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Introduction

The bound constrained global optimization problem is of the form

min f (x) subject to x ∈ Ω,

where the search region Ω is an n-dimensional box

Ω = {x ∈ Rn : lj ≤ xj ≤ uj for all j = 1, . . . , n}.

The objective function f maps Ω into R ∪ {+∞} and is assumed to be lower
semi-continuous.

The inclusion of {+∞} means certain constrained problems can be considered
using an extreme barrier function

fω(x) =

{
f (x) if x ∈ ω,

+∞ otherwise,

where ω ⊂ Ω with m(ω) > 0.
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Despite its deceptively simple form, global optimization is usually difficult.
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(Simplified) CARTopt Algorithm

1 Initialize: Set k = 0 and choose N > 0. Draw 2N points from Ω and evaluate
f at each point to obtain training data T . Let x0 minimize f over T .

2 Classify: Label the N points in T with the least f values as low and the
remaining points as high.

3 Partition: Construct a random forest partition on Ω using classified T .

4 Sample: Draw 0.8N points from the low region in the partition and 0.2N from
the high region. Let X denote the new batch of points. Evaluate f at each point
and let xk+1 minimize f over T ∪ X .

5 Update T: Set T ← T ∪ X , increment k and go to step 2.
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Defining training data using observed f values (red = low, black = high)
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Random forest partition of Ω (B = 1)
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Random forest partition of Ω (B = 2)
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Random forest partition of Ω (B = 10)
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Random forest partition of Ω (B = 20)
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Drawing points from the random forest partition

Rather than drawing 0.2N points from the high region directly, we sample Ω itself.

To draw 0.8N points from the low region, we use a three-step approach:

1 Randomly choose one partition from the random forest.

2 Randomly draw one box from the partition using selection probabilities proportional
to the relative size of each box in the partition.

3 Drawn one point from the selected box.

4 Repeat steps 1 to 3 until 0.8N points are drawn.

The point density will tend to be greater where the low boxes have greatest
overlap, which is where the random forest is most confident that f is relatively low.
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Drawing points from the random forest partition (N=50)
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Illustrative example with N = 25 (Rosenbrock’s function)
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Restarts

There is a balancing act between the rate of convergence to a local minimum and
missing the global minimum.

Restarting the algorithm from time to time reduces the risk of missing the global
minimum.

Two simple approaches are:

1 Restart each time a better point is found (or if sufficient descent is made).

2 Restart when a minimum low region size is achieved (or sequence of sizes).
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Recycling points after a restart
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Convergence

Definition: A point x∗ ∈ Ω for which the set

L(x∗) = {x ∈ Rn : f (x) < f (x∗)}

has Lebesgue measure zero is called an essential global minimizer of f .

If f is lower semi-continuous and bounded below, the sequence of best points
generated by CARTopt converges to an essential global minimizer of f with
probability one.
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Conclusion

A global optimization algorithm that alternates between partition and sampling
phases has been presented.

At each partition phase a random forest is used to predict where f is likely to be
low. Points are evaluated in these regions to direct the search in promising regions.

The method is provably convergent (under mild conditions) on smooth and
non-smooth problems.

Although not presented here, our method is competitive on a number of different
smooth and non-smooth test problems ranging in dimension from 2 to 10.
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