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Abstract

Atmospheric turbulence limits the resolving power of astnmical telescopes by distorting
the paths of light between distant objects of interest aadhttaging camera at the telescope.
After many light-years of travel, passing through the tlebge in that last 100km of a
photon’s journey results in a blurred image in the telescopdess than 1” (arc-second)
in width. To achieve higher resolutions, correspondingn@aler image widths, various
methods have been proposed with varying degrees of eféaetss and practicality.

Space telescopes avoid atmospheric turbulence compltelyare limited in resolution
solely by the size of their mirror apertures. However, theigle and maintenance cost of
space telescopes, which increases prohibitively with, $iae limited the number of space
telescopes deployed for astronomical imaging purposesurir based telescopes can be
built larger and more cheaply, so atmospheric compensstioemes using adaptive optical
cancellation mirrors can be a cheaper substitute for sgdescopes.

Adaptive optics is referred to here as the use of electramidrol of optical component to

modify the phase of an incident ray within an optical systidm&n imaging telescope. Fast
adaptive optics systems operating in real-time can be wseartect the optical aberrations
introduced by atmospheric turbulence. To compensate thbsgations, they must first
be measured using a wavefront sensor. The wavefront estinoah the wavefront sensor
can then be applied, in a closed-loop system, to a defornmalster to compensate the
incoming wavefront.

Many wavefront sensors have been proposed and are in ussylitoddaptive optics and
atmospheric turbulence measurement systems. Experihnesitdts comparing the perfor-
mance of wavefront sensors have also been published. Howiitle detailed analyses
of the fundamental similarities and differences betweenwhvefront sensors have been
performed.



Vi Abstract

This study concentrates on four main types of wavefront@snaamely the Shack-Hartmann,
pyramid, geometric, and the curvature wavefront sensois attempts to unify their de-
scription within a common framework. The quad-cell is a Wewat slope detector and is
first examined as it lays the groundwork for analysing thecgidartmann and pyramid
wavefront sensors.

The quad-cell slope detector is examined, and a new meakpesformance based on the
Strehl ratio of the focal plane image is adopted. The qudldseeformance based on the
Strehl ratio is compared using simulations against the @réRao bound, an information
theoretic or statistical limit, and a polynomial approxtina. The effects of quad-cell
modulation, its relationship to extended objects, and ffeceon performance are also
examined briefly.

In the Shack-Hartmann and pyramid wavefront sensor, agulaality in the imaging and
aperture planes exists, allowing for comparison of thequarance of the two wavefront
sensors. Both sensors subdivide the input wavefront intdlenregions, and measure the
local slope. They are equivalent in every way except for tigeioin which the subdivision
and slope measurements were carried out. We show that thimkdifference leads to a
theoretically higher performance from the pyramid wavefreensor. We also presented
simulations showing the trade-off between sensor pretsil resolution.

The geometric wavefront sensor can be considered to be awnwegbcurvature wavefront
sensor as it uses a more accurate algorithm based on geoopics to estimate the wave-
front. The algorithm is relatively new and has not found aation in operating adaptive
optics systems. Further analysis of the noise propagatiding algorithm, sensor resolu-
tion, and precision is presented. We also made some obsgryvain the implementation
of the geometric wavefront sensor based on image recovesydh projections.
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Preface

| began my postgraduate studies as a Masters student in @082, the supervision of Dr
Richard Lane. As part of the requirements for the Mastersaded took courses in Optical
Engineering, Computational Image Recovery, AdvancedeBystand Control, Techniques
in Observational Astronomy and Applied ElectromagnetiSime thesis component of the
course involved a simulation of atmospheric turbulencenfiole field imaging and correc-
tion.

The Electrical and Computer Engineering department cotktled with the Physics and
Astronomy Department on an atmospheric sensing and tipditection system for the

university’s Mt John Observatory. | had the opportunity torkvon the camera software
and optical layout calibration for the rig, and was invitedtie observatory on several trips
to test the system and gather data.

In order to investigate further the performance limits of@faont sensors, | also began to
study the operation of wavefront sensors. To study altememto adaptive optics, | adapted
the simulations for wide-field imaging through turbulenoeskamine the phase retrieval
problem and employed phase diversity to resolve the amtgiguierent in phase retrieval.
Most of that work was exploratory in nature, and is not docutee here.

After upgrading my Masters degree into a PhD degree, inttak with wavefront sensors
involved a comparison between the curvature sensor andei@egric wavefront sensor.
The exact geometric optics model in the geometric sensiged it with the obvious ad-
vantage when solving for the inverse solution. Howevergssireal images also contain
photon noise, how does this advantage translate to prhafgdications? This motivates
the work (Chapter 7) into the comparison between the gearreatd curvature wavefront
sensors. During the work with photon noise in the geometeeefront sensor, some in-
teresting properties of the Zernike polynomials underguotpns were observed, and are
described in the Appendix.

XV
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Around the time | was analysing noise propagation througlgfometric wavefront sensor,
| inherited some Matlab code from Richard Clare for simulgtihe pyramid wavefront
sensor. The wavefront estimation routines use direct gwerof a linear model. However,
an empirically determined and turbulence dependent saaterfis required to account for
the changing sensitivity in the pyramid sensor during ojp@ma Difficulties in determining
this scale factor are compounded in closed-loop compemsgttems.

This motivated a return to the analysis of the quad-cell ({@#¥a5) even though it is well-
covered in the literature. The result of that analysis, @hith the Fourier duality property,
is useful for comparing the performance of the Shack-Hantita the pyramid wavefront
sensor in Chapter 6. Simulations with different lensle¢sizere carried out to demonstrate
the precision-resolution trade-off in the Shack-Hartmsensor.

0.1 Thesis organisation

The contents of each chapter in this thesis are summarised Rapter 1 to Chapter 4
introduce all the preliminaries required to understandstifessequent chapters, and contain
no new materials. My new contributions are presented in &g to 7.

Chapter 1 provides an introduction to the field of astronamimaging and the role of
adaptive optics in combating atmospheric turbulence. rAdteves to adaptive optics like
computer post-processing are also discussed.

Chapter 2 introduces the mathematical techniques andiorgatised in the subsequent
chapters of this thesis. Linear systems theory and prababibr statistical techniques are
fundamental to the description of atmospheric turbuleopégcs, and wavefront sensors.

Chapter 3 reviews the field of optics. Beginning with the getio ray tracing model, the
laws of refraction and reflection and their use in opticateys are described. Diffraction
is approximated with the Fresnel and Fraunhofer diffractivodels, which are the main
mathematical tools used in this thesis. Lastly, the newtcaldechniques of Fourier optics
and the field transport equations are introduced.

Chapter 4 provides an overview of the statistical propgieatmospheric turbulence, and
the wavefront sensors used to detect them. The four mairosestudied in this thesis

—the Shack-Hartmann, the pyramid, the curvature, and tbeng&ic wavefront sensors

are introduced and a unifying theme is suggested.
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Chapter 5 lays the groundwork for the analyses of the Shakatinn and pyramid wave-
front sensors by characterising the quad-cell wavefrapeskensor. The performance of
the quad-cell is examined and the result is extended to d@pplye analysis of wavefront
sensors. Conventional quad-cell analysis cannot be apjalielosed-loop adaptive optics
systems, so the novel contribution from this analysis isrgp#fied closed-loop analysis of
wavefront sensors.

Chapter 6 compares the performance of the Shack-Hartmahtharpyramid wavefront

sensors. After developing the Fourier duality of the two &feant sensors, the quad-cell
analysis is applied to compare the slope estimation pedooa of both wavefront sen-
sors. A unique aspect of this work lies in the use of Fourieithy which provides a neat

classification of the various sensor functions for direchparison.

Chapter 7 compares the performance of the geometric anditiiatare wavefront sensors.
The two sensors are physically identical, and their onlfedénce lies in their wavefront
estimation algorithm. The geometric wavefront sensor @wshto be an exact model of
geometric optics through ray-tracing, while the curvagensor is shown to be a simplified
approximation of the geometric sensor. This chapter prep@snew noise propagation
analysis for the geometric wavefront sensor and exploregédholution limits posed by
diffraction.

Chapter 8 concludes with a summary and some discussiongure fuork.

The Appendix also includes some interesting observatiadsaaconjecture on the proper-
ties of the projections of Zernike polynomials, which pies$ a potentially useful tool for
the recovery of images through projections.

0.2 Supporting publications

A number of journal and conference publications resultechfivork on this thesis. These
are listed below.

T.Y. Chew and R.G. Lane, “Estimating phase aberrations fraensity data”, inrProceed-
ings of Image and Vision Computing New Zealand 2003 (IVCB)Z'M@D. G. Bailey ed.,
181-186.

T.Y. Chew, R.M. Clare and R. G. Lane, “A Cramer-Rao bound ysialof the Shack-
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Hartmann and pyramid wavefront sensors’Prnoceedings of Image and Vision Computing
New Zealand 2004 (IVCNZ'04)D. Pairman, H. North and S. McNeill, eds., 227-232.

T.Y. Chew and R.G. Lane, “Benefits of a single photon wavdfsamsor”, inProceedings
of Image and Vision Computing New Zealand (IVCNZ’'0B) McCane, ed. 85-89.

T.Y. Chew, R.M. Clare and R.G. Lane, “A comparison of the &hidartmann and pyramid
wavefront sensors”, iDptics Communications268 (2), 189-195 (2006).



Chapter 1

Introduction to Astronomical Imaging

The increasing size of ground-based astronomical telescbps led to the ability to see
fainter objects. In the absence of the atmosphere, lartgscigpe sizes not only increase
the light gathering power of telescopes, but also increlasedsolution of telescopes, al-
lowing for finer details in astronomical images to be meaduhe practice, the increase in
size has not been matched by increased resolution, sinartteespheric refractive index
fluctuations caused by turbulence distort the light raysifdistant stars unevenly across the
telescope aperture. This degrades the resolution of aligidased telescopes to about 1”
(arc-second), regardless of telescope size. When astioabobjects are viewed through
large astronomical telescopes, they appear blurred atwtedid, with the distortion chang-
ing over time. Figure 1.1(a) shows a simulated image of agfddinary stars blurred by
atmospheric turbulence when viewed through a large tepes@i an instance in time. The
same image is shown in Figure 1.1(b) with adaptive opticsattigdly cancel the effects of
the atmosphere.

Several methods are available to combat the distortionsdnted by the atmosphere. The
ideal method is to avoid the atmosphere, by using spacedtialescopes. In 1990, NASA
deployed the 2.4m Hubble space telescope into low earth drlvas initially plagued by
spherical aberrations, but was successfully repaireabit;@nd has provided astronomers
with deep space images of the universe for close to 15 yeaosn the original estimated
cost of about US$400 million, the telescope eventually cosr US$2 billion, and has
been estimated to cumulatively cost up to US$14 billion &itidin adjusted). The Hubble
space telescope has not been operating since 2004 follaWwangpilure of the imaging
spectrograph, and now has an uncertain future. Withouhdéuntepairs and maintenance,
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Speckle image Corrected speckle image

(a) A pair of double stars seen through afrozen  (b) The double stars with partial correction of
instance of atmospheric turbulence. the same turbulence using adaptive optics.

Figure 1.1 Simulations of the effects of adaptive optics on atmospheric turbulence induced
blurring.

the telescope will eventually re-enter the atmosphere [4].

The successor to the Hubble Space Telescope, the James YWatsh®lescope [5], is inits
preliminary design stages and is planned for launch in 20h8.telescope is designed with
a 6.5m folding mirror and operates at infra-red wavelengfls6 to 28um. The telescope
will orbit the sun at the L2 Lagrange point between the SunthecEarth, 1.5 million km
away. The budget for the James Webb Space Telescope pomatéently about US$ 3.5
billion, which is US$ 1 billion over-budget.

Due to the prohibitive cost of space telescopes, more geaolutions are needed to over-
come the effects of atmospheric turbulence. Adaptive spicstems for ground-based
telescopes provide an alternative solution. Using opétahents which modify the propa-
gation of light to cancel the effects of atmospheric turbaks image quality can be restored
to near the ideal performance. More importantly, this adiom can be achieved over a
range of light frequencies and consequently is more uskéul tomputer post-processing
methods.

Adaptive optics systems are used today in most large opetedcopes for compensat-
ing the effects of atmospheric turbulence. The design ofdaptve optics system must
consider the costs and appropriateness of ever changihgdlegy, the characteristics of
atmospheric turbulence at a specific observation site, hedype of observation to be
performed at the site. These observations consist mairgpedétroscopy, photometry and
direct imaging.
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Spectroscopy [99] is the analysis of the composition ofsstamaterials by decomposing
light into its component spectra. The spectrograph perdmge (spectral resolution) is
determined by a narrow slit in the spectrograph. The sizke#lit is traditionally matched
to, and limited by, the blurred focal plane image of a pomi#se object, so adaptive optics
can be used to reduce the slit size and increase the spegihoggsolution.

Photometry is the measurement of stellar magnitudes gittgri108]. The main objective
is consistent measurement of intensities, so image reésolistnormally not important for
performance. Adaptive optics has limited applicabilityhrs area, and in fact, by reducing
the light throughput, actually degrades system performanc

Direct imaging, whether by a recording medium like photpdia plates or CCD cam-
eras, is similar to sight in the human eye. The intensityrithstion of a distant object
is re-imaged with a lens or mirror, and then recorded. Thegedaobjects can be point-
source stars, double stars, distant extended objectstiksystems, galaxies and nebulae,
or nearby extended objects like planets and comets. Imagersess, resolution and con-
trast are important, and adaptive optics can play a cruaialin such applications. Unlike
spectroscopic applications, images recorded directly beafurther enhanced with com-
puter post-processing.

A promising new technique for high resolution imaging, fiegeometric imaging, provides
very high but selective resolution by using multiple tetlgses arranged on long baselines
of nearly hundreds of meters. The long distances involvedire precise calibration of the
phase delay arising from the different imaging path lengihd atmospheric turbulence.
The major contribution to image degradation comes from thesp piston term between
widely separated apertures. Techniques in adaptive opdies also been adapted to this
specialised application.

1.1 Adaptive optics

In 1953, Babcock [9] suggested the first adaptive opticesy$62, 85, 101] for real-time

aberration compensation. An adaptive optics system is srowigure 1.2, consisting of a
wavefront sensor to measure aberrations caused by theateresa wavefront corrector or
deformable mirror driven in closed loop by a command compated an imaging channel
that carries out the scientific observations.
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Figure 1.2 Real-time correction of atmospheric turbulence with a closed-loop adaptive
optics system.

1.1.1 Atmospheric turbulence

Atmospheric turbulence is caused by the mixing of air ofed#ht temperature and pressure,
and water vapour. The turbulent motion of air starts frorgéagcale motions, but through
the viscosity and friction of moving air, the motion endsraadler and smaller scales, and
eventually dissipates as heat. This process results irufitions in the refractive index
of air, so these “Tremors of the atmosphere”, as describeSilbisaac Newton [64], are
perceived from the ground by the naked eye as the “twinklirfixd Stars”.

Although turbulence is considered to be present in the wbblde atmospheric tropo-

sphere and stratospheric layers, its strongest measustiblgs are usually localised to
several strong layers, typically located about 10km higthaasky. Often, strong ground
layers are also present. The increasing awareness of thenmeof strong ground layers in
recent years has led to greater care being taken to seléableusites, and the adoption of
construction practices that reduce the observatory tHesign@ature to reduce ground layer
turbulence [85, 101].
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Several statistical measures of the severity of turbulaneaised as rule-of-thumb indica-
tors of the image quality or “seeing” achievable at an obatery site [89]. They are typi-
cally expressed as angles of seeing (size of a blurred gountee), the isoplanatic andieg,
usually around a few arc-seconds, turbulence cell size aewn as Fried’s parametsy,
usually from 5 to 20 cm), or a rate of change (Greenwood’sueegy fg, typically in the
20 to 100 Hz range). All these quantities are derived fronréfi@ctive index fluctuations
of turbulence (as measured by the structure conﬁé)mnd wind speed. The statistical
properties of atmospheric turbulence are examined funth®ection 4.1.

1.1.2 Wavefront sensors

Wavefront sensors are used to estimate the image abesaaused by the atmosphere.
The most practical way today to measure turbulence is to uneats effect on light. The
most commonly used wavefront sensor, the Shack-Hartmamafmat sensor [72] (to be
examined in Section 6.3) is shown in Figure 1.3, and illusganost of the basic principles
of wavefront sensors.

|
A Al A N
/7l7n7\7|\
\7‘77‘7'/
\717\717‘/
~—1—"

Figure 1.3 The Shack-Hartmann wavefront sensor divides the circular telescope aperture
into smaller regions, and combines the local slope signals (shown as arrows in each sub-
region) to form the full wavefront estimate over the whole aperture.

The Shack-Hartmann sensor consists of an array of lenglet¢ad across the telescope
aperture, subdividing it into smaller regions. The effecatmospheric turbulence is lo-
calised within each lenslet and proportionately reducetie Enslet image is displaced
randomly over time, but since the lenslet size is usuallysehao be approximately equal
to ro, maintains an image size close to the un-aberrated caseimBEye displacement is
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linearly proportional to the slope of the atmospheric wewetf [93]. In general, all wave-
front sensors produce a vector signal derived from the wameglope over sub-regions in
the aperture and invert the linear relationship to recdverll wavefront across the whole
telescope aperture.

Like all wavefront sensor, the Shack-Hartmann sensor doesark well with dim objects
and requires at least 20 photons in each sub-aperture t@wproseful wavefront estimates.
Therefore, the wavefront estimate is frequently obtaimechfmeasurements on a nearby
guide star instead of the target star itself. This avoidsltise of light from the target
star measurements and may even allow a brighter star to logefaisevavefront sensing.
However, a nearby natural guide star is often unavailablese@ratories today [2, 3, 6, 7]
are equipped with artificial laser guide star systems thafaan a bright spot high in the
atmosphere at selected positions.

