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Abstract

Type 2 diabetes has reached epidemic proportions worldwide. The resulting in-

crease in chronic and costly diabetes related complications has potentially catas-

trophic implications for healthcare systems, and economies and societies as a

whole. One of the key pathological factors leading to type 2 diabetes is insulin

resistance (IR), which is the reduced or impaired ability of the body to make use

of available insulin to maintain normal blood glucose levels.

Diagnosis of developing IR is possible up to 10 years before the diagnosis of

type 2 diabetes, providing an invaluable opportunity to intervene and prevent or

delay the onset of the disease. However, an accurate, yet simple, test to provide

a widespread clinically feasible early diagnosis of IR is not yet available. Current

clinically practicable tests cannot yield more than a crude surrogate metric that

allows only a threshold-based assessment of an underlying disorder, and thus

delay its diagnosis.

This thesis develops, analyses and pilots a model-based insulin sensitivity

test that is simple, short, physiological and cost efficient. It is thus useful in a

practical clinical setting for wider clinical screening. The method incorporates

physiological knowledge and modelling of glucose, insulin and C-peptide kinet-

ics and their pharmaco-dynamics. The clinical protocol is designed to produce

data from a dynamic perturbation of the metabolic system that enables a unique

physiologically valid assessment of metabolic status. A combination of a-priori in-

formation and a convex integral-based identification method guarantee a unique,

robust and automated identification of model parameters.

In addition to a high resolution insulin sensitivity metric, the test also yields

a clinically valuable and accurate assessment of pancreatic function, which is also

a good indicator of the progression of the metabolic defect. The combination
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of these two diagnostic metrics allow a clinical assessment of a more complete

picture of the overall metabolic dysfunction. This outcome can assist the clinician

in providing an earlier and much improved diagnosis of insulin resistance and

metabolic status and thus more optimised treatment options.

Test protocol accuracy is first evaluated in Monte Carlo simulations and sub-

sequently in a clinical pilot study. Both validations yield comparable results in

repeatability and robustness. Repeatability and resolution of the test metrics

are very high, particularly when compared to current clinical standard surrogate

fasting or oral glucose tolerance assessments. Additionally, the model based in-

sulin sensitivity metric is shown to be highly correlated to the highly complex,

research focused gold standard euglycaemic clamp test.

Various reduced sample and shortened protocols are also proposed to enable

effective application of the test in a wider range of clinical and laboratory settings.

Overall, test time can be as short as 30 minutes with no compromise in diagnostic

performance. A suite of tests is thus created and made available to match varying

clinical and research requirements in terms of accuracy, intensity and cost. Com-

parison between metrics obtained from all protocols is possible, as they measure

the same underlying effects with identical model-based assumptions.

Finally, the proposed insulin sensitivity test in all its forms is well suited for

clinical use. The diagnostic value of the test can assist clinical diagnosis, improve

treatment, and provide for higher resolution and earlier diagnosis than currently

existing clinical and research standards. High risk populations can therefore be

diagnosed much earlier and the onset of complications delayed. The net result

will thus improve overall healthcare, reduce costs and save lives.



Chapter 1

Introduction

The number of people with diabetes is increasing rapidly due to aging popula-

tions, and an increase in the prevalence of obesity and sedentary lifestyles. The

resulting increase in diabetes related complications has catastrophic implications

on healthcare systems and on entire economies and societies. Understanding the

underlying metabolic disorder allows identification of those at risk of developing

diabetes up to 10 years earlier, and this would provide an invaluable opportunity

to intervene and prevent or delay the onset of the disease. This chapter discusses

the overall prevalence of diabetes, its development and underlying problems, and

its clinical classification and diagnosis.

1.1 The Diabetes Epidemic

Type 2 Diabetes is a disease that has reached epidemic proportions. An estimated

171 million people were diagnosed worldwide in the year 2000. This number is

expected to rise to 366 million by 2030 [Wild et al., 2004]. About the same

numbers are estimated to have undiagnosed diabetes or pre-diabetes [Hossain

et al., 2007; Wild et al., 2004], effectively doubling those numbers. In New Zealand

it is estimated that by 2021, 250,000 people will have diabetes and 500,000 more

will have pre-diabetes, resulting in about 15 % of the population directly affected

by the disease [PriceWaterhouseCoopers, 2001].

The total diabetes related health expenditure in the USA in 2002 was US$ 132

billion, second only to all cancer types combined [Kleinfield, 2006]. These costs

are incurred primarily by treatment of chronic long-term complications, such as
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Figure 1.1 Cases of Diabetes in 2000 and estimated numbers for 2030 with the projected
percentile increases [Hossain et al., 2007; Wild et al., 2004]. Largest increases are seen in
developing countries.

eye damage or blindness, renal failure, nerve damage in limbs leading to amputa-

tion, hypertension and cardiovascular disease [ADA, 2006]. As a result, diabetes

is the third most common cause of death in the USA.

One of the underlying causes of this epidemic is a worldwide obesity epidemic

and increasingly sedentary lifestyles [Hossain et al., 2007]. It is estimated that

worldwide 1.1 billion people are overweight, 312 million of those obese (BMI >

30), a number that has tripled in the past 20 years [Hossain et al., 2007]. An

estimated 155 million children are overweight or obese. The greatest threat of

obesity is on populations in China, the Middle East, Southeast Asia and the

Pacific Islands, as is shown in Figure 1.1, mainly due to changing dietary habits

[ADA, 2006; Hossain et al., 2007]. Whereas the disease was seen as a problem of

developed countries in the past, it is the developing countries that now have the

most rapid rise in prevalence [Hossain et al., 2007; Wild et al., 2004].

Typically, type 2 diabetes is not recognised early enough to intervene before

permanent damage has begun to occur, and is thus often diagnosed only when

treating its symptoms or complications at later stages [ADA, 1998; Gastaldelli

et al., 2004; Kleinfield, 2006]. This late diagnosis is due to the nature of the
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disease development, where noticeable symptoms do not arise until significant

irreversible damage has occurred [ADA, 1998]. With accurate early diagnosis,

pre-diabetic states can be identified up to 10 years earlier [Martin et al., 1992],

which can significantly reduce the onset of further damage and complications.

Unfortunately, the need for preventive diagnosis and treatment is not recognised

sufficiently by health expenditures [Hogan et al., 2003; Kleinfield, 2006; PriceWa-

terhouseCoopers, 2001].

1.2 Development of Diabetes

The complete name of the disease is Diabetes mellitus. Diabetes is derived from

the greek word for “passing through”, and mellitus from the latin word “honey”,

referring to the excessive sugar in the urine of the patients [Dobson, 1776]. Di-

abetes combines a group of different metabolic disorders, which have different

origins, but all resulting in hyperglycaemia or high blood glucose levels [ADA,

2006]. Insulin is needed by the cells as a mediator for glucose uptake. High

blood glucose levels are mainly caused by a deficiency or a resistance to available

insulin.

The three main recognised types of diabetes are type 1, type 2 and gestational

diabetes mellitus (GDM), the latter occurring temporarily during pregnancy. As

only the first two are lasting disease states, and a persisting GDM after pregnancy

is classified as type 2 diabetes, GDM will not be described in detail. Type 1

and type 2 diabetes represent significantly different metabolic conditions with

different pathologies.

1.2.1 Type 1

Type 1 diabetes is characterised by a significant, often sudden deficiency of in-

sulin. It is caused by an auto-immune disorder destroying the insulin producing

β-cells in the pancreas and has a strong genetic pre-disposition. This type of di-

abetes is commonly known as juvenile-onset diabetes, but can also strike adults

and is not linked to obesity [ADA, 2006]. About 10 % of people with diabetes

have type 1 [ADA, 2006].
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The destruction of the insulin producing β-cells resulting in type 1 diabetes

can occur very rapidly over weeks or months. However, it can also take many

years, and sometimes a minimal insulin secretory function can remain intact.

Treatment is mainly by regular insulin injections, taken multiple times per day

for the rest of the patients’ lives. If glucose levels are not kept within a tight range,

long-term complications can occur. Despite the difficulties, many type 1 diabetic

individuals have lived long healthy lives through frequent glucose monitoring and

tight glycaemic control.

1.2.2 Type 2

Type 2 diabetes is characterised by a resistance to insulin in the majority of

individuals. The development of type 2 diabetes is a more gradual process than

in type 1 diabetes. It starts with the pre-diabetes stages of impaired glucose

tolerance (IGT) and impaired fasting glucose (IFG), before a clinical classifica-

tion of diabetes is made [ADA, 2006]. The progression of the disease is often

undiagnosed and untreated for many years, until first health complications start

to appear.

The risk of developing type 2 diabetes has a partial genetic pre-disposition,

but is strongly affected by increased body weight and obesity, which significantly

increase insulin resistance [Ferrannini et al., 1997; Hossain et al., 2007; Kahn

et al., 2006b; Petersen and Shulman, 2006]. Weight reduction and lifestyle change

to a healthier diet and increased exercise have been shown to greatly decrease

insulin resistance and the prevalence of developing type 2 diabetes [Camastra

et al., 2005; McAuley et al., 2002; Tuomilehto et al., 2001]. However, these

interventions are difficult to implement in some patients, necessitating other forms

of treatment.

The development of insulin resistance and reduced β-cell function in the pro-

gression to type 2 diabetes is shown in Figure 1.2. A gradual decrease of insulin

sensitivity (increase of insulin resistance) is seen. This decrease is initially ac-

companied by a compensatory increase in pancreatic insulin secretion to maintain

normal glucose levels. When the pancreas cannot keep up anymore with the in-

creased demand, it begins to exhaust itself. The result is a further increase in

basal plasma glucose levels. It is not fully understood if the primary underlying
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Figure 1.2 Progression of β-cell function (solid) and insulin sensitivity (dashed), opposite
of insulin resistance, in the development from normal glucose tolerance (NGT) to impaired
glucose tolerance (IGT), resulting in type 2 diabetes [Ferrannini, 1997]. The x-axis indicates
blood glucose concentration 2 h post oral glucose challenge, a diagnostic criteria of diabetes.

problem is insulin resistance or a defect in β-cell function [Ferrannini and Mari,

2004]. However, it is well accepted that both factors play an important role in

maintaining glucose balance [ADA, 2006; Schinner et al., 2005].

Treatment of type 2 diabetes consists first of lifestyle changes to increase in-

sulin sensitivity, followed by, or combined with, medication to enhance insulin

sensitivity or stimulate the pancreas. In later, or more extreme stages, insulin

replacement therapy, as in type 1 diabetes, is required to maintain normogly-

caemia.

1.2.3 Insulin Sensitivity

Insulin resistance, a decrease in the body’s sensitivity to insulin, is the main

underlying problem in the pathogenesis of type 2 diabetes. Insulin sensitivity is

not a discrete metric that can be assessed with a simple, well defined test. Rather,

it is a concept to quantify the body’s ability to reduce blood glucose levels with

insulin. This definition is very broad and includes many underlying physiological
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Figure 1.3 Overview of the physiological effects measured by insulin sensitivity tests. De-
pending on the design of the test, it can measure either one, a combined effect of two, or all
three of these effects. The dashed lines indicate a mediated or enhanced effect.

effects that contribute to the whole body response.

The main effects contributing to insulin dependent glucose uptake are shown

schematically in Figure 1.3. The three primary effects are the sensitivity of tissue

cells to bind insulin (peripheral sensitivity), the effect of insulin on the liver to

suppress glucose production (hepatic sensitivity), and the ability of the pancreas

to respond with insulin secretion to an increase in glucose concentration (β-cell

or pancreatic function). These effects may also be time-varying and are different

in fasting or perturbed states [Scheen et al., 1994]. Depending on the structural

design of the chosen method to assess insulin sensitivity and its assumptions, one

or more of these effects can be combined in the assessment, thus yielding varying

results requiring different interpretations [Radziuk, 2000].

The cellular defects of IR are not fully understood, but it is clear that there

are genetic and environmental factors influencing them [ADA, 1998; Petersen and

Shulman, 2006]. It is assumed that there is a downregulation of the insulin bind-

ing receptors, which is caused by an increased intracellular lipid content [Petersen

and Shulman, 2006; Schinner et al., 2005], in line with the findings of increased
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IR in obesity [Camastra et al., 2005; Kahn et al., 2006b]. Another finding is that

IR is caused by inflammation, as the proinflammatory cytokine TNF-α produced

by adipose tissue seems to induce IR [Hotamisligil, 2006; Shoelson et al., 2006].

Other inflammatory markers, such as IL-6, Leptin and C-reactive protein (CRP)

have been correlated with the incidence of type 2 diabetes [ADA, 1998; Herder

et al., 2006; Shoelson et al., 2006]. Overall, systemic inflammatory markers are

strongly associated with type 2 diabetes and its complications.

Insulin sensitivity can be treated primarily by a lifestyle change. Increases in

exercise, healthier diet [Duncan et al., 2003; McAuley et al., 2002; Nishida et al.,

2002; O’Gorman D et al., 2006; Tuomilehto et al., 2001] and weight loss [Camas-

tra et al., 2005; Ferrannini et al., 2005, 1997] are proven to increase sensitivity

and thus reduce the prevalence or impact of type 2 diabetes. Other treatments

include sensitivity enhancing medication, such as thiazolidinediones (Rosiglita-

zone), biguanides (Metformin) or sulfonylureas (Glyburide) [Kahn et al., 2006a].

Finally, if β-cell function is strongly diminished, additional insulin therapy can

be provided as needed [Kahn et al., 2006a].

1.3 Diagnostic Criteria

The general diagnosis of diabetes, as recommended by the American Diabetes

Association [ADA, 2006] is by any of three criteria:

1. Symptoms of diabetes (polyuria, polydipsia, unexplained weight loss)

plus plasma glucose concentration any time of the day ≥ 11.1 mmol/l

(200 mg/dl).

2. Fasting plasma glucose (FPG) ≥ 7.0 mmol/l (126 mg/dl).

3. 2-h post OGTT glucose ≥ 11.1 mmol/l (200 mg/dl) during an oral glu-

cose tolerance test (OGTT) (75 g glucose content dissolved in water).

People with elevated glucose levels that do not meet the criteria for type 2

diabetes are classified with impaired glucose tolerance (IGT) or impaired fasting

glucose (IFG). These conditions are defined as follows:
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• IFG: Fasting glucose between 5.6-6.9 mmol/l (100-125 mg/dl).

• IGT: 2-h post load OGTT glucose between 7.8-11.1 mmol/l (140-199 mg/dl).

These thresholds do not directly measure the underlying disorders of IR and

impaired β-cell function, but are only surrogates that can be easily measured clin-

ically. Many insulin resistant people have normoglycaemic levels due to increased

compensatory pancreatic function. Hence, they would not meet these criteria and

would not be screened until their β-cell function begins to deteriorate in the later

developments, as shown in Figure 1.2 [ADA, 2006; Gastaldelli et al., 2004].

In a long-term follow-up study by Martin et al. [1992], it has been shown that

10 years ahead of the formal diagnosis, people that developed type 2 diabetes

had a 60 % lower mean insulin sensitivity than those that did not develop the

disease. Additionally, in another study it was found that IR is the strongest

predictor of type 2 diabetes and cardiovascular disease risk in obese individuals

[McLaughlin et al., 2007]. An early diagnosis of IR could therefore recognise this

defect and allow early treatment to delay or prevent the onset of complications.

Unfortunately, the existing accurate tests are too complex to be feasible in a

wider clinical setting, and the often used clinical surrogate tests are too crude

[ADA, 1998]. A simple, accurate test would thus be especially useful to test high

risk groups, such as the offspring of type 2 diabetic individuals, or to monitor the

direct effect of treatment on IR, as specifically noted by the ADA [ADA, 1998]:

[...] lacking a clinically practical test for insulin resistance or a way

to follow it longitudinally in a clinical setting, it is impossible for the

clinician to know whether a given treatment is specifically alleviating

insulin resistance and preventing its associated conditions.

1.4 Preface

The goal of this research is to develop a test that is able to accurately assess

insulin sensitivity without the complexity of existing accurate tests. It should be

simple, short and cost efficient to be useful in wider clinical settings, enable early

diagnosis of IR, and allow frequent monitoring of treatment. This goal has been
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targeted by researchers for several decades, but a satisfactory solution has not

yet been found.

This goal is pursued in this thesis by systematically analysing the physiology

and previously developed tests and models, to determine the key aspects that need

to be captured. With the design restrictions of a short clinical test, an optimal

protocol can be engineered to minimise the impact of confounding factors that

can affect the test outcome. More specifically, detailed knowledge of metabolic

behaviour is combined with smart modelling and algorithms to achieve this goal.

A brief overview of the thesis includes:

Chapter 2 reviews current methods of insulin sensitivity testing used in research

and clinical settings. Key aspects of each method are discussed and com-

pared. The methods are finally put in perspective and compared to define

the design restrictions for a better and simpler protocol.

Chapter 3 presents the insulin modelling and identification methods required

for such a test. It systematically addresses the physiology and modelling

of insulin and the estimation of insulin secretion rate using C-peptide. The

result is a new and optimised insulin system model and fitting method.

Chapter 4 presents the glucose modelling and identification methods required.

Physiology and modelling of glucose are described, and an optimised glu-

cose/insulin pharmaco-dynamic model presented. The result is a new and

optimised overall metabolic system model and fitting method that is appli-

cable to a short clinical protocol.

Chapter 5 validates the insulin models and methods developed on data from

the literature and obtained from other studies. The physiological validity

of each model is shown.

Chapter 6 validates the overall model-based metric of insulin sensitivity against

gold standard euglycaemic clamp test data.

Chapter 7 presents the proposed protocol for the new test developed and esti-

mates its expected accuracy in a Monte Carlo analysis applying all identified

sources of variability.

Chapter 8 presents the clinical pilot study to validate the protocol clinically.

The design of the study is described and its results are discussed.
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Chapter 9 optimises the protocol in terms of test duration, sample numbers and

timing. This task is achieved by testing protocol performance on sample and

time-reduced data sets from the pilot study. Shorter and simpler versions

of the protocol are proposed with the expected difference in variability.

Chapters 10 and 11 summarise the key aspects of the thesis and present pos-

sible future improvements and applications for this research.



Chapter 2

Review of Current Methods

Soon after the discovery of insulin by Banting et al. [1922], it was evident that

some people needed more insulin than others to achieve normal blood glucose

levels. Thus, a first approach to assess this sensitivity to insulin was proposed by

Horgaard and Thayssen [1929], followed by others, such as Andres et al. [1966];

Himsworth [1936] and Shen et al. [1970]. In the past 40 years in particular, a

great deal of research has focused on the development and validation of more

accurate, simpler and/or more physiological methods [Ader and Bergman, 1987;

Ferrannini and Mari, 1998; Scheen et al., 1994].

This chapter gives an overview of the state of the art in insulin sensitivity

testing. A variety of methods are included, differing by application. More specif-

ically, there are those used mainly in research to assess the effects of treatment or

medication on insulin sensitivity, and there are tests that are clinically focused,

designed to screen populations and diagnose diabetes, or the risk of develop-

ing the disease. The test methods are compared in terms of their accuracy and

practicality for diagnosis, focusing on reported issues or problems that might be

improved in a new test. Tables summarising all of the tests described are given

in Appendix A.

2.1 Overview

A detailed description of insulin sensitivity is found in the previous chapter. Tests

that measure insulin sensitivity can be divided into two main types, based upon

their design:
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1. Direct tests

2. Surrogate tests

Direct assessments usually involve the oral or intravenous administration of glu-

cose and/or insulin, and a subsequent sampling of these molecules to determine

their pharmaco-dynamic interaction. Another localised direct method is to use

the arterio-venous (A-V) difference technique, by comparing these concentra-

tions at the in- and outflow of certain tissues or organs to determine their glucose

uptake [Scheen et al., 1994]. Surrogate tests are empirical methods, mostly re-

gression models, that are designed to correlate well with certain gold standard

test metrics. They can use data from a dynamic test or just a fasting sample, the

latter of which makes them very attractive for screening purposes. When using

fasting metrics, it is to be noted that these metrics only quantify the sensitivity

during a fasting state, which can be different to that observed during the dynamic

or hyperglycaemic state used in other tests [Scheen et al., 1994].

One of the difficulties in assessing insulin sensitivity with a dynamic test

is to separate observed results between the different effects influencing them, a

task that cannot always be achieved. The contribution of the pancreas, or β-

cell function, can be isolated by sampling C-peptide concentrations, which are a

good indicator of pancreatic insulin secretion [Pacini and Mari, 2003]. Hepatic

sensitivity, defined as insulin’s effect in inhibiting endogenous glucose production

(EGP), can be measured with the additional use of glucose tracers [Caumo and

Cobelli, 1993], or isolated by suppressing EGP completely [DeFronzo et al., 1979].

Additionally, some physiological effects are not always accounted for in certain

tests, such as non-insulin dependent glucose uptake [Zierler, 1999] or saturation

of glucose uptake [Natali et al., 2000; Prigeon et al., 1996], and are thus lumped

into the measured insulin-dependent result, skewing or biasing the result.

Other factors that can affect the measured results are effects that are not

identified or hard to measure in vivo. These effects include for example the

gut absorption rate, if glucose is ingested orally [Radziuk et al., 1978], or the

counter-regulatory response to hypoglycaemic glucose concentrations [Monzillo

and Hamdy, 2003].

All of these factors have lead to different approaches to test insulin sensitivity.

However, they do not necessarily measure the same effects, even if they might
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correlate well. Their respective use is therefore mostly limited to certain appli-

cations. The more accurate, mostly intravenous and more intense/invasive tests

are only viable in a research setting. In contrast, fasting, or the briefer oral dose

tests, are ideal in clinical settings due to their simplicity. However, because they

may measure different effects and have different levels of accuracy and resolution,

there is no consistent test useful across this range of application requirements.

2.2 Comparative Statistics

Before discussing the different methods to test insulin sensitivity and how they

compare, it is important to point out some aspects and limitations of commonly

used comparative statistics and performance metrics. In particular, this section

defines the comparative and accuracy metrics and terms used in this thesis.

2.2.1 Correlation Coefficient

The similarity between two tests is commonly expressed as a correlation coeffi-

cient. The correlation coefficient is a measure of the linearity of the relationship

between two data sets [Salkind and Rasmussen, 2007] and is always a value be-

tween r = −1 and r = 1. A value of r = 1 or r = −1 indicates perfect linearity

with a positive or negative slope, respectively. The closer the correlation is to

r = 0, the less linear the relationship. Note that the lack of a linear relationship

does not imply a lack of a relationship, but only that the direct linear association

between values is weak.

Different correlation coefficients can be calculated depending on the data

distribution. For normally distributed data, the parametric Pearson product-

moment correlation coefficient can be used. Otherwise, non-parametric coef-

ficients, such as the Spearman’s rank correlation coefficient are better suited

[Salkind and Rasmussen, 2007].

The correlation coefficient is very sensitive to outliers, which is illustrated in

the example shown in Figure 2.1. In this case, two different tests were performed

on n=10 individuals [Caumo et al., 2000]. The data set includes one highly insulin
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Figure 2.1 Correlation plot between two different test metrics on n=10 individuals from a
study by Caumo et al. [2000]. The solid line represents the linear relationship calculated with
all samples, resulting in a Spearman’s correlation r = 0.89. If the high outlier (diamond) is
taken out, this relationship is strongly reduced to a Pearson correlation r = 0.63 (dashed line).

sensitive outlier. If this subject is included, the distribution of the data set is

not normal and the Spearman correlation coefficient has to be calculated, which

results in a high correlation of r = 0.89. Without this subject, the distribution is

normal and the Pearson correlation coefficient is used, resulting in a correlation

of r = 0.63. This limitation is explicitly mentioned by the authors [Caumo

et al., 2000], but that level of detail is usually not provided, making comparisons

difficult.

Sample size also has a large impact on calculated correlation coefficients, as

visualised in Figure 2.2 on data from a study by Mari et al. [2001]. Correlating the

full data set of n=91 individuals results in r = 0.77. If the individual subgroups

are examined separately, correlations drop to r = 0.59 in the lean (circle), r = 0.73

in the obese (square) and r = 0.49 in the type 2 diabetes (triangle) subgroups.

This drop shows that linear relationships might not be transferable if different

subgroups are compared separately, indicating that the relationship both changes

and grows weaker. Overall, this example shows that a relationship calculated from

one subgroup cannot necessarily be extrapolated to another subgroup. Therefore,

comparison between studies should be considered critically.
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Figure 2.2 Correlation plot between two different test metrics on n=91 individuals from a
study by Mari et al. [2001]. The full data set correlates n=0.77, but correlations and slopes of
regression lines differ if subgroups are regarded individually. The subgroups are lean (circle,
solid line), obese (square, dashed line) and type 2 diabetes (triangle, dash-dotted line).

Correlations in data sets with smaller sample sizes are usually worse than in

larger groups because. This is because the ratio between the y-axis data range

to the x-axis data range is larger. This effect can be seen in reverse for the obese

subgroup (square) in Figure 2.2, in which the regression line is longer than in

the other two subgroups, yielding a higher correlation coefficient. Note that the

smaller coefficients for the lean and type 2 diabetes subgroups are thus due to

their shorter ranges and larger y/x ratios. Keeping these aspects in mind allows

the reader to more critically assess and compare reported values.

A correlation coefficient is thus highly dependent on the sample size and

distribution. A large sample size is more robust to outliers and yields much

more significant correlation coefficient. An equally distributed smaller sample

size might result in the same correlation, but any outlier can significantly reduce

this correlation coefficient. Hence, it is harder and less reliable to compare results

with relatively small sample sizes and/or significant outliers.

Statistical significance of the correlation is usually calculated with hypothesis

testing and given as a p-value, with a significance threshold commonly defined

as 0.05 [Petrie and Sabin, 2005]. A correlation is thus only considered valid if its
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significance level is smaller than the threshold where the null hypothesis is being

tested. The range of acceptable correlations in biological and medical research

studies differs to that in engineering, due to the more variable nature of biological

and physiological system behaviours across subjects and tests. A correlation of

r = 0.5 is thus normally considered relatively strong, if significant. Correlations

between r = 0.6 to r = 0.8 would be considered very good, with values over

r = 0.9 being extremely rare.

2.2.2 Test Accuracy

Test accuracy cannot really be determined in absolute terms, as only an effect is

measured and the true underlying value is not known. Instead, when assessing the

outcome metrics of a test, they are usually correlated to a gold standard test that

is known to be highly repeatable. In this case, the accepted gold standard is the

euglycaemic-hyperinsulinaemic clamp [DeFronzo et al., 1979]. This comparison

is sometimes difficult, as not all tests measure exactly the same effects, but is

mostly done nonetheless [Ferrannini and Mari, 1998; Radziuk, 2000].

Accuracy of an insulin sensitivity test is usually defined as its accuracy in

repeatability for the same subject. A highly repeatable test can yield consistent

and comparable results and allow effective monitoring of interventions. In con-

trast, natural variability in insulin sensitivity can be captured and interpreted as

test inaccuracy or a lack of repeatability. In validation studies, the accuracy of a

test is usually given as the coefficient of variation, defined as the standard devia-

tion SD divided by the mean over all subjects in the cohort, CV=SD/mean. This

value thus provides a combined measure of the natural variability and systematic

or assay variability of a given test. The most repeatable test, the euglycaemic

clamp, has been shown to have a CV= 6 % − 10 % [DeFronzo et al., 1979; Mari

et al., 2001; Monzillo and Hamdy, 2003].

2.3 Intravenous Tests

Intravenous tests utilise an injection or infusion of glucose and/or insulin to cause

a perturbation of the metabolic system. The accuracy of these tests is generally
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better than for oral dosed tests, as the system is more controlled and the unknown

gut absorption rate is bypassed, minimising error or variability. These tests are

usually more invasive and often take longer to perform. They are thus used

primarily in research settings, and are too costly and intense for a wider clinical

use.

2.3.1 Euglycaemic/Hyperglycaemic Clamp

The euglycaemic-hyperinsulinaemic clamp method was first presented by De-

Fronzo et al. [1979]. The idea behind the test is to infuse insulin at a constant

rate and glucose at a variable rate to “clamp” the plasma glucose concentration

at a normal fasting concentration, typically around 4.6 mmol/l [e.g., McAuley

et al., 2001], although any reasonable level may be used. An example glucose

and insulin concentration profile for this test with the respective infusion profiles

is shown in Figure 2.3.

Due to the high dose infusions of insulin and glucose, hepatic glucose pro-

duction and pancreatic insulin secretion are almost completely suppressed, and

it is assumed that the glucose uptake rate now equals the glucose infusion rate.

For this assumption to hold, a steady state needs to be achieved, which can take

between 2-3 hours [Ader and Bergman, 1987]. A closed loop system with glucose

sampling every 10 minutes, and a continuous adjustment of the glucose infusion

rate [DeFronzo et al., 1979; Ferrannini and Mari, 1998] is therefore required to

reach and hold this euglycaemic steady state [Bergman et al., 1985]. Measured

insulin sensitivity represents mainly peripheral sensitivity, as endogenous glucose

production (EGP) is almost completely suppressed.

The insulin sensitivity index, ISI, is then defined as the mean glucose infusion

at steady state, M , divided by the mean insulin concentration I at steady state:

ISI =
M

I
(2.1)

The physiological hypothesis of Equation 2.1 is thus straightforward. At a steady

euglycaemic or fasting level, the infused glucose M over one hour is assumed to

be removed by the average plasma insulin present over that hour, since a steady
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Figure 2.3 Example of a two hour euglycaemic-hyperinsulinaemic clamp from a study by
McAuley et al. [2002]. Shown are glucose concentration (upper left), insulin concentration
(upper right), glucose infusion rate (bottom left) and insulin infusion rate (lower right).

fasting glucose level was maintained. This ratio is assumed to hold since EGP is

suppressed at the supra-physiological insulin infusion rates used.

Due to the clamping of the system and the relatively high infusions, the

metabolic system is well controlled and the assessment highly repeatable, which

make this method the current gold standard. The test is also very flexible, as it

can be performed at different glycaemic or insulinaemic levels to study changes

in metabolic effects at these states, or in combination with tracers or other drugs

to assess their effect on glucose uptake.

Information about β-cell function can be obtained with the hyperglycaemic

clamp, in which a step increase in clamped glucose concentration is introduced

to trigger first- and second-phase insulin secretion. Indices commonly used are,

for the first-phase secretion, the incremental insulin concentration area under

the first 8-10 minutes after the step increase, and for the second-phase the mean

insulin levels after the first secretory peak has faded [DeFronzo et al., 1979; Pacini

and Mari, 2003]. Unfortunately, insulin sensitivity and β-cell function cannot be

obtained simultaneously and require a longer or separate test protocol.

The main drawbacks of the clamp method are the intensity and length of the

test. It takes between 2-6 hours to perform, with considerable safety wind-down

times. In addition, highly trained medical personnel must be involved full-time,
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increasing cost and making widespread use infeasible. Special equipment, such as

calibrated pumps, a heating box to arterialise venous blood and a glucose meter

are also required. The infusion rates are also supra-physiological, with steady

state insulin concentrations of around 100 mU/l, where normal fasting levels are

only ∼5-10 mU/l. Overall the test is very complex and intense for both the

subject and clinical personnel.

Regarding the test’s physiological accuracy, the assumption that all glucose

uptake is mediated by plasma insulin is not completely correct. In particular,

tissue uptake is dependent on insulin in the interstitium, which is considerably

lower than the concentration in plasma at steady state [Yang et al., 1989]. Addi-

tionally, non-insulin dependent uptake, such as the constant uptake by the brain

and the central nervous system [Zierler, 1999], is not separately accounted for

and included in the measured uptake. The test also yields different results if per-

formed at different infusion rates, which suggests a saturable peripheral glucose

uptake [Natali et al., 2000; Prigeon et al., 1996] that will lead to an underestima-

tion of the actual sensitivity. Dose dependency of the result also means that ISI

values cannot be directly compared if different insulin infusion rates are used.

Nonetheless, these effects most likely only introduce a shift in the result and do

not affect the overall accuracy in repeatability at those inputs.

Overall, the test is highly repeatable with a reported CV= 6 % − 10 % [De-

Fronzo et al., 1979; Mari et al., 2001; Monzillo and Hamdy, 2003]. It also offers

a steady state assessment of a wide range of possible metabolic states, as the

glycaemic level can be clamped at any reasonable value. Other tests are thus

always judged in their performance by their correlation to the clamp metric ISI.

2.3.2 Insulin Tolerance Test (ITT)

The Insulin Tolerance Test (ITT) is one of the first proposed tests to measure

insulin sensitivity in vivo [Horgaard and Thayssen, 1929]. A bolus of insulin is

injected (0.1 U/kg) and the decay rate of glucose measured at 10-40 minutes after

the input. The insulin input is relatively large, translating to 8 U for an 80 kg

individual. Insulin sensitivity is defined as the decay rate constant of a single

exponential decay. It can be calculated from the time needed to reduce glucose
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concentrations by half (t1/2):

KITT =
ln(0.5)

t1/2

(2.2)

The test is relatively simple and short and has been shown to perform well,

with good accuracy in repeatability (CV= 6 % − 9 %) [Gelding et al., 1994;

Monzillo and Hamdy, 2003] and comparability to the clamp (r = 0.81 [Bonora

et al., 1989; Gelding et al., 1994]) and the IVGTT (r = 0.76) [Lindheim et al.,

1994], but not to the fasting surrogate HOMA-IR (r = 0.44) [Inchiostro, 2005].

Disadvantages include a high risk of hypoglycaemia due to the sudden drop in

glucose induced by the relatively large insulin input [Ferrannini and Mari, 1998].

In particular, inaccuracies may be introduced by the counter-regulatory response

triggered by hypoglycaemia. This effect can be reduced by applying a shortened

version, which takes samples up to 15 minutes post injection [Inchiostro, 2005],

avoiding the counter-regulatory response that starts at ∼20 minutes [Monzillo

and Hamdy, 2003]. Due to concerns over safety and the relatively large insulin

dose, it is primarily a research tool.

2.3.3 Intravenous Glucose Tolerance Test (IVGTT)

Direct Assessment

Assessing glucose tolerance by an intravenous injection of glucose is a practice

that has been used for a long time. In particular, a large number of studies

discussed this approach in the 1920s-40s [Greville, 1943; Lozner et al., 1941;

Orr-Ewing, 1931]. Before the invention of the insulin assay, this decay could

only be measured, but not separated into insulin-dependent and independent

components. A common practice was to inject a bolus of glucose, or use a fast

infusion, and assess the decay rate, defined as the slope KG of the logarithm of the

glucose concentration curve as measured over 1-3 hours [Greville, 1943; Lozner

et al., 1941]. This method is comparable to that used in the insulin tolerance

test (ITT) and can be applied with no further computer analysis of the data.

Measured sensitivity is the combined effect of peripheral and hepatic sensitivity.
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An improvement can be made by relating KG to the increase in insulin con-

centration, as described by Galvin et al. [1992]. This approach was validated in

its 40-minute version against the clamp with good correlation of r = 0.85 and a

CV=21 % in the overall range of subjects studied (n=30, wide range of glucose

tolerance). The performance and resolution was not satisfactory in subjects with

low insulin sensitivity, which can be attributed to the small relative increase in

insulin concentration in these subjects. It also does not allow any assessment of

β-cell function.

Minimal Model Based Assessment (Semi-Direct)

The Minimal Model (MM) of glucose kinetics was presented by Bergman et al.

[1979] as a simplified description of the glucose kinetics observed during an

IVGTT protocol. By fitting the model parameters to match IVGTT data, meta-

bolic information about the glucose metabolism can be obtained [Bergman et al.,

1981; Pacini and Bergman, 1986]. The model differentiates between glucose up-

take at basal insulin (SMM
G ) and glucose uptake at increased insulin (SMM

I ).

Additionally two metrics of first- and second-phase insulin secretion can be de-

rived. Insulin dependent uptake is mediated by insulin action in a site remote of

plasma, and represents both peripheral and hepatic sensitivities. The model thus

incorporates a minimal description of the most important physiological aspects.

It was also the first use of mathematical models and computers for testing insulin

sensitivity.

The original protocol includes a bolus injection of glucose (0.3 g/kg body

weight) and frequent blood sampling for 180 minutes, with a total of about 22

samples assayed for glucose and insulin concentrations. Both arms are cannu-

lated, one for injection and the other for sampling. A heated box is used to

arterialise venous blood at the site of sampling [Bergman et al., 1985]. The

model is fitted to the data with a non-linear least squares algorithm, estimating

three model parameters.

The method has been used very widely in research studies, and is recognised

as a reasonably accurate alternative to the slightly more intense clamp procedure.

Reported accuracies vary between CV= 14 %− 30 % [Ferrannini and Mari, 1998;

Monzillo and Hamdy, 2003; Scheen et al., 1994]. Correlation between Minimal
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Figure 2.4 Example of an insulin-modified IVGTT on a healthy individual, from Mari [1998].
Shown are the resulting glucose concentrations (left) and insulin concentrations (right). Glucose
is administered at t = 30 min and insulin between t = 50 − 55 min.

Model SMM
I and clamp ISI varies greatly between r = 0.44 − 0.92 [Bergman

et al., 1987; Coates et al., 1995; Finegood et al., 1984; Foley et al., 1985; Katz

et al., 2000] depending on the subgroups and populations studied, and potentially

the specific protocols used. Note that this wide range of correlation casts some

doubt on the tests accuracy and/or robustness.

Accuracy has also been found to be significantly diminished in subjects with

low insulin sensitivities, such as obese and type 2 diabetes individuals, leading

to frequent identifiability problems [Cobelli et al., 1986; Donner et al., 1985;

Finegood et al., 1984]. To overcome some of these problems, protocol variations

were proposed to increase the otherwise weak insulin signal. These variations

include infusing tolbutamide to trigger a pancreatic response [Beard et al., 1986;

Yang et al., 1987] or injecting insulin 20 minutes after glucose input [Finegood

et al., 1990; Quon et al., 1994a]. These modifications improved accuracy, but

problems in accurately and repeatedly identifying the parameters still persist.

Numerous studies have been performed since to find better fitting approaches to

this non-convex problem [Erichsen et al., 2004; Krudys et al., 2006; Pillonetto

et al., 2002; Vicini and Cobelli, 2001]. An example of the data from an insulin-

modified IVGTT on a healthy individual is shown in Figure 2.4.

More complex modifications were proposed to improve test performance.

These enhancements include the addition of glucose tracers to separate the ef-
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fects of glucose production and utilisation (Hot MM) [Cobelli et al., 1986], an

enhanced two-compartment minimal model (2CMM) [Caumo and Cobelli, 1993],

or a circulatory model [Mari, 1998]. All of these approaches yielded mostly bet-

ter fits, but at a cost of considerably increasing complexity. While this increased

complexity is not a big problem in physiological research studies, it renders the

test impractical for use in wider clinical settings [ADA, 1998].

