monte Carlo simulation
considered in Sectio.3.3ther’s are known and we wish to know whether this implicit funatio
G, determines ther uniquely. That is, given the three transition rates is tteemique mapping to
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the proportions and (effectively Tg). We now show for this direct problem that we have a local
differentiable mappingR, defined byor = R(r) that uniquely determines tlee. Another important
question for determination of cell kinetics is: Does meament ofo- uniquely determine the? That

is, can we write = R"1(0)? Both these answers are proven in Apperitlixby the implicit function
theorem, and in the following statement of this result thérives J,-, J; are defined as appropriate
sub-matrices of the jacobian Gf We can now express the results found for both maps in thevfoil
theorem:

Theorem 3.2.1. (a) The mapping, R), exists locally aglet], > 0 on S, a bounded and open
subset ofrg, s, r's-c,m, le,M-G,} € RE, and it is uniquely locally defined on S, and the local
maps are continuously figrentiable.

(b) The mapping R (o) exists locally asletJ, > 0on S, abounded and open subsetidg,, s, A} €
R3, and it is uniquely locally invertible on’Sand the local maps are continuouslyfdien-
tiable.

We observe that from the flow cytometry data fig p € {G;, S, GoM} can be measured, afg
can be determined by cell counting thus yieldihgThis means that thes are uniquely determined
by TheorenB3.2.1(b).

These results are central to our model’'s usefulness in ginegithe cell dynamics from flow
cytometry measurements.

3.3 Results

3.3.1 Experimental paclitaxel dose-responsdfects

The cell-cycle times of human tumour cells vary considgratthong dfferent individualsPrescott
(1987, and for several cancer types, where short cycle timeseda¢ed to poor survival times of
patientsFurneauxet al. (2008; Rew & Wilson (2000. Hence it is important to estimate cell-cycle
times ofin vivo tumours. However, the determination iofvivo potential doubling timesT(o) is
not currently ethically justifiable, since it involves thdnainistration of a potential mutagen (bro-
modeoxyuridine an analogue of thymidine) and subsequambuu biopsy. An alternative approach
to estimate cell doubling time is to culture clinical magéin a short-term (7 day) ass&@aguley
et al. (1999 and to measure thefect of cell division arrest, typically carried out by addiagnitotic
poison such as paclitaxel. On subsequent uptak&iefdR into DNA of cultured cells, a measured
‘plateau’ reduction value fofH-TdR incorporation, at paclitaxel concentrations abowalae that
completely inhibits cell divisiolBaguleyet al. (1999; Furneauxet al. (2009 can be used to estimate
doubling time. The method relies on the intrinsic variapibf cell-cycle time, much of which is in
the G;-phase of the cell cycle and thus occurs before the onset &f Edlication Prescott(1987).
The range of values determined using this method is sungfissimilar to that obtained using vivo
the Tpot method. Previous studies have shown that the kinetic betiaef cultured cells, as measured
by flow cytometry, can be modelledfectively by incorporating transition probabilities fortlonset
of DNA replication and cell divisiorBasseet al. (2003 20048. This technique is analysed here for
cell lines, but a further application of it would allow thisetinod to be extended to cultured clinical
tumour material.

We observe that the chemotherapy drug paclitaxel is an #atimagent that stabilises the assem-
bly of microtubules by preventing depolymerisation, thagsting cells prior to or during mitoses.
In Baguleyet al. (1999, the chemosensitivity of cell lines to paclitaxel was gsshby exposing the
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Figure 3.2: Diagrammatic representation of the paclitageicentration-dependent phase of the dose-
response semilog-curves.

tumour cell lines to paclitaxel for 5 days and the remainingiferative cells quantitated bB3H-TdR
incorporation. This subsequent incorporatiofldfTdR is proportional to the number of proliferating
cells in theS-phase and the level of this incorporation is measured wslitgiid scintillation counter.
The resulting measurement then is proportional to the atfurell proliferation.

Ps(t) is defined as the time dependenhéurs) percentage of tt#&-phase cells after exposure to
paclitaxel. We name this important quantity thiateau log reductiorwith the symbol,P g, which
is log; o units of the normalised value #s(t). In Baguleyet al. (1999 experimental measurements
were made and variouB r values and their corresponding measurements of populdtaoibling
time, Tq were calculated for 21 cell lines (after exposing them tdifza®! for 5 days) and it was
shown that when these quantities were plotted against ethen they showed a significant linear
dependence. The wide rangeRyk found shows how diierent cell lines can have afférent responses
to chemotherapy, and this stems from the possible wide rahgalues for transition rates between
phases. In particular, it is the transition rate fr@nto S-phase that produces a wide rangezaf
phase transit times.

The dose-response curves, obtaineBaguleyet al. (1995, were biphasic on a semi-logarithmic
plot with a linear decrease in incorporation up to a paréicdrug concentration, and above which no
further decrease was evident (see diagrammatic repréisentddose-response curves in FigGré).
The plateau defines thg r measurement. We observe in Figar@that, firstly, the initial decreasing
region of the dose response curve as the paclitaxel coatientrincreases results in a decreasing
proportion of proliferating cells, hence fewer cells in Bhase. Secondly, the plateau corresponds
to the concentration level where the cell is arrested in sistoAlso we observe that the position of
the elbow in the curve is dependent upon the concentratioause for a shorter exposure time to
paclitaxel the concentration must be higher to stop celidirny. Thirdly, the plateau is a measure
of the remaining cells in th&-phase at the exposure time. Fourthly, we observe the ddptieo
plateau is deeper with longer exposure times. This is bectngese are fewer remaining proliferating
cells, in theS-phase, with longer paclitaxel exposure times. This is ®aut by our mathematics
in Section3.3.2.1where it is shown that once mitosis has been inhibited thebeurof cells in the
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S-phase declines exponentially as a function of exposuome. ti

Baguleyet al. (1999 hypothesised a model for this dose-response behaviodirstly, the cell
killing in response to paclitaxel occurs only during metagdnarrest (i.e., iM-phase), while the rate
of progress through other phases in the cell cycle is closoitmal. Secondly, that the number of
proliferating cells is proportional to th#H-TdR incorporation. Then, their model of the experimen-
tal results was that during the linear reduction in numbetedls, in the dose-response dependence
range, a proportion of the cells undergo paclitaxel inducedersible arrest once they enter mitosis
while the remaining cells continue through mitosis to arottell cycle. Whereas, over the plateau
concentration range, where the dose-response is indemtenfdeoncentration, all cells undergo irre-
versible paclitaxel-induced arrest or death once theyrent@sis. Furthermore, they suggested that
the plateau #ect shows the number &-phase cells, fixed at a time, which is resultant on the eritry o
cells from theGi-phase and exit into th&,M-phase, and will be independent of paclitaxel concen-
tration. Moreover, the exact number of remainBgphase cells will be strongly dependent upon the
exposure time to paclitaxel and this hypothesis is supgddietheir experiments. These behavioural
characteristics are shown in Figur@g. Our model, which is predicated upon the phase cycle of the
cell, further supports their hypothesis from our matheoadtiesults in Sectio3.3.2

3.3.1.1 Previous experimental work results

In Baguleyet al. (1999, it was shown that the cancer cell population doubling tsmgnificantly
correlated with the maximum plateau reduction. In paréicuthey postulated that if an exponential
rate of departure of cells fro@;1-phase is assumed, the proportiéig() of G1-phase cells at any time
after exposure to paclitaxel at concentrations high enaadttock cell division will be described by
the relationship: B

Ps, = Poe ¥T, (3.3.1)

wherePq is the proportion of3;-phase cells at zero timg,is a constant and is the doubling time.
After an interval (corresponding approximately to Bi@hase transit time) the proportion $fphase
cells will have a similar dependence tr5o followingBaguleyet al. (1999, taking the logarithm of
equation 8.3.7), when in the plateau logarithmic reduction dose-respaonseentration we have

Ps() _ k
50 = 7 (3.3.2)

wherePs(t)/Ps(0) is the change in the proportion of cells in tBephase. So their model predicts
that the logarithm of the remainirfg-phase cells at timeafter paclitaxel exposure should be linear
function oft/T. This formula can be rewritten (without loss of generality)ogarithm to base 10
units, and observing that 100Ps(t)/Ps(0) is the percentage of ti&phase fraction givinglateau
log reduction(which we denote by, g) it implies that the logarithm reduction formula is:

B Ps(0)

. Ps(t) _ . Ps(t)

= —log;p Ps(0) log;7100 Ioglo[lo()—PS(o)],

= kat/T, (3.3.3)

wherek; = klog;ge. Furthermore, they found that on their plotting the expenial data from 21
tumour cell lines, which were sub-cultured in exponenti@ge over 5 days with the doubling times
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estimated by counting the cells in a haemocytometer, amdy@slinear regression polynomial to this
data a positive correlation existed (with= 0.90;p < 0.001). From this an empirical formula was

derived inBaguleyet al. (1999 as <

= 1

T B (3.3.4)
whereK; = kit, with k; = 0.45, andt; = 5 days, this value ok; is our least squares fit from their
21 cell lines from the tabulated data in their Table 2Kimguleyet al. (1999), and thusK; = 2.25
for these cell lines. Whereas, based on their Figure @éguleyet al. (19953), which has 37 cell
lines, one can obtain a valle = 0.473, and witht; = 5 days, geK; = 2.365 for these cell lines.
We observe for reference, for primary cultures with a pax#t exposure time of 7 days, the value of
Ky is 378 (as cited inFurneauxet al. (2008). Further application of formula3(3.4 to short-term
cultures of tumour samples taken at surgery from patiertts vain cancer ifFurneawet al. (2009
yields a value oKy up to 48. This formula betweeR g and YT, for a fixed timet, implies that for
cell cultures with a long doubling time (or cycle time)r is small. But for those cell cultures with a
short doubling timéP R is large. It should observed that this formula can be onlidvaler restricted
ranges ofP g andT as will be made apparent in Sectidrs.3

The fundamental experimental hypothesis madBauleyet al. (1999 is that the plateau log

reduction value obtained, at high enough paclitaxel caomagon, is directly proportional to the pa-
clitaxel exposure time and inversely proportional to thakdimg time. We show similar correlations,
based on our theories, betweEnr= Tq andP, g in Section3.3.2.1

3.3.2 Deriving a simple empirical method of calculating thecell doubling time for cell
lines using a phase structured model

We use our mathematical model to derive a simple empiric#hatefor calculating the cell population
doubling timeTy for cell lines as follows. First, we model the response to rfitotic inhibitor
paclitaxel, by setting the transition rate from the comdieM-phase tds;1-phase equal to zero, and
deriving a temporal expression for the remainBphase cells. We then apply the model to a range
of theoretical cell lines and show thair is approximately proportional to the exposure time divided
by cell doubling time for a range of values.

In this section, we will justify mathematically the resubfsBaguleyet al. (1995, namely equation
(3.3.3, and their hypotheses through our phase ODE systeMl]. Hence we now model thefects
of adding paclitaxel at a concentration to ensure entrytimé@lateau region of the dose-response. We
therefore note that in the plateau region there are no pratihg cells so we simulate the paclitaxel
concentration by setting the transfer rate fr@»M to G; phase to zero, i.erg,m—c, = 0. Then
BEG will be broken and there will bao constant proportions in the phases, so that the number of
cells in the various phases will be described by the equatiorAppendixB.3. We aim to show
that the relationship described in equati@m3(1) holds for our model. Namely, that after addition of
paclitaxel the proportion of cells i&-phase will decline exponentially:

Ns(t) _ N, (0) rG,-s
Niotal(0)  Niotal(0) rs—c,m — r'c,-s

_ _ Ns(0) _
gfei-st _ g rSﬁth) + ————_g s-Gmt, 3.35
( Ntotal(o) ( )
We observe that= 0 corresponds to the paclitaxel concentration having jogied cell division so
that Niotal IS given by equation3 2.2, whenra = 0, for BEG att = 0_. For the rest of the chapter
we will assumeg, s # rs-g,m, in other words, the casg,_,s = rs_.g,m, considered in equation
(B.3.2), will not occur. This is true in our Monte Carlo simulatioasSection3.3.3 as this case has
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zero probability of occurring as it is a boundary case.
Using notationPs for the proportion of the total population of cells in tifephase, equation
(3.3.5 can be simplified to:

lc,—
Ps(t) = Pg, (0)——=2=5

(677t = st 4 Pg(0)e Ts-ean. (3.3.6)

ls-GyM — IG;-s

Furthermore, sinc®s(0) denotes the proportion of the total cell population ia 8iphase at time
t=0_,i.e., just before paclitaxel incorporation, we can expithg proportion of cells in th8-phase
as follows:

Pst) _ Pe.(0) 618 (e‘rGﬁSt - e‘rSHGth) + @ 's-Gmt (3.3.7)
Ps(0)  Ps(0) rsse,m —re;-s ' -
As
P, (0) _ Hg,
Ps(0) Tls’

we can use equatior3 .10 to simplify equation 8.3.7) to

Ps()  rssem+4
Ps(0) rsoc,m —fGi-s

(e—trG1—>S _ e_trS—>G2M) + e—trS—>G2M . (338)

Now to show the exponential decay of the percentage of aelthe S-phase, we must subdivide
expression {.3.8 into two cases. Firstly, in case of the transition rate fithG; to S-phase being
slower than from théS to GoM -phase, i.e.[g,,s < I'sg,m, We can express the percentage of the
total cell population in th&-phase after a linearisation tinfg, whereT, > Ts, as:

Ps(t rs— +4
s = S2GaM glfer-s 4 O(e_trs_’GZM), 0<rg»s <rfssgm, t>Tg, (3.3.9)
Ps(0) rs-c,m —IG,-s

whereT | is large enough to ensure that the order term is expongnsiaiéll. Secondly, wherg, _,s >
rs-c,m, We can see that the following is true:

Ps(t rg,»s +4
s(t = G125 g lIs-eM 4 O(e‘”GﬁS), 0<rsseMm <fg s, t>TL. (3.3.10)
Ps(0)  rg,-s — I'sscm

Thus, the percentage of cells in tBephase is eventually exponentially decreasing regaraibtse
relationship between the transition rates ,s andrs_,g,m and this is illustrated in Figurg.3(@). In
both of the cases previously considered, the graphs disitagle exponential decay whdn > 50
hours; see the log plot in Figu3(b) showing when proportion db-phasePs decays in a linear
fashion on timd.

3.3.2.1 Deriving the plateau log reduction formula

Using our model, we will show a plateau log reduction fornsifailar to equationg.3.3, i.e., there
is a direct relationship between population doubling timd the plateau log reduction value. From
eguation 8.3.8 at measurement tinte as

Ps(t1)

Pir = —l0gg ?(O)’
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(a) Linear plot of proportion of cells in the S- (b) Logarithmic plot of proportion of cells in the
phase. Cell cycle transfer rates were chosen for S-phase. Cell cycle transfer rates were chosen for

the casex: whererg, s < rs,g,m - g,—s = 0.05, the casea: rg,s < rsogm - fgos = 0.05,
rsoe,m = 0.101, rg,mmg, = 1.5. In the casé: rsoe,m = 0101, rg,mmg, = 1.5. In the casé:
Wherergﬁs > IsseMm = Igi»s = 0.15, fssem = Wheanl_@ > I'sgoM = Igi»s = 0.15, Is—G,M =
O.lOl,erMHGl =15. 0.101,rGZM‘>Gl =15.

Figure 3.3: Proportion of cells in the S-phase after paditapplication will decrease exponentially.
It can be seen that in casesref_,s > rs_,g,m proportion inS-phase will decay faster than in cases

of lG,—»s <Is—G,M-

it follows

rsg,m +4 _ _ _
Pr=— |0910( o2 (e re;-sti _ @ rS—>Gth1) + @ soemle | (3.3.11)

l'se,m — g-s

Now remembet; is the end of the paclitaxel exposure time, arahn be obtained from the solution of
eqguation 8.2.9. So that asymptotically wheta > T, we can obtain two linear plateau log reduction
formulae, and to this end add and subtréctirom t. The first case being ot, s < rs_.g,m, and
from equation 8.3.9, itis

rS—»GzM +A4

Plr~ - |0910( e_rGl”STL) +10919(€) rg,»s (t1 — T), t1>TL. (3.3.12)

l's-G,M = IG;-s
The second equation applies for whey)_,s > rs_g,m, and it is

rg,»s +4
Pr ~ —logy| —2=5 e"seM L) 4 logo(€) rsmem (L —Ty), t>TL.  (3.3.13)
IG—»s — I's—GM

These formulae show directly the linear dependende gfont; and the two transition probabilities.
Furthermore, in Figur&.3(b) we plot an illustration of formulae3(3.11) showing the linear depen-
dence, as represented in equatiods.(L9, (3.3.13, whent; > T for T_ ~ 50 hr. The formulae
illustrate a linear increase A _g on the exposure timg and the two transition rates.

Equations 8.3.19 and 3.3.13 should be compared with equatio® §.3 with the understanding
that the transition rates are relatedkigT as is now shown. The remaining link with the results of
Baguleyet al. (1995 to be shown is howP| R is approximately linearly dependent upofird. To
show this, we need the dependencelain the transition rates. This can be done by examination
of the nonlinear equatior8(2.9. In AppendixB.2, we show that there exists an approximate linear
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(a) Simulation to verify the linear dependence of (b) Simulation to verify the linear dependence of

A on transition rateg,_,s with conditionrg,s < A on transition raterg,_,s with conditionrg,s >
rsgum. Transition rates were chosen ags € rsgm. Transition rates were chosen BS,g,m €
(002, 0.09),!’5(32,\4 =0.09 anerzMGl =1.2. (002, 0.09),]’(;1%5 =0.09 anerzMGl =1.2.

Figure 3.4: Simulations were carried out to verify statetagostulated in equatior3.(3.19.
dependence of on the two transition rates appearing in the above two egpsts

(3.3.14)

~

/l ~ rG]_—)S’ rGJ_—)S < rS—>G2M7
s—G,M, IG;—s > I's—sG,M-

This result provides some mathematical justification ofdfien quoted approximation that the BEG
growth rate isg,s. It is seen here that this is only true with the asymptoticagstions made in
AppendixB.2 and ifrg,,s < rssg,m. To further illustrate the approximate linear dependerfcg o
on the appropriate transition probability, we show in Feg8r4 both cases considered in expression
(3.3.19 of A versesig,-,s, andrs_,g,m from the nonlinear equatior8(2.9. This figure shows that
our analysis in Appendi®.2 holds true for an appropriate rangergf_,s. In AppendixB.2, a second
order approximation is estimated.

So remembering equatio.@.7), it is seen that we can find one asymptotic formula for théepla
log reduction formulae as

rsoc,Mm + 4 N2 (t,-T
S—-G;M —rGl—>STL) + n_u t1 > TL. (3.3.15)

PLr ~ —log; ( € ,
o\rsoc,m — o8 In10 Ty

Equation 8.3.15 is essential to our results as it shows tRak is approximately linearly dependent
upon Y T4 as it was proposed in the papBaguleyet al. (1995.

We note that to get agreement withguleyet al. (1995, as given in equatior(3.4 for K; = 2.25
the above equation implies thét = 2.47 days or 59 hours which is fairly close to our previously
mentioned linearity estimate.

It is seen that equatior8(3.19 provides theoretical justification from our model of thgpermental
postulate oBaguleyet al. (1999, for equation 8.3.3. In the next section, we provide a Monte Carlo
simulation of the full equation3(3.11) further justifying these conclusions.