1.1.3 Imaging camera

The first imaging devices are based on photosensitive nterpated on photographic
film. Today, most imaging devices have been replaced by semictor technology, such

as linear arrays of charge-coupled devices (CCD), or maente/, complementary metal-

oxide-semiconductor (CMOS) sensors. Most wavefront ssnsge CCD sensors as their
light detector, so the characteristics of CCD detectorg ataimportant role in the perfor-

mance of wavefront sensors.

The most important characteristics of CCD imaging deviaestlaeir efficiency, spectral
sensitivity and noise levels. CCD devices can detect as ras@9% of available photons
if substrate thinning and back illumination are employethvalose packing of the indi-
vidual photosites (fill factor). Additionally, anti-refleon and fluorescence (expanding the
spectral sensitivity range) coatings are often used [1].

CCD cameras are also affected by noise during their operafioermal or dark noise arises
from accumulated random fluctuations of electrons in thémwion. Dark noise obeys
Poisson statistics and accumulates over time at a rate ipiapeal to the temperature of the
imaging site. It is reasonably consistent for any indiviquael. Read-out noise or read
noise is a bias introduced mainly by the amplifiers in the oartd measurement electronics.
It is roughly proportional to the amplifier gain. Knowledgktbe noise statistics allows
their effects to be reduced by proper calibration of imagits averaged noise frames.
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Aside from instrumentation noise, images are sometimext&ifl by cosmic rays, which
typically saturate individual pixels, creating a salt amghper noise effect. Typically, single
saturated pixels are removed in a separate preprocessmpstemove this noise. At low
light levels, randomness in the photon arrival processsgiige to noise obeying Poisson
statistics. Poisson noise cannot be reduced except byasiogethe received light level.
Witthoft [113] investigated a way to reduce photon noisatieé to detector read noise by
image intensification.

1.1.4 Control computer

A control computer transforms signals from a wavefront sensto the appropriate actua-
tion voltage signals. The signals drive the deformable aniim a closed loop control sys-
tem. The corrections applied by the system have to take [deter than the atmospheric
time constant, which is typically a few milliseconds [101].

The control computer is modelled as a simple closed looprabsystem. The most sig-

nificant effect arising from turbulence is image displacetneaused by the tip/tilt term, so
providing a separate flat mirror significantly reduces th@aled on the deformable mirror.
For this reason, it is sufficient to consider only a singlencied here. Figure 1.4 shows the
layout of a tip and tilt only adaptive optics system or an imdgsplacement stabiliser. The
incoming light, the light from a distant star, provides theut signal. The output is the

stabilised image used for scientific observations. Insémtation noise (at the tilt sensor)
and photon noise (inherent in the input) are also present.

The performance of the system is determined by the clasfictdrs [23] in a control
system: the noise level, the delay introduced by each coengdn the adaptive optics
system, and the rate of change of atmospheric turbulence.

1.1.5 Deformable mirrors

Optical phase compensation devices work by introducinges@lshift along the light path

of an optical system. Devices based on birefringent maseoiaLCD phase shifters can

be used for manipulating optical phase directly. HoweVver aberrations created by atmo-
spheric turbulence, resulting from irregular refractdex fluctuations in the air, is depen-
dent on the light wavelength. Deformable mirror membramesiged in practical systems,
since they cancel aberrations by physical path different®tead of phase and have no
wavelength dependence. Furthermore, deformable mirfare & uniform response, and
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Input
l -
@* Noise
Tip/tilt mirror T Output
Tilt sensof | Noise
l
Actuators Controller

Figure 1.4 The feedback control loop for an image stabiliser adaptive optics system.

have short response times.

Segmented mirrors were used in early mirror prototypeshhaue fallen from favour be-
cause of their high wavefront fitting errors at the edges. Most commonly used de-
formable mirror today has continuous facesheets. The li@etds a flexible reflecting
membrane supported by many micro-actuators that can betadjat high speeds to shape
the mirror surface. The micro-actuators are usually broltf ferroelectric ceramic materi-
als that have a piezoelectric response to strong electlitsfi&he bimorph mirror, another
deformable mirror with continuous facesheets, uses twpogiectric ceramic wafers that
locally contract in opposing directions when a voltage gliegol through an electrode, caus-
ing a local deformation around the electrode [85].

The mechanical properties of the mirror actuators detegtthia characteristics of deformable
mirrors. The stroke (amount of movement) determines theimmamx phase correction that
can be compensated by the mirror. The number and positiotfeecdictuators limit the
complexity of the phase function that can be compensated.gébometry of the actuators
also affects the coupling between actuators, with theieigsof the coupling determining
the response time (typically in the millisecond range) dbdaable mirrors.

1.2 Post-processing of images

Computer post-processing of images is an attractive @tieto adaptive optics. This may
also complement an adaptive optics system at a later stag@ahtance the output images
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from the adaptive optics system.

The model for the blurring introduced by the atmospherevsmgby

d(x,y) = f(x,y) ©h(x,y) +n(x,y) (1.1)

wheref (x,y) is the original image, blurred By(X,y), the instantaneous atmospheric point-
spread-function at a certain time, an(X, y) is the additive noise. The contaminated final
imaged(x,y), along with constraints made using assumptions of the ptiegeof atmo-
spheric blurring, is used to recover the original image. geeestoration using deconvo-
lution belongs to the class of inverse problems, where a hafdbe forward problem is
inverted to recover the original image, often solved ustamative techniques [74].

Post-processing techniques require light to be detectimtdoprocessing offline, unlike

fully online adaptive optics systems. This has the disathgmthat it cannot be used in
cascade with non-imaging observations like spectroscojyterferometry, which require

real-time compensation.

1.2.1 Image deconvolution

In conventional image deconvolution, the contaminatedye{x, y) is known along with

an approximate model of the blurrinig(x, y). Given these two datasets, the original image
f(x,y) can be recovered by reversing the equivalent filtering djmeraA knowledge of the
energy statistics of the original image compared to theencés be used to design optimal
filters known as Wiener filters. In astronomical imaging, shet noise from randomness
in photon arrivals dominates thgx,y) term. For this class of problems, alternatives like
the CLEAN and Richardson-Lucy iterative algorithms are encommonly applied. They
are maximum likelihood solutions for Poisson noise stai8g65, 79].

A more challenging class of problems is encountered whearthyemeasurement available
is from d(x,y), so the original imagd (x,y) has to be recovered along with the blurring
functionh(x,y) too. In astronomical imaging, this is mitigated by storimglgrocessing
a large number of frames of the image (refer Equation 1.2)er@ll frames, the original
image remains the same, while the atmospheric blurringtimmand noise vary, giving

di (X7 y) =f (X7 y) oly (X7 y) + N (X7 y) (12)
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with i representing an image frame index.

The blind deconvolution problem is frequently under-coaisied due to the small number
of measurements compared to the image that is to be recovétesl possible solutions
to the problem are frequently restricted by additional ¢@msts arising from the physical
limits of the imaging problem, such as positivity, smootssand finite support of images.
A related and more restricted class of problems can be useddovery of the atmospheric
phase aberrations that lead to image blurring.

1.2.2 Phase retrieval

Phase retrieval refers to the class of techniques useddeeethe phase information using
the information from intensity and prior information [24,82]. It is applied in fields
as diverse as astronomical imaging, microscopy, crygiedlohy, sonar, and radar, among
others [60]. Most spectacularly, it has been used to estithat aberrations in the Hubble
space telescope [82] using only the aberrated stellar imegptured from the telescope
while in Earth orbit.

When a distant starf(x,y) being a point-source object) is imaged through the atmasphe
the measured image is given by

= h(xy)+n(x,y) (1.3)

Usually, the atmospheric turbulence is approximated by@lsilayer of phase-screen that
adds random phase perturbations to the passing light. Asrshaier in Section 3.3.2,
h(x,y) is derived from the Fourier Transform of the telescope apertunction and phase
aberrations propagated from the phase-screen.

h(x,y) = )ﬁ{A(u,v)ei‘P(”’V)Hz (1.4)

Here, the image magnitude at the imaging pldxir,y), and the aperture magnitud&u, v)
(usually taken to be cife/u? +V?2)), are known. Using two images, the phase, v) needs
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to be recovered. From this point of view, all imaging resirita lost of phase information,
since only the magnitude of a complex field is measurable.

From Equation 1.4, three classes of solutions to the phﬁ&na&egf)(u,v) that produce the
same output image(x,y) exist

{(ﬁ(U,V) + C}v {(’[\J(U,V) + 27'lk(U,V)}, {(b(_u7 _V)} (1-5)

for integer values ok(u,v) and forA(u,v) = A(—u, —V) (circular symmetry is common in
telescope apertures).

The absolute phase value has no effect on the imaging probtethe first class of ambigu-

ity is usually resolved by setting the DC term to z€§Q,5 @(u,v) = 0. The second class

of ambiguity results from the2wrap-around in the phase representation. This may be re-
solved by phase unwrapping techniques commonly used etsewtsignal processing, or
by applying a smoothness constraint to the solution. Thd #anbiguity is not resolvable,
and in practice, additional information is required fronhet sources (an estimate of the
original solution provides a good starting point).

Setting aside these ambiguities, most solutions to theepteseval problem are iterative
techniques aimed at reducing some error measure. For egaogahg an initial guess of
the phase functionf)(u,v), an estimate for the imagi(x,y) is produced, and compared
to the actual imagé(x,y). The initial estimate of the phase is modified iterativelydo
duce the difference between the corresponding image dstiamal the measured image.
Alternatively, in the Gerchberg-Saxton method [32], theneate of the complex field is
transformed back and forth through the Fourier domain. thefbmain, a projection op-
eration based on constraints imposed by the measurediigtehthe image is performed.

Resolving the ambiguity to the phase retrieval problem ireguadditional measurements.
Additional measurements not only collect more light (imsi@g the signal to noise ratio),
but can also measure slightly different aspects of the ®tase diversity is a concept sim-
ilar to diversity in wireless radio communications. The sgphase aberration is measured
through different “channels” to provide multiple viewptsron the same data.
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1.2.3 Phase diversity

In phase diversity [35, 48], extra measurements of the sajeetband phase aberrations
are taken to help condition the problem, and resolve amtigui In the simplest case,
controlled phase aberrations are added to a second lightgpateate a second image, such
as

hi(xy) = ﬁ{A(u,v)ej"’(“"’)Hz

|
ho(xy) = }ﬁ{A(u,v)e‘“"(”"’)*m(”"’))}‘2 (1.6)

The most popular form of phase diversity is the quadraticefrant Ag(u,v) O U 4 V2,
which corresponds to a defocus. This is usually chosendainibple implementation.

Figure 1.5 Adding a quadratic phase term using a defocus.

The extra defocused plane image directly helps to resoleeathbiguity in rotationally
symmetric solutions, and often also allows iterative atyons to converge faster. When
the phase to be estimated is small, an even simpler linelsation is possible [36].

Phase retrieval has been proposed for measuring opticaligniment in segmented tele-
scopes [70] and even in a real-time experimental adaptitiesopontrol system [52]. This
method has also been extended to wider fields of view [34].

The defocused phase diversity arrangement is actuallyasitoithe physical layout of the

curvature sensor, which will be examined in Chapter 7. H@meunlike the curvature

sensor, the defocus in the phase diversity arrangementab smaller, so that non-linear
diffraction effects dominate over geometric optics. Thersdefocus length also results in
the output signal having a higher sensitivity to the inpuagsh
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The optimal form for the diversity wavefront remains an ogemestion, and has been ex-
plored [57]. More generally, the extra measurements mayiffereht from the original
image in several ways. Other means of diversity can be addaimough using a different
part of the light spectrum, different imaging positionspgrtaking a sequence of images.

1.2.4 Conclusion

In conclusion, most image processing algorithms can rurhea off-the-shelf hardware,
but may take up too much time to be practical for real-time usecontrast, in an adap-
tive optics system, the feedback loop allows for higher Igams, potentially leading to
higher performance. For certain applications, spectpgrdor example, the output from
an adaptive optics system needs to be further processexibygtso post-processing tech-
niques have limited uses here.
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Chapter 2

Mathematical background

Linear algebra and the theory of linear systems are usedIyéawvoptical systems for
describing light propagation and image transformatione Tke of transforms in linear
systems theory also requires manipulation of complex nusabB&fe introduce the mathe-
matical notation used in this thesis, and examine some canynsed special functions
and their properties.

2.1 \ectors and matrices

Vectors, being 1D arrays of numbers, are represented withlbaer case letterg. The
n" element of the vector is represented with a subseipwith the first element indexed
starting from 1. Matrices can be viewed as extensions ofovecbeing composed of 2D
arrays of numbers. Matrices are represented with bold epperettert, with the element

at rowi and columnj beingMij. The trace (sum of diagonal elements), transpose, inverse,

and pseudo-inverse of the matNkare denoted byr {M}, MT, M~ andM ™ respectively.
Matrix multiplication is often used to describe a linear gier on sampled 1D signals
represented as vectors. The precise definition for the psewdrse of a matrix varies
depending on the application and is defined separately tr pablem.

In this thesis, we frequently encounter 2D signals in thenfaf images or projections.

Instead of using a separate notation for linear operatior&bsignals, we continue to use
2D matrix operators and 1D vectors. The 2D signal, represeas a matrix, is stacked
into a vector and multiplied with a matrix representing @anoperation on the image. A
matrix M of sizen by mis stacked into a vectarby

15
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Vi = Mi’j’ (2.1)

for i’ = mod(i,n) and |’ = ceil(i‘Tl), where the mod operation takes the remaindeir of
divided byn, and ceil rounds a fractional non-integer number upwards.

This reduces a 2D matrix to a 1D vector by rearranging theroobiof the matrix in order,
into a column vector. If applicable, the result of a lineae@ionN on the signav, v/ = Nv
can be unstacked into aby m' matrix by

Mij = Vi (-1

(2.2)

In linear operations, matrices are used as a compact notatidescribe weighted sums of
signal components. Using a matrix representation for alpmolallows results from linear
algebra theory to be used. From a practical point of view,yrtagh quality and tested
numerical recipes for matrices can be reused in simulations

2.2 Complex numbers

Complex numbers first arise as general solutions to quadpatynomials. A complex
numbera+ ib is sum of a real and imaginary component. The imaginary com@pbis
formed fromi, defined as/—1. Complex numbers, and functions of complex numbers are
frequently plotted on an Argand diagram as vectors witharggtilar coordinates, as shown
in Figure 2.1.

Imaginary, i
A

bl r

e

a Real

Figure 2.1 Argand diagram for the complex nhumber a+ib, represented as a vector, with
the real and imaginary components lying along the x and y axes. The magnitude is r and
the argument is 6.

Using this geometric representation, we can also repressrthplex number with its length
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and orientation, using a polar coordinate. The length ornitade of a complex number,
and its orientation, measured by its angle (argument) fluextaxis, is defined by

r=+va’+b?2 a=rcoso
6=tan*(®) b=rsin6

(2.3)

The polar and rectangular forms of a complex number is liriked

a+ib =rcosf +isind =re'® (2.4)

The magnitude and argument representation is commonlytogegresent the magnitude
and phase of a sinusoid, resulting in a complex field reptatien for electromagnetic
waves.

The conjugate of a complex numhee a+ib is defined to be —ib, and is represented by
C.

2.3 Special functions

Some special functions are frequently used throughouthésig¢, and are outlined here.
They frequently have discontinuities or infinities, and arere appropriately termed gen-
eralised functions or distributions.

2.3.1 Circ function

The circ function is a 2D circular symmetric function thauseful for describing the cir-

cular aperture of telescopes, lenses and other optical @oemps. Due to its circular sym-
metry, the circ function is also frequently parametriseidgis single variable, as is shown
here

A specific form of Equation 2.4+ 1 = 0, is said to form the most beautiful equation in the world,
since it relates many of the most important constants frammbjor branches of mathematics together.
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_ 1 forr<1
circ(r) = (2.5)
0 otherwise.

wherex? +y? =r2.

2.3.2 Rect function

The rect function can be used to describe rectangular apentoptical components. In two
dimensions, the rectangular function rfegtect(y) is separable into the products of two 1D
functions, and provide a convenient way to analyse systgmaducing the dimensionality
of the problem.

1 for—3<x<3
rect(x) = (2.6)
0 otherwise.

2.3.3 Step function

The Heaviside step function is used to describe a discattibatween two regions. This
can be seen in the analysis of the knife-edge test in the pginamvefront sensor.

1 forx>0
U(x) = (2.7)
0 forx<O

The related signum function is also commonly used for theespumpose.

-1 forx<O
sgnx)=¢ 0 whenx=0 (2.8)
1 forx>0

2.3.4 Tri function

The triangular function is also useful for describing certanctions like the optical transfer
function of square lenses.
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_ 1—|x for|x <1
tri(x) = (2.9)
0 everywhere else.