When directly compared with clamp derived measurements, the MM-method

seems to overestimate SMM
G and consequently underestimate SMM

I [Cobelli et al.,

1998; Mari, 1997]. This issue was identified as an undermodelling problem. A

proposed solution was to use a two-compartment description [Cobelli et al., 1999],

as glucose kinetics during the first 10 minutes are strongly affected by systemic

mixing rather than uptake. In addition, the estimation of SMM
G is not very ac-

curate and its estimation is only possible from the portions of the data with

low insulin concentrations. Unfortunately, these portions are either in the early

20 minutes, which are mostly affected by mixing, and after 100+ minutes, which

is primarily affected or contaminated by counter-regulatory triggered EGP [Cal-

legari et al., 2003; Ferrannini and Mari, 1998]. Shortening the test to 90 minutes

was shown to improve parameter estimation in the face of these issues [Callegari

et al., 2003].

Overall, the test is still very accurate and allows the assessment of different

effects through the addition of tracers and different model variations. Unfortu-

nately, well known modelling and identification problems make the results less

reliable. Finally, its length and intensity limit it to a research-only application.

2.3.4 Continuous Infusion of Glucose with Model Assess-

ment (CIGMA)

This test consists of a relatively low dose infusion of glucose over 60 minutes

(5 mg/kg/min) to mimic a postprandial state. Glucose and insulin are then

sampled during the final 15 minutes, over which a near steady state is attained

[Hosker et al., 1985]. The test data are then compared to known physiologic data

using a model of whole body glucose homeostasis that accounts for all key inputs

and clearances. Accuracy in repeatability is within CV= 17 % − 21 % [Hosker
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et al., 1985; Nijpels et al., 1994] and reported correlations to the clamp vary

between r = 0.66 [Nijpels et al., 1994] and r = 0.87 [Hosker et al., 1985].

As the glycaemic state attained during the test is very physiological, the esti-

mated sensitivity is likely a very accurate match to the true combined peripheral

and hepatic sensitivity. Due to the administration of only glucose, the test is

not applicable to type 1 individuals, nor is it very accurate in individuals with a

weak pancreatic insulin response [Ferrannini and Mari, 1998]. These limitations

make it less useful or reliable in clinical situations, although the relative simplic-

ity, safety and potential physiological accuracy make it appealing in research and

some limited clinical settings.

2.4 Oral Tests

2.4.1 Surrogate Assessments

The protocol of an oral glucose tolerance test (OGTT) has a clear advantage

over intravenous tests. In particular, it is less invasive and the administration of

glucose through the gut is very simple, does not require a venous administration,

and is more physiological. An example of the resulting concentrations is shown

in Figure 2.5.

Figure 2.5 Example of a 75 g oral glucose tolerance test (OGTT) [Matsuda and DeFronzo,
1999]. Shown are the resulting glucose concentrations (left) and insulin concentrations (right)
for normal, impaired glucose tolerance (IGT) and type 2 diabetes individuals.

A standard OGTT consists of a rapid ingestion of a 75 g or 100 g solution of

glucose, followed by timed blood samples for 2-3 hours [Pacini and Mari, 2003].



2.4 ORAL TESTS 25

Blood glucose levels, and sometimes insulin or C-peptide concentrations, are sam-

pled at least hourly, including a fasting sample. The glucose concentration drop

during the following hours is an indicator of the body’s ability to take up glucose.

This indicator of insulin sensitivity usually combines all three effects, peripheral

sensitivity, hepatic sensitivity and β-cell function.

Due to its simplicity, it is the current method of choice for a clinical diagnosis

of diabetes and recommended by the American Diabetes Association [ADA, 2006].

It is important to note that any of these surrogate measures do not strictly mea-

sure a physiological effect, but only give surrogate indications of the actual effect.

In particular, the OGTT measures the body’s ability to remove a glucose load,

which is dependent on insulin sensitivity, but does not measure insulin sensitivity

directly. The interpretation of the sampled data varies between tests, sometimes

including insulin values, but not always. Some commonly used calculations are

described here.

2-hour Glucose

The glucose concentration sampled two hours after glucose ingestion is the most

often used indicator of impaired glucose tolerance, as it does not involve any fur-

ther calculations. It is one of the metrics used as a criterion for the diagnosis of

type 2 diabetes (11.1 mmol/l), recommended by the American Diabetes Associ-

ation (ADA) [ADA, 2006]. Its correlation against the clamp has been found to

be good at r = 0.74 in a large population (n=188) covering all levels of insulin

resistance [Ferrannini et al., 2005]. The repeatability is debatable, with various

studies reporting changes in diagnosis in 30 % − 65 % of subjects after a repeat

test [Ganda et al., 1978; Ko et al., 1998; Levy et al., 1999; Riccardi et al., 1985].

Its simplicity still makes it the test of choice in clinical practice [Monzillo and

Hamdy, 2003].

Matsuda

In the study by Matsuda and DeFronzo [1999] the authors propose an index of

insulin sensitivity derived from an OGTT on n=153 subjects with a wide range of

glucose tolerance, and validate it against the clamp. Their idea is to incorporate
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fasting levels (G0, I0), as well as the mean glucose and insulin concentrations

(G30−120, I30−120) during the final 90 minutes of a 120-min OGTT. The formula

they derived is defined:

ISIMatsuda =
10000√

I0×G0×G30−120×I30−120

(2.3)

Their reported comparison to the clamp is good at r = 0.73 in the whole group,

but diminishes to r = 0.66 for impaired glucose tolerance (IGT) cohorts and

r = 0.54 in diagnosed type 2 diabetes individuals. Good correlation was found

in some studies, ranging from r = 0.66 − 0.86 [Chiu et al., 2001; Kirwan et al.,

2001; Soonthornpun et al., 2003; Stumvoll et al., 2000], but not all, with r = 0.21

found by Kanauchi [2002] in n=113 Japanese subjects covering a wide range of

glucose tolerance.

Stumvoll

In a similar study by Stumvoll et al. [2000], the authors propose a more empirical

linear regression model, including glucose concentration at 90 minutes (G90) and

insulin concentration at 120 minutes (I120), as well as the subject’s BMI. The

formula they derived on n=104 nondiabetic subjects is defined:

ISIStumvoll = 0.226 − 0.0032×BMI − 0.0000645×I120 − 0.00375×G90 (2.4)

In their validation against the clamp, they achieve a high correlation of r = 0.79

across all subjects. They also derive formulae to estimate β-cell function that

are well correlated to the clamp derived metrics. The correlations found in other

studies were not as high, with a range of r = 0.51 − 0.69 [Chiu et al., 2001;

Kanauchi, 2002; Mari et al., 2005; Soonthornpun et al., 2003]. An advantage of

this index is that it does not require all the samples taken during a standard

OGTT, but only two timed values. It thus reduces time and personnel require-

ments, making wider use somewhat easier.
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Others

Other indices have been derived with similar performances to those described

above, including different combinations of glucose and insulin samples taken from

an OGTT. Common ones are those by Gutt et al. [2000], Cederholm and Wibell

[1990], Kanauchi [2002], Soonthornpun et al. [2003], Avignon et al. [1999] and

Belfiore et al. [2001]. Indices of β-cell function have also been derived, usually

included some ratio of incremental insulin over incremental glucose concentrations

[Pacini and Mari, 2003].

2.4.2 Model-Based Assessments

In spite of the reasonable performance reported for the surrogate metrics dis-

cussed in Section 2.4.1, they are not based on a physiological explanation. To

measure physiological effects with an OGTT, some studies have proposed models

with varying complexity to directly measure insulin sensitivity from OGTT data.

OGIS

The Oral Glucose Insulin Sensitivity index (OGIS) was presented by Mari et al.

[2001]. It was derived by assuming a physiological representation of the glucose-

insulin interaction during an OGTT. The model parameters were then estimated

in that study on a population of n=104 subjects with different degrees of glucose

tolerance, from which a mean set was chosen to provide a universally applicable

formula. Two different versions are proposed, for use with a 120 or 180 minute

test. Correlation to the clamp was good at r = 0.77 in the whole group, but

worse in the individual subgroups, moving down to r = 0.49 in type 2 diabetes

individuals. Even if the direct correlation to the clamp is not much better than

in other tests, the approach does have a physiological basis that allows a more

comparable assessment of metabolic status.
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Oral Minimal Model

The Oral Minimal Model (OMM) was proposed by Caumo et al. [2000] for use

with meals and Breda et al. [2001] for an OGTT. It combines the original MM

by Bergman et al. [1979] with a description of the rate of glucose appearance in

plasma, Ra, to estimate the same MM parameters from an orally administered

glucose load. This approach allows a direct measurement of IR during a more

physiological state, and has been followed up with considerable research and val-

idation efforts. Validation using a meal input against the IVGTT was performed

in healthy individuals with good correlations of r = 0.89 [Caumo et al., 2000] and

r = 0.75 [Dalla Man et al., 2002], an example of which is shown in Figure 2.6.

The OGTT version was validated against the clamp, resulting in a correlation

of r = 0.81 [Dalla Man et al., 2005b] and yielding accuracies in repeatability of

CV= 12 % − 15 % in another study [Breda et al., 2001]. The results were also

validated with tracer studies and resulted in good linear comparisons with cor-

relations of r = 0.96 [Dalla Man et al., 2005a] and r = 0.86 [Dalla Man et al.,

2004] for the meal and OGTT comparisons, respectively. With the addition of

C-peptide sampling and the C-peptide MM, this method also yields pancreatic

secretion metrics [Breda et al., 2001].

Figure 2.6 Example of a meal tolerance test from Caumo et al. [2000]. Shown are the
resulting glucose (left) and insulin (right) concentrations after ingestion of a standardised meal
with approximately 75 g carbohydrate content.

2.5 Fasting Tests

Fasting tests rely solely on fasting blood samples to obtain information about

the state of insulin resistance. They are very attractive, as no input of glucose

or insulin is required and the time and stress involved for the individual and the
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medical personnel are minimal. The derivation of the different calculations is

sometimes purely empirical, while others are based on linear approximations of

physiological model descriptions. The accuracy of many of these fasting surrogate

tests can be improved by sampling two or three times and using the mean value

[Wallace et al., 2004b]. Some of the most commonly used fasting metrics are

described here.

Fasting Plasma Insulin (FPI)

Fasting plasma insulin concentrations are often used to diagnose insulin resistance

[Ferrannini and Mari, 1998; Monzillo and Hamdy, 2003]. High concentrations are

usually a good diagnostic indicator of insulin resistance in normoglycaemic indi-

viduals, and correlations in the range of r = −0.37 to r = −0.59 have been found

when comparing to the clamp test ISI [Ferrannini and Mari, 1998; Kang et al.,

2005; McAuley et al., 2001; Ruige et al., 2006]. Only some of the variability in IR

is seen in the insulin concentration, as this value also depends on other factors,

such as insulin secretion, clearance and distribution [Monzillo and Hamdy, 2003].

In subjects with type 2 diabetes, fasting insulin levels tend to become very high,

but then decrease over years as the pancreas exhausts. This behaviour results in

inaccurate assessments of IR with this test value [Kang et al., 2005; Monzillo and

Hamdy, 2003].

Fasting Plasma Glucose (FPG)

High FPG levels are often used as a first screening indicator of impaired glucose

tolerance [ADA, 2006]. The problem is that IR is apparent many years before glu-

cose levels rise, and compensated by higher endogenous insulin secretion. FPG is

thus only a valid indicator if the state of impaired glucose tolerance is significantly

progressed. Nonetheless, when compared to the clamp, reasonable correlations

of r = 0.50− 0.59 are achieved [Kang et al., 2005; Lewanczuk et al., 2004]. FPG

is an ADA recommended criterion for screening IGT and type 2 diabetes [ADA,

2006].
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Fasting Plasma I/G ratio

A logical conclusion from just using FPG or FPI is to use the ratio of both.

This ratio is commonly used in large screening studies, but does not necessarily

perform better than the individual metrics, when compared to the clamp, with

correlations reported in the range of r = −0.41 to r = −0.68 [Hanley et al., 2003;

McAuley et al., 2001]. Note that the index assesses insulin resistance, which is

equivalent to the reciprocal of sensitivity, thus resulting in a negative correlation.

Homeostatic Model Assessment (HOMA-IR)

The HOMA-IR index (also called just HOMA) was derived from a physiologi-

cal whole body glucose-insulin model, developed on known physiological data

[Matthews et al., 1985]. It is the same model used in the assessment of CIGMA.

The authors proposed a simplified linear equation to approximate the computer

model:

HOMA − IR =
G0×I0

22.5
(2.5)

A new, more accurate solution of the original computer model was presented

as HOMA2 [Levy et al., 1998], but the approximated formula of Equation 2.5 is

still widely used, due to its simplicity. The index assesses IR, which is equivalent

to the reciprocal of sensitivity. Comparison to the clamp and IVGTT are thus

negative. Many studies have used HOMA-IR so far to assess IR, and correlations

against the clamp vary widely between r = −0.19 to r = −0.94 [Bonora et al.,

2000; Mari et al., 2001; Mather et al., 2001; McAuley et al., 2001; Ruige et al.,

2006]. However, most results reside within r = −0.4 to r = −0.6 depending

on the subgroups used. One example of this variability is seen in the study by

Mari et al. [2001], in which the overall population achieved r = −0.75, but the

type 2 diabetes subgroup only r = −0.19. Even so, the index is considered a

reasonable indicator of IR, and has been widely used to date due to its simplicity

and comparability across studies.
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A separate HOMA index of β-cell function, HOMA-%B, can be calculated

similar to above:

HOMA − %B =
20×I0

G0 − 3.5
(2.6)

McAuley Index (ISIMcAuley)

The McAuley index was developed as an empirical regression model on data

from n=178 clamp tests on normoglycaemic individuals [McAuley et al., 2001].

Different surrogate indicators of IR were used to find the most useful predictors.

The equation derived by the authors includes fasting insulin and triglyceride (TG)

concentrations, the latter of which is often increased in type 2 diabetes:

ISIMcAuley = e(2.63−0.28×ln(I0)−0.31×ln(TG)) (2.7)

The correlations against the clamp are not significantly different to other fasting

metrics, as assessed in various studies with r = 0.48−0.61 [McAuley et al., 2002;

Oterdoom et al., 2005; Ruige et al., 2006].

HbA1C

The use of glycosylated hemoglobin levels, HbA1C, has been proposed in some

studies as a marker to screen and diagnose diabetes [Bennett et al., 2007; Drou-

maguet et al., 2006; Peters et al., 1996]. HbA1C levels represent a 2-3 month

average of blood glucose levels and are thus not affected by short term changes or

incomplete fasting states, which is a significant advantage in screening applica-

tions. The performance of this approach was compared to the ADA-recommended

guidelines, the 2-h OGTT [Bennett et al., 2007; Peters et al., 1996] and a fast-

ing glucose value [Bennett et al., 2007; Droumaguet et al., 2006]. Performance

was found to be similar, with comparable sensitivities and specificities as these

other metrics. However, it also offered the advantage of a higher intra-individual

repeatability, with assay accuracy within CV= 2 % − 4 % [Barr et al., 2002]. It
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could thus be the most reliable of the fasting metrics for screening purposes.

Others

Further fasting indices include QUICKI [Katz et al., 2000], which is essentially a

log-transformed HOMA-IR, and similar metrics proposed by Hanson et al. [2000]

and Belfiore et al. [1998] that do a different calculation with fasting glucose and

insulin values. All of these indices perform well in some studies and not so well

in others. They are mostly good indicators if used for broad screening purposes,

but do not achieve the necessary resolution to monitor frequent changes in IR,

or to provide significant early warning or diagnosis.

2.6 Method Comparisons

Comparing the different methods is a difficult task as they do not always measure

the same physiological effects or have the same units. As discussed, the three ef-

fects, peripheral sensitivity, hepatic sensitivity and β-cell function all contribute

to the overall whole body sensitivity and response to glucose. Some of the more

complex tests, as the clamp, IVGTT, or the OMM, can differentiate between all

three effects if performed with tracer labelled glucose and C-peptide sampling.

This flexibility is an advantage over simpler tests for physiological research stud-

ies in which the effects of drugs on each individual aspect can be assessed. In

contrast, the high intensity, duration and cost involved, make them infeasible for

wider clinical studies or any reasonable form of population screening.

In a clinical setting, factors such as simplicity, safety and time are much more

critical. In addition, the amount of training necessary for the performing medical

personnel is important, as it cannot be expected that every general practitioner

will undergo lengthy and costly specialised training to be able to offer such a

test. In this typical clinical setting, much simpler, and less intense and costly

surrogate tests, such as an OGTT or fasting assessments are desirable. The loss

in repeatability and reliability is often acknowledged as a necessary compromise,

or simply not acknowledged and used nonetheless. The consequence is that a

state of resistance can often only be diagnosed when the state is significantly
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progressed and irreversible damage has already begun to occur.

Another aspect to be considered is the different settings each test is performed

in. Insulin sensitivity can be different in a fasting state, in which the system is in

equilibrium, than in an intravenous perturbation [Ferrannini and Mari, 1998]. It

can then be different again for a more physiological oral perturbation [Ferrannini

and Mari, 1998]. In fact, oral glucose triggers insulin-stimulating gastrointestinal

hormones, that are not present in an IV input [Breda et al., 2001]. The supra-

physiological concentrations achieved during a clamp test have been shown to

result in different results, as saturation effects become evident and significant

[Natali et al., 2000]. Other differing effects are seen in test performance if insulin

is injected or stimulated using drugs such as tolbutamide, which is necessary in

insulin dependent diabetes subjects to increase the insulin signal [Quon et al.,

1994a].

All the tests described in this chapter, except the HbA1C, require a fasted

state to yield reliable results. This aspect can potentially confound results if not

adhered to, which probably makes the HbA1C value the most robust analysis.

An early diagnosis of IR is still not possible with this assessment, as an elevated

HbA1C is only seen after significant β-cell damage has occurred.

As a general observation it can be said that intravenous tests have the highest

repeatability, as they are the most controlled tests. The highest repeatability is

seen in the clamp, due to the suppression of all endogenous glucose and insulin

output, thus reducing any unknown dynamics. The IVGTT triggers unmodelled

regulatory responses that negatively affect model fitting [Cobelli et al., 1998;

Mari, 1997]. The source of these problems is evident and can be addressed in

improved fitting algorithms and fine-tuning of the protocol, rather than via more

complex modelling or clinical exercises [Lotz et al., 2006a].

Oral tests are more variable, due to the additional transport path involved in

the administration of glucose. The gastric absorption rate cannot be measured

without tracers and can be very variable. Any estimation of this rate involves

simplified assumptions and thus results in a larger introduced variability in the

overall test result. A larger number of samples used in the calculation of the

metric can reduce variability by capturing the dynamic response more completely.

Hence, the composite indices perform better than using just an OGTT 2-hour
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Figure 2.7 Comparison of different insulin sensitivity tests and the target area for a better
clinical test. The points are plotted according to the test’s intensity and accuracy in terms of
repeatability (CV in percent). Intensity is a composite symbolic measure of cost, duration and
overall stress involved.

post load glucose sample. The fasting tests also show reduced performance for

similar reasons, as only one sample is taken. Note that the repeatability of a

fasting test can be improved by using the mean of 2-3 samples, instead of only

one [Katz et al., 2000; Wallace et al., 2004b], but at a cost of increased intensity.

Nonetheless, even with a perfect test, varying results would be seen as insulin

sensitivity has been shown to vary with times of day and night [Bolli, 1988;

Van Cauter et al., 1997].

When designing a new test to measure insulin sensitivity that is repeatable,

accurate and feasible in a clinical setting, the positive aspects of the different

methods described can be exploited. In particular, improvements in the protocol

and algorithms can be made to prevent sources of error identified in previous

approaches. In Figure 2.7 the accuracy in repeatability of insulin sensitivity tests

is plotted against the test intensity, with intensity being a composite measure of

cost, duration and overall stress involved. Thus, this figure clearly highlights the

design space and goal region for any clinically useful, yet accurate, test.

The overall goal of this research is to develop a new clinical insulin sensitivity

test to match or exceed the target defined in Figure 2.7. Important test aspects
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that contribute to meeting this goal include:

• Duration: Duration can be minimised by developing a fasting test or by

using an intravenous administration. Orally administered glucose takes 30-

60 minutes to peak, rendering a short accurate test impossible.

• Simplicity: Special equipment (pumps, heated box, realtime test adjust-

ments) or tracers should be minimised and preferably eliminated. The test

should also ideally require no specialised procedures and need a minimal

amount of samples.

• Cost: Cost is a logical consequence of duration, simplicity and number of

samples.

• Accuracy: By incorporating physiological knowledge about the kinetics of

glucose and insulin, the test protocol can be optimised to minimise known

sources of error, such as systemic mixing, counter-regulatory responses,

EGP, or saturation effects. By also sampling C-peptide, β-cell function can

be estimated in addition to insulin sensitivity.

• Safety: To maximise safety, any dosing should be as low as possible, while

still providing a clear signal. This approach also improves physiological

accuracy by reducing saturation effects.

• Robustness: The robustness of the protocol should be such that possible

sources of experimental error, both computational and ergonomic/systemic,

are minimised. The data analysis algorithm should not require manual

analysis, input, or fitting.

2.7 Summary

Many different approaches to measure insulin sensitivity have been proposed to

date, varying in complexity and accuracy. Tests that measure sensitivity directly

use intravenous or oral administration of glucose and include sampling of glucose,

insulin and C-peptide to capture the dynamic metabolic response to that per-

turbation. The more repeatable tests, such as the clamp or the IVGTT are only
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used in research settings, as they are too complex, intense and costly for regular

or widespread clinical application.

Simpler, but less accurate, surrogate metrics vary from calculations derived

from OGTT data to using only one fasting sample. These assessments are pri-

marily derived from empirical regression models and do not have the resolution

to give more than a high/low result. Nonetheless, they are the only clinically

feasible tests to date to gain widespread clinical usage and acceptance.

A clinically useful test that is repeatable and that provides a good resolution

to monitor small changes in sensitivity would enable earlier and more accurate

diagnosis of insulin resistance. Such a test could be engineered by considering the

good aspects of available accurate research tests, while reducing their intensity,

and also avoiding errors identified in their methods. This engineering task is the

primary goal of this research.



Chapter 3

Insulin Modelling and Identification

To assess insulin sensitivity to glucose uptake, physiological models of the key

metabolic pharmaco-dynamics (PD) are required. These dynamics can be cate-

gorised as the kinetics of insulin, glucose and their pharmaco-dynamic interac-

tion. Endogenous insulin secretion can be estimated indirectly in this process by

modelling C-peptide kinetics.

The modelling goal of this chapter is to attain pharmaco-kinetic (PK) models

of insulin, that are physiologically valid, yet simple enough to be identifiable with

a short, simple test and limited blood sampling. The physiology and modelling

of insulin and C-peptide are discussed. Appropriate identification methods that

can be applied within the proposed test protocol are presented for each model.

The identification methods are presented with each specific model as they are

inter-related and specific.

3.1 Insulin Kinetics

3.1.1 Physiology

Insulin is a hormone secreted by the pancreas, that plays a very important role

in regulating carbohydrate metabolism. It enables glucose uptake by muscle

and adipose tissue cells, regulates storage and release of glucose in the liver,

and promotes fat synthesis and storage [Guyton and Hall, 2000; Jefferson and

Cherrington, 2001]. It also has several other effects, including anti-inflammatory

effects [Dandona et al., 2006; Hansen et al., 2003], that are not the focus of this
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thesis and are well discussed in the relevant literature.

The insulin hormone is a polypeptide, composed of 51 amino acids with a

molecular weight of 5808 Daltons (Da). It is produced by the β-cells within

the islets of Langerhans of the pancreas [Guyton and Hall, 2000]. The pancreas

secretes insulin into the portal vein, where it first passes through the liver and

subsequently enters circulation. From there it is distributed to interstitial fluid,

where it binds to cell-membrane receptors to activate glucose uptake [Jefferson

and Cherrington, 2001], as shown in Figure 3.1.

Figure 3.1 Schematic of insulin binding to receptors on tissue cells to activate glucose uptake
(taken from www.betacell.org [2004]).

Secretion of insulin by the pancreas is bi-phasic in healthy individuals [Guy-

ton and Hall, 2000; Jefferson and Cherrington, 2001]. The first phase consists

of pre-produced and stored insulin and is secreted as a burst immediately after

plasma glucose concentrations rise significantly. After approximately 10 minutes,

a second phase secretion starts, which is a rise in the steady production rate to

meet the body’s metabolic need [Guyton and Hall, 2000; Jefferson and Cherring-

ton, 2001]. Note that this response to glucose matches the behaviour of a PID

controller, which has consequently also been used as an approach in closed loop

control of diabetes [Chase et al., 2006; Chee et al., 2003; Steil et al., 2006].

Clearance of insulin by the body is mainly accomplished by the liver, ac-

counting for up to 80 % of total clearance [Duckworth et al., 1988; Ferrannini

and Cobelli, 1987b]. After secretion into the portal vein, insulin passes through

the liver, where approximately 50 % is extracted and stored or degraded (first

pass extraction), before insulin even reaches the systemic circulation [Duckworth
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et al., 1988; Ferrannini and Cobelli, 1987b]. This mechanism allows for a fast

response and control of circulating insulin. Further clearance is taken over by

the kidneys, as a function of glomerular filtration rate (GFR) [Duckworth et al.,

1998], and through cellular degradation after binding to enable glucose uptake in

the periphery [Guyton and Hall, 2000; Jefferson and Cherrington, 2001].

Insulin was first isolated from a dog pancreas by Banting et al. [1922], and

was soon produced commercially to treat diabetes [Jefferson and Cherrington,

2001], mainly by extracting pork, beef or fish insulin, which are very similar to

the human molecule. The first genetically engineered insulin (Humulin) appeared

on the market in 1982. Presently, most insulins sold are genetically engineered

human insulins or analogs, that provide a wide range of half-times in the blood

plasma following subcutaneous injection. The goal is to better mimic first or

second phase pancreatic insulin response.

In this study, insulin is assumed to be human insulin, or equivalent, as ad-

ministration is intravenous and no delay in action is required. The remaining

kinetics can thus be modelled physiologically. A physiologically accurate model

should thus include the main volumes of distribution, the main mechanisms of

transport between these volumes, and the dominant irreversible losses to the liver

and kidneys.

To summarise the physiology to be modelled: Insulin is initially secreted into

the bloodstream by the pancreas and cleared by the liver, and to a lesser extent,

the kidneys. Through transcapillary transport, insulin is diluted into interstitial

fluid, reaching tissue cells where it binds to activate glucose uptake. In this final

process, insulin is internalised and degraded by the cell.

3.1.2 Modelling

The fundamental goal in modelling insulin kinetics is to develop a physiologi-

cal insulin kinetics model that includes all major physiological pathways. Only a

model that is physiologically valid can provide a useful diagnostic outcome, where

physiological validity in this modelling work is achieved when all structural com-

ponents are derived from actual physiological mechanisms, and the identified

parameter values lie in a physiologically justifiable range.
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Equally important, it must also be both identifiable and simple enough to

be useful in clinical applications proposed with limited measurements. These

requirements imply a model to which simple, but accurate, parameter estimation

techniques can be applied. Identified parameters can then provide a diagnostically

relevant outcome.

3.1.2.1 Background

Many different insulin modelling approaches have been pursued since the late

1960s, analysing insulin kinetics with one to three compartment models with dif-

ferent losses and physiological explanations [Frost et al., 1973; Hovorka et al.,

1993; Jones et al., 1984; McGuire et al., 1979; Sherwin et al., 1974; Silvers et al.,

1969; Tranberg and Dencker, 1978]. Physiological explanations for the compart-

ments and their parameters differed depending on the parameter values identified

using clinical data.

In the pioneering work in this field by Sherwin et al., an IV bolus of insulin

and a constant infusion is fit by different models ranging from one to four com-

partments [Sherwin et al., 1974], as shown in Figure 3.2. The authors concluded

that a three compartment model is necessary to accurately reflect the kinetics

of the decay curve, and they propose a model with compartments representing

plasma, hepatic plasma and extravascular fluids. Sherwin et al.’s model also

contains inputs to the hepatic and plasma compartments, and irreversible losses

from the plasma compartment. Due to the large number of parameters and the

limited sampling resolution available, this model is difficult to identify uniquely.

Other studies have examined simplifying this model to two compartments as

two exponentials can describe the observed plasma insulin decay sufficiently well

within measurement error [Ferrannini and Cobelli, 1987a; Turnheim and Wald-

hausl, 1988]. These studies typically unify the plasma and hepatic compartments,

as shown in Figure 3.3, approximating them as fast exchanging relative to other

dynamics [Frost et al., 1973; Polonsky et al., 1986a; Tranberg and Dencker, 1978].

These simplifications allow easier identification, but the assumed transport paths

are not always physiologically accurate and thus do not give an accurate rep-

resentation of the complete observed kinetics. Ferrannini and Cobelli [1987a]

concluded, after a detailed review of modelling efforts to that date, that a two
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Figure 3.2 The three models analysed in the pioneering work by Sherwin et al. [1974].

compartment model with irreversible losses to both compartments would provide

the best compromise in physiological accuracy and identifiability. However, a

model would only be useful if combined with an identification method capable

of providing a unique solution [Ferrannini and Cobelli, 1987a]. To date, such a

method of uniquely identifying all the parameters has not been presented.

Figure 3.3 Three two compartment models with varying locations and interpretations of
irreversible losses [Frost et al., 1973; Polonsky et al., 1986a; Tranberg and Dencker, 1978].

Due to these identification problems, most recent studies have employed a

mono-compartmental description, with a single linear loss and an input term

[Bergman et al., 1985; Carson and Cobelli, 2001; Toffolo et al., 2006, 1995].

Combined with the physiology of a delayed, remote site of insulin action, this

description results in a basically two compartment description, without a back-
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flow into the plasma compartment. A form of this simplified kinetics model has

been successfully used in glycaemic control studies in the ICU [Chase et al., 2006,

2005a; Wong et al., 2006a]:

d

dt
I(t) =

−nI(t)

1 + αII(t)
+

u(t)

VP

(3.1)

d

dt
Q(t) = −kQ + kI (3.2)

This model is a reasonably accurate representation of insulin kinetics. It

has been particularly useful in control applications with limited knowledge of

the actual insulin concentrations. However, it does not necessarily adhere to

mass conservation laws and thus lacks important physiological knowledge that is

absolutely required for a detailed physiological test.

3.1.2.2 Model Structure

The proposed insulin kinetics model shown in Figure 3.4 is derived from Sherwin

et al.’s three compartment model [Sherwin et al., 1974]. However, it is reduced to

two compartments by integrating the hepatic and plasma compartments, as the

transport between these compartments is very fast [Ferrannini and Cobelli, 1987a;

Sherwin et al., 1974]. The decay of an IV injection of insulin has been shown to

follow a double exponential decay curve sufficiently well in several studies [Carson

and Cobelli, 2001; Ferrannini and Cobelli, 1987a; Turnheim and Waldhausl, 1988],

further justifying this reduction.

The model in Figure 3.4 consists of a central or accessible compartment repre-

senting the plasma space and fast exchanging tissues, such as the splanchnic bed,

and a peripheral compartment representing the interstitial fluid. These compart-

ments are further described as plasma and interstitial spaces, with distribution

volumes VP and VQ, respectively. Transport between them is bi-directional and

each compartment has a clearance pathway. The plasma input, u(t), represents

the appearance of insulin into the model.
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Figure 3.4 Initial structure of two compartment insulin kinetics model.

The differential equations describing the amounts of insulin in the two com-

partments are dependent on the fractional turnover rates k1 − k4 (min−1), the

amount of insulin in both compartments, i(t) and q(t) in mU and the model input

u(t) in mU/min:

d

dt
i(t) = −(k1 + k3)i(t) + k2q(t) + u(t) (3.3)

d

dt
q(t) = −(k2 + k4)q(t) + k1i(t) (3.4)

Reformulating Equations 3.3-3.4 in terms of concentrations, with I(t) = i(t)/VP

and Q(t) = q(t)/VQ yields:

d

dt
I(t) = −(k1 + k3)I(t) + k2

VQ

VP

Q(t) +
u(t)

VP

(3.5)

d

dt
Q(t) = −(k2 + k4)Q(t) + k1

VP

VQ

I(t) (3.6)

where VP and VQ are given in litres and the concentrations I(t) and Q(t) in mU/l.
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This formulation includes the main pathways of insulin, but still combines

some separate physiological processes into single parameters. Specifically, the

hepatic and renal clearances are combined in k3. It also allows for differing

transports between the compartments by allowing an independent estimation of

k1 and k2. The model can still achieve a good fit to clinical data, but estimated

parameters could be non-physiological and therefore may not be accurate for

prediction or model-based clinical testing.

To make the model description more physiological, the following equivalent

model formulation is suggested, with explicit choices of transport and mass con-

servation fully enforced:

d

dt
I(t) = −nKI(t)−nL

I(t)

1 + αII(t)
−

nI

VP

(I(t)−Q(t))+
uex(t)

VP

+(1−xL)
uen(t)

VP

(3.7)

d

dt
Q(t) = −nCQ(t) +

nI

VQ

(I(t) − Q(t)) (3.8)

where the parameters nK , nL, nC are in min−1, nI in l/min, xL as a fraction and

αI in l/mU.

The irreversible clearance of insulin from plasma is mainly taken care of by

the liver and the kidneys. The liver clears as much as 80 % of the total losses

[Ferrannini and Cobelli, 1987b] and can vary widely depending on concentrations

and individual state. Studies have also shown a saturation of liver clearance

at higher concentrations [Ferrannini et al., 1983; Thorsteinsson, 1990], due to

the mechanism by which insulin is cleared, namely binding to liver cells and its

resulting degradation. The liver clearance can thus be described by the param-

eter nL, which includes a Michaelis-Menten saturation term with the saturation

parameter αI [Thorsteinsson, 1990].

At low insulin concentrations the kidneys clear insulin mainly by glomerular

filtration (GFR), a constant rate dependent on blood flow [Despopoulos and

Silbernagl, 2003]. At higher plasma insulin concentrations, mainly postprandial

or during exogenous input, kidney clearance has been measured to be about twice
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GFR [Samnegard and Brundin, 2001; Zavaroni et al., 1987]. This additional

clearance appears to be by peritubular excretion [Rabkin et al., 1984]. Clearance

by the kidney can thus be described in this model by a separate parameter nK ,

and is assumed to be linear. Although it could be time-varying between 1-2 times

GFR, it is assumed constant in this study, allowing any variation to be captured

by nL. The parameter k3 in Figure 3.4 is thus split into the renal and hepatic

clearances nK and nL.

Transcapillary transport from plasma to interstitium has been studied by oth-

ers and found to occur mainly via diffusion in vivo in dogs and humans [Castillo

et al., 1994; Gudbjornsdottir et al., 2003; Rasio et al., 1967; Sjostrand et al.,

1999; Steil et al., 1996; Yang et al., 1989]. In this model a passive transport

by diffusion alone is assumed, due to a large amount of evidence that it is the

primary and/or dominant mechanism. Transcapillary diffusion is concentration

driven and bi-directional, and is described in this model by the diffusion constant

nI , defined by the volumes and k1 and k2 from Equations 3.3-3.4:

nI = k2VQ = k1VP (3.9)

This relationship implies the fixed ratio k1/k2 = VQ/VP , a relation that will

hold in general for any pair of fractional turnover rates between two compart-

ments, provided the transport is passive. For example, this passive transport

could be in the form of diffusion or convective exchange of fluid between the

compartments. Finally, Equation 3.9 also enables equal transport and thus en-

forces mass conservation, where independent identification of k1 and k2 might

not.

The irreversible loss from the peripheral interstitial compartment is believed

to occur mainly due to binding of insulin to the cells and its subsequent degra-

dation [Conn and Goodman, 1998; Jefferson and Cherrington, 2001]. The rate at

which insulin is degraded at the cells is described by nC , which is equivalent to

k4 from Equation 3.4.

The input u(t) to the plasma compartment is split into separate exogenous

and endogenous inputs, described with uex(t) and uen(t), respectively. Exoge-

nous inputs are typically known. In contrast, endogenous secretion is less well



46 CHAPTER 3 INSULIN MODELLING AND IDENTIFICATION

known, but can be estimated using the population model of C-peptide kinetics

by Van Cauter et al. [1992].

The final formulation of the model is shown in Figure 3.5. The model now

has 6 parameters and cannot be uniquely identified by a double exponential,

unless constraints are applied to reduce the degrees of freedom. This process

could include physiological a-priori identification of less critical parameters and

fitting of more dominant parameters. The identification approach could also vary

depending on the application and given data density.

Figure 3.5 Final structure and formulation of the two compartment insulin kinetics model.

The key differences between this model and previously proposed models are

the physiological plausibility of all parameters and the diffusion constant between

the compartments, that fixes the gearing ratio of the transport between the com-

partments and enforces strict mass conservation. This aspect has not always

been strictly maintained in previous models [Eaton et al., 1984; Sherwin et al.,

1974]. One simplification made from the more complex three compartment struc-

ture is the combination of the hepatic and plasma compartments into one, as a

separate identification of both would not be possible in a clinical setting. Over-

all, the model has physiological validity and is simple enough for use in clinical

applications.
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3.1.3 Model Identification

Unique identification of all the model parameters in Figure 3.5 is difficult if all pa-

rameters are variable. Commonly used non-linear recursive least squares (NRLS)

approaches are starting point dependent and computationally intense [Carson

and Cobelli, 2001]. Used correctly, a wide range of starting values should be

employed to enable an identification of the global minimum ([e.g. Thorsteins-

son et al., 1987]). To overcome this issue, other methods have been proposed,

such as Bayesian approaches employing a-priori known parameter distributions

to bind parameter estimation to a physiological range [Carson and Cobelli, 2001;

Pillonetto et al., 2002]. Nonetheless, with a rising number of parameters, unique

identification becomes difficult and often a wide range of parameter combina-

tions can result in a comparable quality of fit to clinical data, even though the

parameter values are not necessarily physiological.

3.1.3.1 A-priori Information

A commonly used strategy to overcome this limitation is to reduce the number

of parameters by exploiting known a-priori physiological information to fix pa-

rameters to constant values or introduce relationships between them [Carson and

Cobelli, 2001; Hann et al., 2005b; Hovorka et al., 1993]. As the insulin sensitivity

test is meant to only require plasma samples, parameters governing interstitial

concentrations, such as nI and nC are difficult to identify directly. To improve

identifiability, cellular clearance nC is thus linked to nI to achieve a fixed steady

state concentration gradient γ between both compartments:

γ =
Qss

Iss

(3.10)

This concentration gradient has been studied by a variety of researchers by

measuring lymph concentrations of insulin and comparing them to plasma con-

centrations [Castillo et al., 1994; Steil et al., 1996; Yang et al., 1989]. These

studies have reported mean values of γ = 0.34 − 0.6. In recent studies, mea-

suring concentrations directly at muscle tissue with a new microdialysis catheter

technique [Gudbjornsdottir et al., 2003; Sjostrand et al., 1999, 2000], Qss/Iss
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gradients of 0.4− 0.6 have been measured during euglycaemic clamps. The ratio

γ = 0.5 is chosen as a consistent mean value of the above mentioned studies. The

choice of this value has an effect on estimated insulin sensitivity, as described

in more detail in Chapter 7. By fixing this constant subject-independent value

across individuals, the bias introduced by this effect is only systematic and equal

in magnitude across all individuals, thus not introducing added variability.

