ComposAR: An Intuitive Tool for Authoring AR Applications

Hartmut Seichter*

Julian Looser®

Mark Billinghurst*

Human Interface Technology Laboratory New Zealand

ABSTRACT

This paper introduces ComposAR, a tool to allow a wide audience
to author AR and MR applications. It is unique in that it supports
both visual programming and interpretive scripting, and an imme-
diate mode for runtime testing. ComposAR is written in Python
which means the user interface and runtime behavior can be easily
customized and third-party modules can be incorporated into the
authoring environment. We describe the design philosophy and the
resulting user interface, lessons learned and directions for future
research.

Index Terms: H.5.1 [Multimedia Information Systems]: Arti-
ficial, augmented, and virtual realities—; H.5.2 [User Interfaces]:
Graphical user interfaces (GUI)—

1 INTRODUCTION

One way to transition Augmented Reality (AR) into the mainstream
is to provide authoring tools that allow non-programmers to gener-
ate their own AR experiences. This approach is evident in the re-
lated domains of Virtual Reality (VR) and 3D gaming. While there
are commonalities between AR, VR and computer games, AR is
unique in that it connects to the real environment and this link is
fundamental to the authoring process.

AR authoring tools can be divided into three levels. At the low-
est level are libraries like ARToolKit [7], providing basic computer
vision integration. Next, high-level programming environments,
simplify the development process by providing infrastructure re-
quired to build applications. Finally, GUI-based tools for non-
programmers. Our research prototype, ComposAR, fits into this
third category.

2 RELATED WORK

Over the last decade many tools have emerged to build AR applica-
tions. One of the first, ARToolKit [7] provided marker-based reg-
istration using computer vision. It spawned many variations but all
require the developer to have C/C++ skills and need to link with
graphics and utility libraries.

Higher-level programming tools provide additional functionality
to develop AR applications. One of the most established is Studier-
stube [13] a comprehensive AR framework, including scene graph
based rendering, networking, tracking support, and content load-
ing. Others include 0sgART [10] and DWAREF [1]. However, these
libraries still require an expert programmer.

Efforts have been made to develop AR tools for non-
programmers. One approach is to integrate AR into familiar
content-creation tools like Blender [2]. The tools in [4] and [6]
allow users to arrange content into AR presentations. Lee et al. [9]
demonstrated authoring from within AR. However, these tools have
focused on how to manipulate 3D models and assembly of AR

*e-mail: hartmut.seichter @hitlabnz.org
Te-mail: julian.looser @hitlabnz.org
fe-mail: mark.billinghurst@hitlabnz.org

IEEE International Symposium on Mixed and Augmented Reality 2008
15 -18 September, Cambridge, UK
978-1-4244-2859-5/08/$25.00 ©2008 IEEE

a0
=
X Tree Control
E e =

Sptedte

Script Panel ‘

CCompoet ART Motk rony of 7

Figure 1: ComposAR interface components

scenes, but do not support prototyping of interactivity in the AR
environment.

Higher level AR authoring tools address this need for interactiv-
ity. DART [11], a plug-in for Adobe Director, inherently has access
to the wealth of pre-existing infrastructure. But due to the lack of
3D support DART must take care of this. An approach similar to
the one we introduce has been investigated earlier [12] with a more
rigid framework. APRIL [8] is an extensible AR authoring plat-
form based on XML descriptions. However, interactions are imple-
mented in non-interpretive languages addressed through the XML
parser.

Another approach are visual programming environments such as
the ECT graphical programming tool, which was modified to add
support for AR input [5]). AMIRE [3], a GUI-based visual AR
authoring tool allows describing interactions through visual repre-
sentations which can become complex.

We propose a pragmatic and extensible authoring tool that sup-
ports both scripting and a drag and drop interface, real time inter-
preted input, and allows users to add functionality depending on
their needs.