3.3.3 Monte Carlo simulations

In this section, we present simulations of our model thaevearried out in order to verify the linearity
of logarithmic plateau reduction values and exposure tioves cell doubling time. This simulation
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uses the full equatior3(3.17), not the asymptotic equations, and so it will not only shogtification
of the experimental results &aguleyet al. (1995, but will also verify the asymptotic analysis of
Section3.3.2

We chose approximately 500 random uniformly distributadsition rates within the intervals@D01 <
fGg,»s < 0.12, Q0001 < rs-g,m < 0.12, 099 < fe,M-G; < 2 and 0000001< ra < 0.0001, which
are appropriate to many cell lines and were provided by bists. For the biologically significant
caserg,-,s < sc,M, in Figure3.5a) we show the results from equatidh .11 of our simulation
from the randomly generated transition rates, with theiabaaepicting the ratio of exposure time to
cell doubling time. Superimposed on the simulated datalide@st squaresfiine regression line. In
Figure3.5b), we incorporate a constant death rate in our simulatibasresults in cell loss of 2%-
20% of the total population. The simulation uses the nuraésgolution of the ODE systen3(2.]) to
determine the rati®s(t)/Ps(0) as in this case the formula on the right-hand-side of tgu3.3.1)

is not correct. When solving the ODE system, the texnis chosen from a uniform random distribu-
tion to result in the appropriate cell loss. We observe thatwodel with apoptosis Figu5(b) gives
the least squareffine regression line equivalent to the second decimal plateetdfine regression
line of our model without apoptosis in Figugex(a).

In our remaining simulations, we use the model without apsiptefects in order to simplify
the derivation of the analytical formulae. For the lessdmatally significant case whemg_g,m <
re,—s, we show in Figure3.5c) the results of our simulation from the randomly genetatansition
rates, with the abscissa the ratio of exposure time and oablthg time. Also shown in this figure
is the least squaredfae regression line. Furthermore, we show for comparisorigarg 3.5d), a
reproduction of the experimental and least squafiisearegression line frorBaguleyet al. (1995.
To compare this figure with our results we must observe a famtqoFirst, the experimental values
of Ty in this figure are obtained by cell counting so that any amigtihat occurs will ensure that the
experimental value of 4 is too large. Second, the small number of data points in theraxental fit
leads to considerable variability in the ¢beients of the fit when compared to our final results shown
in Figure3.6.

We observe from equatior3 .9 that the value oft is afected by all three transition rates, s,
rs-c,m, fe,m-c,, and thus changes in the three-dimensional space of imnsites result in a
stochastic like changes in values of the doubling tifgén the three simulated plots of FiguBe5. It
should be remembered that the doubling time is an inverde Biis will mean that all our simulation
graphs will have stochastic-like appearance.

The nonlinear maR was used to map the randomly chos&onto A theII's with the subsequent
calculation ofTy, and therP_g through equations3(2.7 and @.3.11)) to produce the results shown in
Figures3.5-3.6. The mapR was solved numerically by use of the damped Newton method.

It is observed from the simulated graphs in Fig@réthat a wide range ofy has been fbered;
this range is in excess of what is found biologically. So igufe 3.6 we reject simulations thatfker
T4 outside the interval: .B < T—5d < 45 (hereTy is in days). Figure3.6(@) shows the results of
our simulation from the randomly generated transitiongatben used in equatiol.3.11), with the
abscissa the ratio of exposure time to cell doubling timgeBimposed on the simulated data is our
least squaresfizne regression line. In Figur@ 6b) we invert the plots of Figur8.6(@) by plotting
the doubling time against the exposure time divided by théeplu log reduction value. Furthermore,
a least squaref@ne regression line is shown. These regression lines shawvihaan express the
doubling time values through the reciprocal of the platemureduction values as follows:

t
Tg=C=s—+C (3.3.16)
PLr
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(a) The biologically more plausible casergfs <  (b) The biologically more plausible caseref_s <
rs—c,m andra = 0. From this plot it can be con- rs_g,u With apoptosis present after treatment with
cluded that doubling time can be obtained from lin- paclitaxel. The population doubling time can be

ear expressiorP g = mt/Ty + mp,wherem; = obtained from linear expressidf g = mgt/Ty +
0.608, my, = -0.4844 andt = 120 hours, thus my,wheremz = 0.6077,my = —0.4853 and = 120
Tg = 7296/(P.r + 0.4844). hours, thusTy = 72.924/(P_r + 0.4853).
5 T
. . . . O Arbitrary generated data
O Arbitrary generated data 45 y=0.4503*x+0.3013
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(c) For the case ofg,,s > r's_g,m, Withra = 0, (d) An experimental cell line data and the experi-
it be can see that the doubling time can be calimental data in Table 2 frofBaguleyet al. (1995 is
culated using expressidA g = nit/Tq + Ny with plotted for the comparison with the previous three
n; = 0.5993,n, = -0.4477 and = 120 hours, thus figures. The doubling time can be estimated from
Ty = 71916/(P.r + 0.4477). the equatiorP r = ngt/T4 + Ny with nz = 0.4503,
ns = 03013 andt = 120 hours, thuslTy =
54.036/(P.r — 0.3013).

Figure 3.5: Plateau log reduction value is plotted agaimstexposure timfdoubling time in order
to show the linearity. Two caseS¢g,-s < r'ssg,m andrg, s > rs,g,m Were analysed. It can be
concluded that the relation between transition ra¢gess andrs_,g,m has no &ect on dfine formula

of the doubling time. Cases of no apoptosis and apoptosseptafter paclitaxel addition are analysed
and it can be seen that apoptosis presence haffext en the fiine formula of the doubling time.
Each dot represents a cell line either experimental or dieat.

49


5SecondPaper/Chapter5Figs/EPS/Figure8a.eps
5SecondPaper/Chapter5Figs/EPS/Figure8b.eps
5SecondPaper/Chapter5Figs/EPS/Figure8c.eps
5SecondPaper/Chapter5Figs/EPS/Figure8d.eps

3. DETERMINATION OF CELL POPULATION DYNAMICS USING PLATEAU LOG
REDUCTION METHOD

25
O  Arbitrary generated data
y=0.5609*x-0.4374 %

2 L
c
§e]
=]
o
3

o 15¢
@
]
o
—

=T
©
i)
<
o

0.5}

0 . . . .
0 0.5 1 15 2 2.5 3 3.5 4 4.5

Exposure time (120h) / Doubling time

(a) Plateau log reduction values versus exposure/ tieledoubling time for cell
line data, whemg,s < rsgm. We can see that the doubling time can be calculated
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(b) Population doubling time values versus exposure/tgteteau log reduction for cell
line data, whemg,s < rsgm. We can see that the doubling time can be calculated using
expressionTy = ¢t/Pr + ¢, with ¢; = 0.253,t = 120 hours ana, = 14.29 thus

Tq = 30.36/P g + 14.29.

Figure 3.6: Simulations for estimating cell population diing time for cell lines are shown. We
have only considered case mf, s < rs_g,m Since there is nofeect on choosing the opposite and
alsora = 0. From arbitrary generated data we have chosen only thasdat within the range
13 < £ <45 forcelllines, herdy is in days.
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3.3 Results

Cell line Cell line Cell line

Exposure time (hours) 120 144 168
(days) 5 6 7

Doubling time (hours) Ty = 3328 + 1429 Tq= 332841642 T4=4288,1916

Table 3.2: Afine formula for the cell doubling time calculation. Figut€(b) was used to obtain the
atfine relation values. Observe th&tis in hours.

We have derived a linear relationship between the plateareltuction value and the cell doubling
time (as found irBaguleyet al. (1999) of a cell line after being exposed to paclitaxel. ThefGornt
¢ (cit = K) is directly dependent on the exposure time, thereforeiieat method is applicable only
for the fixed exposure time of 5 to 7 days. Our simulations stimt/the linear relationship between
Tq andP_R exists. We have used the asymptotics in Sectiéh2on P g x T4 to show that for any
random transition rates the dieientc; value is the approximately the same.

3.3.4 Determination of population cell dynamics from plat@u log reduction

We first observe that determination.bfrom the experimentally obtained doubling time is probléma
as it involves cell counting. The use of the experimentalhmétanalysed in this chapter to determine
P_r and then the use of the least squares regression line beRygemd Ty, of the previous subsec-
tion, overcomes this dliculty. This then enables the determination of the transitimbabilities with

A calculated from the doubling time and the nonlinear maprilesd in Theoren8.2.1(b). However,

a superior method for short term assays to determjnis:

1. Find the plateau log reductioR, g, from the assay.
2. Use the results in Tabie2to find T4 from Pg.

In Table3.2, we list our overall fine regression results.

3.3.5 Population doubling time formulae in literature

A variety of methods of the doubling time estimation can henfibin the literature. Tablg.3 depicts
many crucial features that distinguish betweeffiedent methods - firstly, whether or not cell death
is taken into account when calculating population doubtinge. T4 describes population doubling
time with cell death present anide is a measurement of cell population doubling time with nd cel
loss Steel(1977. Secondly, whether or not one needs to estimate apoptassexperimentally
since cell death evaluation has come to be known as somewdtaematicRew & Wilson (2000.
Thirdly, whether experimental estimates used in poputatioubling time formulae are single time-
point observations or multiple time-point observations.

We have included references to formulae of doubling timessiort descriptions of variables used
in theses formulae. For more detailed information, we askleées to look at paper8aguleyet al.
(1999; Bertuzziet al. (2002; Rew & Wilson (2000; Steel(1977; Terry & White (200§ as shown

in Table3.3.
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3. DETERMINATION OF CELL POPULATION DYNAMICS USING PLATEAU

REDUCTION METHOD

Formula Cell death Cell death Experimental Authors Vagabl Single (ST) or multiple (MT)
included measurement methods time-point observation
Ty = CIP%R +c Yes No Stathmokinetic Our method PR - plateau log reduction value ST
3H - TdR Flow cytometry Baguleyet al. (1999 1, Cz -constant

t - exposure time to paclitaxel

Ty = @ Yes Yes Relative motion (RM) Terry & White (2006 r - fraction of labelled cells completing division MT
BrdUrd, Flow cytometry c - progression rate of labelled cells towards division

Ta= M{%l No N/A Growth curve Many papers A - growth rate MT

Tpor= M@ N NA Relative motion (RM) Steel(1977); Terry & White (2006 Ts - duration ofS-phase MT

BrdUrd, Flow cytometry Bertuzziet al. (2002; Rew & Wilson (2000 v- labelling index

Table 3.3: Population doubling time estimation methodshim literature. Second column indicates whether or not dcpdat method takes
cell loss into account when estimating doubling time. Thiodumn shows if cell death has to be determined experimgn{il/A stands for

not applicable), fourth column provides key words of theegikpental techniques applied. Fifth column points to rerfees in literature. Sixth
column briefly describes variables used in the particulantdae. Seventh column shows whether or not the particuihod requires a single
time-point measurement.
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3.4 Conclusions

3.4 Conclusions

We have addressed the question here of whether the trangitidability model can be used to derive
a direct relationship between cell population doublingetiamd®H-TdR incorporation data. We have
shown that indeed it can, and furthermore we can derive atdietationship between cell doubling
time and®H-TdR incorporation data.

In Baguleyet al. (1999, a cell doubling time formula3'3.4 was estimated using a simple model
for cell growth. We use a more complicated phase structuredeirand obtain a similar linear de-
pendence for the cell doubling tinlg. We have verified by asymptotics that the linear relatignshi
betweenTy and P r exists. We have derived that the fisgient K; is dependent on the time a cell
line has been exposed to paclitaxel. We have applied Monte €gperiments to justify and quantify
the linear relationships used to estimate doubling timmfieday cell culture assays, and we suggest
these equations be used for application of the experim@thahique. Furthermore, we have incorpo-
rated apoptosis in our simulations that would result in &losk of 2%-20% of the total population,
through a constant death rate. We observed that our modekywidptosis and no apoptosis after pa-
clitaxel incorporation had no fierence in the least squaréiae regression lines. This implies our
techniques are applicable to cell line populations with alspercentage of non-proliferating cells.

We also observe that the wide rangeRyz show how dfferent cell lines can have affiirent
responses to chemotherapy and this stems from the possditderange of values for transition rates
between phases, in particular the transition rate f@no S-phase which produces to a wide range of
G1-phase transit times is a major factor in this. A further agten of this model for cancer cell lines
would involve: first, incorporating aging timesg in each phase of the cell cycle to increase biological
realism of the model. Second, derive expressions for estimthe cell-cycle time (or removal time
in Chapter2) from single experimental observation of the plateau latyotion value, similar to the
ones presented in Table?2 for the doubling time.

We should point out that currently this type of linear radaghip can be derived only for the cell
lines, although it has been suggestedaguleyet al. (1999 such a relationship holds for primary
cultures. The above model and method could be applied toapyicultures by using an extension of
the model describe®auksteet al. (2009. Further work would include deriving such formulae for
primary cultures.
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Chapter 4

Modelling Cancer Cell Population
Perturbed by Irradiation

In this chapter, we examine the response of a cancer cellggaputo a one-time irradiation dose.
We show that, by changing the PDE system of the number defusitgion to the probability density
function, our model tracks the variability of proportioniscancer cell population in each phase of the
cell cycle and is compatible with the experimental estirmafgroportions in each phase after a variety
of cancer treatments. Our results agree with the previadiest of irradiated cancer cell lines, i.e.,
a cancer cell population undergoes little apoptosis atdiotherapy within the given experimental
observation times. Therefore, we show that the experinigridbserved decrease in the expected
number of cells is due to the long-term arrest of the cell@ydur model provides an interval of
the initial proliferating fraction of the cell populatiowifeach cell line, i.e., a proportion of cells that
keeps proliferating after the application of radiotherapy the discussion section, we explain why
the proliferating fraction estimated via our mathematicaldel does not agree with experimentally
estimated surviving fraction.

4.1 Introduction

Radiation therapy is one of the main cancer treatment mettiod to its ability to control cell growth:

it causes DNA damage, leading to long-term cell cycle amest cell death. The aim of the model
in this chapter is to determine the proliferating propartiof a cancer cell population of human
melanoma cell lines after a one-time irradiation dose. Itdesidered that cell death or apoptosis
takes place within a few hours of an irradiation dd8dge (1998; Kerr et al. (1994); Meyn (1997).

We observe here that, in biological nomenclature, cell€ansidered dead if they have lost ability to
divide indefinitely. Cells that divide indefinitely are aadl clonogenic. Throughout this thesis, we de-
fine cell death or loss as process of cells undergoing apspM& declare that cells are proliferating
or non-proliferating until they undergo apoptosis. We rdathat notions cell death, apoptosis and
cell loss are interchangeable in this chapter. Tlikeince between programmed cell death, apopto-
sis, and necrosis occurring after radiotherapy has beeustied in papeilidge (1998. However,
we do not dfferentiate between these notions in our mathematical model.

Numerous mathematical models have been developed to enhtydfects of radiotherapiaraz-
zoul et al. (2010; Basseet al. (2010; Enderlinget al. (2009; Rockneet al. (2009. Many of the
proposed methods involve the construction of a mathematicael to explain the flow cytometry
data of cancer cell lines after irradiation. In this chaptee are going to address and elaborate on
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4. MODELLING CANCER CELL POPULATION PERTURBED BY IRRADIATI ON

the methods derived in papBasseet al. (2010. The model presented Basseet al. (2010 demon-
strated that an irradiation dose of 9 Gray (Gy) induced Itargs cell cycle arrest. While a cancer cell
population unperturbed by any treatment remains in bathegponential growth (BEG3ell (1968,

a cancer cell population after exposure to any cancer te#tdoes not exhibit BEG.

We note here that, for various cancer types, cancer pateatgiven radiotherapy in fractions of
1.8 — 2.0 Gy daily on weekdays for 5 7 weeksKim & Tannock (2005. Radiation dose 2 Gy is
considered to cause a sub-lethal radiation damage to neoiseak. The total weekly radiation dose
9-10 Gy is broken down to multiple smaller doses along the weejivie time for a normal tissue to
recover, which is named as one of the reasons of radiothéadpyes for some cancer types, s€ien
& Tannock (20095. Our mathematical model is applied to five melanoma cedidithat have been
exposed to one-time irradiation of 9 Gy. Cancer patientenmceive radiation dose of total 9 Gy in
a day due to potential sever toxic reactions.

We start by deriving an age-structured mathematical maideloell population response to radi-
ation therapy to analyse experimental data of human melaroathlines from the Auckland Cancer
Society Research Centre. Identical data has been anatypagéBasseet al. (2010, seeBasseet al.
(2010 for details on cell line derivation and experimental mekhapplied. Here we undertake the
method presented in papBuiotto & Ubezio(2000), i.e., we hormalise the numerical density function
(previously discussed in Chapt®&rand deal with the proportion density function in our agexstured
model. We then apply our mathematical model to experimafatd extracted from flow cytometry
profiles. Such profiles show proportion distribution amogalj cycle phases at flerent time points.
The existence of the age-structured model solution has tisenssed irsuiotto & Ubezio(2000).

Later, we reduce the model to a nonlinedfatiential - algebraic equation (DAE) system in order
to determine the arrest and cell loss impact on the transitites between the cell cycle phases. We
use the DAE system because normalisation of the systemdealing with the varying proportions
at each time step, leads to a constraint that the sum of giopsrin all phases combined is equal
to one at every time step. The aim of this model is to deterrtfieanitial proliferating fraction and
proportion of a cancer cell population that continues feoditing for more than 96 hours after the
irradiation of 9 Gy. Experimental data was provided for gas time points up to 96 hours. We
initially assume that, within 96 hours after irradiationll ffects of cancer treatments, i.e., the arrest
of the transition rates and cell death, can be detected. ®hedytometry profile data of human
melanoma cell lines has been provided. These data includecfftometry profiles of unperturbed
cancer cell lines, cancer cell lines treated by paclitakel@ncentration of 200 nM, cancer cell lines
treated by 9 Gy strength irradiation, and a combined treatro€ paclitaxel and 9 Gy irradiation.
We cannot extract enough information from radiation datmey] thus, paclitaxel and the combined
treatment flow cytometry profiles are vital. Flow cytometgtal of cell lines treated with paclitaxel,
in addition to that of radiation, are used to provide the uaitgss of the calculated values of arrested
transition rates.

In Basseet al. (2010, theoretical profiles generated by the mathematical mardstompared with
the experimental flow cytometry profiles at various time pmifrlow cytometry profiles of irradiated
cell lines and irradiated cell lines with applied paclittaee used to determine if arrest occurs in the
G, or G, phase. Authors of papé&asseet al. (2010 concluded that apoptosis does not occur after
irradiation of the cell lines.

