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Abstract

Mathematical models, that depict the dynamics of a cancer cell population growing out of the human
body (in vitro) in unconstrained microenvironment conditions, are considered in this thesis. Cancer
cells in vitro grow and divide much faster than cancer cells in the human body, therefore, the effects
of various cancer treatments applied to them can be identified much faster. These cell populations,
when not exposed to any cancer treatment, exhibit exponential growth that we refer to as the balanced
exponential growth (BEG) state. This observation has led toseveral effective methods of estimating
parameters that thereafter are not required to be determined experimentally.

We present derivation of the age-structured model and its theoretical analysis of the existence
of the solution. Furthermore, we have obtained the condition for BEG existence using the Perron-
Frobenius theorem. A mathematical description of the cell-cycle control is shown for one-compartment
and two-compartment populations, where a compartment refers to a cell population consisting of cells
that exhibit similar kinetic properties. We have incorporated into our mathematical model the required
growing/aging times in each phase of the cell cycle for the biologicalviability. Moreover, we have
derived analytical formulae for vital parameters in cancerresearch, such as population doubling time,
the average cell-cycle age, and the average removal age fromall phases, which we argue is the average
cell-cycle time of the population. An estimate of the average cell-cycle time is of a particular interest
for biologists and clinicians, and for patient survival prognoses as it is considered that short cell-cycle
times correlate with poor survival prognoses for patients.

Applications of our mathematical model to experimental data have been shown. First, we have
derived algebraic expressions to determine the populationdoubling time from single experimental
observation as an alternative to empirically constructed growth curve. This result is applicable to
various types of cancer cell lines. One option to extend thismodel would be to derive the cell-
cycle time from a single experimental measurement. Second,we have applied our mathematical
model to interpret and derive dynamic-depicting parameters of five melanoma cell lines exposed to
radiotherapy. The mathematical result suggests there are shortcomings in the experimental methods
and provides an insight into the cancer cell population dynamics during post radiotherapy. Finally, a
mathematical model depicting a theoretical cancer cell population that comprises two sub-populations
with different kinetic properties is presented to describe the transition of a primary culture to a cell
line cell population.
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Chapter 1

Introduction

1.1 Mathematics in cancer research

The role of mathematics in cancer research has steadily increased over time and the future of this
discipline is both exciting and critical as new patients arediagnosed with cancer every day. In New
Zealand, around 51 people are diagnosed with cancer every day and around 22 cancer deaths occur
(statistics provided by the Cancer Society of New Zealand, www.cancernz.org.nz). Multidisciplinary
collaboration in cancer research is essential and mathematical applications can contribute significantly
to many areas of cancer research. Mathematical models can provide insight and establish a framework
for understanding properties of cancer cells, e.g., by modelling the biochemical behaviour within a
single cancer cell or by modelling a tumour growth. This thesis presents the mathematical modelling
of the cancer cell population grown out of human body, calledcell lines. Several mathematical mod-
els that have been derived in close collaboration with the Auckland Cancer Society Research Centre
serve as an additional tool for biologists. These models canbe used to either give understanding of a
plausible dynamics of cancer cell populations or to gain more effective methods of estimating param-
eters depicting the dynamics of cancer cell populations. Weshall continue by introducing biological
concepts that will be frequently referred to in the subsequent chapters.

1.2 Cell cycle and apoptosis

A cell cycle is a progression of a cell through steps of growthand chromosome duplication to complete
cell division. The cell cycle of a eukaryotic cell is traditionally divided in four phases -G1, S, G2

and M. PhasesG1, S andG2 together are called the interphase. A gap phaseG1 (G for gap) is an
interval before the DNA synthesis (S-phase) that is followed by another gap phase namedG2, where
the cell keeps growing until mitosis takes place (M-phase). A cell cycle consists of various cyclins and
cyclin-dependent kinases that have to react at certain cell-cycle control checkpoints. During its cell
cycle, a cell makes two vital decisions: first, the decision of “entering intoS-phase” is made in late
G1-phase, calledG1 checkpoint. DNA replication begins when the cell is ready toundergo the entire
cell cycle. Second decision is the “entry into mitosis”, mitosis will proceed through all its stages once
initiated, calledG2 checkpoint. The cell-cycle control system, the key proteins of the control system,
initiates and controls the progression of the cell cycle andcan arrest it at specific checkpoints. Cells
in a cell cycle are called dividing or proliferating cell. Ifa cell is non-dividing or quiescent it is said to
be inG0-phase. A cell inG0-phase can return to theG1-phase again under the influence of mitogenic
signals (growth factors, tumour viruses etc.), seeAlbertset al. (1994). A diagram outlining cell-cycle

1



1. INTRODUCTION

Figure 1.1: The cell-cycle control diagram. DuringG1-phase cell grows then DNA is replicated and
new chromatin is formed, denoted asS-phase. DuringG2-phase cell prepares for mitosis orM-phase,
where it divides into two daughter cells. A cell passing through the cell-cycle control checkpoints in
G1 andG2 phases and completing cell division is called proliferating. G0 depicts the non-proliferating
cell phase.

control with key checkpoints is shown in Figure1.1. Some non-dividing cells like neurons and skeletal
muscle fibre cells are unable to re-enter the cell cycle. Others, like fibroblasts and lymphocytes are
ordinarily in theG0 - phase but can be activated by external agents.

Cells have the potential to undergo genetically programmedcell death, or apoptosis. Apoptosis
is the “tidy” breakdown and disposal of cells without causing an inflammatory response in the body.
Apoptosis is common during embryonic development, but alsooccurs in a response to severe cellular
damage, viral infections and somatic mutations. Apoptosisis a protective mechanism that eliminates
many virus-infected and genetically altered cells,Meisenberg & Simmons(1998).

We continue by introducing two parameters: doubling time and cell-cycle time. Doubling time is
defined as the time required to double in number. Cell-cycle time is the time required to complete a
cell cycle. For a single cell, doubling time and cell-cycle time are evidently equal. However, in the
case of a cancer cell population, this is not necessarily true, we investigate this closer in Chapter2.
Cell-cycle length varies greatly during interphase from cell to cell with M-phase duration considered
to be short compared to the other phases.

1.3 Cancer cell population: primary culture and cell line

Gene mutation can turn a normal cell into a cancer cell. What cell mechanisms exactly trigger these
mutations is unclear. A cancer cell is considered to be more aggressive and faster growing than a
cell from normal tissue. Tumour cells divide without inhibition, i.e., they do not stop dividing after
they come into contact with neighbouring cells, and increasingly act as individuals with the goal of
maximizing their own proliferation, seeNagl (2006). Great variation in the duration of theG1-phase
among different cancer cells produces a variety of cell-cycle times ofthe cancer cells that, effectively,
influence the response to any type of cancer treatment.

In this thesis, our interest in cancer cell populations willbe mainly focused onin vitro (out of

2
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1.4 Mathematical modelling of the growth of a cell population

body) cell populations, and melanoma cell populations in particular. Cancer cells, taken from a tumour
tissue sample (removed at surgery), to be examinedin vitro are called primary culture. Tumour tissue
can be grown in culture and measurements of primary culture cell-cycle times show a range of 3
days to several weeks, which is similar to that observedin vivo (in body), seeBaguley & Marshall
(2004); Furneauxet al. (2008). After several months, by a variety of culture techniques designed to
preserve the viability of tumour cells and suppress the growth of host cells, particularly of fibroblasts,
which are naturally activated in the wounding response generated by the tissue disaggregation, the
clinical tumour material exhibits stable growth and is referred to as cell lines,Baguleyet al. (2002).
Established cancer cell lines exhibit shorter cell-cycle times thus reacting to the treatment much faster
than cells in the primary cultures. It is considered that cells in cell lines divide indefinitely. The
patients from whom the tissue samples were collected are often outlived by cancer cell lines.

Human tumour cell lines have been used extensively in the discovery and characterisation of new
chemotherapeutic drugs,Baguley & Marshall(2004, 2008). A potential disadvantage of cancer cell
lines is that they may have lost important properties originally presentin vivo. Cell-cycle times are
different between tumours and cell lines, and, as mentioned before, cell-cycle times of primary cul-
tures cover the same wide range as estimatedin vivo cell-cycle times. Responses of primary cultures
to cancer treatment also differ from those of cell lines, suggesting that the process of developing a cell
line can result in the loss of important cellular responses.The identification of cell lines that preserve
potential targets is an important goal in cancer biology andresearch. Using primary cultures will help
in this identification,Baguley & Marshall(2004).

Mathematical models have been applied to cancer cell populations taken from cell lines in this
thesis. However, further work is necessary to extend the models presented in the subsequent chapters
to describe the dynamics of cells in a primary culture, thus giving more insight intoin vivopopulation
growth and response to treatments.

Stem cells differ from other cells by two properties: firstly, stem cells hasa self renewal property,
meaning they can go through cell division many times whilst preserving their undifferentiated state.
Secondly, stem cells have the potential to differentiate into other types of cells. It is hypothesised
that a small proportion of cancer stem cells drive the growthof cancer in humansDittmat & Zanker
(2009); Schatton & Frank(2007); Soleet al. (2008). In Chapter5, we develop a mathematical model
that describes the behaviour of system with two cell populations with different kinetic characteristics,
to provide a framework for understanding the behaviour of cancer tissue that is sustained by a minor
population of proliferating stem cells.

1.4 Mathematical modelling of the growth of a cell population

The mathematical models are often predetermined by the available experimental data. InSteel(1977),
G.G. Steel presented two principles that prevent unrestricted model-building. First, Occam’s Razor
states: “We should always choose the simplest model that will satisfactorily fit the data. Any increase
in sophistication beyond this takes us into the realm of imagination rather than science”. Second,
Principle of Analogy: “A model whose parameters relate to experimentally measurable quantities is
to be preferred to one that has abstract parameters. A model that is a close analogue to the actual cell
system more readily enables predictions to be made about as yet undetected responses”.

With an objective to model a cell population taken from a cellline, we first must observe that such
a population does not respond to spatial constraints, thus,it exhibits balanced exponential growth
(BEG), Bell (1968). We note here that cells in primary cultures do not exhibit exponential growth.
Applied mathematics presents various methods of examiningexponentially growing populations such

3
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S-phase

G1-phase

G2M-phase

D-p����

D-p����

D-p����

rG1→S

rS→G2M

rG2M→G1

µG1

µS

µG2M

Figure 1.2: Diagram of the cell-cycle control ofin vitro tumour cells showing the proportions in each
phase. Parameters described in the Glossary.

as discrete and continuous, deterministic and stochastic methods.
Our choice lies in continuous deterministic models, with a focus on age-structured population

models. Our mathematical model is initially designed to depict the growth of cancer cell population
in the BEG state, i.e., population that has not been exposed to any cancer treatment. We assume that
all cells in the population are proliferating and can be viewed as subdivided among phasesG1, S, G2,
andM. Due to presented experimental data, explained in Section1.5, we combine subpopulations in
G2 andM phases and refer to it asG2M-phase. Cells move from one phase to the next with a certain
transition probability rate (r). Age (τ) is considered to be the time spent by a given cell in its current
phase. Thus, each cell is at age zero when entering into a new phase of cell growth. No cells are in
the non-proliferating state orG0-phase. Although cells from cell lines exhibit immortalityproperties,
we have incorporated a probability of apoptosis in each phase (µ). Figure1.2presents a schematically
illustrated cancer cell population in BEG.

Apoptosis is genetically programmed cell death without inflammatory breakdown and disposal of
cells. Cell necrosis occurs due to physical or chemical damage. Throughout this thesis, we define
cell death or loss as a process of cells undergoing apoptosis. We declare that cells are proliferating or
non-proliferating until they undergo apoptosis. We remarkthat notions cell death, apoptosis and cell
loss are interchangeable in this thesis.

Detailed derivation of an age-structured model can be foundin Chapter2. Potential cancer treat-
ment effects can be incorporated into mathematical equations by examining the effect of the treatment
on the cell-cycle control. For example, a chemotherapeuticdrug, that is said to stop mitosis, can be
incorporated into the mathematical model by setting the transition probability rate fromM-phase to

4



1.5 Flow cytometry

G1-phase to zero. Similarly, after ionised radiation DNA damage can occur and cells might repair it
and re-enter the cell cycle or might undergo apoptosis (the p53 protein - the product of tumour sup-
pressor gene - promotes apoptosis and thus helps to eliminate the defective cell). These effects can be
incorporated into our model by altering the transition rates between respective phases.

With the aim of providing “shortcuts” to estimate parameters that are experimentally unobtainable
or not sufficiently accurate, we have derived mathematical models in the following chapters that would
be beneficial for biologists and clinicians. We have kept in mind Occam’s Razor and Principle of
Analogy when simplifying a more general model in Chapters3, 4, 5 in order to fit experimental data.

1.5 Flow cytometry

We have dedicated this section to introduce an experimentalmeasurement technique with flow cytom-
etry apparatus. Analysis of a cell population in a state of replication can be achieved by fluorescence
labelling of the cell nuclei in suspension and subsequentlyanalysing the fluorescence properties of
each cell in the population.G1-phase cells will have one copy of DNA and will therefore have1x the
fluorescence intensity. Cells in theG2 andM phases will have two copies of DNA and, accordingly,
will have 2x the intensity. Flow cytometry cannot distinguish betweenG2 andM phases, therefore, we
combine them for our mathematical models, derived in the following chapters, and refer to it asG2M-
phase. Because the cells in theS-phase are synthesizing DNA, they will have fluorescence values
between 1x and 2x the population’s. The flow cytometry histogram shown in Figure1.3 (in blue) is
obtained from labelled cells transiting through the laser beam and their fluorescence signal ultimately
generating a voltage pulse by the fluorescence detector (photomultiplier tube). The horizontal axis in
Figure1.3depicts the total cell fluorescence noted in the literature as FL2-A (“A” for area). The verti-
cal axis shows the number of cells with a respective total fluorescence value. We can extract estimates
of population proportions in each phase from the flow cytometry profiles. Population distribution in
the respective phases is shown in coloured-in segments. In this thesis, we analyse flow cytometry
profiles using Cylchred software provided by Cytonet, UK. When population is unexposed to the can-
cer treatment, i.e., exhibiting BEG, the flow cytometry profiles remain unchanged at all experimental
observation points. We discuss steady population-distribution conditions in Chapter2.

1.6 Thesis outline

Chapter 2
In this chapter, we derive and analyse an age-structured cell population model. We show an implicit
analytical solution of the McKendrick-von Foerster partial differential equation (PDE) with side con-
ditions: an initial condition and a boundary condition. Moreover, we prove the existence of that
solution using methods developed for the Volterra integralequation of the second kind. We examine
two kinds of transition probability rates between two consecutive phases of the cell cycle: constant
and piecewise constant. A piecewise constant transition rate is biologically more relevant because
cells must grow (age) in particular phases of the cell cycle before being able to transit into the next
phase. Because a cancer cell population, when taken from a cancer cell line culture, exhibits the BEG
state, we demonstrate a condition for the existence of BEG byusing the Perron-Frobenius theorem.
Later in this process, we derived formulae of the constant population proportions among cell cycle
phases at BEG state. We show the reduction of a PDE model to an ordinary differential equation
(ODE) system and a delay differential equation (DDE) system. A general PDE model allows us to de-
rive vital parameters in cancer research, such as population doubling time and average cell-cycle time.
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Figure 1.3: An example of a flow cytometryprofile of an unperturbed cell line population. The pro-
portions of cell population in theG1, S, andG2M phases are shown in the diagram. The horizontal
axis label FL2-A (“A” for area) depicts the total cell fluorescence. The vertical axis shows the number
of cells with a respective total fluorescence value.

Results of this chapter provide an insight into the relationship between population doubling time and
average cell-cycle time. A mathematical distinction is shown between two biological understandings:
the expected average age in the phase and the expected removal time from the phase.
Chapter 3
This chapter introduces a new approach of determining population doubling time using a single exper-
imental observation. A method for experimental estimationof cell-cycle times or doubling times of
cultured cancer cell populations, based on addition of paclitaxel (an inhibitor of cell division) has been
proposed in literature. We use a mathematical model to investigate relationships between essential pa-
rameters of the cell division cycle following inhibition ofcell division. The reduction in the number
of cells engaged in DNA replication reaches a plateau as the concentration of paclitaxel is increased;
this can be determined experimentally. From our model, we have derived a plateau log reduction
formula for proliferating cells and established that thereare linear relationships between the plateau
log reduction values and the reciprocal of doubling times (i.e. growth rates of the populations). We
have therefore provided theoretical justification of an important experimental technique to determine
cell doubling times. Furthermore, we have applied Monte Carlo experiments to justify the suggested
linear relationships used to estimate doubling time from 5-day cell culture assays. We show that our
results are applicable to cancer cell populations with cellloss present. Our mathematical model result
provides a shortcut for estimating the population doublingtime and we hope to extend this model for
the cell-cycle estimation from a single experimental measurement.
Most of the results presented in this chapter have been published inDauksteet al. (2012).
Chapter 4
In this chapter, we examine the response of a cancer cell population to a one-time ionised irradiation
dose treatment. We show that, by changing the PDE system of the number density function to the
probability density function, our model tracks the variability of proportions in each phase of the cell
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1.6 Thesis outline

cycle and is compatible with the experimental estimates of proportions in each phase after a variety
of cancer treatments. Our results agree with the previous studies of irradiated cancer cell lines, i.e.,
a cancer cell population undergoes little apoptosis after radiotherapy. Therefore, this study’s experi-
mentally observed decrease in the expected number of cells is due to the long-term arrest of the cell
cycle. Our model provides an interval of the initial surviving fraction of the cell population for each
cell line, i.e., the proportion of cells that keep proliferating after the application of radiotherapy. In the
discussion section, we explain why the survival fraction estimated via our mathematical model does
not agree with the experimentally estimated one.
Chapter 5
This chapter examines the application of the two-population model. This mathematical model de-
scribes the behaviour of a system with two cell populations with different kinetic characteristics. The
results provide a framework for understanding the growth behaviour of cancer tissue that is sustained
by a minor population of proliferating stem cells. The Perron-Frobenius theorem is used to prove the
existence of a BEG state of a two population model.
The results from this chapter have been published inDauksteet al. (2009).
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Chapter 2

One-Compartment Age-Structured
Model of Cancer Cell Population Growth

In this chapter, we derive and analyse an age-structured cell population model. We show an implicit
analytical solution of the McKendrick-von Foerster partial differential equation (PDE) with side con-
ditions: an initial condition and a boundary condition. Moreover, we prove the existence of that
solution using methods developed for the Volterra integralequation of the second kind. We examine
two kinds of transition probability rates between two consecutive phases of the cell cycle: constant
and piecewise constant. A piecewise constant transition rate is biologically more relevant because
cells must grow (age) in particular phases of the cell cycle before being able to transit into the next
phase. Because cancer cell population, when taken from the cancer cell line culture, exhibits the bal-
anced exponential growth (BEG) state, we demonstrate a condition for the existence of BEG by using
the Perron-Frobenius theorem. Later in the process, we derived formulae of the constant population
proportions among cell cycle phases at BEG state. This mathematical model allows us to derive vital
parameters in cancer research, such as population doublingtime and average cell-cycle time. Results
of this chapter provide an insight into the relationship between population doubling time and aver-
age cell-cycle time. A mathematical distinction is shown between two biological understandings: the
expected average age in the phase and the expected removal time from the phase.

2.1 Introduction

Our objective is to mathematically model the dynamics of a cancer cell population taken from the
cancer cell line culture. The mathematical modelling of a cancer cell population taken from the
primary culture, which effectively exhibitsin vivoproperties, is of great interest in the cancer research;
however, because such a population does not demonstrate balanced exponential growth (BEG)Bell
(1968) properties, our main focus will stay on cell line cultures throughout this thesis.

The criteria for developing the mathematical models presented in the following chapters (such as
those posed inMetz & Diekmann(1986)) are the biological relevance and mathematical tractability.
Mathematical modelling has been applied to a large spectrumof the cancer cell proliferation prob-
lems, starting from the cycle-control biochemical modelling of a single cell to the modelling of the
cancer cell population, looking into both -in vivoandin vitro cases. A single cell growth models open
prospects for the multiscale modelling. Review papersByrne(2010); Deisboecket al. (2011) on can-
cer tumour modelling can be found in the literature. An overview paper on structured cell population
dynamicsArino (1995) stated that during the 1970s, mathematical modelling was more focused on
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nonlinear equation (such as Gompertz equation) applications to cancer cell population growth. In the
1980s, focus switched to the linear age-structured models.Linear partial differential equations have
an advantage of being simple for analysis and are also applicable to the mathematical modelling of
the cancer cell population.

A cell compartment method can analyse the formation of cancer cells from stem cells. InGanguly
& Puri (2006), it was concluded that mutations in stem cells rather than in early progeny cells lead
to faster growth of the abnormal progeny. Moreover, a model shows that a repeated insult to mature
cells leads to an increased growth rate of the abnormal progeny cells.

Compartmentalized cell population by cell kinetic properties, e.g. assuming that cells exit in one
of two kinetic states: proliferating and non-proliferating has been used to examine cell motion in the
tumour,Tindalla & Please(2007). It is assumed that the dominant mechanism for cell motion is due to
chemical gradients. Multicellular tumour spheroids are used in this study because they exhibit many
of the characteristics ofin vivo tumours. The model inTindalla & Please(2007) shows the commonly
held view of the cell cycle distributions within spheroids -proliferating cells are near the boundary
and the quiescent cells are in the core.

Cell compartment method has also been used to analyse the time- and dose-dependent effects of
antitumour agent RHPS4 on the cancer cell line HCT116, inJohnsonet al. (2011). In this study,
experimental estimates of quite a few parameters have been used, i.e., the proportions in each phase
as well as the proportion of senescent cells, the total number of cells at certain time and the overall
population growth rate. InJohnsonet al. (2011), telomerase inhibition RHPS4 increases the rate at
which cells become senescent state but, rather surprisingly, actually inhibits the rate of cell death
detects.

Mathematical models derived in this thesis have been previously examined to some extent in
Basse & Ubezio(2007); Basseet al.(2003, 2004a,b, 2005). In this chapter, we introduce a theoretical
background of the age-structured models and extend it beyond the analytical derivations published in
other literature including models byBasse & Ubezio(2007); Basseet al. (2003, 2004a,b, 2005). We
have derived analytical expressions for the average cell age in the phase and the average removal or
transit time through the phase, which is a novel result and has not been published before. The existence
and the uniqueness of the solution have been shown in the literature before just as the conditions for
the balanced exponential growth. We have shown results for the piecewise-constant transition rates
and analytically derived formulae for dynamical parameters. A DDE system has been derived from
an age-structured system as used bySimmset al. (2012).

As mentioned before, cancer cell population taken from the cancer cell line culture exhibits BEG
if unexposed to any cancer treatment methods. In the literature, BEG is also referred to as an asyn-
chronous exponential growth (AEG), the steady-state distribution (SSD), or steady age distribution
(SAD), but we will use notion BEG throughout the thesis. Age-structured models have the capacity
to describe the underlying structure of a cancer cell population at BEG and provide an opportunity to
estimate vital parameters in cancer research via mathematical models as an alternative to experimental
observations.

Solely for the purposes of the experimental data used in our research, we subdivide cell cycle into
the respectiveG1, S, and a combinedG2M phases, as shown in Figure1.2 in the Introduction. Our
models are to be utilised for flow cytometry profiles, and because the flow cytometry apparatus/method
cannot distinguish the difference between theG2 and M phases (due to the fact that DNA contents
in both phases are twice that ofS-phase), phasesG2 and M are combined in aG2M-phase in our
mathematical model.

In this chapter, we present the derivation of the one-population (also denoted as a one-compartment,
in this thesis term compartment does not refer to a phase of the cell cycle) age-structured model and
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the proof of the existence for the solution from the theory ofthe Volterra equations of the second kind.
Furthermore, the existence of the BEG state is proved by Perron-Frobenius theorem. Later, we express
parameters that depict the dynamics of a cancer cell population, such as population doubling time and
expected or average cell-cycle time of the cancer cell population, that have not been exposed to any
cancer treatment. From the results obtained in this chapter, we gain an insight into the relationship
between population doubling time and average cell-cycle time.

2.2 Age-structured model of a cancer cell population

Our objective is to model the dynamics of a cancer cell population in order to derive parameters that
describe the kinetics of the population, which has not been exposed to treatment, as well as parameters
that describe the effects of various cancer treatments.

A cell cycle of cancer cell population is modelled assuming that cells from this cancer cell pop-
ulation produce daughter cells with similar kinetic properties. In our model, cell cycle is subdivided
into three phases:G1, S, andG2M (with combined phasesG2 and M because we apply our model
to flow cytometry [FC] profiles, and FC measurements cannot distinguish betweenG2 andM phases
because DNA contents in both phases are twice that ofS-phase). Age is considered to be the time
spent by a given cell in its current phase. Thus, each cell hasage zero when entering into a new phase
of cell growth.

Derivation of an age-structured partial differential equation is as follows. First, let us assume that
there is a continuous functionn(t, τ) that represents the number density of the cancer cell population
and is a vector quantity, with

n(t, τ) = [nG1(t, τ) nS(t, τ) nG2M(t, τ)]T . (2.2.1)

Here vector componentsnp(t, τ) with p ∈ {G1,S,G2M} are continuous functions, wherenp : [0,∞) ×
[0,T)→ [0,∞), that shows the number density of cells with ageτ at timet in a cell cycle phasep. Age
τ states the duration of a cell in particular phasep. We impose a maximum age of cells,T > 0, after
which cells are assumed to have died. In fact,in vitro studies are seldom longer than 2 weeks, so most
of the time,T need not be larger than this numberBaguley & Marshall(2004). The assumption of a
maximum age is for mathematical simplicity;T can be set arbitrarily large. Furthermore, derivatives
of np(t, τ) exist and are also continuous functions on [0,∞) × [0,T). If time t is increased byh units
(and we assume that time unith = △t = △τ), then cells have aged byh units. Given that function
np(t, τ) has a continuous derivative, then we obtain the following equation:

lim
h→0

np(t + h, τ + h) − np(t, τ)

h
= lim

h→0

np(t + h, τ + h) − np(t, τ + h)

h
+

np(t, τ + h) − np(t, τ)

h

=
∂

∂t
np(t, τ) +

∂

∂τ
np(t, τ).

Second, let us assume that the probability rate at which cells leave phasep is given by termbp(t, τ).
Assumptions that the transition probability depends on time t and ageτ and is a non-negative piece-
wise continuous function, are comprehensible in biological terms. Here, transition ratebp(t, τ) with
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p ∈ {G1,S,G2M} is defined as follows:

bG1(t, τ) = rG1→S(t, τ) + µG1(t, τ), (2.2.2)

bS(t, τ) = rS→G2M(t, τ) + µS(t, τ),

bG2M(t, τ) = rG2M→G1(t, τ) + µG2M(t, τ),

whererG1→S(t, τ), rS→G2M(t, τ), andrG2M→G1(t, τ) are the transition probability rates (probability per
time unit per cell) between two consecutive phases andµp(t, τ) depicts the death rate from the phase
p. Description of variables used in our mathematical model that has been schematically depicted
in Figure 1.2 have been explained in the Glossary. We have assumed, for now, that the transition
probability rates and death rates are dependent on timet and ageτ. We also assume that cancer cells
taken from cancer cell lines have a potential undergoing apoptosis at any phase of the cell cycle. The
conservation law states that the variation of the population number density inp phase in time is caused
by a transition to the next phase or death; thus, the following linear partial differential equation can be
derived:

∂

∂t
np(t, τ) +

∂

∂τ
np(t, τ) = −bp(t, τ)np(t, τ). (2.2.3)

Conservation between the various phases and the death phase, which is not explicitly modelled, fol-
lows from the continuity of the derivatives on the domain. This is particularly important when con-
sidering proportions in each phase rather than number of cells.

Third, additional conditions for equation (2.2.3) are provided: the initial number density distribu-
tion and renewal condition (also called Lotka equation) foreach phase. The initial age distribution is
defined as:

np(t = 0, τ) = n0
p(τ), (2.2.4)

with the initial distributionn0
p(τ) in (L1 ∩ L∞)[0,T). Lotka showedLotka (1922) that a boundary

condition expressed as an integral with respect to cell population age will then result in the solution
being depend on the boundary condition itself. The Lotka boundary condition turns the problem de-
scribed with (2.2.3) and (2.2.4) into a bounded and, subsequently, a compact problem. The boundary
or renewal condition states that cells in each phase start from age zero. Furthermore, all cells at age
zero have transferred from the previous phase and are expressed as follows:

np(t, τ = 0) =
∫ T

0
ap−1(t, τ)np−1(t, τ) dτ, (2.2.5)

where transition rateap(t, τ) with p ∈ {G1,S,G2M} is defined as:

aG1(t, τ) = rG1→S(t, τ), (2.2.6)

aS(t, τ) = rS→G2M(t, τ),

aG2M(t, τ) = 2rG2M→G1(t, τ).

Cells are presumed to be in theG1-phase immediately after division. Here, subscriptp−1 in equation
(2.2.5) is taken to signify the following:

G1 − 1 = G2M; S − 1 = G1; G2M − 1 = S.
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We note that for theG1 - phase, the renewal condition (2.2.5) is as follows:

nG1(t, τ = 0) =
∫ T

0
2rG2M→G1(t, τ)nG2M(t, τ)dτ, (2.2.7)

where 2 refers to each cell that has completed mitosis producing two daughter cells.
It is assumed thatrp→p+1, µp ∈ C−1([0,∞)× [0,T)) for all p ∈ {G1,S,G2M}, and, in addition, they

are bounded and strictly positive. We also assume that derivatives ofrp→p+1(t, τ) andµp(t, τ) for all
p ∈ {G1,S,G2M} are bounded and piecewise continuous int andτ. Finally, we assume that there ex-
ists a positive lower bound. Note that for biological realism, we also assumeµp(t, τ) is non-negative.
The simplicity of the model is due to the linearity that is present when dealing with a cancer cell
population that growsin vitro exponentially without any environmental constraints. In the subsequent
sections, we provide the analytical solution of the problem(2.2.3) - (2.2.5) and show the condition for
the existence of such solution.

2.2.1 Analytical solution of an age-structured model

2.2.1.1 Single-phase model

We focus on a single-phase model in this section to demonstrate the derivation of the analytical solu-
tion via the method of characteristics. We impose change in variables: now argumentst andτ depend
on parameterz. Thus, the number density function can be rewritten as follows:

n̄p(z) = np(t(z), τ(z)). (2.2.8)

Hence, the derivative of ¯np(z) with respect to new variablezcan be expressed as follows:

dn̄p

dz
=

d
dz

np(t(z), τ(z)) =
∂np

∂t
dt
dz
+
∂np

∂τ

dτ
dz
,

wherezvaries along the following characteristic lines:

dt
dz
= 1,

dτ
dz
= 1, (2.2.9)

τ = z+ t. (2.2.10)

Thus, equation (2.2.3) can be rewritten as

dn̄p

dz
(z) + bp(t(z), τ(z))n̄p(z) = 0. (2.2.11)

We choose point (t0, τ0) along the characteristic lines (2.2.9). This point can be any point in the first
quadrant, as shown in Figure2.1. Thus, the following expressions are derived:

t = t0 + z, τ = τ0 + z.
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t

τ t = τ

t > τ

t < τ
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np(t, τ = 0)

n p
(t
=

0,
τ
)

Figure 2.1: Characteristic lines of McKendrick-von Foerster equation analytical solution, where num-
ber density functionnp(t, τ) on horizontal axis represents the renewal condition, andnp(t, τ) on vertical
axis depicts the initial condition.