2.3.5 Sinc function

The sinc function arises in the analysis of the diffracti@at@rns of images, and gives a
convenient shorthand for dealing with the Fourier trans®of rectangular functions.

sin(7x)
TIX

singx) =

(2.10)

2.3.6 Bessel functions

The family of functions known as the Bessel functions argudently encountered in prob-
lems with rotational symmetry. The zeroth order Besseltionanay be variously defined
to be the solution to the differential equation

d?y dy
207 YUY e
X 32 +xdx+x y=0 (2.11)
or with its power series
¥ Xt x8

or as the solution to the integral

1 2

Jo(X) = — / cogxcosy) do (2.13)
21 .Jo

The last integral definition provides some intuition inte tmature of the Bessel function.
Using a coordinate transform mapping the rectangular é¢oatels(x,y) to the rotated co-
ordinates(u,v) = (xcos@ + ysing, —xsing + ycosg), Equation 2.13 can be defined only
along the x-axisy{= 0) as
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1 2n
Jo(X) = Jp(x,0) = ZT/O coqu) do (2.14)

This shows thaflp(X) is a sum of 2D cosinusoidal gratings over all orientatiossstaown
in Figure 2.2.

y SN\
S
%y 7 y=309
A L2
=

Figure 2.2 The zeroth-order Bessel function as a sum of 2D cosinusoidal waves (with the
u-axes shown) rotated over all directions ¢ in the 2D plane. A 1D slice of the rotationally
symmetric sum (a 2D function) is shown plotted.

More generally, other Bessel functions of the first kind, @fey a are solutions to

24y +xd—+(x2—a2)y:o (2.15)

with the power series representation

Ja(X) = éo [m! r((n;lr)(;n T ()_2(> 2m+0’} (2.16)

whererl (x) is the Gamma function.

2.3.7 Jinc function

The Jinc function is the rotationally symmetric analogugh®sinc function.
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Jing(x) = 31(22’0 (2.17)

The projection of the rotationally symmetric Jinc functisra sinc.

/_00 Jing /X2 +y?) dx= /00 Jind(r) dx= sinx) (2.18)

The first few zeros of the Jinc function are located at1.220, 2.233, 3.239 ... etc

Some useful properties of the Jinc function are shown here.

Jind(0) = IZT (2.19)
/m JIindx)? dx— % (2.20)
/OooxJinc(x)zdx: % (2.21)

Equation 2.21 is useful for finding the volume under the dady symmetric Jin¢x)?
function.

21 2n1
//Jlno(r )r dr do — / —de_— (2.22)

2.3.8 Chirp function

The chirp function describes a signal with a linearly insieg “instantaneous” frequency.
Here, it is generalised to a complex exponential with quadpase.

f(x) = g (2.23)

The 2D chirp function is a separable function form from thedurcts f (x) f (y). When
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fx = fy, the chirp function also possesses a circular symmetry.

f(x,y) = g’ gy’ — gar’ (2.24)

for r2 = x2 +y2.

The real quadratic exponential function or the Gaussiawtfan, is a special case of the
chirp function.

f(x)=e ™ (2.25)

This is the basic form for the normal distribution functicsed in statistics to describe many
naturally occurring statistical distributions.

2.3.9 Delta function

The delta function is a convenient mathematical shorthassdi to model sharp impulse
events very with short time-scales. In images, this can regeint-source object so small
that the signal is O everywhere except at a point, yet possesBnite integral nonetheless.

undefinede) forx=0
o(x) =
0 everywhere else.

and / Tsxdx = 1 (2.26)

The delta function possesses the sifting property thatvallas to decompose all functions
into an integral sum of delta functions. It also acts as atfanal that maps a function to a
scalar value, namely, the value of the function at the pwsitf the delta functior’.

F(x) = /Z F(¢)8(x— X)X 2.27)

for all functionsf (x).
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2.3.10 Comb function

The comb function (also known as the Shah function) is forfnah equally spaced delta
functions. It is used for representing the signal samplmgess.

comh(x) = i o(x—Kk) (2.28)

k=—o0

2.4 Linear systems

Many physical processes can be idealised as black boxesimadr properties, as shown in
Figure 2.3. For all combination of inpufgx) andg(x) to the black box, the output obeys
the following linear superposition principles

H{E(X) +9(¥)} =2 {T(X)} +2{9(0)} (2.29)

for constants andb, and wheres# { f (x) } represents the linear operatigff on the input
function f(x).

Noise

Signal l Output

N B e

Linear time/space
invariant system

Figure 2.3 A linear system. The output for any fixed input is identical across all time.
Scaling the input will also scale the output function identically.

A linear operation can be described by its response to anlgapaoput function or the
kernel. Inimages, the impulse is equivalent to a point-seurput, so the impulse response
is also known as the point-spread-function (PSF). Let theuise response of a system
be characterised hbiy(x;X), which represents the output due to an impulse input,air
o0(x—X). The linearity of the operation means that any outp(t) can be formed by the
summed impulse response to its indx), which can be decomposed into delta functions
using the sifting property.
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F(x) = 2{f(¥)}
_ %{/mf(x’)é(x—x’)dx}

—00

_ /_m F(X) {B(x—X)} dX
_ / " (X)h(xx) dX (2.30)

2.4.1 Linear shift invariant systems

In a special class of linear operations that are time or spp@egiant, the impulse response
is

h(x,X) = h(x—X), ¥X (2.31)

This shift invariance means that the output of the systenil &itrees or spatial positions is
the same, except for the shifted time or position.

f(x—xX) — F(x—X), for all functionsf (x) (2.32)

In such systems, Equation 2.30 reduces to an operation kaswanvolution.

[ee]

FX) = f)ohx) = [ f(X)h(x—x)dxX

F(xy) — f(x,y)@h(x,y):/ F,yY)h(x—X,y—y)dX dy  (2.33)

for either 1D -f(x), or 2D signalsf (x,y).
Several properties of linear shift invariant systems, egped using the convolution opera-

tor, are frequently used. They are the commutative, digikib, associative, shift-invariant,
differentiation and the delta function identity propestie
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Commutative
f(xX)©g(x) =g(x) ® f(x) (2.34)
Distributive
[af(x) +bg(x)] ®h(x) = a(f(x) ®h(x)) +b(g(x) ®h(x)) (2.35)
Associative

(f¥) ©9(x) ©h(x) = F(x) © (h(x) ©g(x)) = f(x) © h(x) ©g(x) (2.36)

Shift-invariance

F(X)=f(x) ©g(Xx) = F(x—X) = f(x—=X) ®g(X) (2.37)

Differentiation
(100a) = (£i0) e =100 (gaw) @3

Delta function
F(X) 0 3(x—=X) = f(x—X) (2.39)

Projection

[ xy)obxyldy = [ axy) dyobixy

= a(xy)® /_ o:o b(x,y) dy (2.40)

Generally, the convolution operation results in a smoothégut function. For images, this
means that all imaging operations degrade the resolutitimearansmitted image. In fact,
in the limit, repeated convolution with random point-sgrdanctions results in Gaussian
shaped images, a consequence quantified by the Central Ti@dtrem in statistics.
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Correlation

The correlation operation is mathematically similar to ¢bavolution operation. It is used
as a measure of the similarity (measured in the least-mgaars sense) between two func-
tions, and forms the basis for matched filter designs, whielat’ches” for a signal template
embedded within some signal. The displacemetitat maximises the correlation is the
position of the best match betweé(x) andg(x).

F(x) % g(x) :/_0; (X)X =) dX = f(x) ©g(—X) (2.41)

The correlation operation is thus similar to the convolutaperation, and is distributive
and shift invariant, but not commutative or associative e Effect of the differentiation
operator under correlation is

% (F(X) % g(X)) = —F (X) * (:—XQ(X)) (2.42)

2.4.2 Transforms

A special set of input functions to linear systems, knowrhassiystem eigenfunctions, have
the property that they remain unchanged after being optgten, only shifted in position
and scaled in amplitude. The eigenfunctions of linear sivtiriant systems are sinusoids.
A linear operation can be described in terms of the amplim# phase (position) shift
imparted to sinusoids. This alternative description ofsty&em is also known as the system
transfer functiorH (f), where

H{sin(2rtfx)} = |[H(f)|sin(2rrfx+argH(f)) (2.43)

Using convolution, the impulse response fully describegséesn. All input functions are
decomposed into individual impulse functions, and passexligh the system. The output
of the system is the combination of all the scaled and shiftgulilse responses.

Using the transfer function description, inputs to a linegstem are broken down into
sums of sinusoidal functions. The output from the systerhessum from the outputs of
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the individual input sinusoidal components, as describetthé transfer function.

Forf(x) = ZAisin(anix)

HA{TX)} = H { ZA; sin(2nfix)}

_ Z\H )| A sin(2rtfix+ argH ( ;) (2.44)

This example illustrates an alternative description addinsystems by transforming the in-
puts and outputs into a different domain, presenting difieviews of the same data. Linear
operators can also undergo transformations, and be ded@goperations on signals in the
alternative domain. The system transfer function is thé dihe convolution operation. It
is a powerful alternative for describing linear systemse @ecomposition of a signal into
sinusoidal waveforms is the basis of the Fourier transform.

2.4.3 Fourier transform

By decomposing a signal into its constituent frequencies Fourier transform converts a
time or spatial waveform into a function in frequency spddee Fourier transform is simi-
lar in action to the prism in a spectrograph, which breaksrdstar-light into its constituent
frequencies. The alternative representation providedbytransform is especially useful
for understanding periodic signals.

While there is no standard notation for describing the Fouriansform, the notation in
Goodman [38] is used in this thesis. For any well behavedtfong(x), which may be
complex valued, there exists a unique Fourier transform

G(fx) = 7 {90} = [ _gxe 2™ dx (2.45)
for spatial coordinates and frequency along theaxis fx.
The Fourier transform can be extended to higher dimensidrenwransforming functions

involving many variables or dimensions. They are separgideindividual components
along each (rectangular) axis. For example, the 2D Fouaestorm can be expressed as
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separate Fourier transforms along iendy axes.

G(fx,fy) = F{a(xy)}

_ /_ (/_ g(x7y)efi2rrfxx dX) efi2any dy

= / / g(x,y)e ZhoE ) gy dy (2.46)
with the corresponding frequency componefitsand fy.

The inverse Fourier transform recovers the original sidpath its Fourier transform

FHI {9} =7 {7 Haxy)}} =g(x) (2.47)

gxy) = Z HG(fx, fy)} = / / G(fx, )W) g dfy  (2.48)

for all continuous functiong(x, y).

The forward and inverse Fourier transforms are very simildfering only in the sign of
the exponential phase term. The forward Fourier transfaxmtbus be used instead of
the inverse Fourier transform for recovering an image. lticapsystems, this successive
Fourier transform of an image results in inversion of theppigated image.

ouv) = F{F (gt = [ [ Gl fe 2T dy dfy = g(—x )
(2.49)

Properties of the Fourier transform

By representing all signals as waves with frequency andgltlas Fourier transform is also
useful for describing interference effects that commomigus in the diffraction of light.

Various properties of the Fourier transform [38] are owttifbelow.
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Linearity
F{af(xy) +bg(x,y)} =aZ {f(xy)} +bF {g(xy)} (2.50)

The Fourier transform is a linear transform. The additiorrapor in the spatial domain
corresponds to the addition operator in the Fourier domain.

Scale

ForF(fx, fv) = Z{f(xy)}

fx f
7 {1axby)} = opF () 251)

Scaling the spatial coordinates results in an inverse sddke corresponding frequency.

Shift - Exponential phase

ForF(fx, fy) = Z {f(x,y)}

F {f(x—ay—b)} = F(fx, fy)e ' Zxatvb) (2.52)

A spatial shift in the spatial domain results in an exporamghase factor in the Fourier
domain.

Convolution and multiplication

F{txy)ogxy)}=F{f(xy)}F{gxy)} (2.53)

FLEx Y9y} =F{f(xy)}oF{dxy)} (2.54)

The correspondence between convolution and multiplinats hinted at the beginning of
the section, is an important one. Equation 2.53 providesd#seription for the system
transfer functionZ {g(x,y)} given the point-spread-functiatx, y).
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Correlation

The correlation operator is similar to a convolution, anzhifrEquation 2.53, can be ex-
pressed as

F {10y * g0y}t = F {fy) 09— —y) | = F(fx, /)G(Fx. ) (2.55)

The special case of auto-correlation reduces to

IF(fx, fy)|? = Z {f(x.y)* f(x,y)} (2.56)

The squared magnitude of the Fourier transform of a fundsalso known as the power
spectrum or the spectral density of the function. The powecsum is a real quantity
which shows the breakdown of the signal power within eactjueacy.

Rayleigh and Parseval’'s Theorem (Conservation of Energy)

In a new twist to Pythagoras’ theorem, the total energy ingaaliis preserved during
the Fourier transform. In physical situation$(x,y)|*> might represent the power den-
sity within a telescope aperture (integrated to give thaltpbwer or intensity), while
|F(fx, fY)|2 would represent the propagating power density spread @av@us directions.

// (x,y)|? dx dy— // (fx, fv)[2 dfx dfy (2.57)

Differentiation

{;'Xf( )} = i2mfxF (fx) (2.58)

Under differentiation, the Fourier transform of a functismultiplied by the frequency.
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Rotational symmetry in the Fourier transform

For the special case of rotationally symmetric functiom® Fourier transform exhibits
some surprising and useful properties. Consider a rotatipsymmetric signaf (x,y) that
only has a radial dependence,

f(xy) = f(VX+y2) = f(r) (2.59)

Due to the rotational symmetry of its Fourier transform, wepéoy a rectangular to polar
coordinates transform in the spatial and frequency dontladt,is, from(x,y) and( fx, fy)
to (r,0) and(p, @). The Fourier transform is

Fibot) = [ [ fixyje 2ot dxay
F(p,q)) _ /Ozn/ooof(r)ei2n(pcos<prcose+psin(prsin9)rdrde
_ /mrf(r)/zne‘iZ"prcos(¢‘9) de dr
0 0

- /Owrf (r /Ozncos(anrcos((p— 8)) —isin(2rpr cog@— 6)) d6 dr

F(p) — /OwZHrf(r)Jo(anp) dr (2.60)

using the identities

/Ozncos(ZHpr co@—0)) d6 = 2mJy(2mrp) (2.61)

from Equation 2.13, and

/Oznsin(ZHpr codp—0))de=0 (2.62)

due to the odd-symmetry of the sine function.
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Conveniently, the 2D Fourier transform can be reduced to &rdisform with the zeroth
order Bessel function of the first kind as a kernel. Known asHlankel transform or the
Fourier-Bessel transform, the rotationally symmetric f@utransform inherits some of
properties of the 2D Fourier transform (subject to the sytnyneonstraint). Defining the
Hankel transform as

A{E(1)} = F(p) :2n/0°°rf(r>Jo(2mp> dr (2.63)

we obtain the following properties.

f(r) F(p)=2{f(r)}

f(ar) 2F(8)
f(r)og(r) F(p)G(p)

r2f(r) —0°F(p)

Table 2.1 Properties of the Hankel Transform.

The Jinc function

In this thesis, the Fourier transform of dixcy) is often required. Being a circularly sym-
metric function, we can use the Hankel transform to simghfy problem.

FA{circ(x,y)} = s {rectr)}
_ o/ _ RA(27pR)
= 271/0 rJo(2rrp) dr = 5
= 4RAJin(2Rp) (2.64)

whereJ;(X) and Jin€x) are defined in Equation 2.16 and Equation 2.17, and the radius
R= 1. Here, we also used the identif§x'Jo(X) dX = xJ(X).

The result from Equation 2.64 actually corresponds to theaggn used to describe the
optical field in the imaging plane of a telescope with an uaredied, circularly symmetric
aperturé.

2The propagation of light can be described with a Fouriersimm. The optical properties of the Fourier
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Fourier transforms of common functions

The Fourier transforms of some commonly used functions baxee useful properties, and
merit some attention.

f(x) F(fx) = [, f(x)e 2T dx
0(X) 1
Rec(x) Sing fx)
U(x) P
1 Ge;jz o 2P0
coq2mfox) | 0.58(fx + fo) +0.55( fx — fo)
circ(y/*x2 1+ y2) 43ing VI

Table 2.2 Table of Fourier Transform pairs of commonly used functions.

Interestingly, the transform of the Gaussian function, & a Gaussian functién The
Gaussian function is simple to specify and intuitively siging as a blurring function in
images. Additionally Fourier analysis of images is helpgdbth the function and trans-
form being real. The Fourier Transform of a Gaussian can heatefrom the identity

/ e dx— \/Zg (2.65)

the Fourier transform of the functicmCX2 is

transform will be examined in Section 3.3.2.

3An easy way to account for the scale factors is to conside Gaussiafi0,0%}(x)} O
ul

1
Gaussiaf0, % (u) = ke (202) for u= 2mf (radians). The Fourier transform must equal Liat O (the
DC term), so the scale factd, for the exponential, must be 1.
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y{efcxz} _ /00 efcx2e7i2rrfx dx

—00

G I (Vo)

_ \f—"zfz 2.66
= Ee (2.66)

Signal representation and the Discrete Fourier Transform

The continuous function transforms are useful as a matheahatid in the analysis of
continuous signals. In practice, signals are frequentlgsueed or sampled at discrete times
and recorded or quantised as discrete values. For thisptitenaous Fourier transform is
re-framed as a discrete transform. We must first examinerthpgepties of discrete signals.

Sampling

In imaging applications, a square array of intensity detsctsuch as the CCD or CMOS
detector, records intensity falling on the detectors atil@gntervals. Each sample of the
signal is measured over the area covered by each detectonw&igient approximation for
sampled signals assumes that the original signal is sanmalied-wise by multiplication
with a regularly spaced array of delta functions. For a 1Dalgthis is

fs(x) = i f (x) (X — nAX)

N—=—o0

= f(x)comip(x) (2.67)

Thisis in fact a notational convenience, and representsplication of the more rigorous

representatiorig(nAx) = [ f(X)d(x— nAx) dx.

As an example, consider the class of all sinusoids samplateatals ofAx. Any signal can
be recovered from its samples exactly by fitting a sinusottiéssampled points. However,
multiple solutions are possible - fain(2rfx) sampled affs, there are an infinite number
of solutions of the form
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sin(2rrf'x)wheref’ = f £nfs (2.68)

for all integers.