Cellular clearance nC can thus be calculated as a function of nI and VQ using

steady state assumptions of Equation 3.8:

0 = −nCIssγ +
nI

VQ

Iss(1 − γ) ⇒ nC =
nI

VQ

(

1

γ
− 1

)

(3.11)

Saturation of hepatic insulin clearance, described by parameter αI , is difficult

to estimate and would require specialised multi-dose tests to estimate correctly.

A mean value found in studies investigating this effect is αI = 0.0017 [Ellemann

et al., 1987; Thorsteinsson, 1990]. As the insulin sensitivity test proposed here

is designed for low, physiological concentrations after a fasting state, hepatic

saturation is not very likely and this value can potentially be set to αI = 0.

A further option to reduce the number of parameters to be identified is to

exploit kinetic similarities with other substances, in which the kinetic parameters

are uniquely identifiable. Two examples of substances with similar molecular

weights to insulin are inulin and C-peptide [Clark, 1999; Rasio et al., 1967]. Due

to similar molecular sizes, it can be assumed that these substances share similar

distribution volumes and passive kinetic transport rates. As both substances

are only cleared by the kidneys, their kinetics can be described by an identifiable

two compartment model with four parameters [Eaton et al., 1980; Sturgeon et al.,

1998]. A C-peptide kinetics model that is identifiable with a population approach

has been presented by Van Cauter et al. [1992] and is used in this study to identify

insulin parameters with similar physiological characteristics. After these steps,

the few remaining unknown parameters can be identified with a convex integral-

based fitting approach [Hann et al., 2005b; Lotz et al., 2006a], or alternatively

using only fasting information and steady state model analysis.
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3.1.3.2 A-priori ID with C-peptide Information

C-peptide is secreted by the pancreas in equimolar amounts to endogenous insulin

[Rubenstein et al., 1969]. The kinetics of C-peptide were initially studied by Faber

et al. [1978] and Eaton et al. [1980], analysing decay curves of IV injections of C-

peptide. Eaton et al. presented a two compartment model of C-peptide kinetics

that accurately described the observed data. Unlike insulin, C-peptide is not

cleared by the liver or degraded by the cells, thus simplifying the kinetics to be

modelled.

Van Cauter et al. [1992] developed population parameters for Eaton et al.’s

model, enabling identification without the need of analysing the C-peptide decay

curve in every individual [Van Cauter et al., 1992]. This population model has

been successfully validated in a variety of studies [Hovorka et al., 1998; Jones

et al., 1997; Toffolo et al., 1995]. The error in estimated C-peptide secretion

from the population model compared to individually estimated parameters is in

the range of 10 % − 20 % [Hovorka et al., 1998; Toffolo et al., 1995; Van Cauter

et al., 1992], showing a very narrow range across broad ranges of individuals and

groups.

Given the knowledge of the respective clearance sites of the two peptides

and a similar molecular weight of 5808 Da (insulin) [Guyton and Hall, 2000] and

3021 Da (C-peptide) [Clark, 1999], the assumption can be made that insulin and

C-peptide share certain passive characteristics. Transcapillary transport rate and

distribution volumes of inulin (5500 Da [Rasio et al., 1967]) and insulin have also

been shown to be comparable [Rasio et al., 1967; Steil et al., 1996; Yang et al.,

1989], leading to the assumption that they could be similar in C-peptide. This

assumption enables the use of the validated C-peptide parameters to describe

shared portions of the insulin kinetics model. This approach thus reduces the

number of parameters to be estimated, making the overall proposed model more

readily identifiable.

Insulin kinetic model parameters that can adopt values of similar C-peptide

parameters are the distribution volumes VP and VQ, the transcapillary diffusion

rate nI , and the renal clearance nK . All of these parameters are assumed to

be similar in insulin and C-peptide, given their shared molecular properties and

the common mechanisms of renal clearance [Despopoulos and Silbernagl, 2003].
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Hepatic and cellular insulin clearance rates, nL and nC , remain to be estimated,

as C-peptide is not cleared by the liver and does not bind to the cells.

The insulin model parameters VP , VQ, nI and nK are thus calculated from

the method proposed by Van Cauter et al. [1992], in which the amplitudes and

time constants of a double-exponential decay are estimated patient specific as

functions of the individual’s age, sex, weight, BSA, BMI and diagnosis of type 2

diabetes. The formulae derived in that study to calculate these parameters are

shown in Table 3.1. From the four decay parameters, representing the system

response to an IV injection, the kinetic parameters of the insulin model used in

this research can be calculated as shown in the table.

Table 3.1 Steps to calculate kinetic population parameters of C-peptide model, as proposed
by Van Cauter et al. [1992]. Step 6 relates these parameters to insulin model parameters used
in this thesis.

Steps Normal Obese NIDDM

1. Short half life t1/2-short [min] 4.95 4.55 4.52
2. Fraction F = A/(A + B) 0.76 0.78 0.78
3. Long half life t1/2-long 0.14 × (age[yr]) + 29.2
4. Plasma volume VP Female: VP = 1.11×BSA + 2.04

Male: VP = 1.92×BSA + 0.64

(BSA =
√

height[cm]×weight[kg]/3600)
5. C-peptide kinetic parameters k2 = F × (b − a) + a

k3 = a×b/k2

k1 = a + b − k2 − k3

with:
a = log10(2)/t1/2 − short
b = log10(2)/t1/2 − long

6. Insulin kinetic parameters VQ = VP×k1/k2

nI = VQ×k2

nK = k3

3.1.3.3 Integral-Based Fitting

Parameters left to be identified from data are the hepatic clearance related param-

eters nL and xL. They are identified using measured data and an integral-based

fitting method. The fitting method uses the integrals of the differential equa-

tions to reduce the nonlinear estimation problem to a set of linear equations that
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can be easily solved by minimising the L2-Norm between the measured and es-

timated values. The method has the dual advantages of being convex and not

starting point dependent. Equally important, parameters can be defined as step-

wise constants for different time segments to enable identification of time varying

parameters if required [Hann et al., 2005b; Lotz et al., 2006a].

Equation 3.7 is integrated in a chosen time interval t ∈ [t0, t1], obtaining the

following expression:

I(t1) − I(t0) = −nL

∫ t1

t0

I(t)

1 + αII(t)
dt − xL

∫ t1

t0

uen(t)

VP

dt

−
∫ t1

t0

[

(nK +
nI

VP

)I(t) +
nI

VP

Q(t) −
uex(t)

VP

−
uen(t)

VP

]

dt (3.12)

where the analytical solution of Equation 3.8 can be used to express Q(t) as

a function of the measurable plasma insulin I(t) and the kinetic parameters of

Equation 3.8.

Q(t) =
nI

VQ

∫ t

0

I(τ)e
−(nC+

nI
VQ

)(t−τ)
dτ (3.13)

Thus, given nI , VQ and nC from other steps, a single linear equation for nL

and xL can be obtained for each numerically evaluated integral in Equation 3.12.

Integrating over several time steps provides several such equations, and the prob-

lem is reduced to solving the following set of linear equations:

Ā

{

nL

xL

}

= b̄ (3.14)

where constraints can be added to the least squares solution to keep the parameter

within known physiological ranges.

To best compute the integrals in all time intervals, the profile of I(t) needs

to be approximated by interpolating between discrete measurements. Linear
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interpolation is sufficient in longer term data [Hann et al., 2005b] or control trials

[Wong et al., 2005]. However, the dynamic nature of the impulse response to a

bolus insulin injection requires an exponential decay curve to be fit. This task

can be done by fitting a double exponential curve to the data. In a situation with

limited sampling, this can be done by first estimating the slow exponential with

later samples in the data and then back-calculating the fast exponential using

the earlier samples, as shown schematically in Figure 3.6.

Figure 3.6 Schematic of the stepwise approximation of the discrete data samples with a
double-exponential decay. Step 1 approximates the slow exponential from all samples >10 min-
utes after insulin input. Step 2 approximates the fast decay using samples <10 minutes after
insulin input. The combined curve is obtained in Step 3 by adding both exponentials. The
estimated curve is a good match of the experimentally sampled data.

The resulting approximation errors of any reasonable approximation to the

true curve can be shown to be very small due to the integrations over several

time intervals [Hann et al., 2005b]. More specifically, integral functions have the

advantage of being robust to noise in the measured data, by effectively providing

a low-pass filter in the summations involved in numerical integration. Hence,

the dominant sources of bias will be due to model, rather than computational or

methodological error.

This integral-based approach effectively matches the area under the measured

response curves for each interval considered. This approach is in contrast to stan-
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dard, well accepted methods that typically use gradients to directly match the

response trajectory. Given the multiplication and summation operations used in

the numerical integration, there are several analogies to a digital filtering iden-

tification process that could possibly be made. More importantly, this approach

converts a computationally intense, non-convex problem into a much simpler con-

vex problem, offering several advantages in speed and the quality of the results

[Hann et al., 2006, 2005b].

3.1.4 Summary - Insulin Kinetics

Insulin kinetics have been discussed and a physiological model proposed that

includes all main kinetics. The model is physiologically valid, yet simple enough

to be applicable in a clinical setting. An identification method is proposed, that in

a first step identifies most parameters a-priori with information from a C-peptide

population model, and then identifies the hepatic clearance with an integral-based

fitting approach. The overall method is robust on typically seen clinical sampling

profiles. These identification steps are summarised in the schematic in Figure 3.7.

Figure 3.7 The overall method of identifying the model parameters from clinical experimental
data and a-priori C-peptide kinetics information, as described in Section 3.1.3.
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3.2 Insulin/C-peptide Secretion

3.2.1 Physiology

C-peptide (connecting peptide), just like insulin, is produced by the β-cells lo-

cated in the islets of Langerhans in the pancreas [Despopoulos and Silbernagl,

2003; Guyton and Hall, 2000]. In fact, C-peptide is seen as a by-product of insulin

production, as both peptides originate from the precursor Proinsulin, which splits

into insulin and C-peptide, thus producing equimolar amounts of both [Ruben-

stein et al., 1969]. More specifically, C-peptide is a single chain of 31 amino acids,

connecting the A and B chains of insulin in the Proinsulin molecule, as shown in

Figure 3.8.

Figure 3.8 Splitting of Proinsulin into C-peptide and insulin [Chevenne et al., 1999].

For a long time the physiological role of C-peptide was unknown and it was

merely seen as a waste product of insulin production [Wahren, 2004]. More recent

research has indicated a biologically active role, in binding to cell membranes

and activating intra-cellular signalling pathways, resulting in improved renal and

nerve functions [Wahren, 2004]. These effects are not critical for this research and

do not affect the modelling approach, as its function does not affect its appearance

or degradation significantly.

As C-peptide is only cleared by the kidneys, it has a longer half-life than

insulin (∼2-5 times longer). This difference results in higher concentrations of

C-peptide in the peripheral circulation and less fluctuations in its concentration

than insulin. Hence, the kinetics of C-peptide are easier to capture in both

measurement and model.
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Due to its equimolar secretion and longer half-life, plasma C-peptide concen-

trations independently reflect pancreatic insulin secretion. In fact, the slower,

less variable clearance by a single route (rather than three) makes it a more re-

liable measure of endogenous insulin secretion than the plasma concentration of

insulin itself. Therefore, models independently linking C-peptide kinetics and

insulin kinetics can be used to determine and capture endogenous insulin secre-

tion [Eaton et al., 1980; Faber et al., 1978; Hovorka et al., 1996; Polonsky et al.,

1986b; Van Cauter et al., 1992].

3.2.2 Model Structure

The kinetics of C-peptide were first analysed by Faber et al. [1978] who adminis-

tered synthetic human C-peptide and measured the dose-response plasma decay

curve over time. They concluded that a three component exponential equation is

necessary to describe its kinetics. Eaton et al. [1980] later described the kinetics

of C-peptide with a two compartment model and calculated kinetic parameters

assuming a double-exponential decay. Eaton et al. [1980] also show that a three

compartment model does not significantly improve accuracy of the data fit, as the

fast decay rate is too fast to estimate accurately with practical clinical sampling

limitations.

A smaller two compartment model was thus proposed that describes C-

peptide distribution and degradation. The kinetic parameters of C-peptide clear-

ance were derived for each subject using this model from the decay curve observed

after a bolus injection of biosynthetic human C-peptide. The model is shown in

Figure 3.9.

The primary compartment is described as the accessible, central (intravas-

cular) compartment, which represents blood plasma and fast exchanging tissues.

The peripheral (extravascular) compartment represents interstitial fluid. The

concentrations C(t) and Y (t) are the C-peptide concentrations at time t, in the

intravascular and extravascular compartments respectively. Parameters k1, k2

and k3 are fractional transport rates, where k3 represents an irreversible loss

from the central compartment via the kidneys. The input rate to the intravas-

cular compartment S(t) consists of either endogenous C-peptide secreted by the

pancreas or C-peptide administered exogenously, depending on the specific clini-



56 CHAPTER 3 INSULIN MODELLING AND IDENTIFICATION

Figure 3.9 Two-compartment C-peptide model by Eaton et al. [1980].

cal test. Note that the endogenous component of S(t) equals endogenous insulin

secretion uen(t).

The differential equations describing the dynamic system in Figure 3.9 are

defined:

d

dt
C(t) = −(k1 + k3)C(t) + k2Y (t) + S(t) (3.15)

d

dt
Y (t) = k1C(t) − k2Y (t) (3.16)

where the parameters and variables are as defined above.

3.2.3 Model Identification

To estimate the C-peptide, or insulin, secretion rate S(t), the C-peptide model

kinetic parameters for a given individual have to be known. These parameters

can be estimated by fitting the model to the individually measured data from a
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bolus intravenous injection of C-peptide. The identified parameters and model

can then be used to deconvolute the input rate of endogenous secreted C-peptide

given clinical data [Eaton et al., 1980; Hovorka et al., 1996; Polonsky et al., 1986a;

Van Cauter et al., 1992].

3.2.3.1 Population Parameters

As an individual estimation of kinetic parameters is not feasible in a short clin-

ical test, an alternative method to estimate the kinetics has to be applied. A

population regression model was presented by Van Cauter et al. [1992], in which

they analysed the decay curves of 200 subjects including 111 normal subjects (71

males, 40 females), 53 obese subjects (19 males, 34 females), and 36 individuals

diagnosed with type 2 diabetes (20 males, 16 females). Population based kinetic

parameters are defined from this study as a function of gender, height, weight,

age and diagnosis of diabetes. This method thus allows a-priori identification of

kinetic parameters. The formulas to calculate the model parameters as proposed

by Van Cauter et al. [1992] are shown in Table 3.1 on Page 50.

3.2.3.2 Estimation of Secretion Rate

Estimation of the C-peptide secretion rate S(t) is performed with an integral-

based method, previously employed in real-time parameter identification in gly-

caemic control trials in the critically ill [Chase et al., 2005a; Wong et al., 2006a]

and in fitting long-term retrospective insulin and glucose profiles [Hann et al.,

2005b; Lotz et al., 2006a, 2005a, 2006b]. To best compute the integrals in all

time steps, the profile of C-peptide is approximated using linear interpolation be-

tween data points, which introduces no additional error over model error [Hann

et al., 2005b].

C-peptide secretion rate S(t) is thus estimated as a time-varying step func-

tion, with stepsize of 1 min. Therefore, during any given 1 min time interval

t ∈ [t0, t1 = t0 + 1], S(t) is assumed constant. Integrating Equation 3.15 in the
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interval [t0, t1] yields:

∫ t1

t0

Ċ(t)dt = −(k1 + k3)

∫ t1

t0

C(t)dt + k2

∫ t1

t0

Y (t)dt +

∫ t1

t0

S(t)dt (3.17)

Solving Equation 3.16 analytically for Y (t) yields:

Y (t) = k1

∫ t

0

Cest(τ)e−k2(t−τ)dτ (3.18)

where Cest represents the interpolated C-peptide values estimated from the dis-

crete measurements. Combining Equations 3.17 and 3.18, and solving for the

assumed constant secretion rate S0,1 in this time interval yields:

S0,1 · (t1 − t0) = Cest(t1) − Cest(t0) + (k1 + k3)

∫ t1

t0

Cest(t)dt

−k2k1

∫ t1

t0

∫ t

0

Cest(τ)e−k2(t−τ)dτdt (3.19)

where S0,1 is the only unknown given the population model values for k1 − k3.

Repeating this process for the intervals [t1, t2], [t2, t3], . . . [tn−1, tn], results in a

1-min stepwise constant secretion profile S(t). This estimated S(t) is constrained

to be non-negative. Smoothing the estimated stepwise constant profile with a

zero-phase 3-point moving average is done to avoid overfitting to noisy data and

interpolated measurements [Hann et al., 2005b]. This last step is not required

in frequently sampled data, but results in a more physiological profile between

more sparsely sampled data.

Using the same model and Van Cauter et al.’s parameter estimation method,

estimation of secretion rate has previously been proposed by deconvolution [Eaton

et al., 1980] and a more elaborate constrained regularisation method [Hovorka

et al., 1996]. The main drawbacks of these methods, in comparison to the meth-
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ods presented here, are the individualised method adjustments required for each

subject, including knot placements for cubic spline interpolations [Eaton et al.,

1980], and a separate step to find the optimal proportionality constant in each

subject [Hovorka et al., 1996]. All of these extra steps introduce time, computa-

tional complexity and intensity, and human variability into the results.

In contrast, the integral-based method described is a single step, computa-

tionally convex and fast method that only requires linearly interpolated data. By

constraining the linear least squares estimation to physiologically valid non-zero

values and smoothing the estimated secretion rate to remove the effects of noise,

the resulting profile is physiologically accurate and the effects caused by noisy

data are reduced [Hann et al., 2005b]. The secretion rate of insulin, which equals

that of C-peptide, can thus be estimated robustly from C-peptide concentration

samples during a short clinical test.

3.2.4 Summary - C-peptide

C-peptide is secreted in equimolar amounts to insulin and its kinetics can be

identified uniquely with more certainty than those of insulin. The C-peptide,

and consequently also insulin, secretion rate can be estimated from a well val-

idated population model of C-peptide kinetics, applying a novel integral-based

estimation method. The estimation method enables robust and physiologica-

lly valid estimation of pre-hepatic insulin secretion rate from sampled C-peptide

concentrations. The steps involved in the method described in this section are

summarised and shown schematically in Figure 3.10.

3.3 Summary

The insulin model derived in this chapter enables a physiological and accurate

description of the relevant metabolic dynamics of the hormone. The model is

physiologically valid, meaning that all its structural elements and identified pa-

rameter values are derived and explainable from physiological mechanisms. Addi-

tionally, it is useful for application in a clinical setting as the parameter values can

provide information about the metabolism. The estimation methods proposed,
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Figure 3.10 The overall method of estimating pre-hepatic insulin secretion, which is equiv-
alent to C-peptide secretion. Sampled C-peptide concentration data is approximated linearly,
and in conjunction with a population model of C-peptide kinetics, the secretion rate is estimated
with an integral-based method, as described in Section 3.2.3.

employing a-priori information and parallels with C-peptide kinetics, combined

with a robust and convex integral-based estimation of hepatic clearance rate,

enable a fast and physiological identification of all parameters.

The estimation of endogenous insulin secretion through C-peptide kinetics is

a well validated accurate approach [Hovorka et al., 1998; Van Cauter et al., 1992].

The population model of C-peptide kinetics [Van Cauter et al., 1992] enables an

a-priori identification of C-peptide kinetic parameters without additional tests

required. The integral-based estimation of a stepwise constant secretion of insulin

is robust and simple, as it does not require manual data analysis and intervention.

Overall, the models and methods presented are well suited for application in a

clinical insulin sensitivity test.



Chapter 4

Glucose Modelling and Identification

To derive a model-based metric of insulin sensitivity, a pharmaco-dynamic model

of the interaction of glucose and insulin is required. The model must include

all other, non-insulin dependent glucose clearance and uptake mechanisms to

improve its physiological validity.

The modelling goal in this chapter is to obtain a glucose PK and PD model,

that includes the key glucose uptake mechanisms, and is physiologically valid, yet

simple enough to be identifiable with a short, simple test and limited blood sam-

pling. Previous model-based approaches are discussed to improve overall method

performance and robustness, and reduce possible sources of methodological error.

An appropriate identification method that can be applied within the proposed

test protocol is presented.

4.1 Physiology

Glucose is a monosaccharide used as the main, and thus most important, source

of energy in the body. It is oxidised in the cells to provide ATP, which in turn

provides energy to the cell [Guyton and Hall, 2000]. The body uptake of glucose

is through carbohydrates in food, which are broken up in the alimentary tract

and released into plasma mainly in the form of glucose. Glucose in plasma is

transported to the cells for use as energy, and if available in abundance, stored

by the liver and the cells for future use.

The molecular weight of glucose is 180 Da, which is small enough to diffuse



62 CHAPTER 4 GLUCOSE MODELLING AND IDENTIFICATION

rapidly within plasma and body fluids, its main site of action [Guyton and Hall,

2000]. The uptake by cells in the brain and the central nervous system is by

diffusion alone, as they are highly permeable to glucose. In contrast, muscle and

adipose tissue cells control a majority of the total uptake and require insulin

binding to cell receptors to activate or mediate glucose uptake [Despopoulos and

Silbernagl, 2003; Guyton and Hall, 2000]. Hence, glucose uptake in this form is

referred to as “insulin-mediated” versus “non-insulin-mediated” uptake in other

organs.

Excess circulating glucose is stored in the liver and cells in the form of glyco-

gen, a large polymer of glucose, which is created by a process called glycogenesis

[Guyton and Hall, 2000; Zierler, 1999]. If glycogen stores are saturated, further

glucose is converted into fat and stored in the liver and in fat cells in the adipose

tissue. These processes can be reversed in times of energy demand. Glucose can

be rapidly released from glycogen by a process called glycogenolysis, and if the

glycogen stores are used up, fat is metabolised with amino acids to form glucose

in a process called gluconeogenesis [Guyton and Hall, 2000; Zierler, 1999].

The combined processes of glycogenolysis and gluconeogenesis are commonly

also described as endogenous glucose production (EGP) [Zierler, 1999]. EGP is

tightly regulated by the body to keep plasma glucose levels as constant as pos-

sible. External appearance or input of glucose, through meals or intravenous

injection, immediately results in a rapid inhibition of EGP [Caumo and Cobelli,

1993; Jefferson and Cherrington, 2001]. Low plasma glucose has the contrary

effect, stimulating glucagon secretion by the pancreatic α-cells, which activates

glycogenolysis and thus rapidly increases glucose concentrations in plasma. Over-

all, these processes operate in a balance with insulin-mediated glucose removal

to maintain normal blood glucose levels or glucose homeostasis. In type 2 dia-

betes this balance in glucose homeostasis does not function optimally anymore,

resulting in high blood glucose levels.
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Figure 4.1 Hormonal control of glucose metabolism to store or release glucose on demand
(taken from www.endocrine.com).

4.2 Modelling

4.2.1 Background

The kinetics of glucose have been described in similar ways as insulin, with one to

three compartment models [e.g., Bergman et al., 1979; Carson and Cobelli, 2001;

Cobelli et al., 1984; Insel et al., 1974]. As glucose is a smaller molecule than

insulin, with a molecular weight of 180 Da (compared to insulin with 5808 Da)

[Guyton and Hall, 2000], it distributes in the body much more freely and rapidly.

Well perfused organs in the splanchnic area, primarily the liver, are known to take

up or store glucose very rapidly, further adding to the difficulty in measuring these

kinetics to create accurate models.

A three compartment model was used to fit glucose kinetics in an early study

by Insel et al. [1974]. The model incorporated insulin-dependent and insulin-

independent glucose losses, and was identified using data from various dose-

response and glycaemic clamp tests with the help of glucose tracers. They con-

cluded that the fast compartment was impossible to identify from sampled data,
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as equilibration between this compartment and plasma was too fast. The losses

were assumed to occur from the fast and medium exchanging compartments, not

accounting for peripheral losses, thus limiting its validity.

Later attempts by Cobelli et al. [1984], Jacquez [1992] and Overkamp et al.

[1997] resulted in more physiological modelled losses and explanations for the

model parameters. However, identification of these models still required compli-

cated and costly multi-tracer experiments and further user imposed parameter

constraints. These aspects limit their use to very specialised research studies

and render them impractical for control or clinical use. Some of these modelling

attempts are shown schematically in Figure 4.2.

Figure 4.2 Two three compartment glucose kinetics models developed by Insel et al. [1974]
(above) and Cobelli et al. [1984] (below).

As the fast equilibrating compartment was found to be too fast to identify

accurately (time constant 0.6 min [Cobelli et al., 1984]), it was proposed to com-

bine the fast and the medium compartment [Cobelli et al., 1984]. This merger

is similar to the assumption made in modelling insulin, resulting in an acces-

sible compartment representing plasma and fast exchanging tissues and a slow

compartment representing interstitial fluid. Similar two compartment models

had been proposed earlier by Radziuk et al. [1978], in which the losses of both

compartments were equalised to enable identifiability, and later by Caumo and

Cobelli [1993] and Hovorka et al. [2002]. These latter models contain constant,
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as well as glucose dependent and insulin dependent losses, and more complicated

dynamics, allowing an estimation of endogenous glucose production by deconvo-

lution [Carson and Cobelli, 2001; Caumo and Cobelli, 1993]. Again, these models

require the use of glucose tracers to be uniquely identifiable and are thus imprac-

tical for clinical or widespread screening use. For reference, the model presented

by Caumo and Cobelli [1993] is shown in Figure 4.3.

Figure 4.3 Two compartment model of glucose kinetics proposed by Caumo and Cobelli
[1993].

The simplest description of glucose kinetics is by using only one compart-

ment, with the best known model being the ‘Minimal Model’ of glucose kinetics

proposed by Bergman et al. [1979]. The model is described by the following

equations:

dG(t)

dt
= −SMM

G (G(t) − Gb) − G(t)X(t) G(0) =
D

VG

(4.1)

dX(t)

dt
= −p2X(t) + p3(I(t) − Ib) SMM

I =
p3

p2

(4.2)

where G(t) is plasma glucose concentration, Gb fasting glucose, D the glucose

dose, VG the volume of distribution, X(t) remote insulin effectiveness, I(t) plasma

insulin concentration, Ib fasting insulin, SMM
G glucose effectiveness at basal in-

sulin, SMM
I insulin sensitivity, p2, p3 transport rates defining delay in insulin

effect.
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This approach assumes fast equilibration between the compartments and thus

equivalent concentrations throughout the body. Losses are possible by insulin-

independent pathways (brain, liver, kidneys) via the parameter SMM
G (min−1), de-

noted as glucose effectiveness at basal insulin, and by insulin-dependent (mainly

muscle and adipose tissue cells), as mediated by remote insulin effectiveness X(t)

(min−1). The variable X(t) in this model accounts for the combined delay in in-

sulin transport to the periphery, as well as the insulin sensitivity of the cells, thus

combining transport kinetics and action dynamics.

The Minimal Model is widely used, mostly combined with an IVGTT to

assess insulin sensitivity in research studies [Bergman et al., 1985, 1981]. Its

main advantages are simplicity and thus practicality. However, numerous studies

have questioned the validity of its derived parameters, and the question was

postulated as to whether it is “too minimal” [Caumo and Cobelli, 1993; Caumo

et al., 1996, 1999; Quon et al., 1994b; Regittnig et al., 1999]. In particular,

studies have shown that the estimation of SMM
G is imprecise and usually results

in a significant overestimation of its contribution, with the consequent result

being a significant underestimation of SMM
I [Caumo et al., 1999].

The reason identified for this problem by Caumo et al. [1999] is that glucose

kinetics should be described by two compartments to describe the fast decay

during the initial 30 minutes after a glucose dose and the slower decay thereafter.

When fitting the Minimal Model to IVGTT data using accepted methods, the

model tries to match the initial fast decay with a single exponential, resulting

in an overestimation of the slow decay that follows [Caumo et al., 1999; Quon

et al., 1994b]. Despite this problem, the model is able to capture the dominant

dynamics and has been somewhat successfully used in a slightly modified form

in glycaemic control trials in the critically ill [Chase et al., 2005a; Wong et al.,

2006a].

Further models of glucose kinetics usually combine more complex kinetics,

such as a circulatory model by Mari [1998], accounting for mixing of injected glu-

cose in the circulation. More complex simulation models include those presented

by Lehmann and Deutsch [1992] or Arleth et al. [2000]. These models include

many more physiological effects, such as gastric glucose uptake through meals,

liver feedback, and renal clearance thresholds. In particular, the glucose surface

by Arleth et al. [2000] is built on knowledge and assumptions on the behaviour
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of the GLUT glucose transporters [Guyton and Hall, 2000], incorporating sat-

uration of glucose clearance. Its parameters are identified by fitting the model

to values gathered from a wide range of clinical studies of glucose and insulin

metabolism, resulting in a ‘glucose surface’ that allows prediction of metabolic

behaviour in a population sense.

To summarise, modelling approaches exist to capture most metabolic char-

acteristics of glucose. However, they are usually limited to tailored experimental

situations, overly simplified, or both. For a model to be useful in clinical settings

and regular screening, it should be readily identifiable with limited data, but

compromising only slightly on physiological accuracy to ensure the relevance of

the results.

4.2.2 Model Structure

The model structure chosen for this application is a mono-compartmental de-

scription, similar to the Minimal Model and the model used in previous glycaemic

control research at the University of Canterbury [Chase et al., 2005b]:

dG

dt
= −pG(G − GE) − SIG

Q

1 + αGQ
+

P

VG

(4.3)

The main advantage over a multi-compartmental description is its identifia-

bility using limited plasma samples, while still accounting for the dominant dy-

namics. This model has also performed well in a variety of insulin and nutrition

based glycaemic control trials, as well as in retrospective data fitting of critically

ill patients [Chase et al., 2005b; Hann et al., 2005b]. As the intended test is

much more dynamic, and frequently sampled, errors could be introduced by un-

dermodelling, such as assuming a mono-compartmental structure. The trade-offs

between the improved identifiability of a simplified model and potential errors

introduced by an over-simplification of the model need to be analysed carefully.

Recent studies sampling interstitial fluid (ISF) concentrations of glucose di-

rectly from the muscle tissue using a microperfusion technique [Regittnig et al.,

2003, 1999], found a mean delay of 22 min (SD 3 min) between a bolus injection
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of 20 g glucose and the equilibration of concentrations in plasma and ISF. This

delay explains the fast decay seen in IVGTT plasma glucose data during the

first 30 minutes, which causes an overestimation of Minimal Model SMM
G when

it is used to fit a single exponential, as discussed in Section 4.2.1. An addi-

tional loss at these high glucose concentrations (∼ 14 mmol/l), not identified by

the researchers, could be a small glucose clearance by the kidneys, that have a

threshold of ∼ 10 mmol/l [Windhager, 1992].

Errors introduced by not accounting for the second mixing compartment

can be avoided if its causes and effects on the fitting algorithm are known. In

the proposed test, a lower glucose dose is intended, reducing the effect of renal

clearance and mixing during the first 10 minutes. By disregarding the first few

minutes after glucose administration in the fitting approach, any error introduced

by mixing can further be minimised. Any remaining error should thus be very

small, justifying the use of the simplified mono-compartmental description in this

case.

The saturation of insulin dependent glucose clearance, evident in long-term

hyperglycaemic individuals [Chase et al., 2004], is likely not evident in a fasted

state after a low dose injection of glucose [Prigeon et al., 1996], and is thus set

to αG = 0. Note that at higher insulin dosing saturation effects could affect the

estimation of SI , as both parameters trade off [Chase et al., 2004; Prigeon et al.,

1996].

Further enhancements are made to Equation 4.3 to include a more physiologi-

cal and complete description of the uptake and production mechanisms of glucose.

The resulting formulation is shown in Equation 4.4 and shown schematically in

Figure 4.4. The additions to the model and their physiological justification are

explained in more detail in the following sections.

dG

dt
= −(pGU + pGS)(G−GE)− SIGQ−

GUG

VG

+
EGPIb

VG

+
EGPGE

VG

+
P

VG

(4.4)

where pGU (min−1) is the insulin independent rate of glucose uptake, pGS (min−1)

the insulin independent rate of suppression of EGP, GUG (mmol/min) the con-

stant insulin independent glucose uptake by the brain and central nervous system,
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EGPIb (mmol/min) the fraction of EGP compensating glucose uptake at basal

insulin concentration Ib, EGPGE (mmol/min) the fraction of EGP accounting for

the constant glucose uptake by the brain (equal to GUG), and P (mmol/min) the

exogenous glucose administration.

Figure 4.4 Schematic of full glucose PK and PD model. Shown are all exogenous (P ) and
endogenous (EGP) inputs, the constant loss GUG, the insulin independent losses pGU and pGS ,
and the insulin dependent loss mediated by SI .

4.2.2.1 Insulin-Dependent Uptake

Insulin-dependent glucose uptake, mostly by muscle and adipose tissue cells, is

dependent on the product of peripheral insulin Q, total glucose concentration

G and insulin sensitivity SI , as seen in the second term of Equation 4.3. This

assumption is physiologically valid and widely accepted. It has also been iden-

tified and observed in many studies [e.g., Bergman et al., 1979; Jefferson and

Cherrington, 2001; Yang et al., 1989].

As the modelled insulin concentrations are absolute values and not those

above basal, as in the Minimal Model, the parameter SI includes a dynamic that

is included in SMM
G in the Minimal Model, namely glucose uptake at basal insulin

Ib. This basal glucose uptake can be calculated from a steady state analysis of

Equation 4.3 at a fasting state (without saturation):

GUIb = −SIGEQb (4.5)
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where Qb is basal steady state interstitial insulin and can be estimated using

Equation 3.10. GUIb accounts for about 25 % [Best et al., 1981; Cobelli et al.,

1984; Zierler, 1999] of basal glucose uptake. As this loss is included in the insulin

dependent term of the glucose model, the corresponding fraction of basal EGP,

EGPIb = −GUIb needs to be included in Equation 4.3 to keep a basal steady

state glucose balance.

4.2.2.2 Insulin-Independent Uptake

Insulin independent uptake in a basal state is primarily due to the brain and

central nervous system [Zierler, 1999], and to a lesser extent by some splanchnic,

well perfused organs. Most of this uptake is independent of glucose concentration

and can thus be seen as a constant loss, that is compensated by endogenous

production EGP to keep steady state levels. This uptake accounts for about

75 % of basal glucose uptake and is in the magnitude of ∼ 1 mg/kg/min [Best

et al., 1981; Zierler, 1999]. Converted to mmol, this value results in the constant

irreversible loss rate:

GUG = 5.6 × 10−3 mmol/kg/min (4.6)

This term needs to be compensated by the corresponding fraction of EGP, EGPGE.

Total EGP, insulin dependent and independent at basal state is thus defined:

EGPb = EGPIb + EGPGE (4.7)

In addition to insulin independent glucose uptake in the fasting basal state,

glucose can enhance its own uptake at hyperglycaemic levels and inhibit EGP

[Ader et al., 1997; Best et al., 1996; Jefferson and Cherrington, 2001]. These two

effects, uptake rate pGU and suppression rate pGS, are lumped into the parameter

pG of Equation 4.3 and in the Minimal Model parameter SMM
G (along with GUIb).

Del Prato et al. [1997] studied the quantitative effects of glucose uptake and

inhibition of EGP during hyperglycaemic clamps at basal insulin and different

levels of glycaemia. Their results, interpreted in terms of pGU and pGS were



4.2 MODELLING 71

pGU = 0.004 and pGU = 0.001 min−1 for uptake in healthy, and diabetes subjects,

respectively, with a value of pGS = 0.005 min−1 for suppression of EGP. These

rates are in good accordance with results from Best et al. [1996], who suggests

that all three effects (pGU , pGS, GUIb) are equally strong.

In similar studies employing an IVGTT at basal insulin on type 1 diabetes

subjects [Quon et al., 1994b; Regittnig et al., 1999], the slow decay of glucose at

basal insulin can be fit with values of pG = 0.0011 and pG = 0.0012 min−1, re-

spectively, as shown in Figure 4.5. The same values were found for pGU in type 1

diabetes subjects in the study by Del Prato et al. [1997]. In the former study by

Regittnig et al. [1999], a tracer was employed, enabling the estimation of endoge-

nous glucose concentration during the test. Interestingly, this concentration does

not change significantly during the test, suggesting that the endogenous balance

is left unchanged, and only the additional injected tracer is taken up. With this

assumption, the above mentioned transport rates would equal to pGU alone, with-

out the effects of pGS and GUIb, which explains the relatively low values found

for pG, and matching the values found in Del Prato et al. [1997].
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Figure 4.5 IVGTT glucose data at basal insulin concentrations on type 1 Diabetes subjects.
Mean plots shown from Quon et al. [1994b] (left) and Regittnig et al. [1999] (right). Shown are
sampled data and single exponential fits between 50 − 240 minutes.

Overall, these results using different clinical protocols, indicate that suppres-

sion of EGP due to elevated glucose alone is only apparent during prolonged

infusion of glucose, but not during a briefer, bolus-based IVGTT. Suppression

of EGP appears to be dependent mainly on elevated insulin levels. The insulin-

independent uptake at hyperglycaemia, represented by pG in Equation 4.3 is thus

much smaller than commonly found in Minimal Model fits, in line with the claims

of overestimation [Caumo et al., 1999].
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GUG and EGPGE cannot be measured directly without extensive clinical

testing. However, in fasting homeostasis or balance, they also cancel each other

and can be eliminated. EGPIb is dependent on SI and can be combined with

the insulin dependent term for easier identification. Finally, pGS can be taken

out as well, as its effect does not seem to be very strong during an IVGTT-type

test, especially as this test aims at a lower glucose dose. The model shown in

Equation 4.4 can thus be simplified, resulting in the final, shortened form of the

glucose pharmaco-kinetics:

dG

dt
= −pGU(G − GE) − SI(GQ − GEQb) +

P

VG

(4.8)

where Figure 4.6 shows the models of Equations 3.7-3.8 and Equation 4.8.

Figure 4.6 Schematic of final glucose and insulin models and their pharmaco-dynamic inter-
action.

4.3 Model Identification

Identification of model parameters is done using the integral-based fitting method

described in Section 3.1.3.3. Equation 4.8 is integrated in the interval [t0, t1], and

if the data resolution is good enough to usefully identify all parameters [Hann

et al., 2005a], pGU , SI and VG can be estimated:
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G(t1) − G(t0) =

− pGU

∫ t1

t0

(G − GE)dt − SI

∫ t1

t0

(GQ − GEQb)dt +
1

VG

∫ t1

t0

Pdt (4.9)

In a dose response test, the volume of distribution VG can be estimated from

the distinct jump in concentration after a bolus input, as seen in the example of

Figure 4.7. In a clamp test or an infusion experiment, VG trades off with loss

parameters and can thus not uniquely be identified. A fixed parameter has to be

chosen, typically using an estimate based on body weight [DeFronzo et al., 1979;

Lotz et al., 2006a].

With less frequent data sampling than an IVGTT, for example using a first

post-input sample at +5 min, an integration error can be introduced if the sam-

ples are interpolated linearly between 0-5 min. Figure 4.7 shows this potential

error schematically. To overcome this limitation, VG needs to be estimated a-

priori by extrapolating back to t = 0 min from samples at ∼ 5 − 10 minutes.