For simplicity, we define the number density functionnp at point (t0, τ0) asnp(t0, τ0) = n0. Therefore,
equation (2.2.11) can be solved by integrating along the characteristic lines as follows:

n̄p(z) = n0 e−
∫ z
0 bp(t(ξ),τ(ξ)) dξ = n0 e−

∫ z
0 bp(t0+ξ,τ0+ξ) dξ =

= n0 e
−

∫ τ0+z
τ0

bp(s+t0−τ0,s) ds
, (2.2.12)

wheres = τ0 + ξ. Further, we subdivide analysis of the solution into two cases: t < τ andt > τ, as
depicted in Figure2.1. In the case oft < τ, we express solution of ¯np(z) as:

t = 0+ z, τ = τ0 + z,

n̄p(z) = np(z, τ0 + z) = np(0, τ0) e
−

∫ τ0+z
τ0

bp(s−τ0,s) ds
.

Thus, the number densitynp(t, τ) for the caset < τ can be expressed as follows:

n(t, τ) = np(0, τ − t) e−
∫ τ
τ−t bp(s+t−τ,s) ds, t < τ. (2.2.13)

We note that the analytical solution of the problem (2.2.3) - (2.2.5), in the case oft > τ, portrays the
growth of the cancer cell population taken from the cancer cell line culture, i.e., the time it takes for
the cell population to grow is longer than the ageτ that cells have spend in phasep. For the caset > τ,
solution ofn̄p(z) is as follows:

t = t0 + z, τ = z,

n̄p = np(t0 + z, z) = np(t0, 0)e−
∫ z
0 bp(s+t0,s) ds.
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Here, the variable change gives us cell number density function np(t, τ), for the caset > τ, as:

np(t, τ) = np(t − τ, 0)e−
∫ τ
0 bp(s+t−τ,s) ds, t > τ. (2.2.14)

Thus, by using the renewal condition (2.2.5), equation (2.2.14) can be rewritten in its general form as
a representation of the asymptotic solution of the problem (2.2.3) - (2.2.5) as follows:

np(t, τ) =
∫ T

0
ap−1(t − τ, s) np−1(t − τ, s) ds e−

∫ τ
0 bp(s+t−τ,s) ds, t > τ. (2.2.15)

2.2.1.2 Multiple-phase model

For the purposes of mathematical analysis in the subsequentsections, we rewrite the problem of cancer
cell population growth with more general notation using vector functionn(t, τ), as defined in (2.2.1).

The cancer cell population taken from the cancer cell line culture exhibits BEG state. Because
there are no environmental constraints on the cancer cell population growth, a linear partial differ-
ential equation is suitable for depicting such cell population dynamics. In more general notation,
McKendrick - von Foerster equation (2.2.3) can be rewritten as:

∂

∂t
n(t, τ) +

∂

∂τ
n(t, τ) = −Dout(t, τ)n(t, τ), 0 < t < ∞, 0 < τ < T, (2.2.16)

with respective side conditions defined as follows:

n(t = 0, τ) = n0(τ), initial age distribution, (2.2.17)

n(t, τ = 0) =
∫ T

0
Din(t, τ)n(t, τ) dτ, t > 0, renewal distribution. (2.2.18)

The matrixDout represents the loss of cells from the various phases via death and transfer to other
phases, and is defined as:

Dout(t, τ) =


rG1→S + µG1 0 0

0 rS→G2M + µS 0
0 0 rG2M→G1 + µG2M

 (t, τ). (2.2.19)

The renewal matrixDin represents the gain of cells at ageτ = 0 in each phase and is caused by transfer
from other phases.Din is defined as:

Din(t, τ) =


0 0 2rG2M→G1

rG1→S 0 0
0 rS→G2M 0

 (t, τ). (2.2.20)

Transition ratesrp→p+1 andµp for p ∈ {G1,S,G2M} are described in the Glossary, with the cell-
cycle control depicted in Figure1.2. Solution to the governing differential equation (2.2.16) along
the characteristic lines, already expressed for each component of vector functionn(t, τ) in equations
(2.2.13) and (2.2.14), is as follows:

n(t, τ) =


exp

(
−

∫ τ
τ−t

Dout(s+ t − τ, s) ds
)
n0(τ − t), 0 ≤ t ≤ τ,

exp
(
−

∫ τ
0 Dout(s+ t − τ, s) ds

)
n(t − τ, 0), 0 ≤ τ < t.

(2.2.21)
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2.3 Existence of a unique solution

Analytical solution of McKendrick-von Foerster equation (2.2.16) assumes that the solution on the
boundaryτ = 0 has been given. However, in our problem, we are given the renewal boundary con-
dition (2.2.18). Substituting the formal solution from (2.2.21) into the boundary condition (2.2.18)
gives us a Volterra integral equation of the second kind forn(t, 0):

n(t, 0) = FFF(t) +
∫ t

0
K(t, s)n(s, 0) ds, (2.3.1)

where

FFF(t) =
∫ T

t
Din(t, τ) exp

(
−

∫ τ

τ−t
Dout(s+ t − τ, s) ds

)
n0(τ − t) dτ, (2.3.2)

and kernel of integro-equation is defined as follows:

K(t, s) = Din(t, t − s) exp

(
−

∫ t−s

0
Dout(ξ + s, ξ) dξ

)
. (2.3.3)

By the assumptions made in our problem, we know thatDout(t, τ) andDin(t, τ) are piecewise continu-
ous: therefore,K(t, s) is piecewise continuous. Furthermore, because the components ofn0(τ) are in
(L1 ∩ L∞)[0,T) and the components ofDin(t, τ) are bounded, we find thatFFF(t) exists. We observe, by
the piecewise continuity ofDout andDin, thatFFF(t) is continuous. Because kernelK(t, s) is piecewise
continuous, we use method of continuation to first establishexistence and uniqueness in some interval
[0,T1], and then show that this solution can be continued to successive intervals [T1,T2], [T2,T3],
and so on. Eventually the whole interval [0,T) is covered. We rewrite kernelK(t, s) asp(t, s)K̃(t, s),
whereK̃(t, s) is continuous andp(t, s) represents the piecewise continuous part (effectively p(t, s) is
the same as equation (2.3.3)); thus, we may apply theorem fromLinz (1985), showed in the Appendix
A.1, which tells us there is a unique continuous solution to equation (2.3.1) on [0,T) for anyT > 0.

Theorem 2.3.1. There exists a unique non-negative solutionn(t, τ) (along characteristic lines) to
problem(2.2.16) such that each component ofn(t, τ) belongs to(L1 ∩ L∞)([0,∞) × [0,T)) for any
T > 0, and each component ofn(t, ·) belongs to(L1∩ L∞)[0,∞) for all t ≥ 0. The solution is given by
equation(2.2.21), wheren(t, 0) is continuous for all t≥ 0.

2.4 Steady age distribution at BEG state

We now show the existence of steady age distributions, giventhat problem (2.2.16)-(2.2.18) has age-
dependent transition probability rates. We note here that it would not be possible to show BEG state
for time-dependent transition rates. This corresponds to the unperturbed, i.e., unexposed to cancer
treatment, proliferating cancer cell line colonies that are exhibiting BEG, soDin andDout are possible
functions ofτ. We apply the results from Section2.3to show that steady age distributions, referred to
asn̂(τ), exist and are stable whenDout andDin are functions of ageτ only. We find in Theorem2.4.1
proved by the Perron-Frobenius theorem that given any initial conditions in ((L1 ∩ L∞)[0,T))3, the
shape of the solutionn(t, τ) to the problem will tend to a steady age distributionn̂(τ) (different methods
of proof can be found inBasse & Ubezio(2007); Begget al. (2010)). As the renewal (boundary)
equation involves a compact operator, a consequence is, it is characterized by a discrete spectrum of
eigenvalues and the solution can be expressed as a superposition of eigenfunctions,Keyfitz & Keyfitz
(1997). A positive dominant eigenvalue depicts the asymptotic growth rate of the population, i.e., the
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population growth rate at BEG state. This will mean that there is a constant proportion of cells in
each phase: a fact that is observed experimentallyin vitro. This result is important in showing our
mathematical model exhibits a unique steady age distribution, as is observed experimentallyin vitro
via cell flow cytometry. In Figure2.5, we show an example of such a steady age distribution structure.
Observe the exponential decay in the population as the age advances. It should be noted that by finding
stationary solutions to our problem, we are finding solutions to the problem of the following form:

n(t, τ) = eλtn̂(τ), (2.4.1)

and, therefore,̂n(τ) is a steady age distribution of the problem because the age distribution of cells,
n(t, τ), retains the same shapên(τ), whereas the overall number of cells may be growing or decaying
depending upon the sign of growth constantλ (also called Malthusian parameter). This scenario
corresponds to the unperturbed cancer cell line, where the transition and death probabilities in each
phase are purely a function of the age in that phase.

Theorem 2.4.1.There exists some double(λ0, n̂) such thatλ0 is a real, positive dominant eigenvalue
to the characteristic equation Q(λ) = 1, and n̂(·) ∈ (L1 ∩ L∞)3[0,T) is a strictly positive stationary
solution to(2.4.1).

When the ansatz (2.4.1) is substituted into equation (2.3.1), we obtain the following expression:

[
A(λ) − IΛ

]
n̂(0) = 0, (2.4.2)

with F(t) → 0, ast → ∞ andΛ = 1. Thus, a necessary condition for the solution (2.4.1) to exist is
the existence of suchλ that the nonlinear eigenvalue problem (2.4.2) admits an eigenvalueΛ = 1 for
someλ. The matrixA is defined as follows:

A =

∫ T

0
Din(s) exp

(
−

∫ s

0
[Dout(s

′) + Iλ] ds′
)
ds. (2.4.3)

Thus, we need to know if there is aΛ = 1 for the parameterλ = λ0. Now it can be shown that the
structure ofA ≥ 0 is as:

A =


0 0 κG2M

κG1 0 0
0 κS 0

 , (2.4.4)

whereκp denotes a positive element and is defined as follows:

κp =

∫ T

0
ap(s) exp

(
−

∫ s

0
[bp(ξ) + λ] dξ

)
ds, (2.4.5)

with p ∈ {G1,S,G2M} andap, bp defined in equations (2.2.6) and (2.2.2), respectively. We note that
transition probability ratesap andbp are now assumed to be a function ofτ only. A non-negative
matrix is irreducible if and only if its life cycle graph contains a path from every node to every other
node,Caswell(2001). We can see that matrixA is irreducible, as its strongly connected graph shows
in Figure2.2. This matrix is imprimitive, see SectionA.2 in the Appendix for more detail. Thus,
from the Perron-Frobenius theorem on irreducibe but imprimitive matricesA.2.1, there exists a real
positive eigenvalueλ0, which is a simple root of the characteristic equation det[A(λ) − IΛ] = 0 and
the associated eigenvector, namelyn̂(0), is positive. Expression det[A(λ) − IΛ] = 0 reduces to the

17
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G1 S G2M
κG1 κS

κG2M

Figure 2.2: Diagram of irreducible matrixA.

following equality:
1 = Λ3 = Q(λ), (2.4.6)

where

Q(λ) =
∏

p

∫ T

0
ap(s) exp

(
−

∫ s

0
[bp(ξ) + λ] dξ

)
ds. (2.4.7)

The equation (2.4.6) states that the necessary condition for existence of a BEG is described by the
following characteristic equation:

Q(λ) = 1. (2.4.8)

Solution (2.2.21) with only age-dependent transition rates can be rewrittenas follows:

n(t, τ) = exp

(
−

∫ τ

0
Dout(s) ds

)
n(t − τ, 0), τ < t. (2.4.9)

Taking into account equation (2.4.1), we can express the steady age distribution of the cancer cell
population at BEG state as:

n̂(τ) = exp

(
−

∫ τ

0
(Dout(s) + λI) ds

)
n̂(0). (2.4.10)

This shows that̂n(τ) will effectively have compact support providedDout(s) + λI > 0. Later, we
derive a characteristic equationQ(λ) = 1 for constant and piecewise constant transition rates. In the
following sections, we show derivations of numerous parameters that are used frequently in the cancer
research.

2.5 Parameters: constant proportions, doubling time, and cell-cycle
time

For further analysis of the unperturbed cancer cell population exhibiting BEG, we assume that tran-
sition ratesrp→p+1 and death ratesµp are piecewise continuous functions with respect toτ only. On
the premise that each proliferating cell grows (ages) inG1, S andG2M phases before transferring into
the next phase, we find that by defining transition probability rates as piecewise constant adds to our
mathematical model viability. Further, we derive several vital parameters in the cancer research.
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2.5 Parameters: constant proportions, doubling time, and cell-cycle time

b b

age,τ

r p→p+1

τp

0

Figure 2.3: Piecewise constant transition raterp→p+1(τ).

2.5.1 The total number of cells

The total number of cells in each phasep, denoted byNp, is defined by integrating the number density
over the age as follows:

Np(t) =
∫ T

0
np(t, τ) dτ, (2.5.1)

where the total cell number of the population at any given time t, denoted asNtot, is the sum of the
total cell number over the phases of the cell cycle, described as follows:

Ntot(t) =
∑

p

Np(t), with p ∈ {G1,S,G2M}. (2.5.2)

We note here that at the total number of cell population at BEGstate is as follows:

Ntot(t) = Ntot(0)eλt. (2.5.3)

2.5.2 Piecewise constant transition probability rates

We define piecewise constant transition probability rates,taking into account that cells have zero
transition probability while they grow (age) for a certain time (denoted asτp), as follows:

rp→p+1(τ) =

{
0, if τ < τp,

r p→p+1, if τ ≥ τp,
(2.5.4)

wherep ∈ {G1,S,G2M}, as depicted in Figure2.3.
We have assumed that death probability rateµp is a piecewise constant function, i.e., cells may

undergo apoptosis only after growing for timeτp in each phase, thus,

µp(τ) =

{
0, if τ < τp,

µp, if τ ≥ τp,
(2.5.5)

wherep ∈ {G1,S,G2M}.
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We remark that transition ratesap andbp, defined in equations (2.2.6) and (2.2.2), respectively, are
then expressed as follows:

ap(τ) =

{
0, if τ < τp,

ap, if τ ≥ τp,
(2.5.6)

bp(τ) =

{
0, if τ < τp,

bp, if τ ≥ τp.
(2.5.7)

Although biologically age-dependent transition rates area more realistic option, it is not simple
enough for numerical calculations with the experimental data provided. Thus, we do neglect this
in our model applications in Chapters3, 4 and5 because of the lack of experimental estimates that
would be needed if one would want to include a minimum time each cell averagely spends in a phase
before leaving the phase. By taking the limit whenτp → 0, we can transfer from piecewise constant
transition ratesrp→p+1(τ) to constant transition probability ratesr p→p+1, thus stating that cells can
possibly transfer to the consecutive phase as soon as they enter present phasep.

2.5.3 Characteristic equation

Characteristic equation (2.4.8) is a condition imposed on our model that describes the population
at BEG state. In the case of the piecewise transition rates, we can show from equation (2.4.7) this
condition explicitly as the following nonlinear transcendental expression:

Q(λ) =
aG1aSaG2M

(bG1 + λ)(bS + λ)(bG2M + λ)
exp

(
− λ[τG1 + τS + τG2M]

)
= 1. (2.5.8)

We remind the reader that cells have a probability of transferring to the consecutive phase or die after
agesτG1, τS, andτG2M in G1, S andG2M phases, respectively.

By taking potential aging timesτp in every phase equal to zero, we can derive the BEG condition
for the constant transition probability rates, depicted inFigure2.4, as follows:

Q(λ) =
aG1aSaG2M

(bG1 + λ)(bS + λ)(bG2M + λ)
= 1. (2.5.9)

For the simplicity in numerical simulations later in thesis, we introduce new variableF(λ) and define
it as:

F(λ) =
1

Q(λ)
= 1. (2.5.10)

Examination of equation (2.5.10) shows the following evaluations:

lim
λ→∞

F(λ)→ ∞, lim
λ→−∞

F(λ) = −∞, (2.5.11)

and becauseF(λ) is a continuous function, the intermediate value theorem shows that at least one
solution to the equationQ(λ) = 1 exists. Figure2.4 illustrates the characteristic equation for three
theoretical cell lines with constant transition rates.

2.5.4 Constant proportions of cell population at BEG

To derive constant proportion formulae, we start by introducing a new notation: the probability density
function π(t, τ) that depicts the probability density for a certain cell to be in the phasep of ageτ at
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Figure 2.4: Characteristic equationF(λ) = 1 is plotted for three random sets of constant transition
rates, whererG1S < rSG2M . Here red dotted line depicts a cell line with transition ratesrG1 = 0.025,
rS = 0.25 andrG2M = 1.9. Blue solid linerG1 = 0.009,rS = 0.11 andrG2M = 1.1. Green dashed line
rG1 = 0.02, rS = 0.35 andrG2M = 1.2.

time t. From equations (2.4.1) and (2.5.2), the probability density function, in the general case of
population growth, is defined as number density divided by the total mass of the system as follows:

πp(t, τ) =
np(t, τ)

Ntot(t)
. (2.5.12)

From equations (2.5.1), (2.5.2), and (2.5.12), the proportion inp phase, denoted asΠp(t), is given by
the following expression:

Πp(t) =
∫ T

0
πp(t, τ) dτ =

∫ T

0
np(t, τ) dτ

Ntot(t)
=

Np(t)

Ntot(t)
, (2.5.13)

thus, the following identity (essential in our later models) arises:

∑

p

∫ T

0
πp(t, τ)dτ =

∑

p

Πp(t) = 1, for t ≥ 0, (2.5.14)

wherep ∈ {G1,S,G2M}.
We continue by showing that, for the case of population in BEGstate, from equations (2.5.12) and

(2.5.3), the probability density function, denoted asπ̂p(τ), is expressed as follows:

π̂p(τ) =
n̂p(τ)

Ntot(0)
, (2.5.15)
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observing that from equation (2.4.1), we can express numerical density function at BEG state in each
phasep as follows:

np(t, τ) = eλtn̂p(τ). (2.5.16)

We proceed by presenting the constant population formulae,from equations (2.5.13) and (2.5.14), for
the population at BEG as follows:

Πp =

∫ T

0
π̂p(τ) dτ =

∫ T

0 n̂p(τ) dτ

Ntot(0)
, where

∑

p

Πp = 1. (2.5.17)

We go on to explicitly show the number density, the probability density functions, and, subsequently,
formulae of the constant proportions in each phase on the cell cycle. Remembering that the transition
probability ratesap andbp are assumed to be piecewise constant functions, as discussed in Section
2.5.2.

We begin by rewriting general steady age-distribution equation (2.4.10) for each phasep of the
cell cycle separately, wherep ∈ {G1,S,G2M} as follows:

n̂p(τ) =
∫ T

0
ap−1(s) n̂p−1(s) ds e−

∫ τ
0 (bp(s)+λ) ds, t > τ. (2.5.18)

From Section2.5.1, we show that the total cell number in the respective phase isas follows:

Np(t) =
∫ T

0
np(t, τ) dτ,

= eλt
∫ T

0
n̂p(τ) dτ,

=

∫ τp

0
np(t, τ) dτ +

∫ T

τp

np(t, τ) dτ,

= Ñp(t) + Np(t),

= eλt(Ñp + Np),

where we definẽNp =
∫ τp

0
n̂p(s)ds as the total cell number in phasep at ageτ < τp and Np =∫ T

τp
n̂p(s)dsas the cell number in phasep at ageτ ≥ τp, whenT is assumed to be very large. Thus,

we can rewrite steady age-distribution equation (2.5.18) for each phasep of the cell cycle, depicted in
Figure2.5as:

n̂p(τ) = ap−1e−λτNp−1


1, τ < τp

e−bp(τ−τp), τ ≥ τp.
(2.5.19)

We note here that to obtain the number density function for the case of constant transition probability
rates, the growth age in each phaseτp is set to zero, thus givinĝnp(τ) = ap−1Np−1e−(bp+λ)τ. By taking
into account that limτ→T e−τ = 0, whereT is the maximum age in a phase (as would be seen in the
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age,ττp

n̂
p
(τ

)

n̂p(0)

e−λτ

ebpτpe−(bp+λ)τ

Figure 2.5: A diagram showing the piecewise differentiable number densitŷnp(τ) at the BEG state for
piecewise constant transition ratesap andbp.

case ofT → ∞), the total number of cells inp phase at timet can be expressed as follows:

Np(t) = Ñp(t) + Np(t),

= eλtap−1Np−1

[1− e−λτp

λ
+

e−λτp

λ + bp

]
. (2.5.20)

From equation (2.5.20), we can establish that̃Np = ap−1Np−1
1−e−λτp
λ

andNp = ap−1Np−1
e−λτp

λ+bp
.

We proceed by writing out population number density functions for phasesG1, S, andG2M as follows:

n̂G1(τ) =


n̂G1(0)e−λτ, τ < τG1,

n̂G1(0)e−λτe−bG1(τ−τG1 ), τ ≥ τG1,
(2.5.21)

n̂S(τ) =


aG1NG1e

−λτ, τ < τS,

aG1NG1e
−λτe−bS(τ−τS), τ ≥ τS,

(2.5.22)

n̂G2M(τ) =


aSNSe−λτ, τ < τG2M ,

aSNSe−λτe−bG2M(τ−τG2M), τ ≥ τG2M ,
(2.5.23)

23

3PDEbasis/Chapter3Figs/EPS/PDEfig1.eps
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wherênG1(0) = aG2MNG2M , see Figure2.5. Furthermore, we can expressNG1 as:

NG1 =

∫ T

τG1

n̂G1(s) ds,

= n̂G1(0)
e−λτG1

bG1 + λ
, (2.5.24)

and thenNS as follows:

NS = n̂G1(0)
aG1

(bG1 + λ)(bS + λ)
e−λ(τG1+τS). (2.5.25)

Thus, from equations (2.5.20), (2.5.24),(2.5.25) and taking into account that̂nG1(0) = aG2MNG2M , the
total number inG1, S, andG2M phases for the population at BEG are given as follows:

NG1(t) = eλtn̂G1(0)
[1− e−λτG1

λ
+

e−λτG1

λ + bG1

]
, (2.5.26)

NS(t) = eλtn̂G1(0)
aG1

λ + bG1

e−λτG1

[1− e−λτS

λ
+

e−λτS

λ + bS

]
, (2.5.27)

NG2M(t) = eλtn̂G1(0)
aG1aS

(λ + bG1)(λ + bS)
e−λ(τG1+τS)

[1− e−λτG2M

λ
+

e−λτG2M

λ + bG2M

]
. (2.5.28)

We remind here that transition rates are defined asaG1 = rG1→S, aS = rS→G2M, aG2M = 2rG2M→G1 and
bp = r p→p+1 + µp with p ∈ {G1,S,G2M}. BecauseNtot(t) = NG1(t) + NS(t) + NG2M(t), we can rewrite
equation (2.5.3) as follows:

Ntot(t) = eλtn̂G1(0)Cλ, (2.5.29)

observing thatNtot(0) = n̂G1(0)Cλ andn̂G1(0) = aG2MNG2M. Furthermore, our constantCλ is defined
as follows:

Cλ =
1− e−λτG1

λ
+

e−λτG1

λ + bG1

+
aG1

λ + bG1

e−λτG1

[1− e−λτS

λ
+

e−λτS

λ + bS

]
+

+
aG1aS

(λ + bG1)(λ + bS)
e−λ(τG1+τS)

[1− e−λτG2M

λ
+

e−λτG2M

λ + bG2M

]
. (2.5.30)

We have to note here that by using characteristic equation (2.5.8), after some algebraic manipulation,
we can show that equation (2.5.30) can be simplified to the following identity:

Cλ =
1
2λ
. (2.5.31)

From equations (2.5.12) and (2.5.21) to (2.5.25), the probability density functions forG1, S, andG2M
phases can be expressed as follows:

πG1(τ) =


1

Cλ
e−λτ, τ < τG1,

1
Cλ

ebG1τG1 e−(bG1+λ)τ, τ ≥ τG1,
(2.5.32)
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πS(τ) =



1
Cλ

aG1

bG1+λ
e−λτG1 e−λτ, τ < τS,

1
Cλ

aG1

bG1+λ
e−λτG1 ebSτSe−(bS+λ)τ, τ ≥ τS,

(2.5.33)

πG2M(τ) =



1
Cλ

aG1aS

(bG1+λ)(bS+λ)
e−λ(τG1+τS)e−λτ, τ < τG2M ,

1
Cλ

aG1aS

(bG1+λ)(bS+λ)
e−λ(τG1+τS)ebG2MτG2M e−(bG2M+λ)τ, τ < τG2M .

(2.5.34)

We introduce new variables̃Πp andΠp, whereΠ̃p shows the proportion of the population in a partic-
ular phase that is in the required phase growing state, andΠp denotes the proportion of the population
that is able to transition onto the next phase. These notionsare defined as follows:

Π̃p =

∫ τp

0
πp(τ) dτ, (2.5.35)

Πp =

∫ T

τp

πp(τ) dτ, (2.5.36)

with the total proportion in each phase asΠp = Π̃p+Πp. Finally, the constant proportions in each cell
cycle phase for the population at BEG state are expressed as follows:

ΠG1 =
1

Cλ

[1− e−λτG1

λ
+

e−λτG1

λ + bG1

]
, (2.5.37)

ΠS =
1

Cλ

aG1

λ + bG1

e−λτG1

[1− e−λτS

λ
+

e−λτS

λ + bS

]
, (2.5.38)

ΠG2M =
1

Cλ

aG1aS

(λ + bG1)(λ + bS)
e−λ(τG1+τS)

[1− e−λτG2M

λ
+

e−λτG2M

λ + bG2M

]
, (2.5.39)

whereΠ̃p is the first term of the sum, andΠp is the second term of the summation in the square brack-
ets for corresponding phasesp ∈ {G1,S,G2M}.
We remind the reader here that in order to convert previous formulae for the population with constant
transition rates among phases, aging timesτG1, τS, andτG2M must be set to zero.

2.5.5 Population doubling time and average cell-age

We define the doubling time of the cell population, denoted byTd, as a time unit taken for a population
to double its cell number. When population is at the BEG stateand grows at a constant rateλ, from
(2.5.3), we see that 2Ntot(0) = Ntot(0)eλTd . Thus, we express population doubling time as follows:

Td =
ln2
λ
. (2.5.40)

We continue by defining the expected cell age in each phasep, denoted asTp, of the cell population
at BEG as follows:

Tp =

∫ T

0
τπp(τ)dτ =

∫ τp

0
τπp(τ)dτ +

∫ T

τp

τπp(τ)dτ. (2.5.41)
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We can express the average cell-age for phasesG1, S, andG2M as follows:

TG1 =
1

Cλ

[1− e−λτG1

λ2
−
τG1e

−λτG1

λ

]
+

1
Cλ

e−λτG1

λ + bG1

[
τG1 +

1

λ + bG1

]
, (2.5.42)

TS =
1

Cλ

e−λτG1

λ + bG1

[1− e−λτS

λ2
−
τSe−λτS

λ

]
+

1
Cλ

aG1e
−λ(τG1+τS)

(λ + bG1)(λ + bS)

[
τS +

1

λ + bS

]
, (2.5.43)

TG2M =
1

Cλ

aG1e
−λ(τG1+τS)

(λ + bG1)(λ + bS)

[1− e−λτG2M

λ2
−
τG2Me−λτG2M

λ

]
+

1
Cλ

1
aG2M

[
τG2M +

1

λ + bG2M

]
,

(2.5.44)

where the characteristic equation (2.5.8) was used to simplify the second term ofTG2M . Thus, the
average cell-age of the cancer cell population at BEG, denoted asTa, is the sum of the average cell-
age times of each phase of the cell cycle, defined as follows:

Ta = TG1 + TS + TG2M. (2.5.45)

We expect that the average age of cells in the populationTa is smaller than the population doubling
time Td. Since the relationship between average cell ageTa and population doubling timeTd is not
explicitly observable from our formulae, we created a following simulation: we chose random (and
biologically realistic) transition ratesr p→p+1, death ratesµp and aging timesτp, for p ∈ {G1,S,G2M}.
The results shown in Figure2.6. The relationship between the doubling time and average cell-age is
as follows:

Ta < Td. (2.5.46)

For the simulations shown in Figure2.6, random uniformly distributed transition ratesr p→p+1, ag-
ing timesτp and death ratesµp were chosen. The intervals picked wererG1→S ∈ [0.0001, 0.2],
rS→G2M ∈ [0.0001, 0.2], rG2M→G1 ∈ [0.05, 2], τG1 ∈ [3, 25],τS ∈ [2, 25], τG2M ∈ [0.01, 10], and
µp ∈ [10−4, 10−3], for p ∈ {G1,S,G2M} with units for these variables presented in the Glossary. We
remark that for Figure2.6, a constraintTd < 168 was imposed because population doubling time
for cells growingin vitro is rarely exceeds 168 hours (or 1 week). We observe that from equation
(2.5.8) the growth rate valueλ is affected by transition ratesr p→p+1, aging timesτp and death rates
µp; therefore variations in the nine-dimension space of transition rates, aging times and death rates
results in stochastic like changes in doubling timeTd values and the average cell ageTa, as can be
seen in Figure2.6.

2.5.6 Expected cell removal time, i.e., cell-cycle time

We introduce a new parameter - the average (expected) age of cells removed from a phase, denoted as
T∗p. A cell removed from a phasep is considered as either transferred to the next phasep+ 1 or dead.
We note that the average cell-age in phasep, namelyTp, is not equal to the average cell removal-age
from phasep, T∗p. We examine the relationship between these two terms in thissection.

The removal time is the time cells at age zero in phasep, namelyn̂p(0), take to transit through
phasep. Let us assign some constantσR to the magnitude of the cell number density at age zero that
we want to track, soσR = n̂p(0). This number density of cells will grow (age) for at leastτp hours and
then transfer onto the next phase or die. Because the cell population continues to grow for timeτp,
the initially observed number densityσR will be reduced because the total number of cells in phasep,
namelyNp, would have grown at a rateλ; thus, scaling the initially observed number densityσR by
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Figure 2.6: Diagram representing relationship between cell doubling timeTd and average cell-ageTa

for theoretical cancer cell populations. Transition ratesr p→p+1, aging timesτp, and death ratesµp
are randomly chosen from uniform distribution from the following intervals:rG1→S ∈ [0.0001, 0.2],
rS→G2M ∈ [0.0001, 0.2], rG2M→G1 ∈ [0.05, 2], τG1 ∈ [3, 25],τS ∈ [2, 25], andτG2M ∈ [0.01, 10], with
death ratesµG1

∈ [10−4, 10−3], µS ∈ [10−4, 10−3], andµG2M ∈ [10−4, 10−3]. A constraint ofTd < 168
hours is imposed for biological realism.

eλτp. Therefore, the number density equations (2.5.21)-(2.5.23) have to be scaled byeλτ when dealing
with the removal time expressions. These normalised numberdensity functions for each phase are
referred aŝn∗p, son̂∗p(τ) = n̂p(τ)eλτ. We define the number of cells leaving phasep per unit time at age
τ, denoted asHp(τ), as follows:

Hp(τ) = n̂∗p(0)− n̂∗p(τ), p ∈ {G1,S,G2M}, (2.5.47)

we remark to the reader that the initially observed/tracked total number of cells iŝn∗p(0), thus the total
cell number removed, denoted byHtot

p , is Htot
p = n̂∗p(0) whenτ→ T. From equations (2.5.21)-(2.5.23)

and the scaling factor̂n∗p(τ) = n̂p(τ)eλτ, we can derivên∗p(τ) as:

n̂∗p(τ) =


n̂∗p(0), τ < τp,

n̂∗p(0)e−bp(τ−τp), τ ≥ τp,
(2.5.48)

for p ∈ {G1,S,G2M}. We remark that̂n∗p(0) = n̂p(0). We continue by introducing the rate at which

27

3PDEbasis/Chapter3Figs/EPS/TaTd.eps


2. ONE-COMPARTMENT AGE-STRUCTURED MODEL OF CANCER CELL
POPULATION GROWTH

the number density of cells changes due to removal from phasep, denoted bŷhp(τ), as follows:

ĥp(τ) = −
d̂n∗p(τ)

dτ
. (2.5.49)

The function̂hp(τ) is piecewise differentiable with respect toτ. Furthermore, we introduce a variable
for the probability density function for cells that are removed at ageτ, refer to it aŝγp(τ), and define
as:

γ̂p(τ) =
ĥp(τ)

Htot
p
= −

1
n̂p(0)

d n̂∗p(τ)

dτ
, (2.5.50)

then the probability of being removed from phasep at ageτ, denoted asΓp(τ), is defined as follows:

Γp(τ) =
∫ τ

0
γ̂p(s) ds, (2.5.51)

where limτ→T Γp(τ) = 1. Considering that the probability density functionγ̂p is decreasing in interval
[τp,T), we express the expected time of cell removal from phasep as follows:

T∗p =
∫ T

0
τ̂γp(τ) dτ =

∫ τp

0
τ̂γp(τ)dτ +

∫ T

τp

τ̂γp(τ)dτ, (2.5.52)

=

∫ τp

0
τ

[
−

1
n̂p(0)

d n̂∗p(τ)

dτ

]
dτ +

∫ T

τp

τ

[
−

1
n̂p(0)

d n̂∗p(τ)

dτ

]
dτ.