In general, the effect of sampling on a signal’s spectrumbmafound (using the property
that the comb function is self-similar under the Fouriensfarm).

F{fs(¥)} = F{f(X)comhn(x)}
= F(fx) ©comhx,(fx) (2.69)

The convolution of the signal transform with the periodicagrof deltas is shown for a
band-limited signal in Figure 2.4. The sampling frequerscinversely proportional to the
spacing of the samplds = A—lx. Here, each “island” of spectra is an exact copy of the next,
and provides no additional information. At lower frequeas;ithe spectra of the sampled
signal may start to overlap, resulting in aliasing, whicterferes with interpretation of
the signal. Provided the sampling frequency is high enoagigod representation of the
original signal is recorded, and no information is lost.

A

Figure 2.4 The effect of sampling (with frequency Fs) on a band-limited signal. At lower
sampling frequencies, some parts of the signal spectra may overlap.

Nyquist sampling criterion

The sampling frequency required to sample a signal withiagiag depends on the signal
to be sampled. Rapidly changing signals need to be sampladigher rate compared
to slowly changing signals. From Equation 2.68 and Figude the lowest sampling fre-

guency, known as the Nyquist frequency, has to be two timehitfhest frequency present
in the signal.

Discrete Fourier Transform
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Having defined a representation for discrete signals, wededine the Discrete Fourier
Transform (DFT). The DFT of a signdln] = fs(nAx) with N total samples is given by

ANt N
FIK=2Z{fn}==Y f[ne 2™ (2.70)
N 2,
for integers O< k,n < N.

The equivalent matrix formulation, representing with wesF, = F[n] and f, = f[n], is

F=Mf (2.71)

i 2rmm

whereMym=¢e"'~

The basis vectors iM are orthogonal with respect to each other, and normalisedn Ehe
properties of orthogonal matrices [8], the inverse Fouransform matrixM 1 = M* =
MT =M, or

N—1 S
finj= Y Flke¥™m (2.72)
k=0

The signal representation in both the time and frequencyaitoim discrete and finite. Aside
from the discreteness of the signals, the properties of th€ (3ection 2.4.3) are similar
to the continuous Fourier Transform. However, the signa spectra are additionally
implicitly assumed to be periodic, S9n+ N| = f[n] andF [k+ N] = F[K]. In practice, this
periodicity assumption leads to discontinuities betwdwnlieginning and end of sampled

signals, as shown in Figure 2.5.
Figure 2.5 The assumption of periodicity leads to discontinuities in sampled signals.

This periodicity also affects the discrete convolutionrapien. To extend the convolution
operation to discrete signals, we require the discretealation operation to be
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2N-1
hin] = f[nj©g[n] Z f[n']gln—n'] (2.73)

for 0 < n < 2N, with g[n—n'] = 0 whenn—n’ < 0.

The indirect convolution operation, whefén] andg[n] are transformed into the frequency
domain, multiplied (Equation 2.53), and inverse transfedrback to the time domain again,
results in the circular convolution operation

hin| = f[nj©g[n| = Z f[n (2.74)

for 0 < n < N, and with wrap around (due to periodicitg)n — n'] = g[N +n—n'] when
n—n' <O0.

To obtain the more useful convolution defined in Equatior82tiie signalsf [n] andg[n]
should in general be zero-padded to double their origirmdssi The effect of “circular-
ity” from convolution in the Fourier domain is still preseriut the separation between
the periodic signals now removes any overlap when convglvirhis effect is the dual of
the aliasing problem when the repeated (periodic) sigrnedtsa of under-sampled signals
overlap. This requirement to zeropad signals also applieswmeasuring a signal’s spec-
tral density, since the squared magnitude requires migkifpdbn in the Fourier domain of a
signal with itself, and corresponds to a correlation openah the spatial domain.

In imaging application, for 2D images sampled over a squakaray, the 2D DFT is
separable into 2 1D transforms and is straight-forward topmate given the 1D DFT. Other
sampling strategies are also available in 2D, (for examgdéangular grids, or hexagonal
patterns) but are not considered in this thesis.

Fast Fourier Transform

For anN-point signal, the DFT is formed from a&tXN matrix multiplication, and requires
N2 operations. For signals sampled over a long time (I&fyehe computational costs of
the DFT become prohibitive. An optimisation, called thetfFramurier transform (FFT) [15]

is available for speeding up calculations of the discregaaispectrum. The FFT is strictly
a computational optimisation, and otherwise producesticiresults to the DFT. First,
the signal is split into two half-period components
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R 2kl ! 2 | i2mk ]
fnje™' "N = fne”'™Nn 4+ ¥ f[nje”'T™N
n;) n_z%

M—1 ik n M—1 ik (MM
— Z) flnje 2w + S fim+ M]e~2m2 ()
n— m=0
M_1 _iomk _ionk P
- Z}(f[p]—i—e 25 f[p+M] ) & 12 (2.75)
p:

The DFT of the N-point signal can now be decomposed into 2 @ETZ%-point signals.
For integer 0< k' < M and for everk = 2k

M-1

FIK =S (f[pl+ f[p+M])e 2™ (2.76)
p=0
whereas for odé = 2k’ + 1
M-1 i p i ! P
FI =Y ((flpl - flp+M))e2mh ) e2h (2.77)
p=0

This division of a problem in two smaller sub-problems aResteps results in an algorith-
mic complexity ofNlogN compared to thé? of the naive matrix multiplication method.
With the discovery of the FFT, Fourier analysis became aenient and practical tool that
found widespread use.

Aside from the complex exponential basis functions, otlailar basis functions like the
Hadamard basis functions and the discrete cosine fundtisesl in the jpeg image encod-
ing standard) may also be used for representing discretsftnans of signals. Other more
general transforms like the wavelet transform and the Gabosform are commonly used
in image processing, but have found no application in thesith

2.4.4 Zernike polynomials

Depending on the particular geometry of the functions bé&iagsformed, a different set of
bases functions may be used. The Zernike polynomials are @ §enctions defined on
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a circle of radius 1 [65]. Due to their rotational invariarexed circular support, they are
traditionally used for describing optical aberrations ptical instruments. More recently,
they are used to describe aberrations in the human eye, smthalse resulting from atmo-
spheric turbulence. Their use in digital watermarking oAges has also been suggested.

They are defined in polar coordinates as products of r&fial) (wherer is the radius) and
angular functions (sin and cos terms of the azimuthal a@yleThe Zernike polynomials
on the unit circle( < 1) are defined as

VN+IR(r) ifm=0,
Zi(r,0) = ¢ v/n+1RM(r)v2cosmé) if m+#£0, andiis even, (2.78)
VN+1RMN(r)y/2sin(m@) if m# 0, and i is odd,

where

n—m

R0 = 3 S @79

7 — i[5 -
for non-negative integral values of n and m, with< n andn— |m| being eveni represents

the mode ordering number for the polynomials, and follovesthmbering convention used
by Noll [65].

The lower order Zernike polynomials loosely correspondthtoclassical Seidel aberra-
tions for describing imperfect optical systems. These hmvs in Figure 2.6 with their
corresponding names.

Unlike the Seidel aberrations, the Zernike polynomialsrifa complete set of orthogonal
bases functions over the unit circle.

21 oo OVi#j
/ / Z:(r,6)Z;(r,0)A(r, 6) rdr d@ = (2.80)
o Jo 1Vi=]j
whereA(r, 6) is the aperture weighting functiori €, [, A(r, 8)dx dy= 1), beingA(r, 6) =
%Within the unit circle, and 0 everywhere else.
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Figure 2.6 The Zernike polynomials and their closest corresponding Seidel aberrations.

The property of orthogonality is convenient for treating thodes separately without hav-
ing to balance the aberration terms, as for the Seidel abmrsan classical optics. Since
they form a complete set, the Zernike polynomials can remtesny arbitrary phase func-
tion over a unit circle with a weighted sum

[ee]

o(r,0) = Ziaizi(r,e) (2.81)
i=
with a, the vectorised form of all coefficients, being sufficient to describe the phase.

The orthogonality of the Zernike polynomials conservesdhergy of the phase in the
weighted sum representation.

/O o /0 " (1, 0)2A(r, 6) rdr d6 = iiaﬁ (2.82)

The Zernike polynomials also possess the property of mtatiinvariance. As represented



2.4 Linear systems 41

using Equation 2.81, rotating any arbitrary function press the energy in the Zernike
modes at each radial order and azimuthal frequency. Equat&b shows that after rotat-
ing through any arbitrary anglgs, the energy present in each radial order and azimuthal
frequency remain constant.

If

[ee]

o(r,0) = ;aizi(r, 0) (2.83)

and

00

o(r,0+ ) = Z)ai’zi(r,e) (2.84)

then the coefficients are the “same”, in the sense that ping @ernike coefficients within
the same radial order contain the same amount of energy

; a? = ; a/? vn,m (2.85)
ie m ie ,m

whereS§, m refers to the set of all Zernike modes with radial ondand azimuthal frequency
m.

That is, for a fixech andm, RT(r)cogm(6 + ¢)), the sine and cosine terms are

RI(r) cogm(8 + )),and
Zs(r,0) = RI(r)sin(m(6+ y)) (2.86)

Their corresponding coefficients

a2+ a2 = const (2.87)

for any arbitrary rotationy, holdingn andm constant.
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For numerical simulations, discrete versions of the Zexpiéglynomials are required. How-
ever, unlike well-known transforms like the Discrete Feufiransform or the Discrete Co-
sine Transform, there are no discrete orthogonal basidingcto represent the Zernike
polynomials. We are therefore limited to a discrete appration of the Zernike polyno-

mials.

2.5 Probability and statistics

The field of optical imaging inherently deals with randomtistacal phenomena. From
the unknown light source, through the random transmissiediom, to the detection and
measurement of light, a statistical treatment is requiceduantify the randomness and
uncertainty of the whole system. We shall describe the abtimaging problem using a
probabilistic framework.

Probability

Probability is used to describe chance or random events. Thieery of Probability was
given a mathematical foundation in the mid-17th century twyespondences between the
mathematicians Blaise Pascal and Pierre Fermat. The ghtypablikelihood of an event

is measured using a real number ranging from 0 to describ@steat will not occur to

1 to describe events that are certain to occur. In additictmédaw governing mutually
exclusive events, these three axioms form the fundameasas fior probability

0<PA)<1
P(S)=1 = Sis certain to occur
P(A1 U Ap) = P(A1) + P(A2) for mutually exclusive eventd; andA, (2.88)

As an example, consider the probability of obtaining a ¢erfi@ce up when throwing a 6
sided die. If each face jsist as likelyas any other face to appear facing upwards when the
die is thrown, the probability of a successful throwkis

(2.89)
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This assigns a numerical value to events in terms of thejuigacy of appearance in the
long run. Itis intuitively satisfying, and also obeys thesizaaxioms of probability.

Another example involving discrete probabilities is theofdm count measurement in an
imaging process. The behaviour of photon arrival obeysddaistatistics, and this phe-
nomenon is particularly significant at low light levels. $hs an example of how prob-
abilistic frameworks are used for describing measuremaneainty, noise or random
signals. The probability of obtaining a photon courior a light detector is given by

e HuX
x!
whereu is the expected (average) photon count for the detector roegry experiments.
A Poisson distribution with a high mean value can be apprat@t using Gaussian white
noise for analysis purposes.

P(x) (2.90)

The probability distribution functions for these two diéat types of random phenomena
are shown in Figure 2.7.

P(X)

A

N

\

Figure 2.7 Two different types of probability distribution functions taking discrete values.

The concept of probability also extends to continuous e In this thesis, the wavefront
slope of atmospheric turbulence is assumed to take on ramdhlres over time, averaging
around 0. In fact, the probability distribution functiorr filne wavefront slope is Gaussian,
so the probability density of the wavefront slope beirig

1 2
p(x) = e 202 (2.91)

\/ 210

where the variance? quantifies the spread (width) of the distribution.
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The distribution function is plotted in Figure 2.8. When d@sing probabilities of con-
tinuous variables, the probability of any specific slopes a density value. Integrating
the density function over a range of values provides a nualeprobability value, so we
measure probabilities over a range of slopes instead. Tédesharea under the curve in
Figure 2.8 is the probability that an observed wavefront daa$ope that lies within the
shaded range.

X

Figure 2.8 The bell-shaped Gaussian or normal probability distribution function.

Moments of a distribution

Often, when describing a probability distribution functjonstead of providing the whole
probability distribution function in minute detail, we asaly interested in a few of the more
important features, like the general shape or position efdilstribution. The moments of
a distribution often provide a concise and mathematicatigvenient description of the
distribution. The first moment of a distribution is the meéthe distribution.

(X) = /_pr(x) dx (2.92)

where(X) is a shorthand for the expected value of the random variéble

The variance is described by the second moment of a distsibuthe higher moments are
given by

(XM = /Zx”p(x) dx (2.93)

To fully specify many distributions, only the lowest momgiare required. For example,
the Gaussian distribution is specified by its mean and vegigaind the Poisson distribution
is specified by its mean.

Characteristic functions and Fourier Transforms
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Another common transformation of the probability disttiba function is taking its char-
acteristic function,

o (v) = (%) (2.94)

This is the similar to the Fourier transform, and in fact,resgnts an alternative represen-
tation of the PDF in a different domain. The exponential (o tight hand side) is a sum
of all powers ofX, so the characteristic function is effectively a weightedsof all the
moments of the distribution.

The properties of the Fourier transform apply to the charastic function. For example,
the distribution of the sum of two random variabksndY is the convolution of their re-
spective distribution functions. The characteristic fumtis the product of their individual
characteristic functions.

O+ (V) = & (V) (V) (2.95)

As another example, knowing the Fourier transform of thegSeaun function, we can find
the characteristic function of a normal distribution. Gitke distribution

1 2
p(X) = \/ﬁae 202 (2.96)

and its Fourier transform (see Equation 2.66)

P(f) = e 270" (2.97)

the characteristic function of a Gaussian probabilityrthstion function is given by
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(€)= /_0:0 p(x)e dx

- r(1=-5)

202
= e "% (2.98)

This identity is also useful for expressing various quéassitike the Strehl ratio or the
telescope optical transfer function in terms of the phasetire function. These quantities
will be examined later in Section 4.1 and Chapter 4.

Distributions of multiple variables

When dealing with multiple random variables, the momenta pfobability distribution
can be extended to describe the interaction between vasiahbw do two variables change
together (does one increase while another decreases?mdsteised measure of the rela-
tionship between a pair of linear variables is their cotreta The correlation coefficient
between two variableX andY with joint distributionp(x,y) is given by

(X=X)(Y=Y)) _ (XY)—XY (2.99)
ox Oy Ox Oy

The numerator (X —X)(Y —Y)), known as the covariance, is an extension of the variance
measure of a single variable. These quantities are mulieaextensions of moments as
defined by

(XY) = /00 /00 Xyp(x,y) dx dy (2.100)

A correlation coefficient of 1 describes a linear increasglgtionship between two vari-
ables, while—1 describes a decreasing relationship. If the two variadlesndependent,
then their correlation coefficientis O (however, if two \edoies have a correlation coefficient
of 0, no conclusion on their independence may be drawn).

The joint probability distribution function of independerariables is the product of their
individual (marginal) probability distribution functi@n The multivariate Gaussian distri-
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bution is useful for illustrating the case when variableymat be independent.

Multivariate Gaussian distributions

A direct extension of Equation 2.91 to problems involvingltiple independent and iden-
tically distributed Gaussian variables is given in EQuao101.

pX) = ——— ce 22X (2.101)

Here,p(X) is a single-valued probability distribution function, whiis dependent on many
input variables, here represented as a vextdris a product of the marginal distributions
of all the individual variables. In general, these varight@ight not be independent, nor
would they be identically described by the same mean anémwegi In such cases, the
more general expression for a multi-variate Gaussianiloigion is

1 _
P(X) = ——=——e X' C X (2.102)
(2mM|C|
whereC = (xx"), and|C]| is its determinant. Without loss of generality, we have also

assumed that the mean of all variables are 0.

The covariance matri€ describes the correlation between the variables, and cdiabe-
nalised with a singular value decomposition. This corresisdo a coordinate transforma-
tion of thex vector, so the new coordinate axes now represent indepevaiéables.

2.5.1 Random signals and random processes

A random signal is sequence of random variables over timpawes A random or stochas-
tic process describes a set of (or an ensemble of) space/engeng signals. Random
processes are random in the sense that repeated expenmilégige rise to different out-
comes - a signal taking on random temporal or spatial valdgsobability distribution is
defined to describe the chance of observing any function frensample space.

The theory of random processes can be used to model the watafrerrations caused by
the atmosphere. In the absence of any prior knowledge abew@tinosphere, the pressure,
temperature and humidity in the atmosphere can be modetledrandom function that
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Figure 2.9 The values taken by these random functions at times t; and t, are described
by random variables. Just like random variables, we can examined their statistics and
correlation with each other over time.

changes over space and time. The resulting optical ab@msaire the result of combining
many random processes. As long as the underlying randonegses have finite variance,
the final statistical behaviour of their sum obeys the Gausdistribution. However, in
adaptive optics, the variance of the phase piston term ddnsatmospheric turbulence has
an infinite variance. Fortunately, the piston term is not sneable and is usually removed
during calculations, so the phase statistics can be mabedimg Gaussian distributions.

Stationary and non-stationary signals

A random signal may have signal statistics that remain emstiver time. This is referred
to as strict sense stationarity. The mean and variance afigmal value at all times is
a constant. A looser restriction, that the signal has a enhshean, and auto-correlation
that is dependent only on the time/position differenceegius the larger set of wide sense
stationary processes.