In this chapter, we estimate the proportion of the cancdipoglulation in each of the cell cycle
phases@, S, and combine®;M) from flow cytometry profiles and then use this estimate astinp
data for our optimization routine. Since the flow cytometrgthod cannot distinguish theffirence
between th&, and M phases (due to the fact that DNA contents in both phases @re that of the
S-phase), we used a combin€dM-phase in our mathematical model. We have assumed thatrcance
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4.2 Mathematical model of cycling population. Cancer cell ppulation dynamics after
radiotherapy.

cells can respond to radiation by cell cycle arrest, semesceand cell death. There is evidence that
radiation at lower doses produces damage that can leadltdezeh but it can also be fairly rapidly
repaired, while higher doses produce damage that is imbfegrand cells go into long-term cell cycle
arrestPawlik & Keyormarsi(2004). After radiation, some cells are lost by cell death (whichkes

no contribution to the flow cytometry profiles) and some byeseence (which contributes to the
flow cytometry profiles), while others proliferate. We aimestimate the proportion of proliferating
cells. It is known that a small fraction of the initial poptita (0.1-10%, depending on the cell line)
survives radiation (also called the surviving fractiondl éimat this fraction is the population that grows
in a surviving colony assagaguley(2011). Ultimately, we expect that our model will provide similar
arrest values, as iBasseet al. (2010, if the cell loss (death) rate is not included. Moreover, in
advance tdBasseet al. (2010, we estimate the proportion of proliferating cells aftee irradiation
dose of 9 Gy. The main fference between the model presented in this chapter and ¢hexamined

in Basseet al. (2010 is that in our model does not require experimentally ediahdransition rate
values, apoptosis rates and doubling times as input vadgalilVe used a DAE system as oppose to
the ODEPDE system used iBasseet al. (2010. Furthermore, we have estimated the surviving
fraction of the population exposed to a single dose of iatol and the transition rates between the
consecutive phases.

This chapter presents several mathematical models thateesstructed to utilise the experimen-
tal data of a cancer cell population that was first, unpeedirby any treatment, second, perturbed
by 200 nM paclitaxel, third, perturbed by a combined treatiha 200 nM of paclitaxel and 9 Gy
irradiation, and, four, perturbed by the irradiation of 9. ®erivation of the mathematical model of
radiation dfects on cancer cell population dynamics is shown by intriodua general model with
modifications made to fit the provided experimental data.

4.2 Mathematical model of cycling population. Cancer cell ppulation
dynamics after radiotherapy.

The following model is constructed to track the prolifengtiproportion of the cell population after
radiation therapy. It describes temporary varying prapog observed after the irradiation of cancer
cell lines.

4.2.1 Age-distribution system

Our mathematical model, presented in this chapter, shaswetponse to ionising radiation treatment
(senescence, arrest, and cell death) by including thet@mdssenescence phases that branch tegm
andG,M phases and the cell loss rate arising from@ - phase, as depicted in Figutel, where
Sen with k € {1, 2} represents the senescence phasefantkfines the arrest state for the appropriate
cell cycle phase. The transition rates between phases scélukd in Tablel. 1

We proceed with defining the partialftiirential equationKDE) system for our model. Later,
we simplify it in order to apply the experimental data fromafloytometry profiles. Flow cytometry
profiles illustrate the proportion of the cell populatioreimch of th&s,, S, and combine@,M phases.
An example of a flow cytometry profile can be seen in Figufe
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Figure 4.1: Diagram of the cell-cycle controliafvitro tumour cells perturbed by radiation. Transition
rates are explained in Tablel

We define a general age-structured model as follows:

06, (t7) | I(bT) ) rat ) + Fsen(t Do (L 1) + Fa(t e, (6 1), (4.2.18)

ot or
ons(t, 1) N ans(t,7) = —rsoem(ns(t, 7). (4.2.1b)

ot or
ong,m(t, 7)) dng,m(t, T

z(l;ﬂt( ! i 26M7-( ) —[ream—6, (4 7) + Tag(t, 7) + sen(t, 7) + ro(t, 7)INg,m(t, 7)

+ I’A4(t, T)nAZ(t, T), (421C)

onp, (t, 7
AT €, (7)), (4.2.10)
on i, T
Sea_nt() = rsen(t D)6, (4, 7). (4.2.1e)
onp,(t, 7
Tl et ) ~ Tt DI 7), (4-2.10)
on T
IMNsen(t, 7) = I'sen(t, D)Ng,m(t, 7). (4.2.19)



4.2 Mathematical model of cycling population. Cancer cell ppulation dynamics after
radiotherapy.

with the renewal distribution conditions:

nG,(t,7=0) = ZL re,M-G, (t, 7)Ne,m(t, 7) dr, (4.2.2a)
ns(t,r=0)= f re,-s(t, 7)ng, (t, 7) dr, (4.2.2b)
0
NG,Mm (t, T= 0) = f rs-GyM (T)ng (t, T) dr, (4.2.20)
0

and the initial age distribution:

ne,(t=0,7) = nd (7). (4.2.3a)
ns(t = 0,7) = nd(v), (4.2.3b)
Nem(t = 0.7) = ng, (7). (4.2.3¢)
Na,(t = 0,7) =} (7), (4.2.3d)
Nsen(t = 0,7) = Ny, (1), (4.2.3e)
Nay(t = 0,7) = N3 (7), (4.2.3f)
Nsen(t = 0,7) = Ny, (7). (4.2.3g)

whereny, with m € {G1, S, GoM, Ag, Ao, Sen, Sen} represents the number density function at age
at timet in a respective phase. Transition rates are shown in PalleThroughout this chapter, it is
assumed that the maximum cell afje—» . We have taken into account that cells in the senescent
phase do not age; this assumption has also been made foincdlsarrest phase. Our model keeps
track of the proportion of cells lost due to apoptosis, beeaaystem4.2.1) expresses the dynamics
of the cell population with a removal class (or cell deatle ra). Flow cytometry profiles do not track
the proportion of cells lost due to treatment; thus, one athge of our model is that we estimate
cell loss via mathematical means. Observe that the numlmeovthe right-hand-side of the renewal
equation 4.2.23 is due to the fact that two daughter cells are produced afitrsis is complete.

We have defined problemd 2.1)-(4.2.3 for a broad range of parameters that may vary with time
and age. Although, in biological terms, this definition is arerealistic option, it is not simple
enough for numerical calculations with the experiment&h gaovided. Thus, as a first step, we make
all transition rates between phases independent of ad#hile each cell has to age (grow) biologically
within the G;-phase before moving to tt& phase that also applies fSrandG,M phases, we neglect
it in our model. This neglect is due to the lack of experimkenttimates that would be needed to
include a minimum time that each cell, on average, spendspimage before leaving it. However,
transition rates dependent on titnare necessary due to theets of irradiation. Without any loss of
generality, we impose that all transition rates after tleatinent are piecewise linear functions with
respect to timd. The total number of cells in a phasg Ny (1), was previously defined in Chaptér
as follows:

Nm(t) = Lm Nm(t, 7) dr, (4.2.4)

wherem € {G;, S,GoM, A, Ay, Sen, Sen}. The total number of cells in all of the phaddg(t) is
defined as follows:

Niot(t) = D, Nin(t): (4.2.5)
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parameter description units
rG,-s rate transitiors; to S-phase hourd
rs—-G,M rate transitiors to GoM-phase hourd
re,M—G, rate transitiorGoM to G;-phase hourd
ra, arrest ratés; to Aj-phase hourd
r'Ay rate transitionA; to G;-phase hourgd
rsen senescence ra®, to Sen-phase hourd
r'As arrest ratés,M to Ax-phase hourd
ra, rate transitionA, to GoM-phase hourd
rsen senescence ra@M to Sen-phase hourd
o apoptosis rate frors, M-phase hours

Table 4.1: Radiation model parameters with descriptiombsuanits.

In addition, we derive formulae for a change in the total nemdif cells in phase at timet using
equations 4.2.1)-(4.2.9), identity @4.2.4), and expression lim, . Nm(t, 7) = 0. For theG;-phase, the
formula can be written as follows:

dNg, (t) f‘” ong, (t, 7) dr
dt b ot ’

j:o (- ‘%G(;—ST) ~[rGi-s(®) + Ty (®) + Isen NG, (. 7) + Fa(HNa, (t. 7)),

n(t, 7 = 0) — [rg,—s(t) + ra,(t) + rsen(t)] Lw NG, (t, 7)dt + ra,(t) I}w Na, (t, 7)dr,
206,16 (NG () — [16,-5() + Ta, () + s en (DINey () + A, ONA ). (4.2.6)

Similar ordinary dfferential equationsSDE) can be derived for the rest of the phases. An additional
equation needs to be derived for the next section. The enuetpresenting the change of the total
number of cells over time, i.e., a time-dependent growth fatt the total number of cells, is defined

as follows:
d Ntot (t) — d Nm(t)

dt Tt [rem—e,(0) — ro(]Ne,m(H)- (4.2.7)
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4.2.2 Probability density system

We have to normalise the age-distribution system in ordaséoirradiated cancer cell population flow
cytometry data at dlierent time points. We previously defined the probabilitysiigrfunction of cells
in Chapter2 and express it here again for a phases:

Nm(t, 7)
Niot(t) -

Implying the probability of finding the random variablenp at timet betweenr andr + dr is r dr.
Therefore, the proportion of cells in phaseat a given time i§1(t) and is defined as follows:

(4.2.8)

mn(t,7) =

T
Nim(t)
() = t, 7)dr = . 4.2.9
o) = [ olt = S @29
We can then transform problem.2.1)-(4.2.3 to a probability density system, given that:
Omm(t,7) 0 Nm(t, 1) 1 9nm(t.7) Nior(t)
= — = — TT t,T _—. 4210
ot Ot N  Ne(t) ot " Nea® (4210

We can replace the first term on the right-hand-side of eguddi.2.10Q, namely, term{%nm(t, 7), by
using system4.2.1) and then, by taking into account that transition ratesrattependent of age we
can write the probability density equation system as faliow

ong,(t,7)  Ong,(t,7) N/ (1)
5t + (;T = —[rg,-s(t) + ra,(t) + rsen ®)]rc, (L, 7) + ra,(ma, (8, 7) — 716, (L, 7) N:Z: o
(4.2.11a)
ons(t,7)  ons(t,7) (Y
ot + ot = rS—)GzMﬂS(ty T) ﬂ's(t, T) Ntot(t)’ (4.2.llb)
on t,7) On t, T
el | M) e paoica) + Tas) + Fsen® + ot 7) + TaOma(t, )
N/ (t
— M (L 7) Nﬁt; , (4.2.11c)
ona, (t, T N/ (t
—Al( ) = Ip (OnG, (6, 7) — ray(Omay (. 7) — Ay (t, 7) o )’ (4.2.11d)
ot Neot (t)
(97T5 eq(t, T) N{Ot(t)
2N 7 — 4.2.11
ot rsen ()G, (t, 7) — sen(t, 7) Niot(D)’ ( e)
onp,(t, T N/ (t
PellT) Ot ) - T Ot 7) ~ maglt RS (4.2.117)
ot Neot(t)
Onsen(t,7) Niot(t)
T = rSeQ(t)ﬂGQM(ta T) - ﬂSerz(t, T)m, (4.2.119)
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with the renewal distribution conditions as:

nG,(t,7=0) = 2[ re,M-G, (t, 7)e,m(t, 7)dr, (4.2.12a)
0
ns(t,r=0)= f re,-s(t, 7)rg, (t, 7)dr, (4.2.12b)
0
mem(t, T =0) = f rs—c,m(7)7s(t, 7)dr, (4.2.12c)
0

and the initial age distribution as:

nc,(t=0,7) = mg (7), (4.2.13a)
ns(t=0,7) = ﬂg(T), (4.2.13b)
em(t = 0,7) = 7 _y (7), (4.2.13c)
ma(t=0,7) = 73 (7), (4.2.13d)
sen(t = 0,7) = 73, (7). (4.2.13e)
ma(t = 0,7) = 73 (7), (4.2.13f)
sen(t = 0,7) = 1y (7). (4.2.13q)

Using equations4.2.7 and @.2.9, we define the growth rate functiotft) as:

~ Ni(®)
A = Neot(t)

We observe thal(t) is the time-dependent growth function and the total papmriegrows as:

= [re,M-6,(t) — ro()s,m(t). (4.2.14)

t
Niot(t) = Nior(0)elo (99 (4.2.15)
This equation is an important parameter in our populationeho

By using similar techniques as in equati@n?.6, we can reduce theDE system {.2.1] to anODE
system as the transition rates are independent ofrag&€hus, the cell population proportion system
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is as follows:
dilg, (t)
—at 2, M6, (Oe,Mm(t) = [F;-s(t) + ra (1) + rsen ()]s, (1) + ra, (DA, (1) — A, (1),
(4.2.16a)
dIs(t
S o016, (0 ~ rs-comlls() - AOTS(0, (4.2.16b)
dIg,m(t
Tel) _ 1o 150 - ooy + Ta) + rsen®) + roOMIeu) + ra D14 0)
— A(D)Tg,m (D), (4.2.16¢)
dITa, (t
3‘:( ) = 1, (YIg, (1) — ray (D), () — AMTTA, (1), (4.2.16d)
dITsen (t
Teen0 - renOT16,0) - AOMsen), (4.2.160)
dITp, (t
%() = rAg(t)HGZM(t) - I’A4(t)HA2(t) - A(t)HAz(t), (4.2.16f)
dITs en(t
%() = I'sen®Tg,m (1) — A(OTs en (t), (4.2.160)
with the following initial conditions:
Mg, (t = 0) =TI, (4.2.17a)
Ms(t = 0) = I, (4.2.17b)
Mg,m(t = 0) =TI . (4.2.17¢)
Tp(t = 0) =113, (4.2.17d)
Mgeq(t=0)=T13,,. (4.2.17e)
Tpy(t = 0) =113, (4.2.17f)
Mg en(t) = T2, (4.2.179)
Equations 4.2.5 and @.2.9 let us derive the following algebraic expression:
D Mty =1, ¥t >0, (4.2.18)
m

wherem € {G1, S,GoM, Ay, Ay, Sen, Sen}. Thus, a cell cycle dynamics problem expressed with
an ODE system4.2.19 with respective initial conditions4(2.17% and a constraint equatiod..19
becomes DAE system. Equation4(2.1§ is a constraint expression that has to be satisfied fdr all
greater or equal to zero, i.e., the proportions in each pba#e cell cycle add up to a value of one
at any time. We remind here that ODE systeh®(16 does not include the proportion of cells dying
due to the treatment because flow cytometry method doesawust ¢ell loss.

4.2.3 DAE system for experimental data

For the purposes of the analysis involved in the next secéind in order to formulate the use of the
experimental data, we rearrange systdm2.(L§ by combining the proliferating and non-proliferating
cells (arrested and senescent cells) into one phase (ad Weween in the flow cytometry profiles).
We add together the proliferating and non-proliferatiracfions of the cell population 8, andG,M
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phases and denote this variablePaawith p € {G1, S,GoM}:

PG, (1) = g, (t) + IIa, () + Hsen (1),
Pe,m(t) = Tlg,m(t) + Ha, (1) + Hsen(t),

where we see the non-proliferating proportion§gandG, M phases as the fractiohk, (t)+I1sen (t)
andIla,(t) + IIsen(t), respectively. Although subdivision in proliferatingdanon-proliferating cell
subpopulations is desirable, our experimental data doifferentiate between proliferating and non-
proliferating subpopulations. We note that the whole prtpo of the cell population irS-phase
detected in flow cytometry is considered to be proliferatithgisIIls = Ps. Thus, system4.2.19
becomes, through the addition of appropriate equation®|lass:

dpﬁ:(t) = 2r6,M—6: (Oe,m () — reu-s (O1e, (1) — AP, (1), (4.2.19a)
% = Ig,-s(Ilg, (1) — rsse,mPs(t) — A(Y)Ps(1), (4.2.19b)
dPGéltM ® _ rs-c,MPs(t) — [re,M-s, (1) + rp®)]He,m(t) — A(t)Ps,m(t), (4.2.19¢)

with initial conditions provided from the flow cytometry giles of the unperturbed cancer cell line
populations:

Pe,(t=0)=Pg (4.2.20a)
Ps(t = 0) = Pg, (4.2.20b)
Pg,m(t = 0) = P2 . (4.2.20c)

where new proportions combining the proliferating and pooliferating populations are defined as
follows:

PG, (t) = g, (t) + TTa, (t) + sen(t), (4.2.21a)
Ps(t) = Is(t), (4.2.21b)
Pa,m(t) = Ha,m(t) + May(t) + Hsen(t). (4.2.21c)

This system still incorporates knowledge of the proliferatproportions:Ig, (t) andIlg,m(t). The
constraint 4.2.1§ arising in cancer cell population proportion dynamics bamewritten as follows:

D Pt =1 vt20, (4.2.22)
p

wherep € {G1, S, GoM}. From equations4(.2.2]), we can introduce the following identities:

g, (t) = a(t)Pg, (t), (4.2.233)
He,m(t) = BH)Pe,m(b), (4.2.23b)

64



4.2 Mathematical model of cycling population. Cancer cell ppulation dynamics after
radiotherapy.

with «(t), 8(t) € [0,1] for all t > 0. We then substitute equationsZ.23 into the system4.2.19 as
follows:

dp((j;; (®) _ 2rG,M-6, (DB Pe,m(t) — re,-s(t)a(t)Ps, (t) — A(t)Pg, (1), (4.2.24a)
% = re,5s(D()Pe, (1) - rs—emPs(t) — AVPs(1), (4.2.24b)
d PG(; tM ® _ rs—,MPs(t) — [re,m-a, (t) + ro(®)]B(E)Pe,m(t) — A(t)Pe,m(t), (4.2.24c)

where the population growth rafét) (note that cancer cell population after irradiation or aapcer
treatment does not exhibit BEG) from equatidn2(14 can be rewritten as follows:

A1) = [re,m-6, (1) = roM®]e,m(t) = [re,m-c, (1) — ro(D]B(1)Pe,m(t). (4.2.25)

We then introduce new transition rates:

re,os(t) = a®re,-s(0), (4.2.26a)
r&oMos; () = BOGM-6, (1), (4.2.26b)
ro(t) = BMOro(). (4.2.26c)

This means the transition rates Ls®, rgzM_)Gl(t) andrf(t) have been modified from those of Table
4.1and an asterisk in superscriphas been added to highlight theéfdrence. From equation$.2.23
and @.2.29, the following three identities, linking subdivided (naly, Iy, ) and not subdividedR(,)
proliferating subpopulations i, andG,M phases, arise:

r6,-s(MPa, (1) = re, s, (1), (4.2.27a)
r6oMoc; DPGM (L) = oM, (OT,m(b), (4.2.27h)
rp(tPe,m(t) = ro(®e,m(t). (4.2.27¢)

We subsequently can express DAE system that is used for numerical calculations as showrein th
next section.