3 SOFTWARE DESIGN APPROACH

ComposAR is solely focused on interactive AR, and was designed
from the ground up to support AR authoring only. Thus, the main
focus of the tool is being able to associate virtual content with real
objects and defining interactions for those objects. ComposAR is
built atop osgART which uses a plugin architecture to support nu-
merous computer-vision based tracking approaches from which the
user can select their preferred method.

An important philosophy is support for the design process, and
especially iterative prototyping. Traditionally in AR application
development the description of real and virtual is cast in non-
interpretive language and therefore hard to change, adapt to new
interaction mechanisms, or to transfer from one device to another.
In contrast, ComposAR is based on an interpretive language that al-
lows designers to rapidly prototype AR scenes and interactions. In
this way designers can see changes instantly and can dynamically
change their AR applications until they get the interactivity they
desire. Lastly, we have aimed for extensibility; it is impossible for

Authorized licensed use limited to: University of Canterbury. Downloaded on February 10, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

178

tool builders to anticipate what their tools will ultimately be used
for. Therefore to meet the needs of end users, a tool should be able
to be extended and customized. ComposAR provides a Python in-
terface allowing users to add their own custom Python modules to
support their particular needs.

4 SYSTEM OVERVIEW AND IMPLEMENTATION

ComposAR is written in Python using various extension libraries.
It provides a GUI divided into re-arrangable panels (see Figure 2).
The overall design philosophy is to keep ComposAR a pragmatic
tool revealing its advanced features only on demand. We intention-
ally avoid presenting technical aspects such as the projection ma-
trix or the scene-graph branch for the video background. By hiding
them we emphasize the AR component of the application, focus-
ing the user’s authoring attempts to the marker transformations and
their content. These are accessed through a tree layout. A node in
the tree structure can be activated with a single click, highlighting
the respective 3D scene object and showing manipulation handles.
Activating a node facilitates editing, such as file loading, or manual
entry of transformation data.

This GUI was implemented in wxPython which is a wrapper for
the cross-platform GUI and system development toolkit wxWid-
gets. In a similar way to wxPython we developed osgPython !,
a comprehensive wrapper for the OpenSceneGraph. Included in
this package is the GPL version of osgART [10] with the respec-
tive bindings and plugins for ARToolKit and various video input
sources. By using these components we can directly foster the wide
variety of plugins available for OpenSceneGraph for database load-
ing and writing.

4.1 Interaction

What makes ComposAR unique compared to other AR authoring
tools is the ability to support different levels of interaction. We fol-
low a similar approach to [5] by extending the notion of a fiducial
into a sensor. The intermediate level of the system implements a
Action-Reaction mechanism imitating Newtons’ Physics paradigm.
To distinguish the different levels where input and output are con-
nected we describe the chain of events through Sensors, Triggers
and Actions.

Sensors provide a raw live datastream into the authoring envi-
ronment. All physical devices including keyboards, mice and other
conventional input devices are sensors. The data provided by sen-
sors is elevated to the state of “information” only once it is inter-
preted by a Trigger, which evaluates the input and decides whether
or not to invoke an Action. An example of this process is the moni-
toring of the visibility of a marker. Currently ComposAR provides
some basic interaction approaches based on a standard repertoire
common in AR applications, including interaction based on fidu-
cial proximity, occlusion, tilting and shaking.

Our interaction framework wraps a fiducial as multiple sensors
providing streams of typed data. These streams can be connected
to a trigger. Triggers implement user parameterization to provide a
state tied to an Action. Actions are scripted with two virtual function
calls: initialization and update. Actions are attached to scene graph
nodes. They extend the notion of the node callback common in
scene graph programming. With this technique we can not only
implement complex interactions, we provide a convenient means of
monitoring the behavior of the application.

Another mode, which is important for rapid prototyping of AR
applications is the immediate mode. Instead of loading static scripts
we enable the user to change code on the fly. In this way the user
can interactively write live code and monitor the actual outcome. A
typical task for this is to adjust the speed of an animation. Changing
the values or calculations live in the editor is directly effecting the

Uhttp://code.google.com/p/osgswig

display, therefore a simple and powerful means for visual debug-
ging and rapid prototyping.