The covariance function of the signal is defined to be

B(L,t) = ((f(t) — (F)(F(t+t) () (2.103)
where(f) is the mean signal value (time independent).
For stationary signals, there is hdependence, and for wide sense stationary signals, only

at’ dependenceB(t,t’) = B(t'). The signal variance at tintecorresponds t8(t,0). When
the mean(f) is 0, we have the auto-correlation functiB(t,t’) = (f(t) f(t+t')).

The statistics of atmospheric turbulence change wildly teuge distances or time scales,
but are approximately stationary over smaller distancegiare scales. It can be described
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using the model of wide sense stationary signals.

Structure function

The covariance function is undefined for some functions. éample, there is no mean-
ingful absolute value for the aberration phase functionictvimay be infinite depending
on the optical model used. The atmospheric phase struatnoién, which uses a relative
phase difference, is substituted instead. It is defined as

Dy(X) = ((@(X) — p(x+X))?) (2.104)

This phase structure function is frequently used as a ptddehfor the mathematical ma-
nipulation of the phase covariance function using

Dy(X') = 2By (0) — 2By(X) (2.105)

Power spectra of random signals

As shown in Equation 2.56, the power spectral density of atfan is given by the Fourier
transform of its auto-correlation function. More genefdibr wide sense stationary random
processes, which may not be square integrable (undefinedeFduansform), the same
relationship exists. This is known as the Wiener-Khintetwn the Khintchine-Kolmogorov
theorem. We can use this to analyse of the power spectra osatmeric turbulence, which
is a random process with fractal-like properties.

Power densities of fractals

Using the Wiener-Khintchine theorem, random fractals caveha defined power spectra.
The self-similarity or scaling of fractals means that thsgiectra must possess certain prop-
erties. Consider a random fractal procéss) which is self-similar toﬂlq f(rx) when scaled
by r, with (0 < H < 1) being the fractal Hurst dimension, which is a measure efstif-
similarity of fractals [71]. The power spectral densityofin its Fourier transform) is also
self-similar under scaling. Defining
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F(fx) = F{f(¥}
ﬁ{g(x)}:y{r%f(rx)} _ r%F (3> (2.106)

r

Being the same fractal, their power spectra (with appro@n@atching of scale) are equal

1
FR(fx) = Pr(fx)
1 fi \ |2
M or2 F(Tx) = |F(fx)f?

1 fx
mpf (T) = Pi(fx)

(2.107)

The power law obeyed bis (fx) O (fx) solves tok = —(2H 4 1). It is interesting to
compare this to the Kolmogorov power law (to be explained ia@er 4) which exhibits
k= —2 so its Hurst dimension isl = 3.

2.5.2 Bayesian estimation
Conditional probability

The conditional probability of an event A given that anotéeent B has occurred is denoted
by P(A|B). For example, when throwing two dice, thepriori probability of obtaining a
sumof4 isliz. However, if we know that one of the dice has landed with a bhfaap, then
the probability of obtaining a sum of 4, that is, of obtainag on the second dice, becomes
%. Had we obtained a 5 on one die, we would have been able to aayetiardless of the
outcome of the second dice, the probability of obtaining @ i 4 is 0 (not possible).
Knowledge of the outcome of one event sometimes allows usalkerbetter estimates of
the probability of a second related event.

The relationship between the conditional probability amidtjprobability of two events are
given by
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P(AB) =

(2.108)

In our previous example, &k represents the event “obtaining a sum of B1,the event
“obtaining 2 on the first die”, anB, the event “obtaining a 5 on the second die”.

P(ANB P(X)P(B L1
P(A|By) = (p(gl)l> - (PSBE) Y- ? G (2.109)

where X refers to the event “obtaining a 2 on the second digh tlie outcome of the first
and the second die being independent events. SimiR{yN B,) = 0, SOP(A|B,) = 0.

Reversed conditional probability

Reversing the example, if we are given A (sum of dice = 4), apelddnto determine the
probabilities of each outcome on the second die (X) withoytgior knowledge of B (the
outcome of the first die), we will need

P(XNA) P(X)P(B=A—X)

PR = e ST A
1.1
-6 forx=1,2,3
= 2 (2.110)
0 forx=4,5,6

Often, the “reversed” conditional probability of Equati®ril10 is easier to derive from the
“forward” conditional probabilityP(A|X) using

P(XNA) _ P(XNA) P(X) _ P(AIX)P(X)

PXIA="5m = TP PA) - P

(2.111)

Extended to continuous random functions, this forms theshbias Bayesian estimation
using noisy measurements.
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Maximum likelihood and Maximum A Posteriori estimation

Bayesian estimation is used for estimation from noisy mesmsants by taking into account
noise statistics. A common example in this thesis is thealipeoblem

d=Ha+n (2.112)

wherea is some quantity (to be estimated) producing a noisy sigrthrough the linear

procesH. The noise statistics is known in advance, and frequenfiyesent either white
n.2

: ~ 202 . . 1 :
noiseP(n;) = \/%On_ e 2% or photon noise, in which cag¥d;) = & d'i{“" , for the Poisson

mean and variance being the expected value df andd; = (Ha);.

The estimate forr is denoted byar, and under maximum likelihood estimation, is found
by maximising the likelihood

InP(ald) = InP(d|a) +InP(a) — InP(d) (2.113)

The reversed form of the conditional probability is oftesieato derive from the statistics
of the noise. For uncorrelated white noise

InPd|@) = InP(n=d-Ha)
2
1 o
= In|Nj———=e >
I\/27T0ni
o 1w
- V2mo, 20j
(di — (H&))?
— .Z 207 (2.114)

Thea priori likelihood function InP(a) describes our prior estimate for the likelihood of
the quantities to be estimated. Frequently, no prior astompf the likelihood of any
particular solution is made (uniform distribution). Thigreesponds to the maximum like-
lihood solution, where only the first term of Equation 2.148,shown in Equation 2.114,
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is used. The priori likelihood of & is independent ofr and can be ignored.
The third term of Equation 2.113 is always ignored, as it kmdependence od.

For the specific case of random Gaussian noise, Gaussias, @ vector valued quanti-
ties ofN measurements, the prior distribution is (refer Equatidi®92)

Pla)= T+ g dacela (2.115)
(2mN|Cal
the noise is
1 1Tl
P(N)= ————e 2" C" (2.116)
(2mN|Cn
and the solution is
a=H'C'H+chHH'C,1d (2.117)

The inverse is more conveniently represefiteith fewer matrix inversions [56] as

(HTC,'H+C,Y) HTC 1 =CoqHT (HC,HT +C,) 1 (2.118)

The maximum likelihood solution is a special case, wh&ges ignored because it has no
effect on the solution. When the noise covariance is thetiyjematrix (independent and
identically distributed across all measurements), thetsmoi is

G=HH)H'd (2.119)

This corresponds to the least squares error minimisatioioi@m. Using a Bayesian frame-
work, we see that the intuitive notion of least squares d#iadiis based on several as-

4Although this equivalence identity requires great revetato infer, its proof, with hindsight, is simple.
Pre-multiplying b)HTC;lH +C;1 and post-multiplying bfHCyHT +Cp, on both sides result in equivalence.
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sumptions (prior information, noise model) that are othsewmplicit. Aside from image
processing, the Bayesian reasoning technique is also msedgide range of statistics based
problems like belief and inference systems, control themmg modelling. It is an intuitive
yet formal and practical tool for reasoning with randomra@ssncertainty.

2.5.3 Information Theory

In 1948, Claude Shannon [90] proposed a quantity that hesiggentropy for measuring the
“rate” of information production. A random source of infaation is assumed to produce
N discrete symbols with probabilitigg for 1 < i < N. The entropy measuré], of this
source has to satisfy three conditions.

1. H is continuous inp;,
2. When allp;’s are identicalH increases monotonically with increasiNg

3. If the information source is combined from multiple sag§, then the total entropy
is a weighted sum of the individual entropies of the inforimasources. The weights are
proportional to the probability of obtaining each subsetyohbolsH = ¥ P(S)H;.

Shannon showed that the only valid formula fbris proportional toy pjIn p;. However,
entropy is not the only possible formulation for measurinfpimation. In the field of
statistical estimation, another quantity known as the étigtformation [30, 51] is used to
measure the information content of continuous randomibigtons.

Fisher information

To understand the Fisher information of a random distrdsytive begin with the parameter
estimation problem. We are often interested in the meammnee or some other parameter
characterising a probability distribution.

For a probability distributionpg (X) or equivalentlyp(x|6) parametrised by an unknovéh
an estimatd(x) is obtained by observing the outcomedrawn from the distribution. This
estimate can be considered to be a random variable. Its nmekwvaaance are given by

(80 = [ 8x)p(x) cx (2120)
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and

var{6(x)} = ((6(x) — 8)?) (2.121)

Estimators with low variances are generally better thasahwith higher variances. When
the estimator is an unbiased estima(cﬁ}(x)> = 6. The minimum variance unbiased esti-
mator, or MVU, is frequently used as an optimality criteriarstatistical estimation. The

minimum lower bound on the variance of unbiased estimatogé/en by the Cramer-Rao

lower bound (CRLB). Using the Cauchy-Schwarz inequality,

(-0 = (-0 {[gmace]
<é%ln p(x‘9)> ~° <%'” p<X\9)> < var{6}J

var{6} > =7 (2122

wherel is the Fisher informatich Two equivalent forms fod are

J= < {% In p(x|9)} 2> =— <;—922 In f(x\9)> (2.123)

The Fisher information is a measure of the “spread” of théabdlity distribution function.
The larger the spread in the distribution function, the mamgable the outcomes of the
random process, and subsequently, the higher the varidnte @stimator. The Fisher
information can also be interpreted as a measure of how nmfichmation is obtained from
each observation of a random event.

In general, there is no known mechanical procedure for ohgriminimum variance unbi-
ased estimators. However, in linear processes, an effiegtimator (one that achieves the

5The CRLB only applies to unbiased estimators. Biased estirmaan potentially achieve lower estimator
variances.
_ 6_5: %In p(_x|6) is also known as the score function and is similar in form taapy and the log-
likelihood function.
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CRLB) is often straight-forward to derive. For some probéeman efficient estimator may
not exist so the minimum variance unbiased estimator doesainieve the CRLB.

Multiple parameter estimation

The Cramer-Rao Lower Bound for estimators with multiplecfee) parameter@ is similar
to the scalar case

3= (s(6,X)s"(8,X)) =—<% (%Inf(x|0))> (2.124)
or
~_/dInp(x|8)dinp(x|@)\  /9*Inp(x6)
Jlj—< 6 76, >——<T09]> (2.125)

The variance of theth parameter is given by

var{8i} > (37), (2.126)



Chapter 3

Optics

Today, optical systems like telescopes, microscopes aatregraphs are commonly used
for scientific observations and measurements. Their inverdgrose from the needs of
astronomical observations, and experiments by Galileaytdle Huygens, Hooke, and
others on the nature of colour and light in théMi® 17" century.

From everyday experience, it is obvious that light raysedfan straight lines, and upon
meeting an obstruction, will cast a shadow. The path of thighé rays can be modified
by shaped and optically active materials like mirrors,pgsand lenses, to form telescopes
and microscopes.

However, light had also been observed to possess wave+ldgegies. Hooke had sug-
gested a wave theory of light as early as 1665, while Huygeb$ighed a description on
the propagation of wavefronts in 1678. In 1803, Young predidonclusive evidence of
interference in light, demonstrating in sunlight, with ‘igpsof card”, the light and dark
fringes resulting from light cancellation.

In this section, we introduce the theory of light and provsienme examples of optical
systems and their usage.

3.1 Geometric optics

The theory of geometric optics assumes that light traveks straight line. Light travels
from a light source in a straight line, and stops when abgbhbyeany object in their path,

57
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leaving dark regions of shadows behind the object. The timeof the light rays can be
changed using mirrors, lenses, and prisms.

Figure 3.1 Reflection of a light ray along the plane of propagation (plane of incidence).

Figure 3.1 shows a light ray reflecting off a mirror at the saangler as the incident

anglei. The incident and reflected angles are usually defined wighe to the mirror

normal, which is the dotted line perpendicular to the migsunface at the point of reflection.
The angle of reflection rule also applies to curved mirrorffages, where the normal is
perpendicular to the mirror surface.

X

Figure 3.2 Light from a distant object reflecting off a curved mirror surface. The mirror
curvature (and the corresponding shorter focal distance) is shown exaggerated here for

illustration.

This is shown in Figure 3.2, where a spherical mirror focysallel light rays from a dis-
tant object onto a point (the focus) at the optical axis. Favirmor with radius of curvature
R, the height of the mirror surfadgx) and its slopé(x) are

h(x) = R—VRE—x2

tan@ = hy(X) = X

where 8 is the angle (in radians) between the mirror normal to thezbatal (and light
ray).
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In optical systems analysis, the paraxial approximatiomdy tracing is commonly used.
It assumes light rays that are close to the optical axes ¢fmawt the optical system and
small light ray angles. The small ray angles can then be appated to first order by

sin@~ 6
cosf ~ 1
X

tanf ~ 0 ~ R (3.2)

where@ is the ray angle (in radians) with the paraxial axis.

Every ray intersects the optical axis at

f = h(x) +xtan(20) ~ h(x) +

Py
N0

X NV
5 ~

2tang = ") 3:3)

By concentrating diffused light rays onto a single poing $pherical mirror forms an image
of the distant object at the focus. In practice, image detsateed to be placed out of the
way of the incoming light, so additional reflectors are usecktirect the light.

An alternative to imaging using reflection from mirrors, ésuse refraction through trans-
parent materials. Refraction occurs when light passes fvam medium into another
medium, changing its speed, and direction.

n, n,

Figure 3.3 Refraction of a light ray at the boundary of two transparent materials.

Here, the incident and refracted angles are defined witteot$p the normal at the bound-
ary between the two media. Figure 3.3 shows a light ray cimaritg direction after entering
the second medium. The change in direction is given by Sriall,
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sinfy  sinG;
Vi
nisinf; = npsinB (3.4)

wheren;, the refractive index for a medium, is defined togp,ethe ratio between the speed
of light in vacuum to the speed of light in medium

A related property of refraction is dispersion, which résditom wavelength-dependence
in the refractive index. Light from different wavelengthsoolours is refracted by different

amounts, separating the components of light. This crehtesdlours in rainbows, and is

used in prisms for spectrography.

Refraction in lenses

Similar to mirrors, lenses are used to create an invertegealeéd image of distant objects
using refraction. Unlike mirrors, lenses transmit lighd,tee optical axis is not folded or

mirrored, allowing images to be formed along the opticabaxithout obscuration of the

aperture from other optical elements.

Figure 3.4 Imaging an object at o with a lens of focal length f. The real image i is rotated
and scaled by the imaging operation.

Figure 3.4 shows the transmissive lens imaging an objecistdrateo (in contrast, Fig-
ure 3.2 is equivalent to imaging an object at infinity). Thetainces of the object and image
from the lens are determined by the thin lens approximatguagon. Aside from sign
changes, this equation applies identically to the optioalysis of both reflective mirrors
and transmissive lenses.

11
=T+5 (3.5)

The image magnificatioM = h% is a function of the object distance and lens focal length
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M= % The ratio of the focal length to the lens diameter (not shmithe figure), is also
known as the F-number or the F-ratio.

F=3 (3.6)

The F-number is a measure of the effect of the optical systefight. Larger F-numbers
indicate that light is bent more passing through the systemd,as a rule of thumb, suffers
from more aberrations. Aberrations in optical systems &e eaused by imperfections
in the lens shape, lens surface, and off-axis imaging, aegpkined more in subsequent
sections.

3.1.1 Optical path length

The speed of light in any media is slower than speed of lighvaicuum, so the refractive
index is always greater than 1. Because light can travelfigreint speeds across different
media, it is convenient to measure the path length traveliedn equivalent distance in
vacuum. The optical path length through a medium is the sastente travelled in vacuum
in the same time period. Figure 3.5 shows 3 different medila eifferent refractive indices.

Figure 3.5 The light path length for 3 different transparent media compared to the path
length of light in a vacuum.

The total time taken by light to travel through all three lesyare given by (% + \O,'—g + \O,'—Z) ,

or Zi3:1 nidi. In general the optical path length for any media is foundriiggdrating the
refractive index along the light path

L
/ n(h)dl (3.7)
0

starting from 0 and ending &t
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The optical path length is the uniform measure of distancdigbt in different types of
media. The laws of reflection and refraction can be derivethfthe principle of least
action, or in optics, the principle of shortest optical pa&iven a set of paths between two
points, that path taken by the light ray is the path that takedeast amount of time (has
the shortest optical path). Figure 3.6 illustrates theqipile for a straight path, a reflected
path (off the mirror), and on the right, a refracted path tigtlotwo different media.

Y

Figure 3.6 The path between two points “chosen” by a beam of light is the one with the
shortest total optical path length.

3.1.2 Wavefront

Figure 3.7 Propagation of wavefront along the z-axis.

The propagation of light rays away from an object can alsodsebed using light wave-
fronts. The wavefront is a surface of constant optical patigih from a common source.
At any point, the direction of wavefront propagation is pErgicular to the wavefront slope
at that point, as shown in Figure 3.7. Here, an analogy canrdemndwith surface water
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waves, where the direction of wave travel corresponds tu figys, and ripples correspond
to wavefronts.

At any point(x,z) within the propagation region, the phase of the complex figlxl z)
can be found from the wavefronfy(x,z) = kW(x,z). This wavefront function represents
the optical path length (in distance units) from the O plane. The relative advance or
retardation of the different light rays across the planeroppgation is found from their
wavefront differences.

Given a wavefroniV(x, z) propagating in the z-direction, the Wavefront Transpord&pn
is found from

W(X+AX,z+A02) = W(X,2) + VA2 + AZ

2

Wy(x,2) = 1—%\/\&(x,z)2 (3.8)

whereW,(x,z) andW(x,z) = %Z‘ < 1 are the wavefront derivatives along the z and x-axes.