For simplicity, we define normalised number of cells in each phasep as:

Ñ∗p =
∫ τp

0
n̂∗p(τ) dτ, τ < τp, (2.5.53)

N
∗

p =

∫ T

τp

n̂∗p(τ) dτ, τ ≥ τp.

Finally, by integrating equation (2.5.52) and incorporating (2.5.53), we derive the following expres-
sion for the time of removal from phasep:

T∗p =
Ñ∗p

n̂p(0)
+

N
∗

p

n̂p(0)
. (2.5.54)

We proceed by deriving explicit formulae for expected removal times in each phase. Taking into
account equations (2.5.48) and (2.5.53), we obtain the following expressions:

T∗G1
= τG1 +

1

bG1

, (2.5.55)

T∗S = τS +
1

bS

, (2.5.56)

T∗G2M = τG2M +
1

bG2M

. (2.5.57)

We remind the reader that cancer cell population is composedof proliferating cells with some un-
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dergoing cell death; thus, all cells in each phase will either transit to the next phase or die. When
comparing the average age in the particular phaseTp with the average removal ageT∗p, we can see
that the following is true :

T∗p > Tp.

We have not shown this result analytically. Here we define theexpected time of cell removal from all
phases, denoted asTrm, as the sum of the removal times of all three phases:

Trm = T∗G1
+ T∗S + T∗G2M = τG1 + τS + τG2M +

1

bG1

+
1

bS

+
1

bG2M

. (2.5.58)

The relationship between the population doubling timeTd and the expected removal time from all
phasesTrm (or expected transit time through all phases) is as follows:

Td ≤ Trm. (2.5.59)

We ran a Monte Carlo simulation for equation (2.5.58) versus population doubling time (see Figure
2.7) for theoretical cell lines with the same random values for the transition rates, aging times and
death rates as in Figure2.6and obtained the following expression:

Trm = θTd, with θ ∈ [1, 1.3]. (2.5.60)

If no cell deathµp or aging timesτp are incorporated in the model, the expression (2.5.60) would
still hold as the magnitude of the growth rateλ, calculated from the characteristic equation (2.5.8), is
affected by the apoptosis rate and aging time variations. Clearly, the average cell age in the phaseTa

is always smaller than the average removal time of the cell cycle Trm.
The notions, the average cell-removal time and the average cell-cycle time, are intertwined when

relating to cell growth times and can also be called the cell transit time through cell cycle. In the
following chapters of this thesis, we will assume that notions of expected cell-removal time, cell-
transit time and cell-cycle time are interchangeable and will refer to it asTc, i.e.,Trm = Tc.

As mentioned before, the estimation of the cell-cycle time of a cancer population is of a particular
interest for biologists as it relates to patients survival prognosis; shorter cell-cycle times relate to poor
prognoses for the cancer patient. Mathematical model that could evaluate the cell-cycle time from a
single experimental observation, would be valuable to clinicians.

In experimental observations, biologists often assume that the cell-cycle time is equal to the pop-
ulation doubling time, which is calculated from the constructed growth curve. This data is then used
for the empirical estimate of the transition rate probability between certain phases of the cell cycle.
We note that this empirical method does not take into accountthe possibility of cell death. Our math-
ematical model agrees that the population doubling time canbe equal to the cell-cycle time for some
cell lines. However, in general case, the average cell-cycle time of the population is greater or equal
to the population doubling time.

Several mathematical methods of the cell-cycle time estimation for the cancer cell population at
the BEG state can be found in the literature. The identical expression for the average cell-cycle time
(Tc = Trm) derived from our model, shown in equation (2.5.58), can be found inBasse & Ubezio
(2007); Basseet al. (2005); Simmset al. (2012). However, in these publications, the cell-cycle time
expression has been guessed and then verified by using a discrete computational simulationSimms
et al. (2012). An alternative method for estimating cell-cycle time canbe found inChiorino et al.
(2001), where the desynchronization of the population growth hasbeen incorporated into the age-
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Figure 2.7: Diagram representing relationship between cell doubling time Td and expected re-
moval timeTrm for theoretical cancer cell populations. Transition ratesr p→p+1, aging timesτp,
and death ratesµp are randomly chosen from uniform distribution from the following intervals:
rG1→S ∈ [0.0001, 0.2], rS→G2M ∈ [0.0001, 0.2], rG2M→G1 ∈ [0.05, 2], τG1 ∈ [3, 25],τS ∈ [2, 25], and
τG2M ∈ [0.01, 10], with death ratesµG1

∈ [10−4, 10−3], µS ∈ [10−4, 10−3], andµG2M ∈ [10−4, 10−3]. A
constraint ofTd < 168 hours is imposed for biological realism.

structured model and then related to the mean cell cycle duration. The computational results of this
model showed that, for two cell lines examined, the population doubling times and the average cell-
cycle times are approximately the same in their magnitude, thus strongly agreeing with our model
result. We note that the model inChiorino et al. (2001) requires many experimental observation
points to monitor the desynchronized population’s convergence to the exponential growth state. The
stochastic approach of the desynchronization rate method has been shown inBronk et al. (1968);
Olofsson & McDonald(2009). In the classic workSteel(1977), analytical methods for estimating the
duration of particular phases have been derived from an age-structured model, where phasesG1, S
andG2 have been combined into one, therefore the transition rate probabilities between these phases
have not been included into the model. For example, from thismethod, the duration of theS-phase
can be calculated from the experimental estimates of the doubling time, the growth rate and the la-
belling index (the number of cells in theS-phase of the growth cycle divided by the total cells in the
population, namely what we refer to asΠS). Many papers utilise analytical results fromSteel(1977)
to estimate the transit times of the particular phasesFried(1973); Larssonet al.(2007); Terry & White
(2006); White & Terry (2000).
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2.6 Conversion of age distribution model to ordinary differential equation model

2.6 Conversion of age distribution model to ordinary differential equa-
tion model

In further chapters of this thesis, we apply experimental data to several ODE models. Transition
from PDE to the ordinary differential equation (ODE) is done with the assumption of homogeneity
of individual cells within the particular phasesp. Taking into account equation (2.5.1), we find by
integrating McKendrick-von Foerster equation (2.2.16) over 0≤ τ ≤ T the following ODE system:

dN(t)
dt
= n(t, τ = 0)−

∫ T

0
Dout(t, τ)n(t, τ) dτ, 0 < t < ∞, (2.6.1)

=

∫ T

0
Din(t, τ)n(t, τ) dτ −

∫ T

0
Dout(t, τ)n(t, τ) dτ, (2.6.2)

where we used expressionN(t, τ → T) = 0 and the renewal condition (2.2.18) to derive the result
above.

The only possible form of the matrices{Din,Dout}, in order to convert this equation into an ODE
system, is to have these matrices independent ofτ; then we obtain the following ODE system:

dN(t)
dt
= BN(t), N(0) =

∫ T

0
n(0, τ) dτ, 0 < t < ∞, (2.6.3)

and for theDin, Dout matrices also independent of timet, we have the constant matrix

B = (Din − Dout),

=


−(rG1→S + µG1

) 0 2rG2M→G1

rG1→S −(rS→G2M + µS) 0
0 rS→G2M −(rG2M→G1 + µG2M)

 .

In Chapters3 and 5, we use ODE systems as main modelling tools. In Chapter4, we derive an
ODE system describing the variations of cell population proportions over time that with an additional
constraint, showed in equation (2.5.14), becomes a differential-algebraic equation (DAE) system.

2.7 Delay differential equation system

The transition from an age-structure model with piecewise constant transition rates to a DDE system
is done by integrating the corresponding PDE equations overthe age (as shown in Section2.6). Thus,
by integrating McKendrick-von Foerster equation (2.2.3) over intervalτ ∈ [0, τp), we can obtain the
following expression:

∂

∂t

∫ τp

0
np(t, τ) dτ = −np(t, τp) + np(t, 0)−

∫ τp

0
bp(τ)np(t, τ) dτ,

dÑp(t)

dt
= −np(t, τp) +

∫ T

0
ap−1(τ)np−1(t, τ) dτ −

∫ τp

0
bp(τ)np(t, τ)dτ,

= −np(t, τp) + ap−1Np−1(t), (2.7.1)

with the initial conditionÑp(0) =
∫ τp

0 np(0, τ) dτ. We remind the reader from Section2.5.4notion

Ñp(t) is the total number of cells in phasep at timet between ages 0 andτp, and notionNp(t) is the
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total number of cells in phasep at timet after ageτp. Integrating over intervalτ ∈ [τp,T], we get the
following:

∂

∂t

∫ T

τp

np(t, τ) dτ = −np(t,T) + np(t, τp) −
∫ T

τp

bp(τ)np(t, τ) dτ,

dNp(t)

dt
= np(t, τp) −

∫ T

τp

bp(τ)np(t, τ) dτ,

= np(t, τp) − bpNp(t), (2.7.2)

with the initial condition as followsNp(0) =
∫ T

τp
np(0, τ) dτ.

The number density of the population in phasep, from equation (2.2.15) when population is not
at BEG and transition rates are only age-dependent, is as follows:

np(t, τ) =
∫ T

0
ap−1(s)np−1(t − τ, s) ds e−

∫ τ
0

bp(s) ds, (2.7.3)

=


ap−1

∫ T

0 np−1(t − τ, s) ds, τ < τp,

ap−1

∫ T

0
np−1(t − τ, s) ds ebp(τ−τp), τ ≥ τp,

(2.7.4)

where, from equation (2.5.1), we can express the integral in equation (2.7.4) as Np−1(t − τ) =∫ T

0 np−1(t − τ, s) ds. Thus, we can conclude that the number density of cells at ageτp, in phasep
at timet, can be calculated as follows:

np(t, τp) = ap−1Np−1(t − τp). (2.7.5)

A DDE model tracks, first, the total cell number that are in a required growth state, namelỹNp(t),
at timet in each phasep, and, second, the total cell number that are in transition tothe next phase,
namelyNp(t), at timet in each phasep. We continue by deriving a DDE system, by using equations
(2.7.1), (2.7.2), and (2.7.5) to express the cell number variations in time as follows:

dÑG1

dt
= aG2MNG2M(t) − aG2MNG2M(t − τG1), (2.7.6)

dNG1

dt
= aG2MNG2M(t − τG1) − bG1NG1(t), (2.7.7)

dÑS

dt
= aG1NG1(t) − aG1NG1(t − τS), (2.7.8)

dNS

dt
= aG1NG1(t − τS) − bSNS(t), (2.7.9)

dÑG2M

dt
= aSNS(t) − aSNS(t − τG2M), (2.7.10)

dNG2M

dt
= aSNS(t − τG2M) − bG2MNG2M(t), (2.7.11)

whereaG1 = rG1→S, aS = rS→G2M , aG2M = 2rG2M→G1, andbp = r p→p+1+µp, p ∈ {G1,S,G2M}. With
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the following initial conditions:

ÑG1(0) = Ñ0
G1
, (2.7.12)

NG1(0) = N
0
G1
, (2.7.13)

ÑS(0) = Ñ0
S, (2.7.14)

NS(0) = N
0
S, (2.7.15)

ÑG2M(0) = Ñ0
G2M , (2.7.16)

NG2M(0) = N
0
G2M. (2.7.17)

Since, biologically, cells have to grow/age in certain phases before transferring to the next phase,
a mathematical model incorporating this property would be preferable to the ODE model, in the
literature linear DDEs. Such mathematical models often require estimates of aging timesτp that
experimentally can be observed via mitotic selection method, a linear DDE model investigating the
breast cancer cell line growth dynamics can be seen inSimmset al. (2012). Mitotic selection is a
synchronization method that does not affect the cell cycle. Upon entering mitosis, cells are not firmly
attached to the surrounding medium and can be collected after agitation (by shaking a culture vessel
like petri dish). This method is applicable only to cells that grow in monolayer culture, seePagano
(1995). Cells that are tightly adherent to the surface of the culture vessel or to each other cannot be
synchronized by mitotic selection.
The DDE model inSimmset al. (2012) depicts a cell-cycle that has been subdivided into seven
phases, our DDE system (2.7.6) verifies the model proposed in the literature as the model inSimms
et al. (2012) can be reduced to a six-phase DDE system. In system (2.7.6) three equations out of six
decouple, the total number of cells leaving the storage phases have been incorporated into the delay
terms of the transiting number of cells. Population dynamics described with the delay differential
equation system represents the population growth at BEG state.
We have not been provided with the experimental estimates ofaging timesτp from the mitotic se-
lection for the melanoma cancer cell lines. Thus in the following chapters, we utilise ODE systems
because the data that can be extracted from the flow cytometryprofiles is not sufficient to apply the
DDE model.
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Chapter 3

Determination of Cell Population
Dynamics Using Plateau Log Reduction
Method

Cell-cycle times are vital parameters in cancer research and short cell-cycle times are often related to
poor survival of cancer patients. A method for experimentalestimation of cell-cycle times or doubling
times of cultured cancer cell populations, based on addition of paclitaxel (an inhibitor of cell division)
has been proposed in literature. In this chapter, we use a mathematical model to investigate relation-
ships between essential parameters of the cell division cycle following inhibition of cell division. The
reduction in the number of cells engaged in DNA replication reaches a plateau as the concentration
of paclitaxel is increased; this can be determined experimentally. From our model, we have derived a
plateau log reduction formula for proliferating cells and established that there are linear relationships
between the plateau log reduction values and the reciprocalof doubling times (i.e., growth rates of
the populations). We have therefore provided theoretical justification of an important experimental
technique to determine cell doubling times. Furthermore, we have applied Monte Carlo experiments
to justify the suggested linear relationships used to estimate doubling time from 5-day cell culture
assays. We show that our results are applicable to cancer cell populations with cell loss present.

3.1 Introduction to the plateau log reduction method

In this chapter, we develop analytical methods to interpretthe growth of cancer cells in culture, thus
providing insights into the measurement of cancer growthin vitro unexposed to any cancer treatment.
An age-structured model with constant transition rates (derived in Section2.6) has been reduced to
the ODE model and used in study of the cell population dynamics.

We remind the reader that our mathematical model depicts thedynamics of cell population in BEG
state. Cancer cell population has no microenvironmental constraints when growing in vitro. As dis-
cussed before, mammalian cells proliferating in culture progress through a series of four phases during
the cell division cycle, namelyG1, S (DNA replication),G2 and M (mitosis) phases. It seems rela-
tively straightforward to determine experimentally at least two of the basic parameters of proliferating
cells, namely population doubling time and the proportion of cells in each phase. The population dou-
bling timeTd can be measured by counting the number of cells at different times to produce a growth
curve, and the proportion of cells in each phase can be measured by staining the DNA with a fluores-
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cent dye such as propidium iodide and analysing the population by flow cytometry. This latter method
does not distinguishG2 and M-phase cells (which have the same DNA content) and these analyses
therefore often measure three phasesG1, S and a combinedG2M-phase, as discussed in Section1.5.
Determination of transit times for each of the phases and thecycle time of the overall population is
complicated by two issues:

1. Although the numbers of proliferating cells increase exponentially with time, the phase transit
times are not just simply related to the proportion of cells as determined by flow cytometry.
A direct relationship has been thought to be so in some of the literatureBarneset al. (2001);
Taylor et al. (1983).

2. The transit times of individual mammalian cells in individual phases are variable, particularly
in G1 phase. This has the effect that in a proliferating cell population, some cells may remain
for long periods inG1 phase and thus appear as non-proliferating cells. In previous studies, this
issue has been addressed by modelling the cell cycle using a system of differential equations and
incorporating transition probabilities from one phase to another for the onset of DNA replication
and cell divisionBasseet al. (2003, 2004b), and we utilise similar approach in this chapter.

A further practical issue in the determination of cell cycleparameters of a proliferating cell population
is the incidence of apoptosisBaguley(2011). Many, perhaps all, cell lines in culture have a finite
probability of undergoing this programmed cell death mechanism which begins within seconds with
blebbing of the cytoplasm and continues for about 3 hoursAndradeet al. (2010), leading to complete
fragmentation of the cell and to loss of DNA, thus making themalmost invisible to microscopy and
DNA-based flow cytometry. Therefore, simple counting of cells cannot estimate this cell loss factor,
which would lead to errors in the calculation of population doubling times.

An alternative method, from the method explained above, forthe estimation of cell cycle parame-
ters is the so-called stathmokinetic method, where the cellcycle is blocked at a particular point (such
as mitosis) and the consequent changes in proportions in thecell phases are measured by flow cy-
tometry. Cell cycle can be blocked by using a mitotic inhibitor chemotherapy drug - paclitaxel. It
interferes with the normal breakdown of microtubules during cell division. Because the transition
to apoptosis is thought to be essentially independent of thecycle phase, this method provides a good
basis for calculating cell cycle parameters. This method has been previously applied by using the drug
paclitaxel, which arrests cells in mitosis and prevents cell division. A complication of this approach is
that cells arrested by paclitaxel subsequently enter a state, which we termed A-phase, where DNA is
slowly but progressively degraded. InBasseet al. (2004a), the A-phase is included to exhibit process
of slow DNA loss.

A simplification of the above stathmokinetic methodology isto measure the incorporation of ra-
dioactive labelled thymidine (3H-TdR) into cellular DNA at a selected time after addition ofpaclitaxel.
This method provides an estimate of the number of cells in thepopulation that have recently (less than
6 hours) entered the S-phase. The method uses comparison of cell populations grown in the presence
and absence of labelled thymidine to derive the cell cycle data. Comparison of measurements of the
population doubling time (by cell counting) and the described thymidine incorporation following ad-
dition of paclitaxel provided a significant correlation inBaguleyet al. (1995). This result has led to
the development of a technique to more accurately estimate doubling time of cell populations. More-
over, the derivation of population doubling time, by counting, does not take cell loss into account.
The method based on this simplification, as outlined in this chapter, overcomes this problem by use
of the measured uptake of3H-TdR into DNA of cultured cells. Then a ‘plateau’ reductionvalue
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(PLR) for 3H-TdR incorporation, at paclitaxel concentrations above avalue that completely inhibits
cell division, can be used to estimate doubling time.

We address the question here, of whether the transition probability model can be used to de-
rive a direct relationship between cell doubling time and thymidine incorporation data. This chapter
provides the theoretical justification and a further extension of this 3H-TdR technique, which was
pioneered inBaguleyet al. (1995, 1999). Central to our results here, and in flow cytometry experi-
ments, is the determination of transition rates between thephases that are used in our mathematical
model from the measurement of percentages in each phase and the cell population doubling time. In
subsequent sections, we address the existence and uniqueness of this mathematical mapping and its
inverse map (from the transition rates to the cell proportions). We suggest the replacement of the
direct counting measurement of the doubling time for cultures of proliferating cells by its calculation
from the plateau logarithm reduction measurement discussed here.

We provide in Section3.2 respective adjustments to our general mathematical model derived in
Chapter2. In Section3.2.1, we utilise the analytical formulae, from Chapter2, for the relationships
between transition rates, total population growth rate andproportions in each phase at BEG state
in order to provide theoretical justification and extensions which are discussed in Section3.3. We
show our results of a Monte Carlo simulation of the full equations to justify the linear reciprocal
relationship betweenPLR andTd derived asymptotically in in Section3.3.2.1. In Section3.3.4we
summarise our results showing the simple affine relationship that exists betweenTd andPLR. This
result is particularly important for oncology.

3.2 The model forin vitro human tumour cell population kinetics

We reduce our age-structured model (introduced in Chapter2) to the ODE model due to limited
amount of experimental estimates. In Section2.6, it was shown that the dynamics of the total number
of cells in each phase are subsumed by the ODE model. In this case, transition rate probabilities are
not functions of age. In this chapter, transition rates are constant and we refer to them asrp→p+1

throughout this chapter withp ∈ {G1,S,G2M} (in Chapter2 we referred to them asr p→p+1). We
observe that mathematical model has to incorporate the effects of chemotherapy drug paclitaxel, thus
appropriate adjustments to the ODE model in Section2.6have been made. Consider a population of
cells, with structure classification asG1, S, G2M andA, according to their corresponding phase of
the cell cycle and with the probability that cells can transfer from one phase to the next according to
transition rates{rG1→S, rS→G2M, rG2M→G1, rA} between phases. A cell arrest or apoptosis phaseA is
also included as a removal class, and this occurs from theG2M-phase so that it can model the effect of
paclitaxel. In case of anA-phase consisting of arrested cancer cells, we refer to it asnon-proliferating
cells of the population. Whereas, for anA-phase representing apoptosis we refer to it as cell death.

The resulting dynamical system, depicted in Figure3.1, can be described with three ODEs — one
equation for the number of cells in each phase{NG1(t),NS(t),NG2M(t)} as a function of time (t) as
follows:

dNG1(t)

dt
= 2rG2M→G1NG2M(t) − rG1→SNG1(t), (3.2.1a)

dNS(t)
dt

= rG1→SNG1(t) − rS→G2MNS(t), (3.2.1b)

dNG2M(t)

dt
= rS→G2MNS(t) − rG2M→G1NG2M(t) − rANG2M(t), (3.2.1c)
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parameter description units

rG1→S rate transitionG1 to S-phase hours−1

rS→G2M rate transitionS to G2M-phase hours−1

rG2M→G1 rate transitionG2M to G1-phase hours−1

rA arrest or apoptosis rate hours−1

Table 3.1: Model parameters with descriptions and units. Itshould be observed for biological cell
lines that generally the transition probabilities satisfy0 < rG1→S < rS→G2M < rG2M→G1 with the rare
exception of 0< rS→G2M < rG1→S < rG2M→G1.

where the transition between the phases (included theA-phase) is determined by the probability pa-
rameters as listed in Table3.1. It should be noted that the 2 on the right-hand-side of equation (3.2.1a)
indicates that 2 daughter cells are produced for every cell leaving theG2M-phase. Each equation is
a conservation equation for the rate of change of the number of cells in that phase per unit time with
transition rates per unit time between phases. Furthermore, defining

Nproli f (t) = NG1(t) + NS(t) + NG2M(t), (3.2.2)

where we see that the total number of proliferating cells,Nproli f , in the three phases is not conserved
but grows or decays depending on the sign of (rG2M→G1 − rA). The total population,Ntot, in the four
classes satisfies

Ntot(t) = Nproli f (t) + NA(t), (3.2.3)

where the termNA represents the number of cells in theA-phase.
The number of cells removed from the proliferating cell population (NA) satisfies:

dNA

dt
= rANG2M ,

NA(0) = 0,
(3.2.4)

where it follows thatNA grows exponentially whenrA , 0.

3.2.1 Phase solutions in BEG with constant transition rates

When a cell line is being cultured for flow cytometry experiments the cell population exhibits balanced
exponential growth of the form

Np(t) = Npeλt, (3.2.5)

whereNp, p ∈ {G1,S,G2M} is a constant for each phase. The form of the expression (3.2.5) shows
that the cell phase population grows exponentially with a growth rateλ and asymptotically the popula-
tion has a stable phase distribution which is independent ofthe initial phase distribution. Furthermore,
it is asynchronous as the percentage of cells in each phase are not in general the same but depend upon
the transition rates. We have shown the characteristic equation for the population in the BEG state
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S-phase

G1-phase

G2M-phase

A-phase

rG1→S

rS→G2M

rG2M→G1

rA

Figure 3.1: A diagram of cell-cycle control of a cell line cell population. The population is subdivided
into G1, S, G2M and A phases with the possibility that cells can transfer from onephase to the
next according to transition rates (Table3.1) between phases. Response of cancer cell population to
paclitaxel is shown when transition raterG2M→G1 is equal to zero.

with constant transition rates in equations (2.5.9) and (2.5.10). The condition for the exponential
growth of population with parameters used in system (3.2.1) is as follows:

F(λ) =
(rG2M→G1 + rA + λ)(rG1→S + λ)(rS→G2M + λ)

2rG2M→G1rG1→SrS→G2M
= 1. (3.2.6)

The functionF(λ) is a cubic polynomial with zeros at−rG1→S, −rS→G2M, and−(rG2M→G1 + rA), and it
intersects the ordinate at (1+ rA/rG2M→G1)/2 and moreover1 F is monotone increasing forλ > 0. An
alternative proof has been discussed inBasseet al. (2004a).

Figure2.4 in Chapter2 shows a series of typical graphs ofF(λ). Further considerations of the
graph ofF shows that ifrA < rG2M→G1, thenF(λ) − 1 always has just one positive root forλ, and
this value determines the cell population growth. The caser = rG2M→G1, which defines constant
population growth, is the boundary value ofλ leading to proliferating population (Nproli f ) decline
whenrA > rG2M→G1. In addition, it is seen thatλ defines the doubling time of the population cell line
through the well known equation

Td =
ln(2)
λ
. (3.2.7)

This time is central to understanding the dynamics of the cell line in that it also defines the population
cell-cycle time (equivalent to the population cell transittime) as the time it takes 1 cell to become
2 cellsetc.When the proliferating cell population is considered to be in BEG, as given by equation
(3.2.5), then we can easily calculate the proportions in each phase, which will become asymptotically
constant, as shown in equations (2.5.37)-(2.5.39) in Chapter2. Constant proportions in the phases

1See AppendixB.1 equation (B.1.2a)
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are obtained experimentally in cell lines when the cell cultures are maintained in exponential growth.
For simplicity in the remainder of this section we considerrA ≡ 0, so thatNtot = Nproli f . We can
reduce the constant proportion formulae (2.5.37)-(2.5.39) for the case of constat transition rates by
takingτp → 0 for p ∈ {G1,S,G2M}. Then letΠG1 be the proportion of cells in theG1-phase, namely
ΠG1 = NG1(t)/Ntot, and similar notation for the other phases, then

ΠG1 =
1

Cλ(rG1→S + λ)
, (3.2.8a)

ΠS =
1

Cλ(rG1→S + λ)

rG1→S

rS→G2M + λ
, (3.2.8b)

1 = ΠG1 + ΠS + ΠG2M, (3.2.8c)

where from equation (2.5.30)

Cλ =
1

rG1→S + λ
+

rG1→S

(rS→G2M + λ)(rG1→S + λ)
+

rG1→SrS→G2M

(rS→G2M + λ)(rG2M→G1 + λ)(rG1→S + λ)
, (3.2.9)

so that

ΠS

ΠG1

=
rG1→S

rS→G2M + λ
, (3.2.10a)

ΠG2M

ΠS
=

rS→G2M

rG2M→G1 + λ
, (3.2.10b)

1 = ΠG1 + ΠS + ΠG2M . (3.2.10c)

Now Nproli f satisfies

dNproli f

dt
= (rG2M→G1 − rA)NG2M, (3.2.11)

= (rG2M→G1 − rA)ΠG2MNproli f , (3.2.12)

so that besides the characteristic equation (3.2.6) for the population growth rate we haveλ = (rG2M→G1−

rA)ΠG2M.
From the equations of this section for an established cell line we have a relationship between

proportions in each phase, the rate transitions between phases, the population doubling time. The
equations (3.2.6), (3.2.7), and (3.2.10) form a system of five equations in the eight variables

{rG1→S, rS→G2M, rG2M→G1, λ,ΠG1,ΠS,ΠG2M,Td}

but two of these five equations are reducible in thatΠG2M can be eliminated with the last of equation
(3.2.10) and similarlyTd can removed with equation (3.2.7). So we have an implicit three-system
of equations for the six variables in the three-groupingsr = {rG1→S, rS→G2M , rG2M→G1}, andσσσ =
{ΠG1,ΠS, λ} hence the implicit three-system can be written

G(r ,σσσ) = 0, (3.2.13)

whereG : R3
+ × R

3
+ → R

3, as we are only interested inλ > 0. For the Monte Carlo simulation
considered in Section3.3.3 the r ’s are known and we wish to know whether this implicit function,
G, determines theσσσ uniquely. That is, given the three transition rates is therea unique mapping to
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the proportions andλ (effectively Td). We now show for this direct problem that we have a local
differentiable mapping,R, defined byσσσ = R(r ) that uniquely determines theσσσ. Another important
question for determination of cell kinetics is: Does measurement ofσσσ uniquely determine ther? That
is, can we writer = R−1(σσσ)? Both these answers are proven in AppendixB.1 by the implicit function
theorem, and in the following statement of this result the matrices Jσ, Jr are defined as appropriate
sub-matrices of the jacobian ofG. We can now express the results found for both maps in the following
theorem:

Theorem 3.2.1. (a) The mapping, R(r ), exists locally asdetJσ > 0 on S , a bounded and open
subset of{rG1→S, rS→G2M, rG2M→G1} ∈ R

3
+, and it is uniquely locally defined on S , and the local

maps are continuously differentiable.

(b) The mapping R−1(σσσ) exists locally asdetJr > 0on S′, a bounded and open subset of{ΠG1,ΠS, λ} ∈

R
3
+, and it is uniquely locally invertible on S′, and the local maps are continuously differen-

tiable.

We observe that from the flow cytometry data theΠp, p ∈ {G1,S,G2M} can be measured, andTd

can be determined by cell counting thus yieldingλ. This means that ther ’s are uniquely determined
by Theorem3.2.1(b).

These results are central to our model’s usefulness in predicting the cell dynamics from flow
cytometry measurements.

3.3 Results

3.3.1 Experimental paclitaxel dose-response effects

The cell-cycle times of human tumour cells vary considerably among different individualsPrescott
(1987), and for several cancer types, where short cycle times are related to poor survival times of
patientsFurneauxet al. (2008); Rew & Wilson (2000). Hence it is important to estimate cell-cycle
times of in vivo tumours. However, the determination ofin vivo potential doubling times (Tpot) is
not currently ethically justifiable, since it involves the administration of a potential mutagen (bro-
modeoxyuridine an analogue of thymidine) and subsequent tumour biopsy. An alternative approach
to estimate cell doubling time is to culture clinical material in a short-term (7 day) assayBaguley
et al. (1999) and to measure the effect of cell division arrest, typically carried out by addinga mitotic
poison such as paclitaxel. On subsequent uptake of3H-TdR into DNA of cultured cells, a measured
‘plateau’ reduction value for3H-TdR incorporation, at paclitaxel concentrations above avalue that
completely inhibits cell divisionBaguleyet al. (1999); Furneauxet al. (2008) can be used to estimate
doubling time. The method relies on the intrinsic variability of cell-cycle time, much of which is in
theG1-phase of the cell cycle and thus occurs before the onset of DNA replicationPrescott(1987).
The range of values determined using this method is surprisingly similar to that obtained usingin vivo
theTpot method. Previous studies have shown that the kinetic behaviour of cultured cells, as measured
by flow cytometry, can be modelled effectively by incorporating transition probabilities for the onset
of DNA replication and cell divisionBasseet al. (2003, 2004b). This technique is analysed here for
cell lines, but a further application of it would allow this method to be extended to cultured clinical
tumour material.