4.2.4 DAE for calculations

We consider a model involving combined proliferating and4pooliferating proportions, as shown in
Figure4.2. Transition rates that have not bedfeated by the treatment are notified with tilde above
the transition rate symbol. We have assumed that trangitiobability rate from thes-phase to the
G,M-phase has not beefffected by irradiation, thuss_,g,m = Ts—c,m. UsSing equations4(2.29,
(4.2.25, and @.2.26, we can present tHeAE system that is then used for our numerical simulations,
as follows:

dpgi = 2,6, (DPem (1) — Te, s ()Pe, (1) — AP, (1), (4.2.28a)
dF:jSt(t) = r*Glﬁs(t) PGl(t) _TS—>G2M PS(t) - /l(t)PS(t), (4228b)
dPGéll:\/I ® _ Ts—eMPs(t) = [1&,moe, (B + T O1Pe,m(t) — A(E)Pe,m (), (4.2.28¢)
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Figure 4.2: Diagram of the cell-cycle controliofvitro tumour cells perturbed by radiation, showing
the proportions in each phase. This diagram is compatibile figw cytometry data. We note that
flow cytometry profiles do not track cell lgseath proportion.

with the following constraint equation:
1=Pg,(t) + Ps(t) + Pe,m(t), t>0. (4.2.29)

From equation 4.2.25, we can see that the cancer cell population after irramiagirows at rate
At) = [rg,m_c, (1) — rp(]Ps,m(t), with the initial population distributed among phasesa@®ws:

P, (t=0) =P, (4.2.30a)
Ps(t = 0) = P, (4.2.30b)
Pg,m(t = 0) = P ;. (4.2.30c)

The model investigates tHeAE system rather than @BDE one because constraint equatidri2(29
must be satisfied at every internal calculation point. In@alculation, we use system.@.29 with
side conditions4.2.29 and @.2.30 and the methods shown in Sectidr3to estimate transition rates
rgﬁs(t), rgzM_,Gl(t), andrj(t). Since cell death cannot be estimated successfully aftéotherapy
via experimental means, we use a mathematical model deggtie dfects of the combined treat-
ment of radiotherapy and paclitaxel to determine cell lasssubsequent sections, we replace the
estimation of transition rate (t) with cell death ratelr(t) = —r;(t)Pg,m(t), as explained in Section
4.3

It should be noted here that we simplified systdn2 (19 in order to be able to use the experimen-
tal data. We aim with our model, which contains a removals;lesrecreate results from papgsisse
et al. (2010; moreover, we aim to estimate the proportion of cells tlesgds proliferating after irra-
diation.
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Figure 4.3: Diagram of the cell-cycle controliofvitro tumour cells perturbed by paclitaxel.

4.3 Non-cycling population models. Estimating arrested @nsition rate
rs,s(t) and cell loss due to paclitaxel and radiation treatments

The following models are introduced for the purposes of @pglthe experimental data of the can-
cer cell population treated by paclitaxel and a combinatibthe paclitaxel and irradiation that are
schematically depicted in Figurds3and4.4, respectively. We observe that the experimental data of
the cancer cell population’s response to irradiation alsnet suficient to ensure the uniqueness of
problem @.2.28 - (4.2.3Q parameters, namely transition rat%sl_)S(t), rEZM—@l(t)’ and death rate
ARr(t). Therefore, the experimental data of the cancer cell @timun perturbed by paclitaxel and pacli-
taxel with radiation is used. Since, in subsequent sectisasompare the proportion in tii& -phase
for different treatments, we will use superscripts Tx for paclitakeR for the combined treatment of
paclitaxel and radiotherapy, afifor radiotherapy, e.g],‘Ing(t) depicts the proliferating proportion
in G1-phase after a combined radiation and paclitaxel treatragtitnet. The relationship between
notionsIT andP for each phase are shown in equatiér2(21).

4.3.1 The paclitaxel model

The response of the cancer cell population to paclitaxelamatysed in Chaptet. Here, we introduce

a DAE system describing the dynamics of proportions of the caoektpopulation after treatment
with paclitaxel. The aim of the paclitaxel treatment resggomathematical model is to estimate the
death rate of the cancer population after exposure to paelitWe start by introducing a conservation
system that includes a death ph&sg. TermsP,, with w € {G1, S, GoM, D1y} represent the propor-
tion distribution of the population among the phases andbeaexpressed a3,(t) = Nu(t)/Nr(t),
whereNy(t) is a number of cells inv phase andlr (t) = 3, Nw(t). Cell loss proportion of population
I5DTX is considered to be a part of the total population, thus tevtr (or death in the case of non-
cycling population) ratel(t) is equal to zero at all times. Transition rafes_,s andrs_,g,m notify
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the transition probability rate between the respectivesphaf the population that is unperturbed by
any treatment. Paclitaxel interferes with the normal bdeakn of microtubules during cell division,
cells in mitosis are arrested and prevented from dividingrafore, this ffect is incorporated into our
model by setting the transition rate from t@eM-phase to th&s;-phase to zero. So the resulting
conservation system, schematically depicted in Figugegis as follows:

dPg,(t)

prane —Te,-sPa, (1), (4.3.1a)
dPs(t) _ _ .
%() = To,5P6, (t) = Ts—e,mPs(®), (4.3.1b)
dPe,m(t)  _ . 5
%() = Tsn,MPs(t) — Moy, (H)P,m(t), (4.3.1¢)
dPp.. (t 5
'ijtx() = 1o, (H)Pe,m(t), (4.3.1d)
with a constraint equation:
1 = Pg,(t) + Ps(t) + Pg,m(t) + Pp, (1), t>0. (4.3.2)
The initial conditions are:
Pg,(t=0)= P2, (4.3.33)
Ps(t = 0) = P2, (4.3.3b)
Pe,m(t = 0) =P . (4.3.3¢)
Ppr,(t = 0) = 0. (4.3.3d)

Since, in the case of a conservation system approach, weeangerimental estimates of cell loss
proportion, but experimental estimates of cell loss aftggosure to paclitaxel are not reliable, so
we have to use ®AE system with a removal class similar to problem2(29 - (4.2.30. From
equations 4.2.9 and @.2.9, we can express proportions @, S, andG,M phases (namelyp (1)
with p € {G1, S, G,M}) for the case in which the cell loss phase is not includedérstim of the total
cell number ap(t) = Np(t)/Niot(t). Notions of the number of cells in phashig(t) and Nw(t) are
interchangeable with those of phasdsy; S, andG,M. We can then express proportié’@(t) inp
phase withp € {G1, S,GoM}, in the case of a conservation system approach, or with thgoption
Pp(t) in the case of a system with a removal class, as follows:

Pp(t) = Pp()[1 - Pp, (1)], where pe{Gy1,S,GM}. (4.3.4)
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Equation {.3.4) is substituted, using the appropriate phase index, irblem @.3.7) - (4.3.3 and
the following result is derived:

Pe:O) _ 7 sPe,() - Arx(®)Pey (D). (4.3.50)

dt
T 7o, 15P6, (0~ To o Ps(O) ~ Aru(OPs (0, (4.3.50)
% =Ts-6,MPs(t) = oy, (1)Pe,m(t) — A1x(t)Pa,m(t), (4.3.5¢)
1= Pg,(t) + Ps(t) + Pg,m(t), t>0. (4.3.5d)

Here, A1x(t) = —rp,, (t)Pg,m(t), with the following initial conditions:

Pg,(0) = P2, (4.3.6a)
Ps(0) = P, (4.3.6b)
Pc,m(0) = P - (4.3.6¢)

The initial conditions are provided by the proportion disition of the unperturbed population ob-
tained from flow cytometry profiles. We note that solution aoflgem @.3.5-(4.3.9 will be marked
as ng(t) to notify paclitaxel treatment. We can see from systdn3.§ that the proportion of the
Gi-phase after paclitaxel exposure can be written as follows:

t
PLX(t) = Pg, (0)" blfer-s+indslds, (4.3.7)

We impose that the death rathy(t), is a piecewise constant function. In our numerical sirtortes,
we utilise the paclitaxel treatment response data to esdithe cell death from this treatment. The
proportion of the initial cancer cell number that undergapsptosis after paclitaxel treatment can
be evaluated gsing quatiorﬂ;:{.ld, (4.3.4 and taking into account thatr,(t) = —rDTX(t)Pg’;M(t).
Thus, we rewrite equationt(3.19 as follows:

dPp,(t)

G = "onOPem O - Por, (0], (4.3.8)

= —An(O[L - Por,(O)]- (4.3.9)

By integrating the ODE above with the initial conditiof. .39, we get the following expression:
Bor,(t) = 1 — eh in(Sds (4.3.10)

wheredy(t) = —rDTX(t)Pg;M(t). We observe that, since the cell population after paditéceatment
does not undergo arrest and is considered to be prolifgratintionsPa(t) and Ha(t) are inter-
changeabile, i.e., all cells B;-phase are proliferating.

4.3.2 Radiation with the paclitaxel model

Cancer cell population growth perturbed by a combined fza@l and radiation treatment is depicted
in Figure4.4. A combined treatment model has been constructed for thpopas of estimating
transition rater;; s(t) and death rate after combined treatment. Thiects of radiotherapy alone
on cells inG;-phase, i.e.rgl_)s(t) can be derived from the combined treatment. We use problem
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(4.2.19-(4.2.19 as a base for the following combined treatment model. Spraaditaxel interferes
with the mitosis stage of the cell cycle, we incorporate thie our model by settinge,m—c, = O.
We assume that for the combined treatments of paclitaxelradidtion all cells in the population
have stopped cell division, namel¥,v_c, = 0. Observe that the population growth ra(¢) have
changed. In combined treatment model, we refer to growéhasttyg. Then we can rewrite problem
(4.2.19-(4.2.19 as follows:

dlg, ()

Gt = ~[res®) + ra () + sen (01T, () + Fa(OTTa, (1) — ()G, (1), (4.3.11a)
T0 — for5(OM16, 0 ~ 1 -comlIs(O) ~ Arr(OTISO), (4.3.11b)
d“GétM O e emIs®) = (D) + s en(® + 1oy®) + Ty @) + A OA)

— ArR®Te,m(D), (4.3.11¢)
dné\:(t) = Fa (DTG, () — A (DT, (8) — ArROTTa (), (4.3.11d)
Teenl g W11, - AreOTTsent). (4.3.11¢)
% = I py (DT, (1) — Fay (DT (1) — ArxR(D)TTa (1), (4.3.11f)
Teen) _ 1 op OMI(0) - Are®TTs (0 (4.3.119)

Furthermore, we express the death probability rate in twtspg, (t) andrp(t) to show the potential
effects of each treatment separately. We note that syste3ri() is a conservation system, so adding
the seven equations yieldsyr(t) = —[rp, (t) + ro(t)]I1g,m(t). The proportion dynamics of cancer cell
population depicted in ODE syster.8.1) has the following constraint equation :

D Mty =1, Vt>0, (4.3.12)
m

wherem e {G4, S, G, M, Aq, Ao, Sen, Sen}. The respective initial conditions are as follows:

Ig,(t=0) =113 , (4.3.13a)
Ms(t = 0) = M2, (4.3.13b)
Tg,m(t = 0) =TI, ., (4.3.13c)
T, (t = 0) =TI}, (4.3.13d)
Mgeq(t = 0) =1g,,. (4.3.13e)
T, (t = 0) = I13 , (4.3.13f)
Msen(t) = Mg, (4.3.13g)

Solution of problem 4.3.1)-(4.3.13 is denoted a1} XR(t). We now examine the growth rates
N/i/Niot. The death rate of the population treated with a combinatiopaclitaxel and irradiation,
namely At«r(t), is assumed to be a piecewise constant function. Now, if @nesider model for
radiotherapy without the paclitaxel, the population dyi@eguations are as systed Z.29 but the
death rate is nowr(t). Death ratelr(t) is incorporated in the growth raid{,,/Niot, denoted ad(t) in
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re,—s(t)

Figure 4.4: Diagram of the cell-cycle control of vitro tumour cells perturbed by paclitaxel and
radiation, with proliferating and non-proliferating canaell population subdivision.

system 4.2.29. Again, we impose that the death rate of the populatitected by an irradiation dose
alone is a piecewise constant function, namgift). We have assumed that cell death ratg(t) from
the paclitaxel treatment is ufiacted by irradiation and has the same value as the one foattieagel
treatment alone. Therefore, the growth (death) Aajg(t) of the population treated by paclitaxel and
irradiation can be presumed to be:

Arxr(t) = A1x(t) + AR(D), (4.3.14)
whereAry(t) = —rp, (H)g,m(t) andAr(t) = —rp(t)Ig,m(t). Thus, the following statement is true:
liTxr(V)] > |A7x()]  for t>0. (4.3.15)

Next, we proceed with the derivation of the relationshipaesn transition rates of unperturbed and
perturbed by treatment population. Term ‘unperturbedéneto a cell population that has not been
affected by any treatment and ‘perturbed’ to a population thatdeen exposed to cancer treatment.
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For the simplicity of further analysis, we introduce a newiafle, rqg, (t), a transition rate indicating
the probability of a proliferating cell in th&;-phase to enter a non-proliferating state. We replace
terms—[ra, (t) + rsen ()]s, (t) + ra, (DI, (t) in equation 4.3.113 with a new notiorr g, (t)I1g, (t) as

follows:
dHGl (t) _

G = ~lrems() + 1o, M]MTe, (1) — Ane(OTe, (). (4.3.16)
We assume thaty, (t) is non-negative, and define it as follows:
HAl(t)

rQ(t) = ra(t) + rsen(t) — ra,(t) (4.3.17)

HGl(t).
We then solve equatior(3.19 using the initial condition4.3.133 and show that the proliferating
proportion of theG;-phase after the combined radiation and paclitaxel treatticen be expressed as

follows: t
Hé)iR(t) - Hgle—fo[reﬁs(S)HQl(S)+/1TxR(S)]dS. (4.3.18)

We have assumed that the proportion of the proliferatints ¢elthe G;-phase after the combined
treatment (namel;ﬂ{f‘(t)) is equal to the proliferating cell proportion in tlg-phase after paclitaxel
treatmenﬂ‘lgi(t) that has been scaled down by cell loss from radiotheraply daath ratelr(t), and
can be expressed as:

I et = IER(). (4.3.19)

Thus, from equationsi(3.7), (4.3.19, and ¢.3.19, we can see that the following is true:
TGl—>S > rGl_,3(t) for t>0. (4.3.20)

A similar inequality can be derived for the transition raig;v—c, . A different therapeutic agent such
as carboplatin, which interferes with DNA replication vatht afecting mitosis, can be used to derive
the following inequality:

?GZM_)Gl > rGZM_@l(t) for t>0. (4.3.21)

We proceed to derive a DAE system that is used in the numesicallations for transition rate
r*Gl_>S(t) and death ratdry estimation. Since flow cytometry profiles do not distinguistween
proliferating and non-proliferating cells within a parttiar phase, we rearrange problem3(1]) -
(4.3.13 by using techniques from Sectidn2.3 to the following problem and use it for the numerical
simulations discussed in Sectidmn.4

dpfj; O —16,55 (PG, (1) — A1xr ()P, (1), (4.3.22a)
: Pdst(t) = 1615 (PG: () = Ts—6,mPs(t) = Anr(OPs (1), (4.3.22b)
dPGéll:\/I (t) = Ts—>G2M Ps(t) - [I’DTX ®+ rE(t)] PGZM () — A7xr(1) PGZM ®, (4.3.22¢)
1="Pg,(t) + Ps(t) + Pe,m(t), t>0, (4.3.22d)
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whereArxr(t) = —[rp, (1) + rg ()]Pg,m(t) and with the initial conditions:

Pg,(0) = P2, (4.3.23a)
Ps(0) = P2, (4.3.23b)

S
Pc,m(0) = P - (4.3.23c)

Similar identities to equationgt(2.27 can be derived from system4.8.11 and ¢.3.29:
o1 (DPs,m (1) = rp, (DIg,m(t), (4.3.24a)
ro(OPe,m(t) = ro(®)IIg,m(t). (4.3.24b)

The proportion of the cell population that underwent apsigtafter paclitaxel and radiation treatment
(similarly derivable as equatiord 3.10) can be calculated by the following expression:

Porea(t) = 1 — eh Amr(90s (4.3.25)

where the death raterxr(t) = —[rp., (1) + rg(t)]Pg,m(t).

4.4 Experimental data and calculations

We have five dierent types of experimental data available. These termsbwikxplained in the
following subsections:

1. for the flow cytometry data of unperturbed cell lines, agesectiord.4.2

2. for the plateau logarithmic reduction values for eachloed, see subsection.4.2
3. for the flow cytometry data of cell lines perturbed by paciél, see subsectioh4.3
4

. for the flow cytometry data of cell lines perturbed by paciel and then irradiated, see subsec-
tion4.4.4

5. for the flow cytometry data of cell lines perturbed by réidia see subsectiof.4.5

In order to track the proliferating proportion of the cellquiation after treatment with radiotherapy,
we have to monitor the proportion of the cell population thaters theG;-phase (hence, having
undergone mitosis). We cannot extracfigient information from the flow cytometry profiles of the
irradiated population alone; therefore, we need extrarinégion from the rest of the data provided.
The flow cytometry profiles are analysed using the Cylchrdtiveoe program provided by Cytonet,
UK, and we obtain estimates of the population proportiortsdaided between phas€3;, S, and
G2M at time points - 018,48, 72, and 96 hours for each cell line for every treatment.

4.4.1 Experimental data extracted from flow cytometry profiles

The flow cytometry profiles were analysed using Cylchredvearie provided by Cytonet, UK. We

have extracted estimates of population proportions in phelse from the flow cytometry profiles (an
example of a flow cytometry profile is shown in Figure)) for all provided treatments and cell lines.
An example of such data collected for cell liNZ M3 can be seen in Table2 that shows variations

of percentages in th8;, S andG, M phases for every treatment at experimental time points Gam
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treatment hours @ %S %G,>M

Paclitaxel 200nM 0 52.25 29.69 18.06
18 4.9546  28.2548 66.7906
48 45587 21.8494 73.5919
72 53123 36.7733 57.9144
96 5.1227 42.0292 52.8481

Radiation 9 Gyand 0 52.25 29.69 18.06

paclitaxel 200 nM 18 16.8273 27.6499 55.5228
48 7.235 21.497 71.268
72 5.9558 37.4681 56.5761
96 7.1407 36.3593 56.5

Radiation 9 Gy 0 52.25 29.69 18.06
18 19.05 31.34 49.61
48 30.79 38.91 30.3
72 45.09 32.97 21.94
96 45.42 26.93 27.65

Table 4.2: Data extracted from the flow cytometry profiles alf the NZM3. In paperBasseet al.
(2010, the transition rate from th&;-phase to th&-phase for the unperturbed cell lines is not esti-
mated from mathematical model but rather provided by erpamtalists (g,.s = 0.051). The first
column shows the treatment used. The second column repsdblerhours at which flow cytometry
profiles were generated for each treatment. Last three ecswghow the percentages®, S, and
G2M phases for every experimental hour for every treatment.

to 96 hours after treatment applications. Percentagechmmaase of thélZ M3 cell line unperturbed
by any treatment (i.e., in BEG state) are shown in TdbBat hour zero for every treatment.

4.4.2 Unperturbed data and plateau log reduction value

The flow cytometry data of unperturbed cell lines gives usrimiation about the proportion of the cell
population in each phas6&{, S, and the combine®,M). Unperturbed data refers to a cell population
that has not beenffected by any treatment. IRauksteet al. (2012, we have shown that having
estimates of the proportions in each phase at BEG state atadeay log reduction value allow us
to calculate unique constant transition rate values betweasesrg, s, Ts-g,m andrg,m-c,) and
the growth rate of the population, We can then express population doubling tifaefrom Chapter

2, Tq = In(2)/1. For more information on the plateau log reduction valuehoet see Chaptes.
Observe we use a tilde to denote the unperturbed transisilbes and the growth rat€alculations:

A system of four nonlinear algebraic equations is solvedgidamped Newton’s method (as showed
in Chapter3).