This approximation also helps overcome any underestimation of the volume due

to mixing effects and is done similarly in the Minimal Model assessment of an

IVGTT [Bergman et al., 1981].

Insulin independent clearance pGU is difficult to estimate accurately without

specialised experimental protocols to suppress endogenous insulin response [e.g.,

Best et al., 1996; Del Prato et al., 1997; Quon et al., 1994b]. As explained in

Section 4.2.2, its effects are small in a short low dose bolus response test, and it

can thus be fixed a-priori to a mean value from the literature. Here a value of

pGU = 0.004 min−1 is chosen in accordance with several studies [Del Prato et al.,

1997; Quon et al., 1994b; Regittnig et al., 1999].

Insulin dependent clearance, determined by SI , can be identified well, as the

test design is rich in information in this respect. By allowing most variability to

be captured by SI , the test also predisposes itself by design to capture the same

effects as a euglycaemic clamp. As a result, there is an increasing similarity and

correlation between them.
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Figure 4.7 Error introduced by interpolating between 0 and 5 min sample, when VG is not
known. Grey area shows underestimated area.

4.4 Summary

Many glucose models have been presented in previous research, ranging from one

to three compartments. Identification of glucose model parameters is difficult, as

endogenous glucose production (EGP) is difficult to measure in a clinical setting.

A single compartment description with minimal parameters can be used with

good performance if identified correctly.

The derived glucose model contains insulin-independent and insulin-dependent

glucose losses and accounts for endogenous and exogenous glucose input. By

analysing the physiology and problems encountered in previous similar approaches,

it is evident that some systematic sources of error can be eliminated by a bet-

ter understanding of the underlying assumptions in modelling and fitting errors.

This knowledge, combined with the modelled peripheral insulin from Chapter 3

and the customised integral-based fitting method, allows for a robust and fast

estimation of insulin sensitivity SI , as shown schematically in Figure 4.8. The

model and method is simple, requires minimal data and is thus well suited for

use in a clinical setting.
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Figure 4.8 The overall method of estimating the model-based insulin sensitivity SI . Mod-
elled peripheral insulin Q(t) and sampled glucose concentration data are combined in the glu-
cose/insulin pharmaco-dynamic model. Insulin sensitivity is estimated by fitting the model
with the integral-based fitting approach, as described in Section 4.3.





Chapter 5

Validation of Insulin Models

The insulin and C-peptide models and identification methods described in Chap-

ter 3 require validation on experimental data. Suitable data to validate all aspects

of the models are obtained from the published literature. The two main aspects,

endogenous insulin secretion (β-cell function) and insulin kinetics are validated in

separate steps to avoid tradeoffs between effects and parameters. The validation

of each model starts with details about the experimental data used and the per-

formance metrics chosen to assess model performance, followed by the validation

results and discussions.

5.1 Insulin/C-peptide Secretion

Model-based estimation of insulin secretion is validated on intravenous glucose

tolerance test (IVGTT) data. The IVGTT is ideal for validation, as it includes

the highly dynamic endogenous insulin secretion impulse response of the system

to a glucose bolus. Briefly, a glucose bolus is injected intravenously, triggering the

bi-phasic endogenous insulin response [Ferrannini and Mari, 2004]. The IVGTT

thus provides data from which both phases of β-cell function can be distinctively

identified, therefore providing the opportunity to measure and assess pancreatic

performance.



78 CHAPTER 5 VALIDATION OF INSULIN MODELS

5.1.1 Experimental Data

The C-peptide data from IVGTT studies used in this validation have been gen-

erously provided by Dr. Andrea Mari (Institute of Biomedical Engineering, Na-

tional Research Council, Padova, Italy) and Dr. Angelo Avogaro (Department of

Clinical and Experimental Medicine, University of Padova, Padova, Italy). The

data have been previously published [Mari, 1998], with a full description of the

subjects and experimental protocol. Key aspects relevant to this study are briefly

reproduced here for clarity.

The study was performed on 12 subjects, 5 with normal glucose tolerance

(NGT) (mean±SEM: age 24±2, weight 73±6 kg, fasting glucose 5.2±0.1 mmol/l,

fasting insulin 50 ± 5 pmol/l) and 7 with type 2 diabetes (type 2) (mean±SEM:

age 49 ± 5, weight 81 ± 3 kg, fasting glucose 8.6 ± 0.8 mmol/l, fasting insulin

125 ± 27 pmol/l). Pharmacological treatment in type 2 diabetic individuals was

stopped 3 days before the study to eliminate a confounding affect, and all subjects

received a 2000 kcal/day diet (50 % carbohydrate, 35 % fat, 15% protein) for at

least 30 days prior to the study, to standardise this aspect.

An insulin-modified IVGTT was performed on all subjects in the morning

after an overnight fast. After three fasting samples at -30, -15 and 0 min, a

0.3 g/kg glucose bolus was injected intravenously. At 20 minutes, insulin was

infused intravenously for 5 minutes, totalling 0.03 U/kg (NGT) and 0.05 U/kg

(type 2). For an 80 kg individual, these doses are 24 g glucose and 2.4-4 U of

insulin. Blood samples were collected at 2, 3, 4, 5, 6, 8, 10, 15, 20, 25, 30, 40,

60, 80, 100, 120, 140, 160, 180, 210, and 240 min, and analysed for C-peptide,

glucose and insulin concentrations.

5.1.2 Performance Metrics

Pancreatic secretion characteristics are compared, where available, to data esti-

mated in the original study by Mari [1998]. The performance metrics defined try

to capture all possible secretory characteristics of interest and include:
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1. First phase peak secretion rate (Smax): Missing samples in the first

minutes after the glucose input can lead to large errors in estimated peak se-

cretion rate, due to the slower observed increase in C-peptide concentration

that results.

2. Total insulin/C-peptide secreted in first phase, 0-10 min (AUC10):

The area under curve (AUC), or also described as acute insulin response

(AIR), is a common metric to describe the total insulin secreted during first

phase response [Ferrannini and Mari, 2004; Pacini and Mari, 2003]. It is

calculated by integrating the estimated secretion rate over 0-10 minutes.

3. Total insulin/C-peptide secreted between glucose and insulin in-

puts, 0-20 min (AUC20): As the exogenous insulin administered at

t = 20 min inhibits pancreatic insulin secretion, it could be of interest to

assess the total amount of endogenously secreted insulin until it is inhibited.

4. Total insulin/C-peptide secreted during the IVGTT (AUCtotal):

Calculated by integrating the insulin secretion rate over the complete test.

Expected error ranges introduced by the assay were assessed by Monte Carlo

analysis of the estimated secretion rate over 104 runs. The analysis utilised

data that was normally distributed, zero-mean random noise with a coefficient

of variation (CV) of 3 %, which is the error reported for current state of the art

assays [Roche, 2005]. This value is a conservative choice for this analysis, as

older radio immunoassays have CVs up to twice this value [Clark, 1999]. These

larger CVs would result in even larger allowable errors from the reduced sampling

protocol. Hence, the smallest assay errors were utilised for comparison.

Statistical Analysis

Normality of results was assessed by the single sample Kolmogorov-Smirnov

(KS) hypothesis test with a significance level of 0.05. Where results were log-

normally distributed, the geometric mean (log-normal mean) and multiplicative

standard deviation [Limpert et al., 2001] are used, as noted in the respective

results.



80 CHAPTER 5 VALIDATION OF INSULIN MODELS

5.1.3 Reduced Sampling Intensity Approach

The very frequent sampling performed in this experiment immediately after glu-

cose administration allows an accurate assessment of the first phase secretory

peak. In clinical practice, sampling with such a high frequency is not feasible,

but a significant error could be introduced in Smax and AUC10 by not sampling

the concentrations in the first 5 minutes after the glucose bolus is administered.

To assess this error, these performance metrics are calculated for the case in

which the first two samples after glucose administration are at 6 and 10 minutes,

as glucose is administered between 0-1 minutes.

The error is introduced by an underestimated area under the concentration

curve in minutes 1-6, similar to the potential interpolation error in the glucose

curve shown in Figure 4.7. A proposed solution to this lack of data in a clinical

test is the introduction of an estimated peak concentration, placed 1 minute

after the administration of glucose, in this case at 2 minutes. This introduces a

faster rise in concentration in the interpolated profile, and thus a sharper peak

in estimated secretion rate.

The concentration profiles in this data set increase immediately after the

glucose bolus is administered and peak at approximately 2-3 minutes. The peak

concentration is slightly higher than the concentration sampled at 6 minutes.

A ’correction’ sample is thus introduced at 2 minutes, with a value 10 % larger

than the sample taken at 6 minutes. This approach is shown for one subject in

Figure 5.1.

5.1.4 Results

Pre-hepatic insulin secretion rate was estimated well with the full data set using

the proposed integral-based method of Section 3.2. The overall result was the

stepwise constant endogenous insulin and C-peptide secretion profiles shown in

Figure 5.2. The qualitative shape of the secretory curves compare well to the

clinical data in the original publication [Mari, 1998].

Mean peak secretion rate is slightly higher in this study in both subgroups.

This difference may be due to the smaller stepsize (1 minute vs. 2 minutes)
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Figure 5.1 Errors potentially introduced by reduced sampling during the first 5-10 minutes
after glucose administration. Shown are the C-peptide profiles (left) and the Estimated secretion
rate (right). The grey area shows the original profile, the solid line (and diamonds) the profile
with only sampling at 6 and 10 minutes, and the dashed line (and squares) the results using a
corrected peak.

chosen for fitting in this study. Total mean amount secreted in the first 6 minutes

after glucose administration (ISR1 in Mari study) is virtually identical in NGT

(1659 pmol vs. 1667 pmol in Mari’s study), but larger in type 2 diabetes (655 pmol

vs. 430 pmol in Mari’s study). Further performance metric results are given in

Table 5.1.

Table 5.1 Performance metrics given as geometric mean and multiplicative standard devia-
tion.

NGT Type 2
Smax [pmol/min] 2628.1 (1.8) 871.4 (2.5)
AUC10 [pmol] 10456.4 (1.8) 4799.8 (2.5)
AUC20 [pmol] 15303.8 (1.7) 9791.3 (2.4)
AUCtotal [pmol] 42804.3 (1.4) 82536.1 (2.2)

Errors in the measured performance metrics due strictly to assay errors were

assessed by Monte Carlo analysis and are given as a CV for each metric, with the

median and 100 % range over all 12 subjects:

• Smax: CV=5.47 %, range 2.97 − 11.01 %

• AUC10: CV=4.10 %, range 1.92 − 9.39 %

• AUC20: CV=3.13 %, range 1.90 − 4.26 %
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Figure 5.2 Above: Mean C-peptide concentration in NGT (dashed) and type 2 diabetes
(solid) subjects. Samples from Mari [1998] are shown with error bars of ±2 SD. Below: Mean
estimated C-peptide secretion rate (ISR) in NGT (grey area) and type 2 diabetes (solid line)
subjects.

• AUCtotal: CV=1.11 %, range 0.97 − 1.25 %

Within these CV ranges it is effectively impossible to determine whether a differ-

ence is due to models and methods or to simple assay error. Thus, in comparing

results to those in Mari’s study, these values are important.

Reconstruction of C-peptide concentrations from the identified secretion pro-

files resulted in the residuals shown in Figure 5.3. Residuals are given as rela-

tive values (decimal percentages). Deviations from the original sample set are

caused by smoothing of the estimated secretion profile or by errors introduced

through the linear interpolation used between samples in the integral-based fit-

ting method. The ideal goal is to have all variation within the dashed lines due

to assay error.

Estimated C-peptide secretion rate with only the 6 and 10 minute samples

after glucose administration, and with the correction peak introduced, are shown

in Table 5.2, as a relative difference to the original full sample set.
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Figure 5.3 Residuals introduced when reproducing the full C-peptide sample profile. The
solid line shows the mean residuals and the grey area the 100 % range of residuals. The dashed
lines show the 95 % range of residuals introduced by assay error, as estimated by Monte Carlo
analysis.

5.1.5 Discussion and Conclusions

Estimating pre-hepatic insulin secretion through modelling of C-peptide kinet-

ics has been a common methodology and it is relatively easy to perform in re-

search settings [Hovorka et al., 1996; Polonsky et al., 1986b; Van Cauter et al.,

1992; Watanabe et al., 1989]. In particular, the population method proposed by

Van Cauter et al. [1992] enables the estimation of insulin or C-peptide secretion

rate with a single experiment. By employing this method, model parameters are

consistent across studies, enabling a better comparison, as tradeoffs between es-

timated parameters and secretion rates are reduced. Nonetheless, the estimation

of peak secretion rate and insulin secreted during first phase is still highly depen-

dent on assay errors and sampling frequency during the initial minutes. Ideally,

sampling should be performed every minute to assess an accurate profile. How-

ever, such frequent sampling introduces significant labour and cost, and reduces

robustness of the method.

As the highly frequent sampling performed in this study is not feasible in

a clinical setting, the effects on estimated secretion rate of a reduced sampling
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Table 5.2 Deviations in performance metrics in the case of lacking samples immediately
after glucose administration. Shown are the case of sampling only at 6 and 10 minutes, and
the introduction of a correction peak at 2 minutes. Differences are given as percent, relative to
the full sample set.

NGT Type 2

Only sample at 6 and 10 minutes
∆Smax -38.9 % (SD 2.9 %) -35.8 % (SD 13.8 %)
∆AUC10 -12.4 % (SD 1.2 %) -10.6 % (SD 8.8 %)
Correction peak at 2 minutes
∆Smax -1.8 % (SD 5.3 %) -0.6 % (SD 21.5 %)
∆AUC10 -0.7 % (SD 2.2 %) -2.4 % (SD 10.9 %)

during the first phase secretion were assessed. Instead of using the full sampling

set (2, 3, 4, 5, 6, 8, 10 minutes), only samples at 6 and 10 minutes were used. Due

to the slower increase of the interpolated profile between 0 and 6 minutes, the

estimation of Smax was greatly reduced by ∼36 %-39 % in the NGT and type 2

diabetes subgroups, respectively. The effect on total secretion rate was not as

large, only underestimating AUC10 by ∼10 %, which is still in the range of errors

attributable to assay errors. This minimal effect is due to the longer duration of

first phase secretion, compensating for the reduced peak, as seen in Figure 5.1.

By introducing a corrected peak at 2 minutes, the initial slope of the inter-

polated profile is matched to the initial slope seen in the full data set, and the

errors are thus minimised. This effect can be seen clearly in Figure 5.1, in which

the shape of the corrected secretion rate (dashed) closely matches the original

secretion rate (grey area). This approach can enable a more accurate estimation

of peak secretion rate, whereas the errors in AUC10 are not as large.

It is important to keep in mind that significant errors are also introduced

due to assay inaccuracy. For example, peak estimated secretion rate, Smax, has

a median CV=5.47 % and can thus vary between ±11 % (±2 SD), even with a

1-minute step sampling protocol. Most of the performance metrics are within, or

slightly outside of ±2 SD of assay error, meaning that they are in fact just within

the natural variability that can be identified [Clark, 1999].

Using the same model and the parameter estimation method from Van Cauter

et al. [1992], estimation of secretion rate has previously been proposed by deconvo-

lution [Eaton et al., 1980] and a more elaborate constrained regularisation method
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[Hovorka et al., 1996]. The main drawbacks of these methods are the individu-

alised method adjustments required for each subject, including knot placements

for cubic spline interpolations [Eaton et al., 1980], or a separate step to find the

optimal proportionality constant in each subject [Hovorka et al., 1996]. All of

these extra steps introduce time, computation and human variability into the

results, thus obviating a single consistent method.

In contrast, the integral-based method described in this study is a single step,

computationally convex and fast method that only requires linearly interpolated

data. By constraining the linear least squares estimation to non-zero values and

smoothing the estimated secretion rate, the resulting profile is physiologically

accurate and the effects caused by noisy data are reduced [Hann et al., 2005b].

First and second phase secretion characteristics were clearly identified, with slight

quantitative, but not qualitative deviations from the profiles reported originally

with this data. In addition, these smaller deviations can be readily explained

by the longer stepsize used in that study. Finally, the integral-based method is

consistently applied across all subjects and both subgroups.

From Figure 5.3 it can be seen that the C-peptide concentration profile is

reconstructed with the estimated and smoothed secretion rate within the expected

assay errors. The highest errors are apparent during 0-20 minutes, which is

attributable to the high rate dynamics that occur in this stage following glucose

administration. Measurement errors during this stage also have a relatively larger

effect on the estimation of secretion rate, thus magnifying the underlying errors.

Finally, the performance metrics show the typical characteristics that clini-

cally and physiologically differentiate NGT and type 2 diabetes subjects, further

validating the method. While in the NGT subgroup first phase secretion accounts

for about 25 % of total secreted insulin, it is only about 5 % in the type 2 diabetes

group, with the secretion rate only peaking at about a third of the value reached

by NGT subjects. Total secreted insulin is twice as high in type 2 diabetes as in

NGT. These metrics provide further important metabolic information about the

subject, which can be used clinically to supply a more complete picture of their

metabolic state of health.

Overall, the method to assess insulin secretion could be validated with very

good consistency on the IVGTT data. In addition, the IVGTT uses essentially
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the same perturbation of the pancreas as the intended test being developed.

Further metrics can also be derived from this method, in addition to insulin

sensitivity. Hence, the metabolic system and its status can be more completely

and accurately defined.

5.2 Insulin Kinetics

The primary goal of the insulin kinetics model validation is to assess the validity

of the general fitting approach described in Chapter 3. It is not to perform a

full parameter estimation. The objective is thus not a perfect model fit, but a

generic and simple approach that yields a good fit even on sparsely sampled data,

similar to the data density and requirements intended for a practical clinical test.

The fitting approach is considered appropriate if sampled data is matched within

measurement noise and parameter values obtained lie within a physiologically

valid range.

5.2.1 Experimental Data

To fully validate the insulin model, frequently sampled plasma and interstitial

insulin concentrations are required. However, interstitial fluid measurements are

difficult to perform and rarely available in most clinical studies. Therefore, sep-

arate validation of these two insulin compartments is performed.

To validate the fast and slow components of the decay curve, frequently sam-

pled insulin concentrations are required. This requirement is especially true in the

first 10 minutes after a sudden change in input. In addition, endogenous insulin

secretion should be captured either through C-peptide sampling or suppressed

through somatostatin infusion [Jefferson and Cherrington, 2001; Wahren et al.,

1977]. This highly frequently sampled insulin data with complete knowledge of

endogenous insulin input are difficult to obtain and have been rarely performed

in the past.

In this study, validation is performed using published data from a study

investigating the systemic delivery rate of insulin that was performed by Polonsky
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et al. [1986a]. In Polonsky et al. [1986a], three different insulin administration

profiles were applied to the same group of subjects. These tests allowed all the

insulin kinetics to be accurately delineated.

Interstitial insulin kinetics are validated with published data from two differ-

ent studies. In these studies, the insulin concentration was sampled from muscle

interstitial fluid during an OGTT [Sjostrand et al., 2005a] and during a two step

euglycaemic clamp [Gudbjornsdottir et al., 2003]. These latter studies allow the

interstitial fluid kinetics of the insulin model to be validated.

Plasma Insulin Data

Data used in this validation were taken from a published study by Polonsky et al.

[1986a]. Full experimental data could not be obtained from the authors and the

three mean concentration plots from page 115-117 of [Polonsky et al., 1986a] were

utilised instead. The high frequency sampling in this study make the data ideal

to validate the fast component of insulin kinetics.

The study was performed on 8 normal males within 10 % of their ideal body

weight. More detailed characteristics are not given in the study description, so

a mean weight=75 kg, height=1.80 m and age=30 years were chosen to estimate

kinetic parameters. These characteristics approximately match a normal male in

the cultural setting in which the study was performed. During all three protocols,

a background infusion of somatostatin was administered to suppress endogenous

insulin secretion. The three studies reported were performed as follows:

1. Bolus injection of insulin (1.5 U) and subsequent sampling for 120 minutes

(1 min frequency during the first 10 minutes).

2. Constant infusion of insulin for 60 minutes (1 mU/kg/min) and frequent

sampling, after which the infusion is stopped and insulin sampled for an-

other 60 minutes (1 min frequency during the first 10 minutes).

3. Variable rate infusion of insulin, starting at 0.28 mU/kg/min and pro-

gressively increased in 5 min intervals up to 2.14 mU/kg/min by 35 minutes.

After 15 minutes at this rate, the infusion was reduced in 10 min steps to

reach the initial rate after 60 minutes.
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Interstitial Fluid Insulin Data

The first data set used in this validation were taken from a study published by

Sjostrand et al. [2005a]. Full experimental data could not be obtained from the

authors and the mean concentration plots from page 154 of [Sjostrand et al.,

2005a] were utilised instead. Brief study details are reproduced here for clarity.

Further details are described in [Sjostrand et al., 2005a]. Note that this publica-

tion was later retracted [Sjostrand et al., 2005b] due to a data handling mistake,

which is accounted for in this validation, thus not affecting the results.

Oral glucose tolerance tests were performed on 10 lean (5 male, 5 female,

BMI=23 (SD 0.6) kg/m2, age=39 (SD 4) years) and 10 obese (5 male, 5 female,

BMI=33 (SD 1.2) kg/m2, age=41 (SD 3) years) individuals. After an overnight

fast, an oral glucose load (75 g) was ingested and plasma and interstitial insulin

sampled every 15 minutes for a total of 120 minutes.

The second data set used were taken from a study employing the same ISF

sampling technique during a euglycaemic clamp test [Gudbjornsdottir et al.,

2003]. A two-step clamp was performed, the first step at an insulin infusion of

120 mU/min/m2, and the second step at an insulin infusion of 240 mU/min/m2.

Both clamp steps were held for 120 minutes. The study population consisted of

10 lean male subjects with BMI=23 (SD 2.8) kg/m2 and age=26 (SD 5) years.

Interstitial fluid measurements were performed by means of a microdialysis

technique [Sjostrand et al., 1999]. More specifically, interstitial fluid is sampled

directly at muscle tissue. This approach is more accurate than earlier interstitial

insulin studies sampling lymph concentrations [i.e. Steil et al., 1996; Yang et al.,

1989].

5.2.2 Methods

Plasma Insulin Kinetics

Plasma insulin concentrations from the three protocols in Polonsky et al. [1986a]

are fitted as described in Chapter 3, using the reported infusion profiles as input
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uex. As no C-peptide data are available, only the parameter nL is estimated from

the data. To account for an incomplete suppression of endogenous insulin by

somatostatin [Toffolo et al., 1980; Wahren et al., 1977], a low constant infusion

of 4 mU/min (∼25 % of fasting basal secretion) is assumed and included as uen.

Interstitial Fluid Insulin Kinetics

To validate interstitial insulin kinetics, Equation 3.8 is solved with the measured

and interpolated plasma insulin concentration I(t) used as input to the equation.

In the OGTT study, I(t) cannot be modelled independently, as insulin appearance

in these tests is from pancreatic secretion, which cannot be estimated from the

data sampled in this study. In the clamp data, the insulin infusion protocol is

known, and plasma insulin can be modelled along with ISF insulin Q(t).

The parameters to be validated are nI and nC . This task is done with a

sensitivity analysis on γ = QSS/ISS, which defines the concentration gradient to

be reached, and nI , which defines the speed at which this gradient is reached.

Note also that nI also appears in Equation 3.7 that defines plasma insulin ki-

netics. This analysis therefore yields information on the robustness of the use of

population parameters.

5.2.3 Results

Plasma Insulin Kinetics

Just estimating hepatic clearance nL from data, while holding VP , VQ, nK , nI

and nC at population parameter values from Table 3.1, resulted in a very good

fit in all three cases. This result can also be seen in Figure 5.4. Estimated cohort

values for nL were 0.19, 0.17 and 0.16 min−1 for protocols 1-3 respectively. This

limited variation is within expected natural variability [Duckworth et al., 1988;

Ferrannini and Cobelli, 1987b] and also within the variability that might be seen

from assay errors. The fit could potentially always be improved by fitting more

parameters, but that would require an unacceptable compromise in computation,

robustness and simplicity. The goal was to validate the described identification
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method, not to achieve a perfect fit. A fit was considered good if most data

points were matched within measurement noise and the key dynamic aspects of

the data were reproduced reasonably well.
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Figure 5.4 Experimental protocols from Polonsky et al. [1986a] (Protocol 1-3, from top to
bottom). Insulin input (left) and resulting plasma insulin concentration with model fit (solid)
and modelled interstitial insulin Q(t) (dashed) (right).

Interstitial Fluid Insulin Kinetics

In the validation of interstitial fluid kinetics, the mean steady state concentration

gradient γ (with ± 10 % error) is 0.65 (0.58 - 0.71) and 0.55 (0.5 - 0.6) in the lean

and obese groups of the OGTT, respectively. In the clamp data, γ is 0.55 (0.5 -

0.6). Maintaining this ratio is important, as a variation outside of the 20 % band
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reported would achieve inaccurate steady state values. Parameter nC thus needs

to be bound to nI through γ, as defined in Equation 3.11.

In the OGTT studies, the value of nI calculated a-priori results in a profile of

interstitial insulin Q(t) that is well within measurement error. The parameter is

not very sensitive, as can be seen by the calculated profiles shown in Figure 5.5.

Multiplying and dividing nI by a factor of 2 and 3 still achieves reasonably good

data fits of Q(t). A factor of 2 is mostly still within measurement error.

In the clamp study, the plasma insulin concentration profile could be mod-

elled in addition to the ISF profile, resulting in a good fit as shown in Figure 5.5.

Estimated hepatic clearance was similar to the values identified in the plasma in-

sulin validation, nL = 0.15. The effect of nI on plasma insulin is shown by the two

dotted lines around the plasma insulin profile shown in Figure 5.5, representing

an increase and a decrease of nI by a factor of 3.

ISF insulin concentrations during the first 90 minutes could not be matched

by the model fit, as the concentration gradient is significantly lower at γ =∼ 0.2.

This lower gradient is identified by the authors of the study as a methodological

sampling problem at lower insulin concentrations, and is thus not considered a

modelling error in this study [Gudbjornsdottir et al., 2003]. The last sample

of this first clamp step, at 120 minutes, is in line with the assumed γ = 0.55,

as well as the remaining samples during the second clamp step. Increasing and

decreasing nI by a factor of 2 and 3 results in good model fits. The value of nI

has the biggest impact during the first 10 minutes, in which the insulin infusion

loading protocol causes a very fast increase in concentrations.

5.2.4 Discussion and Conclusions

Plasma Insulin Kinetics

The insulin kinetics model, with the parameter estimation approach presented

in Chapter 3, shows very good performance in fitting the frequently sampled

plasma insulin data of Polonsky et al. [1986a]. This is a relatively remarkable

performance, as only one parameter, the hepatic clearance nL, is estimated from

the data. All the other parameters are calculated from a-priori known subject
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Figure 5.5 Sensitivity analysis on nI performed on mean plots of lean (upper left) and obese
(upper right) subjects from [Sjostrand et al., 2005a], and on the clamp data from [Gudbjorns-
dottir et al., 2003]. Average values for γ are used in each case, with γ = 0.65 used for the lean
OGTT, γ = 0.55 for the obese OGTT and the clamp subgroups. Shown are plasma insulin
samples and linear interpolation in OGTT or modelled insulin in clamp (solid), interstitial
insulin concentration samples (diamonds) and modelled interstitial insulin, with nI = 1×nI

(dash-dot), 2×nI and 1/2×nI (grey area) and 3×nI and 1/3×nI (outer dashed lines). The
dotted plasma insulin profiles in the clamp plot show the modelled profiles at 3×nI and 1/3×nI .

characteristics using population values or equations.

With more elaborate fitting approaches, and by allowing more parameters

to vary, the fits could potentially be further improved, but only with significant

additional effort. This is not desired in this study, as the methods are designed

to be applicable on sparsely sampled experiments, and the model performance

shown in this chapter is more than adequate for such an application. Note that

an over-fitting of the data can potentially also reduce accuracy and increase

variability, as is the case in the Minimal Model, in which SMM
G is overestimated

and SMM
I underestimated, as discussed in more detail in Chapter 3.



5.2 INSULIN KINETICS 93

Estimated nL varied slightly during the different protocols, but not exceeding

a natural physiological variability or assay error. The values were lower in the

infusion protocols than in the bolus injection, which could have been caused

by a different suppression of endogenous insulin secretion in the different types

of insulin administration. In addition, hepatic extraction has been shown to

be highly variable and saturable when exposed to high insulin concentrations,

particularly over time [Ferrannini and Cobelli, 1987b; Thorsteinsson, 1990; Toffolo

et al., 2006], a dynamic that was not accounted for in this validation study.

It should be noted that the plasma insulin data used in this validation can

be much more variable than just the assay errors. The study by Polonsky et al.

[1986a] was performed over 20 years ago, when insulin assays were not necessarily

very accurate and had a high cross-reactivity to proinsulin [Chevenne et al., 1999;

Robbins et al., 1996]. Even today, the insulin assay is not completely standardised

and large inter-laboratory variations persist [Sapin, 2003].

To conclude, the insulin kinetics model and the a-priori parameter estimation

approach described in Chapter 3 could be validated sufficiently well with the

presented data. The variable protocols of an impulse response, a step increase

and a gradual increasing infusion consistently show very good model performance.

Frequently sampled plasma insulin samples allow validation of the fast and the

slow components of insulin kinetics.

Interstitial Fluid Insulin Kinetics

Validation of interstitial insulin concentration modelling shows good performance

and robustness. The key parameter to estimate in this case is the steady state

concentration gradient γ = QSS/ISS, which is in the reported range of 0.5-0.7.

Estimating this parameter in individual tests would require separate sampling of

interstitial fluid, which is not viable in a simple clinical test. Thus, fixing the

parameter to a value within this range provides a reasonable and simple method

to identify the model within physiological plausibility.

Testing robustness by modifying nI by a factor of 2 and 3 results in the plots

shown in Figure 5.5. As the data is very noisy, especially at lower concentrations

[Gudbjornsdottir et al., 2003; Sjostrand et al., 2005a], a change by a factor of



94 CHAPTER 5 VALIDATION OF INSULIN MODELS

2, shown by the grey area in the plots, does not compromise the quality of fit

significantly. A further increase by a factor of 3 does not affect the plot as strongly

as a reduction by a factor of 3. The parameter thus seems to be more robust on

the high side, and as long as a large enough value is chosen, model performance

is within expected bounds.

The interstitial insulin measurements done by Sjostrand et al. [2005a] and

Gudbjornsdottir et al. [2003] are a novel and still experimental technique, requir-

ing complicated calibration methodology [Gudbjornsdottir et al., 2003; Sjostrand

et al., 1999]. Further validation of these methods are necessary until more accu-

rate results are obtainable. Nonetheless, the parameters of interstitial fluid insulin

kinetics result in very reasonable data fits, suggesting that they are potentially

very close to the true values.

5.3 Summary

In the validation performed in this chapter, insulin and C-peptide models and

identification methods presented in Chapter 3 could be satisfactorily validated.

Pancreatic insulin secretion can be estimated with high accuracy and performance

on bolus dose response data as found in an IVGTT. Plasma insulin kinetics can

be estimated very accurately with the a-priori parameter identification proposed

and by estimating only one parameter from data. Interstitial kinetics are well

represented and robust with the population values estimated a-priori.

The insulin model and its parameter estimation method, mostly employ-

ing population parameters, thus provide not only a physiological insulin kinetics

model, but also a method to identify its parameters with minimal data require-

ments. This approach performed very well as validated on the data in this chap-

ter. Overall, the simplicity, robustness and physiological validity of the proposed

approach make it ideal for use in an application designed for a clinical setting.



Chapter 6

Euglycaemic Clamp Validation

The euglycaemic-hyperinsulinaemic clamp [DeFronzo et al., 1979] is the gold

standard to assess insulin sensitivity. Model validation is performed on clamp

data to verify how the model-based metric for insulin sensitivity SI compares to

the clamp derived metric ISI. The correlation of both metrics gives an indication

of the performance of the overall model, including the insulin, C-peptide and

glucose components.

The clamp test is described in more detail in Chapter 2, but is briefly outlined

here for improved clarity. The clamp test consists of a constant infusion of insulin

and a variable infusion of glucose to maintain euglycaemia. The result is an

eventual suppression of endogenous insulin and glucose with the goal to reach a

metabolic steady state. The first hour of the test is highly dynamic in glucose

concentration, as the system needs to be stabilised, which is achieved by proposed

formulae [DeFronzo et al., 1979; Ferrannini and Mari, 1998] and/or experience

from medical staff. The second hour is the steady state and ideally constant

insulin and glucose concentrations are achieved, which are used for the calculation

of ISI.

6.1 Experimental Data

The clamp data used in this validation have been kindly provided by Dr. Kirsten

McAuley and Prof Jim Mann from the Edgar National Centre for Diabetes

Research, Dunedin, New Zealand. The data have been previously published

[McAuley et al., 2002], with full description of subjects and experimental proto-
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col. Key aspects are briefly reproduced here for clarity.

The data consist of euglycaemic-hyperinsulinaemic clamp tests performed by

McAuley et al. [2002] during a study assessing insulin resistance in normogly-

caemic individuals before and after a 16 week lifestyle intervention. The study

population was randomised into control, moderate and intense intervention sub-

groups. The subgroup results are not relevant in this validation and the cohort

is thus simply split into the pre- and post-intervention groups. Cohort data are

given in Table 6.1.

Table 6.1 Description of the intervention study population from McAuley et al. [2002]. ISI
is the clamp based metric of insulin sensitivity.

Mean (SD) Range Mean (SD) Range

Age (All N=146) 46.8 (8.9) 30-68
pre-interv. (N=73) post-interv. (N=73)

Fast. glucose [mmol
l

] 4.9 (0.6) 4.0-6.8 4.8 (0.6) 3.5-6.9
Fast. insulin [mU

l
] 19.9 (12.1) 6.6-84.3 17.2 (11.2) 5.7-65

BMI [ kg
m2 ] 34.4 (4.9) 24.5-45.2 33.2 (5.0) 23.6-44.8

Weight [kg] 96.7 (15.3) 67.9-140.8 93.4 (15.5) 62.5-142.4

ISI [mg/kg/min
mU/l

] 3.03 (0.9) 1.16-5.15 3.79 (1.3) 1.74-8.37

HOMA-IR [ mU
mmol

] 4.4 (3.2) 1.4-24.4 3.8 (3.0) 0.9-19.9

The clamp was performed after an overnight fast, and was run over 120 min-

utes. The protocol infused insulin (Actrapid) at 40 mU/m2/min between 10 and

120 minutes and tried to maintain the blood glucose levels at a goal of 4.6 mmol/l.

An insulin loading protocol was applied during the first 10 minutes, starting at

127 mU/m2/min with an 11 % reduction per minute, as described by DeFronzo

et al. [1979]. The glucose infusion was adjusted at 10 minute intervals. Glucose

concentration was sampled every 10 minutes and insulin at 0, 60, 90, 120 minutes.

Further details are described in [McAuley et al., 2001].

Glucose clearance (M -value, mg/kg/min) is the average glucose infusion dur-

ing the last 60 minutes, with a space correction to compensate for deviations

in glucose concentrations between 60 and 120 minutes [DeFronzo et al., 1979;

McAuley et al., 2001]. The insulin sensitivity index ISI is M divided by the
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average measured plasma insulin concentration during the last 60 minutes:

ISI =
M

I60+I90+I120
3

(6.1)

6.2 Methods

6.2.1 Comparison of Insulin Sensitivity Metrics

When comparing ISI and SI , it is important to first understand the extent of

similarity between these two measures of insulin sensitivity to avoid a comparison

of “apples and oranges”. The ISI calculation of the clamp is the steady state

ratio of glucose infusion rate M per kg body weight (mg/kg/min), divided by the

average plasma insulin concentration (mU/l) at a balances homeostatic state.

It is assumed that during the clamp steady state all endogenous glucose and

insulin secretion is fully suppressed, and that all glucose and insulin in the body

is being infused externally [Bergman et al., 1985]. The test metric thus tells the

clinician how much glucose the body can metabolise at a given plasma insulin

concentration. More importantly, it assumes all glucose uptake to be mediated by

insulin and that the uptake rate is proportional to plasma insulin concentration.

This assumption is not physiologically accurate, as it neglects insulin inde-

pendent glucose uptake. This uptake can be dependent on glucose concentration

or can be constant, as is the uptake by the brain and central nervous system,

which at ∼100 mg/min is quite substantial [Baron et al., 1988; Zierler, 1999].

The mean glucose infusion rate in this study population is 890 mg/min, so brain

uptake accounts for over 10 % of the infused glucose.

A further physiological misassumption in the clamp calculation is the lack

of glucose clearance saturation [Chase et al., 2004; Natali et al., 2000; Prigeon

et al., 1996]. At the high rate of glucose and insulin infusion, glucose clearance

saturation is very likely, thus resulting in an underestimation of true insulin

sensitivity. As saturation and insulin sensitivity trade off and cannot uniquely

be identified on data from one test [Natali et al., 2000], the model saturation

parameter is set to αG=0 to match the clamp assumption. This dynamic should
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thus not further cause additional bias between ISI and SI .

The model-based SI (l/mU/min) is in principle similar to ISI, as it relates

the rate of glucose uptake to an insulin concentration. The main difference is

that insulin in interstitium, Q(t), instead of insulin in plasma, I(t), is used. This

approach is physiologically more accurate, but results in a systematic shift when

comparing absolute metrics.

A further important difference is the fact that the glucose model accounts

for additional glucose uptake that is not dependent on insulin, such as glucose-

only dependent uptake, pGU , and constant uptake, GUG. As these two effects are

physiologically valid and included in the model used in this research, they are also

used to validate the model against the clamp, to improve comparability between

the metrics attained in both tests. Removing these two effects, and relating all

glucose uptake to insulin dependent effects, results in more similar assumptions

to the clamp and thus likely in a tighter correlation.

When comparing the units of both metrics, it is evident that a correction is

necessary to compare absolute values. In this example, ISI is corrected to match

the units of SI :

ISI

[

mg · l
kg · min · mU

]

×
weight

GclampVG

[

kg

mg/l · l

]

= SI

[

l

mU · min

]

(6.2)

where the weight/VG term is used to normalise to body mass and volume. Sim-

ilarly, the 1/Gclamp term normalises the clearance to the steady state glucose

value achieved. This is a common approach to reduce the dose dependency of

the clamped glucose level and to correct for tests that deviate slightly from this

clamp goal [Bergman et al., 1985].

As can be seen in Equation 6.2, further variability can be introduced by

the unit conversion. The volume VG cannot be measured nor estimated from

the clamp data and an estimation of its value has to be made. A common

choice is VG = 0.19×weight [DeFronzo et al., 1979]. Using a weight-dependent

volume causes the effect of weight and volume to cancel out of Equation 6.2, and

merely introduces a constant factor. A more conservative choice is to estimate
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the volume dependent on the estimations for insulin distribution, VP and VQ, as

this decorrelates weight and volume and simulates a more realistic situation.