We observe that the chemotherapy drug paclitaxel is an antimitotic agent that stabilises the assem-
bly of microtubules by preventing depolymerisation, thus arresting cells prior to or during mitoses.
In Baguleyet al. (1995), the chemosensitivity of cell lines to paclitaxel was assayed by exposing the
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Figure 3.2: Diagrammatic representation of the paclitaxelconcentration-dependent phase of the dose-
response semilog-curves.

tumour cell lines to paclitaxel for 5 days and the remaining proliferative cells quantitated by3H-TdR
incorporation. This subsequent incorporation of3H-TdR is proportional to the number of proliferating
cells in theS-phase and the level of this incorporation is measured usinga liquid scintillation counter.
The resulting measurement then is proportional to the amount of cell proliferation.

PS(t) is defined as the time dependent (t hours) percentage of theS-phase cells after exposure to
paclitaxel. We name this important quantity theplateau log reductionwith the symbol,PLR, which
is log10 units of the normalised value ofPS(t). In Baguleyet al. (1995) experimental measurements
were made and variousPLR values and their corresponding measurements of populationdoubling
time, Td were calculated for 21 cell lines (after exposing them to paclitaxel for 5 days) and it was
shown that when these quantities were plotted against each other they showed a significant linear
dependence. The wide range ofPLR found shows how different cell lines can have a different responses
to chemotherapy, and this stems from the possible wide rangeof values for transition rates between
phases. In particular, it is the transition rate fromG1 to S-phase that produces a wide range ofG1-
phase transit times.

The dose-response curves, obtained inBaguleyet al.(1995), were biphasic on a semi-logarithmic
plot with a linear decrease in incorporation up to a particular drug concentration, and above which no
further decrease was evident (see diagrammatic representation of dose-response curves in Figure3.2).
The plateau defines thePLR measurement. We observe in Figure3.2that, firstly, the initial decreasing
region of the dose response curve as the paclitaxel concentration increases results in a decreasing
proportion of proliferating cells, hence fewer cells in theS-phase. Secondly, the plateau corresponds
to the concentration level where the cell is arrested in mitosis. Also we observe that the position of
the elbow in the curve is dependent upon the concentration because for a shorter exposure time to
paclitaxel the concentration must be higher to stop cells cycling. Thirdly, the plateau is a measure
of the remaining cells in theS-phase at the exposure time. Fourthly, we observe the depth of the
plateau is deeper with longer exposure times. This is because there are fewer remaining proliferating
cells, in theS-phase, with longer paclitaxel exposure times. This is borne out by our mathematics
in Section3.3.2.1where it is shown that once mitosis has been inhibited the number of cells in the
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S-phase declines exponentially as a function of exposure time.
Baguleyet al. (1995) hypothesised a model for this dose-response behaviour as:firstly, the cell

killing in response to paclitaxel occurs only during metaphase arrest (i.e., inM-phase), while the rate
of progress through other phases in the cell cycle is close tonormal. Secondly, that the number of
proliferating cells is proportional to the3H-TdR incorporation. Then, their model of the experimen-
tal results was that during the linear reduction in number ofcells, in the dose-response dependence
range, a proportion of the cells undergo paclitaxel inducedirreversible arrest once they enter mitosis
while the remaining cells continue through mitosis to another cell cycle. Whereas, over the plateau
concentration range, where the dose-response is independent of concentration, all cells undergo irre-
versible paclitaxel-induced arrest or death once they enter mitosis. Furthermore, they suggested that
the plateau effect shows the number ofS-phase cells, fixed at a time, which is resultant on the entry of
cells from theG1-phase and exit into theG2M-phase, and will be independent of paclitaxel concen-
tration. Moreover, the exact number of remainingS-phase cells will be strongly dependent upon the
exposure time to paclitaxel and this hypothesis is supported by their experiments. These behavioural
characteristics are shown in Figures3.2. Our model, which is predicated upon the phase cycle of the
cell, further supports their hypothesis from our mathematical results in Section3.3.2.

3.3.1.1 Previous experimental work results

In Baguleyet al. (1995), it was shown that the cancer cell population doubling timesignificantly
correlated with the maximum plateau reduction. In particular, they postulated that if an exponential
rate of departure of cells fromG1-phase is assumed, the proportion (PG1) of G1-phase cells at any time
after exposure to paclitaxel at concentrations high enoughto block cell division will be described by
the relationship:

PG1 = P0e−kt/T̃ , (3.3.1)

whereP0 is the proportion ofG1-phase cells at zero time,k is a constant and̃T is the doubling time.
After an interval (corresponding approximately to theS-phase transit time) the proportion ofS-phase
cells will have a similar dependence ont. So followingBaguleyet al. (1995), taking the logarithm of
equation (3.3.1), when in the plateau logarithmic reduction dose-responseconcentration we have

ln
PS(t)
Ps(0)

= −
k

T̃
t, (3.3.2)

wherePS(t)/Ps(0) is the change in the proportion of cells in theS-phase. So their model predicts
that the logarithm of the remainingS-phase cells at timet after paclitaxel exposure should be linear
function of t/T̃. This formula can be rewritten (without loss of generality)in logarithm to base 10
units, and observing that 100× PS(t)/Ps(0) is the percentage of theS-phase fraction givingplateau
log reduction(which we denote byPLR) it implies that the logarithm reduction formula is:

PLR = log10
PS(0)
PS(t)

= − log10
PS(t)
PS(0)

= log10 100− log10

[
100

PS(t)
PS(0)

]
,

= k1t/T̃, (3.3.3)

wherek1 = k log10 e. Furthermore, they found that on their plotting the experimental data from 21
tumour cell lines, which were sub-cultured in exponential phase over 5 days with the doubling times
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estimated by counting the cells in a haemocytometer, and using a linear regression polynomial to this
data a positive correlation existed (withr = 0.90;p < 0.001). From this an empirical formula was
derived inBaguleyet al. (1995) as

T̃ =
K1

PLR
, (3.3.4)

whereK1 = k1t1, with k1 = 0.45, andt1 = 5 days, this value ofk1 is our least squares fit from their
21 cell lines from the tabulated data in their Table 2 (inBaguleyet al. (1995)), and thusK1 = 2.25
for these cell lines. Whereas, based on their Figure 6 (inBaguleyet al. (1995)), which has 37 cell
lines, one can obtain a valuek1 = 0.473, and witht1 = 5 days, getK1 = 2.365 for these cell lines.
We observe for reference, for primary cultures with a paclitaxel exposure time of 7 days, the value of
K1 is 3.78 (as cited inFurneauxet al. (2008)). Further application of formula (3.3.4) to short-term
cultures of tumour samples taken at surgery from patients with brain cancer inFurneauxet al. (2008)
yields a value ofK1 up to 4.8. This formula betweenPLR and 1/T̃, for a fixed timet, implies that for
cell cultures with a long doubling time (or cycle time)PLR is small. But for those cell cultures with a
short doubling timePLR is large. It should observed that this formula can be only valid over restricted
ranges ofPLR andT̃ as will be made apparent in Section3.3.3.

The fundamental experimental hypothesis made inBaguleyet al. (1995) is that the plateau log
reduction value obtained, at high enough paclitaxel concentration, is directly proportional to the pa-
clitaxel exposure time and inversely proportional to the doubling time. We show similar correlations,
based on our theories, betweenT̃ = Td andPLR in Section3.3.2.1

3.3.2 Deriving a simple empirical method of calculating thecell doubling time for cell
lines using a phase structured model

We use our mathematical model to derive a simple empirical method for calculating the cell population
doubling timeTd for cell lines as follows. First, we model the response to themitotic inhibitor
paclitaxel, by setting the transition rate from the combined G2M-phase toG1-phase equal to zero, and
deriving a temporal expression for the remainingS-phase cells. We then apply the model to a range
of theoretical cell lines and show thatPLR is approximately proportional to the exposure time divided
by cell doubling time for a range of values.

In this section, we will justify mathematically the resultsof Baguleyet al.(1995), namely equation
(3.3.3), and their hypotheses through our phase ODE system (3.2.1). Hence we now model the effects
of adding paclitaxel at a concentration to ensure entry intothe plateau region of the dose-response. We
therefore note that in the plateau region there are no proliferating cells so we simulate the paclitaxel
concentration by setting the transfer rate fromG2M to G1 phase to zero, i.e.,rG2M→G1 = 0. Then
BEG will be broken and there will beno constant proportions in the phases, so that the number of
cells in the various phases will be described by the equations in AppendixB.3. We aim to show
that the relationship described in equation (3.3.1) holds for our model. Namely, that after addition of
paclitaxel the proportion of cells inS-phase will decline exponentially:

NS(t)
Ntotal(0)

=
NG1(0)

Ntotal(0)

rG1→S

rS→G2M − rG1→S

(
e−rG1→St − e−rS→G2M t

)
+

NS(0)
Ntotal(0)

e−rS→G2M t. (3.3.5)

We observe thatt = 0 corresponds to the paclitaxel concentration having just stopped cell division so
that Ntotal is given by equation (3.2.2), whenrA = 0, for BEG att = 0−. For the rest of the chapter
we will assumerG1→S , rS→G2M , in other words, the caserG1→S = rS→G2M, considered in equation
(B.3.2), will not occur. This is true in our Monte Carlo simulationsof Section3.3.3, as this case has
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zero probability of occurring as it is a boundary case.
Using notationPS for the proportion of the total population of cells in theS-phase, equation

(3.3.5) can be simplified to:

PS(t) = PG1(0)
rG1→S

rS→G2M − rG1→S

(
e−rG1→St − e−rS→G2M t

)
+ PS(0)e−rS→G2M t. (3.3.6)

Furthermore, sincePS(0) denotes the proportion of the total cell population in the S-phase at time
t = 0−, i.e. , just before paclitaxel incorporation, we can express the proportion of cells in theS-phase
as follows:

PS(t)
PS(0)

=
PG1(0)

PS(0)

rG1→S

rS→G2M − rG1→S

(
e−rG1→St − e−rS→G2M t

)
+ e−rS→G2M t. (3.3.7)

As
PG1(0)

PS(0)
=
ΠG1

ΠS
,

we can use equation (3.2.10) to simplify equation (3.3.7) to

PS(t)
PS(0)

=
rS→G2M + λ

rS→G2M − rG1→S

(
e−trG1→S − e−trS→G2M

)
+ e−trS→G2M . (3.3.8)

Now to show the exponential decay of the percentage of cells in the S-phase, we must subdivide
expression (3.3.8) into two cases. Firstly, in case of the transition rate fromtheG1 to S-phase being
slower than from theS to G2M -phase, i.e.,rG1→S < rS→G2M , we can express the percentage of the
total cell population in theS-phase after a linearisation timeTL, whereTL > Ts, as:

PS(t)
PS(0)

=
rS→G2M + λ

rS→G2M − rG1→S
e−trG1→S + O

(
e−trS→G2M

)
, 0 < rG1→S < rS→G2M, t > TL, (3.3.9)

whereTL is large enough to ensure that the order term is exponentially small. Secondly, whenrG1→S >

rS→G2M , we can see that the following is true:

PS(t)
PS(0)

=
rG1→S + λ

rG1→S − rS→G2M
e−trS→G2M + O

(
e−trG1→S

)
, 0 < rS→G2M < rG1→S, t > TL. (3.3.10)

Thus, the percentage of cells in theS-phase is eventually exponentially decreasing regardlessof the
relationship between the transition ratesrG1→S andrS→G2M and this is illustrated in Figure3.3(a). In
both of the cases previously considered, the graphs displaysimple exponential decay whenTL > 50
hours; see the log plot in Figure3.3(b) showing when proportion ofS-phasePS decays in a linear
fashion on timet.

3.3.2.1 Deriving the plateau log reduction formula

Using our model, we will show a plateau log reduction formulasimilar to equation (3.3.3), i.e., there
is a direct relationship between population doubling time and the plateau log reduction value. From
equation (3.3.8) at measurement timet1 as

PLR = − log10
PS(t1)
PS(0)

,

45



3. DETERMINATION OF CELL POPULATION DYNAMICS USING PLATEAU LOG
REDUCTION METHOD

0 20 40 60 80 100
0

20

40

60

80

100

120

time (hours)

P
ro

po
rt

io
n 

of
 S

−
ph

as
e

 

 

a
b

(a) Linear plot of proportion of cells in the S-
phase. Cell cycle transfer rates were chosen for
the casea: whererG1→S < rS→G2M - rG1→S = 0.05,
rS→G2M = 0.101, rG2M→G1 = 1.5. In the caseb:
whererG1→S > rS→G2M - rG1→S = 0.15, rS→G2M =

0.101,rG2M→G1 = 1.5.
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(b) Logarithmic plot of proportion of cells in the
S-phase. Cell cycle transfer rates were chosen for
the casea: rG1→S < rS→G2M - rG1→S = 0.05,
rS→G2M = 0.101, rG2M→G1 = 1.5. In the caseb:
whenrG1→S > rS→G2M - rG1→S = 0.15, rS→G2M =

0.101,rG2M→G1 = 1.5.

Figure 3.3: Proportion of cells in the S-phase after paclitaxel application will decrease exponentially.
It can be seen that in cases ofrG1→S > rS→G2M proportion inS-phase will decay faster than in cases
of rG1→S < rS→G2M .

it follows

PLR = − log10

(
rS→G2M + λ

rS→G2M − rG1→S
(e−rG1→St1 − e−rS→G2M t1) + e−rS→G2M t1

)
. (3.3.11)

Now remembert1 is the end of the paclitaxel exposure time, andλ can be obtained from the solution of
equation (3.2.6). So that asymptotically whent1 > TL, we can obtain two linear plateau log reduction
formulae, and to this end add and subtractTL from t. The first case being ofrG1→S < rS→G2M , and
from equation (3.3.9), it is

PLR ≈ − log10

(
rS→G2M + λ

rS→G2M − rG1→S
e−rG1→STL

)
+ log10(e) rG1→S (t1 − TL), t1 > TL. (3.3.12)

The second equation applies for whenrG1→S > rS→G2M , and it is

PLR ≈ − log10

(
rG1→S + λ

rG1→S − rS→G2M
e−rS→G2MTL

)
+ log10(e) rS→G2M (t1 − TL), t1 > TL. (3.3.13)

These formulae show directly the linear dependence ofPLR on t1 and the two transition probabilities.
Furthermore, in Figure3.3(b) we plot an illustration of formulae (3.3.11) showing the linear depen-
dence, as represented in equations (3.3.12), (3.3.13), when t1 > TL for TL ≈ 50 hr. The formulae
illustrate a linear increase inPLR on the exposure timet1 and the two transition rates.

Equations (3.3.12) and (3.3.13) should be compared with equation (3.3.3) with the understanding
that the transition rates are related tok1/T̃ as is now shown. The remaining link with the results of
Baguleyet al. (1995) to be shown is howPLR is approximately linearly dependent upon 1/Td. To
show this, we need the dependence ofλ on the transition rates. This can be done by examination
of the nonlinear equation (3.2.6). In AppendixB.2, we show that there exists an approximate linear
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Figure 3.4: Simulations were carried out to verify statements postulated in equation (3.3.14).

dependence ofλ on the two transition rates appearing in the above two equations as

λ ≈


rG1→S, rG1→S < rS→G2M,

rS→G2M, rG1→S > rS→G2M.
(3.3.14)

This result provides some mathematical justification of theoften quoted approximation that the BEG
growth rate isrG1→S. It is seen here that this is only true with the asymptotic assumptions made in
AppendixB.2 and if rG1→S < rS→G2M . To further illustrate the approximate linear dependence of λ
on the appropriate transition probability, we show in Figure 3.4 both cases considered in expression
(3.3.14) of λ versesrG1→S, andrS→G2M from the nonlinear equation (3.2.6). This figure shows that
our analysis in AppendixB.2 holds true for an appropriate range ofrG1→S. In AppendixB.2, a second
order approximation is estimated.
So remembering equation (3.2.7), it is seen that we can find one asymptotic formula for the plateau
log reduction formulae as

PLR ≈ − log10

(
rS→G2M + λ

rS→G2M − rG1→S
e−rG1→STL

)
+

ln 2
ln 10

(t1 − TL)
Td

, t1 > TL. (3.3.15)

Equation (3.3.15) is essential to our results as it shows thatPLR is approximately linearly dependent
upon 1/Td as it was proposed in the paperBaguleyet al. (1995).

We note that to get agreement withBaguleyet al.(1995), as given in equation (3.3.4) for K1 = 2.25
the above equation implies thatTL = 2.47 days or 59.4 hours which is fairly close to our previously
mentioned linearity estimate.
It is seen that equation (3.3.15) provides theoretical justification from our model of the experimental
postulate ofBaguleyet al. (1995), for equation (3.3.3). In the next section, we provide a Monte Carlo
simulation of the full equation (3.3.11) further justifying these conclusions.

3.3.3 Monte Carlo simulations

In this section, we present simulations of our model that were carried out in order to verify the linearity
of logarithmic plateau reduction values and exposure timesover cell doubling time. This simulation

47

5SecondPaper/Chapter5Figs/EPS/Figure6a.eps
5SecondPaper/Chapter5Figs/EPS/Figure6b.eps


3. DETERMINATION OF CELL POPULATION DYNAMICS USING PLATEAU LOG
REDUCTION METHOD

uses the full equation (3.3.11), not the asymptotic equations, and so it will not only show justification
of the experimental results ofBaguleyet al. (1995), but will also verify the asymptotic analysis of
Section3.3.2.
We chose approximately 500 random uniformly distributed transition rates within the intervals 0.0001<
rG1→S < 0.12, 0.0001< rS→G2M < 0.12, 0.99 < rG2M→G1 < 2 and 0.000001< rA < 0.0001, which
are appropriate to many cell lines and were provided by biologists. For the biologically significant
caserG1→S < rS→G2M, in Figure3.5(a) we show the results from equation (3.3.11) of our simulation
from the randomly generated transition rates, with the abscissa depicting the ratio of exposure time to
cell doubling time. Superimposed on the simulated data is our least squares affine regression line. In
Figure3.5(b), we incorporate a constant death rate in our simulationsthat results in cell loss of 2%-
20% of the total population. The simulation uses the numerical solution of the ODE system (3.2.1) to
determine the ratioPS(t)/PS(0) as in this case the formula on the right-hand-side of equation (3.3.11)
is not correct. When solving the ODE system, the termrA is chosen from a uniform random distribu-
tion to result in the appropriate cell loss. We observe that our model with apoptosis Figure3.5(b) gives
the least square affine regression line equivalent to the second decimal place tothe affine regression
line of our model without apoptosis in Figure3.5(a).

In our remaining simulations, we use the model without apoptosis effects in order to simplify
the derivation of the analytical formulae. For the less biologically significant case whererS→G2M <

rG1→S, we show in Figure3.5(c) the results of our simulation from the randomly generated transition
rates, with the abscissa the ratio of exposure time and cell doubling time. Also shown in this figure
is the least squares affine regression line. Furthermore, we show for comparison in Figure 3.5(d), a
reproduction of the experimental and least squares affine regression line fromBaguleyet al. (1995).
To compare this figure with our results we must observe a few points. First, the experimental values
of Td in this figure are obtained by cell counting so that any apoptosis that occurs will ensure that the
experimental value ofTd is too large. Second, the small number of data points in the experimental fit
leads to considerable variability in the coefficients of the fit when compared to our final results shown
in Figure3.6.

We observe from equation (3.2.6) that the value ofλ is affected by all three transition ratesrG1→S,
rS→G2M , rG2M→G1, and thus changes in the three-dimensional space of transition rates result in a
stochastic like changes in values of the doubling timeTd in the three simulated plots of Figure3.5. It
should be remembered that the doubling time is an inverse ofλ. This will mean that all our simulation
graphs will have stochastic-like appearance.

The nonlinear mapRwas used to map the randomly chosenr ’s ontoλ theΠ’s with the subsequent
calculation ofTd, and thenPLR through equations (3.2.7) and (3.3.11) to produce the results shown in
Figures3.5-3.6. The mapR was solved numerically by use of the damped Newton method.

It is observed from the simulated graphs in Figure3.5 that a wide range ofTd has been offered;
this range is in excess of what is found biologically. So in Figure3.6we reject simulations that offer
Td outside the interval: 1.3 < 5

Td
< 4.5 (hereTd is in days). Figure3.6(a) shows the results of

our simulation from the randomly generated transition rates when used in equation (3.3.11), with the
abscissa the ratio of exposure time to cell doubling time. Superimposed on the simulated data is our
least squares affine regression line. In Figure3.6(b) we invert the plots of Figure3.6(a) by plotting
the doubling time against the exposure time divided by the plateau log reduction value. Furthermore,
a least square affine regression line is shown. These regression lines show that we can express the
doubling time values through the reciprocal of the plateau log reduction values as follows:

Td = c1
t

PLR
+ c2. (3.3.16)
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(a) The biologically more plausible case ofrG1→S <

rS→G2M and rA = 0. From this plot it can be con-
cluded that doubling time can be obtained from lin-
ear expressionPLR = m1t/Td + m2,wherem1 =

0.608, m2 = −0.4844 andt = 120 hours, thus
Td = 72.96/(PLR+ 0.4844).
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(b) The biologically more plausible case ofrG1→S <

rS→G2M with apoptosis present after treatment with
paclitaxel. The population doubling time can be
obtained from linear expressionPLR = m3t/Td +

m4,wherem3 = 0.6077,m4 = −0.4853 andt = 120
hours, thusTd = 72.924/(PLR + 0.4853).
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(c) For the case ofrG1→S > rS→G2M , with rA = 0,
it be can see that the doubling time can be cal-
culated using expressionPLR = n1t/Td + n2 with
n1 = 0.5993,n2 = −0.4477 andt = 120 hours, thus
Td = 71.916/(PLR + 0.4477).
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(d) An experimental cell line data and the experi-
mental data in Table 2 fromBaguleyet al.(1995) is
plotted for the comparison with the previous three
figures. The doubling time can be estimated from
the equationPLR = n3t/Td + n4 with n3 = 0.4503,
n4 = 0.3013 andt = 120 hours, thusTd =

54.036/(PLR − 0.3013).

Figure 3.5: Plateau log reduction value is plotted against the exposure time/doubling time in order
to show the linearity. Two cases -rG1→S < rS→G2M andrG1→S > rS→G2M were analysed. It can be
concluded that the relation between transition ratesrG1→S andrS→G2M has no effect on affine formula
of the doubling time. Cases of no apoptosis and apoptosis present after paclitaxel addition are analysed
and it can be seen that apoptosis presence has no effect on the affine formula of the doubling time.
Each dot represents a cell line either experimental or theoretical.
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(a) Plateau log reduction values versus exposure time/ cell doubling time for cell
line data, whenrG1S < rSG2M . We can see that the doubling time can be calculated
using expressionPLR = a1t/Td + a2 with a1 = 0.5609, t = 120 hours anda2 =

−0.4374, thus we can express population doubling time through the plateau log
reduction value asTd = 67.308/(PLR + 0.4374).
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(b) Population doubling time values versus exposure time/ plateau log reduction for cell
line data, whenrG1S < rSG2M . We can see that the doubling time can be calculated using
expressionTd = c1t/PLR + c2 with c1 = 0.253, t = 120 hours andc2 = 14.29 thus
Td = 30.36/PLR + 14.29.

Figure 3.6: Simulations for estimating cell population doubling time for cell lines are shown. We
have only considered case ofrG1→S < rS→G2M since there is no effect on choosing the opposite and
also rA = 0. From arbitrary generated data we have chosen only those that fall within the range
1.3 < 5

Td
< 4.5 for cell lines, hereTd is in days.
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3.3 Results

Cell line Cell line Cell line

Exposure time (hours) 120 144 168
(days) 5 6 7

Doubling time (hours) Td =
30.36
PLR
+ 14.29 Td =

36.288
PLR
+ 16.42 Td =

42.2184
PLR

+ 19.16

Table 3.2: Affine formula for the cell doubling time calculation. Figure3.6(b) was used to obtain the
affine relation values. Observe thatTd is in hours.

We have derived a linear relationship between the plateau log reduction value and the cell doubling
time (as found inBaguleyet al.(1995)) of a cell line after being exposed to paclitaxel. The coefficient
c1 (c1t = K) is directly dependent on the exposure time, therefore the linear method is applicable only
for the fixed exposure time of 5 to 7 days. Our simulations showthat the linear relationship between
Td andPLR exists. We have used the asymptotics in Section3.3.2on PLR × Td to show that for any
random transition rates the coefficientc1 value is the approximately the same.

3.3.4 Determination of population cell dynamics from plateau log reduction

We first observe that determination ofλ from the experimentally obtained doubling time is problematic
as it involves cell counting. The use of the experimental method analysed in this chapter to determine
PLR and then the use of the least squares regression line betweenPLR andTd, of the previous subsec-
tion, overcomes this difficulty. This then enables the determination of the transition probabilities with
λ calculated from the doubling time and the nonlinear map described in Theorem3.2.1(b). However,
a superior method for short term assays to determineTd is:

1. Find the plateau log reduction,PLR, from the assay.

2. Use the results in Table3.2 to findTd from PLR.

In Table3.2, we list our overall affine regression results.

3.3.5 Population doubling time formulae in literature

A variety of methods of the doubling time estimation can be found in the literature. Table3.3depicts
many crucial features that distinguish between different methods - firstly, whether or not cell death
is taken into account when calculating population doublingtime. Td describes population doubling
time with cell death present andTpot is a measurement of cell population doubling time with no cell
loss Steel(1977). Secondly, whether or not one needs to estimate apoptosis rate experimentally
since cell death evaluation has come to be known as somewhat problematicRew & Wilson (2000).
Thirdly, whether experimental estimates used in population doubling time formulae are single time-
point observations or multiple time-point observations.
We have included references to formulae of doubling times and short descriptions of variables used
in theses formulae. For more detailed information, we ask readers to look at papersBaguleyet al.
(1995); Bertuzziet al. (2002); Rew & Wilson (2000); Steel(1977); Terry & White (2006) as shown
in Table3.3.
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Formula Cell death Cell death Experimental Authors Variables Single (ST) or multiple (MT)
included measurement methods time-point observation

Td = c1
t

PLR
+ c2 Yes No Stathmokinetic Our method PLR - plateau log reduction value ST

3H − TdR, Flow cytometry Baguleyet al. (1995) c1, c2 -constant
t - exposure time to paclitaxel

Td =
ln(2)
rc Yes Yes Relative motion (RM) Terry & White (2006) r - fraction of labelled cells completing division MT

BrdUrd, Flow cytometry c - progression rate of labelled cells towards division

Td =
ln(2)
λ

No N/A Growth curve Many papers λ - growth rate MT

Tpot =
ln(2)TS
ν

No N/A Relative motion (RM) Steel(1977); Terry & White (2006) TS - duration ofS-phase MT
BrdUrd, Flow cytometry Bertuzziet al. (2002); Rew & Wilson(2000) ν- labelling index

Table 3.3: Population doubling time estimation methods in the literature. Second column indicates whether or not a particular method takes
cell loss into account when estimating doubling time. Thirdcolumn shows if cell death has to be determined experimentally (N/A stands for
not applicable), fourth column provides key words of the experimental techniques applied. Fifth column points to references in literature. Sixth
column briefly describes variables used in the particular formulae. Seventh column shows whether or not the particular method requires a single
time-point measurement.
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3.4 Conclusions

3.4 Conclusions

We have addressed the question here of whether the transition probability model can be used to derive
a direct relationship between cell population doubling time and3H-TdR incorporation data. We have
shown that indeed it can, and furthermore we can derive a direct relationship between cell doubling
time and3H-TdR incorporation data.

In Baguleyet al. (1995), a cell doubling time formula (3.3.4) was estimated using a simple model
for cell growth. We use a more complicated phase structured model and obtain a similar linear de-
pendence for the cell doubling timeTd. We have verified by asymptotics that the linear relationship
betweenTd andPLR exists. We have derived that the coefficient Kt is dependent on the time a cell
line has been exposed to paclitaxel. We have applied Monte Carlo experiments to justify and quantify
the linear relationships used to estimate doubling time from 5-day cell culture assays, and we suggest
these equations be used for application of the experimentaltechnique. Furthermore, we have incorpo-
rated apoptosis in our simulations that would result in a cell loss of 2%-20% of the total population,
through a constant death rate. We observed that our model with apoptosis and no apoptosis after pa-
clitaxel incorporation had no difference in the least square affine regression lines. This implies our
techniques are applicable to cell line populations with a small percentage of non-proliferating cells.

We also observe that the wide range ofPLR show how different cell lines can have a different
responses to chemotherapy and this stems from the possible wide range of values for transition rates
between phases, in particular the transition rate fromG1 to S-phase which produces to a wide range of
G1-phase transit times is a major factor in this. A further extension of this model for cancer cell lines
would involve: first, incorporating aging timesτp in each phase of the cell cycle to increase biological
realism of the model. Second, derive expressions for estimating the cell-cycle time (or removal time
in Chapter2) from single experimental observation of the plateau log reduction value, similar to the
ones presented in Table3.2 for the doubling time.

We should point out that currently this type of linear relationship can be derived only for the cell
lines, although it has been suggested inBaguleyet al. (1999) such a relationship holds for primary
cultures. The above model and method could be applied to primary cultures by using an extension of
the model describedDauksteet al. (2009). Further work would include deriving such formulae for
primary cultures.
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Chapter 4

Modelling Cancer Cell Population
Perturbed by Irradiation

In this chapter, we examine the response of a cancer cell population to a one-time irradiation dose.
We show that, by changing the PDE system of the number densityfunction to the probability density
function, our model tracks the variability of proportions of cancer cell population in each phase of the
cell cycle and is compatible with the experimental estimates of proportions in each phase after a variety
of cancer treatments. Our results agree with the previous studies of irradiated cancer cell lines, i.e.,
a cancer cell population undergoes little apoptosis after radiotherapy within the given experimental
observation times. Therefore, we show that the experimentally observed decrease in the expected
number of cells is due to the long-term arrest of the cell cycle. Our model provides an interval of
the initial proliferating fraction of the cell population for each cell line, i.e., a proportion of cells that
keeps proliferating after the application of radiotherapy. In the discussion section, we explain why
the proliferating fraction estimated via our mathematicalmodel does not agree with experimentally
estimated surviving fraction.

4.1 Introduction

Radiation therapy is one of the main cancer treatment methods due to its ability to control cell growth:
it causes DNA damage, leading to long-term cell cycle arrestand cell death. The aim of the model
in this chapter is to determine the proliferating proportion of a cancer cell population of human
melanoma cell lines after a one-time irradiation dose. It isconsidered that cell death or apoptosis
takes place within a few hours of an irradiation doseIllidge (1998); Kerr et al. (1994); Meyn (1997).
We observe here that, in biological nomenclature, cells areconsidered dead if they have lost ability to
divide indefinitely. Cells that divide indefinitely are called clonogenic. Throughout this thesis, we de-
fine cell death or loss as process of cells undergoing apoptosis. We declare that cells are proliferating
or non-proliferating until they undergo apoptosis. We remark that notions cell death, apoptosis and
cell loss are interchangeable in this chapter. The difference between programmed cell death, apopto-
sis, and necrosis occurring after radiotherapy has been discussed in paperIllidge (1998). However,
we do not differentiate between these notions in our mathematical model.