Estimated variables thus far are transition ratgs,s, 's—c,m, fe,M—-c,, and the growth rate of the
unperturbed population.
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4.4 Experimental data and calculations

4.4.3 Paclitaxel data

Paclitaxel is a mitotic inhibitor chemotherapy drug. Thamges in flow cytometry data in the pro-
portion of theG;-phase are used to determine the cell loss due to the trebfmdad as our variable
A1x(t), introduced in Sectior.3). Since we have estimated thg s value as shown in Sectigh4.2,

we use the equatiort(3.10 showed in Sectiod.3to determine the proportion of cells lost after ex-
posure to paclitaxel.

Calculations: Exponential equation4(3.7) is solved to acquire the estimate of cell loss shown in
Section4.3.

Estimated variables from Sectigh4.2 are the transition ratess, s, Ts-c,M, Te,M-G,, and the
growth rate of the unperturbed populatian Paclitaxel data provides an estimate of the death rate
/1Tx(t)-

4.4.4 Radiation with paclitaxel data

Aresponse of cell lines to radiation results in senescearcest, and apoptosis in both B¢ andG, M
phases. Furthermore, a cell line subsequently exposedlitepal stops dividing, i.efg,m-c,(t) =0
fort > 0.

Calculations: Built-in MatLab functionsodel5sand fminconare used to solve the DAE problem
(4.3.29 - (4.3.23. Optimization functiorfmincondetermines transition ratg, _ s(t). There are four
inputs for the optimization function. The first is derivedrn the proportions in each phase at the
two consecutive time points. Second is transition Tateg,m, Where we assume that the transition
rate from theS-phase tdG,M-phase is un@ected by paclitaxel or radiation treatment and has been
determined from the unperturbed data and the plateau lagctied value, as discussed in Section
4.4.2 Third is that the cell death from the paclitaxel treatmepi(t) is undfected by irradiation and
has the same value as for the paclitaxel treatment alone. sélaree that paclitaxel treatment has
not dfected the transition rate from ti&; -phase toS-phase, but irradiation has. We impose that
rgl_)s(t), if reduced after the irradiation dose, is expected tovecpiecewise linearly, as shown in
Figure4.5a). The solution converges quickly to the optimal value.

Known variables so far are the transition rates.,s, 's_g,m, e,Mm—-G,, and cell death from the
paclitaxel treatmentrx(t). Thus, we can estimate the transition nete 5(t) and the cell death from
irradiationAr(t) (this variable has been introduced in Sectio® from the provided data.

4.4 5 Radiation data

A response of cell lines to radiation results in respectieescence, arrest and apoptosis inGhe
andG,;M phases.

Calculations: Built-in MatLab functionsodel5sand fminconare used to solve the DAE problem
(4.2.29 - (4.2.30. Optimization routinefmincondetermines transition rau%zM_)Gl(t). There are
four inputs for the optimization function. The first is dex@/from the proportions in each phase at the
two consecutive time points. Second is transition rate, s(1), which has been determined from the
data of the cell population treated through a combinatiopaafitaxel and irradiation, as discussed in
Section4.4.4 Third is the cell deatl(t) from irradiation, as determined in Sectidmt.4 Fourth is
transition rat&s_,g,m, Where we assume that the transition rate fronS#ghase to th&,M-phase is
undfected by the paclitaxel or radiation treatment and has betmrdined from the unperturbed data
and the plateau log reduction value, as discussed in Settoh We also assume that the transition
rate from theG,M-phase to th€&;-phase, if reduced in value after the irradiation dose, fgeeted to
recover piecewise linearly, as shown in Figdt&b). The solution converges quickly to the optimal
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value.
Known variables are transition rates _,s, Ts-c,M, TG,M—G; » rgﬁs(t), andAg(t). From the provided
radiotherapy data, we estimate the transition rq‘fgg\:,l_)el(t).

4.5 Estimating the initial proliferating fraction

The aim of this model is to estimate the initial proliferatifiaction of the cancer cell population after
a one-time irradiation dose of 9 Gy of five cell lines.

It is known that a small fraction of the initial population.1810%, depending on the cell line)
survives radiation (called a surviving fraction in biologi terminology), and that this is the population
that grows into a surviving colony assay. Just where thesaving cells come from is unclear, but it
is thought that they will sustain DNA damage and move ultetato theG,-phase until DNA repair is
complete, whereupon they will divide and re-enter the ogdlee This re-entry will be asynchronous,
so the surviving population will be distributed through@ltle phases.

4.5.1 |Initial proliferating fraction interval

Our model has limitations in estimating the initial profdéng fraction. We can only calculate an
interval where such fraction is located. We introduce aald€e @;,;; and refer to it throughout this
chapter as the initial proliferating fraction. We defindiadi proliferating fraction®;,;; as a sum of
proliferating proportions i1, S andG,M phases at time 0 as follows:

DOipjt = I1g,(0) + [1s(0) + Ig,m(0). (4.5.1)

When calculating the initial proliferating fraction, wesasne that cells in th&-phase at hour zero
are all proliferating; therefore, the initial proportiofitbe cell population irS-phase (as mentioned
before, notiondIs(0) andPg are interchangeable) is added to the proliferating fractie assume
that the proportion of the cell population after combinediaion and paclitaxel treatment in tk&-
phase that has moved from tfig-phase to th&-phase within the first 18 hours is the proliferating
fraction of the population in th&;-phase. Since there is radiation induced apoptosis present
calculate the proliferating fraction in thg;-phase as follows:

Ig, (0) = [PLFR(0) — PLR(18)Je'"*2, (4.5.2)

The initial proliferating fraction in th&;M-phase (namelyiIg,m(0)) is not detectable without dif-
ferent chemotherapeutic agents that interfere with DNAicapon without dfecting mitosis. Thus,
from equations4.2.27h and @.3.2]), we can express only the following inequality:

e moc, (@
Po,m(t) > =2M=C1 po (), V> 0. (4.5.3)
rGoM—G, (t) TG,M—G;

re ®
GoM—-G
HGZM (t) — _22V—h1 7

Therefore, we can estimate only an interval of the proltfagafraction in theG,M-phase, denoted
by Fg,m, as follows:

r&,moc, 0)

Fe,m € Pe,m(0),  Pg,m(0)], (4.5.4)

G,M—G;

where the initial arrest of the division ratg , s, (0) and the unperturbed valig,m—c, have been
shown in Figuregl.5-4.9. We observe that for cell linddZM3, NZM4 andNZ M13 cell division has
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briefly stoppedgzM_)Gl(O) = 0. Using our model, we estimate the initial proliferatingdtion of the
population treated with radiotherapy as follows:

Dinit € [T, (0) + s(0) + Fe,m]- (4.5.5)

Intervals of initial proliferating fraction estimates ofid cancer cell lines are shown in Talle in
column two.

4.5.2 Proliferating fraction interval 96 hours post irradi ation

In this section, we estimate the proliferating fractionmea ®¢nq, Of the cancer cell population at the
final experimental observation timg{y = 96 hours). We define proliferating fracti@,q as a sum
of proliferating proportions in th&1, S, andG,M phases at tim&nq as follows:

Deng = I, (tend) + s (tend) + e,m(tend)- (4.5.6)

As discussed in Sectioh5.1, our model is limited to estimating intervals of proliférag proportions
for each cell line. The lower bound, denotedl, of the proliferating population proportion after 96
hours post the irradiation enables us to say that at leBgter cent of the population is proliferating.
It follows that our mathematical model supports that tffea of the irradiation dose is the arrest of
the transition rates, i.e., a decrease in their numeridaksa

Taking into account equationg.@.27, we can rewrite4.5.6 as:

ralﬁs(tend) raz M_>G1(tend)

Pg, (tend) + Ps(tend) + Pe,m (tend), (4.5.7)

end =

rc,-s(tend) r'c,M—G; (tend)

whereteng = 96 hours. Measurement of the transition rates,.s(tend) andrg,m—c; (tend), is not
possible. Thus, we can only provide the lower bound of théfprating proportion of the population
after irradiation. Using equationg.3.20Q and @.3.2]), we rewrite equation4(5.7) as:

rél_,g(tend) r2532|\/|_>Gl(tend)

Pg, (tend) + Ps(tend) +

lG,—s r'G,M—G;

end =

whereteng = 96 hours, and the right-hand-side of inequality>( is referred to as our variableB.
Our model estimates the interval of the proportion thatiomes proliferating after 96 hours post
radiotherapy as:
®eng € [LB, 1J. (4.5.9)

Intervals of the proliferating fraction 96 hours post rabd@rapy of five cancer cell lines are shown in
Table4.3in column three.

4.6 Results: transition rate arrest and proliferating fractions

We impose that transition rategﬁs(t) andrgzM_)Gl(t), if reduced in value after irradiation, will
recover piecewise linearly. Radiotherap§eets on the transition rates are shown in Figurés 4.9,
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(@) The arrest of transition ratg, ¢ for cell line (b) The arrest of transition rate, ,, ¢, (t) for cell
NZM3. The dashed line represents the value of traline NZM3. The dashed line represents the value of
sition ratefg, s of an unperturbed population. Thetransition rat&s,u-c, of an unperturbed population.
solid line shows the arrested valuergf ,s(t). The solid line shows the arrested valuegf, s, ().

Figure 4.5: Arrest of the transition rates after the irréidia of cell line NZM3. The mathematical
optimization function discussed in Sectidrl produced piecewise linear functions for the transition
rates:rgl_)S(t) andrgzM_)Gl(t), shown in subfigures (a) and (b), respectively.

46.1 NZM3 cell line

From our model, we estimated that after the irradiation eaell population taken from cell line
NZ M3 initially stopped cell division for 18 hours, as can be seefrigure 4.5b), but recovered
within 96 hours to 75% of its unperturbed value. Radiothgfagd no impact on the cell population
transition probability from thés; - phase tcS - phase, as can be seen in Figdr&(a). Apoptosis
induced by irradiation was close to 1%. An experimentahesti for the recovering fraction of 6%.
We present the initial proliferating interval calculatéd wur model in Tablel.3.

4.6.2 NZMA4 cell line

Our model predicted an initial decrease in transition rg}gs(t) to 63% of its unperturbed value and
full recovery to its unperturbed value within 48 hours afteadiation, as shown in Figure 6a). The
cell division rate was estimated to drop to zero abut stade@cover immediately and reached its
unperturbed value over 96 hours after irradiation, as showsigure4.6(b). The death rate induced
by irradiation was close to zero.

4.6.3 NZMS5 cell line

Irradiation had not stopped cell division for thez M5 cell line, as shown in Figuré.7(b). It initially
reduced transition rai%zM_)Gl(t) to 31% of its unperturbed value and 49% of its unperturbddeva
after 96 hours. Transition ratg, _ s(t) was not &ected, as can be seen in Figdré(a). Apoptosis
induced by irradiation was estimated at 4%.

4.6.4 NZMG6 cell line

Numerical simulations proposed an initial drop in the vabdfi¢ransition rater*GlHS(t) to 57% of its
unperturbed value with full recovery within 72 hours, aswhadn Figure4.8(@). Cell division rate

78


6Radiation/Chapter6Figs/EPS/NZM3_r1.eps
6Radiation/Chapter6Figs/EPS/NZM3_r3.eps

4.6 Results:

transition rate arrest and proliferating fractions
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(b) The arrest of transition rate, ,, ., (t) for cell
NZM4. The dashed line represents the value of traline NZM4. The dashed line represents the value of

sition raterg, s of an unperturbed population. Thetransition rat&s,u-c, of an unperturbed population.
The solid line shows the arrested valuegf, , (1)

Figure 4.6: Arrest of the transition rates after the irréidia of cell line NZM4. The mathematical
optimization function discussed in Sectidml produced piecewise linear functions for the transition
rates:rgl_)S(t) andrgzM_)Gl(t), shown in subfigures (a) and (b), respectively.
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(b) The arrest of transition rate,,, , (t) for cell
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sition raterg, s of an unperturbed population. Thetransition rat&s,u-, of an unperturbed population.
The solid line shows the arrested valuegf, s, (1)

solid line shows the arrested valuergf 5(t).

Figure 4.7: Arrest of the transition rates after the irrtidia of cell line NZM5. The mathematical
optimization function discussed in Sectidnl produced piecewise linear functions for the transition
rates:rgl_)S(t) andrgzM_)Gl(t), shown in subfigures (a) and (b), respectively.
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(@) The arrest of transition ratg, ¢ for cell line (b) The arrest of transition rate, ,, ¢, (t) for cell
NZM6. The dashed line represents the value of traline NZM6. The dashed line represents the value of
sition ratefg, s of an unperturbed population. Thetransition rat&s,u-c, of an unperturbed population.
solid line shows the arrested valuergf ,s(t). The solid line shows the arrested valuegf, s, ().

Figure 4.8: Arrest of the transition rates after the irréidia of cell line NZM6. The mathematical
optimization function discussed in Sectidrl produced piecewise linear functions for the transition
rates:rgl_)S(t) andrgzM_)Gl(t), shown in subfigures (a) and (b), respectively.

rEZM—@l(t) initially underwent arrest to 9% of its unperturbed valuel aeached a new plateau value
at 51% of the unperturbed rate within 24 hours after irréoliat Apoptosis caused by the treatment
was close to 1%.

4.6.5 NzZM13 cell line

Our model suggests that cell divisiogzMﬁGl(t) was initially stopped due to irradiation, with imme-
diate recovery reaching 44% of the unperturbed value, asrsioFigure4.9(b). We remark that it
a new plateau value has not been reached during 96 hours & ca@en for other cell lines. Tran-
sition ratergl_)S(t) initially dropped to 19% of the unperturbed value and reced to 86% of the
unperturbed value but also seems not have reached a newplaikie, as shown in FigureY(a).
We note that population doubling tinfg has been experimentally estimated a8 #®urs (see Table
4.4). This cell line'sTq is longer compared to the other four cell line populationkdimg times. This
suggests that the transition rate recovery duration istaiad to the population doubling time. Our
model suggests that cell death due to irradiation was clodé4. Cell number measured 96 hours
after radiation at 9 Gy was 75% of that expected, and our maggiests that it is 68%, due solely to
cell cycle arrest and not cell death, see Table

4.6.6 Proliferating cell population proportions

We present the proliferating proportion interval for eaeli ine in Table4.3. For example, the pro-
liferating proportion of cell cultur@g,q taken from cell lineNZ M3 can be calculated with equation
(4.5.8 as follows: firstly, estimate ratic%l_)S(tend)/r‘Gﬁs andrgzMﬁGl(teno|)/r‘<32,\,|_>(;1 from Figure
4.5and, secondly, use Tabde2, which contains the values of the proportions of populationeach
phase after 96 hours post-irradiation. From Tablg we can see that following 96 hours after expo-
sure to the radiation of 9 Gy, the cell population of & M3 cell line culture will be composed of at
least 932% of proliferating cells.
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4.6 Results: transition rate arrest and proliferating fractions
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(@) The arrest of transition ratg, ¢ for cell line (b) The arrest of transition rate, ,, ¢, (t) for cell
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transition raterg, s of an unperturbed population. transition rat&c,m_c, of an unperturbed population.
The solid line shows the arrested valuegf s(t).  The solid line shows the arrested valuegf, s, (1)

Figure 4.9: Arrest of the transition rates after the irréidiaof cell line NZM13. The mathematical
optimization function discussed in Sectidrl produced piecewise linear functions for the transition
rates:rgl_)S(t) andrgzM_)Gl(t), shown in subfigures (a) and (b), respectively.

The recovering survival fraction, denoted ®yyperim Was experimentally measured for every cell
line. It is an estimate of colonies counted after 1-3 weele twve initial number of cells seeded.

We have shown in Tablé.3 the proliferating proportion intervals of the cancer calpplations
taken from five cell lines. The second colunmi,;;, shows the interval of the initial proliferating
fraction after a one-time irradiation dose (at 0) for each cell line estimated by our model. The third
column,®¢pnq, presents the interval of the proliferating cell propantiof each cell line after 96 hours
following irradiation. Column four®experim Shows the experimental estimates of the proliferating
fraction for each cell line.

4.6.7 Cellloss and expected number of cells

Table 4.4 shows the parameters of cell cycle dynamics for five cellslingVe have calculated the
population doubling times using the plateau log reductiathod (discussed in Chaptgy for cell
lines NZM5 andNZM6. For the rest of the cell lines, we used the experimentanagts of the
population doubling times, which were obtained by congingca growth curve. The transition rates
between respective phases, calculated with methods beddn Sectiort.4.2 have been shown in
columns three to five in Tablé.4. We have estimated from equatiof.§.10 the initial proportion
of the population lost within 18 hours following the packi¢h treatment application for each cell line
from. We refer to it asl xLossand present in column six. By utilising the arrested rates, s®
andrg g, (1) in Figures4.5- 4.9, we have calculated from syster.Z.29 the proportion of cell
number expected after 96 hours, e.g., cell Mi&M13 has 68% of the expected number of cells after
96 hours following irradiation; and refer to &oq. Column eight in Tablel.4, Egxperim Shows the
experimental estimate of the expected proportion of cathiner measured 96 hours after irradiation
at 9Gy.
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Cellline Dt Deng Dexperim
NZM3 [0.67,0.85] [0.93,1] 0.06
NZ M4 [0.55,0.76] [1, 1] 0.20
NZM5 [0.23,0.32] [0.83,1] 0.20
NZ M6 [0.32,0.44] [0.82,1] 0.02
NZM13 [0.35,051] [0.75,1] 0.08

Table 4.3: Proliferating proportion intervals of the cancell population taken from five cell lines.
The second columnb;,it, shows the interval of the proliferating fraction after aetime irradiation
dose (at = 0) for each cell line estimated by our model. The third columg,q, indicates the interval
of the proliferating cell proportion of each cell line af@ hours following irradiation. Column four,
Deyxperim Shows the experimental estimates of the proliferatingtiva for each cell line.

4.7 Discussion

We used optimization methods in order to estimate the iptialiferating fraction and the proliferat-
ing proportion of the population after 96 hours followingrezeetime irradiation dose.

We analysed five cell lines, identical to the ones in paj@erseet al. (2010, and our mathematical
model results agreed with the model presented in papeseet al. (2010, i.e., cancer cell population
growth undergoing arrest and little cell death occurring tluirradiation. We imposed that the tran-
sition rates from th&;-phase to thé&-phase and from th&,M-phase to th&;-phase, if decreased
in value, would recover in a piecewise linear mode afterathdirapy.

A significant diference between our mathematical model and thBiisseet al. (2010 is in es-
timation of transition rates. We estimated the unperturgsllation transition rates (namefg, s,
Ts-e,m andrg,m-c,) by applying a mathematical model rather than using valvesged by experi-
mentalists. We used the plateau log reduction value (digcu ChapteB) to calculate all transition
rates of the unperturbed cancer cell population; therefmue numerical values ffered from those
given inBasseet al. (2010.

After an irradiation dose, the cell division rates (i.eg thansition rate from th&,M - phase to
the G; - phase) for cell lineNZM3, NZM5, andNZ M6 plateaued at a lower value than they did in
the unperturbed state. The cancer cell population taken €ell line NZ M4 recovered from radiation
within the 96 hours after treatment and reached the originglerturbed BEG state. A one-time
irradiation dose of 9 Gy for some cell lines did not induceraglderm cell cycle arrest, as we can see
in Table4.3, the proliferating proportioeng after 96 hours post-irradiation is equal to 1. For cancer
cell line NZM13, transition rates did not plateau within 96 hours. FroguFes4.5- 4.9 and Table
4.4, we can see that the transition rate speed of recovery iedeta the doubling time: the shorter
the doubling time, the faster the recovery to the unpertliskizdue or a new plateau value.