The first term of Equation 3.8 is due to the increasing oppedh length as the wavefront
travels, and doesn’t affect the direction that light traval Changes in direction are caused
by the second wavefront slope term. The effects of diffoactin the transport equation are
given in Section 3.4,

Using the concept of wavefronts, the effects of reflectioth i@fraction, in changing the di-
rection of light, can be described as modifications to theefrawnt. Active optical surfaces
modify the direction of light rays, so the equivalent chanmtgethe wavefront, as shown in
Figure 3.8, can be inferred.

Similar to Equation 3.1, the presence of a quadratic terrhentavefront corresponds to a
focusing action. Imperfections in optical systems resutteviations in the wavefront from
the quadratic shape. These imperfections, known as optiiEatations, cause blurring in
images. Aberrations cannot be avoided completely, butitfitggood design, can be min-
imised. The analysis of optical systems involves the adjast of the shapes and positions
of lenses to optimise for the conflicting requirements foaga position and magnifica-
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Figure 3.8 Effect of optical lenses on the wavefront.

tion, width of the field of view, aperture size (brightness)d minimisation of aberrations
(image blurring).
3.2 Optical analysis

It is conventional to use right-handed coordinate axes in@ital system and shown in
Figure 3.9. The wavefront shown in Figure 3.9 also has a hegatrvature.

Figure 3.9 The right-handed Cartesian coordinates conventionally used in optical analysis.
Light is shown travelling from the left to the right along the optical (z) axis.

3.2.1 Geometric optics

The ray-tracing equations of Equation 3.9 and Equation B3Duse geometric optics to
describe light rays. They always travel in a direction patpeular to the local wavefront
slope.

X (x,y) = X+ 2W(x,Y,0) (3.9)
Y (Xy) =y+2W(xy,0) (3.10)
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where (X,y,z) represents the location of the ray within the x-y plane aranfthe ray
starting at(x,y, 0).

The intensity at any point in the propagation path is givernhgylight ray density through
that point. Figure 3.10 shows the propagation of a wavefvattt a uniform negative
curvature (constaiiy = —2a, W,y = —2b). The intensity along the optical axis is inversely
related to the cross-sectional area (shown in rectangféledight beam. Relative to the
intensity before propagatioh(z= 0),

1(2)A(Z) = I(0)A(0) = IDyDy
IDDy
dx(z)dy(2)
|

- 1+ 2(Whex +Wy) +ZZV\&X\M/y (3.11)

whereA(z) is the cross-sectional area of the propagating beam, witlersionsiy(z) and
dy(z) (Dx = dx(0), Dy = dy(0)) as shown in Figure 3.10.

N .

] -
’ d,2) = DJZ=D,(142W, )

X

(z) = Dyff-Z:Dy(1+ZWyy)
y

Figure 3.10 Changes in intensity over distance due to a wavefront curvature. The pres-
ence of a negative curvature (a> 0, and b > 0) focuses incoming light rays, resulting in a
brightening in the intensity.

Since the intensity is determined by the local wavefronvature, we can estimate the
wavefront curvature from changes in the intensity afteppgating the wavefront. In fact,
this method forms the basis for the curvature wavefront@erne be explained in later
sections.

In the general case, for wavefronts with different curvetaxis orientations, the intensity
is given by Equation 3.12.
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B 1(X,Y,2)
(XY, z+42) = 1+ H(x,Y,2)Az+K(x,Y,2)AZ? (3.12)

for H(x,y,z) = O2W(X,Y, 2) = Wkx(X, Y, 2) +Wy(X, Y, 2), the Laplacian or the mean curvature
of the wavefront and (X, Y, z) = Wix(X, Y, 2)Wy(X, Y, 2) — Wky(X, Y, 2)?, the Gaussian curva-
ture of the wavefront. The mean and Gaussian curvaturesséireed as the mean (up to a
scale factor) and product of the principal curvatuigg andW,, for u andv lying along the
axes of the principal curvatures.

3.2.2 Seidel aberrations

Traditionally, optical aberrations are classified acaagdio their polynomial expansion.
The classical Seidel aberrations are third order appraxms to wavefronts, with five
known aberrations, namely spherical, coma, astigmatismature of field, and distortion.
The wavefront shape and corresponding effect on image isrsho Figure 3.11 as ray-
intercept diagrams, another tool commonly used to deseableerations.

3.3 Diffraction

Under geometric optics, a perfect lens would focus lightfidistant point sources down to
a point. This image is infinitesimally small, and infinitelgight. Clearly, this is impossible,
and shows that geometric optics is merely an approximatiofact, there is a lower limit
to the size of the point source image, determined by difivactffects. Diffraction refers
to the behaviour of light not predicted by geometric optics.

For a full description of light, we begin with the foundatifam electromagnetism, Maxwell’'s
Equations. These four equations unify electric and magfiietd theory.

JH
DxE——uW
JE
DXH—SE
O.-eE=0

O-uH =0 (3.13)
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(@) Rays with different heightéh) Rays from different sides come
come to focus at varying dige focus at different distances(coma)
tance(spherical)

-

(c) Position dependent deformatiat) Curved imaging
of a grid-line image.(distortion)  plane.(field/Petzval curvature)

,,,,,,,,,,, PR

(e) Rays at different orientations
come to focus at different focal dis-
tances.(astigmatism)

Figure 3.11 The Seidel aberrations.
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whereE andH are the electric and magnetic field vectors respectivelygaand u are the
medium permittivity and permeability respectively (in vam, they are denoted tgy and
o). The permittivity and permeability of free space (vacuuisrinked to the speed of light

in a vacuum by = \/ﬁ

For a linear, isotropic, homogeneous and non-dispersiopgmation mediumkE andH
have identical forms.

2
O°E 2 dtz_o
2 32
2 n< 0<H

wheren = \/SEO is the refractive index.

Both E andH are symmetrical in all vector components, so only a singédasequation
suffices for expressing all components.

n? 9%u

DoUu—— = =
c? Jt?

0 (3.15)
whereu may be any o€y, Ey, E;, Hy, Hy, orH..

Although this breaks down when the medium is inhomogeneamuanisotropic (for ex-
ample, boundary conditions imposed by obstructions), th&s diffraction approximation
remains useful and accurate when the diffracting strustare large, and diffraction angles
are kept small.

3.3.1 Scalar diffraction theory

The scalar field of Equation 3.15 is a space and time varyiaujy

u(x,y;z,t) = A(x,y,z)cog 2mft + p(x,y, 2)) (3.16)

wheref, A andg are the wave frequency, amplitude and phase respectively.
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It can be also be represented in a phasor or complex form.

U(x,Y,2) = A(x, Y, 2)e ?*¥2 (3.17)

SOU(X7 Y, Z7t) =U (X7 Y Z)e_iznft'

Using the phasor representation, Equation 3.15 becomésaineholtz equation [38],

0%U +k?U =0 (3.18)

for k= 27, where the wavelength = ;5.

Using Green’s Theorem from calculus, and the Green’s fan€s(r) = ﬁ,

lations for the diffraction equation have been proposed.

// UD2G - GO | dv= //[U——G }d (3.19)

for a volume V and surface S, Wheg’ﬁ is a partial derivative on the surface in the normal
outward direction.

a few formu-

When bothJ andG obey the Helmholtz equation,

// {U— —G } ds= const (3.20)

taking the limit in the volume around the point of interéstn, z) allows us to find the field
there in terms of the field specified by an enclosing surfabés i€ the integral theorem of
Helmholtz and Kirchhoff.

4nU(£,1,2) // {U——Gau}d —// [U——G }d (3.21)

for S being the surface enclosing the po{dt n,z), andS being the surface containing
some input field.

The Rayleigh-Sommerfeld diffraction equations are dekivem different choices for Green’s
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function in the integral. The first and second Rayleigh-Samriatd solutions are

U(&,n) =0 / / (X,Y) —cos@ dx dy (3.22)

V() =5 [ [ Y ékr dx dy (3.23)

The Rayleigh-Sommerfeld diffraction formula is given by

UEn2=[ [ Uy0nxyE.n) dxdy (324)

The first Rayleigh-Sommerfeld solution will be used in albsequent calculations due to
its simplicity.

3.3.2 Fourier optics

A few convenient approximations can be used in the typicattape diffraction problem.
The imaging distance is usually much larger than the diffingcaperturez > x andz>>y.
The large distance allows us to approximatey [38, 68]

r = 282+ (y-n)?
2 2
- (59 (50)
z z
1/x—&\% 1 y—¢& 2
Z<1+§<T) +§<T (3.25)
Using this first order approximation for r, and assuming thatdiffraction angle of inter-

ested is very small as is usually the case,&esl, the Rayleigh-Sommerfeld kernel can
be reduced to

Q
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ey .n) = e cos
1 (e () ()
iAz

ikz .
— ie}l\_zelzﬁz((x—f)er(Y—n)z) (3.26)

Q

leading to the Fresnel approximation

kz
U,n,2 = |Az// (%,y,0)8 % ((x ~1°) dx dy
(3.27)

Equation 3.27 is also known as the near field equation. Inahd&dld, whenz is much
larger, we can further approximaeb%(xzﬂz) by 1. This leads to the Fraunhofer diffraction
eqguation, which has the same form as a Fourier transform!

U,n,z = I)\z X (2412 / / (x,Y,0) elzzxﬂ’ze Asz+y’7)dxdy

s\zé (£24n%) / / U (x,y,0)e 1206+ gy dy (3.28)

Q

Using the Fourier transform, the wave-like interferenceperties of the imaging process
can be decomposed into its component angular spectra. ©penties of the Fourier trans-
form like linearity, the scaling property, or more usefullige convolution-multiplication
law, also corresponds to various optical imaging operation

From the linearity of the Fourier transform, brighter apegs fields result in proportion-
ately brighter angular spectra. Additionally, the indivad angular spectra of different sub-
apertures sum. From Parseval's theorem, the total intemmsibhe angular spectrum is con-
served. Due to scaling, larger apertures result in narrewgular spectra, and conversely,
smaller apertures result in angular spectra that is moeasgpout.
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In the Fourier displacement or shift property, displacets@nthe aperture result in linear
phase shifts in the angular spectra. The converse, a mexarglproperty, is that a phase
shift at the aperture results in a displacement of the angydactra. Finally, from the
convolution-multiplication theorem, we discover a newsslaf optical transformations.
Fourier optical image processing in the frequency domaicglfplane) represent a new and
powerful class of techniques that sometimes cannot be doredypin the spatial domain
(aperture plane).

3.3.3 Fourier imaging with lenses

The effect of lenses on light can also be described usingé&oywtics. The curved surface,
or gradient in the refractive index of a transparent opticaterial, and the corresponding
optical path differences, adds additional phase termsttréimsmitted light. The wavefront
added by a convex lens of uniform refractive index is prdpasl to the thickness of the
lens.

For a spherical lens with radii of curvaturBg andR,, the thin lens approximation (called
the Lensmaker’s equation) for its thickness is

+y? (11 X2 4y
A(X,Y) = Do — > (El_ﬁz)_AO—m (3.29)

with a lens refractive index af and resultant focal length dffor the lens.

The added phase term from the lens curvature, ignoring thetaot phase terms due/g,
is

d(n-1)(B0cy)-80) _ g k=D (=) _ ik0eny?) (3.30)

Adding the thin lens phase term to the aperture field in Equadi27, the complex field
after passing through the lens (Fresnel propagation) is
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ik
UEnz) = SodkEn

iAz
/ . / T U(xy,0)e 1 H PN EOC ) g TR gy dy

(3.32)
At the focal plane, where= f, the exponential phase terms cancel, leaving
ikz 0o 0o o
.eIA—eizkz(fzwz)/ / U(x,y,O)e*'%z(X“y”) dx dy (3.32)
iAz —0)-w

This is the same form as the Fourier or Fraunhofer far-fiekdept it is at a convenient
finite distance, readily setup in laboratory experiments.

3.4 Transport equations

The Parabolic Equation (as explained by Teague [96]) is smoxpmation to the scalar
wave equation (Equation 3.15) and is an alternative reptagen of the Fresnel propaga-
tion equation (Equation 3.27) [97].

2
i%u(r)ﬁ]%k(’ﬁku(r) 0 (3.33)

wherer representsx, y) (transverse plane to the propagation direcipk = 2/\—" isassumed
to be constant (monochromatic light), abidu(r) = g—;u(r) + j—yzzu(r) is the Laplacian of
the complex field along the transverse plane.

The complex fieldu(r) travels along the direction, and can be broken down into the
amplitude (intensity) and phase or wavefront parts,

ur) = /1(ree
I(r) = Ju(n)f?
Ap  Aargu(r))

oy o (3.34)
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The parabolic equation may be thought of as a transport eqéa Field Transport Equa-
tion (FTE)), that describes the evolution of the complexdfiglr) along thez-axis.

— =i—=—+iku (3.35)

(dropping the(r) for succinctness)

In Teague’s analysis [95,97], the Field Transport Equasdmoken down into the Intensity
and Wavefront Transport Equations.

The ITE is

al .
L pAw 00w 3.36
7 (3.36)
and the WTE is
W OwlZ A2 021 A2 |OiP
oW _ 1— [OW] + — il (3.37)
0z 2 162 | 322 12

Here, similar to the previously defined Laplaciafw =Wix+Wy, the gradient is taken in
the plane transverse to the optical aXi&/ = WX +-Wy. |DW|2 stands foi\? -|—V\4,2.

This has the advantage of separating the intensity disinitbiimage) of a complex field,
a measurable quantity, from the wavefront distributionjolihis not directly measurable.
Solutions to the ITE for image propagation over short disggnin setups similar to phase
diversity [95, 98], have been proposed as a method for ple&iseval [39,40,45] and wave-
front sensing [87,114].

In the wavefront sensor known as the curvature sensor,lition at the telescope aper-
ture is ignored. The Intensity Transport Equation can bdiegpvith the approximation
z—'z = —10?W, ignoring the second term; 0l - W, which represents the intensity gradient.
Any changes in intensity during propagation is approximdtgthe wavefront curvature at
the telescope aperture. The second term of the Intensityspoat Equation describes the
displacement or directionality of light propagation dugtte wavefront slope. An alterna-

tive interpretation of the ITE is previously described inuagon 3.9 and Equation 3.10.
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The Intensity Transport Equation has been studied in gegaildn the literature cited pre-
viously. Understandably, less attention has been giverett\tavefront Transport Equation,
since the wavefront is not directly measurable. Howevetageproperties of the WTE are
useful in describing geometric optics as a subset of diffraoptics.

The geometric optics approximation of the WTE is given byirst two terms

oW, oW
0z 2

(3.38)

This simplified WTE was first introduced in Equation 3.8 anddres the diffractive wave
nature of light by lettingA = 0. Equation 3.38 describes the direction of propagation of
a wavefront in terms of the wavefront slope, affirming thenpiple of ray tracing at a
direction normal to the wavefront, previously describe&gquation 3.9 and Equation 3.10.
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Chapter 4

Adaptive optics

This chapter examines the effects of atmospheric turbelemcoptical systems. Atmo-
spheric turbulence is a random process that follows Kolmmgstatistics [53], and is mod-
elled within optical systems as optical aberrations. lty@dally characterised by a few
parameters that are introduced in Section 4.1.1.

Wavefront sensors are used to measure the aberrationgldayisémospheric turbulence.
Section 4.3 introduces the problem of slope estimationti@ed.4 generalises slope esti-
mation to full wavefront sensing, introducing the four nragtasses of wavefront sensors
studied in this thesis, the Shack-Hartmann, pyramid, géocakand curvature sensors.
The four wavefront sensors will be further developed andaumily compared in subse-

guent chapters.

4.1 Kolmogorov turbulence

Big whorls have little whorls,
Which feed on their velocity;
Little whorls have smaller whorls,
And so on unto viscosity.

L. F. Richardson (1881-1953)

The atmosphere of the Earth is in a constant state of changendy heat from the sun,
pressure differences across the globe, and the rotatidmedgarth itself. The dissipation

77
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of heat energy creates vortices of turbulence in the atneysplradually shrinking in size
until the energy is lost to the friction from the viscosity af. The largest and smallest
vortex sizes in this energy transfer correspond to the @uneinner scale of the turbulence.
Based on dimensional analysis of the energy transfer frarother and inner scales, the
statistics of the turbulence spectrum can be shown to obe]glq)ower lawt, known as the
Kolmogorov power law [54].

_u
3

D, (f) = 0.0335 4.1)

wheref is the frequency, anﬁ,%, is known as the index structure coefficient.

It is the irregular temperature and pressure changes intthesphere that causes fluctua-
tions in the refractive index of air which ultimately degesdhe image quality. The struc-
ture function of the refractive index fluctuations is givgntbe index structure coefficient,
which varies according to

Dn(p) = ((n(r) —n(r +p))%) =C3 |p|? (4.2)

wherep andr are 3-dimensional position vectors, an(d) is the refractive index at position
r.

The fluctuations in the refractive index are assumed to bersstnical in all directions
for small distances. Under this isotropic behaviour, theacquantity|p| is sufficient to
describeD,(p). Changes in the refractive index of the atmosphere caudessgions in
the wavefront of the light passing through. The total phasetdltion at any point on the
ground is found by integrating the deformations over thelelpath of the light ray through
the atmosphere.

P(X,y) = 2}\—n /O i n(x,y,z) dz (4.3)

whereA is the wavelength of the light.

Equation 4.2 and Equation 4.3 allows us to derive the phagetste function, which de-
termines the statistics of the wavefront aberration at iggddavel due to turbulence.

1As such, many important quantities in this section haveattaristic power laws in fractions éf.