Numerous mathematical models have been developed to analyse the effects of radiotherapyBaraz-
zoul et al. (2010); Basseet al. (2010); Enderlinget al. (2006); Rockneet al. (2009). Many of the
proposed methods involve the construction of a mathematical model to explain the flow cytometry
data of cancer cell lines after irradiation. In this chapter, we are going to address and elaborate on
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the methods derived in paperBasseet al. (2010). The model presented inBasseet al. (2010) demon-
strated that an irradiation dose of 9 Gray (Gy) induced long-term cell cycle arrest. While a cancer cell
population unperturbed by any treatment remains in balanced exponential growth (BEG)Bell (1968),
a cancer cell population after exposure to any cancer treatment does not exhibit BEG.

We note here that, for various cancer types, cancer patientsare given radiotherapy in fractions of
1.8 − 2.0 Gy daily on weekdays for 5− 7 weeksKim & Tannock (2005). Radiation dose 2 Gy is
considered to cause a sub-lethal radiation damage to normaltissue. The total weekly radiation dose
9− 10 Gy is broken down to multiple smaller doses along the week to give time for a normal tissue to
recover, which is named as one of the reasons of radiotherapyfailures for some cancer types, seeKim
& Tannock (2005). Our mathematical model is applied to five melanoma cell lines that have been
exposed to one-time irradiation of 9 Gy. Cancer patients never receive radiation dose of total 9 Gy in
a day due to potential sever toxic reactions.

We start by deriving an age-structured mathematical model of a cell population response to radi-
ation therapy to analyse experimental data of human melanoma cell lines from the Auckland Cancer
Society Research Centre. Identical data has been analysed in paperBasseet al.(2010), seeBasseet al.
(2010) for details on cell line derivation and experimental methods applied. Here we undertake the
method presented in paperGuiotto & Ubezio(2000), i.e., we normalise the numerical density function
(previously discussed in Chapter2) and deal with the proportion density function in our age-structured
model. We then apply our mathematical model to experimentaldata extracted from flow cytometry
profiles. Such profiles show proportion distribution among cell cycle phases at different time points.
The existence of the age-structured model solution has beendiscussed inGuiotto & Ubezio(2000).

Later, we reduce the model to a nonlinear differential - algebraic equation (DAE) system in order
to determine the arrest and cell loss impact on the transition rates between the cell cycle phases. We
use the DAE system because normalisation of the system, i.e., dealing with the varying proportions
at each time step, leads to a constraint that the sum of proportions in all phases combined is equal
to one at every time step. The aim of this model is to determinethe initial proliferating fraction and
proportion of a cancer cell population that continues proliferating for more than 96 hours after the
irradiation of 9 Gy. Experimental data was provided for various time points up to 96 hours. We
initially assume that, within 96 hours after irradiation, full effects of cancer treatments, i.e., the arrest
of the transition rates and cell death, can be detected. The flow cytometry profile data of human
melanoma cell lines has been provided. These data include flow cytometry profiles of unperturbed
cancer cell lines, cancer cell lines treated by paclitaxel at a concentration of 200 nM, cancer cell lines
treated by 9 Gy strength irradiation, and a combined treatment of paclitaxel and 9 Gy irradiation.
We cannot extract enough information from radiation data alone; thus, paclitaxel and the combined
treatment flow cytometry profiles are vital. Flow cytometry data of cell lines treated with paclitaxel,
in addition to that of radiation, are used to provide the uniqueness of the calculated values of arrested
transition rates.

In Basseet al.(2010), theoretical profiles generated by the mathematical modelare compared with
the experimental flow cytometry profiles at various time points. Flow cytometry profiles of irradiated
cell lines and irradiated cell lines with applied paclitaxel are used to determine if arrest occurs in the
G1 or G2 phase. Authors of paperBasseet al. (2010) concluded that apoptosis does not occur after
irradiation of the cell lines.

In this chapter, we estimate the proportion of the cancer cell population in each of the cell cycle
phases (G1, S, and combinedG2M) from flow cytometry profiles and then use this estimate as input
data for our optimization routine. Since the flow cytometry method cannot distinguish the difference
between theG2 andM phases (due to the fact that DNA contents in both phases are twice that of the
S-phase), we used a combinedG2M-phase in our mathematical model. We have assumed that cancer
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4.2 Mathematical model of cycling population. Cancer cell population dynamics after
radiotherapy.

cells can respond to radiation by cell cycle arrest, senescence, and cell death. There is evidence that
radiation at lower doses produces damage that can lead to cell death but it can also be fairly rapidly
repaired, while higher doses produce damage that is irreparable, and cells go into long-term cell cycle
arrestPawlik & Keyormarsi(2004). After radiation, some cells are lost by cell death (which makes
no contribution to the flow cytometry profiles) and some by senescence (which contributes to the
flow cytometry profiles), while others proliferate. We aim toestimate the proportion of proliferating
cells. It is known that a small fraction of the initial population (0.1-10%, depending on the cell line)
survives radiation (also called the surviving fraction) and that this fraction is the population that grows
in a surviving colony assayBaguley(2011). Ultimately, we expect that our model will provide similar
arrest values, as inBasseet al. (2010), if the cell loss (death) rate is not included. Moreover, in
advance toBasseet al. (2010), we estimate the proportion of proliferating cells after the irradiation
dose of 9 Gy. The main difference between the model presented in this chapter and the one examined
in Basseet al. (2010) is that in our model does not require experimentally estimated transition rate
values, apoptosis rates and doubling times as input variables. We used a DAE system as oppose to
the ODE/PDE system used inBasseet al. (2010). Furthermore, we have estimated the surviving
fraction of the population exposed to a single dose of irradiation and the transition rates between the
consecutive phases.

This chapter presents several mathematical models that were constructed to utilise the experimen-
tal data of a cancer cell population that was first, unperturbed by any treatment, second, perturbed
by 200 nM paclitaxel, third, perturbed by a combined treatment of 200 nM of paclitaxel and 9 Gy
irradiation, and, four, perturbed by the irradiation of 9 Gy. Derivation of the mathematical model of
radiation effects on cancer cell population dynamics is shown by introducing a general model with
modifications made to fit the provided experimental data.

4.2 Mathematical model of cycling population. Cancer cell population
dynamics after radiotherapy.

The following model is constructed to track the proliferating proportion of the cell population after
radiation therapy. It describes temporary varying proportions observed after the irradiation of cancer
cell lines.

4.2.1 Age-distribution system

Our mathematical model, presented in this chapter, shows the response to ionising radiation treatment
(senescence, arrest, and cell death) by including the arrest and senescence phases that branch fromG1

andG2M phases and the cell loss rate arising from theG2M - phase, as depicted in Figure4.1, where
Senk with k ∈ {1, 2} represents the senescence phase andAk defines the arrest state for the appropriate
cell cycle phase. The transition rates between phases are described in Table4.1.

We proceed with defining the partial differential equation (PDE) system for our model. Later,
we simplify it in order to apply the experimental data from flow cytometry profiles. Flow cytometry
profiles illustrate the proportion of the cell population ineach of theG1, S, and combinedG2M phases.
An example of a flow cytometry profile can be seen in Figure1.3.
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S-phase

G1-phase

G2M-phase
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Sen2-phase

A2-phase

rG1→S

rS→G2M

rG2M→G1

rD

rA1

rA2

rSen1

rA3

rA4

rSen2

Figure 4.1: Diagram of the cell-cycle control ofin vitro tumour cells perturbed by radiation. Transition
rates are explained in Table4.1.

We define a general age-structured model as follows:

∂nG1(t, τ)

∂t
+
∂nG1(t, τ)

∂τ
= −[rG1→S(t, τ) + rA1(t, τ) + rS en1(t, τ)]nG1(t, τ) + rA2(t, τ)nA1(t, τ), (4.2.1a)

∂nS(t, τ)
∂t

+
∂nS(t, τ)
∂τ

= −rS→G2M(τ)nS(t, τ), (4.2.1b)

∂nG2M(t, τ)

∂t
+
∂nG2M(t, τ)

∂τ
= −[rG2M→G1(t, τ) + rA3(t, τ) + rS en2(t, τ) + rD(t, τ)]nG2M(t, τ)

+ rA4(t, τ)nA2(t, τ), (4.2.1c)

∂nA1(t, τ)

∂t
= rA1(t, τ)nG1(t, τ) − rA2(t, τ)nA1(t, τ), (4.2.1d)

∂nS en1(t, τ)

∂t
= rS en1(t, τ)nG1(t, τ), (4.2.1e)

∂nA2(t, τ)

∂t
= rA3(t, τ)nG2M(t, τ) − rA4(t, τ)nA2(t, τ), (4.2.1f)

∂nS en2(t, τ)

∂t
= rS en2(t, τ)nG2M(t, τ), (4.2.1g)
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with the renewal distribution conditions:

nG1(t, τ = 0) = 2
∫ ∞

0
rG2M→G1(t, τ)nG2M(t, τ) dτ, (4.2.2a)

nS(t, τ = 0) =
∫ ∞

0
rG1→S(t, τ)nG1(t, τ) dτ, (4.2.2b)

nG2M(t, τ = 0) =
∫ ∞

0
rS→G2M(τ)nS(t, τ) dτ, (4.2.2c)

and the initial age distribution:

nG1(t = 0, τ) = n0
G1

(τ), (4.2.3a)

nS(t = 0, τ) = n0
S(τ), (4.2.3b)

nG2M(t = 0, τ) = n0
G2M(τ), (4.2.3c)

nA1(t = 0, τ) = n0
A1

(τ), (4.2.3d)

nS en1(t = 0, τ) = n0
Sen1

(τ), (4.2.3e)

nA2(t = 0, τ) = n0
A2

(τ), (4.2.3f)

nS en2(t = 0, τ) = n0
Sen1

(τ), (4.2.3g)

wherenm with m ∈ {G1,S,G2M,A1,A2,Sen1,Sen2} represents the number density function at ageτ
at timet in a respective phase. Transition rates are shown in Table4.1. Throughout this chapter, it is
assumed that the maximum cell ageT → ∞. We have taken into account that cells in the senescent
phase do not age; this assumption has also been made for cellsin the arrest phase. Our model keeps
track of the proportion of cells lost due to apoptosis, because system (4.2.1) expresses the dynamics
of the cell population with a removal class (or cell death rate rD). Flow cytometry profiles do not track
the proportion of cells lost due to treatment; thus, one advantage of our model is that we estimate
cell loss via mathematical means. Observe that the number two on the right-hand-side of the renewal
equation (4.2.2a) is due to the fact that two daughter cells are produced aftermitosis is complete.

We have defined problem (4.2.1)-(4.2.3) for a broad range of parameters that may vary with time
and age. Although, in biological terms, this definition is a more realistic option, it is not simple
enough for numerical calculations with the experimental data provided. Thus, as a first step, we make
all transition rates between phases independent of ageτ. While each cell has to age (grow) biologically
within theG1-phase before moving to theS-phase that also applies forS andG2M phases, we neglect
it in our model. This neglect is due to the lack of experimental estimates that would be needed to
include a minimum time that each cell, on average, spends in aphase before leaving it. However,
transition rates dependent on timet are necessary due to the effects of irradiation. Without any loss of
generality, we impose that all transition rates after the treatment are piecewise linear functions with
respect to timet. The total number of cells in a phasem, Nm(t), was previously defined in Chapter2
as follows:

Nm(t) =
∫ ∞

0
nm(t, τ) dτ, (4.2.4)

wherem ∈ {G1,S,G2M,A1,A2,Sen1,Sen2}. The total number of cells in all of the phasesNtot(t) is
defined as follows:

Ntot(t) =
∑

m

Nm(t). (4.2.5)
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parameter description units

rG1→S rate transitionG1 to S-phase hours−1

rS→G2M rate transitionS to G2M-phase hours−1

rG2M→G1 rate transitionG2M to G1-phase hours−1

rA1 arrest rateG1 to A1-phase hours−1

rA2 rate transitionA1 to G1-phase hours−1

rS en1 senescence rateG1 to Sen1-phase hours−1

rA3 arrest rateG2M to A2-phase hours−1

rA4 rate transitionA2 to G2M-phase hours−1

rS en2 senescence rateG2M to Sen2-phase hours−1

rD apoptosis rate fromG2M-phase hours−1

Table 4.1: Radiation model parameters with descriptions and units.

In addition, we derive formulae for a change in the total number of cells in phasep at time t using
equations (4.2.1)-(4.2.2), identity (4.2.4), and expression limτ→∞ nm(t, τ) = 0. For theG1-phase, the
formula can be written as follows:

dNG1(t)

dt
=

∫ ∞

0

∂nG1(t, τ)

∂t
dτ,

=

∫ ∞

0

(
−
∂nG1(t, τ)

∂τ
− [rG1→S(t) + rA1(t) + rS en1(t)]nG1(t, τ) + rA2(t)nA1(t, τ)

)
dτ,

= n(t, τ = 0)− [rG1→S(t) + rA1(t) + rS en1(t)]
∫ ∞

0
nG1(t, τ)dτ + rA2(t)

∫ ∞

0
nA1(t, τ)dτ,

= 2rG2M→G1(t)NG2M(t) − [rG1→S(t) + rA1(t) + rS en1(t)]NG1(t) + rA2(t)NA1(t). (4.2.6)

Similar ordinary differential equations (ODE) can be derived for the rest of the phases. An additional
equation needs to be derived for the next section. The equation representing the change of the total
number of cells over time, i.e., a time-dependent growth rate for the total number of cells, is defined
as follows:

dNtot(t)
dt

=
∑

m

dNm(t)
dt

= [rG2M→G1(t) − rD(t)]NG2M(t). (4.2.7)
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4.2.2 Probability density system

We have to normalise the age-distribution system in order touse irradiated cancer cell population flow
cytometry data at different time points. We previously defined the probability density function of cells
in Chapter2 and express it here again for a phasem as:

πm(t, τ) =
nm(t, τ)
Ntot(t)

. (4.2.8)

Implying the probability of finding the random variable innm at timet betweenτ andτ + dτ is πm dτ.
Therefore, the proportion of cells in phasem at a given time isΠm(t) and is defined as follows:

Πm(t) =
∫ T

0
πm(t, τ)dτ =

Nm(t)
Ntot(t)

. (4.2.9)

We can then transform problem (4.2.1)-(4.2.3) to a probability density system, given that:

∂πm(t, τ)
∂t

=
∂

∂t
nm(t, τ)
Ntot(t)

=
1

Ntot(t)
∂ nm(t, τ)
∂t

− πm(t, τ)
N′tot(t)

Ntot(t)
. (4.2.10)

We can replace the first term on the right-hand-side of equation (4.2.10), namely, term∂
∂t nm(t, τ), by

using system (4.2.1) and then, by taking into account that transition rates are independent of ageτ, we
can write the probability density equation system as follows:

∂πG1(t, τ)

∂t
+
∂πG1(t, τ)

∂τ
= −[rG1→S(t) + rA1(t) + rS en1(t)]πG1(t, τ) + rA2(t)πA1(t, τ) − πG1(t, τ)

N′tot(t)

Ntot(t)
,

(4.2.11a)

∂πS(t, τ)
∂t

+
∂πS(t, τ)
∂τ

= −rS→G2MπS(t, τ) − πS(t, τ)
N′tot(t)

Ntot(t)
, (4.2.11b)

∂πG2M(t, τ)

∂t
+
∂πG2M(t, τ)

∂τ
= −[rG2M→G1(t) + rA3(t) + rS en2(t) + rD(t)]πG2M(t, τ) + rA4(t)πA2(t, τ)

− πG2M(t, τ)
N′tot(t)

Ntot(t)
, (4.2.11c)

∂πA1(t, τ)

∂t
= rA1(t)πG1(t, τ) − rA2(t)πA1(t, τ) − πA1(t, τ)

N′tot(t)

Ntot(t)
, (4.2.11d)

∂πS en1(t, τ)

∂t
= rS en1(t)πG1(t, τ) − πS en1(t, τ)

N′tot(t)

Ntot(t)
, (4.2.11e)

∂πA2(t, τ)

∂t
= rA3(t)πG2M(t, τ) − rA4(t)πA2(t, τ) − πA2(t, τ)

N′tot(t)

Ntot(t)
, (4.2.11f)

∂πS en2(t, τ)

∂t
= rS en2(t)πG2M(t, τ) − πS en2(t, τ)

N′tot(t)

Ntot(t)
, (4.2.11g)
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with the renewal distribution conditions as:

πG1(t, τ = 0) = 2
∫ ∞

0
rG2M→G1(t, τ)πG2M(t, τ)dτ, (4.2.12a)

πS(t, τ = 0) =
∫ ∞

0
rG1→S(t, τ)πG1(t, τ)dτ, (4.2.12b)

πG2M(t, τ = 0) =
∫ ∞

0
rS→G2M(τ)πS(t, τ)dτ, (4.2.12c)

and the initial age distribution as:

πG1(t = 0, τ) = π0
G1

(τ), (4.2.13a)

πS(t = 0, τ) = π0
S(τ), (4.2.13b)

πG2M(t = 0, τ) = π0
G2M(τ), (4.2.13c)

πA1(t = 0, τ) = π0
A1

(τ), (4.2.13d)

πS en1(t = 0, τ) = π0
Sen1

(τ), (4.2.13e)

πA2(t = 0, τ) = π0
A2

(τ), (4.2.13f)

πS en2(t = 0, τ) = π0
Sen2

(τ). (4.2.13g)

Using equations (4.2.7) and (4.2.9), we define the growth rate functionλ(t) as:

λ(t) =
N′tot(t)

Ntot(t)
= [rG2M→G1(t) − rD(t)]ΠG2M(t). (4.2.14)

We observe thatλ(t) is the time-dependent growth function and the total population grows as:

Ntot(t) = Ntot(0)e
∫ t
0 λ(s)ds. (4.2.15)

This equation is an important parameter in our population model.
By using similar techniques as in equation (4.2.6), we can reduce thePDE system (4.2.11) to anODE
system as the transition rates are independent of age,τ,. Thus, the cell population proportion system
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is as follows:

dΠG1(t)

dt
= 2rG2M→G1(t)ΠG2M(t) − [rG1→S(t) + rA1(t) + rS en1(t)]ΠG1(t) + rA2(t)ΠA1(t) − λ(t)ΠG1(t),

(4.2.16a)

dΠS(t)
dt

= rG1→S(t)ΠG1(t) − rS→G2MΠS(t) − λ(t)ΠS(t), (4.2.16b)

dΠG2M(t)

dt
= rS→G2MΠS(t) − [rG2M→G1(t) + rA3(t) + rS en2(t) + rD(t)]ΠG2M(t) + rA4(t)ΠA2(t)

− λ(t)ΠG2M(t), (4.2.16c)

dΠA1(t)

dt
= rA1(t)ΠG1(t) − rA2(t)ΠA1(t) − λ(t)ΠA1(t), (4.2.16d)

dΠS en1(t)

dt
= rS en1(t)ΠG1(t) − λ(t)ΠS en1(t), (4.2.16e)

dΠA2(t)

dt
= rA3(t)ΠG2M(t) − rA4(t)ΠA2(t) − λ(t)ΠA2(t), (4.2.16f)

dΠS en2(t)

dt
= rS en2(t)ΠG2M(t) − λ(t)ΠS en2(t), (4.2.16g)

with the following initial conditions:

ΠG1(t = 0) = Π0
G1
, (4.2.17a)

ΠS(t = 0) = Π0
S, (4.2.17b)

ΠG2M(t = 0) = Π0
G2M, (4.2.17c)

ΠA1(t = 0) = Π0
A1
, (4.2.17d)

ΠS en1(t = 0) = Π0
Sen1
, (4.2.17e)

ΠA2(t = 0) = Π0
A2
, (4.2.17f)

ΠS en2(t) = Π
0
Sen2
. (4.2.17g)

Equations (4.2.5) and (4.2.9) let us derive the following algebraic expression:
∑

m

Πm(t) = 1, ∀t ≥ 0, (4.2.18)

wherem ∈ {G1,S,G2M,A1,A2,Sen1,Sen2}. Thus, a cell cycle dynamics problem expressed with
an ODE system (4.2.16) with respective initial conditions (4.2.17) and a constraint equation (4.2.18)
becomes aDAE system. Equation (4.2.18) is a constraint expression that has to be satisfied for allt
greater or equal to zero, i.e., the proportions in each phaseof the cell cycle add up to a value of one
at any time. We remind here that ODE system (4.2.16) does not include the proportion of cells dying
due to the treatment because flow cytometry method does not track cell loss.

4.2.3 DAE system for experimental data

For the purposes of the analysis involved in the next section, and in order to formulate the use of the
experimental data, we rearrange system (4.2.16) by combining the proliferating and non-proliferating
cells (arrested and senescent cells) into one phase (as would be seen in the flow cytometry profiles).
We add together the proliferating and non-proliferating fractions of the cell population inG1 andG2M
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phases and denote this variable asPp with p ∈ {G1,S,G2M}:

PG1(t) = ΠG1(t) + ΠA1(t) + ΠS en1(t),

PG2M(t) = ΠG2M(t) + ΠA2(t) + ΠS en2(t),

where we see the non-proliferating proportions ofG1 andG2M phases as the fractionsΠA1(t)+ΠS en1(t)
andΠA2(t) + ΠS en2(t), respectively. Although subdivision in proliferating and non-proliferating cell
subpopulations is desirable, our experimental data do not differentiate between proliferating and non-
proliferating subpopulations. We note that the whole proportion of the cell population inS-phase
detected in flow cytometry is considered to be proliferating, thusΠS = PS. Thus, system (4.2.16)
becomes, through the addition of appropriate equations, asfollows:

dPG1(t)

dt
= 2rG2M→G1(t)ΠG2M(t) − rG1→S(t)ΠG1(t) − λ(t)PG1(t), (4.2.19a)

dPS(t)
dt

= rG1→S(t)ΠG1(t) − rS→G2MPS(t) − λ(t)PS(t), (4.2.19b)

dPG2M(t)

dt
= rS→G2MPS(t) − [rG2M→G1(t) + rD(t)]ΠG2M(t) − λ(t)PG2M(t), (4.2.19c)

with initial conditions provided from the flow cytometry profiles of the unperturbed cancer cell line
populations:

PG1(t = 0) = P0
G1
, (4.2.20a)

PS(t = 0) = P0
S, (4.2.20b)

PG2M(t = 0) = P0
G2M, (4.2.20c)

where new proportions combining the proliferating and non-proliferating populations are defined as
follows:

PG1(t) = ΠG1(t) + ΠA1(t) + ΠS en1(t), (4.2.21a)

PS(t) = ΠS(t), (4.2.21b)

PG2M(t) = ΠG2M(t) + ΠA2(t) + ΠS en2(t). (4.2.21c)

This system still incorporates knowledge of the proliferating proportions:ΠG1(t) andΠG2M(t). The
constraint (4.2.18) arising in cancer cell population proportion dynamics canbe rewritten as follows:

∑

p

Pp(t) = 1, ∀t ≥ 0, (4.2.22)

wherep ∈ {G1,S,G2M}. From equations (4.2.21), we can introduce the following identities:

ΠG1(t) = α(t)PG1(t), (4.2.23a)

ΠG2M(t) = β(t)PG2M(t), (4.2.23b)
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with α(t), β(t) ∈ [0, 1] for all t ≥ 0. We then substitute equations (4.2.23) into the system (4.2.19) as
follows:

dPG1(t)

dt
= 2rG2M→G1(t)β(t)PG2M(t) − rG1→S(t)α(t)PG1(t) − λ(t)PG1(t), (4.2.24a)

dPS(t)
dt

= rG1→S(t)α(t)PG1(t) − rS→G2MPS(t) − λ(t)PS(t), (4.2.24b)

dPG2M(t)

dt
= rS→G2MPS(t) − [rG2M→G1(t) + rD(t)]β(t)PG2M(t) − λ(t)PG2M(t), (4.2.24c)

where the population growth rateλ(t) (note that cancer cell population after irradiation or anycancer
treatment does not exhibit BEG) from equation (4.2.14) can be rewritten as follows:

λ(t) = [rG2M→G1(t) − rD(t)]ΠG2M(t) = [rG2M→G1(t) − rD(t)]β(t)PG2M(t). (4.2.25)

We then introduce new transition rates:

r∗G1→S(t) = α(t)rG1→S(t), (4.2.26a)

r∗G2M→G1
(t) = β(t)rG2M→G1(t), (4.2.26b)

r∗D(t) = β(t)rD(t). (4.2.26c)

This means the transition ratesr∗G1→S(t), r∗G2M→G1
(t) andr∗D(t) have been modified from those of Table

4.1and an asterisk in superscript∗ has been added to highlight the difference. From equations (4.2.23)
and (4.2.26), the following three identities, linking subdivided (namely,Πm ) and not subdivided (Pp)
proliferating subpopulations inG1 andG2M phases, arise:

r∗G1→S(t)PG1(t) = rG1→S(t)ΠG1(t), (4.2.27a)

r∗G2M→G1
(t)PG2M(t) = rG2M→G1(t)ΠG2M(t), (4.2.27b)

r∗D(t)PG2M(t) = rD(t)ΠG2M(t). (4.2.27c)

We subsequently can express theDAE system that is used for numerical calculations as shown in the
next section.

4.2.4 DAE for calculations

We consider a model involving combined proliferating and non-proliferating proportions, as shown in
Figure4.2. Transition rates that have not been affected by the treatment are notified with tilde above
the transition rate symbol. We have assumed that transitionprobability rate from theS-phase to the
G2M-phase has not been affected by irradiation, thusrS→G2M = r̃S→G2M . Using equations (4.2.24),
(4.2.25), and (4.2.26), we can present theDAE system that is then used for our numerical simulations,
as follows:

dPG1(t)

dt
= 2r∗G2M→G1

(t)PG2M(t) − r∗G1→S(t)PG1(t) − λ(t)PG1(t), (4.2.28a)

dPS(t)
dt

= r∗G1→S(t)PG1(t) − r̃S→G2MPS(t) − λ(t)PS(t), (4.2.28b)

dPG2M(t)

dt
= r̃S→G2MPS(t) − [r∗G2M→G1

(t) + r∗D(t)]PG2M(t) − λ(t)PG2M(t), (4.2.28c)
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S-phase

G1-phase

G2M-phase

D-p����

r∗G1→S(t)

r̃S→G2M

r∗G2M→G1
(t)

r∗D(t)

Figure 4.2: Diagram of the cell-cycle control ofin vitro tumour cells perturbed by radiation, showing
the proportions in each phase. This diagram is compatible with flow cytometry data. We note that
flow cytometry profiles do not track cell loss/death proportion.

with the following constraint equation:

1 = PG1(t) + PS(t) + PG2M(t), t ≥ 0. (4.2.29)

From equation (4.2.25), we can see that the cancer cell population after irradiation grows at rate
λ(t) = [r∗G2M→G1

(t) − r∗D(t)]PG2M(t), with the initial population distributed among phases as follows:

PG1(t = 0) = P0
G1
, (4.2.30a)

PS(t = 0) = P0
S, (4.2.30b)

PG2M(t = 0) = P0
G2M. (4.2.30c)

The model investigates theDAE system rather than anODE one because constraint equation (4.2.29)
must be satisfied at every internal calculation point. In ourcalculation, we use system (4.2.28) with
side conditions (4.2.29) and (4.2.30) and the methods shown in Section4.3to estimate transition rates
r∗G1→S(t), r∗G2M→G1

(t), andr∗D(t). Since cell death cannot be estimated successfully after radiotherapy
via experimental means, we use a mathematical model describing the effects of the combined treat-
ment of radiotherapy and paclitaxel to determine cell loss.In subsequent sections, we replace the
estimation of transition rater∗D(t) with cell death rateλR(t) = −r∗D(t)PG2M(t), as explained in Section
4.3.

It should be noted here that we simplified system (4.2.16) in order to be able to use the experimen-
tal data. We aim with our model, which contains a removal class, to recreate results from paperBasse
et al. (2010); moreover, we aim to estimate the proportion of cells that keeps proliferating after irra-
diation.

66



4.3 Non-cycling population models. Estimating arrested transition rate r∗G1→S(t) and cell loss
due to paclitaxel and radiation treatments

S-phase

G1-phase

G2M-phase

DTx-phase

r̃G1→S

r̃S→G2MrDTx

Figure 4.3: Diagram of the cell-cycle control ofin vitro tumour cells perturbed by paclitaxel.

4.3 Non-cycling population models. Estimating arrested transition rate
r∗G1→S(t) and cell loss due to paclitaxel and radiation treatments

The following models are introduced for the purposes of applying the experimental data of the can-
cer cell population treated by paclitaxel and a combinationof the paclitaxel and irradiation that are
schematically depicted in Figures4.3and4.4, respectively. We observe that the experimental data of
the cancer cell population’s response to irradiation aloneis not sufficient to ensure the uniqueness of
problem (4.2.28) - (4.2.30) parameters, namely transition ratesr∗G1→S(t), r∗G2M→G1

(t), and death rate
λR(t). Therefore, the experimental data of the cancer cell population perturbed by paclitaxel and pacli-
taxel with radiation is used. Since, in subsequent sections, we compare the proportion in theG1-phase
for different treatments, we will use superscripts Tx for paclitaxel, TxR for the combined treatment of
paclitaxel and radiotherapy, andR for radiotherapy, e.g.,ΠTxR

G1
(t) depicts the proliferating proportion

in G1-phase after a combined radiation and paclitaxel treatmentat timet. The relationship between
notionsΠ andP for each phase are shown in equation (4.2.21).

4.3.1 The paclitaxel model

The response of the cancer cell population to paclitaxel wasanalysed in Chapter3. Here, we introduce
a DAE system describing the dynamics of proportions of the cancercell population after treatment
with paclitaxel. The aim of the paclitaxel treatment response mathematical model is to estimate the
death rate of the cancer population after exposure to paclitaxel. We start by introducing a conservation
system that includes a death phaseDTx. TermsP̆w with w ∈ {G1,S,G2M,DTx} represent the propor-
tion distribution of the population among the phases and canbe expressed as̆Pw(t) = N̆w(t)/N̆T (t),
whereN̆w(t) is a number of cells inw phase and̆NT(t) =

∑
w N̆w(t). Cell loss proportion of population

P̆DTx is considered to be a part of the total population, thus the growth (or death in the case of non-
cycling population) rateλ(t) is equal to zero at all times. Transition ratesr̃G1→S and r̃S→G2M notify
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the transition probability rate between the respective phases of the population that is unperturbed by
any treatment. Paclitaxel interferes with the normal breakdown of microtubules during cell division,
cells in mitosis are arrested and prevented from dividing; therefore, this effect is incorporated into our
model by setting the transition rate from theG2M-phase to theG1-phase to zero. So the resulting
conservation system, schematically depicted in Figure4.3, is as follows:

dP̆G1(t)

dt
= −̃rG1→SP̆G1(t), (4.3.1a)

dP̆S(t)
dt

= r̃G1→SP̆G1(t) − r̃S→G2MP̆S(t), (4.3.1b)

dP̆G2M(t)

dt
= r̃S→G2MP̆S(t) − rDTx(t)P̆G2M(t), (4.3.1c)

dP̆DTx (t)

dt
= rDTx(t)P̆G2M(t), (4.3.1d)

with a constraint equation:

1 = P̆G1(t) + P̆S(t) + P̆G2M(t) + P̆DTx(t), t ≥ 0. (4.3.2)

The initial conditions are:

P̆G1(t = 0) = P0
G1
, (4.3.3a)

P̆S(t = 0) = P0
S, (4.3.3b)

P̆G2M(t = 0) = P0
G2M, (4.3.3c)

P̆DTx(t = 0) = 0. (4.3.3d)

Since, in the case of a conservation system approach, we require experimental estimates of cell loss
proportion, but experimental estimates of cell loss after exposure to paclitaxel are not reliable, so
we have to use aDAE system with a removal class similar to problem (4.2.28) - (4.2.30). From
equations (4.2.5) and (4.2.9), we can express proportions inG1, S, andG2M phases (namely,Pp(t)
with p ∈ {G1,S,G2M}) for the case in which the cell loss phase is not included in the sum of the total
cell number asPp(t) = Np(t)/Ntot(t). Notions of the number of cells in phasesNp(t) and N̆w(t) are
interchangeable with those of phases -G1, S, andG2M. We can then express proportionP̆p(t) in p
phase withp ∈ {G1,S,G2M}, in the case of a conservation system approach, or with the proportion
Pp(t) in the case of a system with a removal class, as follows:

P̆p(t) = Pp(t)[1 − P̆DTx(t)], where p ∈ {G1,S,G2M}. (4.3.4)
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Equation (4.3.4) is substituted, using the appropriate phase index, into problem (4.3.1) - (4.3.3) and
the following result is derived:

dPG1(t)

dt
= −̃rG1→SPG1(t) − λTx(t)PG1(t), (4.3.5a)

dPS(t)
dt

= r̃G1→SPG1(t) − r̃S→G2MPS(t) − λTx(t)PS(t), (4.3.5b)

dPG2M(t)

dt
= r̃S→G2MPS(t) − rDTx(t)PG2M(t) − λTx(t)PG2M(t), (4.3.5c)

1 = PG1(t) + PS(t) + PG2M(t), t ≥ 0. (4.3.5d)

Here,λTx(t) = −rDTx(t)PG2M(t), with the following initial conditions:

PG1(0) = P0
G1
, (4.3.6a)

PS(0) = P0
S, (4.3.6b)

PG2M(0) = P0
G2M . (4.3.6c)

The initial conditions are provided by the proportion distribution of the unperturbed population ob-
tained from flow cytometry profiles. We note that solution of problem (4.3.5)-(4.3.6) will be marked
as PTx

p (t) to notify paclitaxel treatment. We can see from system (4.3.5) that the proportion of the
G1-phase after paclitaxel exposure can be written as follows:

PTx
G1

(t) = PG1(0)e−
∫ t
0 [̃rG1→S+λTx(s)]ds. (4.3.7)

We impose that the death rate,λTx(t), is a piecewise constant function. In our numerical simulations,
we utilise the paclitaxel treatment response data to estimate the cell death from this treatment. The
proportion of the initial cancer cell number that undergoesapoptosis after paclitaxel treatment can
be evaluated using equations (4.3.1d), (4.3.4) and taking into account thatλTx(t) = −rDTx(t)P

Tx
G2M(t).