Cell loss induced by irradiation is approximately 1% forgveell line apart fromNZ M5, which
produced a 4% cell loss within 96 or 72 hours. Our mathenlaticalel estimates of the proportion of
cells expected after 96 hourkyjoq) are shown in the seventh column of Table. An experimental
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4.7 Discussion

CellLine Ty TG-S Ts—G,M To,M—G, TXL0SS Emod EExperim
(hours) fpours?) (hours?) (hours?)

NZM3 41 0.04781 0.06723 0.09361 O 1 na
NZ M4 46" 0.05105 0.05406 0.07258 O 1 na
NZM5 31.2 0.06215 0.09782 0.11129 0.32 0.54.a.
NZ M6 27.5 0.05583  0.12967 0.16426  0.18 0.75.a.

NZM13 768" 0.02297  0.04254 0.04889 0.12 0.68 0.75

Table 4.4: Parameters of cell cycle dynamics for five cekdin Column two,T4, shows the popu-
lation doubling time of each cell line: asterisks indicate tdoubling times that are experimentally
estimatedTy values with no asterisks show that the doubling time is dated from the plateau log-
arithmic reduction value. Columns three to five show theditson rate values from respective phases
of the unperturbed cancer cell population calculated vhighmethods discussed in Sectibd.2 Col-
umn six shows the calculated value of the proportion of tlitealrpopulation number lost within 18
hours after the paclitaxel treatment application of eadhlioe, which are the methods discussed in
Section4.4.3 Column sevenEpqg, indicates the proportion of cell number expected after @&
Column eight,Egxperim Shows the experimental estimate of the expected propootfi@ell number
measured 96 hours after irradiation at 9 @yg. indicates that this data is not available.

observation for that, which was expected for cell IN& M13 is shown in 75%. In comparison, our
mathematical model derived the expected cell number at 68ftab initial. No experimental data
was available for the other cell lines. Thus, our matherabéistimate was very good for the observed
data point.

Loss of clonogenical survival was experimentally estirddte every cell line and was in a range
of 90 — 99%: this percentage of population has lost capability psaduce indefinitely. We argue
that within 96 hours following irradiation flow cytometry mtd cannot detect this loss. The initial
proliferating fractionsDj,i; and the proliferating proportions of the cell populatidga,g for five cell
lines are shown in Tablé.3. The initial proliferating fraction interval estimatedavour mathemat-
ical model is much higher in value than experimentally eated ones, because, after irradiation,
some cells do divide once or twice before dying. These celleHost the capability to reproduce
indefinitely and are considered dead in biological termigglbut not in our mathematical approach.
Experimental observations stopped at 96 hours for cekks NZ M3, NZM4, NZM5, andNZ M13,
and at 72 hours for cell lin&lZM6. These times are at most the length of three average cédlscyc
times for some cell lines (we presumed here that the averlgeycle time is similar to that of pop-
ulation doubling, see Chapt@). A proportion of the population that is not a part of the $wal/
fraction divides once or twice or more before undergoingpapsis; thus, our model cannot estimate
the surviving fraction successfully, as experimental ole#ons stop too soon. Our model results do
not agrees with the following statement frdBasseet al. (2010: “the long-term cell cycle arrest,
rather than apoptosis, accounts for much of the loss of lit\alebserved in clonogenicity assays”.
This statement implies that flow cytometry profiles couliedientiate what proportion of arrested cell
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population would eventually undergo apoptosis, which isthe case.

The flow cytometry profiles of cell populations perturbed bylgaxel and paclitaxel in combina-
tion with irradiation were very noisy after certain expeeintal observation points, and measurements
with Cylchred method seemed very inaccurate.

We note that our data readings, i.e., slight variations @& filateau log reduction value or in
estimates of proportions in each phase from flow cytometofilps via diterent methods (Cylchred
or others), fect the result of the unperturbed population transitioag#hat thenfiiect the results of
the optimization routine. However, it does nditert the conclusions derived from our model that the
transition rates undergo arrest, little cell death occutBi96 hours, and that the initial proliferating
proportion is much larger in value than the surviving fractdue to the fact that more cells die after
96 hour observation point.

Since little apoptosis is detected via our mathematicaleh@ohd the one presentedBassect al.
(2010 during the first 96 hours after radiotherapy and the emntiiteal proportion in theS-phase after
irradiation is assumed to be proliferating, the instantites the proliferating fraction calculated with
our model to be larger than the experimental estimates ahiti@ surviving fraction.

For successful estimation of the surviving fraction via neaatical modelling, we require ex-
perimental data beyond the observation point of 96 hourgh \&ir mathematical model, we could
then estimate cell loss that occurs beyond 96 hours, thdsfgas to more precise calculation of the
surviving fraction of the cancer cell population after thedime irradiation dose.
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Chapter 5

Application of the Two-Population Model

There is increasing evidence that the growth of human tusisuiriven by a small proportion of tu-
mour stem cells with self-renewal properties. Multiplioatof these cells leads to loss of self-renewal
and after division for a finite number of times the cells ugdeprogrammed cell death. Cell-cycle
times of human cancers have been measimgityo and shown to vary in the range from two days and
several weeks, depending on the individual. Cells cultaliegttly from tumours removed at surgery
initially grow at a rate comparable to the vivo rate but continued culture leads to the generation
of cell lines that have shorter cycle times (1-3 days). It besn postulated that the more rapidly
growing sub-population exhibits some of the propertiesuaidur stem cells and are the precursors
of a slower growing sub-population that comprise the bulkheftumour. We have previously devel-
oped a mathematical model to describe the behaviour ofinel land we extend this model here to
describe the behaviour of a system with two cell populatioitk different kinetic characteristics and
a precursor-product relationship. The aim is to provideaanfgwork for understanding the behaviour
of cancer tissue that is sustained by a minor populationaifprating stem cells.

5.1 Introduction

Stem cells for normal tissues in the human body are thougdntttas a reservoir of self renewing cells
and are supported within a spatially constrained micraenment called a nich&loore & Lemis-
chka(2006; Watt & Hogan(2000. It is hypothesised that proliferation, apoptosis, seense, and
differentiation of stem cells are inhibited within the niche, that once stem cells leave the niche they
are able to proliferate (via a controlled number of cell simhs), migrate to surrounding tissue and
differentiate, constituting the bulk of normal tissue (as itlated in Figures.1). There is increasing
evidence that the growth of human tumours is also driven byplation of tumour stem cells that
have the property of self-renewal and are located in a dlyatianstrained niche microenvironment
Dittmat & Zanker(2009; Lindeman & Visvade(1999; Schatton & FranK2007); Soleet al. (2008

but with unlimited proliferation potential, giving rise pvogeny outside the niche that are not spatially
constrained but have limited proliferation potential. Véhitaining the property of self-renewal in the
niche, tumour stem cells have in many cases lost the alilitggpond to niche signals and therefore
continue to proliferatéBaguley(200§. When these cells leave the niche, they (i) lose self-rahew
capacity, (ii) continue to proliferate, (iii) fail to ffierentiate properly and (iv) undergo programmed
cell death after a finite number of cell divisions. Theseschirm the majority of the tumour tissue.
Their average cell-cycle time can be measuredvo and various studies have shown cycle times to
vary in the range from two days to several weeks, dependirthemdividualWilson et al. (1988.
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Body tissue 0 . 0
O e~ ~=—~ =~ . io L’ U W Non dividing stem cell
iche m /O
I u 9 O @® Dividing stem cell
0 - | (] O
I .. N\ O O Dividing progeny
1 m ol - O Normal tiss
_________ / ormal tissue cell
0O O | - O

Figure 5.1: Schematic diagram of a niche in a human tissuem 8tlls, located in a spatially con-
strained niche microenvironment but with unlimited pretdtion potential, normally divide asymmet-
rically with one daughter cell remaining in the niche and,amece triggered by demand, migrating
from the niche to surrounding tissue. Stem cell progeniefifprate in surrounding body tissue and
eventually (after proliferation ceasesjtdrentiate to become normal tissue cells.

Tumour tissue removed at surgery can be grown in culture asabsarements of primary culture
cycle time show a range of 3 days to several weeks, which igssito that observeth vivo Baguley
& Marshall (2004); Furneauxet al. (2008. Continued culture of clinical tumour material results in
death of the majority of the cells but in the emergence aftgeal months of stably growing cells
called cell lines, as shown by the scheme in Figuge These lines have shorter cell-cycle times than
those of the primary cultures with a range, depending onntividual, of 1-3 days. Notably, the
cell-cycle times of cell lines are correlated to the celtleytimes of the primary cultures from which
they were initially derived and it has been postulated tldtlimes exhibit some of the properties of
tumour stem cell®aguley & Marshall(2009.

Mathematical models describing the kinetic behaviour diflaees, both under steady state be-
haviour and following perturbation with radiation and dgixdc drugs can be found in the literature
Basse & Ubezid2007; Basseet al. (2003 2005; Begg(2007). In Johnstoret al. (2009, a math-
ematical model is used to describe stem and sefféréintiated cells in the colonic crypt. In this
chapter, we have combined aspects of these models with adelrimoChapter2 to describe the be-
haviour of the tumour tissue in terms of the above stem cetlehavhere the tumour comprises two
sub-populations with dlierent kinetic properties. One small sub-population ofmégenigrated stem
cells from the niche exhibits rapid growth (we term this gapulation the ‘rapid sub-population
cells’) and the other slower growing sub-population of iadlst differentiated stem cell progeny mak-
ing up the bulk of the tumour (termed the ‘slow sub-populatiells’). Cell-cycle times and percent-
ages in each phase of the cell cycle have been determinedragpéally in cell lines as described in
Section5.2 and these measurements are used to establish estimatesielf pacameters. It should
be noted here that the term growth refers to the number of oethe population or sub-population
increasing and not to the actual size of individual cells.

When tumour cells from a surgical sample are placed intamylthe niche structure is destroyed
so that no new stem cells migrate from the niche. The morelglgrowing, partially diferentiated
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5.1 Introduction
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Figure 5.2: Schematic diagram of a primary culture of tumiigsue (left), comprising mainly of
relatively slowly growing sub-population of cells (cyclenes of 3 days to several weeks) and a small
sub-population with the potential for more rapid growthli¢cgcle times of 1 to 3 days). With contin-
ued culture of the primary culture for several months, thearstowly growing sub-population cells
die and are replaced by more rapidly growing sub-populatils, termed a cell line.

progeny tumour cells, which form the majority of the popidaf continue to proliferate and to un-
dergo apoptosis. However, the small population of rapidingng tumour ‘ex stem’ cells continues
to proliferate and is resistant to apoptosis, such that eatitinuing culture, the proportion of slowly
growing sub-population of cells decreases while that ofrtiere rapidly growing sub-population
increases. Eventually, the proportion of slowly growing-gwpulation of cells is negligible and vir-
tually the entire population is composed of more rapidliywing sub-population of cells and may be
termed a cell line (Figurg.2).

The aim of this communication is to construct a mathematcatlel that reproduces the main
elements of this scheme for tumour cells in primary cultuaed established cell lines, and apply
this toin vivo tumour growth. In Sectiob.2, we describe the experimental procedure for measuring
cell-cycle times and cell cycle phase percentages of calkli Sectiorb.3 outlines the mathematical
model for the two sub-populations of growing cells and alsmgs the equilibrium result of the switch
from a high percentage of ‘slow sub-population cells’ (thienary culture case) to a high percentage
of ‘rapid sub-population cells’ (the cell line case). Catlath via time dependent apoptosis is added
to the model in Sectiob.4. Section5.5 describes two applications of the model. The first compares
model results to experimental cell-cycle times of primanjtures and established cell lines. The
second looks ain vivo tumour cell population growth where a population of slow -palpulation
cells is maintained by a fixed number of stem cells in a niche.
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5. APPLICATION OF THE TWO-POPULATION MODEL

5.2 Experimental procedure

5.2.1 Derivation of cell lines from primary cultures

The derivation of the cell lines from melanoma specimenshieesn reported in several publications
and two references are provided h&farshallet al. (1993; Parmaret al. (2000. More than 150 cell
lines have now been derived from clinical samples, and &gh®l have corresponding cell cycle data
from primary cultures. It is from this set that the corredatibetween the cycle time of the primary
culture and the corresponding cell lines has been obtaiaedley & Marshal(2004).

5.2.2 Determining cell-cycle times of established cell les

This has been described in detail in other publicatiBaguleyet al. (1999; Furneauxet al. (2009.
Growth of cultured cells can be measured by direct counting,direct measurement of clinical
samples grown in primary culture is impossible becauseepthsence of host cells in the sample and
the loss of tumour cells. However, it was found using tumalirimes that the degree of incorporation
of 3H-thymidine into DNA at dfferent times after addition of paclitaxel, an inhibitor oftasis and
cell division, was a function of the measured culture douptimeBaguleyet al. (1999, as discussed

in Chapter3. It is assumed by biologists that culture doubling time weglar to culture cycle time
for cell lines (i.e., that cell loss was negligible) and deped an empirical formula that related culture
cycle time to the’H-thymidine incorporation data.

5.2.3 Determination of the percentage of cells in each phasé¢the cell division cycle

This was determined for established cell lines by fixing thkés¢ staining with the DNA stain propid-
ium iodide, and measuring the frequencies of cells witfeding DNA content using flow cytometry
Holdawayet al. (1992.

5.3 A simple model for primary culture cell populations evoling into
established cell lines

5.3.1 Two-population age-structured model: solution exience, BEG condition

In accordance with tumour tissue comprising newly arriveddur stem cells and their progeny, it is
assumed that primary culture cell populations are compogbdth ‘rapidly growing’ (ex stem cells)
and ‘slowly growing’ (progeny) sub-populations, and thattbare further subdivided by cell cycle
phase. We denou%l(t, 7) to be the number density of rapidly growing sub-populatiefis in the
G, phase at timé¢ and ager and similarlyng(t, 7) and ngzM(t, 7) are the number densities of rapidly
growing sub-population cells in ti2and combineds, M phases, respectively. T andM-phases
are combined here because they cannot be separated by floweatyy as described in Sectidnb.
Here we use the superscriptfor the rapidly growing sub-population. Cells progres®stigh the cell
cycle by having a rate of transition probabilitys from oneagh to the next according to Figuse3
Wherer&_)S is that rate of transition fror®;-phase tdS-phase and other rates have similar form as
specified in Tablé.1 For the slow growing sub-population cells (superscsiptve definenél(t, 7),
ng(t, 7) andnézM(t, 7) to be the number densities of the slow growing sub-pomnatells in theG,, S

andG,M phases, respectively. Cell death via apoptosis is achieyedmoving cells at a ran%ﬁ A
per unit time from the slower growing sub-populati@gp-phase compartment.
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5.3 A simple model for primary culture cell populations evoling into established cell lines

parameter description units
t time hours

T age hours
3o rate transitiorG; to S-phase hours

rapid growing cells r§_}GZM rate transitiors to GoM-phase  hours
réZM_)Gl rate transitiorG,M to G;-phase  hourd

P differentiation rate hour$

rg,s rate transitiorG; to S-phase hours
slowly growing cells r%_}GZM rate transitiorS to GoM-phase  hourd
¢S

& moc, ratetransitiorG,M to Gi-phase  hours

re A apoptosis rate hours

Table 5.1: Model parameters with descriptions and unite gdrameters for the slow growing cells
are similar except the superscripts added.

The rate of diferentiation of the rapidly growing sub-populati@i-phase cells to the slower
growing sub-populatioiG;-phase cells is denotgdper unit time.

It is assumed that primary culture cell populations are aused of both ‘rapidly growing’ (ex
stem cells) and ‘slowly growing’ (progeny) sub-populascand that both are further subdivided by
cell cycle phase. We denaté(t, 7) to be the number density vector of rapidly growing sub-pation
cells, thusn®(t,7) = [ng (t.7) nd(t7) nd \(t.7)]". The number densities of slow growing sub-
population cells (superscrig) we define byn®(t, 7) = [ng_(t.7) ng(t7) nd \(t.7)]". Similarly to
the age-structure model for one population, as showed itiddez. 2, we define continuous function
n(t, r) as:

nit,7) = [n*t,7) nt,7)], (5.3.1)

where vector components are continuous functiong,afh &nd transition rates are piecewise continu-

ous functions of timé and ager. The age-structured two-population growth model can beesged
(just like in Chapter) as:

%n(t, T) + aﬁn(t, 7) = —Doudt, T)N(t,7), O<t<oo, O0<7<T, (5.3.2)
T
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5. APPLICATION OF THE TWO-POPULATION MODEL

Slow sub-populatio

Figure 5.3: Scheme of cell-cycle control of a tumour cell ylagion containing slow and rapidly
growing sub-populations of cells. Each sub-populatioruishier subdivided intd,, S and GoM-
phases with the possibility that cells can transfer from pin@se to the next according to a transition
rate (see Tablé.1). Rapid sub-population cellsftierentiate to become slow sub-population cells at
a rate ofp per hour. Slow sub-population cells are mortal with apapteste fromG; phase denoted
rg,_a PEr unit time.

with respective side conditions defined as follows:
n(t=0,7) = n°x), initial age distribution (5.3.3)

T
nit,r=0)= f Din(t,7)n(t,7)dr, t>0, renewal distribution (5.3.4)
0

The matrixDoyt represents the loss of cells from the various phases vid dewt transfer to other
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5.3 A simple model for primary culture cell populations evoling into established cell lines

phases, and is defined as:

DfR
out
Doyt = diagonal , (5.3.5)
DS
out
with the following transition rate matrices for rapid andwlcompartments:
R
. rGyos TP . 0 0
Doutlt, 7) = 0 r5G,M . 0 (t, 7), (5.3.6)
0 0 FGaM Gy
and s s
s re,os + 1G,5A 5 0 0
Douilt, 7) = 0 rSoc,M ) 0 (t, 7). (5.3.7)
0 0 FGM Gy

The renewal matrij, represents the gain of cells at age 0 in each phase and is caused by transfer
from other phasedj, is defined as:

—_ [P 0]
Din [(C Dﬁl , (5.3.8)
where y )
. 920 0 25,M56,
Dip(t,7) = | 5,5 0 0 (t,7), (5.3.9)
0§ om 0
and
0 0 ngzM_)Gl ]
DY (t7) = 13, s 0 0 (t, 1), (5.3.10)
0 rdgm 0
with
p 00
C=]|0 0 O‘. (5.3.11)
0 0O

The solution of the systenb(3.2-(5.3.9) is still of the form of equation4.2.20) from Chapter2.
When solution 2.2.2]) is substituted into the renewal conditidh §.4), the Volterra integral equation
of second kind is as in equatioB.8.1) from Chapter2, we rewrite it here as:

n(t,0) = F(t) + ft K(t, 9)n(s,0) ds (5.3.12)
0
where

F@t) = ftT Din(t,7) exp(— fT Dout(s+t—1,9) ds) No(r —t) dr, (5.3.13)

—t
and kernel of integro-equation for rapidly growing sub-plagion is defined as follows:

t—s
K(t,9 = DR(Lt—9 exp(— [[ e+ df), (5.3.14)
0
The existence and unigueness of the solution is given by rened.3.1from Chapter2 with the
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5. APPLICATION OF THE TWO-POPULATION MODEL

appropriate interpretations for each compartment.