4.1 Kolmogorov turbulence 79

Dy(X) = {(@(X) — p(x+X))2) = 2.91seqy |X|} /0 “Q@dz (4.4)

wherex andx’ are 2-dimensional position vectors, apds an angular distance from the
zenith. The air mass, sgca measure of the thickness of the atmosphere (and turla)lenc
that light needs to travel through, is minimised by timing@somical observations to take
place near the zenith (overhead).

Figure 4.1 Simulation of a phase-screen obeying Kolmogorov statistics.

The profile ofC2(z) over height is specific to the observatory site and conditioRor
analysis purposes, a few models are frequently used for anosgm. Each model relates
the averagé:,%, to the heightz. For example, the most common Hufnagel-Valley Boundary
model is

W ,
C2(2) = 5.94x 10 2%71% 2 (2—7) +27x10 % % 4 Ae 1 (4.5)

whereW is related to the wind speed, aAdhe ground boundary layer.

Other wind/turbulence profile models like the SLC Day anditliigodels are also used. To
a first approximation, most of the atmospheric turbulencebsaassumed to be confined to
a few strong layers, and in many cases, a single dominantd¢éyse to the ground. In this
thesis, simulations of turbulence use only a single laypragented using a phase-screen.
As such, the precisg (z) profile is not considered.

4.1.1 Optical effect of atmospheric turbulence

The optical effect of atmospheric turbulence can be sunsedsvith a few commonly cited
parameters.
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Fried's parameter

The degradation in resolving power of a telescope is meddwyd-ried’s parametery.
Also known as the seeing cell size, it is the effective tedpscdiameter caused by atmo-
spheric turbulence.

glw

ro= <0.423<25e<:y/000 C2(2) dz) : (4.6)

Hence, in the presence of uncompensated atmosphericéndaylthe maximum achievable
resolution is equivalent to that from a telescope of diametevithout the atmosphere.

The most instructive trends from Equation 4.6 fgrarerg [ A% and rod secy*%. The
increase irg with increasing wavelength increases the effective telgsaiameter. This
can also be seen in Equation 4.3, where the largegsults in reduced phase errors. Many
imaging telescopes work in the infra-red spectrum to redheeeffects of atmospheric
turbulence. Adaptive optics compensation in the infraigedlso more effective than at
shorter wavelengths. Wavefront sensor systems often giggk on the same path, sensing
in the unused ultra-violet region.

Usingro, we can also rewrite Equation 4.4 into a more convenient form
5
/ N4 X/| 3
Dy(X) = <\go(x) — p(x+X)] > =688( (4.7)

Isoplanatic angle

The blurring caused by the atmosphere is not uniform actassvhole sky. However, for
a limited area, it is relatively constant. The isoplanatigla is a rough measure of the
angular distance over which no appreciable changes candesvaal.

alw

6 = (2.9u<2(secy)% /O "2 dz) (4.8)

The isoplanatic angle is strongly determined by the tuméehigher in the atmosphere,
since there is a3 height dependency in Equation 4.8. The§!s¢tactor of the air mass also
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makes off-zenith imaging problematic.

Greenwood frequency

The evolution of turbulence over time is typically relatedts spatial statistics using Tay-
lor's frozen flow hypothesis. Under this hypothesis, thétlence itself is assumed to be
static, but is blown across the field of view of the telescopee temporal statistics of at-

mospheric turbulence can thus be determined by the spttiatsre function and the wind

speed [44].

When wind velocity profiles are available, the atmospheaie of change can be described
using the Greenwood frequency.

fo— 2310 % (secy /0 "2V (2)3 dz) ) (4.9)

whereV (z) is the wind velocity at height.
Zernike modes of atmospheric turbulence

When circular apertures are used for imaging, as shown iar€ig4.1, the phase function
can be described in terms of its component Zernike modesatieo2.81, reproduced here
in rectangular coordinates), as in classical optics.

[ee]

P(x,y) = ;aaZa (x,y) (4.10)

i=
An example is shown in Figure 4.2, where a static phase4sdseedecomposed into its
individual Zernike modes, and arranged in increasing andarg Noll's numbering scheme.

The most significant contribution to the atmospheric prsseen tend to come from the
lower order Zernike modes, corresponding to image disphecg and defocus, followed
by higher order aberrations like astigmatism and coma. Kpeaed magnitude of each
Zernike component is 0, but the expected power (squared itndgh of each component
can be found analytically and expressed as the phase cosanaatrix [65].

Although theoretically, any set of orthogonal bases furdiis acceptable, when we are
limited to a truncated representation of phase function Wuthe use of a finite num-
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Phasescreen Zernike modes
T

L L L L L
0 5 10 15 20 25 30
Zernike coefficients

Figure 4.2 The magnitudes of the Zernike modes of one simulated atmospheric turbulence
instance. Note that the piston term, corresponding to mode 1 (equivalent to the mean value
of the simulated phase representation), does not affect the image.

ber of modes, the choice of functions should be selecteditacoas much information
as possible (on average). The optimal choice would be théugan-Loevé functions,
whose coefficients are statistically uncorrelated (diajjoavariance matrix). Although the
Karhunen-Loeve transform for atmospheric turbulence ctha expressed analytically, it
can in practice be expressed in terms of Zernike polynormjaesions.

As can be seen in Table 4.1, the covariance matrix for theiketerms is almost diag-

onal, showing low correlation between terms and decregsavger with higher orders.

When truncating the Zernike coefficient representations,lowest order modes should
be retained to represent the most amount of energy. The abiiazgonal covariance ma-
trix means the Zernike polynomial representation is a gqguu@imations to the optimal

Karhunen-Loeve transform for atmospheric turbulence. &tnite number of terms, the
covariance matrix can be de-correlated (diagonalisedantipal components) to give the
Karhunen-Loeve functions.

The phase variance over a circular region scale@Da(so)%, whereD is the diameter of
that region. Most of the power is present in the lower ordedesadiagonal matrix terms),
showing that near fit of the Zernike polynomials to the Kadmsboeve functions of tur-
bulence. For higher order modes, the residual estimatiar after removing the firsii
modes from Kolmogorov turbulence is given by

2This is equivalent to the use of the Karhunen-Loeve transfas the most efficient compression scheme
in signal processing. The Karhunen-Loeve functions ardfecethe eigenfunctions of Kolmogorov turbu-
lence.
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5

<%> : az as as as Qs az as Qg aio
(o) 0.448 0 0 0 0 0 -0.0141 0 0
a3 0 0.448 0 0 0 -0.0141 0 0 0
ay 0 0 0.0232 0 0 0 0 0
Os 0 0 0 0.0232 0 0 0 0 0
Os 0 0 0 0 0.0232 0 0 0 0
az 0 -0.0141 0 0 0 0.0062 0 0 0
as -0.0141 0 0 0 0 0 0.0062 0 0
09 0 0 0 0 0 0 0 0.0062 0
010 0 0 0 0 0 0 0 0 0.0062

Table 4.1 Covariances of the first 10 Zernike coefficients, scaled by <%) %_
En ~ 0.294N "7 (%) 3 (4.12)

4.2 Laser guide stars

In adaptive optics, the wavefront distortion for the objetinterest is usually estimated
from a nearby reference star. This avoids using light froenabject itself, a method which
reduces throughput to the observation path. It also alladeptve optics correction to
be used for objects that may be too dim for wavefront sensifige reference star has
to be bright and close enough to the object to provide a googfr@nt estimate, ideally
well within the isoplanatic angléy. There are not enough natural guide stars to allow
observations of all interesting astronomical objects.

Observatories today use laser beacons as artificial gladetst provide a bright reference
source, extending the sky coverage [29,69,80,110]. Lasdegstars are formed using one
or more laser beams pointed near the object of interest. iTifieial star can be formed by
either Rayleigh scattering or by sodium resonance fluoresce

Rayleigh scattering is based on scattering by air moledolése lower atmosphere. The
height of laser guide stars based on Rayleigh scatterinmitet to between 5 to 20 km,

which is approximately the same height as atmospheric kemog. The thinner atmosphere
at higher altitude also limits the brightness of Rayleigteleguide stars. However, although
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the turbulence layers here are weak, they are still signifibacause of thes height de-
pendence of the atmospheric isoplanatic angle (Equati®)reshd temporal rate of change
(Equation 4.9).

An alternative scattering method uses the sodium layeepteg 90 km in the mesospheric
layer [63]. Sodium atoms are resonant at 58®2) (@nd 589.6 D;) nm, scattering laser
beams of that wavelength. Sodium laser guide stars caredrglat sources that are not only
brighter than Rayleigh laser guide stars of equivalent polag also higher, allowing the
turbulence at higher altitudes to be measured. Sodium beae thus generally preferred
to Rayleigh beacons.

4.2.1 Cone effect and anisoplanatism

A guide star and the object of interest are not affected bystmee patch of atmospheric
turbulence. The angular separation between the objecha&nglide star is bounded by the
isoplanatic angléy [101], the angle over which turbulence effects may be cansiito be
constant [28]. The mean squared phase error for a sepaddttbis on average

05 = (9%) *rad (4.12)

Additionally, in laser guide stars, the limited height oétheacon (as opposed to the very
distant natural star), also gives rise to what is known astime effect.

Figure 4.3 The limited height of laser guide stars compared to distant stars restricts its
measurement of atmospheric turbulence.

The use of laser guide stars is often associated with maitjugate adaptive optics [50,58].
Multiple guide stars are used to cover a larger patch of th¢A3. Additionally, within the
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adaptive optics correction system, multiple mirrors angegated (hence the name) to var-
ious heights in the atmosphere to provide optimal corract®ince propagated light suffers
from both phase and amplitude fluctuations, and deformabters can only provide phase
compensation, the most effective compensation is obtra@ily by conjugating the mir-
ror compensation to the height of the turbulence, effetigcempensating the turbulence
before the propagation that causes intensity fluctuati®s [

Although laser guide stars seem to provide the ultimatetispido the sky coverage and

guide-star brightness problem, they have a major drawbEuo& laser beam displacements
in the outgoing and returning beam cancel because they paagyh the same turbulence,
causing no apparent displacement in the guide star imagauBe of this, laser guide stars
cannot be used to improve the wavefront slope estimate. i$tagyreat disadvantage as
wavefront slope comprises 87% of the wavefront errors ahbgahe atmosphere (as seen
in the first 2 terms of the covariance matrix in Table 4.1). i@pt slope detection under

limited light thus remains a very important step for imag@iovement, and motivates the
discussion in Chapter 5.

4.3 Wavefront slope estimation

The phase of the complex field at optical wavelengths carmotdmasured directly. Its effect
on images can however be seen when light is allowed to progayéavefront sensing is
basically a means of relating intensity measurements tsephberrations. We begin by
observing the propagation of light through an aperture uRdesnel diffraction, as shown
in Figure 4.4. The simulation is carried out with a discrgipraximation to Equation 3.27.

0000000

uuuuuuu

uuuuuuuu

Figure 4.4 The effects of wavefront errors on the propagation of light through free space.

The circles represent the centroid of the image after prajyagy through free space. In
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Teague’s moment analyses [96, 97], the first moment, theaidntravels in a straight line
at a direction perpendicular to the mean wavefront slopbeatperture. This also agrees
with the geometric optics model of light (Equation 3.9 andi&ipn 3.10), which predicts
that the image is displaced in proportion to the global weanrEf slope at the telescope
aperture.

Over longer distances, the image displacement is largdraanncreasing variation in the
intensity is observed. We expect the image at infinity to stiumost amplitude variation
in response to phase fluctuations at the aperture. In peaetifocusing lens can be placed
at the aperture to reduce the equivalent propagation distianthe focal length of the lens.
The lens also concentrates light, intensifying the imagaali Intuitively, the focal plane
is thus the optimal position for slope detection.

4.3.1 Focal plane image displacement and the wavefront slep

The relationship between the mean slope and the displaterhiie image centroid lies at
the heart of most wavefront sensors. This relationship eashlown mathematically in the
case of a uniformly illuminated and symmetric aperture as

/_Zx\i(x)|2 dx
_ / Zixy{(Aw)éw(w)*(Aw)éw(w)} dx
_ 4 [(A(u)ej"’(”)) * (A(u)éq’(u)ﬂ

u=0

d
- i A(u>é¢<U>diuA(u+0)éw<u+0>du

— A(u)diuA(u)du—/ A(U)2q(u) du

—00 —00

= w2 " @(u)du (4.13)

_ 2mu
wherex = R

Least-squares slope estimate

The mean slope is the averaged wavefront slope over the velpeleure. However, due
to the averaging operation of the centroid estimator, umeetain conditions, an image
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may “look” displaced, but still have a centroid of zero. Araexple of this is shown in
Figure 4.5.

Figure 4.5 A wavefront with 0 mean slope at the aperture, resulting in an image with a
centroid of 0. Although the bulk of the image is slightly displaced to the left, the centroid
is weighted by distance over the whole image, and is sensitive to the position of distant
speckles.

To maximise the Strehl ratio of an image, an adaptive opffstesn should compensate
for image displacements, not by centroiding, but by centedn the brightest point of a
speckle (the shift-and-add algorithm). Since the Stretid ra approximately related to the
squared phase error, brightest spot centering correspomdsimating the plane of best fit
to wavefront aberrations in the least-square sense, agegant by Glindemann [33]. This
is shown as a line of best fit to the wavefront in Figure 4.5.

The optimal estimates of the second and third Zernike temaglafined to be the least-
squares fit of a plane to the wavefront. The position of thghiest point, an alternative to
the centroid as a displacement estimator, is thus usefuhé&asuring the wavefront slope
in the least-squares sense.

In practice, the wavefront sensors examined in this thealemse of quad-cells (examined
later) for estimating displacement or slope. The undersagm the quad-cell renders the

position estimation of the brightest spot impractical. S&duently, since the displacement
estimate provided by the quad-cell is in fact an estimatdefilmage centroid, more em-

phasis is placed on the centroid estimator.
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Estimation of higher order wavefront modes

If we are only interested in the global slope estimation fiomage displacements, then the
optimal position for measuring the image is at the focal pas explained by van Dam and
Lane [104]. While the global slope measurement providedheycquad-cell accounts for

most of the wavefront error in Kolmogorov turbulence, itt#l #ecessary to estimate the
shape of the wavefront aberration function within the whagderture. Wavefront sensors
are used to detect the higher order modes in the turbulence.

Global slope estimation with quad-cells can be extendedtimate higher order modes by
subdividing the wavefront aberrations at the telescopaiageinto smaller regions. Within
the smaller area, the effects of higher order aberratiomsess severe, and the effects of
the local wavefront function dominates. The local wavefnaithin each sub-region can
then be measured independently. The sensor signal is bydicaar with respect to some
function of the wavefront (for example, the wavefront slopeurvature). The sensor signal
d is thus given by a matrix operatiokl§ with the wavefront Zernike coefficients.

d=Ha-+n (4.14)

wheren represents measurement noise in the wavefront sensor.

The higher order wavefront aberrations at the telescopelapecan be found from a linear
combination of the local slope signals. Here, the sensosorementd is a finite vector,
while the wavefront coefficienta is in fact infinite. In practice, a finite number of coeffi-
cients are estimated, since (as shown in Equation 4.11¢rtbein the subsequent higher
order modes decreases, so the energy in Kolmogorov turtiisrmostly present in the
lower order modes.

Depending on the statistics of the noise present in the seamgoald, various solutions
for a are obtained. As introduced previously in Section 2.5.2, Bayesian methods for
inverting Equation 4.14, the Maximum Likelihood and Maximi\ Posteriori solutions,
are commonly used here.

The Maximum Likelihood solution, assuming white noiges given by

@G=H"H)H'd (4.15)
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Given a finite number of measurementadirunder low light conditions, with higher noise
levels in the measurement, or when more coefficieaisafe required from the wavefront
sensors, additional constraints are required to condttienproblem. In such situations,
prior knowledge of the statistical distributions of coaffiats can be useful, resulting in
a Maximum A Posteriori solution of Equation 2.117. Here, towariance matrix of the

Zernike coefficients provide a convenient way to specifgipknowledge of the turbulence
statistics. The MAP estimate is optimal as long as the moidéleoprior is accurate, and is
independent of the basis functions chosen to representitire p

In many adaptive optics systems, the compensating mirexti@ 1.1.5) is built from ac-
tuators that correct the wavefront using local mechanieglybations. Thus, an alternative
problem that is also linear, but consisting of zonal waveffestimates, can be formulated.
In zonal estimation systems, prior information, in the fayfthe measurement covariance
matrix, can be obtained from the covariance analysis iniWgall107].

4.4 \Wavefront sensors

In this thesis, four different wavefront sensors: the SHdektmann, pyramid, curvature
and geometric wavefront sensors, are examined in detailcédfaparison purposes, a uni-
fied framework is developed to place the wavefront sensareritext.

4.4.1 Shack-Hartmann sensor

The Shack-Hartmann sensor [72, 85] consists of an arraynefdes placed at a plane con-
jugated to the telescope aperture. Each lenslet subditi@eaperture plane into smaller
subapertures, and forms a low resolution image of the ohjats focal plane.

Y Object

Turbulence : =~ ©
/./j . —

Lenslets cX 50505
o 2 o b o
Quad-cells

Figure 4.6 Simplified layout of a Shack-Hartmann sensor.
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When the lenslets are approximately the same size as theerwledengthg of the atmo-
spheric turbulence, the images formed by the lenslets gm@zgimnately the same size as the
equivalent diffraction limited images formed by the lengfer example, with perfect tele-
scope optics, and no atmospheric turbulence). At this gieemajor effect of turbulence is
in the local wavefront slope over each lenslet, giving riseaindom image displacements,
as shown in Figure 4.7.
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Figure 4.7 Simulated image from a Shack-Hartmann sensor, with sensor signals super-
imposed (not drawn to scale).