6.2.2 Parameter Estimation

Fitting of data was performed with the integral-based fitting method described

in Chapter 4. In addition to the parameters identified a-priori, VG was set to

VG = 1.2 · (VP + VQ), as the clamp data are not dense enough to allow a unique

identification. A 20 % larger volume than the total insulin distribution volume

was chosen, as apparent glucose distribution volume has been found to be larger

than the total distribution volume for insulin, due to fast hepatic storage and

non-insulin dependent uptake by the brain [Despopoulos and Silbernagl, 2003;

Waterhouse and Keilson, 1972].

Hepatic insulin clearance nL is estimated as a constant over 120 minutes.

Glucose uptake at basal insulin, pGU , cannot be estimated from these data, as

a high insulin concentration is present throughout the test and was fixed at a

constant value of pGU = 0.004 over 120 minutes, as described in Chapter 4.

Insulin sensitivity, SI , is fitted as a constant over each 60-minute period to assess

any differences during transient SI−TR and steady SI−SS states.

During a clamp test EGP is reduced and eventually suppressed by the high

infusions of glucose and insulin [Bergman et al., 1985]. As the profile of EGP

cannot be measured from the available data, an assumption of its profile is made.

The assumption is a linear suppression during the transient 0-60 minutes and

full suppression thereafter, in line with observed metabolic responses during this

test [DeFronzo et al., 1979; Ferrannini and Mari, 1998]. If this assumption is

physiologically feasible, SI−TR and SI−SS should be very similar. In contrast, if

no suppression of EGP is actually the case, SI−SS will likely be overestimated by

seeing more glucose removal than actually occurs.

The goodness of the model fit at steady state is assessed as the relative

difference between ISI values calculated from experimental data and ISI values

calculated from glucose and insulin levels simulated by the model, given as a

percentile root mean square error (RMSE). Errors in fitted glucose and insulin

profiles are given to assess fit accuracy at transient states.
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6.2.3 Correlation Analysis

Modelled insulin sensitivity parameter SI is correlated (Pearson correlation co-

efficient) to clamp derived ISI, normalised by the average plasma glucose con-

centration during the final hour steady state (ISIG = ISI/G) [Bergman et al.,

1985]. ISI is normalised to account for trials in which a steady state glucose

concentration is not fully attained and the mean steady state value deviates from

the target of 4.6 mmol/l. It also matches the units for ISIG and SI , making

comparisons clearer, per Equation 6.2.

For the steady state comparison, SI during the last 60 minutes (SI−SS) was

used, as ISIG is calculated over the same interval. The transient value of SI

is fitted over 0-60 minutes (SI−TR) to assess the potential of the model for a

dynamic insulin sensitivity test. Pearson correlation coefficients were obtained

for the whole data set and the pre- and post-intervention subgroups.

Statistical Methods

Probability distributions of the insulin sensitivity parameters could not be as-

sumed to be normal, as assessed with the Shapiro-Wilk test. To assess the sig-

nificance of the correlations, their 95 % confidence intervals (CI) in the form of

percentile intervals were calculated using the nonparametric bootstrap, which

does not require a parametric distribution model for the data [Efron and Tibshi-

rani, 1993]. Where data are log-normally distributed, the geometric mean and

multiplicative standard deviation (MSD) are used to describe the spread [Limpert

et al., 2001].

6.3 Results

Mean SI at steady state was SI−SS = 4.85× 10−4 (MSD 1.54) l/mU/min and at

transient state SI−TR = 4.82 × 10−4 (MSD 1.51) l/mU/min. The mean values

and distributions of steady state and transient state SI are statistically equal

(P = 0.71). In contrast, assumption of no suppression of EGP resulted in a

larger SI during steady state, SI−SS = 7.34 × 10−4 (MSD 1.48) l/mU/min, as
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compared to the transient state, SI−TR = 6.01 × 10−4 (MSD 1.43) l/mU/min,

as hypothesised. Both SI values were significantly different in the unsuppressed

EGP assumption case, as assessed by the Wilcoxon rank sum test (P < 0.001).

The root mean square error (RMSE), shown in percent, between clamp ISI

from experimental and modelled data for all 146 tests was 1.8 % (MSD 2.8).

The expected error in the calculation of ISI, due to error propagation of sensor

errors and device inaccuracies, was calculated from the data as 6.8 % (SD 0.45 %,

range 6.24 - 9.32 %) over all 146 tests. The RMSE between experimental and

modelled glucose and insulin values were 2.9 % (MSD 3.5) and 3.9% (MSD 3.4),

respectively. Hence, all ISI errors are within measurement error propagation.

Mean estimated hepatic insulin clearance rate was nL = 3.68 × 10−2 (SD

2.04 × 10−2) min−1. Further estimated parameters are given in Table 6.2 for the

pre- and post-intervention subgroups. A sample model fit is shown in Figure 6.1.

Table 6.2 Parameter estimates from clamp data fit, given for the pre- and post-intervention
subgroups. Data given as mean and SD and geometric mean and multiplicative SD (MSD)
where noted specifically.

Mean SD Mean SD

pre-interv. (N=73) post-interv. (N=73)
VG [l] 12.22 1.06 11.99 1.08
VP [l] 4.52 0.37 4.46 0.36
VQ [l] 5.67 0.54 5.54 0.57
nK [10−2 min−1] 6.00 0.24 5.95 0.28
nL [10−2 min−1] 3.24 2.14 4.12 1.84
nI [10−2 l/min] 27.56 2.70 26.90 2.86
nC [10−2 min−1] 4.86 0.06 4.86 0.06
EGPb [mg/kg/min] 1.47 0.29 1.51 0.29
SI−SS [10−4 l/mU/min] 4.25 MSD 1.54 5.54 MSD 1.49
pGU [min−1] 0.004

Correlation between clamp derived ISI and steady state SI−SS is r = 0.953

(95 % CI: 0.933 - 0.968), and transient state SI−TR is r = 0.920 (95 % CI: 0.881 -

0.950). To reduce variability introduced by a deviation from the clamped glucose

concentration, ISI is commonly normalised by the steady state glucose concen-

tration [DeFronzo et al., 1979; Ferrannini and Mari, 1998], denoted ISIG. ISIG is

further unit-corrected to reduce variability introduced by model assumptions for

VG and to match the units of SI (l/mU/min). The resulting correlation between
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Figure 6.1 Example of a clamp data model fit and corresponding samples. Shown are glucose
concentration (upper left), insulin concentration (upper right) with plasma I(t) (solid) and
interstitial Q(t) (dashed) concentrations, infusions (lower left) of glucose (solid) and insulin
(dashed), and profile of EGP.

ISIG and steady state SI−SS is r = 0.995 (95 % CI: 0.992 - 0.997). At transient

state SI−TR the correlation is r = 0.924 (95 % CI: 0.887 - 0.951), thus lower and

with a broader CI. Both regression lines have a y-intercept indifferent from zero

and a slope of 0.52 and 0.51 for steady and transient state, respectively. The

slopes are very close to γ = Qss/Iss = 0.5, the expected ratio between ISIG and

SI . Correlations for the steady and transient states are shown in Figure 6.2 for

all 146 clamp tests.
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Figure 6.2 Correlation of ISIG and SI−SS (left) and ISIG and SI−TR (right).

As steady and transient state SI are nearly identical, fitting the data with

a constant value of SI over 120 minutes should result in an equally good fit.

The RMSE between experimental and modelled glucose and insulin values were
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slightly larger at transient state (3.8 % (MSD 3.2)), but equally accurate at steady

state (3.9 % (MSD 3.4)). Correlation between ISIG and SI in this case is r =

0.981 (95 % CI: 0.971 - 0.988). This result is more accurate than the transient

only correlation, as the steady state data are taken into account in the fitting. In

addition, SI would be physiologically expected to be constant over a 2-hour test.

Pre- and post-intervention subgroups showed a similar trend when analysed

independently. More specifically, there were higher correlations at steady state

and at post-intervention. These results are given in Table 6.3, along with correla-

tions of ISIG. Finally, correlations to log-HOMA, the logarithmic transformation

of HOMA-IR, are also shown, given its wide clinical use [Wallace et al., 2004b].

Note that the logarithmic transformation of HOMA-IR is required to enable a

comparison of the linear trend between both metrics, as described in Section 2.2.

Table 6.3 Results of correlation analysis for the whole population and the pre- and post-
intervention subgroups, given for steady and transient states.

Metric All (95 %CI) Pre (95%CI) Post (95%CI)

SI−SS 0.995 (0.992-0.997) 0.988 (0.978-0.995) 0.998 (0.997-0.999)
vs. ISIG

SI−TR 0.924 (0.889-0.950) 0.912 (0.869-0.951) 0.922 (0.873-0.955)
vs. ISIG

∆SI−SS 0.990 (0.984-0.995)
vs. ∆ISIG

∆SI−TR 0.897 (0.833-0.938)
vs. ∆ISIG

log-HOMA -0.48 (-0.59- -0.35) -0.49 (-0.64- -0.32) -0.44 (-0.60- -0.25)
vs. ISIG

A further analysis is done to see how the model captures the change in in-

sulin sensitivity after the intervention, as compared to the clamp ISI. This

result is also shown in Table 6.3. Correlation of ∆SI−SS, between pre- and post-

intervention, and ∆ISIG is r = 0.990 (95 % CI: 0.984 - 0.995), and between

∆SI−TR and ∆ISIG is r = 0.897 (95 % CI: 0.833 - 0.938). The regression lines

have y-intercepts indistinguishable from zero, and slopes of 0.54 and 0.50 in steady

and transient states, respectively, where a slope of 0.5 is expected due to γ = 0.5.

The correlation plots in steady and transient states are shown in Figure 6.3.

Relative changes in ISIG and SI−SS are shown in Figure 6.4, along with
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Figure 6.3 Correlation of ∆ISIG and ∆SI−SS (left) and ∆ISIG and ∆SI−TR (right).

relative changes in log-HOMA. These plots clearly show the accuracy of SI in

capturing the change in insulin sensitivity as compared to a common and typi-

cal fasting measure (log-HOMA) that clearly does not capture the trend. Note

that log-HOMA is also one of the clinically highly regarded fasting measures

[Ferrannini and Mari, 1998; Monzillo and Hamdy, 2003].
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HOMA (bottom).
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6.4 Discussion and Conclusions

The error in modelled vs. calculated ISI over all 146 trials is well within the

expected accuracy from assay errors and reflects the ability of the model to match

the glucose and insulin dynamics during steady state. The mean fitting error of

the glucose profile of 2.9 % (MSD 3.5) shows that the model also captures the

transient dynamics in glucose during the first 60 minutes. Errors in modelled

glucose are attributed to highly dynamic metabolic changes at the beginning of

the clamp, such as EGP, which are likely not fully captured by the model.

The assumption of a steady reduction of EGP during the transient state

and full suppression during steady state proved to be a physiologically sensible

approach. The difference in transient and steady state SI is statistically in-

significant, validating this approach. This result is further confirmed with the

good correlation of SI (r = 0.98) when fitted as a value constant over the whole

120 minute trial.

The fact that the model fit with constant parameters is within measurement

noise, validates the model dynamics. In particular, it shows that all variability

can be accounted for by its structure leaving only measurement error. Hence,

these results validate the overall model, its structure, and the fitting methods,

values and assumptions. A separate fitting of the transient state is still important

to validate the model’s transient performance. This value assesses the estimation

of SI when only transient data are considered. Such a transient form of data

would be the case in a simple clinical test.

When EGP is kept constant throughout the clamp, estimated SI is increased

during steady state, which is a result of overestimating modelled glucose input.

In particular, small deviations of γ from the expected or ideal value γ = 0.5 could

be attributed to errors or deviations in the 60-minute, linear EGP suppression

assumed. However, the overall good validation results obtained indicate that this

assumption is also not far from reality in the absence of better data that are

typically not available.

The insulin profile in steady state was captured by fitting only one parameter

of the insulin kinetics equations, hepatic clearance nL. The mean fitted value of

nL = 3.68×10−2 (SD 2.04×10−2) min−1 results in a hepatic metabolic clearance
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rate of 4.6 ml/min/kg (range 2.7-6.9), which is slightly lower than the reported

range of 5.0-8.5 ml/min/kg found by others [Ferrannini et al., 1983; Sherwin

et al., 1974]. This lower clearance could be caused by various factors, such as

heavy saturation of the liver being exposed to such large supra-physiological

concentrations [Thorsteinsson, 1990], reduced clearance in obesity [Valera Mora

et al., 2003], or incomplete suppression of pancreatic insulin during the clamp test,

resulting in an apparent lower clearance rate. None of these effects are accounted

for in the model or data fit and result in an underestimated nL. Incomplete

suppression of pancreatic insulin secretion is particularly likely, given the shorter

and lower dose method used in this specific clamp study [Ferrannini and Mari,

1998].

The goodness of fit for the first hour of the insulin profile could not be as-

sessed, as measurements were taken at only 0 and 60 minutes. However, the shape

of the modelled transient insulin profile matches profiles reported in similar stud-

ies [Bergman et al., 1985; DeFronzo et al., 1979]. The glucose profile was fitted

by estimating only one parameter, SI . The quality of fit is not compromised by

keeping pGU constant throughout the cohort. Estimation of pGU is not possible

on this data, as the insulin concentration is high throughout the test and does

thus not allow insulin-independent effects to be identifiable. Furthermore, the

effect of pGU is small in this study, as it is not effective near the basal glucose

concentrations, which are close to the clamped 4.6 mmol/l.

The mean value of SI−SS is higher than the unit-corrected ISIG (SI−SS =

1.59×ISIG). This factor is due to the difference in the assumptions of the two

calculations. The clamp calculation of ISI assumes all insulin in plasma (I(t)) is

active to enable glucose uptake by the cells. The model uses the modelled insulin

concentration in interstitial fluid, Q(t), which has been shown to be correlated to

glucose uptake in dogs [Miles et al., 1995; Yang et al., 1989] and humans [Castillo

et al., 1994]. It is also a more physiological assumption.

As the steady state insulin concentration gradient is γ = 0.5, ideally SI−SS

should be 2×ISIG if both metrics were otherwise equal. The further reduction

of this factor to 0.51 is caused by the constant glucose uptake GUG and the

suppression of EGP (discussed in detail in Section 6.2), which is included in the

model but not the clamp calculation. This constant uptake reduces the amount

of glucose that is to be cleared by insulin, thus reducing the value of SI .
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Correlations between ISIG and SI−TR at transient points in the trial are

useful to see how well the model performs in estimating insulin sensitivity when

the steady state assumptions of the ISIG calculation are not met and a steady

state is not yet reached. It provides a means to verify if the model-based SI

would be equally accurate if determined from a short 30-60 minute dynamic test.

Correlations between ISIG and SI−TR were slightly lower than at steady state,

but at r = 0.92 still very high and higher than similar dynamic metrics. As a

comparison, Table 6.4 shows various correlation coefficients of the similar model-

based IVGTT compared to the clamp. Different IVGTT protocols are shown

with a wide range of correlation values, mostly in the range of r = 0.5 to r = 0.7.

Table 6.4 Correlation coefficients reported in various studies comparing the IVGTT with
the euglycaemic clamp test. A standard IVGTT includes only a glucose bolus. A tolbutamide-
modified IVGTT additionally includes added tolbutamide to trigger pancreatic insulin secretion.
An insulin-modified IVGTT additionally includes an insulin bolus. Subgroups are normal
glucose tolerant (NGT), impaired glucose tolerant (IGT), obese (OB) and type 2 diabetes
(T2).

IVGTT Weak Strong Subjects Refs

Standard r = 0.44 12 NGT [Donner et al., 1985]
180 min r = 0.53 9 NGT, 3 IGT, 8 T2 [Foley et al., 1985]

r = 0.54 10 NGT [Beard et al., 1986]

Tolbut. r = 0.84 10 NGT [Beard et al., 1986]
180 min r = 0.89 5 NGT, 5 OB [Bergman et al., 1987]

r = 0.71 35 NGT [Saad et al., 1997]

Insulin r = 0.57 28 NGT, 13 OB, 15 T2 [Katz et al., 2000]
180 min r = 0.48 20 IGT [Saad et al., 1994]

r = 0.41 12 T2 [Saad et al., 1994]
r = 0.70 35 NGT [Saad et al., 1997]
r = 0.73 12 T2 [Coates et al., 1995]

Comparing the correlations between SI and ISIG in the pre- and post-

intervention subgroups in Table 6.3, a slightly better correlation can be seen

in both states after the intervention. This increase in correlation is very small

and not statistically significant (P < 0.001) A reduction in the correlations can

be seen when correlating the transient states, as would be expected due to this

highly dynamic perturbation. The correlations decrease to r = 0.91 in the pre-

intervention group, with a wider CI of r = 0.87 − 0.95. The still comparably

narrow 95 % CIs in all subgroups highlight the positive correlations.

One reason for the lower correlations at transient state is a greater variabil-

ity in SI−TR, which compensates for endogenous insulin and glucose production
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insufficiently accounted for in the model. This estimation could be improved by

modelling or estimating endogenous insulin, through C-peptide measurements

[Van Cauter et al., 1992] and/or estimating a more correct hepatic glucose out-

put through tracer experiments [Vicini et al., 1999]. While the first option is

readily applicable without significantly adding to test complexity, tracer experi-

ments are too complex and expensive to perform without highly specialised and

trained personnel [Carson and Cobelli, 2001].

The effect of the intervention, measured as a change in insulin sensitivity,

was well captured by the model, with correlations of the change in sensitivity of

r = 0.99 and r = 0.90 in steady and transient states, respectively (Figure 6.3).

The regression line of the changes had a linear relationship with a y-intercept

very close to zero and slopes of 0.54 and 0.50, respectively. These slopes should

ideally be 0.5, and thus show very close similarity of both metrics. The deviation

from the ideal line is due to experimental problems resulting in insufficiently

clamping the steady state, thus resulting in incorrect clamp ISIs. In addition,

model assumptions about the suppression profile of EGP may play a small role.

How well the model captures the change in SI is visualised better in Figure 6.4, in

which the relative change in SI is shown in a sorted order. The change in SI−SS,

though more noisy than ISIG, captures the major trend in changing sensitivity

(Figure 6.4, upper right).

One of the more widely used surrogates for estimating insulin sensitivity in

clinical practice is the HOMA-IR measure [Wallace et al., 2004b]. This fasting

measure does not correlate as well with experimental ISIG in this population,

with r = −0.48 over all 146 tests. Other studies have reported a wide range of

correlations r = −0.2 to r = −0.8 in different subgroups [Bonora et al., 2000;

Lewanczuk et al., 2004; Mather et al., 2001], matching the wide 95 % CIs in

Table 6.3. Figure 6.4 (lower plot) shows the change in sensitivity as assessed by

log-HOMA, which clearly does not capture the trend seen in the clamp ISI and

the model SI , rendering it clinically infeasible for such a study or use.

The results of this validation study, especially during the transient state of

the trial, show the performance of the validated system model when correlated

to the clamp derived ISIG. Unlike the clamp or IVGTT, which rely on a steady

state to assess insulin sensitivity, this model and fitting method has the potential

to perform similarly well as the clamp in a much shorter transient test. These
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results show great potential for the performance of the model in such a short,

dynamic test.

A key factor in the increased variability during transient state is incompletely

modelled dynamics, mainly endogenous insulin and glucose. They are a main

cause for previously reported over- and underestimation of the Minimal Model’s

parameters SMM
G and SMM

I [Caumo et al., 1999; Mari, 1997]. Errors in these

effects are lumped into SI−TR, causing a greater variability in the transient state.

However, for these clamp fits, with the assumed suppression profile of EGP, the

equality of SI in both states indicates these effects were captured sufficiently well.

Suppression of EGP is not as strong during a low-dose bolus injection of

glucose and insulin and should not have such an impact on SI estimated from

such a test [Jefferson and Cherrington, 2001]. Overall, these clamp validation

results show great model performance in this highly dynamic test and very good

correlations in insulin sensitivity metrics as compared to the gold standard metric,

even in a transient state.

6.5 Summary

In the validation performed in this chapter, the pharmaco-dynamic models and

identification methods presented in Chapters 3-4 could be satisfactorily validated

by fitting them to euglycaemic-hyperinsulinaemic clamp trials. Performance was

very good, with correlations between model- and experimental metrics for insulin

sensitivity of r = 0.92 and r = 0.99 in transient and steady states. Estimated

insulin sensitivity during steady and transient states was nearly equal, further

validation the modelling assumptions.

Correlation coefficients between this model’s SI and the clamp ISI are better

than in other insulin sensitivity tests. This better comparative performance is a

resulting consequence of the specific design aspects of this PD model. Overall, the

model performance validated in this chapter shows great promise for the intended

insulin sensitivity test.





Chapter 7

Proposed Insulin Sensitivity Test

The ability to sensitively and accurately identify individuals with insulin resis-

tance (IR) is critical for the implementation and assessment of intervention pro-

grammes in high risk groups. To diagnose IR in population studies and to be

applicable in clinical settings, a test has to be simple and cost effective. However,

it must also be accurate enough to assess small changes in IR or the progression

of treatment.

In this chapter, a clinical test protocol for a model-based assessment of insulin

sensitivity is proposed. The protocol applies the models and methods described

in Chapters 3-4 to estimate insulin sensitivity and β-cell function from clinically

sampled data. A Monte Carlo error analysis is performed on a simulated virtual

cohort to assess the expected accuracy in repeatability and in correlation to the

euglycaemic clamp test, in the face of clinical and assay noise.

7.1 Overview and Goal

The target environment for the proposed protocol is a clinical setting with com-

monly available blood sampling and assay facilities. The protocol should thus be

simple and not require specially trained personnel and equipment such as glucose

tracers [Caumo and Cobelli, 1993] or hand arterialisation equipment (i.e. heated

hand technique [Bergman et al., 1985; Godsland et al., 1993]). In essence, it must

be of low clinical intensity and effort.

A dose response test capturing the metabolic response to a glucose and in-
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sulin injection is very rich in information about the analysed system and less

noise-affected than a static or constant infusion sample. The impulse response

can be fitted with a model of the relevant physiology to derive metabolic infor-

mation from its parameters. Hence, a simple dose-response format has significant

potential in both a clinical and modelling scene.

The IVGTT with Minimal Model assessment is such a test, and is com-

monly used in research studies [Bergman et al., 1981]. The main disadvantages

of the IVGTT are its duration (3 hours), number of samples (22+ samples), non-

physiological dosing (20-30 g glucose, 2-5 U insulin), and triggering of regulatory

responses, such as suppression of EGP. Furthermore it usually requires arteri-

alisation of venous blood and very frequent sampling (1-2 minutes) during the

first 10-20 minutes. All these factors limit its use to highly controlled research

settings.

The Minimal Model identification of an IVGTT with commonly used fitting

methods [Carson and Cobelli, 2001] generally overestimates insulin independent

clearance SMM
G and thus overestimates SMM

I [Quon et al., 1994b]. The main

reason identified for this behaviour is the simplified description of glucose ki-

netics by a mono-compartmental model [Caumo et al., 1999]. As explained in

Section 4.2.1, this problem can be addressed by understanding the source of the

fitting error, namely trying to fit the fast decay in the initial minutes of the test

with an unsuitable model.

The proposed test is based on the same dose-response principle, but should be

significantly shortened in duration (< 60 minutes) and sampling (< 10 samples).

Dosing should be physiological (∼ 10 g glucose, ∼ 1 U insulin) to assess a more

accurate effect and minimise endogenous regulatory responses that can negatively

affect the results. No specialised knowledge or test equipment (beyond standard

clinical practice) should be required. The application of improved modelling and

fitting approaches should thus be able to improve test performance enough to

meet the clinical accuracy requirements.

Additional information about endogenous insulin response to glucose, or β-

cell function, can also be gathered in this type of data by sampling and modelling

C-peptide kinetics. To assess this response, a gap of at least 10 minutes is re-

quired between glucose and insulin administration, as exogenous insulin injection
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suppresses pancreatic insulin secretion [Jefferson and Cherrington, 2001]. The

key secretory response of interest after such a bolus injection of glucose is the

first-phase secretion of insulin [Ferrannini and Mari, 2004], which lasts approxi-

mately 10 minutes. Therefore, this very valuable diagnosis of β-cell function can

be easily obtained in addition to insulin sensitivity.

7.2 Protocol Design

7.2.1 Clinical Aspects

The test protocol is designed with physiological, computational and practical as-

pects in mind, and limited in time to be less than 60 minutes long. A more

extensive sampling and dosing protocol is proposed first, which is then simulated

before it is tested in a clinical pilot study. From this more extensive protocol,

shortened versions are derived in a further step in Chapter 9 and their perfor-

mance compared to the full protocol. The protocol is shown schematically in

Figure 7.1 and briefly defined in the following steps:

1. Inject a fixed dose of glucose (5 g, 10 g or 20 g) at 0 minutes.

2. Inject a fixed dose of insulin (0.5 U, 1 U or 2 U) at 10 minutes.

3. Sample blood at -10, 0, 5, 10, 15, 20, 25, 30, 35, 45 minutes and assay for

glucose, insulin and C-peptide concentrations.

4. Fit metabolic models of glucose, insulin and C-peptide to dose response

curves.

5. Determine insulin sensitivity from model parameter SI .

Sampling frequency is initially chosen in 5 minute steps during the more

dynamic stages and 10 minute steps during the initial fasting period and the

near-fasting condition at the end. A more frequent sampling directly after the

injections, as done in an IVGTT, is not clinically practicable. In addition, the

mixing process in plasma can take up to 10 minutes to complete [Bergman et al.,
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Figure 7.1 Schematic of the steps involved when applying the insulin sensitivity test.

1985; Caumo and Cobelli, 1993], and earlier measurements may thus be inaccu-

rate [Ader and Bergman, 1987].

Blood is to be taken from a venous access for increased safety and simpler

protocol. Arterialisation of venous blood, as performed in an IVGTT, should not

be a requirement, as specialised equipment would be needed. Sampling venous

instead of arterial blood has been shown not to affect Minimal Model parameters

in an IVGTT [Godsland et al., 1993].

Glucose and insulin dosing should be as small as possible to measure the

necessary effect without assay errors dominating the resulting profiles. However,

they should also be smaller than a standard IVGTT to minimise intensity and

counter-regulatory responses. These basic requirements ensure a less intense, yet

physiological test, as per Figure 2.7.
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Three fixed steps in dosing are chosen: 5 g/0.5 U, 10 g/1 U, 20 g/2 U glu-

cose/insulin respectively. The dosing of 10 g of glucose and 1 U of insulin is used

as the main option in the following study, as it is > 50 % lower than the dose used

in an IVGTT, but likely yielding a better signal to noise ratio than the very low

dose (5 g/0.5 U). The protocol was also simulated with the low and high dose to

assess any differences in results and expected accuracy.

After two fasting samples, taken 10 minutes apart, the glucose is administered

as a bolus at t = 0 min. At t = 10 min, insulin is administered as a bolus. This

approach enables the separate information and assessment of a fasting situation,

the pancreatic insulin response after the glucose bolus, and the final decay of

glucose in the presence of exogenous insulin. The steps involved result in the

response profiles shown for glucose and insulin in Figure 7.2.
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Figure 7.2 Example of simulated profiles of glucose (left) and insulin (right) responses to the
low-, medium- and high-dose test protocols on the same virtual subject. Discrete measurements
are shown with error bars along with model fits (continuous curves).

7.2.2 Model Fitting

The model fitting of sampled glucose, insulin and C-peptide data is done as

described in Chapters 3-4. Some parameters need to be fixed, as the information

in the data does not allow a unique identification and inaccurately identified

parameters can affect accuracy of the others [Caumo et al., 1999; Chase et al.,

2004; Finegood and Tzur, 1996].

Insulin independent glucose clearance pGU cannot be estimated accurately
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from the data, and is fixed to an approximate population value for healthy in-

dividuals, pGU = 0.004, as described in Chapter 4. It is also not a dominant

dynamic in the presence of low glucose doses and exogenous insulin [Natali et al.,

2000; Prigeon et al., 1996]. Equilibrium glucose concentration, GE, is set to the

fasting glucose level of each subject, as shown in the cohort description in Ta-

ble 6.1. Glucose clearance saturation is set to αG = 0, as the subjects are fasted,

and with the low dose insulin bolus saturation is not likely. This value also bet-

ter matches the assumptions in calculating ISI for the supra-physiological clamp

test [DeFronzo et al., 1979].

Parameters identified from the data are nL and xL for the insulin model and

SI and VG for glucose. The measured data are the plasma glucose, insulin and

C-peptide concentrations at each time point. The integral-based fitting method

employed is described in detail in Chapters 3-4.

7.3 Monte Carlo Error Analysis

To assess the expected accuracy and repeatability of the test, a Monte Carlo

analysis is performed on test simulations, taking into account significant errors

and potential unmodelled dynamics or effects. These errors include:

1. Errors in laboratory assays

2. Dilution of input solutions

3. Timing of samples

4. Errors due to unmodelled dynamics

Errors in unmodelled dynamics could include poorly or unmodelled endoge-

nous glucose production (EGP) and first-pass hepatic insulin extraction. The sim-

ulations are based on model-based insulin sensitivity (SI) values obtained from

fitting a cohort of 146 euglycaemic-hyperinsulinaemic clamp tests by McAuley

et al. [2002], covering a range of metabolic responses. Rather than assessing clin-

ical or physiological validity of the estimated insulin sensitivity value, this specific
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study aims at validating the robustness of the proposed test in a noisy clinical

test environment.

The simulation procedure used is shown schematically in Figure 7.3, and

explained in more detail in this chapter:

1. Insulin sensitivity from 146 euglycaemic-hyperinsulinaemic clamp tests by

McAuley et al. [2002] is calculated from the test data (ISI).

2. A virtual cohort is created by fitting the metabolic model to the clamp

tests, resulting in a model-based insulin sensitivity for each subject (SI).

3. Monte Carlo simulations on the proposed test protocol are run on the virtual

cohort by adding random noise from published error levels to measurements

and inputs, and accounting for potentially unmodelled regulatory dynamics

in a randomised function.

4. The metabolic model is fitted to the simulated test profiles (glucose, in-

sulin and C-peptide concentrations), resulting in insulin sensitivity from

the Monte Carlo analysis of the proposed test (SI−MC).

5. Performance of the method is assessed by the coefficient of variation (CV) of

SI−MC and by correlating SI−MC with ISI and SI . Additional comparisons

are made to HOMA-IR.

7.3.1 Generation of Virtual Clamp Cohort

To simulate the proposed test and make it comparable to the clamp, a simu-

lation cohort was created using metabolic information estimated from a set of

clamp trials performed by McAuley et al. [2002] to study the effects of lifestyle

interventions on insulin resistance. The data consist of 146 trials performed on

73 individuals, once before and once after a 16 week intervention. The popula-

tion is identical to the data presented in the clamp validation in Chapter 6 and

described in more detail in that chapter. Population characteristics are given in

Table 6.1 on Page 96.
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Figure 7.3 Simulation procedure and performance metrics used in this Monte Carlo simula-
tion.

The clamp trials were fitted by the model described in Chapter 4 by estimat-

ing parameters SI and nL. Mean absolute errors of the fits were 5.9 % (SD 6.6 %)

for glucose and 6.2 % (SD 6.4 %) for insulin [Lotz et al., 2006a], as also described

in Chapter 6. Insulin sensitivity, SI , was estimated as time-varying, piecewise

constant during transient and steady state [Lotz et al., 2006b]. The steady state

value was taken for the subsequent simulations.

Mean nL estimated from the clamps was very low for this cohort compared

to that seen on dose-response tests. This result may be caused by various fac-

tors, such as heavy saturation of the liver being exposed to such large supra-

physiological concentrations [Thorsteinsson, 1990], reduced clearance in obesity

[Valera Mora et al., 2003] or incomplete suppression of pancreatic insulin secre-

tion during the clamp. None of these effects are accounted for in the model or

fitting methods, and result in an underestimated nL. Incomplete suppression of

pancreatic insulin secretion is particularly likely, given the shorter and lower dose

method used in this clamp study [Ferrannini and Mari, 1998].

To achieve a more realistic insulin profile, nL was thus increased by 0.1 min−1

for all individuals based on empirical testing on various dose-response data. This

increase results in a more realistic simulated insulin profile and does not affect

the performance of the insulin sensitivity value obtained. Thus, the outcome of
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the test and the performance of the simulations are not affected.

Due to the low resolution of the clamp data, further parameters had to be

identified a-priori in creating this virtual cohort, as described in Chapter 4. In

addition, VG was set to VG = 1.2 · (VP + VQ), as the clamp data are not dense

enough to allow a unique identification. A 20 % larger volume than the total

insulin distribution volume was chosen, as glucose distribution volume has been

found to be larger than for insulin, due to fast hepatic storage and non-insulin

dependent uptake by the brain [Despopoulos and Silbernagl, 2003; Waterhouse

and Keilson, 1972]. This choice also does not affect the outcome of the study,

as SI and VG are subsequently identified from the test profiles, as described in

Chapter 4.

All of the model parameters derived from the clamp data and population

are summarised in Table 7.1. These parameter values are used in the models of

Equations 3.7-3.8 and Equation 4.8 to create the virtual cohort on which the test

protocol is simulated.

Table 7.1 Simulation model parameters calculated and estimated as described in Chapters 3-
4 to generate the virtual simulation cohort.

Mean (SD) Range Mean (SD) Range

pre-interv. (N=73) post-interv. (N=73)

VP [l] 4.52 (0.37) 3.98-5.93 4.46 (0.36) 3.90-5.96
VQ [l] 5.67 (0.54) 4.52-7.47 5.54 (0.57) 4.44-7.26
VG [l] 12.22 (1.06) 10.20-15.67 12.00 (1.08) 10.00-15.75
nK [10−2 min−1] 6.0 (0.24) 5.3-6.4 6.0 (0.28) 5.3-6.4
nL [10−2 min−1] 15 (2.7) 10-21 16 (2.2) 10-20
nI [10−2 l/min] 28 (2.7) 22-36 27 (2.9) 21-36
nC [10−2 min−1] 4.9 (0.06) 4.7-5.0 4.9 (0.06) 4.7-5.0
SI 4.25 (MSD 1.54) 1.37-8.63 5.54 (MSD 1.49) 2.22-13.95
[10−4 l/mU/min]
pGU [min−1] 0.004 (fixed)
αI [l/mU] 0.0017 (fixed)
αG [l/mU] 0 (fixed)

Pancreatic insulin secretion is not known for this cohort, as C-peptide data

are not available. Insulin secretion can be suppressed or reduced by exogenous

insulin. However, full suppression is only achievable by a prolonged infusion of

large amounts of insulin [Ferrannini and Mari, 1998]. In the protocol for this

study, an insulin bolus is injected 10 minutes after glucose, thus not affecting
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the first phase endogenous insulin burst, but suppressing second phase insulin

secretion. Simulated total insulin secretion rate is thus reduced back to its basal

rate after the bolus injection of exogenous insulin [Argoud et al., 1987; Jefferson

and Cherrington, 2001; Lotz et al., 2005b].

Pre-hepatic endogenous insulin secretion can be simulated by a basal secre-

tion rate, superimposed by a first-phase burst. The burst peaks at a rate of

72 mU/min/m2·BSA [Eaton et al., 1980; Mari, 1998], which is dependent on

body surface area (BSA), and is followed by an exponential decay lasting 10 min-

utes. For the lower and higher dose protocol, this first-phase burst is halved and

doubled, respectively [Carson and Cobelli, 2001]. Basal endogenous secretion ub

is calculated from the steady state fasting insulin balance using Equation 3.7 with

basal insulin concentrations Ib and Qb = γIb (γ = 0.5), and a randomly generated

first pass hepatic extraction xL:

ub =
VP Ib

1 − xL

(

nK +
nL

1 + αIIb

+
1

2

nI

VP

)

(7.1)

Total prehepatic endogenous insulin secretion is thus modelled as:

uen(t) =

{

ub + (72 · BSA)·e−0.3t 0 ≤ t < 10 min

ub t < 0 and t ≥ 10 min
(7.2)

First pass hepatic extraction, xL, is often approximated around 50 %, but is

generally higher in the fasting state [Ferrannini and Cobelli, 1987b; Meier et al.,

2005; Toffolo et al., 2006], often reaching values of over 90 % [Meier et al., 2005].

As a conservative choice, xL is thus determined from a uniform distribution of

values between 0.5 and 0.95 (almost complete extraction). Using this model, the

total insulin secreted and the peak during the first phase match values reported

in the literature [Eaton et al., 1980; Mari, 1998].

Basal endogenous glucose production EGPb (Equation 4.7) can be split up

into insulin dependent, EGPIb and insulin independent production, EGPGE. As

EGPGE is not affected by an exogenous input, as described in Chapter 4, only

EGPIb is taken into account. EGPb is thus calculated from the fasting steady
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state glucose balance in Equation 4.8, where Qb = (1/2)Ib and G(0) = 0:

EGPb = SIGE

1
2
Ib

1 + αG
1
2
Ib

(7.3)

where Ib is the basal plasma insulin concentration, αG is known in this case (or

assumed), and SI and GE are also known for the virtual cohort simulation via

the data summarised in Table 7.1.

7.3.2 Monte Carlo Simulation Method

The proposed protocol is simulated on the virtual cohort by generating noisy

glucose, insulin and C-peptide data and fitting the models to determine their

parameters.

Assay errors are assumed normally distributed with inter- and intra-batch

coefficients of variation (CVinter, CVintra) reported by the assay manufacturers.

Random intra-batch errors are generated for each sample of a test and added to

an inter-batch error, equal for all samples of a given test. As CVintra is assumed

to be included in the reported CVinter, the CV to be superimposed on CVintra

(CVadd) is calculated:

CVadd =
√

CVinter
2 − CVintra

2 (7.4)

Errors in the timing of samples are caused by variations in blood sampling

procedure and are assumed to be normally distributed between ±30 seconds

around the sampling time. Due to anticipation of these small complications

during sampling, the sampling procedure in similar studies is usually initiated

early, thus sometimes resulting in early sampling.

Dilution errors can occur when drawing up glucose in a syringe or when

diluting insulin, which is typically distributed in highly concentrated form (e.g.

100 U/ml). Insulin has also been reported to bind to the inner walls of syringes

and tubes when being administered, causing a loss of insulin during the dilution
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process [NovoNordisk, 2002]. All of these issues are well known problems and

usually taken into account by the investigator and the choice of equipment. The

errors in this case are also assumed to be normally distributed around the mean.

Suppression of EGP is caused by increases in plasma insulin or glucose [Jef-

ferson and Cherrington, 2001]. The amount and efficiency of suppression is de-

pendent on the administered dose [Vella et al., 2003]. With the low dose this test

aims at, the suppression is likely not as large as during an IVGTT (∼ 75 %−100 %

[Nagasaka et al., 1999; Vicini et al., 1999]), but also cannot be neglected. Since

this level of suppression cannot be easily measured, a linear reduction of EGP is

assumed from the time of insulin input, reaching a randomly generated maximal

suppression EGPsuppr at the end of the test. It is defined:

EGP (t) =

{

EGPb

(

1 − EGPsuppr
t

tend

)

0 min ≤ t < tend

EGPb t ≤ 0 min
(7.5)

where the maximal suppression, EGPsuppr, at the 10 g/1 U dose was chosen

randomly from a normal distribution from values between 25 % − 75 % with a

mean value of 50 %. For the lower (5 g/0.5 U) and higher (20 g/2 U) dose variants,

EGPsuppr was shifted to 0 %− 50 % and 50 %− 100 %, respectively. Studies have

shown a direct dose-dependent relationship between glucose concentration and

suppression of EGP [Vella et al., 2003], validating this basic approach.