We continue with the proof of BEG existence for the two-pagioh model with transition rates
now only dependent on ageand the derivation of the characteristic equation for earhpgartment.
We assume that cell population composed of two sub-popuakativith diterent kinetic properties
grows exponentially as follows:

n(t, 7) = e"N(7), (5.3.15)

same assumption was made for one-compartment model iro8&cti When the ansatz(3.19 is
substituted into equatio®(3.19, just like in Chapteg, we obtain the following nonlinear eigenprob-
lem:

A1) — IA[R(0) = O, (5.3.16)
[4@-1]

now I is the 6-dimensional unit matrix is the 6-dimensional vector of number density functions,
where the matriX is as follows:

A% 0
A—[VC AS]’ (5.3.17)
with A® andAS given by
Apzzf Dpz(s)exp( f[ ﬁt(s’)+1[/l]d§)ds with p2 € {R, S}, (5.3.18)
and
T S
y= f p(s)exp(— f 2 @+ dg)ds (5.3.19)
0 0
The structure of matrices® andAS is as follows:
0 0 «&,
APP=1 2 0 0|, (5.3.20)
2
0 « O

for p2 € {R, 8}, wherex, with p € {G1, S, GoM} is a positive element and has been defined in equation
(2.4.5 in Chapter2 with two-population model specific transition rates.

The matrixA is now reducible, as its connected graph shows in Figuieslow sub-population
makes no contribution to any stage of rapid sub-populatsm® Appendix for more on reducible
matrices. So previous approach from Chagtés not applicable. However, it can be seen that when
p = 0, we have two decoupled algebraic systems. MatriceandAS$ are irreducible and imprimitive.
Hence, Theorem.4.1applies to each of the sub-populations individually. Thisams, there exists a
A = 1 and both, the rapid and slow sub-populations, have onéymsigenvalue each, denoted)@s
and/lg’, respectively. These solve the characteristic equatiddsq and ¢.4.9, derived in Chapter
2, with the appropriate two-population model transitionlability rates.

So now let us consider the coupled system again. As statea abguation§.3.19 is reducible,
and is of the form

[AfR(a) - ]IA]’rTy(O) =0, (5.3.21)

CA%(0) + [AS(/I) - ]IA]’rTS(O) 0, (5.3.22)

92



5.3 A simple model for primary culture cell populations evoling into established cell lines

Figure 5.4: Reducible matrix diagram.

then Theoren?.4.1applies to the rapid sub-population; therefore, theretexis?, henceA = 1 such
thatn®(0) > 0 (proven with the Perron-Frobenius theorem presenteddtid®e?.4). Furthermore, if

A# 43, then[AS(/l) - ]IA] is not singular, and

7%(0) = —[AS(/I) - ]IA]_lc'ﬁR(O). (5.3.23)

If 1= /1(5), then the Fredholm Alternative theorem applies &md(0) must be orthogonal kernel
of [AS(/I) - I[A] for a solution to exist, seantorovich & Akilov (1982. The solution is then a

combination of the eigenvectonst(0) andn®(0) of the uncoupled system.

5.3.2 Two-population model ODE
Two-population age-structured model can be reduced to hE §/stem, as shown in Secti@mb.
Number of cells inG;-phase for rapid-subpopulation is denoted with varial‘tlgi?, WhereN&(t) =

fOT ngl(t, 7) dr, and similar notions have been derived for the rest of thegharlhus, two-population
dynamics can be modelled by six ordinaryteiential equations, one for each phase, namely:

ngl R R R R R
dt = erZM—)Gl NGZM - rGl—>SNGj_ _pNGj_’ (5.3.24)
dNZ
S R R R R
T = rG1—>SNG1 - rs_)GzM Ns, (5.3.25)
dNG
R R_ R R
dt2 = rs_)GzM NS - erM—)GlNGZM’ (5.3.26)
for the rapidly growing sub-population cells and
dNg
R
T L= pNE + 2r e, NEw — (1 s + TS L AING, (5.3.27)
dNS
S s 5 S S
W = rG1—>S NG1 - rS—)GzM NS’ (5328)
dNG,
S S .8 S
dt2 = Tsoe,mNs — g,m-6, Ne,ms (5.3.29)
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p<rE s(@x>0)|rd ,<rd _ss>0) | N(t) - crvge!r' + csvse's!

P <18 s Wx>0) |13 _\>r1g s (15 <0) N(t) — crvze'®!
p>18 s Ux<0) |18 _\<rd _s(1s>0) N(t) — covselst
p>18 s (r<0) |13 _o>18 (s <0) N(t) — 0

Table 5.2: Long term behaviour of the solutibift) (with t > 0) to equationsH.3.29 - (5.3.29 will
depend on the sign of the eigenvalugs éndAy) of the system.

for the slower growing sub-population cells. These equatare defined oh> 0 with initial condi-
tions specified att = 0.

If the transition rates between compartments are assumieel positive constants then it can be
shown that there are at most two positive real eigenvaludsdsystem that can be found by solving
the characteristic equation for the rapid sub-population:

(rggMeGl + /l)(rgﬁGzM + A)(r§1—>5 tpt /l)

R R R ’
215, s'556,MGM-G,

Fx(d) = (5.3.30)

whereF (1) = 1. The functionF4 (1) is a positive cubic and has dominant positive real solytan
shown in Sectiorb.3.1, which we calliy.
Similarly, the characteristic equation for the slow sulpydation is expressed as

s s s s
(rg,moe, + Vs gm + DG, s+, a+4)

B S B
2r3, 5" 6,M GMoG,

Fs(1) = (5.3.31)

The equatiorFg(1) = 1 has only one positive real solution, which we cgll

The asymptotic analytical solution of this system is démdiin Tables.2. This solution depends
on the conditions above and can be written in vector form imsgeof the positive eigenvalueg(
and Ag) and their corresponding eigenvectors (which we may walhndvg respectively) and the
constantscg and cs obtained via the initial conditions. The long term propams in the phases
depend on the eigenvectarg andvg and the time it takes to reach this asymptotic state will ddpe
on the transition rates and the initial conditions. Thdah#tate at = 0 represents the primary culture
and the asymptotic solution represents the establishétneel Experimentally rapid sub-population
cells dominate a cell line so we proceed by running simulaticorresponding to parameters chosen
in rows one and two of Tablg.2whereiy > 0.

In Figure5.5(a) we see a numerical solution of the system obtained using&®#witta methods
supplied by theode45function in MatLab. The parameter values are summarized in the caption.
The rates of the transition between phases were chosen bast@ transition rates obtained for
unperturbed cell lines iBasseet al. (2005. The remaining have been chosen arbitrarily according
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to the second row of Table.2 so thatp, the diferentiation rate, is smaller thaﬁﬁs, the transition
rate fromG;-phase tdS-phase for the rapid sub-population cells. Thysis positive and the rapid
sub-population of cells increase. In addition the rate twpapsis in the slow sub-population of cells
(r<531—> ) is bigger than thé&; to S-phase transition rategﬁs) S0 g is negative. However this does
not mean that the slow sub-population cells disappear Isedhere are non-zero slow sub-population
cell components in the eigenvectey corresponding toly. Initially, for the primary culture, we
have assumed that the number of slower sub-populationisdiigher than the number of rapid sub-
population cells, i.e., 99% of slow sub-population cel &f rapid sub-population cells. In Figure
5.5(a) we see the number of slow sub-population cells first degrgasd then increasing again. The
growth rate of the slow sub-population cells, after a timkyges eventually the same as the rapid
sub-population cells. This can be explained by looking at2mf Table5.2where asymptotically the
solution behaves like'z!. Eventually the proportion of rapidly growing sub-popidatcells is much
higher than the proportion of slow growing sub-populatiefiscbut the slow growing sub-population
cells are still there, that is the slow growing populatioresimot disappear (Figute5(b). This is
theoretically the established cell line.

For our theoretical established cell line, because thegstigm of slow sub-population cells to
rapid sub-population cells is negligible, we may considher tapid sub-population cells alone. That
is, we set our dferentiation ratep = 0 and investigate equationS.8.29 - (5.3.2§. We can easily
calculate the proportions in each phase that become astiogitoconstant. Constant proportions in
the phases are obtained experimentally in cell lines, iragos §.2.10. Let Hgl be the proportion
of rapidly growing cells in th&;-phase and similar notation for the other phases then wehtam: s

0 fes , (5.3.32)

ngl rg;GzM + Ay

ngM _ r§—>G2M (5.3.33)
ng g uie +Ax A

g, + Mg + 135y = 1. (5.3.34)

We can compute the average cell age in each phase from aguéti6.42 in Chapter2 (by taking
aging timesrp, — 0, for p € {G1, S, G,M}) as follows:

g
T2 == (5.3.35)
G (i s+ An)
HfR
T —E— (5.3.36)
(rs_g,m + 1z)
HJQ
P p— L (5.3.37)
M (rgzmﬁel +A3)

for each ofG;, S andG,M-phases, respectively.
The doubling time for the established cell line is relatedtigh thely by

B In2

R
Td —g,

(5.3.38)
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Figure 5.5: Simulation of the solution to the system equmsti®.3.29 - (5.3.29. Initially we assume
there are 10000 cells with 99% slow sub-population cells Hidrapid sub-population cells. The
proportion of cells in each phase for both slow and rapid ofdlations is initiallyG;-phase 53%,
S-phase 31% an®,M-phase 16%. The apoptosis rate is constérﬂg A = 1 per hour. Transition

rates between the phases for the rapid sub-populationarelf%l_>S = 0.052729,r§_>(32,\,I = 0.052
andrgzm_)Gl = 1.8 per hour. For the slow sub-population cells, we chose theedaansition rates

as the rapid sub-population cells exceptrfég_}S which is chosen to be 10% oﬁl_)S (@ =01)in
equation (22). The elierentiation rate from rapid sub-population cells to slow-population cells is

o = 0.00001 per hour.

and an estimate of the corresponding average cell age ithgisum of the proportions in each phase

R R R
TR _ 15, I3 115,m

_ + + : (5.3.39)
: (r§1—>5 + /lgg) (rgSz—>G2 + /lgg) (rgzMﬁGl + /lgg)

Thus for an established cell line, we have a relationshipvéeh proportions in each phase, rate
transitions between phases, population doubling time afiehge time. Equations(3.39-(5.3.39,
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5.4 Time dependent apoptosis

(5.3.39 and 6.3.39 specify these relationships whetg is determined by solving equatiof.8.30.
Numerical explorations of these six equations using thepdmhiNewton’s method indicate that even
with no cell loss the cell-age time is not equal to the douplime, demonstrated before in Figure
2.6

Experimentally, one can determine the proportions in e&ets@ of an established cell line using
flow cytometry and estimate cell-cycle times as describeBection5.2. In the further calculations,
we assume that experimentally estimated cell-cycle timagjisal to what we refer to as the average
cell-age timeT,. We remark here that if we assume that the experimentalgelé time is equal
to the removal time, introduced in Secti@rb.§ then the qualitative results obtained by using the
average cell-age time carry-over to the removal time notionthis chapter, terms average cell-age
and cell-cycle time are interchangeable. One can thenrolalhithe remaining model parameters
using our equations.

5.4 Time dependent apoptosis

In the previous section, we have described a model of a pyirature cell population composed
of mainly a slower growing sub-population of cells changowgr time into an established cell line
composed of mainly rapid sub-population cells and a coardimgly shorter cell-cycle time. We
assumed that model parameters were constant, and now vetig)ate the case where the apoptosis
of a progeny cell (slow sub-population cell) occurs afteuanber of successive cell divisions. This
statement is inferred from the kinetics iof vivo human tumours, where the volume doubling time
is much longer than the calculated average cell-cycle tifrtbeindividual tumour cells, implying
extensive turnover and therefore death after a number bfinéions Watson(1991). We do not
track individual cells through successive cell divisions We can incorporate this phenomenon into
the model by having the apoptosis rate increasing with tile. chose a sigmoid function for the
apoptosis rate

5 _ M
6 = 72— e (5.4.1)

as depicted in FigurB.6.

We see in Figures.7(a) that the slower sub-population of cells initially keepswireg while
rg,.a < rg s @s shown in the first row of Tab®2. Since the apoptosis rate value is increasing
abovergl_)s, we move to the second row of Tall€2, where the slow sub-population cells decrease.
Rapid sub-population cells are resistant to apoptosis heg keep growing exponentially at any
apoptosis rate.

5.5 Model applications

5.5.1 Comparing cell-cycle times of primary cultures and emblished cell lines

In the laboratory experiments, the cell-cycle times of aiyncultures are longer than those of estab-
lished cell lines. This can be seen clearly in Figbr@where the experimental estimates of cell-cycle
times (see Tablé.3) of 22 primary cultures and their corresponding cell linagehbeen plotted. Two
studies, one in ovarian cancer and one in brain cancer, havensthat cell-cycle times are related to
survival Baguley & Marshall(2004; Furneauxet al. (2009; therefore, it is important to understand
the underlying dynamics that might cause this phenomenopaiticular, we ask whether our simple
ODE model with the two - slow and rapid sub-populations ofscedn recover the data in Figuses.
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Figure 5.6: The apoptosis rate as a sigmoid function destiibequation¥.4.1). Hereu = 1,8, = €’
andp; = 3.

We proceed as follows. For each of 22 established cell liwesnote the experimentally calcu-
lated cell-cycle times and the proportions in each of@eS andG,M phases (see Tabte3). We
assume that the proportion of slow sub-population cellbéngstablished cell line is small compared
to the rapid sub-population cells and we use the six equat®t.32-(5.3.39,(5.3.39, (5.3.39 and
(5.3.30 to find the phase transition rates for the rapid sub-pojmuatells. This in turn can give us
a model estimate of the cell doubling tim'Eff, for the rapid sub-population cells. As an interesting
aside we note that even in the absence of cell death the welldibubling time is longer than the
cell-cycle time for established cell lines, as depictediguFe 5.9, where we have plotted the model
estimate of the doubling time versus the model input of theedrmentally obtained cell-cycle time for
our 22 cell lines. The relationship between the two is descrby the non-linear equations mentioned
above but looks almost linear and a least squares regrdgsdmas been fitted.

We make the assumption that théfeience in cell-cycle times between the slow sub-population
cells and the rapid sub-population cells is caused by a loBgehase transit time in the slow sub-
population cells. Thus we set the transition probabilif@sthe slow sub-population cells to be the
same as for the rapid sub-population cells with the excemifahe rate transition fror®;-phase. We
assume that the rate transition fr@n to S-phase of the rapid sub-population cells is proportional to
the rate transition fron®; to S-phase of the slow sub-population cells, i.e.,

g, s = g, s (5.5.1)

wherea € [0, 1] is to be determined in such a way as to recover the cycledirttee primary culture.
To obtain the doubling tim§§ of the primary culture (slow sub-population cells) where

s In2

= (5.5.2)

we use equation5(3.3]) and the same cell-cycle time formula for slow sub-popatattells as for
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Figure 5.7: Simulation of the solution to the system equetit.3.29 - (5.3.29 with parameter
values and initial conditions the same as Figtré except death via apoptosis fro8y-phase of
slowly growing sub-population cells is increasing untitéiches a constant value according to the
sigmoid function of Figuré.6.

rapid sub-population cells (equatidh §.39) with a change fronR to S respectively. For the primary
culture there was no experimental data for the proportidistibution among phases given. Propor-
tions in each phase can be expressed through the rateitrassising equation$(3.39-(5.3.39.

The two unknown parametesisandAs can be obtained by solving the system of equatiér3.8)
and 6.3.39 with the damped Newton’s method. Initial guessesrof 0.1 andig = 0.005 gave
convergence to positive value parameters.

Using equation¥.5.2, we can now calculate doubling times for each of the 22 pryncaltures
as seen in Figur®.10 We see from this figure and also Figused that the model recovers the
experimental data depicted in FigUuses.
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5. APPLICATION OF THE TWO-POPULATION MODEL

Patient code Primary culture Cell line Percentage Pergenta

T¢ (hours) Tc (hours) G phase S phase

NzZCO01 60 24 57 30
NZEN1 100.8 60 86 8

NZMO02 93.6 43.2 62 28
NZMO03 93.6 40.8 44 38
NZMO04 216 29.8 54 32
NZM09 156 45.6 56 30
NZM12 86.4 25.9 81 11
NZM13 312 76.8 69 16
NZM16 228 50.4 85 7

NZM17 79.2 43.2 66 11
NZM18 163.2 62.5 84 8

NZM19 177.6 63.1 86 10
NZM21 93.6 22.8 84 8

NZM22 213.6 81.4 77 13
NZM24 177.6 394 75 13
NZM25 177.6 37.1 80 14
NZM26 105.6 63.1 84 4

NZM28 139.2 38.4 72 24
NZM30 64.8 29.6 69 25
NZM33 132 62.4 64 17
NZM34 105.6 40.8 65 23
NZM56 67.2 33.6 87 12

Table 5.3: Experimentally obtained cell-cycle tim&g)(for 22 primary cultures and their correspond-
ing cell line cell-cycle times. Column 4 and 5 contain dataegperimentally obtained percentage
distribution among phases for 22 cell lines. Patient codsirsg with the NZM correspond to the
melanoma cells, NZCO stands for the colorectal cancer,¢¢EN - endometrial.

5.5.2 Invivotumours

A further application of the model is to consider ianvivo tumour, which is sustained by a humber
of (rapid sub-population cells) stem cells in a niche. Inagding parameters, we have assumed that
the stem cell population (rapid sub-population cells) s Kinetic properties of the cell line and
that the progeny cells (slow sub-population cells) havekihetic properties of the corresponding
primary tumour cultures. Because biologically the micnwinment of the niche has a given size,
we set the parameters so that the number of rapid sub-pagutalls remains constant. This is done
by using the threshold case, where= rgl_)S. Deviations from the threshold condition will result
in population exponential growth or decay according to &&bP. In reality, in vivo cell population
dynamics are much more complicated. However, our simpéatimodel is used here to identify the
essential population dynamics associated with stem aadlglaeir progeny.

Starting with 100% of cells in the rapid sub-population camment and 0% in the slower sub-
population compartment the entire slow sub-populatiohamghpartment (the tumour cells) is gener-
ated over time from rapid sub-population cell proliferatighe stem cells in the niche). The parame-
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Figure 5.8: Cell-cycle times of 22 primary cultures and esponding derived cell lines. Recreated
from previously published experimental d&aguley & Marshall(2008.

ters of the sigmoid function for the apoptosis rate were ehdwy trial and error so that the initial rate
is small and the horizontal asymptote is approximately b’qu%ﬁs. Thus eventually the number

of slow sub-population cells becomes constant, r@HA = rgl_)S andig = 0 (see Tablé.2). Then
the total size of the slow sub-population with time resemblsigmoid function as depicted in Figure
5.11 This is in accordance with experimental estimates of tungoowth being classified as sigmoid
(including logistic or Gomperzian growth as describe&ozusko & Bourdeal(2007) and references
therein).

The initial number of cells was chosen arbitrarily to be 16@fid sub-population cells (stem cells
in the niche) and 0 slow sub-population cells (i.e., no tunolihe emphasis here is on the qualitative
results where eventually the slow sub-population cellsidate showing that the niche sustains the
tumour and results in a sigmoid shaped curve for the numb&owfsub-population (tumour) cells. It
is the parameter values and where they are chosen from F&kkeat dictate the ‘long’ term behaviour
of the slow sub-population cells not the (non-zero) inisiake of the stem cell population.