Thus, we rewrite equation (4.3.1d) as follows:

dP̆DT x(t)

dt
= rDTx (t)PG2M(t)[1 − P̆DT x(t)], (4.3.8)

= −λTx(t)[1 − P̆DT x(t)]. (4.3.9)

By integrating the ODE above with the initial condition (4.3.3d), we get the following expression:

P̆DT x(t) = 1− e
∫ t
0 λTx(s)ds, (4.3.10)

whereλTx(t) = −rDTx(t)P
Tx
G2M(t). We observe that, since the cell population after paclitaxel treatment

does not undergo arrest and is considered to be proliferating, notionsPTx
G1

(t) andΠTx
G1

(t) are inter-
changeable, i.e., all cells inG1-phase are proliferating.

4.3.2 Radiation with the paclitaxel model

Cancer cell population growth perturbed by a combined paclitaxel and radiation treatment is depicted
in Figure 4.4. A combined treatment model has been constructed for the purposes of estimating
transition rater∗G1→S(t) and death rate after combined treatment. The effects of radiotherapy alone
on cells inG1-phase, i.e.,r∗G1→S(t) can be derived from the combined treatment. We use problem
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(4.2.16)-(4.2.18) as a base for the following combined treatment model. Sincepaclitaxel interferes
with the mitosis stage of the cell cycle, we incorporate thisinto our model by settingrG2M→G1 = 0.
We assume that for the combined treatments of paclitaxel andradiation all cells in the population
have stopped cell division, namelyrG2M→G1 = 0. Observe that the population growth rateλ(t) have
changed. In combined treatment model, we refer to growth rate asλTxR. Then we can rewrite problem
(4.2.16)-(4.2.18) as follows:

dΠG1(t)

dt
= −[rG1→S(t) + rA1(t) + rS en1(t)]ΠG1(t) + rA2(t)ΠA1(t) − λTxR(t)ΠG1(t), (4.3.11a)

dΠS(t)
dt

= rG1→S(t)ΠG1(t) − rS→G2MΠS(t) − λTxR(t)ΠS(t), (4.3.11b)

dΠG2M(t)

dt
= rS→G2MΠS(t) − [rA3(t) + rS en2(t) + rD1(t) + rD(t)]ΠG2M(t) + rA4(t)ΠA2(t)

− λTxR(t)ΠG2M(t), (4.3.11c)

dΠA1(t)

dt
= rA1(t)ΠG1(t) − rA2(t)ΠA1(t) − λTxR(t)ΠA1(t), (4.3.11d)

dΠS en1(t)

dt
= rS en1(t)ΠG1(t) − λTxR(t)ΠS en1(t), (4.3.11e)

dΠA2(t)

dt
= rA3(t)ΠG2M(t) − rA4(t)ΠA2(t) − λTxR(t)ΠA2(t), (4.3.11f)

dΠS en2(t)

dt
= rS en2(t)ΠG2M(t) − λTxR(t)ΠS en2(t). (4.3.11g)

Furthermore, we express the death probability rate in two parts rD1(t) andrD(t) to show the potential
effects of each treatment separately. We note that system (4.3.11) is a conservation system, so adding
the seven equations yieldsλTxR(t) = −[rD1(t)+ rD(t)]ΠG2M(t). The proportion dynamics of cancer cell
population depicted in ODE system (4.3.11) has the following constraint equation :

∑

m

Πm(t) = 1, ∀t ≥ 0, (4.3.12)

wherem ∈ {G1,S,G2M,A1,A2,Sen1,Sen2}. The respective initial conditions are as follows:

ΠG1(t = 0) = Π0
G1
, (4.3.13a)

ΠS(t = 0) = Π0
S, (4.3.13b)

ΠG2M(t = 0) = Π0
G2M, (4.3.13c)

ΠA1(t = 0) = Π0
A1
, (4.3.13d)

ΠS en1(t = 0) = Π0
Sen1
, (4.3.13e)

ΠA2(t = 0) = Π0
A2
, (4.3.13f)

ΠS en2(t) = Π
0
Sen2
. (4.3.13g)

Solution of problem (4.3.11)-(4.3.13) is denoted asΠTxR
m (t). We now examine the growth rates

N′tot/Ntot. The death rate of the population treated with a combinationof paclitaxel and irradiation,
namelyλTxR(t), is assumed to be a piecewise constant function. Now, if we consider model for
radiotherapy without the paclitaxel, the population dynamic equations are as system (4.2.28) but the
death rate is nowλR(t). Death rateλR(t) is incorporated in the growth rateN′tot/Ntot, denoted asλ(t) in
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Figure 4.4: Diagram of the cell-cycle control ofin vitro tumour cells perturbed by paclitaxel and
radiation, with proliferating and non-proliferating cancer cell population subdivision.

system (4.2.28). Again, we impose that the death rate of the population affected by an irradiation dose
alone is a piecewise constant function, namelyλR(t). We have assumed that cell death rateλTx(t) from
the paclitaxel treatment is unaffected by irradiation and has the same value as the one for the paclitaxel
treatment alone. Therefore, the growth (death) rateλTxR(t) of the population treated by paclitaxel and
irradiation can be presumed to be:

λTxR(t) = λTx(t) + λR(t), (4.3.14)

whereλTx(t) = −rD1(t)ΠG2M(t) andλR(t) = −rD(t)ΠG2M(t). Thus, the following statement is true:

|λTxR(t)| ≥ |λTx(t)| f or t ≥ 0. (4.3.15)

Next, we proceed with the derivation of the relationship between transition rates of unperturbed and
perturbed by treatment population. Term ‘unperturbed’ refers to a cell population that has not been
affected by any treatment and ‘perturbed’ to a population that has been exposed to cancer treatment.
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For the simplicity of further analysis, we introduce a new variable, rQ1(t), a transition rate indicating
the probability of a proliferating cell in theG1-phase to enter a non-proliferating state. We replace
terms−[rA1(t) + rS en1(t)]ΠG1(t) + rA2(t)ΠA1(t) in equation (4.3.11a) with a new notionrQ1(t)ΠG1(t) as
follows:

dΠG1(t)

dt
= −[rG1→S(t) + rQ1(t)]ΠG1(t) − λTxR(t)ΠG1(t). (4.3.16)

We assume thatrQ1(t) is non-negative, and define it as follows:

rQ1(t) = rA1(t) + rS en1(t) − rA2(t)
ΠA1(t)

ΠG1(t)
. (4.3.17)

We then solve equation (4.3.16) using the initial condition (4.3.13a) and show that the proliferating
proportion of theG1-phase after the combined radiation and paclitaxel treatment can be expressed as
follows:

ΠTxR
G1

(t) = Π0
G1

e−
∫ t
0 [rG1→S(s)+rQ1(s)+λTxR(s)]ds. (4.3.18)

We have assumed that the proportion of the proliferating cells in theG1-phase after the combined
treatment (namely,ΠTxR

G1
(t)) is equal to the proliferating cell proportion in theG1-phase after paclitaxel

treatmentΠTx
G1

(t) that has been scaled down by cell loss from radiotherapy with death rateλR(t), and
can be expressed as:

ΠTx
G1

(t)eλR(t)t = ΠTxR
G1

(t). (4.3.19)

Thus, from equations (4.3.7), (4.3.18), and (4.3.19), we can see that the following is true:

r̃G1→S ≥ rG1→S(t) f or t ≥ 0. (4.3.20)

A similar inequality can be derived for the transition rate:r̃G2M→G1. A different therapeutic agent such
as carboplatin, which interferes with DNA replication without affecting mitosis, can be used to derive
the following inequality:

r̃G2M→G1 ≥ rG2M→G1(t) f or t ≥ 0. (4.3.21)

We proceed to derive a DAE system that is used in the numericalsimulations for transition rate
r∗G1→S(t) and death rateλTxR estimation. Since flow cytometry profiles do not distinguishbetween
proliferating and non-proliferating cells within a particular phase, we rearrange problem (4.3.11) -
(4.3.13) by using techniques from Section4.2.3, to the following problem and use it for the numerical
simulations discussed in Section4.4.4:

dPG1(t)

dt
= −r∗G1→S(t)PG1(t) − λTxR(t)PG1(t), (4.3.22a)

dPS(t)
dt

= r∗G1→S(t)PG1(t) − r̃S→G2MPS(t) − λTxR(t)PS(t), (4.3.22b)

dPG2M(t)

dt
= r̃S→G2MPS(t) − [rDTx (t) + r∗D(t)]PG2M(t) − λTxR(t)PG2M(t), (4.3.22c)

1 = PG1(t) + PS(t) + PG2M(t), t ≥ 0, (4.3.22d)

72



4.4 Experimental data and calculations

whereλTxR(t) = −[rDTx (t) + r∗D(t)]PG2M(t) and with the initial conditions:

PG1(0) = P0
G1
, (4.3.23a)

PS(0) = P0
S, (4.3.23b)

PG2M(0) = P0
G2M . (4.3.23c)

Similar identities to equations (4.2.27) can be derived from systems (4.3.11) and (4.3.22):

rDTx (t)PG2M(t) = rD1(t)ΠG2M(t), (4.3.24a)

r∗D(t)PG2M(t) = rD(t)ΠG2M(t). (4.3.24b)

The proportion of the cell population that underwent apoptosis after paclitaxel and radiation treatment
(similarly derivable as equation (4.3.10)) can be calculated by the following expression:

PDTxR(t) = 1− e
∫ t
0 λTxR(s)ds, (4.3.25)

where the death rateλTxR(t) = −[rDTx (t) + r∗D(t)]PG2M(t).

4.4 Experimental data and calculations

We have five different types of experimental data available. These terms will be explained in the
following subsections:

1. for the flow cytometry data of unperturbed cell lines, see subsection4.4.2;

2. for the plateau logarithmic reduction values for each cell line, see subsection4.4.2;

3. for the flow cytometry data of cell lines perturbed by paclitaxel, see subsection4.4.3;

4. for the flow cytometry data of cell lines perturbed by paclitaxel and then irradiated, see subsec-
tion 4.4.4;

5. for the flow cytometry data of cell lines perturbed by radiation, see subsection4.4.5.

In order to track the proliferating proportion of the cell population after treatment with radiotherapy,
we have to monitor the proportion of the cell population thatenters theG1-phase (hence, having
undergone mitosis). We cannot extract sufficient information from the flow cytometry profiles of the
irradiated population alone; therefore, we need extra information from the rest of the data provided.
The flow cytometry profiles are analysed using the Cylchred software program provided by Cytonet,
UK, and we obtain estimates of the population proportions subdivided between phasesG1, S, and
G2M at time points - 0, 18, 48, 72, and 96 hours for each cell line for every treatment.

4.4.1 Experimental data extracted from flow cytometry profiles

The flow cytometry profiles were analysed using Cylchred software provided by Cytonet, UK. We
have extracted estimates of population proportions in eachphase from the flow cytometry profiles (an
example of a flow cytometry profile is shown in Figure1.3) for all provided treatments and cell lines.
An example of such data collected for cell lineNZM3 can be seen in Table4.2 that shows variations
of percentages in theG1, S andG2M phases for every treatment at experimental time points from0 up
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treatment hours %G1 %S %G2M

Paclitaxel 200 nM 0 52.25 29.69 18.06
18 4.9546 28.2548 66.7906
48 4.5587 21.8494 73.5919
72 5.3123 36.7733 57.9144
96 5.1227 42.0292 52.8481

Radiation 9 Gy and 0 52.25 29.69 18.06
paclitaxel 200 nM 18 16.8273 27.6499 55.5228

48 7.235 21.497 71.268
72 5.9558 37.4681 56.5761
96 7.1407 36.3593 56.5

Radiation 9 Gy 0 52.25 29.69 18.06
18 19.05 31.34 49.61
48 30.79 38.91 30.3
72 45.09 32.97 21.94
96 45.42 26.93 27.65

Table 4.2: Data extracted from the flow cytometry profiles of cell line NZM3. In paperBasseet al.
(2010), the transition rate from theG1-phase to theS-phase for the unperturbed cell lines is not esti-
mated from mathematical model but rather provided by experimentalists (rG1→S = 0.051). The first
column shows the treatment used. The second column represents the hours at which flow cytometry
profiles were generated for each treatment. Last three columns show the percentages inG1, S, and
G2M phases for every experimental hour for every treatment.

to 96 hours after treatment applications. Percentages in each phase of theNZM3 cell line unperturbed
by any treatment (i.e., in BEG state) are shown in Table4.2at hour zero for every treatment.

4.4.2 Unperturbed data and plateau log reduction value

The flow cytometry data of unperturbed cell lines gives us information about the proportion of the cell
population in each phase (G1, S, and the combinedG2M). Unperturbed data refers to a cell population
that has not been affected by any treatment. InDauksteet al. (2012), we have shown that having
estimates of the proportions in each phase at BEG state and a plateau log reduction value allow us
to calculate unique constant transition rate values between phases (̃rG1→S, r̃S→G2M and̃rG2M→G1) and
the growth rate of the population (λ̃). We can then express population doubling timeTd, from Chapter
2, Td = ln(2)/̃λ. For more information on the plateau log reduction value method, see Chapter3.
Observe we use a tilde to denote the unperturbed transition values and the growth rate.Calculations:
A system of four nonlinear algebraic equations is solved using damped Newton’s method (as showed
in Chapter3).
Estimated variables thus far are transition ratesr̃G1→S, r̃S→G2M, r̃G2M→G1, and the growth rate of the
unperturbed populatioñλ.
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4.4.3 Paclitaxel data

Paclitaxel is a mitotic inhibitor chemotherapy drug. The changes in flow cytometry data in the pro-
portion of theG1-phase are used to determine the cell loss due to the treatment (noted as our variable
λTx(t), introduced in Section4.3). Since we have estimated ther̃G1→S value as shown in Section4.4.2,
we use the equation (4.3.10) showed in Section4.3 to determine the proportion of cells lost after ex-
posure to paclitaxel.
Calculations: Exponential equation (4.3.7) is solved to acquire the estimate of cell loss shown in
Section4.3.
Estimated variables from Section4.4.2 are the transition rates̃rG1→S, r̃S→G2M , r̃G2M→G1, and the
growth rate of the unperturbed populationλ̃. Paclitaxel data provides an estimate of the death rate
λTx(t).

4.4.4 Radiation with paclitaxel data

A response of cell lines to radiation results in senescence,arrest, and apoptosis in both theG1 andG2M
phases. Furthermore, a cell line subsequently exposed to paclitaxel stops dividing, i.e.,rG2M→G1(t) = 0
for t ≥ 0.
Calculations: Built-in MatLab functionsode15sand fminconare used to solve the DAE problem
(4.3.22) - (4.3.23). Optimization functionfmincondetermines transition rater∗G1→S(t). There are four
inputs for the optimization function. The first is derived from the proportions in each phase at the
two consecutive time points. Second is transition rater̃S→G2M, where we assume that the transition
rate from theS-phase toG2M-phase is unaffected by paclitaxel or radiation treatment and has been
determined from the unperturbed data and the plateau log reduction value, as discussed in Section
4.4.2. Third is that the cell death from the paclitaxel treatmentλTx(t) is unaffected by irradiation and
has the same value as for the paclitaxel treatment alone. We assume that paclitaxel treatment has
not affected the transition rate from theG1-phase toS-phase, but irradiation has. We impose that
r∗G1→S(t), if reduced after the irradiation dose, is expected to recover piecewise linearly, as shown in
Figure4.5(a). The solution converges quickly to the optimal value.
Known variables so far are the transition ratesr̃G1→S, r̃S→G2M, r̃G2M→G1, and cell death from the
paclitaxel treatmentλTx(t). Thus, we can estimate the transition rater∗G1→S(t) and the cell death from
irradiationλR(t) (this variable has been introduced in Section4.3) from the provided data.

4.4.5 Radiation data

A response of cell lines to radiation results in respective senescence, arrest and apoptosis in theG1

andG2M phases.
Calculations: Built-in MatLab functionsode15sand fminconare used to solve the DAE problem
(4.2.28) - (4.2.30). Optimization routinefmincondetermines transition rater∗G2M→G1

(t). There are
four inputs for the optimization function. The first is derived from the proportions in each phase at the
two consecutive time points. Second is transition rater∗G1→S(t), which has been determined from the
data of the cell population treated through a combination ofpaclitaxel and irradiation, as discussed in
Section4.4.4. Third is the cell deathλR(t) from irradiation, as determined in Section4.4.4. Fourth is
transition ratẽrS→G2M, where we assume that the transition rate from theS-phase to theG2M-phase is
unaffected by the paclitaxel or radiation treatment and has been determined from the unperturbed data
and the plateau log reduction value, as discussed in Section4.4.2. We also assume that the transition
rate from theG2M-phase to theG1-phase, if reduced in value after the irradiation dose, is expected to
recover piecewise linearly, as shown in Figure4.5(b). The solution converges quickly to the optimal
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value.
Known variables are transition ratesr̃G1→S, r̃S→G2M , r̃G2M→G1, r∗G1→S(t), andλR(t). From the provided
radiotherapy data, we estimate the transition rate:r∗G2M→G1

(t).

4.5 Estimating the initial proliferating fraction

The aim of this model is to estimate the initial proliferating fraction of the cancer cell population after
a one-time irradiation dose of 9 Gy of five cell lines.

It is known that a small fraction of the initial population (0.1-10%, depending on the cell line)
survives radiation (called a surviving fraction in biological terminology), and that this is the population
that grows into a surviving colony assay. Just where these surviving cells come from is unclear, but it
is thought that they will sustain DNA damage and move ultimately to theG2-phase until DNA repair is
complete, whereupon they will divide and re-enter the cell cycle. This re-entry will be asynchronous,
so the surviving population will be distributed through allcycle phases.

4.5.1 Initial proliferating fraction interval

Our model has limitations in estimating the initial proliferating fraction. We can only calculate an
interval where such fraction is located. We introduce a variableΦinit and refer to it throughout this
chapter as the initial proliferating fraction. We define initial proliferating fractionΦinit as a sum of
proliferating proportions inG1, S andG2M phases at time 0 as follows:

Φinit = ΠG1(0)+ ΠS(0)+ ΠG2M(0). (4.5.1)

When calculating the initial proliferating fraction, we assume that cells in theS-phase at hour zero
are all proliferating; therefore, the initial proportion of the cell population inS-phase (as mentioned
before, notionsΠS(0) andP0

S are interchangeable) is added to the proliferating fraction. We assume
that the proportion of the cell population after combined radiation and paclitaxel treatment in theG1-
phase that has moved from theG1-phase to theS-phase within the first 18 hours is the proliferating
fraction of the population in theG1-phase. Since there is radiation induced apoptosis present, we
calculate the proliferating fraction in theG1-phase as follows:

ΠG1(0) = [PTxR
G1 (0)− PTxR

G1
(18)]eλR18. (4.5.2)

The initial proliferating fraction in theG2M-phase (namely,ΠG2M(0)) is not detectable without dif-
ferent chemotherapeutic agents that interfere with DNA replication without affecting mitosis. Thus,
from equations (4.2.27b) and (4.3.21), we can express only the following inequality:

ΠG2M(t) =
r∗G2M→G1

(t)

rG2M→G1(t)
PG2M(t) ≥

r∗G2M→G1
(t)

r̃G2M→G1

PG2M(t), ∀t ≥ 0. (4.5.3)

Therefore, we can estimate only an interval of the proliferating fraction in theG2M-phase, denoted
by FG2M, as follows:

FG2M ∈

[ r∗G2M→G1
(0)

r̃G2M→G1

PG2M(0), PG2M(0)

]
, (4.5.4)

where the initial arrest of the division rater∗G2M→G1
(0) and the unperturbed valuẽrG2M→G1 have been

shown in Figures4.5-4.9. We observe that for cell linesNZM3, NZM4 andNZM13 cell division has
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briefly stoppedr∗G2M→G1
(0) = 0. Using our model, we estimate the initial proliferating fraction of the

population treated with radiotherapy as follows:

Φinit ∈ [ΠG1(0)+ ΠS(0)+ FG2M ]. (4.5.5)

Intervals of initial proliferating fraction estimates of five cancer cell lines are shown in Table4.3 in
column two.

4.5.2 Proliferating fraction interval 96 hours post irradi ation

In this section, we estimate the proliferating fraction, namedΦend, of the cancer cell population at the
final experimental observation time (tend = 96 hours). We define proliferating fractionΦend as a sum
of proliferating proportions in theG1, S, andG2M phases at timetend as follows:

Φend= ΠG1(tend) + ΠS(tend) + ΠG2M(tend). (4.5.6)

As discussed in Section4.5.1, our model is limited to estimating intervals of proliferating proportions
for each cell line. The lower bound, denoted byLB, of the proliferating population proportion after 96
hours post the irradiation enables us to say that at leastLB per cent of the population is proliferating.
It follows that our mathematical model supports that the effect of the irradiation dose is the arrest of
the transition rates, i.e., a decrease in their numerical values.

Taking into account equations (4.2.27), we can rewrite (4.5.6) as:

Φend =
r∗G1→S(tend)

rG1→S(tend)
PG1(tend) + PS(tend) +

r∗G2M→G1
(tend)

rG2M→G1(tend)
PG2M(tend), (4.5.7)

wheretend = 96 hours. Measurement of the transition rates,rG1→S(tend) and rG2M→G1(tend), is not
possible. Thus, we can only provide the lower bound of the proliferating proportion of the population
after irradiation. Using equations (4.3.20) and (4.3.21), we rewrite equation (4.5.7) as:

Φend≥
r∗G1→S(tend)

r̃G1→S
PG1(tend) + PS(tend) +

r∗G2M→G1
(tend)

r̃G2M→G1

PG2M(tend) = LB, (4.5.8)

wheretend= 96 hours, and the right-hand-side of inequality (4.5.8) is referred to as our variableLB.
Our model estimates the interval of the proportion that continues proliferating after 96 hours post

radiotherapy as:
Φend ∈ [LB, 1]. (4.5.9)

Intervals of the proliferating fraction 96 hours post radiotherapy of five cancer cell lines are shown in
Table4.3 in column three.

4.6 Results: transition rate arrest and proliferating fractions

We impose that transition ratesr∗G1→S(t) and r∗G2M→G1
(t), if reduced in value after irradiation, will

recover piecewise linearly. Radiotherapy effects on the transition rates are shown in Figures4.5- 4.9.
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(a) The arrest of transition rater∗G1→S for cell line
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(b) The arrest of transition rater∗G2M→G1
(t) for cell

line NZM3. The dashed line represents the value of
transition ratẽrG2M→G1 of an unperturbed population.
The solid line shows the arrested value ofr∗G2M→G1

(t).

Figure 4.5: Arrest of the transition rates after the irradiation of cell line NZM3. The mathematical
optimization function discussed in Section4.4 produced piecewise linear functions for the transition
rates:r∗G1→S(t) andr∗G2M→G1

(t), shown in subfigures (a) and (b), respectively.

4.6.1 NZM3 cell line

From our model, we estimated that after the irradiation cancer cell population taken from cell line
NZM3 initially stopped cell division for 18 hours, as can be seenin Figure 4.5(b), but recovered
within 96 hours to 75% of its unperturbed value. Radiotherapy had no impact on the cell population
transition probability from theG1 - phase toS - phase, as can be seen in Figure4.5(a). Apoptosis
induced by irradiation was close to 1%. An experimental estimate for the recovering fraction of 6%.
We present the initial proliferating interval calculated via our model in Table4.3.

4.6.2 NZM4 cell line

Our model predicted an initial decrease in transition rater∗G1→S(t) to 63% of its unperturbed value and
full recovery to its unperturbed value within 48 hours afterirradiation, as shown in Figure4.6(a). The
cell division rate was estimated to drop to zero abut startedto recover immediately and reached its
unperturbed value over 96 hours after irradiation, as shownin Figure4.6(b). The death rate induced
by irradiation was close to zero.

4.6.3 NZM5 cell line

Irradiation had not stopped cell division for theNZM5 cell line, as shown in Figure4.7(b). It initially
reduced transition rater∗G2M→G1

(t) to 31% of its unperturbed value and 49% of its unperturbed value
after 96 hours. Transition rater∗G1→S(t) was not affected, as can be seen in Figure4.7(a). Apoptosis
induced by irradiation was estimated at 4%.

4.6.4 NZM6 cell line

Numerical simulations proposed an initial drop in the valueof transition rater∗G1→S(t) to 57% of its
unperturbed value with full recovery within 72 hours, as shown in Figure4.8(a). Cell division rate
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(a) The arrest of transition rater∗G1→S for cell line
NZM4. The dashed line represents the value of tran-
sition ratẽrG1→S of an unperturbed population. The
solid line shows the arrested value ofr∗G1→S(t).
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(b) The arrest of transition rater∗G2M→G1
(t) for cell

line NZM4. The dashed line represents the value of
transition ratẽrG2M→G1 of an unperturbed population.
The solid line shows the arrested value ofr∗G2M→G1

(t).

Figure 4.6: Arrest of the transition rates after the irradiation of cell line NZM4. The mathematical
optimization function discussed in Section4.4 produced piecewise linear functions for the transition
rates:r∗G1→S(t) andr∗G2M→G1

(t), shown in subfigures (a) and (b), respectively.
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(a) The arrest of transition rater∗G1→S for cell line
NZM5. The dashed line represents the value of tran-
sition ratẽrG1→S of an unperturbed population. The
solid line shows the arrested value ofr∗G1→S(t).
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(b) The arrest of transition rater∗G2M→G1
(t) for cell

line NZM5. The dashed line represents the value of
transition ratẽrG2M→G1 of an unperturbed population.
The solid line shows the arrested value ofr∗G2M→G1
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Figure 4.7: Arrest of the transition rates after the irradiation of cell line NZM5. The mathematical
optimization function discussed in Section4.4 produced piecewise linear functions for the transition
rates:r∗G1→S(t) andr∗G2M→G1

(t), shown in subfigures (a) and (b), respectively.
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(a) The arrest of transition rater∗G1→S for cell line
NZM6. The dashed line represents the value of tran-
sition ratẽrG1→S of an unperturbed population. The
solid line shows the arrested value ofr∗G1→S(t).
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Figure 4.8: Arrest of the transition rates after the irradiation of cell line NZM6. The mathematical
optimization function discussed in Section4.4 produced piecewise linear functions for the transition
rates:r∗G1→S(t) andr∗G2M→G1

(t), shown in subfigures (a) and (b), respectively.

r∗G2M→G1
(t) initially underwent arrest to 9% of its unperturbed value and reached a new plateau value

at 51% of the unperturbed rate within 24 hours after irradiation. Apoptosis caused by the treatment
was close to 1%.

4.6.5 NZM13 cell line

Our model suggests that cell divisionr∗G2M→G1
(t) was initially stopped due to irradiation, with imme-

diate recovery reaching 44% of the unperturbed value, as shown in Figure4.9(b). We remark that it
a new plateau value has not been reached during 96 hours as canbe seen for other cell lines. Tran-
sition rater∗G1→S(t) initially dropped to 19% of the unperturbed value and recovered to 86% of the
unperturbed value but also seems not have reached a new plateau value, as shown in Figure4.9(a).
We note that population doubling timeTd has been experimentally estimated as 76.8 hours (see Table
4.4). This cell line’sTd is longer compared to the other four cell line population doubling times. This
suggests that the transition rate recovery duration is correlated to the population doubling time. Our
model suggests that cell death due to irradiation was close to 1%. Cell number measured 96 hours
after radiation at 9 Gy was 75% of that expected, and our modelsuggests that it is 68%, due solely to
cell cycle arrest and not cell death, see Table4.4.

4.6.6 Proliferating cell population proportions

We present the proliferating proportion interval for each cell line in Table4.3. For example, the pro-
liferating proportion of cell cultureΦend taken from cell lineNZM3 can be calculated with equation
(4.5.8) as follows: firstly, estimate ratiosr∗G1→S(tend)/̃rG1→S andr∗G2M→G1

(tend)/̃rG2M→G1 from Figure
4.5 and, secondly, use Table4.2, which contains the values of the proportions of populations in each
phase after 96 hours post-irradiation. From Table4.3, we can see that following 96 hours after expo-
sure to the radiation of 9 Gy, the cell population of theNZM3 cell line culture will be composed of at
least 93.2% of proliferating cells.
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Figure 4.9: Arrest of the transition rates after the irradiation of cell line NZM13. The mathematical
optimization function discussed in Section4.4 produced piecewise linear functions for the transition
rates:r∗G1→S(t) andr∗G2M→G1

(t), shown in subfigures (a) and (b), respectively.

The recovering survival fraction, denoted byΦexperim, was experimentally measured for every cell
line. It is an estimate of colonies counted after 1-3 weeks over the initial number of cells seeded.

We have shown in Table4.3 the proliferating proportion intervals of the cancer cell populations
taken from five cell lines. The second column,Φinit , shows the interval of the initial proliferating
fraction after a one-time irradiation dose (att = 0) for each cell line estimated by our model. The third
column,Φend, presents the interval of the proliferating cell proportion of each cell line after 96 hours
following irradiation. Column four,Φexperim, shows the experimental estimates of the proliferating
fraction for each cell line.