The random disturbances thus assumed in this Monte Carlo analysis are

summarised:

• Glucose assay errors: CVintra=1 %; CVinter=2 % [Wallace et al., 2004a]

• Insulin assay errors: CVintra=2 %; CVinter=2.8 % [Roche, 2004; Wallace

et al., 2004a]

• C-peptide assay errors: CVintra=3 %; CVinter=3.4 % [Roche, 2005]

• Glucose input error: CV=1.67 %

• Insulin input error (dilution): CV=3.33 %
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• Sample timing error: SD 10 seconds

• First pass hepatic insulin extraction: xL ∈ [0.50, 0.95]

• Mean maximal suppression of EGP: EGPsuppr=50 %(10 g/1 U);

25 %(5 g/0.5 U); 75 %(20 g/2 U) (SD 8.3 %)

The required number of Monte Carlo simulations was identified to be 500

in a convergence test, as the variability in the standard deviation (SD) of the

resulting SI value identified did not change significantly with more runs.

7.3.3 Monte Carlo Results

Performance of the method was assessed by correlation (Pearson correlation) of

the estimated insulin sensitivity SI with the gold standard clamp test ISI derived

clinically. Accuracy in the estimation of SI is given as its coefficient of variation

(CV=SD/mean). The distribution of SI can be assumed to be normal, as assessed

by the single sample Kolmogorov-Smirnov (KS) test.

Accuracy of ISI was assessed by Monte Carlo analysis with assay errors

as described above and a glucose infusion error of 10 %. Accuracy of HOMA-

IR is also affected by assay errors, as well as pulsatile basal insulin secretion.

Therefore, the HOMA-IR criteria is also estimated for comparison using Monte

Carlo analysis with a CV of 10 %, as reported by Wallace et al. [2004b], accounting

for both assay and natural variability.

The model parameter for insulin sensitivity fit from clamp trials is SI =

4.85 (MSD 1.54) · 10−4 l/mU/min. This value is higher than clinically mea-

sured clamp ISI normalised by steady state glucose and corrected for units

(ISIG = ISI/G·weight/VG) ISIG = 3.23 (SD 1.16) · 10−4 l/mU/min. This

difference is due to the different compartmental insulin concentrations used in

the respective calculations. The clamp uses plasma insulin (I) and the modelled

SI uses interstitial insulin (Q). Clamp fitted SI and measured ISI correlate

r = 0.95. However, SI and ISIG correlate much better r = 0.995. The higher

correlation with ISIG is a result of the unit correction, which reduces variability

introduced by other parameters and imperfect clamping to a basal glucose level

[Bergman et al., 1985].
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Mean insulin sensitivity resulting from Monte Carlo analysis is SI−MC =

4.86 (SD 1.55) · 10−4 l/mU/min and thus identical to SI . Correlations with

clinically measured ISI and ISIG are slightly lower, at r = 0.91 (90 % CI: 0.90-

0.92) and r = 0.98 (90 % CI: 0.97-0.98), respectively. Figure 7.4 shows the

correlation plot of SI−MC and ISIG with the 90 % CI’s of each metric over all

500 Monte Carlo runs, shown by the cross.
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Figure 7.4 Correlation of SI−MC and clinically measured ISIG with 90 % CI’s of each metric
and mean regression line. The CI for SI is assessed by Monte Carlo simulation, the CI for ISIG

by error propagation calculation.

Intra-individual CV in SI−MC using the proposed low intensity test method

is CVSI=4.5 % (90 % CI: 3.8 % - 5.7 %). This value is larger than the CV for

ISI, CVISI=3.3 % (90 % CI: 3.0 % - 4.0 %), calculated by error propagation of

assay errors, but significantly lower than the CV for HOMA-IR, CVHOMA=10.0 %

(90 % CI: 9.1 % - 10.8 %). The three intra-individual CVs are shown in Figure 7.5

for all N=146 subjects.



7.3 MONTE CARLO ERROR ANALYSIS 125

0 20 40 60 80 100 120 146
0

0.02

0.04

0.06

0.08

0.1

0.12

C
V

S
I

Subject

 

 

CV
SI

CV
HOMA

CV
ISI

Figure 7.5 Intra-individual coefficients of variation for SI−MC (CVSI) at 10 g/1 U dosing,
ISIG (CVISI) and HOMA-IR (CVHOMA).

The increase in insulin sensitivity after lifestyle intervention [McAuley et al.,

2002] was captured by the model, with SI increasing from SI−MC(BEFORE)=4.34

(MSD 1.47) 10−4 l/mU/min to SI−MC(AFTER)=5.57 (MSD 1.48) 10−4 l/mU/min.

This value matches the increase in ISI shown in Table 6.1. Correlation between

the change in SI−MC and ISIG, ∆SI−MC and ∆ISIG is r = 0.96 (90 % CI: 0.96 -

0.97) with a mean regression line of ISIG = 0+0.48SI−MC . Note that the ∼ 50 %

slope is due to the fixed γ = 1/2 ratio of insulin concentration in interstitium

(Q) and plasma (I) during steady state. Specifically, ISI is calculated using I

and SI is identified using Q.

The intra-individual CV of SI−MC decreased slightly from CVSI(BEFORE)=4.6 %

(90 % CI: 3.8 % - 5.9 %) to CVSI(AFTER)=4.3 % (90 % CI: 3.7 % - 5.2 %). A strong

correlation of r = −0.83 could be seen between a decrease in insulin sensitivity

ISI and increased intra-individual CV in SI−MC . Figure 7.6 shows the linear

relationships between ISIG and CVSI before and after intervention. A clear re-

duction in accuracy of estimated SI can thus be seen in subjects with very low

insulin sensitivities.

Re-simulating the low intensity test protocol with different doses of glucose

and insulin showed a clear dependence of accuracy of the method on the dose

employed, as can be seen in Figure 7.7. Administering 5 g glucose and 0.5 U
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Figure 7.6 Relationship between ISIG and intra-individual coefficients of variation CVSI

before and after intervention.

insulin resulted in CVSI=6.9 % (90 % CI: 4.9 % - 9.9 %). The high dose variant

with 20 g glucose and 2 U insulin resulted in a more accurate measure with

CVSI=3.6 % (90 % CI: 3.0 % - 4.5 %), which is very close to the accuracy of ISI.

Correlation of CVSI with ISIG was stronger in the low dose protocol (r = 0.90)

but showed a weaker linear relationship in the high dose variant (r = 0.46),

indicating the reduced effect of assay variation and other errors at higher doses.
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Figure 7.7 CVSI compared to CVISI and CVHOMA simulating the protocol with 5 g glucose
and 0.5 U insulin (left), and 20 g glucose and 2 U insulin (right).

Simulated hepatic insulin clearance nL and simulated first pass hepatic insulin

extraction xL were underestimated slightly in the Monte Carlo analysis, by -4.4 %

(90 % CI: -16.5 % - 8.1 %) and -2.2 % (90 % CI: -12.4 % - 7.3 %), respectively.
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Simulated glucose distribution volume VG was overestimated by 1.7 % (90 % CI:

0.7 % - 3.5 %). However, these results are relatively small and not likely to have

significant clinical impact.

7.4 Discussion

The test protocol presented is developed with the main goal to provide a clinically

useful, highly accurate method to diagnose insulin resistance (IR) that is highly

correlated to the gold standard euglycaemic-hyperinsulinaemic clamp. To be

clinically useful, a test must be accurate, short and simple. To correlate highly

to the clamp, a test must measure the same effects as the clamp and be equally

accurate. The most widely used and accepted tests developed so far (e.g. IVGTT,

OGTT and HOMA-IR), are all judged by their ability to correlate to the clamp.

This goal has been achieved only with some significant variability, yielding a wide

range of IVGTT-clamp correlations, for example, between r = 0.44 − 0.89 [e.g.

Bergman et al., 1987; Donner et al., 1985; Saad et al., 1994].

One major obstacle is that every test effectively measures a different effect

[Radziuk, 2000], as discussed in Chapter 2. The clamp relies on a steady state

glucose concentration during supra-physiological insulin and glucose infusions, in

which endogenous insulin and glucose are assumed to be completely suppressed.

Its metric for insulin sensitivity is the rate at which glucose is disposed in the

body with a given plasma insulin concentration. In contrast, the IVGTT fits

the Minimal Model [Bergman et al., 1979] to the glucose response curve after

a high-dose injection of glucose and insulin by estimating three model parame-

ters (p1, p2, p3), with insulin sensitivity being the ratio SMM
I = p3/p2. Fitting

three parameters has the disadvantage that a longer test is required to allow

for enough resolution and data, and thus inter-subject variability is distributed

amongst these three parameters. In general, the IVGTT is considered the best

clamp-correlated method, with correlation values up to r = 0.89 being reported

[Bergman et al., 1987]. However, lower results, as low as r = 0.44, have also been

reported [Donner et al., 1985].

Other popular methods, widely used due to their simplicity, are surrogate

measures such as the OGTT (measuring the rate of glucose decay after an oral
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glucose load) and HOMA-IR (based on one fasting glucose and insulin sample).

These methods are far less correlated to the clamp [Monzillo and Hamdy, 2003], as

they too measure different effects. In particular, HOMA-IR can be very variable

due to a pulsatile secretion of insulin [Song et al., 2000] and assay inaccuracies,

leading to a CV > 10 % [Wallace et al., 2004b].

The proposed low intensity protocol presented was designed to specifically

measure the same effects as the clamp in a much shorter and less intense transient

test. Variability is constrained to insulin dependent effects in the periphery,

controlled by the insulin sensitivity parameter SI . Modelled SI is lower than

clamp ISI, but it does not introduce additional variability. The difference is

consistent across all individuals, due to the fixed ratio of steady state plasma (I)

and interstitial (Q) insulin in the model. The model and fitting method employed

have been well validated [Hann et al., 2005b; Lotz et al., 2006a] and correlated

to clamp data in transient and steady state, resulting in very high correlations

(r = 0.92 in transient state, r = 0.99 in steady state) [Lotz et al., 2006b], as also

shown in Chapter 6.

The proposed method was able to estimate SI with high accuracy, given the

assay errors and unmodelled suppression of EGP. CVSI was slightly larger than

CVISI . This larger CV can be expected given the highly dynamic state of the

proposed test. Accuracy decreased drastically by 53 % in the lower dose test

(5 g glucose, 0.5 U insulin), although accuracy was still better than HOMA-IR.

The higher dose test (20 g glucose, 2 U insulin) improved accuracy by 20 %. As

suppression of EGP was adjusted to the dose accordingly, being higher in the

high dose test, the still improved accuracy suggests a strong dependence on the

signal to noise ratio of the test, with EGP playing a minor role.

In spite of the improved accuracy at a higher dose, this high dose is not as

practical for a simple clinical test, for a variety of reasons. As IV glucose is

commonly available in 50 % solution, a 20 g bolus requires a 40 ml injection of a

very viscous solution, which can cause discomfort for the test subject. The 2 U

insulin dose also increases risk of hypoglycaemia, particularly in lean subjects.

Finally, an intravenous glucose bolus of 20 g is on the upper physiological range,

possibly triggering other glucose regulatory effects not accounted for in this model

and simulation, which could in a real clinical test worsen the results.
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The 10 g glucose and 1 U insulin dose is only slightly less accurate, but a lot

easier and safer to administer in clinical practice. Mean and range of CVSI are

greatly reduced in the step from low to medium dose, whereas the improvement

from medium to high dose is less pronounced. This decay is shown in Figure 7.8,

which illustrates that the medium dose of 10 g glucose and 1 U insulin appears

to be the best compromise in clinical practicability, safety and accuracy.

5 10 20
0

2

4

6

8

10

12

Glucose dose [g]

C
V

S
I (

90
%

 C
I)

Figure 7.8 CVSI with the 90 % confidence intervals for the low (5 g glucose, 0.5 U insulin),
medium (10 g glucose, 1 U insulin) and high (20 g glucose, 2 U insulin) dose test variants.

A strong negative correlation was seen between a decrease in insulin sensitiv-

ity ISIG and a resulting increased CVSI . This correlation was even stronger with

the low dose test, but was markedly reduced in the high dose test. The origin of

this effect is likely physiological, as insulin-dependent effects are less dominant in

subjects with low insulin sensitivity, leading to a reduced signal to noise ratio. As

can be seen with the high dose test, this correlation can be reduced by increasing

the signal. In contrast, the correlation is stronger with a weaker signal as shown

in the low dose test.

Overall, the method is able to estimate the underlying insulin sensitivity

with high accuracy from the proposed test protocol. Whether the estimated

SI is a true marker of insulin sensitivity will require further clinical validation

with the clamp and other methods in a new data set. However, judging from

the accurate simulation of clinically observed dynamics, it is very likely that

the effect described by the model parameter SI is physiological and that insulin

sensitivity can be estimated with similar accuracy in clinical data. This result
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is supported by the high correlation between SI and ISI using clamp test data

[Lotz et al., 2006b]. More specifically, because the proposed low intensity test

was intentionally designed to measure the same physiological effect as the clamp

using highly correlated models and methods, the test should be highly correlated

to the clamp.

Even if the most prominent unmodelled dynamic (suppression of EGP) is

included in this Monte Carlo analysis, real results could still be affected by other

effects not simulated here. Inaccuracies in the simulated test protocol were iden-

tified in initial trials [Lotz et al., 2005b], such as in sample timing and imperfect

cannula flushing, or incomplete mixing of glucose and insulin in plasma during the

first 10 minutes. These effects are more likely in a clinical, non-research setting

with a simple protocol, where special considerations common in research settings

cannot be met. These factors have to be taken into account when designing a

robust clinical test.

Finally, additional variability could be introduced by less accurate assay

methods, especially for insulin and C-peptide. The assays used in this study

are run by the authors’ collaborating laboratory and are amongst the most ac-

curate methods to date. Less accurate insulin assays with more cross reactivity

to proinsulin are still widely used and could increase the test’s variability or

introduce a systematic error [Chevenne et al., 1999; Robbins et al., 1996].

7.5 Summary

The proposed test to assess insulin sensitivity is short and simple enough to be

applicable in a clinical setting. Factors and problems apparent in previous similar

attempts, such as the IVGTT, have been addressed and solved to improve overall

system performance. The method proved to be very accurate in Monte Carlo

simulation, and only slightly less accurate than the gold standard clamp test.

As a result of its design to measure the same effects as the clamp, it is highly

correlated to the gold standard clamp ISI metric.

The physiological dosing, simple and robust protocol and high accuracy make

the test very attractive for early diagnosis and monitoring of interventions. Ac-

curacy and correlation to gold standard tests must still be assessed in a clinical
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validation on a new cohort. However, this study has indicated that the proposed

test should possess the accuracy and robustness required, as compared to a large

cohort of clamp results.





Chapter 8

Clinical Pilot Test

The test proposed in Chapter 7 shows very good Monte Carlo simulation results

for diagnosing the underlying insulin sensitivity with great accuracy in a noisy

clinical test environment. To assess its performance in a clinical setting and

to find additional practical aspects to be optimised, a clinical pilot study on a

limited number of subjects is required. This chapter describes the study design

and presents its results.

The study was performed in collaboration with Dr. Kirsten McAuley and

Prof. Jim Mann from the Edgar National Centre for Diabetes Research in Dunedin.

Ethics approval for the study was granted by the Upper South A Regional Ethics

Committee. Tests were performed both in Dunedin and Christchurch.

8.1 Objectives and Design

The pilot study can yield information on effects of different dosing and on intra-

individual variability. It further provides an opportunity to assess practical as-

pects such as sampling procedure, ergonomics and comfort for the test subject.

Sources of error that have not been addressed in the simulation study can be

identified and the fitting algorithm optimised to improve overall method robust-

ness.

The pilot study is designed to investigate these aspects and produce insights

into the practical procedures, which can then be used to improve the protocol.
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8.1.1 Aims

The primary aims of the pilot study were to investigate the following aspects:

1. Assess difference in the clinically estimated insulin sensitivity SI at different

dosing of glucose and insulin.

2. Determine the minimum dose of insulin and glucose to produce adequate

resolution in the sampled data.

3. Assess intra-individual variability in SI at the same dose.

4. Obtain an initial estimate of the inter-individual range in SI and its relevant

diagnostic ranges.

5. Assess the overall clinical potential of the test prior to a full scale validation.

The study was performed on a range of normal and overweight men and

women over the age of 18 years, that were recruited from the general population.

Only those with a current major medical illness were excluded.

8.1.2 Study Design

The study is divided into two main parts, primarily to investigate Aims 1-3. Aims

4-5 can be evaluated on data gathered from all tests.

Part 1

Study Part 1 addressed Aims 1 and 2 (and 4-5), mainly the effect of different

dosing of glucose and insulin, and the minimum dosing required to minimise the

effect of noise in data. Recruited subjects had two tests on two occasions, no more

than two to three weeks apart. The test was performed as outlined in Chapter 7.2.

On each occasion, a different dose of glucose and insulin was administered. The

levels of glucose and insulin were defined in three steps for added simplicity. The

steps were as used in the simulation study in Chapter 7, namely 0.5 U/5 g (low),
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1 U/10 g (medium) and 2 U/20 g (high) of glucose and insulin, respectively.

These steps were chosen as they are still lower than a standard IVGTT dosing

[Bergman et al., 1981], and thus safer and more physiological.

As each subject was tested only twice, dosing steps for each subject were

chosen as either low + medium or medium + high. A systematic bias in estimated

SI is an indication of a different result obtained at different dosing. From the

noise in the resulting data and its affect on model fitting, a minimum dose for

the final test design can be chosen, that is more robust to noise. This aspect was

assessed in the Monte Carlo analysis in Chapter 7 and is initially validated on

the clinical data in this chapter.

Part 2

Study Part 2 assessed Aim 3 (and 4-5), mainly the accuracy in repeatability of the

same dose test on the same subject. The test was repeated on the same subject

two to three times, each test two to three weeks apart. Part 2 overlapped with

Part 1, as some of these subjects were simply tested a third time at one of the

doses already used in Part 1. This part yielded information on the variability to

be expected from the test. From model fitting performance, it could be estimated

if this variability is caused by computational or natural factors.

Additional Analysis

To investigate Aim 4, the test data gathered from Parts 1 and 2 were further

analysed computationally. The range of SI estimated in this test was compared

to the values obtained from the clamp population used in Chapter 6.

Further metabolic information that can be gathered from this test includes

the pancreatic secretory response to the glucose injection (β-cell function). These

data can be calculated from the estimated C-peptide secretion rate. Metrics of

interest are basal fasting insulin secretion rate, ub in mU/min, peak secretion rate

above ub after the bolus, Smax in mU/min, and total insulin secreted above basal

during the 10 minutes after glucose input, AUC10 in mU, calculated as area under

the secretion profile above the basal rate uB. All of these metrics have significant
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diagnostic merit and can be combined with the SI results obtained to provide a

more complete picture of the metabolic defect [Ferrannini and Mari, 2004].

8.1.3 Recruitment and Subjects

Recruitment of subjects was done in parallel in Dunedin and Christchurch by

the respective clinical research teams, mainly by advertisement flyers around

the university and the hospital. Interested subjects were informed about the

study and their characteristics and contact details recorded. Subjects were picked

from this list to obtain individuals within a wide range of age and BMIs. The

recruitment flyer used in Christchurch is shown in Figure 8.1.

Figure 8.1 Advertisement used to recruit volunteers for the study.

The test was performed on a total of 17 subjects, 7 in Christchurch and 10

in Dunedin. One subject in Christchurch came only once and could thus not be

further included in the analysis. The characteristics of the subjects included in

both parts of the study are presented in Table 8.1.

8.1.4 Test Procedure

All tests were performed between 9-11 am after an overnight fast from 10 pm.

The subject’s weight, height and blood pressure were taken. Before the first
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Table 8.1 Pilot study population in each study part. Age in years, weight in kg, BMI in
kg/m2, fasting glucose in mmol/l, fasting insulin in mU/l. ‘IFG’ denotes that the subject was
not previously diagnosed with type 2 diabetes but has elevated fasting glucose concentrations
qualifying for an ADA diagnosis of impaired fasting glucose (> 5.6 mmol/l) [ADA, 2006]. +

denotes geometric mean and multiplicative SD, as data has log-normal distribution.

Part 1
Subject Gender Age weight BMI Fast. G Fast. I Type 2

[years] [kg] [kg/m2] [mmol/l] [mU/l] or IFG
1 f 57 89 33.9 5.75 30.8 IFG
2 f 59 67 25.5 5.85 1.4 IFG
4 f 21 78 25.2 5 5.2
5 m 41 76 21.7 4 0.5
6 f 45 76 25.4 4.1 1.7
7 m 55 73 24.1 4.5 4.4
8 f 51 67 27.2 4.3 1.4
9 f 35 66 24 4.8 6.6

10 f 30 50 19.5 4.2 3.2
11 f 55 85 30.1 6.8 9.2 Type 2
14 f 41 111 41.3 4.5 3.9
15 m 29 84 25.9 5 2.5
16 m 49 105 35.1 6.3 16.6 IFG
17 f 25 60 25.3 4.5 3

mean 10 f/4 m 42.36 77.64 27.44 4.91+ 3.75+

SD 12.66 16.52 5.81 1.18+ 2.90+

Part 2
3 f 59 87 39.2 4.7 12.5
5 m 41 76 21.7 4 0.5
6 f 45 76 25.4 4.1 1.7

10 f 30 50 19.5 4.2 3.2
11 f 55 85 30.1 6.8 9.2 Type 2
13 f 48 91 33.4 5.2 9.5
14 f 41 111 41.3 4.5 3.9
15 m 29 84 25.9 5 2.5
16 m 49 105 35.1 6.3 16.6 IFG

mean 6 f/3 m 44.11 85.00 30.18 4.90+ 4.28+

SD 10.17 17.69 7.64 1.21+ 3.07+
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visit, informed consent was obtained and any medical history recorded. Tests

were performed in a seated, slightly reclined position.

Glucose was administered as a 50 % solution. Insulin was diluted in two

steps to minimise dilution errors: First, 0.5 ml (50 U) of insulin (Actrapid,

NovoNordisk) is drawn in a 1 ml syringe and diluted with 49.5 ml saline to

obtain a 1 U/ml solution. From this result, the required amount for the test was

drawn (0.5 ml, 1 ml or 2 ml) in a 3 ml syringe.

A cannula was inserted into the antecubital fossa. Two baseline blood samples

(8 ml) were taken at t = −10 and t = 0 minutes. Glucose was administered at

t = 0 min and insulin at t = 10 min (just after the samples at those times). In

addition to the baseline samples, blood was sampled during the test at 5, 10,

15, 20, 25, 30, 35 and 45 minutes. Sampling and administration was performed

on the same cannula, which was flushed first with the subject’s own blood, then

with saline after each bolus input. This approach minimises errors due to insulin

and glucose binding to inner walls of tubes [NovoNordisk, 2002]. After the test,

the subject was given a snack.

Blood samples were centrifuged and plasma serum separated for insulin and

C-peptide analysis, and sent to the laboratory immediately or frozen at −80 ◦C.

Glucose was analysed by an enzymatic glucose hexokinase assay (Abbott). Insulin

and C-peptide were analysed with an ECLIA immunoassay (Roche Diagnostics

Elecsys).

The analysed data were fitted by the models and methods described in Chap-

ters 3-4 and insulin sensitivity determined from the glucose model parameter SI .

Further parameters estimated from the fitting are nL, xL and VG. Estimation of

VG is bound to a realistic range, between 15 % and 25 % body weight to avoid

misidentification by noisy data. The estimation of endogenous insulin secretion

rate was performed without the corrected peak proposed in Section 5.1.3.

8.2 Results

The experimentally sampled profiles of glucose, insulin and C-peptide were dis-

tinct enough in all dose options to achieve a good model fit. The model fits of
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glucose and insulin concentrations and estimated endogenous insulin secretion

rate on all subjects are shown in Appendix B. Where samples were within the

expected ranges and not affected by incomplete mixing or contamination, a stan-

dard fit with all data points and no weighting was possible. Likely erroneous

samples were evident in some tests and could result in incorrect estimation of

insulin sensitivity, unless identified and removed. Some typical examples of these

errors are shown in Figure 8.2.
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Figure 8.2 Errors in samples evident in some tests. Source of the errors could be incomplete
systemic mixing, assay error or contamination, especially in the unrealistically high values seen
in the two insulin plots.

Identified evident individual measurement errors in all 43 tests included:

1. Glucose

• 4 tests had the first one or two samples after glucose input still affected

by incomplete mixing, as shown in Figure 8.2 (B).

• 4 tests had first samples after glucose input that were affected by very

slow mixing or possible contamination, as shown in Figure 8.2 (A),

resulting in unrealistically high values.

• 2 tests had further samples later in the test that were larger than

physiologically possible. These were most likely contaminated.

2. Insulin

• 6 tests had the first sample after insulin input affected by incomplete

mixing processes.

• 5 tests had the first sample after insulin input outside of a realistic

physiological range, most likely due to contamination or very slow

systemic mixing, as shown in Figure 8.2 (C).
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• 3 tests had a sample later in the test larger than physiologically possi-

ble. These were most likely contaminated. An example of such a test

is shown in Figure 8.2 (D)

• Two tests, on subjects 6 and 9, had too noisy insulin profiles, caused

by unexplained contamination of samples, and were disregarded for

the further analysis, as the data did not allow a sensible model fit.

3. C-peptide

• No problems were evident in C-peptide samples.

As the first respective sample after glucose or insulin administration is usually

higher than expected by the model structure, a significant error can be introduced

by the fitting algorithm, as it tries to compensate for this difference. The dif-

ference is caused by incomplete mixing between plasma and interstitial fluid and

not accounted for by the model [Caumo and Cobelli, 1993; Regittnig et al., 1999].

As the goal for the algorithm is to be generic without prior manual filtering of

the data, an automated filtering of the samples is undertaken to minimise the

error introduced by noisy data. The automated filtering steps include:

• Replace the two fasting samples with their mean value.

• Remove first glucose sample after glucose administration at t = 5 min and

first insulin sample after insulin administration at t = 15 min.

• Further samples are expected to decay with time. If a sample is 10 %

higher than the previous one, it is removed. This removes all samples that

are clearly contaminated.

This simple filtering eliminates all of the issues described in the ∼30 samples

noted (of 1290 total). The results presented for Part 1 and Part 2 were obtained

with this generic algorithm, without prior manual data analysis. As mentioned

before, two tests, one on Subject 6 and one on Subject 9, resulted in unreli-

able insulin data, due to unexplainable data errors and were excluded from the

subsequent analysis.
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8.2.1 Study Part 1

The study population for Part 1 consisted of 13 subjects, with the characteristics

shown in Table 8.1. 7 subjects had a low and medium dose test, 6 subjects the

medium and high dose test. The difference in estimated SI is shown in Table 8.2,

along with estimated parameters VG, nL and xL. In subjects with two tests at

the same dose, the mean value was taken.

Estimated SI is lower in 9/13 subjects at the higher dose test, but the

differences are not statistically significant (low/medium P=0.50, medium/high

P=0.52), as assessed by the two sample t-test. The volume VG is estimated with

high repeatability in all but 2 subjects (subjects 2 and 4). No relationship be-

tween the difference in VG and in SI is apparent. Hepatic clearance parameters

nL and xL were consistent in subjects, with significantly reduced clearance rates

in low SI subjects, in accordance with their hyperinsulinaemia [Ferrannini and

Cobelli, 1987a; Li et al., 2006; Valera Mora et al., 2003].

Pancreatic secretory metrics were consistent within individuals, within the

expected accuracy due to assay errors calculated in Chapter 5 (CV= 4 %−10 %),

and are given in Table 8.3. Basal secretion was consistently higher in subjects

with lower SI , as would be physiologically expected. Secreted insulin above basal

during the first 10 minutes after glucose input, AUC10, is increased at the higher

dose in all but one subject, with a wide range in changes of −7.1 % − 213.8 %.

The same is the case for the difference in maximal secretion rate, Smax, which is

in the range of −20.7 % − 180.9 %, and positive for all but two subjects.

8.2.2 Study Part 2

The study population for Part 2 consisted of 8 subjects, with 4 repeated for the

low dose test and 4 repeated for the medium dose test. Two subjects at the

medium dose had the test performed on three occasions, all others only twice.

Estimated SI and the error around the mean are given in Table 8.4, along with

the estimated parameters VG, nL and xL.

Errors in SI are in the range of 1.7 % − 24.7 % with a geometric mean value

of 6.0 % (MSD 4.9). The volume VG was estimated consistently in all subjects
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Table 8.2 Results in estimated SI in study Part 1, effect of dosing. Also shown are further
estimated model parameters, nL, xL and VG, and the relative difference in SI at the higher
dose.

low/medium dose

Subject dose SI VG nL xL Diff SI

[l/mU/min] [l] [min−1] [-] [%]
4 5 g 13.39 15.85 0.16 0.78

10 g 16.49 11.70 0.11 0.75 23.14 %
7 5 g 19.33 16.44 0.22 0.74

10 g 18.06 17.82 0.21 0.74 -6.60 %
8 5 g 18.64 14.29 0.15 0.86

10 g 13.61 16.12 0.07 0.80 -26.98 %
10 5 g 43.73 12.33 0.20 0.80

10 g 17.40 11.56 0.13 0.77
5 g 29.19 10.13 0.18 0.78 -52.27 %

11 5 g 6.88 12.75 0.14 0.72
10 g 6.73 12.75 0.16 0.70
5 g 5.75 13.14 0.11 0.74 6.53 %

15 5 g 8.28 16.57 0.16 0.78
10 g 7.39 16.45 0.12 0.78
5 g 8.99 16.81 0.17 0.79 -14.40 %

16 5 g 3.27 15.75 0.09 0.77
10 g 3.17 15.75 0.05 0.75
5 g 3.16 15.75 0.05 0.81 -1.40 %

mean 13.53 14.55 0.14 0.77 -10.28 %
SD 10.34 2.24 0.05 0.04 24.33 %

medium/high dose

1 10 g 3.13 13.35 0.05 0.74
20 g 2.69 13.35 0.06 0.67 -14.15 %

2 10 g 19.47 16.19 0.10 0.82
20 g 13.43 12.95 0.15 0.75 -31.02 %

5 10 g 26.45 16.04 0.21 0.81
20 g 25.07 18.19 0.34 0.74
10 g 19.97 16.96 0.13 0.79 8.02 %

6 10 g 14.84 16.10 0.14 0.82
20 g 12.83 18.30 0.20 0.73 -13.56 %

14 10 g 11.70 16.65 0.19 0.69
20 g 14.12 16.99 0.18 0.73
10 g 11.65 17.59 0.14 0.71 20.89 %

17 10 g 36.85 14.21 0.20 0.52
20 g 12.60 12.25 0.12 0.70 -65.82 %

mean 16.06 15.65 0.16 0.73 -15.94 %
SD 9.06 2.04 0.07 0.08 30.51 %
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Table 8.3 Results in estimated pancreatic secretion metrics in study Part 1, effect of dosing.
Also shown are the relative changes in AUC10 and Smax at the higher dose.

low/medium dose

Subject dose uB AUC10 Diff AUC10 Smax Diff Smax

[mU/l] [mU] [%] [mU/l] [%]
4 5 g 19.61 221.16 35.42

10 g 20.90 253.99 14.84 % 42.08 18.81 %
7 5 g 24.94 419.04 107.69

10 g 24.74 785.88 87.54 % 152.82 41.91 %
8 5 g 11.39 379.94 87.61

10 g 12.83 832.57 119.13 % 190.98 118.00 %
10 5 g 13.68 479.54 107.34

10 g 13.49 628.42 25.75 % 149.70
5 g 15.62 519.90 122.65 30.18 %

11 5 g 36.15 201.59 27.23
10 g 33.86 226.68 16.24 % 29.22
5 g 42.18 188.43 31.72 -0.87 %

15 5 g 20.00 399.71 114.45
10 g 20.80 648.11 69.42 % 144.98
5 g 22.06 365.39 104.75 32.28 %

16 5 g 62.70 244.98 43.03
10 g 66.22 577.64 213.77 % 81.89
5 g 56.98 123.21 25.63 138.58 %

mean 28.79 416.45 78.10 % 88.84 54.13 %
SD 17.42 212.44 71.67 % 51.98 52.73 %

medium/high dose

1 10 g 70.90 393.26 62.60
20 g 68.90 1027.10 161.18 % 175.85 180.92 %

2 10 g 8.94 174.78 32.51
20 g 12.02 225.09 28.79 % 39.02 20.00 %

5 10 g 14.28 410.45 76.09
20 g 10.85 564.21 48.55 % 130.27
10 g 11.06 349.18 69.20 79.32 %

6 10 g 17.04 344.69 63.39
20 g 17.16 554.53 60.88 % 81.06 27.87 %

14 10 g 21.05 696.51 183.96
20 g 19.13 666.65 -7.09 % 144.39
10 g 25.75 738.51 180.18 -20.69 %

17 10 g 9.62 383.14 111.86
20 g 11.43 607.46 58.55 % 120.78 7.97 %

mean 22.72 509.68 58.48 % 105.08 49.23 %
SD 20.56 228.66 56.27 % 52.05 72.32 %
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Table 8.4 Results of Part 2, accuracy in repeatability. Given are estimated parameters SI ,
VG, nL and xL, and the error around the mean SI .

low dose

Subject SI VG nL xL Diff SI

[l] [min−1] [-] [%]
10 43.73 12.33 0.20 0.80

29.19 10.13 0.18 0.78 19.94 %
11 6.88 12.75 0.14 0.72

5.75 13.14 0.11 0.74 8.90 %
15 8.28 16.57 0.16 0.78

8.99 16.81 0.17 0.79 4.13 %
16 3.27 15.75 0.09 0.77

3.16 15.75 0.05 0.81 1.71 %

medium dose

3 10.18 18.16 0.12 0.67
8.59 13.82 0.10 0.64
7.37 13.05 0.06 0.69 16.80 %

5 26.45 16.04 0.21 0.81
19.97 16.96 0.13 0.79 13.95 %

13 16.31 14.55 0.13 0.73
13.51 13.65 0.14 0.77
21.20 13.65 0.13 0.85 24.65 %

14 11.70 16.65 0.19 0.69
11.65 17.59 0.14 0.71 0.22 %
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but subject 3, in which the first test resulted in a much larger volume estimate.

Hepatic clearance parameters were also consistent across tests, with errors within

expected physiological variability.

Repeatability in pancreatic secretion metrics are given in Table 8.5. Error

in basal secretion rate ub was in the range of 2.6 % − 11.7 %, well within the

assay errors as estimated in Chapter 5. Total first phase insulin AUC10 was

estimated with high accuracy in repeatability, with a mean value of 9.5 % and a

range of 2.9 % − 33.1 %. Only in one subject the deviation of 33.1 % was larger

than the expected accuracy estimated by Monte Carlo analysis in Section 5.1.4.

Repeatability in maximal secretion rate, Smax, was good, with a mean error of

11 % and only two errors above 15 %.

Table 8.5 Estimated pancreatic secretion metrics from C-peptide data with errors around
their mean values.

low dose

Subject ub Diff ub AUC10 Diff AUC10 Smax Diff Smax

[mU/l] [%] [mU] [%] [mU/l] [%]
10 13.68 479.54 107.34

15.62 6.62 % 519.90 4.04 % 122.65 6.66 %
11 36.15 201.59 27.23

42.18 7.71 % 188.43 3.37 % 31.72 7.62 %
15 20.00 399.71 114.45

22.06 4.90 % 365.39 4.48 % 104.75 4.42 %
16 62.70 244.98 43.03

56.98 4.78 % 123.21 33.07 % 25.63 25.34 %

medium dose

Subject
3 34.08 1208.07 241.84

38.79 11.65 % 1424.32 8.22 % 270.62 14.43 %
43.20 1316.04 315.99

5 14.28 410.45 76.09
11.06 12.71 % 349.18 8.07 % 69.20 4.74 %

13 35.61 454.27 72.76
36.23 2.59 % 544.59 11.86 % 121.58 23.22 %
34.10 593.89 101.68

14 21.05 696.51 183.96
25.75 10.03 % 738.51 2.93 % 180.18 1.04 %

The distribution of estimated SI in the pilot has the same model assumptions
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as the clamp data fitting in Chapter 6 and its absolute SI values should thus be

comparable. The distributions of SI from the clamp and the lower dose in each

subject in this pilot study are shown in Figure 8.3 with log-normal distribution

fits. Geometric mean of the pilot SI = 11.7 × 10−4 (MSD 2.3) and of the clamp

SI−clamp = 4.9×10−4 (MSD 1.5). Note that this figure is not meant to compare the

populations, just relate the ranges in SI metrics obtained in these two population

cohorts. The absolute values of SI have the same units and result from the same

model assumptions and should thus theoretically be comparable. The two cohorts

are different per design, the clamp cohort being specifically an insulin resistant

population, thus the tighter distribution at the lower mean value.
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Figure 8.3 Distribution of SI at the lower dose in each subject and corresponding log-normal
distribution (dashed), compared to the clamp population (n=146) from Chapter 6 (dotted).

8.3 Clinical Diagnostic Relevance

The diagnostic value of the proposed test is far greater than just one metric of

insulin sensitivity, as is usually the case with fasting or simple clinical tests. By

assessing the whole dynamic metabolic response and including the physiological



8.3 CLINICAL DIAGNOSTIC RELEVANCE 147

models and methods, a broad picture of the state of the metabolic defect can be

derived. To visualise these aspects, the resulting glucose and insulin concentra-

tion profiles and estimated endogenous insulin secretion rates are exemplified in

Figure 8.4 for three subjects, with NGT, IFG and type 2 diabetes. All three tests

were performed at the medium dose (10 g glucose, 1 U insulin).
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Figure 8.4 Three exemplary tests (medium dose, 10 g/1 U), from top to bottom, a normal
glucose tolerant (NGT), impaired fasting glucose (IFG) and type 2 diabetes subject. Shown
are, from left to right, the blood glucose concentration, the plasma insulin concentration and
the estimated endogenous insulin secretion rate. Samples are given with error bars and areas
show the model fits.

The progression of the disease can be described well on these examples. The

NGT example, Subject 14, has an insulin sensitivity of SI = 11.7×10−4 l/mU/min,

a fasting glucose level of 4.5 mmol/l and fasting insulin level of 3 mU/l. Basal

insulin secretion rate is ub = 21.1 mU/min. The first phase β-cell response (en-
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dogenous insulin secretion) to a bolus injection of glucose is very distinct and

large, peaking at Smax = 184 mU/min above the basal rate ub and releasing a

total amount of insulin above the basal rate of AUC10 = 697 mU. The first phase

insulin secretion lasts about 5-10 minutes, after which the secretion rate imme-

diately drops back to nearly its basal rate. This is a typical healthy metabolic

behaviour in all aspects.