5.6 Discussion and conclusion

The transition fromin vivo tumour to primary culture to established cell line is biotadly complex
and not fully understood. In this chapter, we have descrésitnplistic mathematical model, which
does not address this degree of complexity but aims to aapiter essential population dynamics of
these transitions by considering theoretically interarstem cell and progeny populations. We did
this by formulating six dierential equations for a cohort of cells comprising of twb-populations.
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Figure 5.9: Cell line doubling time vs. cell line cycle timerf22 cell lines. Cell-cycle time on the
horizontal axis are experimental data that are used iniaddid experimentally obtained percentage
distributionsllg,, I1s in order to calculate cell line doubling time (vertical gxiEach dot represents
a particular cell line. A least-squares line is fitted thriotige scatter plot (cdgcient of determination
r2 = 0.75).

One exhibiting slow population growth (the ‘slow sub-paidn cells’) and the other having a faster
population growth rate (the ‘rapid sub-population cell&pch sub-population is further divided cor-
responding to three distinct phases of the cell cy@g, (S and G,M phase) with transition rates
between phases. The slow sub-population cells are a mapalgtion with death via apoptosis from
G;-phase. The rapid sub-population cells cafiiedentiate to become slow sub-population cells ac-
cording to the dferentiation rate.

If transition rates are constant then the asymptotic smiutf the corresponding filerential equa-
tion system are summarised in Tabl€. The initial condition { = 0) is chosen to represent a primary
culture and is composed of mainly slow sub-population célle asymptotic solution corresponds to
an established cell line and comprises mainly rapid suh#adipn cells.

We considered the case of rapid sub-population cells alanean established cell line. We found
relationships (as described by equatiohs3(39-(5.3.39, (5.3.39,(5.3.39 and £.3.30Q) between the
proportions in each phase, the rate transitions betweesephthe population doubling time and the
average cell age. These relationships confirm that evennaittell loss the average cell age is not
equal to the doubling time. The following simple examplesdtrates that as soon as synchrony is
broken the average cell age will befferent to the cell doubling time. Consider two cells in perfec
synchrony starting the cell age at the same time and eachdhéve same average cell-age. In this
case, the average cell-age is equal to the population a@ublne. If this synchrony is broken by
each cell having its own average cell ageand T2, respectively, where say th#f is slightly smaller

102


8FirstPaper/Chapter8Figs/EPS/Fig8.eps

5.6 Discussion and conclusion

600

400 |-

Doubling Time (hours)
w
o
o
T

N

o

o
T

100~

Primary Culture Cell Line

Figure 5.10: Cell doubling times of 22 primary cultures andresponding derived cell lines. Dou-
bling time of the cell lines was calculated using experiraiytobtained cell-cycle times and propor-
tions in each phase, for primary cultures this was achiesiaguexperimental cell-cycle times and
model derived rapid sub-population cell transition rates.

thanT2 then the population will double at tinigy = T2 and the average cell-age will b8+ T2)/2
which will be smaller than the doubling time. Our data haslltes in doubling times being greater
than average cell-age as depicted in Figufe

In calculations, we assumed that experimentally estimagdidcycle time is equal to what we
refer to as the average cell-agig We remark here that if we assume that the experimentatygelé
time is equal to the average removal time, introduced ini@e&.5.6 then the qualitative results
of the average cell-age time carry-over to the average rahtowe notion. In this chapter, terms
average cell-age and the experimental cell-cycle timerdezdhangeable. More importantly, if one
has experimental estimates of the cell-cycle time (or dagltime) and the proportions in any two
phases then one can use the mathematical model equatiostinate the population doubling time
(or the average cell age of the population) for a particuddirline. This model can be easily extended
for the mathematical estimation of the average removaldiriiée used the model to recover average
cell age of primary cultures given the experimental cetileytimes of established cell lines.

As a further application of the model we consideredramivo case of a tumour being sustained
by a niche of (a constant number of) stem cells. We assumadllinino slow sub-population cells
but over time the rapid sub-population cellsfelientiated to become slow sub-population cells. The
population of the slow sub-population cells was sigmoid ttaresponds to empirical estimates of
tumour growth.

The concept that the fraction of stem cells in tumour samates cell lines is small has been
reported in a number of papers. However, a recent publitdtas shown that when cells isolated
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Figure 5.11: Simulation of the solution to the system equmetic.3.29 - (5.3.29. Initially we assume
there are 1000 cells with 0% slow sub-population cells an@Pd @apid sub-population cells. The
proportion of cells in each phase for rapid sub-populatignsitially G;-phase 53%S-phase 31%
and G,M-phase 16%. Transition rates between the phases for theé sapipopulation cells are

rg, s = 00527298 .\ = 0.052 andr |, ., = 1.8 per hour. For the slow sub-population cells

we chose the same transition rates as the rapid sub-papubzlls except forgﬁS which is chosen
to be 10% ofrgﬁs. The diferentiation rate from rapid sub-population cells to slow-population
cellsisp =rg s perhourrd _,isasigmoid function, wherg = 0.00552881 = €2 andBz = 5.

from human melanomas are grown in host mice with a high degfremunosuppression, up to 25%
of cells are able to grow into tumours and should thus be difisdumour stem cellQuintanaet al.
(2008.

Stem cells in normal tissue are normally slow growing bug giow growth is maintained by the
niche microenvironment and in response to an approprigieiksts (e.g. depletion of cells) stem cells
can divide rapidly. The signalling pathways that maintaamnmal stem cells in a slow growing state
may be defective in tumour stem cells, but definitive evideisclacking because tumour stem cells
cannot be identified in situ. The range of cycle times deteeahifor the primary cultures is similar to
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5.6 Discussion and conclusion

that for the bulk of tumour cells reportéal vivo.

An understanding of the underlying kinetics of cell lines #ime relationship with those of primary
cultures is essential to understanding how human patieitksimvvivo tumours respond to cancer
therapy. Cell-cycle times of cell lines are related to oglile times of primary culture and our simple
mathematical model goes some way towards explaining tlate$he cell-cycle time of a cell line is
a measure of patient survival it is important to see how thates back to thim vivo case.
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Chapter 6

Conclusions and Suggestions for Further
Work

In this thesis, investigation of the age-structured motlaksled to the derivation of biologically sig-
nificant parameters describing the dynamics of an expaaBngrowing cancer cell population. We
have shown the relationship between the average cell-tyede(also called the average cell-removal
time) and the population doubling time, where the cell-eytahe of the population is greater or equal
to the population doubling time. This result is of great iag to biologists, as they generally assume
that the cell-cycle time is always equal to the populationtding time.

In Chapter2, we have proven the existence of the balanced exponentiattigistate for the age-
structured model with piecewise continuous transitioegator the case of piecewise constant tran-
sition rates, we have derived analytical formulae for thpypation distribution among the cell-cycle
phases, the average cell age and the expected (averagetdime for the population in BEG. We
note that the average age of the cells removed from all phagbe average cell-cycle time. Our
expression for the average cell removal time can be founklgditerature, where it has been referred
to as the cell-cycle time of the population. However, therfolae in the literature has been assumed
and then verified by using a discrete computational simaativhereas, in this thesis, it has been
derived from the age-structured model with piecewise @midtansition rates. Furthermore, we have
shown that a delay fferential equation system can be obtained from the agetstagcmodel with
piecewise constant transition rates. We presented thetiedwof the age-structure model to the ordi-
nary diferential equation model and thereafter applied it in thdyaigof the cancer cell population
response to various cancer treatments. A study of a casecodwise linear transition rates, would
provide a further generalisation of the model.

In Chapter3, we have derived an analytical expression for the estimaifa¢he population dou-
bling time from a single experimental observation poinhgghe stathmokinetic method. In the liter-
ature, this method has been proposed from empirical stulistghermore, our mathematical model
has provided justification for the stathmokinetic method presented simple analytical formulae that
could be useful for biologists. A further extension of thisael would involve: first, incorporating
the necessary aging times of cells in each phase of the ad# ty increase biological realism of
the model; and second, deriving expressions to estimateetheycle time from a single experimen-
tal observation of the plateau log reduction value, sintitathe ones presented in Talile? for the
doubling time. We aim to elaborate on the model in Chaptnd publish this result.

In Chapter4, we have analysed thefects of the radiotherapy on five melanoma cell lines via
mathematical modelling. Our mathematical model was coostd with the objective of estimating
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the proportion of cells that continue to proliferate aftesrge-time ionising radiation dose. Flow cy-
tometry profiles of five melanoma cell lines exposed to thyped of cancer treatment were utilised in
the optimization routine. This provided the uniquenesshefriumerical results. We have concluded
that little apoptosis occurs initially after irradiatiodowever, this result contradicts the empirical
estimates of the surviving fractions. Therefore, we haaseaed that our high magnitudes of the pro-
liferating cell proportions in each phase at time zero pwatiation suggests that some cells, although
sustaining DNA damage from irradiation, continue to dividweral times before undergoing apopto-
sis. A further extension of this study would involve the aggtion of our model to the experimental
data for the same cell lines but with longer observation sintleus providing a better understanding
of the numbers of cells undergoing apoptosis after dividiegeral times following irradiation.

In Chapter5, we have proved the existence of the BEG state for the agetsted model depicting
the growth of the cell population composed of two sub-pajparta with diferent kinetic parameters.
Furthermore, the age-structured model was reduced to thirany diferential equation model and
applied to provide an insight into the transition framvivo tumour to primary culture to established
cell line. The linearity of our mathematical model does notar the biological complexity of this
problem. However, it provides a small insight into the hyyastis that a cancer tissue is sustained by
a minor population of proliferating stem cells. The extensdf the mathematical models presented
in this thesis to describe the dynamics of cells in the prin@idture may be of a great interest to
biologists as its dynamics reflect the conditions of maligriemour dynamics.
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Appendix

A.1 The existence and unigueness theorem frominz (1985

When the kernel is unbounded (or has some irregular betvtdasioften convenient to rewrite linear
second kind Volterra equatiof(t) = g(t) + fot k(t, s)f(s) ds as follows:

{
f(t) = g(t) + fo p(t, 9kt 9F(9)ds (A.1.1)

wherep(t, s) represents the part with the non-smooth behaviour.
Theorem A.1.1. Assume that in equatiof.1.1

1. gt)iscontinuous iM <t<T,

2. Kt,9)iscontinuous i <s<t<T,

3. for each continuous function h and 8lk 1 < 75 < t, the integrals

[ “ bt 9kt 9 h(9) ds (AL2)

and .
f pit. 9 Kt Hh(9) ds (AL13)

0

are continuous functions of t,
4. p(t, 9) is absolutely integrable with respectto sfor@lkt< T,

5. there exist point® = Tg < Ty < To < ... < Ty = T such that with t T;

min(t,Ti.1)
Kf Ip(t,9)lds< a < 1, (A.1.4)
Ti
where
K = max_ [k(t, s)|, (A.1.5)
O<s<t<T
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6. foreveryt> 0

t+6
5Iin3 f Ip(t + 6, 9)|ds = 0. (A.1.6)
-0t t

ThenA.1l.1has a unique continuous solutionOn<t < T.

A.2 The Perron-Frobenius theorem

The Perron-Frobenius theorem describes the eigenvaldesigenvectors of a nonnegative matfix

Its most important conclusion is that there generally existe eigenvalue that is greater than or equal
to any of the others in magnitude. Without loss of generality can call this eigenvalui; it is called

the dominant eigenvalue & The properties of nonnegative matrices have been suledivitto two
cases: reducible and irreducible. Irreducible matrice® freeen further subdivided into primitive and
imprimitive, Caswell(2001).

A.2.1 Irreducible but imprimitive matrices

A nonnegative matrix is irreducible if and only if its life ce graph contains a path from every node
to every other node. An imprimitive matrix is said to be cg@ind to have an index of imprimitivity
d equal to the greatest common divisor of the loop lengthserita cycle graph.

Theorem A.2.1. If the matrix A is irreducible but imprimitive, with index pfimitivity d, then there
exists a real positive eigenvaluig, which is a simple root of the characteristic equation. Theaxi-
ated right and left eigenvectors;vand v are positive.

The dominant eigenvalug is greater than or equal in magnitude to any of the other eigéres, i.e.,

=4l i>1 (A.2.1)

but the spectrum of A contains d eigenvalues equal in madmitol;. OneJ; itself, and the others
are the d- 1 complex eigenvalues:

lexpkri/d k=12 .d-1 (A.2.2)

A.2.2 Reducible matrices

Theorem A.2.2. Is A is reducible, there exists a real eigenvalye> 0 with corresponding right and
left eigenvectors w> O and v > 0. This eigenvaluel; > |4i], i> 1
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Appendix

B.1 Proof of Theorem3.2.1- nonlinear mapping properties

As discussed in Sectioh2.1in Chapter3 for an established cell line, we have a relationship between
proportions in each phase, the rate transitions betweesephdhe population doubling time and
this can be reduced to an implicit relationship involving= {rg,-s,rs-g,m.re,M-G,}, ando =
{I1g,, I1s, A}. So it can be shown that the system can be written

G(rao-) = G(rG1—>Sa rS—)GgM > rGgM —>G1’ HG:U H87 /l) = 0 (Bll)

The existence of functional relationships between theatdes will be determined by the implicit
function theorem and this is conditional on certain chaasations of the jacobian matrix &f, which
is given by

s 1 re;-s | -1 6,8 0
i Mg, (rs—cym+4)2 (rsoeom+d)  (rseym+4)?
Js =1 =1 —Ilg,m IS-GyM | 0 -1 IS-GyM
Ms M2 (ropMocy +4)? (Feomo6,+4) - (Fepmocy +4)2
O 0 (9,1F | arGlﬁs F arSHGZM F aerMHGl F
=% | ]
Here
1
C’)AF = [(r5_>G2M + A)(rG1_>5 + /l)+
2rG,-sls56,MIG,M -G,
(reomoe, +Ta+ A(reos + ) + (fe,mo6, +Ta+ D(fssem + ) ], (B.1.23)
1 F(2)
6f61—>SF = o [(erM—>Gl +Ia+ /l)(rg_,GzM + /1)] - , (B.l.Zb)
G1-SIs=6,MIG,M-G; lG;-s
1 F(a
8rSHGzM F = 2I’G oo [(rGZM_)Gl +ra+ ﬂ)(rGl_)s + /1)] - e (G)M y (B.l.ZC)
1— —2 2 V=1 —2
1 F(2)
Oremoe, F = o ol o ot [(re,—s + D(rs—eom + )] - P (B.1.2d)
1— —2 2 V> 2 M—1

with F given by equation3.2.9. We have partitioned into the first three columns, and called this
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square matrix,, with the remaining three columns calldd and then the implicit function theorem
assures us that the jacobian= ‘(’j% exists locally provided the jacobialy. is non singular, i.e.,

detJ, = EMF( Hem 1 ) > 0. (B.1.3)
lsllg, Isllg,
This is true ifd,F > 0 as the proportional of cells in each phase are positivee&dlgat the condition
on F is true for the domain under consideration here, we notexpomrential growth that > 0, and
all the rates in equatiorB(1.29 are also positive, so thayF > 0. Hence the magr = R(r) is locally
unique and determined.
To invert this mapping we must look into the singularityJpfand this can be determined from

dethr =

1 rS—»GZMarezM_)(;l F r5—>G2Mars—>GzM F ) afel—s FrG1—>5rS—>GzM 0
>0,
(r5_>G2M + /1) (rGZM_)Gl + /1) (erM—>G1 + /1)2 (rS—>GzM + /l)(erM—>G1 + /122 1 4)
so that provided del; # 0 anywhere, a local mago) will exist almost everywhere.
To prove this, we first look at equatioB (1.2 and see this can be written

1 1
al’GJ_HSF - F(/l) [(rG1_>S T /l) - rGl_,S] s (BlS)

and inS’, F(1) = 1, witha > 0 so

e, .sF < 0. (B.1.6)
A similar argument applies to the other two derivativesoin equation B.1.2). As in S’ all the
transition probabilities and are positive, it follows def;, < 0 and we have the result.
B.2 Approximate solution of F(1) —1=0

To enable this, we first look at the dependencé& of) = 1 on A, example ofF(1) = 1 plot shown in
Figure2.4. So with the understanding of approximating the graplf ©f), we consider a quadratic
that crosses thg-axis at—8, —a and they-axis aty and that is positive for largg. We also assume
thatg < a. Then this quadratic is

y(x) = alﬂ(x +B) (X + a). (B.2.1)

Again with consideration of equatio3..6, we consider the roots of the equatigx) = 1, and these
are given by

dap 1
e 726 -0 (B.2.2)

With the assumptio% % — 1) << 1 the positive root is given by

X_1
T2

-B+a)+ \/(ﬁ+a)2+

(ﬂ‘iﬂa)(i ~1). (B.2.3)
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B.3 Phase solutions with no division in Chapte

Whenm ~ 1, which is true folla| large. We then find an approximation to the positive root is
1
K~ B -1)- 0(5), B<a. (B.2.4)

We observe that the root foundy(x) = 1 if a linear polynomial is fitted through theaxis at-3, and
they-axis aty, i.e.,y(0) = y is equation B.2.4) with no error term. So the degree of approximation is
determined by how cIosng—a) ~ 1. In conclusion, the linear approximation ofn equation 8.2.9,
whene, g are chosen froms_g,m, I's—c,m depending on which is larger, and t@xis crossing is
1/2, is given by equation3(3.14. This is because

a=nwﬂmr§umﬁ@w} ﬁ=mm@qﬁ@w&mmq (B.2.5)

andy = 2.

B.3 Phase solutions with no division in Chaptei3

We consider the solution when the systerm@ exhibiting BEG. Solving equations3(2.7), when
the transition rates between compartments are assumedtustiive constants ang,v_.g, is set to
zero, gives us analytical formulas for the number of clisp € {G1, S, GoM}, in each of the phases.
We can subdivide the solution of the ODE system into two caBestly, letrg,.s # rs—g,m, then
the system of dferential equations3(2.1) can be solved analytically as follows:

NGl(t) = NGl(O)e_requta (B.3.1a)
(G
Ns(t) = Ng,(0) 105 (e‘fGrS‘ - e‘fsﬂGzM‘) + Ng(0)e szt (B.3.1b)
l's—G,M — IG;-S

re.sfs_ rs_,

Nog () = (22 =SNG, (0) + ——2—Ns(0) + No,u(0))e ™ (B.3.10)
(ra—rg;-s)(ra — rs—g,m) rs-c,m — a
rs, rG
+ ﬂ(NS(O)— G128 NGI(O))e-fsﬂGzMt (B.3.1d)
A —TssGM fs-G,M — IG;-S

[6125TS o Ne, (0)eer-st, (B.3.1¢)

+
(rssce,m — re,-s)(ra — re;-s)

Secondly, whemg,_,s = rs_,g,m, the analytical solution of the syster®.2.]) is:

NGl(t) = NGl(O)e_rGlﬁsta (B.3.28.)
Ns(t) = [Ns(0) + tNg, (O)rg, ~s]e "1, (B.3.2b)
1
No,m (1) = (NGzM(O) - NS(O))e_rAt + (NS(O) + 1G58 NGl(O)t)e_rel_’St.
ra—TrG;-»s Fra—re;-s
(B.3.2¢c)

But solution 8.3.2) will occur with probability of zero when running a Monte @Gasimulation such
as in Sectior8.3.3so it is not considered further.
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