4.6.7 Cell loss and expected number of cells

Table4.4 shows the parameters of cell cycle dynamics for five cell lines. We have calculated the
population doubling times using the plateau log reduction method (discussed in Chapter3) for cell
lines NZM5 andNZM6. For the rest of the cell lines, we used the experimental estimates of the
population doubling times, which were obtained by constructing a growth curve. The transition rates
between respective phases, calculated with methods described in Section4.4.2, have been shown in
columns three to five in Table4.4. We have estimated from equation (4.3.10) the initial proportion
of the population lost within 18 hours following the paclitaxel treatment application for each cell line
from. We refer to it asT xLossand present in column six. By utilising the arrested ratesr∗G1→S(t)
andr∗G2M→G1

(t) in Figures4.5 - 4.9, we have calculated from system (4.2.28) the proportion of cell
number expected after 96 hours, e.g., cell lineNZM13 has 68% of the expected number of cells after
96 hours following irradiation; and refer to asEMod. Column eight in Table4.4, EExperim, shows the
experimental estimate of the expected proportion of cell number measured 96 hours after irradiation
at 9Gy.
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Cell line Φinit Φend Φexperim

NZM3 [0.67, 0.85] [0.93, 1] 0.06

NZM4 [0.55, 0.76] [1, 1] 0.20

NZM5 [0.23, 0.32] [0.83, 1] 0.20

NZM6 [0.32, 0.44] [0.82, 1] 0.02

NZM13 [0.35, 0.51] [0.75, 1] 0.08

Table 4.3: Proliferating proportion intervals of the cancer cell population taken from five cell lines.
The second column,Φinit , shows the interval of the proliferating fraction after a one-time irradiation
dose (att = 0) for each cell line estimated by our model. The third column,Φend, indicates the interval
of the proliferating cell proportion of each cell line after96 hours following irradiation. Column four,
Φexperim, shows the experimental estimates of the proliferating fraction for each cell line.

4.7 Discussion

We used optimization methods in order to estimate the initial proliferating fraction and the proliferat-
ing proportion of the population after 96 hours following a one-time irradiation dose.

We analysed five cell lines, identical to the ones in paperBasseet al.(2010), and our mathematical
model results agreed with the model presented in paperBasseet al.(2010), i.e., cancer cell population
growth undergoing arrest and little cell death occurring due to irradiation. We imposed that the tran-
sition rates from theG1-phase to theS-phase and from theG2M-phase to theG1-phase, if decreased
in value, would recover in a piecewise linear mode after radiotherapy.

A significant difference between our mathematical model and that inBasseet al. (2010) is in es-
timation of transition rates. We estimated the unperturbedpopulation transition rates (namely,r̃G1→S,
r̃S→G2M and̃rG2M→G1) by applying a mathematical model rather than using values provided by experi-
mentalists. We used the plateau log reduction value (discussed in Chapter3) to calculate all transition
rates of the unperturbed cancer cell population; therefore, our numerical values differed from those
given inBasseet al. (2010).

After an irradiation dose, the cell division rates (i.e., the transition rate from theG2M - phase to
theG1 - phase) for cell linesNZM3, NZM5, andNZM6 plateaued at a lower value than they did in
the unperturbed state. The cancer cell population taken from cell lineNZM4 recovered from radiation
within the 96 hours after treatment and reached the originalunperturbed BEG state. A one-time
irradiation dose of 9 Gy for some cell lines did not induce a long-term cell cycle arrest, as we can see
in Table4.3, the proliferating proportionΦend after 96 hours post-irradiation is equal to 1. For cancer
cell line NZM13, transition rates did not plateau within 96 hours. From Figures4.5 - 4.9 and Table
4.4, we can see that the transition rate speed of recovery is related to the doubling time: the shorter
the doubling time, the faster the recovery to the unperturbed value or a new plateau value.

Cell loss induced by irradiation is approximately 1% for every cell line apart fromNZM5, which
produced a 4% cell loss within 96 or 72 hours. Our mathematical model estimates of the proportion of
cells expected after 96 hours (EMod) are shown in the seventh column of Table4.2. An experimental
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Cell Line Td r̃G1→S r̃S→G2M r̃G2M→G1 Tx Loss EMod EExperim

(hours) (hours−1) (hours−1) (hours−1)

NZM3 41∗ 0.04781 0.06723 0.09361 0 1 n.a.

NZM4 46∗ 0.05105 0.05406 0.07258 0 1 n.a.

NZM5 31.2 0.06215 0.09782 0.11129 0.32 0.54n.a.

NZM6 27.5 0.05583 0.12967 0.16426 0.18 0.75n.a.

NZM13 76.8∗ 0.02297 0.04254 0.04889 0.12 0.68 0.75

Table 4.4: Parameters of cell cycle dynamics for five cell lines. Column two,Td, shows the popu-
lation doubling time of each cell line: asterisks indicate the doubling times that are experimentally
estimated;Td values with no asterisks show that the doubling time is calculated from the plateau log-
arithmic reduction value. Columns three to five show the transition rate values from respective phases
of the unperturbed cancer cell population calculated with the methods discussed in Section4.4.2. Col-
umn six shows the calculated value of the proportion of the initial population number lost within 18
hours after the paclitaxel treatment application of each cell line, which are the methods discussed in
Section4.4.3. Column seven,EMod, indicates the proportion of cell number expected after 96 hours.
Column eight,EExperim, shows the experimental estimate of the expected proportion of cell number
measured 96 hours after irradiation at 9 Gy;n.a. indicates that this data is not available.

observation for that, which was expected for cell lineNZM13 is shown in 75%. In comparison, our
mathematical model derived the expected cell number at 68% of that initial. No experimental data
was available for the other cell lines. Thus, our mathematical estimate was very good for the observed
data point.

Loss of clonogenical survival was experimentally estimated for every cell line and was in a range
of 90− 99%: this percentage of population has lost capability to reproduce indefinitely. We argue
that within 96 hours following irradiation flow cytometry method cannot detect this loss. The initial
proliferating fractionsΦinit and the proliferating proportions of the cell populationΦend for five cell
lines are shown in Table4.3. The initial proliferating fraction interval estimated via our mathemat-
ical model is much higher in value than experimentally estimated ones, because, after irradiation,
some cells do divide once or twice before dying. These cells have lost the capability to reproduce
indefinitely and are considered dead in biological terminology but not in our mathematical approach.
Experimental observations stopped at 96 hours for cells linesNZM3, NZM4, NZM5, andNZM13,
and at 72 hours for cell lineNZM6. These times are at most the length of three average cell cycles
times for some cell lines (we presumed here that the average cell-cycle time is similar to that of pop-
ulation doubling, see Chapter2). A proportion of the population that is not a part of the survival
fraction divides once or twice or more before undergoing apoptosis; thus, our model cannot estimate
the surviving fraction successfully, as experimental observations stop too soon. Our model results do
not agrees with the following statement fromBasseet al. (2010): “the long-term cell cycle arrest,
rather than apoptosis, accounts for much of the loss of viability observed in clonogenicity assays”.
This statement implies that flow cytometry profiles could differentiate what proportion of arrested cell
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population would eventually undergo apoptosis, which is not the case.
The flow cytometry profiles of cell populations perturbed by paclitaxel and paclitaxel in combina-

tion with irradiation were very noisy after certain experimental observation points, and measurements
with Cylchred method seemed very inaccurate.

We note that our data readings, i.e., slight variations in the plateau log reduction value or in
estimates of proportions in each phase from flow cytometry profiles via different methods (Cylchred
or others), affect the result of the unperturbed population transition rates that then affect the results of
the optimization routine. However, it does not affect the conclusions derived from our model that the
transition rates undergo arrest, little cell death occurs within 96 hours, and that the initial proliferating
proportion is much larger in value than the surviving fraction due to the fact that more cells die after
96 hour observation point.

Since little apoptosis is detected via our mathematical model, and the one presented inBasseet al.
(2010) during the first 96 hours after radiotherapy and the entire initial proportion in theS-phase after
irradiation is assumed to be proliferating, the instant result is the proliferating fraction calculated with
our model to be larger than the experimental estimates of theinitial surviving fraction.

For successful estimation of the surviving fraction via mathematical modelling, we require ex-
perimental data beyond the observation point of 96 hours. With our mathematical model, we could
then estimate cell loss that occurs beyond 96 hours, thus leading us to more precise calculation of the
surviving fraction of the cancer cell population after the one-time irradiation dose.
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Chapter 5

Application of the Two-Population Model

There is increasing evidence that the growth of human tumours is driven by a small proportion of tu-
mour stem cells with self-renewal properties. Multiplication of these cells leads to loss of self-renewal
and after division for a finite number of times the cells undergo programmed cell death. Cell-cycle
times of human cancers have been measuredin vivoand shown to vary in the range from two days and
several weeks, depending on the individual. Cells cultureddirectly from tumours removed at surgery
initially grow at a rate comparable to thein vivo rate but continued culture leads to the generation
of cell lines that have shorter cycle times (1-3 days). It hasbeen postulated that the more rapidly
growing sub-population exhibits some of the properties of tumour stem cells and are the precursors
of a slower growing sub-population that comprise the bulk ofthe tumour. We have previously devel-
oped a mathematical model to describe the behaviour of cell lines and we extend this model here to
describe the behaviour of a system with two cell populationswith different kinetic characteristics and
a precursor-product relationship. The aim is to provide a framework for understanding the behaviour
of cancer tissue that is sustained by a minor population of proliferating stem cells.

5.1 Introduction

Stem cells for normal tissues in the human body are thought toact as a reservoir of self renewing cells
and are supported within a spatially constrained microenvironment called a nicheMoore & Lemis-
chka(2006); Watt & Hogan(2000). It is hypothesised that proliferation, apoptosis, senescence, and
differentiation of stem cells are inhibited within the niche, but that once stem cells leave the niche they
are able to proliferate (via a controlled number of cell divisions), migrate to surrounding tissue and
differentiate, constituting the bulk of normal tissue (as illustrated in Figure5.1). There is increasing
evidence that the growth of human tumours is also driven by a population of tumour stem cells that
have the property of self-renewal and are located in a spatially constrained niche microenvironment
Dittmat & Zanker(2009); Lindeman & Visvader(1999); Schatton & Frank(2007); Soleet al. (2008)
but with unlimited proliferation potential, giving rise toprogeny outside the niche that are not spatially
constrained but have limited proliferation potential. While retaining the property of self-renewal in the
niche, tumour stem cells have in many cases lost the ability to respond to niche signals and therefore
continue to proliferateBaguley(2006). When these cells leave the niche, they (i) lose self-renewal
capacity, (ii) continue to proliferate, (iii) fail to differentiate properly and (iv) undergo programmed
cell death after a finite number of cell divisions. These cells form the majority of the tumour tissue.
Their average cell-cycle time can be measuredin vivo and various studies have shown cycle times to
vary in the range from two days to several weeks, depending onthe individualWilson et al. (1988).
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Figure 5.1: Schematic diagram of a niche in a human tissue. Stem cells, located in a spatially con-
strained niche microenvironment but with unlimited proliferation potential, normally divide asymmet-
rically with one daughter cell remaining in the niche and one, once triggered by demand, migrating
from the niche to surrounding tissue. Stem cell progenies proliferate in surrounding body tissue and
eventually (after proliferation ceases) differentiate to become normal tissue cells.

Tumour tissue removed at surgery can be grown in culture and measurements of primary culture
cycle time show a range of 3 days to several weeks, which is similar to that observedin vivo Baguley
& Marshall (2004); Furneauxet al. (2008). Continued culture of clinical tumour material results in
death of the majority of the cells but in the emergence after several months of stably growing cells
called cell lines, as shown by the scheme in Figure5.2. These lines have shorter cell-cycle times than
those of the primary cultures with a range, depending on the individual, of 1-3 days. Notably, the
cell-cycle times of cell lines are correlated to the cell-cycle times of the primary cultures from which
they were initially derived and it has been postulated that cell lines exhibit some of the properties of
tumour stem cellsBaguley & Marshall(2008).

Mathematical models describing the kinetic behaviour of cell lines, both under steady state be-
haviour and following perturbation with radiation and cytotoxic drugs can be found in the literature
Basse & Ubezio(2007); Basseet al. (2003, 2005); Begg(2007). In Johnstonet al. (2006), a math-
ematical model is used to describe stem and semi-differentiated cells in the colonic crypt. In this
chapter, we have combined aspects of these models with our model in Chapter2 to describe the be-
haviour of the tumour tissue in terms of the above stem cell model, where the tumour comprises two
sub-populations with different kinetic properties. One small sub-population of recently migrated stem
cells from the niche exhibits rapid growth (we term this sub-population the ‘rapid sub-population
cells’) and the other slower growing sub-population of partially differentiated stem cell progeny mak-
ing up the bulk of the tumour (termed the ‘slow sub-population cells’). Cell-cycle times and percent-
ages in each phase of the cell cycle have been determined experimentally in cell lines as described in
Section5.2 and these measurements are used to establish estimates of model parameters. It should
be noted here that the term growth refers to the number of cells in the population or sub-population
increasing and not to the actual size of individual cells.

When tumour cells from a surgical sample are placed into culture, the niche structure is destroyed
so that no new stem cells migrate from the niche. The more slowly growing, partially differentiated
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5.1 Introduction

RS
3 to 12 months

Cell cycle time ~ 3 days to several weeks Cell cycle time ~ 1 to 3 days

Primary Culture Cell Line

R

S

Figure 5.2: Schematic diagram of a primary culture of tumourtissue (left), comprising mainly of
relatively slowly growing sub-population of cells (cycle times of 3 days to several weeks) and a small
sub-population with the potential for more rapid growth (cell-cycle times of 1 to 3 days). With contin-
ued culture of the primary culture for several months, the more slowly growing sub-population cells
die and are replaced by more rapidly growing sub-populationcells, termed a cell line.

progeny tumour cells, which form the majority of the population, continue to proliferate and to un-
dergo apoptosis. However, the small population of rapidly growing tumour ‘ex stem’ cells continues
to proliferate and is resistant to apoptosis, such that withcontinuing culture, the proportion of slowly
growing sub-population of cells decreases while that of themore rapidly growing sub-population
increases. Eventually, the proportion of slowly growing sub-population of cells is negligible and vir-
tually the entire population is composed of more rapidly growing sub-population of cells and may be
termed a cell line (Figure5.2).

The aim of this communication is to construct a mathematicalmodel that reproduces the main
elements of this scheme for tumour cells in primary culturesand established cell lines, and apply
this to in vivo tumour growth. In Section5.2, we describe the experimental procedure for measuring
cell-cycle times and cell cycle phase percentages of cell lines. Section5.3 outlines the mathematical
model for the two sub-populations of growing cells and also shows the equilibrium result of the switch
from a high percentage of ‘slow sub-population cells’ (the primary culture case) to a high percentage
of ‘rapid sub-population cells’ (the cell line case). Cell death via time dependent apoptosis is added
to the model in Section5.4. Section5.5 describes two applications of the model. The first compares
model results to experimental cell-cycle times of primary cultures and established cell lines. The
second looks atin vivo tumour cell population growth where a population of slow sub-population
cells is maintained by a fixed number of stem cells in a niche.
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5. APPLICATION OF THE TWO-POPULATION MODEL

5.2 Experimental procedure

5.2.1 Derivation of cell lines from primary cultures

The derivation of the cell lines from melanoma specimens hasbeen reported in several publications
and two references are provided hereMarshallet al. (1993); Parmaret al. (2000). More than 150 cell
lines have now been derived from clinical samples, and of these, 31 have corresponding cell cycle data
from primary cultures. It is from this set that the correlation between the cycle time of the primary
culture and the corresponding cell lines has been obtainedBaguley & Marshall(2004).

5.2.2 Determining cell-cycle times of established cell lines

This has been described in detail in other publicationsBaguleyet al. (1995); Furneauxet al. (2008).
Growth of cultured cells can be measured by direct counting,but direct measurement of clinical
samples grown in primary culture is impossible because of the presence of host cells in the sample and
the loss of tumour cells. However, it was found using tumour cell lines that the degree of incorporation
of 3H-thymidine into DNA at different times after addition of paclitaxel, an inhibitor of mitosis and
cell division, was a function of the measured culture doubling timeBaguleyet al.(1995), as discussed
in Chapter3. It is assumed by biologists that culture doubling time was similar to culture cycle time
for cell lines (i.e., that cell loss was negligible) and developed an empirical formula that related culture
cycle time to the3H-thymidine incorporation data.

5.2.3 Determination of the percentage of cells in each phaseof the cell division cycle

This was determined for established cell lines by fixing the cells, staining with the DNA stain propid-
ium iodide, and measuring the frequencies of cells with differing DNA content using flow cytometry
Holdawayet al. (1992).

5.3 A simple model for primary culture cell populations evolving into
established cell lines

5.3.1 Two-population age-structured model: solution existence, BEG condition

In accordance with tumour tissue comprising newly arrived tumour stem cells and their progeny, it is
assumed that primary culture cell populations are composedof both ‘rapidly growing’ (ex stem cells)
and ‘slowly growing’ (progeny) sub-populations, and that both are further subdivided by cell cycle
phase. We denotenRG1

(t, τ) to be the number density of rapidly growing sub-populationcells in the

G1 phase at timet and ageτ and similarlynRS(t, τ) andnRG2M(t, τ) are the number densities of rapidly
growing sub-population cells in theS and combinedG2M phases, respectively. TheG2 andM-phases
are combined here because they cannot be separated by flow cytometry as described in Section1.5.
Here we use the superscriptR for the rapidly growing sub-population. Cells progress through the cell
cycle by having a rate of transition probabilitys from one phase to the next according to Figure5.3
whererRG1→S is that rate of transition fromG1-phase toS-phase and other rates have similar form as

specified in Table5.1. For the slow growing sub-population cells (superscriptS) we definenSG1
(t, τ),

nSS(t, τ) andnSG2M(t, τ) to be the number densities of the slow growing sub-population cells in theG1, S

andG2M phases, respectively. Cell death via apoptosis is achievedby removing cells at a raterSG1→A
per unit time from the slower growing sub-populationG1-phase compartment.
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5.3 A simple model for primary culture cell populations evolving into established cell lines

parameter description units

t time hours

τ age hours

rRG1→S rate transitionG1 to S-phase hours−1

rapid growing cells rRS→G2M rate transitionS to G2M-phase hours−1

rRG2M→G1
rate transitionG2M to G1-phase hours−1

ρ differentiation rate hours−1

rSG1→S rate transitionG1 to S-phase hours−1

slowly growing cells rSS→G2M rate transitionS to G2M-phase hours−1

rSG2M→G1
rate transitionG2M to G1-phase hours−1

rSG1→A apoptosis rate hours−1

Table 5.1: Model parameters with descriptions and units. The parameters for the slow growing cells
are similar except the superscriptS is added.

The rate of differentiation of the rapidly growing sub-populationG1-phase cells to the slower
growing sub-populationG1-phase cells is denotedρ per unit time.

It is assumed that primary culture cell populations are composed of both ‘rapidly growing’ (ex
stem cells) and ‘slowly growing’ (progeny) sub-populations and that both are further subdivided by
cell cycle phase. We denotenR(t, τ) to be the number density vector of rapidly growing sub-population
cells, thusnR(t, τ) = [nRG1

(t, τ) nRS(t, τ) nRG2M(t, τ)]T . The number densities of slow growing sub-

population cells (superscriptS) we define bynS(t, τ) = [nSG1
(t, τ) nSS(t, τ) nSG2M(t, τ)]T . Similarly to

the age-structure model for one population, as showed in Section 2.2, we define continuous function
n(t, τ) as:

n(t, τ) = [nR(t, τ) nS(t, τ)], (5.3.1)

where vector components are continuous functions on (t, τ) and transition rates are piecewise continu-
ous functions of timet and ageτ. The age-structured two-population growth model can be expressed
(just like in Chapter2) as:

∂

∂t
n(t, τ) +

∂

∂τ
n(t, τ) = −Dout(t, τ)n(t, τ), 0 < t < ∞, 0 < τ < T, (5.3.2)
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Rapid sub-population

G1-phase

S-phase

G2M-phase

Slow sub-population

G1-phase

S-phase

G2M-phase

G0

rRG1→S

rRS→G2M

rRG2M→G1

rSG1→S

rSS→G2M

rSG2M→G1

ρ

rSG1→A

Figure 5.3: Scheme of cell-cycle control of a tumour cell population containing slow and rapidly
growing sub-populations of cells. Each sub-population is further subdivided intoG1, S andG2M-
phases with the possibility that cells can transfer from onephase to the next according to a transition
rate (see Table5.1). Rapid sub-population cells differentiate to become slow sub-population cells at
a rate ofρ per hour. Slow sub-population cells are mortal with apoptosis rate fromG1 phase denoted
rSG1→A per unit time.

with respective side conditions defined as follows:

n(t = 0, τ) = n0(τ), initial age distribution, (5.3.3)

n(t, τ = 0) =
∫ T

0
Din(t, τ)n(t, τ) dτ, t > 0, renewal distribution. (5.3.4)

The matrixDout represents the loss of cells from the various phases via death and transfer to other
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5.3 A simple model for primary culture cell populations evolving into established cell lines

phases, and is defined as:

Dout = diagonal


DR

out

DS
out

 , (5.3.5)

with the following transition rate matrices for rapid and slow compartments:

DR
out(t, τ) =



rRG1→S + ρ 0 0
0 rRS→G2M 0
0 0 rRG2M→G1

 (t, τ), (5.3.6)

and

DS
out(t, τ) =



rSG1→S + rSG1→A 0 0
0 rSS→G2M 0
0 0 rSG2M→G1

 (t, τ). (5.3.7)

The renewal matrixDin represents the gain of cells at ageτ = 0 in each phase and is caused by transfer
from other phases.Din is defined as:

Din =

[
DR

in 0
C DS

in

]
, (5.3.8)

where

DR

in(t, τ) =



0 0 2rRG2M→G1

rRG1→S 0 0
0 rRS→G2M 0

 (t, τ), (5.3.9)

and

DS

in(t, τ) =



0 0 2rSG2M→G1

rSG1→S 0 0
0 rSS→G2M 0

 (t, τ), (5.3.10)

with

C =


ρ 0 0
0 0 0
0 0 0

 . (5.3.11)

The solution of the system (5.3.2)-(5.3.4) is still of the form of equation (2.2.21) from Chapter2.
When solution (2.2.21) is substituted into the renewal condition (5.3.4), the Volterra integral equation
of second kind is as in equation (2.3.1) from Chapter2, we rewrite it here as:

n(t, 0) = FFF(t) +
∫ t

0
K(t, s)n(s, 0) ds, (5.3.12)

where

FFF(t) =
∫ T

t
Din(t, τ) exp

(
−

∫ τ

τ−t
Dout(s+ t − τ, s) ds

)
n0(τ − t) dτ, (5.3.13)

and kernel of integro-equation for rapidly growing sub-population is defined as follows:

K(t, s) = DR

in(t, t − s) exp

(
−

∫ t−s

0
DR

out(ξ + s, ξ) dξ

)
, (5.3.14)

The existence and uniqueness of the solution is given by Theorem 2.3.1 from Chapter2 with the
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5. APPLICATION OF THE TWO-POPULATION MODEL

appropriate interpretations for each compartment.
We continue with the proof of BEG existence for the two-population model with transition rates

now only dependent on ageτ and the derivation of the characteristic equation for each compartment.
We assume that cell population composed of two sub-populations with different kinetic properties
grows exponentially as follows:

n(t, τ) = eλtn̂(τ), (5.3.15)

same assumption was made for one-compartment model in Section 2.4. When the ansatz (5.3.15) is
substituted into equation (5.3.12), just like in Chapter2, we obtain the following nonlinear eigenprob-
lem: [

A(λ) − IΛ
]
n̂(0) = 0, (5.3.16)

now I is the 6-dimensional unit matrix,̂n is the 6-dimensional vector of number density functions,
where the matrixA is as follows:

A =

[
A
R 0
νC A

S

]
, (5.3.17)

with AR andAS given by

A
p2 =

∫ T

0
Dp2

in (s) exp
(
−

∫ s

0
[Dp2

out(s
′) + Iλ] ds′

)
ds, with p2 ∈ {R, S}, (5.3.18)

and

ν =

∫ T

0
ρ(s) exp

(
−

∫ s

0
[rRG1→S(ξ) + λ] dξ

)
ds. (5.3.19)

The structure of matricesAR andAS is as follows:

A
p2 =



0 0 κ
p2
G2M

κ
p2
G1

0 0

0 κ
p2
S 0


, (5.3.20)

for p2 ∈ {R, S}, whereκp with p ∈ {G1,S,G2M} is a positive element and has been defined in equation
(2.4.5) in Chapter2 with two-population model specific transition rates.

The matrixA is now reducible, as its connected graph shows in Figure5.4, slow sub-population
makes no contribution to any stage of rapid sub-population,see Appendix for more on reducible
matrices. So previous approach from Chapter2 is not applicable. However, it can be seen that when
ρ = 0, we have two decoupled algebraic systems. MatricesA

R andAS are irreducible and imprimitive.
Hence, Theorem2.4.1applies to each of the sub-populations individually. This means, there exists a
Λ = 1 and both, the rapid and slow sub-populations, have one positive eigenvalue each, denoted asλR

0
andλS

0 , respectively. These solve the characteristic equations (2.4.6) and (2.4.8), derived in Chapter
2, with the appropriate two-population model transition probability rates.

So now let us consider the coupled system again. As stated above, equation (5.3.16) is reducible,
and is of the form

[
A
R(λ) − IΛ

]
n̂R(0) = 0, (5.3.21)

Cn̂R(0)+
[
A
S(λ) − IΛ

]
n̂S(0) = 0, (5.3.22)
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G1
R SR G2MR G1

S SS G2MS

κRG1
κRS

κRG2M

κSG1
κSS

κSG2M

ν

Figure 5.4: Reducible matrixA diagram.

then Theorem2.4.1applies to the rapid sub-population; therefore, there exists aλR
0 , henceΛ = 1 such

that n̂R(0) > 0 (proven with the Perron-Frobenius theorem presented in Section 2.4). Furthermore, if

λ , λS
0 , then

[
A
S(λ) − IΛ

]
is not singular, and

n̂S(0) = −
[
A
S(λ) − IΛ

]−1
Cn̂R(0). (5.3.23)

If λ = λS
0 , then the Fredholm Alternative theorem applies andCn̂R(0) must be orthogonal kernel

of
[
A
S(λ) − IΛ

]
for a solution to exist, seeKantorovich & Akilov (1982). The solution is then a

combination of the eigenvectorŝnR(0) and̂nS(0) of the uncoupled system.

5.3.2 Two-population model ODE

Two-population age-structured model can be reduced to the ODE system, as shown in Section2.6.
Number of cells inG1-phase for rapid-subpopulation is denoted with variableNR

G1
, whereNR

G1
(t) =∫ T

0
nRG1

(t, τ) dτ, and similar notions have been derived for the rest of the phases. Thus, two-population
dynamics can be modelled by six ordinary differential equations, one for each phase, namely:

dNR

G1

dt
= 2rRG2M→G1

NR

G2M − rRG1→SNR

G1
− ρNR

G1
, (5.3.24)

dNR

S

dt
= rRG1→SNR

G1
− rRS→G2MNR

S , (5.3.25)

dNR

G2M

dt
= rRS→G2MNR

S − rRG2M→G1
NR

G2M, (5.3.26)

for the rapidly growing sub-population cells and

dNS

G1

dt
= ρNR

G1
+ 2rSG2M→G1

NS

G2M − (rSG1→S + rSG1→A)NS

G1
, (5.3.27)

dNS

S

dt
= rSG1→SNS

G1
− rSS→G2MNS

S, (5.3.28)

dNS

G2M

dt
= rSS→G2MNS

S − rSG2M→G1
NS

G2M , (5.3.29)
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ρ < rRG1→S (λR > 0) rSG1→A < rSG1→S (λS > 0) N(t)→ cRvReλRt + cSvSeλSt

ρ < rRG1→S (λR > 0) rSG1→A > rSG1→S (λS < 0) N(t)→ cRvReλRt

ρ > rRG1→S (λR < 0) rSG1→A < rSG1→S (λS > 0) N(t)→ cSvSeλSt

ρ > rRG1→S (λR < 0) rSG1→A > rSG1→S (λS < 0) N(t)→ 0

Table 5.2: Long term behaviour of the solutionN(t) (with t ≥ 0) to equations (5.3.24) - (5.3.29) will
depend on the sign of the eigenvalues (λS andλR) of the system.

for the slower growing sub-population cells. These equations are defined ont > 0 with initial condi-
tions specified att = 0.

If the transition rates between compartments are assumed tobe positive constants then it can be
shown that there are at most two positive real eigenvalues tothis system that can be found by solving
the characteristic equation for the rapid sub-population:

FR(λ) =
(rRG2M→G1

+ λ)(rRS→G2M + λ)(r
R

G1→S + ρ + λ)

2rRG1→SrRS→G2MrRG2M→G1

, (5.3.30)

whereFR(λ) = 1. The functionFR(λ) is a positive cubic and has dominant positive real solution, as
shown in Section5.3.1, which we callλR.
Similarly, the characteristic equation for the slow sub-population is expressed as

FS(λ) =
(rSG2M→G1

+ λ)(rSS→G2M + λ)(r
S

G1→S + rSG1→A + λ)

2rSG1→SrSS→G2MrSG2M→G1

. (5.3.31)

The equationFS(λ) = 1 has only one positive real solution, which we callλS.
The asymptotic analytical solution of this system is described in Table5.2. This solution depends

on the conditions above and can be written in vector form in terms of the positive eigenvalues (λR
andλS) and their corresponding eigenvectors (which we may callvR andvS respectively) and the
constantscR and cS obtained via the initial conditions. The long term proportions in the phases
depend on the eigenvectorsvR andvS and the time it takes to reach this asymptotic state will depend
on the transition rates and the initial conditions. The initial state att = 0 represents the primary culture
and the asymptotic solution represents the established cell line. Experimentally rapid sub-population
cells dominate a cell line so we proceed by running simulations corresponding to parameters chosen
in rows one and two of Table5.2whereλR > 0.

In Figure5.5(a), we see a numerical solution of the system obtained using Runge-Kutta methods
supplied by theode45function in MatLab. The parameter values are summarized in the caption.
The rates of the transition between phases were chosen basedon the transition rates obtained for
unperturbed cell lines inBasseet al. (2005). The remaining have been chosen arbitrarily according
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5.3 A simple model for primary culture cell populations evolving into established cell lines

to the second row of Table5.2 so thatρ, the differentiation rate, is smaller thanrRG1→S, the transition
rate fromG1-phase toS-phase for the rapid sub-population cells. ThusλR is positive and the rapid
sub-population of cells increase. In addition the rate to apoptosis in the slow sub-population of cells
(rSG1→A) is bigger than theG1 to S-phase transition rate (rSG1→S) soλS is negative. However this does
not mean that the slow sub-population cells disappear because there are non-zero slow sub-population
cell components in the eigenvectorvR corresponding toλR. Initially, for the primary culture, we
have assumed that the number of slower sub-population cellsis higher than the number of rapid sub-
population cells, i.e., 99% of slow sub-population cells, 1% of rapid sub-population cells. In Figure
5.5(a), we see the number of slow sub-population cells first decreasing and then increasing again. The
growth rate of the slow sub-population cells, after a time delay, is eventually the same as the rapid
sub-population cells. This can be explained by looking at row 2 of Table5.2where asymptotically the
solution behaves likeeλRt. Eventually the proportion of rapidly growing sub-population cells is much
higher than the proportion of slow growing sub-population cells but the slow growing sub-population
cells are still there, that is the slow growing population does not disappear (Figure5.5(b)). This is
theoretically the established cell line.