The second example shows an IFG individual, Subject 16. The insulin sen-

sitivity is very low at SI = 3.2 × 10−4 l/mU/min, fasting glucose is elevated

at 6.3 mmol/l, and as a compensatory result, fasting insulin is also elevated at

16.6 mU/l. Basal insulin secretion rate is consequently three times as high as

in the NGT subject, at ub = 66.2 mU/min. In response to the glucose bolus,

the pancreas increases its output, but a distinct first phase secretion peak is not

pronounced anymore. Insulin secretion peaks at Smax = 82 mU/min above its

basal secretion rate ub and continues to produce at this rate until the end of

the test. The β-cells are producing at their limit but can only release additional

AUC10 = 578 mU over the basal rate during the first phase. The pancreas is not

able to fully compensate the low insulin sensitivity and blood glucose levels drop

slowly. This subject has probably been insulin resistant and IFG for some years

without being screened, and has now, as a result, significant damage in β-cell

function.

The third example shows Subject 11, who is diagnosed with type 2 di-

abetes. The insulin sensitivity is higher than in the IFG example at SI =

6.7 × 10−4 l/mU/min, which could be due to lasting effects of Metformin, a

sensitivity enhancing drug normally taken by this subject. The fasting glucose

level is at 6.8 mmol/l just below the type 2 diabetes diagnostic threshold of

7 mmol/l [ADA, 2006], and fasting insulin is elevated from normal at 9.2 mU/l.

Basal insulin secretion rate is ub = 33.9 mU/min and increased over the NGT

subject, but not nearly as high as the IFG subject, a sign of β-cell exhaustion.

Insulin secretion rate is slightly increased in response to the glucose bolus, but

only AUC10 = 227 mU are produced above the basal rate ub, with a secretion

peak of only Smax = 29 mU/min above the basal rate. The strongly diminished

β-cell function cannot compensate for the insulin resistance, resulting in fasting

hyperglycaemia.

These three examples show all the major stages in the progression from nor-
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mal glucose tolerance (NGT) to impaired fasting glucose (IFG) and type 2 dia-

betes. The information gathered from the test is able to describe and diagnose

all key metabolic defects. Note that although insulin sensitivity in the type 2

diabetic subject is twice as high as in the IFG subject, glucose uptake is still

slower due to the significantly deteriorated β-cell function in this subject. This

shows that the information from only one metric might not be enough to fully de-

scribe the metabolic defect [Ferrannini and Mari, 2004]. Similarly, an individual

could have a strong β-cell function that is able to compensate for a low insulin

sensitivity, resulting in normal fasting glucose levels and giving normal fasting

screening test results.

8.4 Additional Tests

Effect of Exercise

An additional test was performed on Subject 5 at the medium dose to assess

the difference in SI at a different level of exercise. The subject exercised regularly

and extensively during the time of the original three tests, but stopped exercising

due to injury and was tested again after three weeks of no exercise. Estimated

SI after lack of exercise was SI = 14.8 × 10−4 l/mU/min. This value represents

a 36 % reduction from the mean SI = 23.2× 10−4 l/mU/min at the same dose in

two prior tests.

Effect of Systemic Mixing

The high errors on the first samples after glucose and insulin administration

suggest either contamination or incomplete mixing in plasma. It is known that

systemic mixing takes ∼10 minutes to complete [Bergman et al., 1985; Caumo

and Cobelli, 1993; Regittnig et al., 1999]. To further analyse these effects and

their impact on the fitting algorithm, the test was repeated a fourth time at the

medium dose on Subject 5, while sampling simultaneously from both arms. In

addition to the sampling protocol described above, samples were also taken at +7

and +17 minutes to increase the resolution in the first 10 minutes after glucose

and insulin administration. The resulting samples and model fits are shown in

Figure 8.5.
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Figure 8.5 Test samples obtained on Subject 5 by sampling from both arms during the test.
Double sampling was performed at +5, +7, +10, +15, +17 and +20 minutes. Shown are
samples from the arm of administration (circle) and model fit (solid), and from the other arm
(square) and model fit (dashed).

Samples taken from the arm of glucose and insulin administration (arm A)

are clearly higher than from the other arm (arm B) after the respective input,

but equalise after ∼10 minutes. The volume VG was overestimated in arm B

at VG−B = 19 l, compared to VG−A = 15.3 l, which matches the volume from

the previous tests on this subject. No differences are evident in the C-peptide

samples, which is expected as it is secreted by the pancreas and appears equally

diluted at both arms. Estimated SI are almost equal at SI−A = 18.9 × 10−4

l/mU/min and SI−B = 19.6 × 10−4 l/mU/min. This equal result is because the

algorithm accounts for noisy data within the first 10 minutes after administration

and is not sensitive to errors in estimated volume VG. This test thus further

validates the robustness of the overall method.

8.5 Discussion and Conclusions

The main goal of the pilot study was to assess the feasibility of the proposed test

in a clinical setting and to get a feel for practical aspects in performing it. The

study design consisted of two main parts, one to assess the effect of dosing and

the second to assess its repeatability. The test was performed a total of 43 times,

both in Christchurch and in Dunedin.

Overall the pilot study was successful and no major problems with tests or
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subjects occurred. The protocol and fitting algorithm proved to be reliable and

robust, and were able to produce results with considerable accuracy. The subjects

were comfortable with the procedure. Some subjects receiving the 20 g dose of

glucose complained about discomfort during the injection, which is understand-

able as it is a 40 ml injection of a rather viscous solution. Note that this is an

important advantage over tests such as the IVGTT, in which a glucose dose of

20-30 g is standard procedure.

One aspect that was evident in many tests when analysing the lab results was

the high noise in the first, and sometimes second, sample of glucose and insulin

after their respective administration. It was hypothesised that the reasons could

be mainly due to incomplete systemic mixing [Bergman et al., 1985; Caumo

and Cobelli, 1993; Regittnig et al., 1999] and/or contamination of the cannula

due to improper flushing, as it is well known that insulin binds to equipment

[NovoNordisk, 2002]. A reduction in this contamination was seen in studies in

which the cannula was flushed with the patient’s own blood before the saline flush.

A similar approach, adding 1 % serum albumin to the solution, has been shown to

reduce binding [NovoNordisk, 2002; Polonsky et al., 1986a]. This method could

possibly not be applicable in a widespread clinical test, as the practice of re-

injecting a patient’s own recently drawn blood introduces further risk of blood

clotting and thus reduced safety. Instead, the algorithm thus needs to be robust

enough to account for these errors.

The effect of systemic mixing is seen very clearly in the tests performed on

Subject 5, in which blood was sampled from both arms. Mixing takes about

10 minutes to complete, which is in accordance with other studies [Bergman

et al., 1985; Caumo and Cobelli, 1993; Regittnig et al., 1999]. This factor points

out again, that samples taken between 0-10 minutes are not necessarily reliable.

This effect is also evident in the IVGTT with Minimal Model assessment and

was discussed as a cause of poor estimation in the Minimal Model in Chapter 4.

To overcome this problem, Caumo and Cobelli [1993] propose a two compartment

description of glucose kinetics, but as that approach imposes further identifiabil-

ity problems, it is not an option. Instead, as already mentioned to overcome

contamination, the algorithm needs to be able to perform without the 5 minute

sample. This limitation was imposed on the fitting method in the simple filtering

used in the pilot study data.
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In Part 1 of the study the effect of glucose and insulin dosing was analysed.

Some subjects received a 5 g / 0.5 U and a 10 g / 1 U test and some a 10 g / 1 U

and a 20 g / 2 U test. The dosing was chosen in these steps for practicality and

ease of used, and as they are all lower and more physiological than the commonly

used 20-30 g glucose and 2-5 U insulin used in the IVGTT. A dosing according to

body weight or BSA, which is commonly done [Bergman et al., 1985], was not used

as it would require individual adjustments and dilutions for each subject, which

is not practicable in a simple clinical test for widespread use where consistency

is important.

All doses were large enough to cause a significant rise in concentrations and

thus provided enough information for a model fit. Estimated SI was lower in

9/13 subjects in the higher dose test as compared to the lower dose test, but

the difference was not statistically significant. This effect has been reported

previously, where a significantly lower value in SI was found by Prigeon et al.

[1996] in an IVGTT performed at different doses. Injecting 2 U of insulin (in

an 80 kg individual) resulted in a 32 % reduced SI value compared to injecting

4 U of insulin. The number of tests in this pilot study is likely too small to get

a significant result, and more controlled testing is necessary to isolate this effect

from other introduced variability.

Possible sources of error, such as insulin dilution errors, or insulin binding to

the equipment walls, can also cause a deviation in the results. These factors were

not closely monitored in this study, and will have to be addressed in any follow-

up study. Even if a systematic shift of the results is not significant, the effect

of dosing is apparent in the increased variability between doses, as compared to

the variability of repeated doses. This latter point is important to know when

comparing results obtained with the test, as they might vary at different dosing.

This effect of dosing has also been apparent in clamp tests performed at different

dosing, and has been attributed mainly to insulin saturation effects in glucose

uptake [Ferrannini and Mari, 1998; Prigeon et al., 1996].

The differences in SI were not attributed to a variability in VG or the hepatic

insulin clearance parameters nL and xL, which were very consistent in each sub-

ject, mostly unaffected by the dose used. An inter-subject difference was seen,

mainly a decrease in insulin clearance in obese and diagnosed type 2 diabetes

subjects, which is in line with the compensatory hypersecretion of insulin in re-
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sponse to an increased resistance [Ferrannini and Cobelli, 1987a; Li et al., 2006;

Valera Mora et al., 2003].

Pancreatic secretory metrics were not affected by mixing or contamination

issues, as they are estimated from C-peptide, which is secreted by the pancreas

and is thus well mixed by the time it is sampled. Basal secretion of insulin

was estimated consistently within each subject, within the expected assay noise

calculated in Chapter 5. Total first phase insulin, AUC10, was significantly larger

in all but one subject, and maximal secretion rate, Smax was larger in all but

two subjects. These results are also in accordance with the published literature,

confirming a dose dependance of insulin release [Jefferson and Cherrington, 2001].

Part 2 of the study aimed at assessing the repeatability by performing the

same dose test on each subject two or three times. The dosing was either low

or medium. The errors around the mean in each subject were in the range of

0 % − 25 %, with a geometric mean of 6.0 % (MSD 4.9). The model fits were

good in most cases, and rarely affected by large noise in the data. The expected

accuracy assessed by the Monte Carlo simulation in Chapter 7 resulted in a

mean CVSI−MC = 4.5 %. In other words, considering 2 SD, a mean 9 % deviation

from the mean can be attributable to assay and protocol errors in ∼95 % of the

subjects. The natural variability in SI , which was not included in the Monte

Carlo simulation, can be a source of additional variability in this pilot study

[e.g., Van Cauter et al., 1997]. The pilot results are thus in good accordance with

the Monte Carlo simulation results, possibly being slightly more variable due to

additional sources of variability.

The differences in estimated SI are not necessarily attributable to the method

itself, but can also be caused by natural variability, such as time of day [Van Cauter

et al., 1997], state of health [Hollenbeck and Reaven, 1987; Van den Berghe

et al., 2006], menstrual cycle [Trout et al., 2007] or exercise [Nishida et al., 2004;

O’Gorman D et al., 2006]. The effect of these factors would have to be assessed

in a separate study to further quantify them. However, that study is outside the

scope of this thesis.

One opportunity was taken to re-test Subject 5, who exercises regularly and

did so before each of his tests. Due to an injury, the subject had to cease all

exercise for over two weeks. The test showed a reduction in SI of 36 % as com-
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pared to the mean value at the same dose on two prior occasions. Even though

only one test was performed to assess this dynamic, the result is again in line

with published results of a very significant increase in insulin sensitivity during

exercise [Nishida et al., 2004; O’Gorman D et al., 2006]. It also further shows the

resolution of the test by capturing this change. Note that only one test cannot

be used as a reliable result and more validation of this effect is required.

Pancreatic secretory metrics were estimated with good consistency, within

the expected accuracy due to assay errors. This result shows that the greater

variability in Part 1 is mainly attributable to the different dosing used, rather

than the model, methods or protocol. These metrics also provide further diag-

nostic data, such as the increased basal endogenous insulin ub and blunted first

phase response AUC10 seen in low SI and diagnosed type 2 diabetes subjects, as

discussed in detail in Section 8.3. Combined with SI , a more complete diagnostic

picture of the metabolic defect can be drawn.

Estimated insulin secretion rate peak, Smax is likely underestimated, due to

the lack of samples during 0-5 minutes, as discussed in Section 5.1.3. By introduc-

ing a corrected peak at 1 minute, this metric could be estimated more accurately.

This approach was not applied in this pilot study, as the basic methodology was to

be tested. Even so, an inter-subject comparison is viable, as the introduced error

due to reduced sampling is systematic and should not add random variability.

The estimated insulin sensitivities can be compared to the distribution es-

timated from the clamp population in Chapter 6. The clamp study was per-

formed on insulin resistant individuals and the geometric mean is clearly lower at

SI−clamp = 4.9 × 10−4 (MSD 1.5) l/mU/min than in this study SI = 11.7 × 10−4

(MSD 2.3) l/mU/min, when only the lower dose tests on each subject are con-

sidered. Even if this comparison has to be considered with caution, as the clamp

values are highly dependent on assumptions of VG and EGP, the ranges seem to

be reasonably comparable.

More specifically, the type 2 diabetes subjects in the study have SI values

in the magnitude of 2-4×10−4 l/mU/min, or 5-6×10−4 l/mU/min for Subject 1

who was on Metformin, an insulin sensitivity enhancer. These latter values are

in the lower range of the clamp population, which is still normoglycaemic and

thus expected to be slightly less resistant. The range for normally sensitive
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people seems to be from ∼ 7 − 20 × 10−4 l/mU/min, and some highly sensitive

outliers show values up to over 40×10−4 l/mU/min. A complete validation of

this relationship will have to be done in a separate validation study against the

clamp, as the clamp results might also be affected by the higher dose or different

method of administration.

The final test on Subject 5, in which the effect of mixing was investigated, was

already discussed in part. One might consider changing the protocol to sample

from a different arm than the one in which administration of glucose and insulin

is done. In fact, this approach is what is done during an IVGTT [Bergman et al.,

1985] and in other similar research studies. For a simple clinical test, this option

would mean additional pain and stress for the person being tested and is also

not a good option in terms of clinical effort. As can be seen in the equal results

in SI from both sampling arms, the approach to disregard the first 10 minutes

is reliable and robust in dealing with this added noise. The contamination of

samples could also be reduced by adding serum albumin to the insulin solution

[NovoNordisk, 2002], or priming the equipment before use. In a final product, the

insulin would be pre-diluted and this issue will most likely not be a significant

problem.

Finally, the number of subjects and tests could have been larger to obtain

statistically more significant results, especially in assessing the effect of dosing.

Nonetheless, the study proved that the proposed test performs well and is very

accurate, mostly within the simulated accuracy calculated in Chapter 7. The

practical aspects learned from this pilot test allowed the fitting algorithm to be

adapted to account for unpreventable inaccuracies, such as contamination and

systemic mixing. The main sources of error were identified and accounted for by

the algorithm as well as possible, and their further effect was characterised.

Further testing is required to address possible protocol improvements to re-

duce possible sources of error, or to improve practical aspects, such as ergonomics

and sampling methods. A full validation study will also have to be performed to

finally validate the method against the gold standard clamp test. This full study

will yield experimental validation of the comparability of both metrics and the

overall correlation between both tests.
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8.6 Summary

The pilot study was designed as a proof of concept for the proposed insulin

sensitivity test. The aims were to assess the feasibility of the protocol and fitting

approach, the effect of different dosing of glucose and insulin and the accuracy in

repeatability at the same dose. A total of 43 tests on 17 subjects were performed,

both in Christchurch and in Dunedin.

The results show a greater variability in SI when different dosing is employed,

with an indication of a lower estimated SI at a higher dose test, a result that is

not statistically significant. Repeatability is very good, with accuracies within the

expected ranges simulated in Chapter 7. Accuracy and repeatability in pancreatic

secretory metrics ub, AUC10 and Smax were very good, all within the expected

accuracy defined by assay errors.

Overall, the test is accurate and the fitting method robust enough to account

for identified sources of error. The protocol is simple and short enough to be

useful in a clinical setting. Final validation against the euglycaemic clamp will

be required to completely validate the equality of both metrics.



Chapter 9

Test Optimisation

The test developed shows good accuracy and robustness, both in simulation and

in clinical testing. Optimisations of the test protocol can now be carried out to

improve practical or ergonomic aspects, and reduce the test duration and number

of samples. The overall goal is to improve its clinical applicability with no loss of

performance. In this chapter, possible steps to reduce test complexity and cost

are analysed. It concludes presenting some variations of the protocol that can be

readily implemented without a significant loss in accuracy or robustness.

9.1 Clinical/Diagnostic Improvement Goals

To optimise the insulin sensitivity test proposed in Chapter 7, the intended im-

provements, goals and acceptable compromises in accuracy need to be defined.

The key goals are:

Simplification of the protocol: For the test to be clinically practicable, it has

to be as simple and as short as possible without compromising its perfor-

mance. The proposed test is already simpler and shorter than the compara-

ble IVGTT, but any further simplification can greatly enhance its clinical

use. A systematic analysis is performed to assess the effects of targeted

sample reduction steps on outcome metrics. A reduction in samples has

the benefit of reducing assay costs, simplifying the protocol and reducing

overall time requirements for the subject and clinical personnel.
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Retain accuracy and clinical diagnostic relevance: With all possible sim-

plifications and cost reductions, an important aspect should be kept in

mind. This aspect is to not oversimplify the test and jeopardise its per-

formance, affecting its clinical diagnostic relevance and accuracy. Slight

variations in performance are acceptable, but should not alter the relevant

diagnosis obtained from the test.

Accuracy can be assessed as a relative deviation from the metrics obtained

from the full data set, and as a change in intra-individual repeatability.

The latter should be comparable to the assessed repeatability in the Monte

Carlo simulations of Chapter 7 and the pilot study results of Chapter 8.

Propose test protocol variations: The various simplified protocols do not

necessarily have to be regarded as a replacement for the original full sample

set, but rather as an expansion of the test’s applicability. Simplified test

protocols can be attractive for a clinical application that has cost or time

limitations, whereas if higher repeatability is required, such as in a semi-

research setting, a more complete sampling can be performed. A further

advantage is that the outcome metrics of these various alternative proto-

cols are equal and thus comparable. Clinical results can thus easily be

compared to research results and viceversa, an aspect that is not possible

with currently available methods [Ferrannini and Mari, 1998].

9.2 Sample/Cost Reduction

A reduction of the samples required has a triple benefit for the test. First, it

reduces complexity and stress for the clinical personnel performing it. Secondly,

assay costs can be reduced, making it more appealing for large population studies

and frequent use. Finally, it would reduce the stress on the patient being tested.

The cost reduction is based on current assay prices charged by the Canterbury

Health Laboratories, Christchurch, NZ (www.cdhb.govt.nz/chlabs). Inter-lab dif-

ferences in pricing are likely, particularly if comparing to larger U.S. or European

centres. However, relative differences between glucose, insulin and C-peptide as-

says are expected to be comparable. The price structure used is in NZ$ and

comprises:
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• Glucose: $ 2.50

• Insulin: $ 25.00 (10× glucose)

• C-peptide: $ 35.00 (14× glucose)

From these prices it is evident that any significant reduction in cost is only

possible if insulin and C-peptide samples can be reduced. A reduction of glucose

sampling would not significantly reduce costs, but could reduce complexity and

possibly the overall time required. Hence, insulin and C-peptide sample reduc-

tions impact on cost, while concomitant glucose sample reductions would then

reduce clinical intensity and improve ergonomics.

The current assay price for one test with 10 samples, as described in the

previous chapters, is NZ$ 625. Time required to perform the test, as simulated

and piloted (without overheads pre- and post-procedure), is 55 minutes. These

reference values will be used to evaluate the protocol optimisations suggested in

this chapter.

9.2.1 C-peptide Sample Reduction

Methods and Results

To minimise the number of C-peptide samples required to accurately describe

insulin secretion characteristics, it is crucial to identify key points of discontinuity

in the C-peptide concentration profile during this type of test. These points of

discontinuity are caused by sudden changes in the appearance of C-peptide, either

exogenous or endogenous. Identifying these critical points is important as they

include the key information about β-cell function. Missing these points results

in a loss of this important diagnostic outcome of the test. Common identified

changes in secretion during the clinical pilot results are illustrated in Figure 9.1

and defined:

1. Injection of glucose (D1): A sudden increase in plasma glucose triggers

a secretion burst of stored insulin (first phase) lasting 5-10 minutes that is
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often reduced or blunted in type 2 diabetes [Davies et al., 1994; Del Prato

et al., 2002]. In the C-peptide concentration profile, this dynamic is seen

as a very steep rise immediately after administration of glucose. As glucose

is administered between t = 0 and t = 1 minutes, a lag of one minute is

chosen here to account for glucose injection and initial pancreatic response

time.

2. Peak first phase secretion rate (D2): Peak C-peptide secretion rate

determines peak C-peptide concentration during the first 10 minutes post

glucose input. In the concentration profile, this point is the maximum value

CPmax, located at tCPmax, assumed between 0-10 minutes.

3. Injection of insulin (D3): A sudden increase in plasma insulin inhibits

pancreatic insulin secretion [Jefferson and Cherrington, 2001]. This re-

sponse can be significantly delayed or not evident in type 2 diabetes [Jef-

ferson and Cherrington, 2001]. In the concentration profile, this point can

be seen as a steepening of the negative downward slope soon after insulin

input. In these pilot tests, this point is not very pronounced due to the low

insulin dosing employed and might not be very critical for this study.

4. End of test (D4): The last sample is not back to the basal concentration

level in most cases due to the relatively short test duration after glucose

input. This sample thus provides an indication of the continuing secretion

after the insulin administration.

These points are typically very pronounced and consistent in healthy individ-

uals. However, they can be very gradual or blunted in individuals with diabetes,

who have an impaired first phase secretion and often have delays in pancreatic

response to glucose and insulin concentration changes. Figure 9.1 shows exam-

ples for a healthy and a type 2 diabetes subject from the pilot tests, with the

identified points of discontinuity.

Note that points D2 and D3 can be very variable in different individuals

and may introduce errors when generic points at specific times are chosen in

place of referencing the actual observed behaviour. In particular, healthy and

type 2 diabetes responses are very different in both shape and time to peak

concentration, as seen in Figure 8.4. Thus, identifying patients in transition

between these states, which is the goal of this test, requires the flexibility to
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utilise or estimate the actual dynamics and their variability. Diagnostically, this

requires any sample reductions to still account for these potential differences

without the excluded measurements.
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Figure 9.1 Example of points of discontinuity identified in the C-peptide profile during the
pilot test in healthy (above) and diagnosed type 2 diabetes (below) subjects.

The reduction of samples is done in five steps, to individually assess the

effect each step has on the final outcome. The steps are described and shown in

Figure 9.2, and specifically defined:

CP1. Only one instead of two fasting samples. All other samples remain un-

changed. This step reduces the total number of samples by one. However,

it also simplifies the protocol. Assay and natural variability can result in

different results due to this change, where two samples provided a better

baseline estimate.

CP2. The samples are reduced to 5 by limiting the samples to the points of

discontinuity. Both fasting samples are used.

CP3. A further reduction from Step CP2 to 4 samples by dropping D3, which is

not very distinct in most healthy subjects and may thus not provide too

important information for early diagnosis.
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CP4. A further reduction from Step CP3 by using only the first fasting sample.

This step uses only 3 samples.

CP5. This step uses only the first fasting sample, the points of discontinuity

D1 −D4 and the sample 10 minutes after insulin administration. This last

sample is important for the insulin profile and can thus also be analysed for

C-peptide. It can further improve accuracy in diagnosing and identifying

type 2 diabetes subjects.

The performance of each of these steps is assessed by analysing the difference

in performance and diagnostic metrics of the test, as compared to the full test

result. These metrics are SI , ub, AUC10 and Smax. The analysis is done using

the pilot data and simply excluding the selected points in the analysis. All other

methods are the same. The resulting differences are shown in Table 9.1.

Table 9.1 Difference in test results for C-peptide sample reduction Steps CP1-5. The first
column shows the number of samples (reduction from full set of 10), followed by the identified
SI , ub, AUC10 and Smax values. The difference is shown as a percentile relative change and
standard deviation (SD).

# CP Diff in Diff in Diff in Diff in
samp. SI (SD) ub (SD) AUC10 (SD) Smax (SD)

CP1 9 (-1) -0.02 % (0.25) 0.56 % (3.61) -2.07 % (6.00) -1.97 % (6.20)
CP2 5 (-5) -0.21 % (1.94) 0.00 % (0.00) -0.01 % (0.05) 0.00 % (0.00)
CP3 4 (-6) -0.44 % (3.19) 0.00 % (0.00) 2.43 % (19.60) -2.99 % (13.15)
CP4 3 (-7) -0.50 % (3.14) 0.56 % (3.61) 0.35 % (22.71) -5.24 % (15.33)
CP5 5 (-5) -0.03 % (1.85) 0.56 % (3.61) -2.07 % (6.00) -1.97 % (6.20)

The difference in intra-individual repeatability of the test introduced by the

sample reduction steps CP1-5 was not different to the original full set analysis

(6.0 % (MSD 4.9)) in steps CP1 (6.0 % (MSD 5.0)), CP2 (6.7 % (MSD 4.2))

and CP5 (5.8 % (MSD 5.1)). In the more extreme steps CP3 and CP4, the mean

repeatability was larger at 9.1 % (MSD 2.8) and 9.1 % (MSD 2.8), respectively, but

the MSD much tighter. The C-peptide sample reductions thus do not significantly

reduce accuracy in repeatability of the test as assessed on these pilot study data.
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Figure 9.2 Original C-peptide full sample set and C-peptide sample reduction Steps CP1-5.
Shown are the linearly interpolated C-peptide concentration samples (left) and the estimated
insulin secretion rate (right). The profile is representative of a healthy subject.
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Discussion and Conclusions

None of the five steps shown had a large effect on the estimated SI value. The

mean differences were insignificantly different from zero and the standard devia-

tions relatively tight. The same is the case for the introduced changes in accuracy

in repeatability in the different steps. Repeatability was not different to the orig-

inal full data set analysis in steps CP1, CP2 and CP5, and slightly less accurate

in steps CP3 and CP4. Clinically, these differences would have no diagnostic

impact.

The reasons for this lack of effect are that the estimated secretion rate is

only one input to the whole system. In addition, any errors in its estimation are

smoothed out by the subsequent fitting of insulin and glucose. These minimal

differences suggest that all five steps are viable alternatives if SI is the main result

of interest.

The estimated endogenous insulin secretion metrics ub, AUC10 and Smax, are

more affected by these steps, as they are directly calculated from the C-peptide

data. Basal insulin secretion, ub, is estimated from fasting information, and is

thus only affected by using one fasting sample, instead of the mean of two. The

effect on ub is thus very small and of a similar magnitude to the effect on SI . It

is also well within C-peptide assay errors, as shown by Monte Carlo analysis in

Section 5.1.4, and thus not significant.

The impact on AUC10 is not very large in steps CP1, CP2 and CP5, but

significantly larger for steps CP3 and CP4. In particular, steps CP1, CP2 and

CP5 include all samples in the first 10 minutes after glucose input (D2 and D3).

These 3 steps are therefore only affected by a change in ub, which is integrated

over this time period. In contrast, steps CP3 and CP4 do not include D3, a key

sample in some subjects. The differences are especially large in type 2 diabetes

subjects, for whom D2 is not a peak in concentration. For example, these errors

are especially large in Subject 16, but if Subject 16 is taken out of the calculation,

the SD of Step CP3 reduces to ∼15 % and of Step CP4 to ∼18 %. Hence, for

type 2 diabetes subjects, Steps CP3 and CP4 can introduce significant errors.

The same factors are important for Smax, as it is estimated from the same time

period immediately after glucose infusion. The standard deviations for steps CP3
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and CP4 are wide for Smax, which is again mainly caused by Subject 16. Without

this subject, they are reduced to 0.76 % in Step CP3 and 5.4 % in Step CP4, with

the mean values slightly improved.

The best overall approach is Step CP2, which is accurate in all metrics, but

uses only half the original samples. For practical sampling reasons, Step CP5

could be better, as it uses only one fasting sample and the 10 minute post insulin

sample, which is important for the insulin profile identification. This sample

could be dropped to further reduce the sample number to four, with no effect on

the pancreatic metrics and a slight, but not clinically relevant, difference in SI .

Overall, all steps work well for individuals with healthy pancreatic responses,

in which D2 is a clear peak in the concentration profile. In type 2 diabetes in-

dividuals, the differences in pancreatic metrics can be much larger, especially if

D3 is left out. The differences in SI are very small, and indicate that all of these

approaches are feasible if only insulin sensitivity is of importance. Clinically,

changes in endogenous insulin secretion rates may be important additional diag-

nostic markers of early insulin resistance. Hence, the choice of Step CP2 or CP5

represent the best options. Overall, the C-peptide assay costs can thus easily be

reduced by 50 % − 60 % (NZ$ 175-210) without compromising test accuracy.

9.2.2 Insulin Sample Reduction

Methods and Results

As with C-peptide, to minimise the number of insulin samples, the timing of key

samples in the dynamic profile have to be identified. There are two inputs to the

insulin system, exogenous insulin from the bolus and endogenous insulin secreted

by the pancreas. Thus, the considerations in reducing the number of samples

must be done by including the C-peptide sampling utilised. The important insulin

profile samples include:

• Fasting sample. Instead of using two fasting samples, one could be

dropped.
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• Two samples, 5 and 10 minutes post glucose input. These samples

are important if pancreatic secretory metrics are of interest. Dropping them

could also affect the quality of the estimated SI .

• 10 min post insulin sample. This sample is the first reliable sample that

is not affected by mixing after the insulin input. As the fast component of

insulin decay is not identifiable after 10 minutes, this sample is crucial.

• Last sample. The last sample shows how fast insulin concentrations return

to basal levels, and thus reflects insulin sensitivity and uptake, as well as

its effective removal rates via the kidney and liver.

If only these samples were used, the total number of samples could already

be reduced to 5, a cost improvement of 50 % from the original 10 samples. How-

ever, the compromise in accuracy will have to be assessed, as a reduction in

diagnostic power of the test is not feasible. This tradeoff is also affected by the

assumptions or sample reductions made for C-peptide. In particular, eliminating

both insulin and C-peptide samples at specific time points will reduce blood draw

requirements.

A further possibility to reduce sampling numbers is to make use of steady

state assumptions and attempt to identify insulin kinetics with a fasting sample

of insulin and C-peptide. Since two kinetic parameters, nL and xL, are identified,

a further physiological dependency between them needs to be worked out to

achieve this goal. The parameter xL describes the fractional extraction of insulin

secreted by the pancreas, during the first pass through the liver before it reaches

the systemic circulation. It is thus the same effect as described by the hepatic

clearance rate nL.

These two parameters can be combined into one parameter by incorporating

hepatic blood flow, Fh, and total blood volume (plasma + haematocrit), VB. The

relationship between them can be defined:

xL = nL
VB

Fh

(9.1)

where the ratio VB/Fh (l/(l/min)) provides the fraction of blood flow through the

liver. The fractional extraction, xL, is thus related to nL by this constant.
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Hepatic blood flow and blood volume can be estimated from the physiological

literature [Guyton and Hall, 2000]. Hence, blood volume can be defined:

VB = VP /(1 − haematocrit) (9.2)

with mean haematocrit levels of 0.4 and 0.45 for female and male respectively

[Boron and Boulpaep, 2003]. Hepatic blood flow is defined [Guyton and Hall,

2000]:

Fh = 0.8 L/min/m2 (9.3)

Pancreatic insulin thus appears in the plasma compartment at the rate

(1 − xL)uen = (1 − nLVB/Fh)uen (9.4)

where uen is the secretion rate estimated through C-peptide kinetics prior to

the first pass hepatic extraction. Rewriting Equation 3.7 in steady state form

(subscript ss) utilising these terms thus yields:

0 = −nKIss − nL
Iss

1 + αIIss

−
nI

VP

(Iss − Qss) +
uex

VP

+ (1 − xL)
uen−ss

VP

(9.5)

Incorporating γ = Iss/Qss and the relationship between xL and nL from Equa-

tion 9.1 with uex = 0, results in the relationship defined:

0 = −
(

nK + (1 − γ)
nI

VP

)

Iss − nL
Iss

1 + αIIss

+ (1 − nL
VB

Fh

)
uen−ss

VP

(9.6)
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For a fasted or measured steady state, the only unknown in Equation 9.6 is now

nL. Thus, nL can be determined analytically by rearranging that equation:

nL =

[

−
(

nK + (1 − γ)
nI

VP

)

Iss +
uen−ss

VP

]





1 + αI

(

Iss + VBuen−ss

VP Fh

)

Iss + VBuen−ss

VP Fh



 (9.7)

The hepatic clearance saturation αI is difficult to identify from this low dose

data, and likely has little or no effect at such low doses based on prior work

[Ferrannini and Cobelli, 1987a; Thorsteinsson, 1990; Thorsteinsson et al., 1987].

Hence, it was set to zero in the previous analysis. A good data fit could still

be achieved as the parameters nL and xL were identified accordingly. In this

case, αI = 0 results in an underestimation of insulin concentrations in 10/43

pilot tests, and is especially evident for those subjects with high fasting plasma

insulin levels, as found in IGT or type 2 diabetes. Increasing the saturation level

to αI = 0.0017, a mean value found in the literature [Thorsteinsson, 1990] and

used in glycaemic control studies [Chase et al., 2005a; Wong et al., 2006b], the

model fits are improved in the remaining subjects, with 40/43 insulin profiles

from the pilot tests within measurement error. The remaining three tests had

unreasonably large sample errors, greater than a multiple of normal assay error,

which were likely due to contaminated samples rather than realistic assay results.

The fasting identification of insulin kinetics results in similar, but increased,

values for nL and xL compared to the full data set identification. Two repre-

sentative fits are shown in Figure 9.3 for a NGT subject and a type 2 diabetes

subject. It is clear that the differences between fasting and full data identification

are clinically irrelevant.

An analysis to consider further sample reductions is performed by assessing

the reduced sample profiles in comparison to the fasting identification, due to its

minimal differences compared to the full data identification. Different options of

C-peptide profiles are also used to find an optimum, given the inter-relationship

of C-peptide and insulin. The five steps are defined:
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Figure 9.3 Two insulin profiles and modelled insulin identified with only one fasting insulin
and C-peptide sample (solid) and with the full data set (dashed). The example on the left is a
healthy subject, the one on the right a diagnosed type 2 diabetes subject.

INS1. The five critical insulin samples are used. These samples consist of only

one fasting sample, the two post glucose input samples (5, 10 minutes), the

10 minute post insulin sample (20 minutes), and the last sample. The full

10-sample C-peptide profile is used, to isolate any differences to changes in

insulin sampling alone.

INS2. The five insulin samples from Step INS1 are used. In addition, C-peptide

samples are only obtained at the same five points.

INS3. Insulin kinetics are identified using the fasting insulin and C-peptide sample

as described earlier in this section. No additional fitting of the insulin

concentration curve is done. The full 10-sample C-peptide profile is used,

to isolate any differences to changes in insulin sampling alone.

INS4. Insulin is only identified with its fasting sample, as in Step INS3. Addition-

ally, only the fasting C-peptide sample is used. A constant basal endogenous

insulin secretion rate is calculated from this sample and it is assumed to be

constant over the duration of the test. This approach obviously does not

capture pancreatic metrics, but it presents a low-cost, simple option if only

the value of SI is of interest.

INS5. This step uses the five insulin samples from Step INS1, but does not use any

C-peptide information. The insulin equation cannot be identified without

C-peptide information. Instead, plasma insulin is approximated from the

sampled data and interstitial insulin Q(t) is calculated using the approxi-

mated plasma insulin as the input to Equation 3.8. This option does not
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include pancreatic metrics, but it presents a further option if a C-peptide

assay is not available or too costly.

The resulting insulin and C-peptide profiles from these five sample reduction

steps are shown in Figure 9.4. The insulin profiles are qualitatively very similar

after the insulin bolus. A difference in the first phase insulin peak is seen in

Step INS4, in which the C-peptide concentration peak is not sampled and thus

endogenous insulin secretion is assumed to stay constant throughout the test.

The performance of the sample reduction steps is assessed by comparing esti-

mated SI , nL and xL. Pancreatic metrics ub, AUC10 and Smax are not applicable,

as they are calculated from C-peptide samples and are equivalent to the relevant

steps CP1-CP5 in Section 9.2.1. As the differences to the original sample set can

be quite large, especially during the fasting identification, a further comparison

is made in each step between the mean percentile repeatability in each subject

based on the clinical pilot test data in Chapter 8. The results are given in Ta-

ble 9.2. The repeatability metrics shown in Table 9.2 are absolute values and

are log-normally distributed. The multiplicative standard deviation (MSD) is

thus used to describe their spread. Standard deviation (SD) is used for all other

metrics, as they are normally distributed.

Table 9.2 Difference in test results for insulin sample reduction steps INS1-INS5. Given
are the number of samples (reduction from full set of 10) for both insulin and C-peptide, the
differences in SI , nL, xL, and the intra-individual repeatability. The difference is shown as
mean percent relative change and standard deviation. Repeatability is shown as mean absolute
percentile deviation and multiplicative standard deviation (MSD), as the data was lognormal
(P < 0.05).

# I # CP Diff in Diff in Diff in Repeat.
samp. samp. SI (SD) nL (SD) xL (SD) (MSD)

INS1 5 (-5) 10 (-0) -1.8 % (14.9) 12.3 % (51.0) -7.0 % (10.2) 9.4 % (2.5)
INS2 5 (-5) 5 (-5) -2.1 % (15.2) 11.9 % (49.9) -7.1 % (9.9) 8.9 % (2.6)
INS3 1 (-9) 10 (-0) -6.8 % (17.4) 42.3 % (66.4) 12.7 % (12.7) 7.3 % (1.9)
INS4 1 (-9) 1 (-9) 21.0 % (30.0) 42.3 % (66.4) 12.7 % (12.7) 6.1 % (2.3)
INS5 5 (-5) 0 (-10) -6.5 % (14.1) - - 6.3 % (6.7)

Original full sample set 6.0 % (4.9)
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Figure 9.4 Original full sample set and insulin sample reduction steps INS1-INS5. The
plasma insulin model fits (solid) and interstitial insulin (dotted) are shown on the left, and the
linearly interpolated C-peptide concentration samples are shown on the right. The example on
the left is a healthy subject, the one on the right a diagnosed type 2 diabetes subject.
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Discussion and Conclusions

Insulin has much faster kinetics than C-peptide due to its multiple routes of

clearance. It is thus a much more dynamic peptide with larger time constants.

The insulin system has two inputs, one from an exogenous bolus injection and

the other from endogenous secretion by the pancreas. A reduction in samples

can thus not be performed without also considering C-peptide, which is used

to estimate the endogenous insulin secretion. Five different options of sample

reductions were analysed and their affect on SI assessed, both in difference to

the full sample set and in intra-individual repeatability over the cohort. All steps

were able to perform well, some with more accuracy than others.