5 DiscussiON AND FUTURE WORK

ComposAR is a comprehensive and pragmatic tool for AR author-
ing adressing users with none or little programming knowledge. In
workshops we provided users with a short introduction to 3D mod-
eling and gave them access to ComposAR. Because ComposAR
mimics the appearance and functionality of a 3D modeling tool, the
connection was easy to understand. The removal of technical AR
concepts (i.e. the projection matrix) proved to be quintessential for
the adoption by laypersons.

We discovered that, even though there is a low hurdle in learning
Python, it would be desirable to create a domain specific language
for AR interactions. Various interaction mechanisms require a fair
amount of numerical treatment making it difficult to comprehend
for a novice. Thus, providing an intermediate level within Com-
posAR could further enhance accessibility.

ComposAR has proven to be a well rounded base for AR appli-
cations in educational, design oriented and research activities.

REFERENCES

[1] M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams, T. Reicher,
S. Riss, C. Sandor, and M. Wagner. Design of a component-based
augmented reality framework. In Proceedings of the International
Symposium on Augmented Reality (ISAR), Oct. 2001.

[2] P. Grimm. AR blender. http://www.ai.fh-
erfurt.de/start/personen/professoren/prof-dr-paul-
grimm/projekte/arblender.html.

[3] P. Grimm, M. Haller, V. Paelke, S. Reinhold, C. Reimann, and J. Za-
uner. Amire - authoring mixed reality. In IEEE International Aug-
mented Reality Toolkit Workshop, Darmstadt, Germany, September
2002.

[4] S. Giiven and S. Feiner. Authoring 3d hypermedia for wearable aug-
mented and virtual reality. In ISWC ’03: Proceedings of the 7th IEEE
International Symposium on Wearable Computers, page 118, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[5] A. Hampshire, H. Seichter, R. Grasset, and M. Billinghurst. Aug-
mented reality authoring: Generic context from programmer to de-
signer. In Australasian Computer-Human Interaction Conference
OZCHLI’06, 2006.

[6] M. Haringer and H. T. Regenbrecht. A pragmatic approach to aug-
mented reality authoring. In ISMAR’02: International Symposium on
Mixed and Augmented Reality, IEEE, pages 237-245. IEEE, 2002.

[7] H. Kato and M. Billinghurst. Marker tracking and hmd calibration
for a video-based augmented reality conferencing system. In the 2nd
International Workshop on Augmented Reality (IWAR 99), pages 85—
94, 1999.

[8] F. Ledermann and D. Schmalstieg. APRIL: A High-level Framework
for Creating Augmented Reality Presentations. In Proceedings of the
IEEE Virtual Reality 2005 (VR’05), pages 187-194, 2005.

[9]1 G. A. Lee, C. Nelles, M. Billinghurst, and G. J. Kim. Immersive
authoring of tangible augmented reality applications. In ISMAR ’04:
Proceedings of the 3rd IEEE/ACM International Symposium on Mixed
and Augmented Reality, pages 172—181, Washington, DC, USA, 2004.
IEEE Computer Society.

[10] J.Looser, R. Grasset, H. Seichter, and M. Billinghurst. OSGART - A
pragmatic approach to MR. In Proceedings of International Sympo-
sium of Mixed and Augmented Reality, 2006.

[11] B. Maclntyre, M. Gandy, S. Dow, and J. D. Bolter. DART: A Toolkit
for Rapid Design Exploration of Augmented Reality Experiences. In
Proceedings of the 17th annual ACM symposium on User Interface
Software and Technology, pages 197-206, 2004.

[12] C. Owen, A. Tang, and F. Xiao. Imagetclar: A blended script and
compiled code development systems for augmented reality, 2003.

[13] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavari,
a. L. Miguel Encarnag M. Gervautz, and W. Purgathofer. The
studierstube augmented reality project. Presence: Teleoperators and
Virtual Environments, 11(1):33-54, 2002.

Authorized licensed use limited to: University of Canterbury. Downloaded on February 10, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