For our theoretical established cell line, because the proportion of slow sub-population cells to
rapid sub-population cells is negligible, we may consider the rapid sub-population cells alone. That
is, we set our differentiation rateρ = 0 and investigate equations (5.3.24) - (5.3.26). We can easily
calculate the proportions in each phase that become asymptotically constant. Constant proportions in
the phases are obtained experimentally in cell lines, in equations (3.2.10). LetΠR

G1
be the proportion

of rapidly growing cells in theG1-phase and similar notation for the other phases then we can show:

ΠR

S

ΠR

G1

=
rRG1→S

rRS→G2M + λR
, (5.3.32)

ΠR

G2M

ΠR

S

=
rRS→G2M

rRG2M→G1
+ λR

, (5.3.33)

ΠR

G1
+ ΠR

S + Π
R

G2M = 1. (5.3.34)

We can compute the average cell age in each phase from equations (2.5.42) in Chapter2 (by taking
aging timesτp→ 0, for p ∈ {G1,S,G2M}) as follows:

TR

G1
=

ΠR

G1

(rRG1→S + λR)
, (5.3.35)

TR

S =
ΠR

S

(rRS→G2M + λR)
, (5.3.36)

TR

G2M =
ΠR

G2M

(rRG2M→G1
+ λR)

, (5.3.37)

for each ofG1, S andG2M-phases, respectively.
The doubling time for the established cell line is related through theλR by

TR

d =
ln2
λR
, (5.3.38)
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Figure 5.5: Simulation of the solution to the system equations (5.3.24) - (5.3.29). Initially we assume
there are 10000 cells with 99% slow sub-population cells and1% rapid sub-population cells. The
proportion of cells in each phase for both slow and rapid sub-populations is initiallyG1-phase 53%,
S-phase 31% andG2M-phase 16%. The apoptosis rate is constantrSG1→A = 1 per hour. Transition

rates between the phases for the rapid sub-population cellsarerRG1→S = 0.052729,rRS→G2M = 0.052

and rRG2M→G1
= 1.8 per hour. For the slow sub-population cells, we chose the same transition rates

as the rapid sub-population cells except forrSG1→S which is chosen to be 10% ofrRG1→S (α = 0.1) in
equation (22). The differentiation rate from rapid sub-population cells to slow sub-population cells is
ρ = 0.00001 per hour.

and an estimate of the corresponding average cell age is justthe sum of the proportions in each phase

TR
a =

[ ΠR

G1

(rRG1→S + λR)
+

ΠR

S

(rRS→G2
+ λR)

+
ΠR

G2M

(rRG2M→G1
+ λR)

]
. (5.3.39)

Thus for an established cell line, we have a relationship between proportions in each phase, rate
transitions between phases, population doubling time and cell-age time. Equations (5.3.32)-(5.3.34),
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(5.3.38) and (5.3.39) specify these relationships whereλR is determined by solving equation (5.3.30).
Numerical explorations of these six equations using the damped Newton’s method indicate that even
with no cell loss the cell-age time is not equal to the doubling time, demonstrated before in Figure
2.6.

Experimentally, one can determine the proportions in each phase of an established cell line using
flow cytometry and estimate cell-cycle times as described inSection5.2. In the further calculations,
we assume that experimentally estimated cell-cycle time isequal to what we refer to as the average
cell-age timeTa. We remark here that if we assume that the experimental cell-cycle time is equal
to the removal time, introduced in Section2.5.6, then the qualitative results obtained by using the
average cell-age time carry-over to the removal time notion. In this chapter, terms average cell-age
and cell-cycle time are interchangeable. One can then obtain all the remaining model parameters
using our equations.

5.4 Time dependent apoptosis

In the previous section, we have described a model of a primary culture cell population composed
of mainly a slower growing sub-population of cells changingover time into an established cell line
composed of mainly rapid sub-population cells and a correspondingly shorter cell-cycle time. We
assumed that model parameters were constant, and now we investigate the case where the apoptosis
of a progeny cell (slow sub-population cell) occurs after a number of successive cell divisions. This
statement is inferred from the kinetics ofin vivo human tumours, where the volume doubling time
is much longer than the calculated average cell-cycle time of the individual tumour cells, implying
extensive turnover and therefore death after a number of cell divisions Watson(1991). We do not
track individual cells through successive cell divisions but we can incorporate this phenomenon into
the model by having the apoptosis rate increasing with time.We chose a sigmoid function for the
apoptosis rate

rSG1→A(t) =
µ

1+ β1e−β2t
, (5.4.1)

as depicted in Figure5.6.
We see in Figure5.7(a) that the slower sub-population of cells initially keeps growing while

rSG1→A < rSG1→S as shown in the first row of Table5.2. Since the apoptosis rate value is increasing

aboverSG1→S, we move to the second row of Table5.2, where the slow sub-population cells decrease.
Rapid sub-population cells are resistant to apoptosis and they keep growing exponentially at any
apoptosis rate.

5.5 Model applications

5.5.1 Comparing cell-cycle times of primary cultures and established cell lines

In the laboratory experiments, the cell-cycle times of primary cultures are longer than those of estab-
lished cell lines. This can be seen clearly in Figure5.8where the experimental estimates of cell-cycle
times (see Table5.3) of 22 primary cultures and their corresponding cell lines have been plotted. Two
studies, one in ovarian cancer and one in brain cancer, have shown that cell-cycle times are related to
survivalBaguley & Marshall(2004); Furneauxet al. (2008); therefore, it is important to understand
the underlying dynamics that might cause this phenomenon. In particular, we ask whether our simple
ODE model with the two - slow and rapid sub-populations of cells can recover the data in Figure5.8.
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Figure 5.6: The apoptosis rate as a sigmoid function described in equation (5.4.1). Hereµ = 1,β1 = e7

andβ2 =
1
30.

We proceed as follows. For each of 22 established cell lines,we note the experimentally calcu-
lated cell-cycle times and the proportions in each of theG1, S andG2M phases (see Table5.3). We
assume that the proportion of slow sub-population cells in the established cell line is small compared
to the rapid sub-population cells and we use the six equations (5.3.32)-(5.3.34),(5.3.38), (5.3.39) and
(5.3.30) to find the phase transition rates for the rapid sub-population cells. This in turn can give us
a model estimate of the cell doubling time,TR

d , for the rapid sub-population cells. As an interesting
aside we note that even in the absence of cell death the cell line doubling time is longer than the
cell-cycle time for established cell lines, as depicted in Figure5.9, where we have plotted the model
estimate of the doubling time versus the model input of the experimentally obtained cell-cycle time for
our 22 cell lines. The relationship between the two is described by the non-linear equations mentioned
above but looks almost linear and a least squares regressionline has been fitted.

We make the assumption that the difference in cell-cycle times between the slow sub-population
cells and the rapid sub-population cells is caused by a longer G1-phase transit time in the slow sub-
population cells. Thus we set the transition probabilitiesfor the slow sub-population cells to be the
same as for the rapid sub-population cells with the exception of the rate transition fromG1-phase. We
assume that the rate transition fromG1 to S-phase of the rapid sub-population cells is proportional to
the rate transition fromG1 to S-phase of the slow sub-population cells, i.e.,

rSG1→S = αr
R

G1→S, (5.5.1)

whereα ∈ [0, 1] is to be determined in such a way as to recover the cycle timeof the primary culture.
To obtain the doubling timeTS

d of the primary culture (slow sub-population cells) where

TS

d =
ln2
λS
, (5.5.2)

we use equation (5.3.31) and the same cell-cycle time formula for slow sub-population cells as for
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Figure 5.7: Simulation of the solution to the system equations (5.3.24) - (5.3.29) with parameter
values and initial conditions the same as Figure5.5 except death via apoptosis fromG1-phase of
slowly growing sub-population cells is increasing until itreaches a constant value according to the
sigmoid function of Figure5.6.

rapid sub-population cells (equation (5.3.39)) with a change fromR to S respectively. For the primary
culture there was no experimental data for the proportionaldistribution among phases given. Propor-
tions in each phase can be expressed through the rate transitions using equations (5.3.32)-(5.3.34).

The two unknown parametersα andλS can be obtained by solving the system of equations (5.3.31)
and (5.3.39) with the damped Newton’s method. Initial guesses ofα = 0.1 andλS = 0.005 gave
convergence to positive value parameters.

Using equation (5.5.2), we can now calculate doubling times for each of the 22 primary cultures
as seen in Figure5.10. We see from this figure and also Figure5.9 that the model recovers the
experimental data depicted in Figure5.8.
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5. APPLICATION OF THE TWO-POPULATION MODEL

Patient code Primary culture Cell line Percentage Percentage
Tc (hours) Tc (hours) G1 phase S phase

NZC01 60 24 57 30
NZEN1 100.8 60 86 8
NZM02 93.6 43.2 62 28
NZM03 93.6 40.8 44 38
NZM04 216 29.8 54 32
NZM09 156 45.6 56 30
NZM12 86.4 25.9 81 11
NZM13 312 76.8 69 16
NZM16 228 50.4 85 7
NZM17 79.2 43.2 66 11
NZM18 163.2 62.5 84 8
NZM19 177.6 63.1 86 10
NZM21 93.6 22.8 84 8
NZM22 213.6 81.4 77 13
NZM24 177.6 39.4 75 13
NZM25 177.6 37.1 80 14
NZM26 105.6 63.1 84 4
NZM28 139.2 38.4 72 24
NZM30 64.8 29.6 69 25
NZM33 132 62.4 64 17
NZM34 105.6 40.8 65 23
NZM56 67.2 33.6 87 12

Table 5.3: Experimentally obtained cell-cycle times (Tc) for 22 primary cultures and their correspond-
ing cell line cell-cycle times. Column 4 and 5 contain data ofexperimentally obtained percentage
distribution among phases for 22 cell lines. Patient codes starting with the NZM correspond to the
melanoma cells, NZCO stands for the colorectal cancer cells, NZEN - endometrial.

5.5.2 In vivo tumours

A further application of the model is to consider anin vivo tumour, which is sustained by a number
of (rapid sub-population cells) stem cells in a niche. In choosing parameters, we have assumed that
the stem cell population (rapid sub-population cells) has the kinetic properties of the cell line and
that the progeny cells (slow sub-population cells) have thekinetic properties of the corresponding
primary tumour cultures. Because biologically the micro-environment of the niche has a given size,
we set the parameters so that the number of rapid sub-population cells remains constant. This is done
by using the threshold case, whereρ = rRG1→S. Deviations from the threshold condition will result
in population exponential growth or decay according to Table 5.2. In reality, in vivo cell population
dynamics are much more complicated. However, our simple linear model is used here to identify the
essential population dynamics associated with stem cells and their progeny.

Starting with 100% of cells in the rapid sub-population compartment and 0% in the slower sub-
population compartment the entire slow sub-population cell compartment (the tumour cells) is gener-
ated over time from rapid sub-population cell proliferation (the stem cells in the niche). The parame-
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Figure 5.8: Cell-cycle times of 22 primary cultures and corresponding derived cell lines. Recreated
from previously published experimental dataBaguley & Marshall(2008).

ters of the sigmoid function for the apoptosis rate were chosen by trial and error so that the initial rate
is small and the horizontal asymptote is approximately equal to rSG1→S. Thus eventually the number

of slow sub-population cells becomes constant, i.e.,rSG1→A = rSG1→S andλS = 0 (see Table5.2). Then
the total size of the slow sub-population with time resembles a sigmoid function as depicted in Figure
5.11. This is in accordance with experimental estimates of tumour growth being classified as sigmoid
(including logistic or Gomperzian growth as described inKozusko & Bourdeau(2007) and references
therein).

The initial number of cells was chosen arbitrarily to be 1000rapid sub-population cells (stem cells
in the niche) and 0 slow sub-population cells (i.e., no tumour). The emphasis here is on the qualitative
results where eventually the slow sub-population cells dominate showing that the niche sustains the
tumour and results in a sigmoid shaped curve for the number ofslow sub-population (tumour) cells. It
is the parameter values and where they are chosen from Table5.2that dictate the ‘long’ term behaviour
of the slow sub-population cells not the (non-zero) initialsize of the stem cell population.

5.6 Discussion and conclusion

The transition fromin vivo tumour to primary culture to established cell line is biologically complex
and not fully understood. In this chapter, we have describeda simplistic mathematical model, which
does not address this degree of complexity but aims to capture the essential population dynamics of
these transitions by considering theoretically interacting stem cell and progeny populations. We did
this by formulating six differential equations for a cohort of cells comprising of two sub-populations.
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Figure 5.9: Cell line doubling time vs. cell line cycle time for 22 cell lines. Cell-cycle time on the
horizontal axis are experimental data that are used in addition to experimentally obtained percentage
distributionsΠG1, ΠS in order to calculate cell line doubling time (vertical axis). Each dot represents
a particular cell line. A least-squares line is fitted through the scatter plot (coefficient of determination
r2 = 0.75).

One exhibiting slow population growth (the ‘slow sub-population cells’) and the other having a faster
population growth rate (the ‘rapid sub-population cells’). Each sub-population is further divided cor-
responding to three distinct phases of the cell cycle (G1, S and G2M phase) with transition rates
between phases. The slow sub-population cells are a mortal population with death via apoptosis from
G1-phase. The rapid sub-population cells can differentiate to become slow sub-population cells ac-
cording to the differentiation rateρ.

If transition rates are constant then the asymptotic solution of the corresponding differential equa-
tion system are summarised in Table5.2. The initial condition (t = 0) is chosen to represent a primary
culture and is composed of mainly slow sub-population cells. The asymptotic solution corresponds to
an established cell line and comprises mainly rapid sub-population cells.

We considered the case of rapid sub-population cells alone,i.e., an established cell line. We found
relationships (as described by equations (5.3.32)-(5.3.34), (5.3.38),(5.3.39) and (5.3.30)) between the
proportions in each phase, the rate transitions between phases, the population doubling time and the
average cell age. These relationships confirm that even withno cell loss the average cell age is not
equal to the doubling time. The following simple example illustrates that as soon as synchrony is
broken the average cell age will be different to the cell doubling time. Consider two cells in perfect
synchrony starting the cell age at the same time and each having the same average cell-age. In this
case, the average cell-age is equal to the population doubling time. If this synchrony is broken by
each cell having its own average cell ageT1

a andT2
a , respectively, where say thatT1

a is slightly smaller
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Figure 5.10: Cell doubling times of 22 primary cultures and corresponding derived cell lines. Dou-
bling time of the cell lines was calculated using experimentally obtained cell-cycle times and propor-
tions in each phase, for primary cultures this was achieved using experimental cell-cycle times and
model derived rapid sub-population cell transition rates.

thanT2
a then the population will double at timeTd = T2

a and the average cell-age will be (T1
a + T2

a)/2
which will be smaller than the doubling time. Our data has resulted in doubling times being greater
than average cell-age as depicted in Figure5.9.

In calculations, we assumed that experimentally estimatedcell-cycle time is equal to what we
refer to as the average cell-ageTa. We remark here that if we assume that the experimental cell-cycle
time is equal to the average removal time, introduced in Section 2.5.6, then the qualitative results
of the average cell-age time carry-over to the average removal time notion. In this chapter, terms
average cell-age and the experimental cell-cycle time are interchangeable. More importantly, if one
has experimental estimates of the cell-cycle time (or doubling time) and the proportions in any two
phases then one can use the mathematical model equations to estimate the population doubling time
(or the average cell age of the population) for a particular cell line. This model can be easily extended
for the mathematical estimation of the average removal times. We used the model to recover average
cell age of primary cultures given the experimental cell-cycle times of established cell lines.

As a further application of the model we considered anin vivo case of a tumour being sustained
by a niche of (a constant number of) stem cells. We assumed initially no slow sub-population cells
but over time the rapid sub-population cells differentiated to become slow sub-population cells. The
population of the slow sub-population cells was sigmoid that corresponds to empirical estimates of
tumour growth.

The concept that the fraction of stem cells in tumour samplesand cell lines is small has been
reported in a number of papers. However, a recent publication has shown that when cells isolated
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Figure 5.11: Simulation of the solution to the system equations (5.3.24) - (5.3.29). Initially we assume
there are 1000 cells with 0% slow sub-population cells and 100% rapid sub-population cells. The
proportion of cells in each phase for rapid sub-populationsis initially G1-phase 53%,S-phase 31%
and G2M-phase 16%. Transition rates between the phases for the rapid sub-population cells are
rRG1→S = 0.052729,rRS→G2M = 0.052 andrRG2M→G1

= 1.8 per hour. For the slow sub-population cells

we chose the same transition rates as the rapid sub-population cells except forrSG1→S which is chosen

to be 10% ofrRG1→S. The differentiation rate from rapid sub-population cells to slow sub-population

cells isρ = rRG1→S per hour.rSG1→A is a sigmoid function, whereµ = 0.005528,β1 = e3.3 andβ2 =
1

200.

from human melanomas are grown in host mice with a high degreeof immunosuppression, up to 25%
of cells are able to grow into tumours and should thus be defined as tumour stem cellsQuintanaet al.
(2008).

Stem cells in normal tissue are normally slow growing but this slow growth is maintained by the
niche microenvironment and in response to an appropriate stimulus (e.g. depletion of cells) stem cells
can divide rapidly. The signalling pathways that maintain normal stem cells in a slow growing state
may be defective in tumour stem cells, but definitive evidence is lacking because tumour stem cells
cannot be identified in situ. The range of cycle times determined for the primary cultures is similar to
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5.6 Discussion and conclusion

that for the bulk of tumour cells reportedin vivo.
An understanding of the underlying kinetics of cell lines and the relationship with those of primary

cultures is essential to understanding how human patients with in vivo tumours respond to cancer
therapy. Cell-cycle times of cell lines are related to cell-cycle times of primary culture and our simple
mathematical model goes some way towards explaining that. Since the cell-cycle time of a cell line is
a measure of patient survival it is important to see how this relates back to thein vivo case.
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Chapter 6

Conclusions and Suggestions for Further
Work

In this thesis, investigation of the age-structured modelshas led to the derivation of biologically sig-
nificant parameters describing the dynamics of an exponentially growing cancer cell population. We
have shown the relationship between the average cell-cycletime (also called the average cell-removal
time) and the population doubling time, where the cell-cycle time of the population is greater or equal
to the population doubling time. This result is of great interest to biologists, as they generally assume
that the cell-cycle time is always equal to the population doubling time.

In Chapter2, we have proven the existence of the balanced exponential growth state for the age-
structured model with piecewise continuous transition rates. For the case of piecewise constant tran-
sition rates, we have derived analytical formulae for the population distribution among the cell-cycle
phases, the average cell age and the expected (average) removal time for the population in BEG. We
note that the average age of the cells removed from all phasesis the average cell-cycle time. Our
expression for the average cell removal time can be found in the literature, where it has been referred
to as the cell-cycle time of the population. However, the formulae in the literature has been assumed
and then verified by using a discrete computational simulation, whereas, in this thesis, it has been
derived from the age-structured model with piecewise constant transition rates. Furthermore, we have
shown that a delay differential equation system can be obtained from the age-structured model with
piecewise constant transition rates. We presented the reduction of the age-structure model to the ordi-
nary differential equation model and thereafter applied it in the analysis of the cancer cell population
response to various cancer treatments. A study of a case of piecewise linear transition rates, would
provide a further generalisation of the model.

In Chapter3, we have derived an analytical expression for the estimation of the population dou-
bling time from a single experimental observation point using the stathmokinetic method. In the liter-
ature, this method has been proposed from empirical studies. Furthermore, our mathematical model
has provided justification for the stathmokinetic method and presented simple analytical formulae that
could be useful for biologists. A further extension of this model would involve: first, incorporating
the necessary aging times of cells in each phase of the cell cycle to increase biological realism of
the model; and second, deriving expressions to estimate thecell-cycle time from a single experimen-
tal observation of the plateau log reduction value, similarto the ones presented in Table3.2 for the
doubling time. We aim to elaborate on the model in Chapter3 and publish this result.

In Chapter4, we have analysed the effects of the radiotherapy on five melanoma cell lines via
mathematical modelling. Our mathematical model was constructed with the objective of estimating
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the proportion of cells that continue to proliferate after aone-time ionising radiation dose. Flow cy-
tometry profiles of five melanoma cell lines exposed to three types of cancer treatment were utilised in
the optimization routine. This provided the uniqueness of the numerical results. We have concluded
that little apoptosis occurs initially after irradiation.However, this result contradicts the empirical
estimates of the surviving fractions. Therefore, we have reasoned that our high magnitudes of the pro-
liferating cell proportions in each phase at time zero post irradiation suggests that some cells, although
sustaining DNA damage from irradiation, continue to divideseveral times before undergoing apopto-
sis. A further extension of this study would involve the application of our model to the experimental
data for the same cell lines but with longer observation times, thus providing a better understanding
of the numbers of cells undergoing apoptosis after dividingseveral times following irradiation.

In Chapter5, we have proved the existence of the BEG state for the age-structured model depicting
the growth of the cell population composed of two sub-populations with different kinetic parameters.
Furthermore, the age-structured model was reduced to the ordinary differential equation model and
applied to provide an insight into the transition fromin vivo tumour to primary culture to established
cell line. The linearity of our mathematical model does not cover the biological complexity of this
problem. However, it provides a small insight into the hypothesis that a cancer tissue is sustained by
a minor population of proliferating stem cells. The extension of the mathematical models presented
in this thesis to describe the dynamics of cells in the primary culture may be of a great interest to
biologists as its dynamics reflect the conditions of malignant tumour dynamics.
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Appendix

A.1 The existence and uniqueness theorem fromLinz (1985)

When the kernel is unbounded (or has some irregular behaviour) it is often convenient to rewrite linear
second kind Volterra equationf (t) = g(t) +

∫ t

0 k(t, s) f (s) ds, as follows:

f (t) = g(t) +
∫ t

0
p(t, s) k(t, s) f (s) ds, (A.1.1)

wherep(t, s) represents the part with the non-smooth behaviour.

Theorem A.1.1. Assume that in equationA.1.1

1. g(t) is continuous in0 ≤ t ≤ T,

2. k(t, s) is continuous in0 ≤ s≤ t ≤ T,

3. for each continuous function h and all0 ≤ τ1 ≤ τ2 ≤ t, the integrals
∫ τ2

τ1

p(t, s) k(t, s) h(s) ds (A.1.2)

and ∫ t

0
p(t, s) k(t, s) h(s) ds (A.1.3)

are continuous functions of t,

4. p(t, s) is absolutely integrable with respect to s for all0 ≤ t ≤ T,

5. there exist points0 = T0 < T1 < T2 < ... < TN = T such that with t≥ Ti

K

∫ min(t,Ti+1)

Ti

|p(t, s)|ds≤ α < 1, (A.1.4)

where
K = max

0≤s≤t≤T
|k(t, s)|, (A.1.5)
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6. for every t≥ 0

lim
δ→0+

∫ t+δ

t
|p(t + δ, s)|ds = 0. (A.1.6)

ThenA.1.1has a unique continuous solution in0 ≤ t ≤ T.

A.2 The Perron-Frobenius theorem

The Perron-Frobenius theorem describes the eigenvalues and eigenvectors of a nonnegative matrixA.
Its most important conclusion is that there generally exists one eigenvalue that is greater than or equal
to any of the others in magnitude. Without loss of generality, we can call this eigenvalueλ1; it is called
the dominant eigenvalue ofA. The properties of nonnegative matrices have been subdivided into two
cases: reducible and irreducible. Irreducible matrices have been further subdivided into primitive and
imprimitive, Caswell(2001).

A.2.1 Irreducible but imprimitive matrices

A nonnegative matrix is irreducible if and only if its life cycle graph contains a path from every node
to every other node. An imprimitive matrix is said to be cyclic and to have an index of imprimitivity
d equal to the greatest common divisor of the loop lengths in the life cycle graph.

Theorem A.2.1. If the matrix A is irreducible but imprimitive, with index ofprimitivity d, then there
exists a real positive eigenvalueλ1, which is a simple root of the characteristic equation. The associ-
ated right and left eigenvectors w1 and v1 are positive.
The dominant eigenvalueλ1 is greater than or equal in magnitude to any of the other eigenvalues, i.e.,

λ1 ≥ |λi |, i > 1, (A.2.1)

but the spectrum of A contains d eigenvalues equal in magnitude toλ1. Oneλ1 itself, and the others
are the d− 1 complex eigenvalues:

λ1 exp 2kπi/d k= 1, 2, ...d − 1. (A.2.2)

A.2.2 Reducible matrices

Theorem A.2.2. Is A is reducible, there exists a real eigenvalueλ1 ≥ 0 with corresponding right and
left eigenvectors w1 ≥ 0 and v1 ≥ 0. This eigenvalueλ1 ≥ |λi |, i > 1.
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Appendix

B.1 Proof of Theorem3.2.1- nonlinear mapping properties

As discussed in Section3.2.1in Chapter3 for an established cell line, we have a relationship between
proportions in each phase, the rate transitions between phases, the population doubling time and
this can be reduced to an implicit relationship involvingr = {rG1→S, rS→G2M , rG2M→G1}, andσσσ =
{ΠG1,ΠS, λ}. So it can be shown that the system can be written

G(r ,σσσ) = G(rG1→S, rS→G2M , rG2M→G1,ΠG1,ΠS, λ) = 0. (B.1.1)

The existence of functional relationships between the variables will be determined by the implicit
function theorem and this is conditional on certain characterisations of the jacobian matrix ofG, which
is given by

JG =



−ΠS

Π2
G1

1
ΠG1

rG1→S

(rS→G2M+λ)2 | −1
(rS→G2M+λ)

rG1→S

(rS→G2M+λ)2 0

−1
ΠS

−ΠG2M

Π2
S

rS→G2M

(rG2M→G1+λ)
2 | 0 −1

(rG2M→G1+λ)
rS→G2M

(rG2M→G1+λ)
2

0 0 ∂λF | ∂rG1→SF ∂rS→G2M F ∂rG2M→G1
F



=
[
Jσσσ | Jr

]

Here

∂λF =
1

2rG1→SrS→G2MrG2M→G1

[
(rS→G2M + λ)(rG1→S + λ)+

(rG2M→G1 + rA + λ)(rG1→S + λ) + (rG2M→G1 + rA + λ)(rS→G2M + λ) ] , (B.1.2a)

∂rG1→SF =
1

2rG1→SrS→G2MrG2M→G1

[
(rG2M→G1 + rA + λ)(rS→G2M + λ)

]
−

F(λ)
rG1→S

, (B.1.2b)

∂rS→G2M F =
1

2rG1→SrS→G2MrG2M→G1

[
(rG2M→G1 + rA + λ)(rG1→S + λ)

]
−

F(λ)
rS→G2M

, (B.1.2c)

∂rG2M→G1
F =

1
2rG1→SrS→G2MrG2M→G1

[
(rG1→S + λ)(rS→G2M + λ)

]
−

F(λ)
rG2M→G1

, (B.1.2d)

with F given by equation (3.2.6). We have partitionedJ into the first three columns, and called this
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square matrixJσσσ, with the remaining three columns calledJr , and then the implicit function theorem
assures us that the jacobianJr =

dσσσ
dr exists locally provided the jacobianJσ is non singular, i.e.,

detJσ = ∂λF

(
ΠG2M

ΠSΠG1

+
1

ΠSΠG1

)
> 0. (B.1.3)

This is true if∂λF > 0 as the proportional of cells in each phase are positive. To see that the condition
on F is true for the domain under consideration here, we note for exponential growth thatλ > 0, and
all the rates in equation (B.1.2a) are also positive, so that∂λF > 0. Hence the mapσσσ = R(r ) is locally
unique and determined.

To invert this mapping we must look into the singularity ofJr and this can be determined from

detJr =
1

(rS→G2M + λ)

( rS→G2M∂rG2M→G1
F

(rG2M→G1 + λ)
+

rS→G2M∂rS→G2M F

(rG2M→G1 + λ)2

)
+

∂rG1→SFrG1→SrS→G2M

(rS→G2M + λ)(rG2M→G1 + λ)2
> 0,

(B.1.4)
so that provided detJr , 0 anywhere, a local mapr (σσσ) will exist almost everywhere.

To prove this, we first look at equation (B.1.2b) and see this can be written

∂rG1→SF = F(λ)

[
1

(rG1→S + λ)
−

1
rG1→S

]
, (B.1.5)

and inS′, F(λ) = 1, with λ > 0 so

∂rG1→SF < 0. (B.1.6)

A similar argument applies to the other two derivatives ofF in equation (B.1.2). As in S′ all the
transition probabilities andλ are positive, it follows detJr < 0 and we have the result.

B.2 Approximate solution of F(λ) − 1 = 0

To enable this, we first look at the dependence ofF(λ) = 1 onλ, example ofF(λ) = 1 plot shown in
Figure2.4. So with the understanding of approximating the graph ofF(λ), we consider a quadratic
that crosses thex-axis at−β, −α and they-axis atγ and that is positive for largex. We also assume
thatβ < α. Then this quadratic is

y(x) =
γ

αβ
(x+ β)(x+ α). (B.2.1)

Again with consideration of equation (3.2.6), we consider the roots of the equationy(x) = 1, and these
are given by

x =
1
2

−(β + α) ±

√
(β + α)2 +

4αβ

(β + α)2
(
1
γ
− 1)

 . (B.2.2)

With the assumption4αβ
(β+α)2 (1

γ
− 1) << 1 the positive root is given by

αβ

(β + α)
(
1
γ
− 1). (B.2.3)
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When α
(β+α) ≈ 1, which is true for|α| large. We then find an approximation to the positive root is

x ≈ β(
1
γ
− 1)− O

( β
α

)
, β < α. (B.2.4)

We observe that the root found toy(x) = 1 if a linear polynomial is fitted through thex-axis at−β, and
they-axis atγ, i.e.,y(0) = γ is equation (B.2.4) with no error term. So the degree of approximation is
determined by how closeα(β+α) ≈ 1. In conclusion, the linear approximation ofλ in equation (3.2.6),
whenα, β are chosen fromrS→G2M , rS→G2M depending on which is larger, and they-axis crossing is
1/2, is given by equation (3.3.14). This is because

α = max
(
|rG1→S|, |rS→G2M |

)
, β = min

(
|rG1→S|, |rS→G2M |

)
, (B.2.5)

andγ = 2.

B.3 Phase solutions with no division in Chapter3

We consider the solution when the system isnot exhibiting BEG. Solving equations (3.2.1), when
the transition rates between compartments are assumed to bepositive constants andrG2M→G1 is set to
zero, gives us analytical formulas for the number of cellsNp, p ∈ {G1,S,G2M}, in each of the phases.
We can subdivide the solution of the ODE system into two cases. Firstly, let rG1→S , rS→G2M, then
the system of differential equations (3.2.1) can be solved analytically as follows:

NG1(t) = NG1(0)e−rG1→St, (B.3.1a)

NS(t) = NG1(0)
rG1→S

rS→G2M − rG1→S

(
e−rG1→St − e−rS→G2M t

)
+ NS(0)e−rS→G2M t, (B.3.1b)

NG2M(t) =
( rG1→SrS→G2M

(rA − rG1→S)(rA − rS→G2M)
NG1(0)+

rS→G2M

rS→G2M − rA
NS(0)+ NG2M(0)

)
e−rAt (B.3.1c)

+
rS→G2M

rA − rS→G2M

(
NS(0)−

rG1→S

rS→G2M − rG1→S
NG1(0)

)
e−rS→G2M t (B.3.1d)

+
rG1→SrS→G2M

(rS→G2M − rG1→S)(rA − rG1→S)
NG1(0)e−rG1→St. (B.3.1e)

Secondly, whenrG1→S = rS→G2M , the analytical solution of the system (3.2.1) is:

NG1(t) = NG1(0)e−rG1→St, (B.3.2a)

NS(t) = [NS(0)+ tNG1(0)rG1→S]e−rG1→St, (B.3.2b)

NG2M(t) =
(
NG2M(0)−

1
rA − rG1→S

NS(0)
)
e−rAt +

1
rA − rG1→S

(
NS(0)+ rG1→SNG1(0)t

)
e−rG1→St.

(B.3.2c)

But solution (B.3.2) will occur with probability of zero when running a Monte Carlo simulation such
as in Section3.3.3so it is not considered further.
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