The reduction to the five key samples identified (steps INS1 and INS2) re-

sulted in nearly identical results when either the full C-peptide sample set was

used (INS1) or just the same insulin sampling times (INS2). The mean deviation

in SI is close to zero, but the standard deviation of 15 % is rather broad and may

have a clinical diagnostic impact. This result should be expected, as the insulin

decay curve is estimated from only two samples, which is much less robust to

sampling or assay error than a larger number of samples. Mean nL is slightly

overestimated, while mean xL is underestimated, both with similar SDs in both

steps INS1 and INS2.

Intra-individual repeatability is larger than in the original sample set, but

still very narrow at 9 %. The multiplicative standard deviation in this case is

much tighter (2.5 vs. 4.9) than in the original set. This result indicates that

the reduced sampling set is not necessarily less accurate, even with the larger

variability, when SI is compared directly between methods. With a reduction in

insulin and C-peptide assay costs by 50 % (NZ$ 300 reduction), the approaches

of steps INS1 and INS2 are very attractive.

The identification of insulin kinetics with just a fasting insulin and C-peptide

sample (steps INS3 and INS4), assuming a steady state during fasting, performs

surprisingly well given the generic assumptions used for hepatic blood flow Fh

and blood volume VB. When using αI = 0 some insulin profiles were slightly

underestimated. The largest deviations from sampled data appear to occur af-

ter the insulin bolus, when concentrations are high. When the insulin levels get

closer to their fasting values, accuracy increases. This result suggests an overesti-
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mation of clearance rates at high insulin concentrations with this approach, due

to the neglected saturation effect. Increasing αI = 0.0017 [Ellemann et al., 1987;

Thorsteinsson, 1990] improved the underestimated fits, while maintaining a very

good fit in the other subjects. The accurate patient-specific estimation of this

parameter is not possible on a normal low dose data set of this type. However,

merely including the effect using a population value is able to greatly improve

model performance.

The fasting ID approach of steps INS3 and INS4 is very attractive, not only

from a cost perspective (90 % reduction in insulin assay cost), but also in terms

of the robustness of practical clinical aspects. Because no further insulin samples

are required, the method is completely unaffected by the often very error affected

plasma insulin samples immediately after the bolus insulin administration. These

samples were often contaminated or affected by incomplete mixing, as discussed

in Section 8.2.

The comparison of Step INS3 to the full sampling set shows larger errors in SI

and nL and broader SDs, which does not automatically invalidate the approach.

These deviations can also be caused by more variable original data due to sample

errors, which does not affect the fasting ID. In fact, the repeatability is improved

in this case, at nearly the same mean value, but with a much tighter MSD. The

subjects in which the between test variation is large in the original assessment,

mostly had large errors in portions of their sample sets. With the fasting ID, the

results were thus more consistent. The drawback of the fasting ID is that the

endogenous insulin input, estimated through C-peptide is still required. However,

a reduction of C-peptide to five samples should not affect the performance, as

can be seen in the result of Step INS2.

The two more extreme sample reduction steps, INS4 and INS5, were analysed

to test two special scenarios. These approaches can be necessary if, due to cost

or simplicity, only a fasting sample of C-peptide and insulin can be taken. The

rest of the samples are then only assessed for glucose (Step INS4). The second

case would occur if a C-peptide assay is not available and only insulin can be

sampled (Step INS5).

In Step INS4, in which endogenous insulin secretion is assumed to stay con-

stant throughout the test, the difference to the original assessment is largest due
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to completely missing any first phase β-cell response. Interestingly, the repeata-

bility is still very tight, even better than Step INS3 and much tighter than the

original set. This result may occur because the incorrect assumption on endoge-

nous insulin secretion is equally incorrect in all respective tests and may thus

effectively cancel. Because no dynamic assessment of C-peptide is performed, no

pancreatic insulin secretion metrics can be assessed. From a simplicity and cost

perspective, this option can be very interesting if only the value of SI is required.

Step INS5 has interesting results as well. In this case, no C-peptide sample is

taken. This simplification does not allow an insulin model identification, as this

significant endogenous insulin input to the system is not known. Nonetheless, the

insulin profile can be estimated with the same approach used in the integral fitting

method, as described in Chapter 3, and Q(t) calculated using the approximated

plasma insulin I(t) as input to Equation 3.8. The approach is very accurate, both

in relative SI and in repeatability, although slightly broader than the original set

in this limited pilot study.

To pick the optimal option, the requirements and facilities available have

to be determined. If cost is not relevant and good accuracy is required, more

samples can be included. As shown, a reduction to half the samples (5) can be

readily undertaken without compromising diagnostic performance (Step INS2).

Using only a fasting insulin sample (Step INS3, INS4) results in an increased

repeatability for SI , as compared to the original data set, but also in a reduction

of accuracy for other potentially useful clinical metrics. Overall, this analysis adds

to the robustness and versatility of the method by outlining all the potential

tradeoffs in terms of the test and thus clinical or diagnostic outcomes. From

these results, any form of the test could be created with an understanding of

the tradeoffs involved. In terms of economical aspects, the insulin and C-peptide

assay costs can now be reduced by at least 50 %, thus creating an initial 40+ %

reduction in assay costs from the full test.



9.2 SAMPLE/COST REDUCTION 175

9.2.3 Glucose Sample Reduction

Methods and Results

The main incentive for the reduction of glucose samples is not cost as it was for

insulin and C-peptide sample reductions. Glucose sample reductions are analysed

to improve clinical practicality and shorten the overall test. The key samples for

the glucose profile are a fasting sample, the 5 or 10 minute post glucose input,

and two samples at least 10 minutes after that. The 5 minute sample is highly

affected by mixing and/or contamination, as was seen during the pilot test, and

is thus not considered to be always reliable. The 20 minute sample is chosen, as

sampling at this time is required to identify the insulin kinetics. A further sample

is needed, which can be either at 30 minutes or later, such as the last sample at

45 minutes.

This approach yields four key samples, at 0, 10, 20 and 30 (or 45) minutes.

To approximate the glucose concentration decay, a linear interpolation is not

reliable anymore, as not enough closely timed samples are available, which would

introduce larger errors to the integral-based fitting method. Instead, a single

exponential decay is approximated between the last three samples. In all the

following glucose sample reduction analysis steps, the four glucose samples are

used. In this analysis, different combinations of reduced insulin and C-peptide

sampling protocols are tested while using only these limited key glucose samples.

Six steps are assessed, as described here and shown in Figure 9.5:

G1. Glucose is sampled at t = 0, 10, 20 and 45 minutes. For insulin and C-

peptide the full data sets are used, to isolate the effect of glucose sample

reductions.

G2. Glucose is sampled at t = 0, 10, 20 and 45 minutes, but only five C-peptide

and insulin samples are used, as described in Step INS2. This approach is

clinically more practical and less intense, as sampling is only performed at

five time steps.

G3. Total test time is reduced, by replacing the 45 minute sample with the

30 minute sample. This is also done for insulin and C-peptide. Test time is

now only 30 minutes, a reduction of 25 minutes from the original protocol,
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with glucose sampled at t = 0, 10, 20 and 30 minutes, and insulin and C-

peptide at t = 0, 5, 10, 20 and 30 minutes.

G4. Glucose and C-peptide samples are sampled at t = 0, 10, 20 and 30 minutes,

but only a fasting insulin sample is used.

G5. Glucose is sampled at t = 0, 10, 20 and 30 minutes, but only one fasting

insulin and C-peptide sample is used. Insulin kinetics are identified from the

fasting samples and basal C-peptide secretion is assumed to stay constant

throughout the test as in Step INS3. This step introduces the option of

only one complete fasting sample and possibly only capillary glucose testing

thereafter. Thus, this test could remove the need for a cannula, as well.

G6. Glucose is sampled at t = 0, 10, 20 and 30 minutes. No C-peptide sample is

taken and insulin is interpolated between these five samples, as described in

Step INS5. This approach could be attractive for cases in which a C-peptide

assay is not available.

Test performance is again assessed by comparing the mean relative percentile

difference in estimated SI . As a further comparison, correlations between the

estimated SI values are calculated. Finally, the mean repeatability for SI in each

subject (Clinical pilot test Part 2, Chapter 8) is presented. The results are given

in Table 9.3. Correlation plots are shown in Figure 9.6. Estimated VG was equal

in all steps, and similar to the original full sample set, with a mean difference of

-0.85 % (SD 3.8 %).

Discussion and Conclusions

The sample reduction analysis steps for glucose show that only four samples are

necessary to achieve an almost equally good estimation of SI , if insulin and C-

peptide are fully sampled (Step G1). More samples could also be used, but enough

information is found in these four when compared to the original results. All six

steps were thus carried out with the same minimal glucose sampling protocol,

while the combinations with different reduced insulin and C-peptide sampling

protocols were tested.
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Figure 9.5 Original full sample set and glucose sample reduction steps G1-6. Shown are the
glucose (left) and insulin model fits in plasma (solid) and interstitial fluid (dotted) (middle),
and linearly interpolated C-peptide concentration samples (right).
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Table 9.3 Difference in test results for glucose sample reduction steps G1-6. Given are the
number of samples (reduction from full set of 10) for glucose, insulin and C-peptide, difference
in SI , correlation between SI and original full set SI and the intra-individual repeatability.
The difference is shown as percentile relative change and standard deviation. Repeatability is
shown as mean absolute percentile deviation and multiplicative standard deviation (MSD).

# G # I # CP Diff in Correl. Repeat.
samp. samp. samp. SI (SD) r (MSD)

G1 4 (-6) 10 (-0) 10 (-0) -10.6 % (19.0) 0.96 7.0 % (2.9)
G2 4 (-6) 5 (-5) 5 (-5) -6.3 % (18.3) 0.96 8.8 % (3.1)
G3 4 (-6) 5 (-5) 5 (-5) -6.9 % (22.1) 0.89 10.5 % (3.7)
G4 4 (-6) 1 (-9) 5 (-5) -8.7 % (28.1) 0.80 6.8 % (3.4)
G5 4 (-6) 1 (-9) 1 (-9) 15.3 % (35.9) 0.81 4.9 % (4.3)
G6 4 (-6) 5 (-5) 0 (-10) -7.8 % (23.0) 0.90 7.3 % (6.5)

Original full sample set 6.0 % (4.9)

The deviations from the original set get larger as less insulin and C-peptide

samples are used. This result is expected, as errors accumulate from model to

model, and the glucose model is affected by both insulin and C-peptide. This

effect can be seen in the correlations calculated in the different sets. Whereas the

correlation between the Step CP5 SI and the full set SI is r = 1.0, it is reduced

to r = 0.96 in insulin Step I2, and is still r = 0.96 in glucose Step G2. All

three steps use the same samples and accumulate their errors. The error in this

case is mainly introduced by reduced insulin sampling, with reduced glucose and

C-peptide sampling not having a large impact. These three specific correlations

are shown in Figure 9.7 for clarity.

The intra-individual repeatability is still very good in all steps. In particular,

most of the MSDs are even tighter than the original set. However, a tighter MSD

may only imply a more repeatable, but also potentially more erroneous result.

The mean repeatability values are larger than in the insulin steps, which is again

due to the additional model included in this case.

Due to the low number of tests, only two or three in each subject, it is difficult

to compare the intra-individual repeatability of these sample reduction steps to

the repeatability assessed by the Monte Carlo simulations in Chapter 7, as any of

these few tests could be an outlier. Nonetheless, a simple comparison is possible.

The mean CV in SI assessed in the 500 Monte Carlo runs was CVSI−MC = 4.5 %,

meaning that ∼95 % of SI values (2 SD) are within 9 % of the mean and ∼100 %
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Figure 9.6 Correlations between the original full sample set and glucose sample reduction
steps G1-6.

(3 SD) are within 13.5 %. All the mean sample reduction steps G1-5 are within

3 SD of CVSI−MC , with only G3 at 10.5 % larger than 2 SD. Note that although

the MSD’s are relatively large, no subject had a larger deviation than 28.9 % in

all analysed sample reduction steps. This comparison shows that a large part

of the variability could potentially be attributable to assay and clinical protocol

errors.

The reduction in total test time to only 30 minutes in steps G3-G5 is very

attractive. In particular, this choice reduces personnel cost and subject time by



180 CHAPTER 9 TEST OPTIMISATION

0 1 2 3 4

x 10
−3

0

1

2

3

4

5
x 10

−3

 

 

0 1 2 3 4

x 10
−3

 

 

0 1 2 3 4 5

x 10
−3

 

 

r=1.0 r=0.96 r=0.96

CP5 S
I

vs. full set S
I

I2 S
I

vs. full set S
I

G2 S
I

vs. full set S
I

Figure 9.7 Reduction in correlation coefficients between sample reduction steps SI and the
full set SI . The left plot shows only C-peptide sample reduction Step CP5, the middle plot
including additional insulin sample reductions, Step INS2, and the right plot with additional
glucose sample reductions, Step G2.

50 % as compared to the full protocol. The effect of this reduction is clear when

comparing Step G3 to G2, as the only difference between them is the timing of

the last sample (45 vs. 30 minutes. Repeatability is slightly worse in G3, but this

result is within the expected variability introduced by assay errors, as a different

sample is used.

One drawback that is evident is a loss in robustness. Reducing the samples to

only the most critical four, leaves no redundancy if one of these is contaminated.

Such contamination error occurs in three tests in which the 30 minute sample is

clearly too high to be within expected noise, as discussed in Section 8.2. These

three tests are still included in the analysis, producing the increased deviation

in Step G3. Hence, a contaminated sample could effectively ruin the entire test

result.

In contrast, a source of error in Step G2 is an increase in glucose concentra-

tions if the test lasts too long and EGP begins to increase. In these cases, the

decay in glucose cannot be estimated by a single exponential decay, as the real

curve is affected by a changing EGP. This occurs only in highly insulin sensitive

individuals, but negatively affects the accuracy of Step G2. This artefact speaks

in favour of Step G3. However, it is clinically not critical as these individuals do

not match the target group for this test.

The steps using a fasting identification of insulin (steps G4-G5) are not af-

fected by contaminated insulin samples, as discussed in the insulin steps of Sec-
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tion 9.2.2, and are thus much more robust in some ways. While glucose samples

are still required, they appear to provide more stable SI results than the pilot

test. The deviations in SI in Step G4 are not larger than in the preceding steps

and the accuracy in repeatability is even increased. Even Step G5, which only

makes use of a fasting C-peptide sample is reasonably accurate in SI . Step G6

performs similar to G3, given the almost equal insulin information, and thus pro-

vides an option to perform the test with good accuracy without the need of a

C-peptide assay.

The correlations in the first two steps are very high at r = 0.96. As discussed

previously, this reduction from r = 1.0 seems to be attributable to reductions

in insulin sampling. When an earlier sample is taken as the last sample, this

correlation is reduced to r = 0.89, which reflects the measurement and mixing

noise seen in the data used. The same correlation is seen in Step G3, which is

expected because they share the same insulin sampling protocol. The two fasting

identifications, steps G4 and G5 are less accurate at r = 0.80 and r = 0.81.

The reasons for a reduced correlation for any sample reduction steps versus

the full pilot test case can be explained well when looking at Figure 9.6. As can

be seen, steps G4 and G5 include some high deviation points caused by outliers

in the high SI range of 20− 40× 10−4. As noted, this high range is not clinically

or diagnostically relevant. The accuracy in the normal to low range targeted by

this test is much tighter.

The compromises in accuracy are expected, given the heavy reduction of

samples. With the lowest correlation at r = 0.80, the steps are still relatively ac-

curate. More practically, these reduced protocols now provide a variety of options

for different variations in the test protocol, depending on the available resources

and expectations. Hence, these analyses provide not only cost and intensity re-

ductions, but propose different protocol options for the same test metrics. A suite

comprising a range of tests with varying degrees of intensity is thus presented,

that enables a direct comparison of outcome metrics between them, an aspect

that is not possible with other currently available tests [Ferrannini and Mari,

1998; Radziuk, 2000].

Overall, the further simplification of the test by reducing glucose sampling

along with insulin and C-peptide sampling resulted in acceptable accuracy. The
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losses in accuracy can be counterweighed by an increase in practicability and a

reduction in assay cost and time, where reduced test time also reduces the cost

of personnel. Even if higher accuracy is required, a 30 minute test with five

samples of glucose, insulin and C-peptide results in almost equal performance,

at half the cost and time, as long as no samples are contaminated. Finally,

even with the larger spread in some extreme sample reduction steps, clinical

diagnostic performance was not jeopardised. A diagnosis of an individual at risk

of developing type 2 diabetes would not have differed if any of these variations

in protocol were used.

9.3 Practical Aspects

Besides a reduction in samples, further aspects of the test can be optimised

to improve robustness and ease of use with the goal of ensuring more ready

acceptance by clinical personnel and subjects. Some aspects that came up in

discussions during and after the pilot test are described here, with an eye towards

possible test improvements:

Contamination and Systemic Mixing: As discussed in Chapter 8, samples

taken within 10 minutes after glucose or insulin administration are strongly

affected by mixing and sometimes contamination due to imperfect flushing.

Sampling from the other arm can reduce these sources of error and give

a more accurate picture of the true concentrations. This approach would

not be very practical, as the test subject would have both arms punctured,

making the test much more invasive. In a more research based setting,

this approach can be feasible. Alternatively, a heating of the cannulated

arm can be performed to improve blood flow and mixing [Ferrannini and

Mari, 1998]. To reduce contamination, flushing can be improved by methods

such as including serum albumin [NovoNordisk, 2002] or similar approaches.

Nonetheless, this issue is not a major problem as the algorithm is already

tuned to work without these samples if they are affected.

Dosing: The administration of glucose should be limited to ∼10 g or less. When

20 g of glucose was administered, many subjects complained of slight pain

or uneasiness. This affect is due to the fact that glucose is diluted in 50 %
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saline and 40 ml of this very viscous solution is required. Hence, its bolus

injection is not always comfortable. The performance of the test method is

not affected by a dose lower than 20 g, as seen in the results of Chapter 8.

Sample Timing: Sample timing accuracy is important to achieve a good model

fit. If samples are timed too tightly, it becomes very difficult for clinical

personnel to adhere to accurate sample timing. Due to unexpected and

unpredictable delays in drawing the samples that were encountered in ini-

tial clinical practice, delays of 1-2 minutes can easily be introduced. The

recommendation is thus not to time samples less than 5 minutes apart. A

10 minute gap is more practical. To further improve robustness, the timing

should be linked to the respective administrations of glucose and insulin.

For example, it is easier to obtain a better timed sample if the timer is

restarted after the insulin is injected, as opposed to using the glucose bolus

at t = 0 as a baseline.

Combined Injection of Glucose and Insulin: Glucose and insulin could be

administered at the same time, ideally from the same syringe. Insulin is

not degraded if diluted with glucose [NovoNordisk, 2002] and the two could

potentially be mixed into a single bolus dose. This approach would increase

robustness and ease of use. A drawback is that due to the immediate rise

in exogenous insulin, no information about the initial first phase β-cell

response would be available. In contrast, if this information is not required,

the test time could be further reduced by 10 minutes to a minimum of only

20 minutes. How this method compares to the original protocol will have

to be validated in pilot testing, but it is an aspect worth pursuing as part

of a suite of such tests.

Capillary Glucose Sampling: If one of the fasting sample identified protocols

is used, such as Step G5, only one full sample needs to be drawn at fasting

state to assay for glucose, insulin and C-peptide. All other glucose samples

could potentially be drawn from capillary blood and analysed on the spot

with a home glucose monitor [Chase et al., 2006; Johnson and Baker, 1999].

The advantage would be that the fasting sample and the injections can be

done with a venous puncture, with no need of a cannula to be inserted for

the duration of the test. With only 3 additional glucose samples needed,

this approach is potentially very cost efficient, simple and attractive to the

subject. Differences in performance caused by capillary blood will have to



184 CHAPTER 9 TEST OPTIMISATION

be assessed in a separate validation, however the sample errors for such

devices are not too large [Johnson and Baker, 1999] to affect the basic

models and methods utilised. Again, this approach has significant merits

worth piloting clinically.

9.4 Summary

Possible optimisations of the test protocol were systematically analysed for all

three assays. The focus was mainly on cost reduction, improved robustness,

a simpler protocol and reduced overall test time. Special consideration was also

given to limited or special situations, such as where no C-peptide assay is available

or financial limitations only allow one sample of insulin and C-peptide.

The sample reduction analyses were carried out in a stepwise manner, first

analysing C-peptide, then insulin and finally glucose. This approach is important,

as the models build upon each other in that order in the fundamental methods

presented. These assays thus affect overall variability in that same order.

Total sample numbers, and thus assay costs, could be halved to only five,

without necessarily compromising test performance and thus diagnostic outcome.

A further reduction of the much more costly insulin and C-peptide samples was

presented, which identifies the insulin kinetic parameters with steady state anal-

ysis and only a fasting sample of both peptides. Financially limited scenarios can

thus be catered for with a simple and low cost, although slightly less accurate,

test.

By eliminating one of the fasting samples and the last two glucose samples,

overall test time could be reduced by 25 minutes to only 30 minutes. This ap-

proach requires no C-peptide sampling but thus yields only an insulin sensitivity

assessment SI and no additional pancreatic performance measures or diagnosis.

The compromise in accuracy is minimal and the correlation between SI values of

the full protocol and this reduced version is r = 0.96.

Further observations and suggestions for improvements experienced first hand

during the pilot study are also discussed. These suggestions improve the ease of

performing the test and overall test robustness. Overall, the results presented
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in this chapter greatly improve the clinical practicability and cost of the test,

without a great compromise in accuracy. The final result is effectively a suite

of tests with known tradeoffs in accuracy, robustness, repeatability, cost and

performance measures available.





Chapter 10

Conclusions

Diabetes has reached epidemic proportions worldwide. In particular, both the

total number of affected individuals and the level of associated complications is

growing for this chronic disease. Thus, the increasing number of major compli-

cations, such as polyneuropathy, blindness, kidney failure and limb amputations,

are beginning to consume a major and increasing portion of worldwide healthcare

costs.

One of the key pathological factors leading to type 2 diabetes is insulin resis-

tance (IR), an impaired ability of the body to make use of available insulin. IR

is evident up to 10 years before type 2 diabetes is diagnosed. Diagnosed early

enough, there is the opportunity to initiate appropriate treatment and lifestyle

interventions to prevent and significantly mitigate the effects of this disease. How-

ever, an accurate, yet simple, test to provide such early diagnosis of IR is not yet

available for practical use in a clinical setting.

This thesis aimed at developing such a test, that is both accurate and re-

peatable, yet simple, cost effective and short enough to be accepted in a clinical

setting. The test design incorporates physiological modelling and engineering

techniques to match clinical requirements and provide outcome metrics that can

support the clinician in a more complete diagnosis of metabolic defects associated

with IR and pancreatic β-cell function.
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Insulin Sensitivity Test and Technological Outcomes

A model-based test allows the estimation of metabolic states and defects with a

minimally invasive test protocol. This minimal test is achieved by compensating

for the lack of measured data with physiologically accurate models and param-

eters. A much more accurate and complete assessment of the metabolic system

is thus possible, than just analysing the raw data. A short clinical test that

was specifically developed by integrating practical clinical aspects and modelling

techniques has not yet been presented.

The PK and PD models presented in this thesis were developed specifically

to account for the key metabolic dynamics in glucose, insulin and C-peptide in

such a short test protocol. Paired with the identification methods presented,

physiologically valid parameters can be obtained that enable accurate metabolic

assessment. The identification methods combine a-priori knowledge, parallels

between C-peptide and insulin, and a novel convex integral-based fitting method

to enable unique physiological model identification on limited clinical data.

The models represent simplified descriptions of the much more complex un-

derlying system. When fitting them to clinically obtained data, unmodelled dy-

namics can affect the fitting process negatively and result in over- or under-

estimation of key model parameters. By identifying these unmodelled dynamics,

the fitting algorithm was optimised to only account for relevant sections of the

sampled data, thus improving robustness and repeatability of the overall method.

Model parameters that cannot be identified reliably on these short test data

were fixed to mean population values. These assumptions allow observed vari-

ability to be captured by only one key parameter, insulin sensitivity SI . This

approach also matches the assumptions of the gold standard euglycaemic clamp

test, which attributes all glucose uptake to insulin-dependent effects. The mod-

els are thus designed to correlate well to the gold standard test, as variability

in insulin uptake is only attributed to insulin. In fact, validating the models on

n=146 clamp trials, very good correlations of r = 0.92 and r = 0.99 were found

in transient and steady states, respectively.

The proposed test protocol was specifically designed with practical clinical

aspects in mind and was simulated in a Monte Carlo analysis prior to clinical pilot
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testing. The Monte Carlo results show expected repeatability accuracies close to

the clamp test. Clinical pilot testing confirmed these results. Mean repeatability

accuracy was close to that assessed in simulation and showed good resolution in

capturing different levels of insulin sensitivity. By including C-peptide sampling

to estimate pancreatic insulin secretion, a full picture of basal and first phase

β-cell response can be obtained. The fitting algorithm proved robust and fast in

fitting all test subjects, without any prior data analysis and intervention.

Finally, optimised test protocols were proposed by systematically re-analysing

sample reduced data sets of the pilot test data. Overall test time could be reduced

to only 30 minutes and the number of samples reduced to 5 or less, without

significantly reducing accuracy in repeatability in all metrics. The result is a

suite of test protocols, suitable for a wide range of clinical and research settings,

and providing a means of assessing overall metabolic state of insulin sensitivity

and β-cell function with just one short and cost efficient test.

This outcome is a substantial contribution to modelling knowledge and clin-

ical engineering, as the modelling work and protocol design were intentionally

guided by practical clinical requirements and aspects. The result is thus a very

robust test that can be performed by clinical staff without the need of prior data

analysis or modelling expertise. A similarly good test performance has not been

achieved previously in this field.

Clinical Outcomes

The clinical and diagnostic value of current clinical tests to assess IR is very

limited. Their resolution is crude, usually only allowing the use of a threshold

value as a cut-off point for the diagnosis. Due to this low resolution, a diagnosis of

IR and β-cell dysfunction is only possible once the pathology is well advanced and

significant irreversible damage has been occurred. Thus, current diagnostic tests

do not offer the opportunity to intervene before significant future complications

and costs become inevitable.

The insulin sensitivity test proposed in this thesis has the high resolution and

repeatability necessary to detect declining insulin sensitivity and β-cell function.

Furthermore, it could be used to monitor these metabolic markers in identified
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high risk populations and intervene early to prevent or delay the onset of further

complications. Hence, it offers this opportunity to prevent future complications

and costs.

The metabolic information that can be obtained from the proposed test is very

broad. Besides insulin sensitivity, SI , the test yields information about various

β-cell performance metrics. These metrics are important markers to assess the

progression of the disorder. The test thus draws a complete picture of the extent

and progression of metabolic disorder.

The intensity of the test is very low compared to similarly accurate tests.

Nonetheless, its intensity could be considered high for wider clinical settings

in which the lower resolution OGTT is the current test of choice. This slight

increase in intensity is the compromise required for the vast increase in accuracy,

resolution and metabolic information.

To simplify the test and broaden its field of application, different sample

reduction steps were proposed, minimising the clinical intensity without a signif-

icant loss in accuracy. Possible alternatives include a shortened version that re-

quires 30 minutes and five samples, or an option that only requires one full venous

sample and three additional capillary blood samples over the next 30 minutes.

Overall, a range of possible protocols were presented for different clinical

requirements and target settings. All tests measure the same effects and thus

yield comparable outcomes, a feature not available in any other test so far. Direct

comparisons between clinical and research study results are thus made possible.

Finally, the proposed insulin sensitivity test is repeatable and robust, yet

simple, short and cost efficient. The broad metabolic information obtainable

from the test can help the clinician to improve the diagnosis and thus improve

treatment. High risk populations can be diagnosed much earlier and the onset of

complications thus delayed, improving overall healthcare, saving lives and cost.

The contribution of this research outcome to the field of diabetes management

and diagnosis is substantial. Diagnostic outcomes previously only available with

complicated and intense tests in a research setting can now be made available to

routinely diagnose at risk individuals. This greatly improved diagnostic capability

can significantly change the way diabetes is currently managed.



Chapter 11

Future Work

The insulin sensitivity test presented in this thesis performs well and is prac-

tical enough for use in a clinical setting. Nonetheless, research and validation

have to be continued to fully validate the test performance and its comparison

against gold standard methods on different subgroups of individuals. Additional

optimisation can also be implemented to improve the practical aspects of all the

protocols presented and further simplify their eventual use.

11.1 Further Clinical Validation

11.1.1 Test Performance

Clinical validation is important to create confidence and credibility in the test.

Additional test validation is also necessary to strengthen the results in repeata-

bility and the effect of dosing obtained from the first pilot study presented in this

thesis. Particular important aspects include:

Effect of dosing: This aspect was tested in the pilot study presented in this

thesis, but the test and subject numbers were not large enough to obtain

a significant result. With a more controlled test environment and a larger

number of test subjects, the impact of outliers can be reduced and a more

clear result obtained.

Repeatability: This aspect was also tested in the pilot study and showed very

good results. Some outliers were still evident, and a validation with larger
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subject numbers and possibly more tests on each subject could yield more

confidence in the results. More controlled environmental aspects, such as

time of day, state of health, previous exercise, or stage of menstrual cycle

in female subjects should be observed to minimise variability in insulin

sensitivity introduced by a natural cause.

Wider range of insulin sensitivities: To obtain a comparable scale of ex-

pected insulin sensitivities, and an idea of at-risk ranges, a large number

of subjects from various subgroups and risk populations would need to be

tested. With a complete range of expected sensitivities, results obtained in

each subject could be classified in comparison to that scale.

11.1.2 Validation Against Gold Standard Tests

Clinical validation against gold standard tests is important to validate the test

metrics against established methods. The model has shown good performance

when fitted to euglycaemic clamp trial data, but a clinical validation, in which

each test is performed on the same individual will provide final confirmation of the

comparability of both test metrics. Additional validation should be performed on

further research tests, such as the IVGTT, or clinical tests, such as the OGTT.

These comparisons against established methods will create comparability

scales of each test metric for better inter-study comparison of results. This ability

to easily compare results is important, as many tests effectively measure slightly

different effects of insulin sensitivity and yield different direct or surrogate met-

rics.

11.2 Practical Clinical Improvements

11.2.1 Combined Administration of Glucose and Insulin

A simplification of the test in terms of time, protocol and intensity could be

achieved by combining the administration of glucose and insulin into one syringe.

This change would require only one injection and thus significantly simplify the
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protocol for medical personnel, and also reduce the intensity for the subject.

Mixing of insulin with glucose does not affect the stability of insulin [NovoNordisk,

2002], and is, in fact, common practice in some critical care units (Dr. Geoff Shaw,

personal communication).

One drawback from this approach is that assessment of the first phase re-

sponse of the β-cells would not be possible, as the simultaneous increase in both

concentrations would inhibit endogenous insulin secretion. Hence, assessment of

β-cell function would not be possible. The protocol could still be attractive, if

the focus is on only assessing insulin sensitivity, or the reduced test time is im-

portant. Validation of this protocol variation would have to be carried out to

assess any difference it might introduce to the outcome metric.

11.2.2 Reduce Fasting State Requirement

The fasting state requirement is a common aspect of all insulin sensitivity tests

and is necessary to eliminate the impact of any remaining postprandial glucose

or insulin appearance in plasma that could alter the results. This requirement is

a limiting factor for a more frequent application of the test, as all tests need to be

performed in the morning after an overnight fast. Further testing in the afternoon

is not possible, unless the subject fasts all day. This aspect could increase the

flexibility of a test, as it could be performed during any doctor’s visit without

significant prior preparation.

With the knowledge of the appearance rate of endogenous glucose and in-

sulin, the fasting state requirement could be eliminated. Insulin secretion by the

pancreas is not a problem, as it can be estimated well by sampling C-peptide.

Glucose appearance from the gut cannot be measured easily and would have to

be estimated. With moderate knowledge about the subject’s last meal or snack,

the appearance rate can be estimated within a reasonable range. By also knowing

the starting glucose value at the beginning of the test, the introduced variability

can be limited to the appearance rate.

This approach needs to be assessed in Monte Carlo simulation studies as well

as in clinical validation. It could be possible that a partial fasting of 2-4 hours is

still required, as by that time the postprandial glucose peak is mostly over and
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the glucose appearance from the gut is more stable and can be estimated more

robustly. Nonetheless, even a reduction to 2-4 hours of fasting would enable the

test to be performed at various times during the day, such as in the morning,

before lunch and later in the afternoon. This added flexibility could further

enhance the applicability of the test in a wider clinical or screening setting.

11.2.3 Practical Protocol Aspects

The practical aspects of the test, such as the technique to sample blood, admin-

ister the injections of glucose and insulin, and the timing of samples need to be

very robust to be reliable in a widely used clinical application. Market research

of possible blood sampling devices and methods has to be carried out to find the

least painful and most robust approach. One variation could be to use venous

punctures instead of a cannula. Multiple venous punctures could be more painful

for the subject than inserting a cannula once, but would also reduce potential

contamination and blood clotting. The sampling routine could also be simplified,

as no flushing of the cannula would be required.

The timing of samples and injections, which is critical for the computational

portion of the test, needs to be easy to accurately manage by a sole clinician or

nurse performing the test. One possible solution would be an electronic timing

device, similar to a calculator, with customised buttons to press after each sam-

pling step. A beeping signal could also be implemented to anticipate the next

sample. The timing of samples could be stored by the device and eliminate any

manual time keeping and logging, thus increasing reliability of this aspect of the

test.

11.3 Outlook - Potential Additional Applications

Besides providing a clinical diagnostic test for early diagnosis of IR and β-cell

dysfunction, this test offers opportunities for drug development and optimising

current therapeutics. Potential applications could be to test the effect of insulin

sensitisers [Gerstein et al., 2006; Kahn et al., 2006a], combination therapies, or

drugs promoting insulin release [Larsen et al., 2007]. By directly assessing the
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metabolic disorders being treated, instead of waiting for surrogate markers, such

as fasting glucose, to indicate a significant effect, dosing and drug selection of

hypoglycaemic agents could be improved.

Finally, the test developed in this thesis offers great potential for improved

diagnosis and treatment of the risk of type 2 diabetes and the disease itself.

Validation against currently accepted methods will provide confidence in the

test’s performance, and further optimisations in practical aspects can improve

its widespread clinical use. Additional potential applications of this test, such as

optimisation of dosing of medication and other treatments can further improve

overall diabetes care.





Appendix A

Current Insulin Sensitivity Tests

This appendix includes three tables summarising aspects of current insulin sen-

sitivity tests described in Chapter 2. The three tables on the following pages are

separated into intravenous, oral and fasting tests, respectively.
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Table A.1 Intravenous insulin sensitivity tests.

Test Time Samples Input Calculation Repeatability Use Notes

Subject: G: 12-24+ I infusion spreadsheet CV=6-10 %1 research +gold standard
Clamp 180-300 min I: 4-8+ 40-1200 only +very repeatable

Staff: CP: opt. mU/min/m2 -supra-physiological
180-300 min var. G infusion -special equipment

-trained personnel

Subject: G: 13 ∼20 g G bolus spreadsheet CV=21 %2 mainly +short, simple
IVGTT Kg 60 min I: 13 research/ -inaccurate in IR/

Staff: limited diabetes
60 min clinical

Subject: G: 12-30 ∼20-30 g G bolus computer CV=14-82 %3 mainly +repeatability
IVGTT-MM 240 min I: 12-30 ∼2-4 U I bolus software research/ +broad information

Staff: CP: opt. optional limited -many samples
240 min tolbutamide clinical -long duration

Subject: G: 7 ∼8 U I bolus spreadsheet CV=7-31 %4 mainly +short, simple
ITT 90 min research/ -high hypo risk

Staff: limited
90 min clinical

Subject: G: 5 ∼0.4 g/min computer CV=17-21 %5 mainly +safe
CIGMA 90 min I: 5 G infusion software research/ +physiological model

Staff: CP: 5 for 60 min limited -inaccurate in IR/
90 min clinical diabetes

1 [DeFronzo et al., 1979; Mari et al., 2001; Monzillo and Hamdy, 2003]
2 [Galvin et al., 1992]
3 [Ferrannini and Mari, 1998; Mari and Valerio, 1997; Monzillo and Hamdy, 2003; Scheen et al., 1994]
4 [Gelding et al., 1994; Monzillo and Hamdy, 2003]
5 [Hosker et al., 1985; Nijpels et al., 1994]
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Table A.2 Oral insulin sensitivity tests.

Test Time Samples Input Calculation Repeatability Use Notes

Subject: G: 1 75 g oral G - CV=15-40 %1 clinical +simple, safe
OGTT 2-h 120 min change in status +low cost

Staff: in 30-60 % of cases ADA -low repeatability
20 min after repeat test2 recommended -surrogate metric

-lumped effects

Subject: G: 1-7 75 g oral G spreadsheet CV=7-15 %3 clinical/ +simple, safe
OGTT 120-180 min I: 1-7 limited +more reliable
Matsuda Staff: research than OGTT 2-h
Stumvoll 20-100 min -low repeatability

Cederholm -inaccurate in IR/
Gutt, etc. diabetes

Subject: G: 20-25 75 g oral G/ computer CV=12-15 %4 research/ +physiological admin
OMM 240 min I: 20-25 or meal software limited +broad information

Staff: CP: 20-25 clinical +repeatability
240 min (opt.) -long duration

-many samples
-costly

1 [Levy et al., 1999; McDonald et al., 1965]
2 [Ganda et al., 1978; Levy et al., 1999; Riccardi et al., 1985]
3 [Breda et al., 2001; Mari et al., 2001]
4 [Breda et al., 2001]
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Table A.3 Fasting insulin sensitivity tests.

Test Time Samples Input Calculation Repeatability Use Notes

Subject: I: 1 - - CV=20 %1 clinical +simple, safe
FPI 5 min +good indication of IR,

Staff: even in normoglycaemic
10 min -surrogate metric

-not feasible in IR/diabetes

Subject: G: 1 - - - clinical +simple, safe
FPG 5 min ADA +recommended by ADA

Staff: recommended -diagnosis of IR too late
10 min -surrogate metric

Subject: G: 1 - spreadsheet CV=10-30 %2 clinical/ +simple, safe
HOMA-IR 5 min I: 1 limited +includes insulin

Staff: research and glucose
10 min +many reference studies

-surrogate metric
-low resolution/repeatability

Subject: HbA1C: 1 - - CV=2-4 %3 clinical +not affected by
HbA1C 5 min concentration fluctuations

Staff: +indicative of mean
10 min glucose over 2-3 months
10 min +no fasting requirement

-diagnosis of IR too late
-surrogate metric

1 [Mather et al., 2001]
2 [Bonora et al., 2000; Matthews et al., 1985; Wallace et al., 2004b]
3 [Barr et al., 2002]



Appendix B

Pilot Test Model Fits

The 43 pilot tests of the proposed insulin sensitivity test are shown here. Shown

are glucose and insulin concentrations with the respective model fits, and the

estimated endogenous insulin secretion rate, obtained from the C-peptide con-

centrations.
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