The signal from a Shack-Hartmann sensor is formed from tlagexdisplacements, which
are linearly related to the wavefront slopes. Since diffeation (slope of wavefront) is
a linear process, the slopes are in related to the coefficadrthe Zernike polynomials in
Equation 2.81.

The intensity of the image under each lenslet is measurdd@@D detector arrays. The
displacement of the image can be measured using the ceestidator of Equation 5.1.
In practice, to reduce the effect of read-noise in the CCRdets, quad-cells are used to
determine the displacement of the image.

The lenslet size is typically unchangeable for a fixed optioafiguration, and needs to be
tailored to the local turbulence conditions. There is adraff between the more precise
estimate available from larger lenslets, with the bettatigpresolution or sampling avail-
able from having more (and smaller) lenslets. A simulatmrchoosing the optimal lenslet
size is presented in Section 6.3.2.

Image displacement is aiméstndependent of wavelength. This allows the Shack-Hartmann

3Some wavelength dependent refractive effect exists, ansidd in polychromatic guide stars for tip/tilt
estimation [27].
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sensor to be used with broadband or white light, which mas@sithe amount of light used.
Additionally, smaller extended objects are not resolvéimeugh the small lenslets, and are
suitable for use as guide stars. The simplicity and robgsto&the Shack-Hartmann sensor
has led to its widespread adoption in adaptive optics system

4.4.2 Pyramid wavefront sensor

The pyramid sensor consists of a pyramid-shaped prism &bdaé plane of the telescope,
and some re-imaging optics behind it. It was first suggeste@iious forms by Babcock
and Ragazzoni [9, 76], and improves upon the qualitative&oli knife edge test [26,111]
by allowing quantitative measurements of wavefronts to been

Figure 4.8 The pyramid wavefront sensor consists of a pyramidal prism at the focal plane.
The subdivided field in each quadrant is re-imaged into 4 separate sub-images.

The pyramid sensor subdivides the complex field at the tefesfocal plane into quadrants,
and re-images each quadrant into 4 images of the telescepeiggp The pyramidal prism
is there simply to spread out the sub-images to avoid overlgpr analysis purposes, the
prism may be ignored, as only the subdivision operation gartant here.

The sensitivity and linearity of the pyramid sensor are afiam of the image size, and

artificially enlarging the image size on the pyramid can bedbeial. The most common

method is to achieve this by a repetitive motion to incretsapparent size. This is exam-
ined further in Section 6.4.

As a first approximation, the light distributions within éaiadividual sub-images may be
ignored, by considering only their total intensities. Ttesults in four intensity measure-
ments, one for each quadrant in the focal plane. This is afssoeiquivalent to a focal plane
guad-cell for estimating image displacement, which cqoesls to the global wavefront
slope at the aperture.
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By extension, due to linearity in the image intensities fas\g in Section 6.4, the intensity
distribution in the sub-images is proportional to local efwent slopes in the aperture plane.
Figure 4.9 shows how a local wavefront slope in the apertarestates to localised intensity
changes in each of the re-imaged apertures beyond thedpkefucal plane.

Four aperture images from a pyramid sensor

50 100 150 200 250

Figure 4.9 The re-imaged telescope aperture in the pyramid sensor, showing the signal
arising from a flat wavefront with a small local perturbation.

The re-imaged copies of the aperture are blurred by the mididivision at the telescope
focal plane. Roughly speaking, each subdivision, or fat¢th® pyramid, retains onlﬁ
of the illumination at the focal plane. This loss of infornoat from the subdivision pro-
cess determines the ultimate limit to the resolution of tleefront estimate of a pyramid
wavefront sensor.

Chapter 6 further demonstrates that the pyramid wavefreméa is in fact a dual of the
Shack-Hartmann sensor, with many equivalent functionsopeed in the dual Fourier
space.

4.4.3 Curvature sensor

The curvature sensor is an image based wavefront senson¢agures wavefront curvature
instead of slope. It was proposed by Roddier [86] as a singwedrder wavefront sensor
especially tailored to astronomical imaging applicatiaapposed to earlier systems ori-
ented towards military uses. It has found widespread usefia-red applications where
the effect of turbulence is less severe. The curvature seonssists of two imaging planes
placed before and after the nominal focal plane of a telescop
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Figure 4.10 Layout of a curvature sensor showing the in-focus (above) and outside-focus
imaging planes (below). The dashed lines represent the paths of light rays when there
are no wavefront errors. On the right, the same aberration with a local slope causes an
opposing displacement in the intensity signals in each image plane.

Using this layout, any wavefront errors at the aperture@irows up as opposing intensity
changes in the two out-of-focus imaging planes. In the exarsipown in Figure 4.10, a

small negative curvature is added to the wavefront in th&reex the aperture. This causes
the focal point for that sub-region in the aperture to movevérd, so the corresponding
region becomes brighter (and smaller) in the in-focus imagel darker (and larger) in

the outside-focus image. The intensity within that subenegn the two image planes is

approximately proportional to the wavefront curvatureslaswn in Equation 3.11.

The sensor output is taken to be the intensity differencevdxn the two imaging planes,
and is proportional to the wavefront curvature. For a snainge in curvaturdH (x,y, 0)
at the aperture, the corresponding change in intensity piftgpagating a distance afs

Al (x,y,2) =~ —zI(x,y,0)AH (X, Yy, 0) (4.16)

In the original curvature sensor, it was proposed that timsaeoutputs be sent directly
to a bimorph deformable mirror, which will respond with a poetional curvature on its
surface. In practice, additional processing of the sengpratis required to match the
characteristics of each component.

There are questions as to the accuracy of a sensor signaddnom the intensity differ-
ences in the two imaging planes. As exaggerated in Figui@, 4urvature errors in the
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wavefront not only result in local intensity changes, bwoathanges in the size of the
image (sub-region). The most significant outcome of this@ftan be seen at the edges
of images. In practice, wavefront sensors treat the boymofamages as differential sig-
nals proportional to the wavefront slope. This raises thaitant question of how the
boundary slope signal is to be separated from the intermatwre signal.

The misalignment error also arises when the mean local sWthen a sub-region results in
a displacement of the intensity signal, so that the brigttdark spots in the two defocused
imaging planes are no longer aligned, as shown in Figure @idlet). A better solution
to the curvature sensor equation has been proposed by varabarbhane [102] to take
into account the full geometric optics behaviour of lighhi§new method is known as the
geometric wavefront sensor.

4.4.4 Geometric wavefront sensor

The geometric wavefront sensor is a slope sensor. The @iyayout of the geometric
wavefront sensor is identical to the curvature sensor. Mewet uses an improved inter-
pretation of the intensity distribution in the out-of-facimages, using an exact geometric
optics solution to recover wavefront aberrations by a ragitrg process.

To illustrate the underlying philosophy of the geometriorefaont sensor, we simplify the
wavefront propagation problem to 1D, as shown in Figure 4.11

Intensity

Wavefront

Intensity L l Z

Wavefront

Plane A

Plane B

Figure 4.11 A simple defocus in the wavefront causes the image of the aperture to be
smaller but brighter.

Light propagates in a direction perpendicular to the wargfslope (Equation 3.9). At
the same time, the intensity changes as it is concentratelispersed, as described by
Equation 3.11. With a 1D aperture, these equations are eedoc
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Xg = X +AZW,(Xa, Za) (4.17)
whereAz = zz — zp andW is the wavefront slope along the x-axis.

for a light ray atxa in the aperture, travelling txs in the image plane. The intensity changes
are given by

_ l (XA7 ZA)
14+ AZWx(Xa, Zn)

| (e, 28) (4.18)

The wavefront slope at the aperture can be recovered bygrdioe light ray path between
the aperture and image planes. Figure 4.12 shows the sansfraravirom Figure 4.11,
with the light rays found from comparing the intensitiesietn the two planes. Intuitively,
due to the conservation of light, the total intensity betwary two light rays (shaded region
of Figure 4.12) must be constant.

/XAI(x,zAmx: /XB I (X, zg)dX (4.19)

—00 —00

The wavefront slope afx is given by e,

Xa
W (X Plane A
X( Q a— (aperture
[ plane)
P\ \’
I AV
|
\ l / Plane B
X, Y (imaging
AX plane)

Figure 4.12 Geometric optics model for the propagation of light.

Equation 4.19 allows the positions of the light rays to beveced from the intensity dis-
tribution at plane®\ andB. Ray tracing provides an exact solution to the problem, as ca
be seen from equating the intensity between the two liglg PayandP..
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/XAI(X,Z,Q dx = /_X:I(%,ZB) dx

_ 8 HX,za)
S L AZWK(X, Za) dx

Xg—AzZW |A(X)
/m 1JFTZ\,\&X(lJrAzV\&x) dx (4.20)

substitutingK' = X+ AzZW (X, za) for dX = (14 AzZWx(X, Za) )dx.

The exact wavefront slope can be estimated by equatingrtfits lio the integrals in Fig-
ure 4.20.

Xg — Xa = AZW, (4.21)

so the wavefront slope is exacti¥(x,za) = 25X,

Chapter 7 expands on the application of this method to thefrawt sensing, and provides
a comparison of the performance of the geometric sensoetoutvature sensor.

4.4.5 Unifying theme

All the wavefront sensors examined share the same prirsogdleperation. To estimate the
complex field at the telescope, scintillation is assumecetmbignificant, and the amplitude
can be assumed to be constant, leaving only the phase toibmaest. The wavefront or
phase is not directly measurable, but wavefront slope arature can be inferred through
intensity measurements.

In wavefront sensors, a wavefront is propagated throughparntare, producing intensity
fluctuations in the propagating field. The effect of wavefralperrations on the intensity of
a propagating field is most pronounced when the propagaistante is large. In all four
wavefront sensors, the most appropriate models for theadtfbn effects are the Fresnel or
Fraunhofer approximations.

In the presence of strong wavefront aberrations, diffeectffects are small by compar-
ison to geometric effects, so geometric optics [38] prosidegood approximation of the
intensity propagation model, and so is a good descriptidmoaf wavefront sensors work.
However, as the image is compensated and approaches rectidh limit, the geometri-
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cal optics assumptions begin to fail. Under such conditiosirier optics is required and
diffraction effects determine the ultimate performanceits of the wavefront sensors.

Using a geometric optics approximation allows wavefronisseg with extended objects or
under broadband light. This flexibility extends the rangajblication of wavefront sen-
sors. Additionally, the linearity and “localisation” prefy of geometric optics allows the
wavefront to be subdivided directly into smaller sub-pevbs. Through such subdivision,
higher order wavefront components can be estimated.

Depending on the wavefront sensor, the wavefront at thewaeeran be subdivided explic-
itly at the aperture plane, implicitly at the focal plane,ssmewhere in between. Within
a sub-region in the divided aperture, a linear relationtexigtween the intensity and the
local wavefront slope or curvature. Once such a model ordaavproblem of a wavefront
sensor is obtained, the wavefront estimation problem igesbby inverting the forward
problem. In this thesis, the inversion if framed in terms led maximum-likelihood or
maximum-a-posteriori methods.

Resolution-precision trade-off

The subdivision operation is equivalent to a wavefront dargmperation. The resolution

of the wavefront estimate is thus dependent on the size o§ubelivision; the smaller

the sub-apertures, the finer the sampling. However, usirglemsub-apertures results
in a lower precision in the individual local wavefront estites. The trade-off between
resolution and precision is an example of the space-bartdwimhstant in the dual-space
description of signals, and is examined in Section 6.1.

Most wavefront sensors have a tunable gain or sensitivéy dffects the precision of the
wavefront estimate. The sensitivity may be directly adjdsas in an optical modulation
scheme or an electronic gain. Alternative, it may only bespné¢ implicitly in the image

Strehl, and is not directly adjustable. Where possible, dijucing the sensitivity of a
wavefront sensor, it may be possible to reduce the nonsinesin the sensor. Hence,
the precision of the wavefront estimate can also be balaagadst non-linear errors in
wavefront sensors.
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4.5 Conclusion

By focusing on how the designs of the wavefront sensors aneemed, it is our hope

that ultimately, all four wavefront sensors considerecehmm be shown to be equivalent.
Interestingly, two related techniques in scintillationi@stion, the scidar and slodar de-
vices, resemble the pyramid sensor physically, so a graatked theory for understanding
wavefront and scintillation detection could be a good esitmto the current framework.

In Chapter 6, the Fourier equivalence between the Shacvtdan and pyramid wavefront
sensors is developed. By the equivalence between individuaponents of the wavefront
sensors, the performance of the wavefront sensors can bhgatech

Chapter 7 compares the curvature sensor against the geomagefront sensor. Since the
wavefront sensors are physically identical, a comparigahenoise propagation through
their algorithms is made.

Finally, although this thesis will focus mostly on the funtintal performance of wavefront
sensors, in practice, we also need to consider instrumasé.n®ractical considerations
usually result in design configurations that do not allowfthleuse of the wavefront sensors
as described in the following sections.



Chapter 5

Quad-cells

In this chapter, we examine the problem of wavefront slopienasion in greater depth. We
have shown in Section 4.3.1 that the global mean wavefropesat the telescope aperture
is proportional to the image centroid at the focal plane.

The fundamental limit to the estimation of image centroides from photon noise in the
image intensity measurements. Photon noise refers to tttediions in the photon countin
each image detector element due to the Poisson arrivalggadée@hotons. For an expected
mean value oN, the photon count fluctuates about its expected mean vatheawiariance
also equal taN.

The intensity distribution in an image is proportional te ttensity of photon arrivals. Con-
sequently, an image can alternatively be seen to reprdsemrobability density function
for photons. Estimating some of the properties of an image,ils displacement, is then
equivalent to parametric estimation of a known probabdistribution. Using the Cramer-
Rao bound [51], the ideal theoretical performance for aspldcement estimator is shown
to be related to the image shape.

Starting with the measurement of images with CCD arrays][12 show how the presence
of instrument read noise and photon noise lead to tradeatiitsh lead to the quad-cell. Al-
though the quad-cell is the most commonly used image displaat estimator, because of
under-sampling, it does not (strictly speaking) measugarttage centroid. In this chapter,
we compare the performance of quad-cells to the theorefiaher-Rao lower bound for
displacement estimators.

99
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Most conventional analyses have concentrated on the imatik as the factor that deter-
mines performance [66, 69, 110]. In this chapter, the imaggkps shown to be a more
appropriate measure of quad-cell performance. This alsplgies the analysis of the
closed-loop performance of the quad-cell. The performaricbe quad-cell derived here
is then extended to general slope estimation in wavefrarg@s in subsequent chapters.

5.1 Displacement estimation

Images are typically measured using an array of detectdheamage plane, providing a
sample of the intensity distributions at discrete pointhmimage plane.

It‘"ﬂ"
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Figure 5.1 The sampling of an image using a finite array of detectors.

The maximum frequency component in an image is limited byetktent of the aperture
correlation function (Equation 2.56). For a circularly syetric aperture of diametdD,
the radius of the aperture correlation function, which has times the extent of the aper-
ture function, isD. The sampling interval that satisfies the Nyquist sampliegdency
(Section 2.4.3 and Shannon [90]) (reciprocal Bf, &r two times the highest frequency in
the signal) is given bj\‘—’f( = %, that isAX = %, which is approximately a quarter the size
of the diffraction limited image. Assuming the Nyquist sdimg criterion is satisfied, from
a square array of image samples, the image centroid catcubgt

X ZyXI(X7Y) o X Zyyl(X7Y)

R = Y (5.1)
ZX Zy I (X7 y) ZX Zyl (X7 Y)
is related to the mean wavefront slope at the aperture by
~ X
W = T (5.2)
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where f is the focal length of the telescope, aW{ is the mean wavefront slope at the
telescope aperture in thxeaxis.

In the presence of photon noise, the centroid is a randonablari The variance of the
denominator in the centroid term can be ignored when theeriei®l is low. Photon noise
has Poisson statistics, so the variance in any intensitysanement in a photo-detector is
the same as the expected intensity in the detector. Withicake $actor, the mean and
variance of the centroid estimator is given by

<szl(x,y>> = > > x{xy)
X Y Xy
= > > Xxy) (5.3)
Xy

var(Zle(x,y)) = Zszvar(I(x,y))
Xy Xy
=35 X1 (X, y) (5.4)
X

The expected mean and variance of the centroid estimatoespmnds to the mean and
variance of the image when it is interpreted to be a proldgiaistribution.

5.1.1 Centroid estimator variance

For a finite aperture with a discontinuity at the edges, thenggotic decay in the focal
plane image intensity over the image widthijs x 2. Unfortunately, because the intensity
decay is slower tham™1, this means that the variance in the image centroid estiimate
Equation 5.4 is infinite when computed over an infinite pladig.

In practice, the image measurement area is finite as showiguré=5.1. The centroid
variance for a2 intensity decay is proportional to the area over which thagenis mea-
sured, so the upper bound to the centroid variance is linbyethe truncated measurement
region. The image truncation produces a bias in the cengéstidhator towards zero and
also removes any intensity beyond the outer boundariessalékector. Any intensity here
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is spread out by the high frequency phase noise at the apestuimage truncation at the
focal plane effectively acts as a low-pass filter for the preignal [73].

However, image truncation also causes some informatiohdrirhage to be lost, so any
CCD centroid estimators is no longer statistically optim&8ection 5.3.1 examines the
statistical optimality property of a displacement estionat

In modal wavefront estimation, an aberration function iefexpressed as a combination
of a finite number of Zernike terms. The relationship betwibenindividual Zernike terms
and the resulting image displacement is dependent on hoimntge displacement is mea-
sured. Usually, the image displacement refers to eithemtiagie centroid displacement,
or the displacement of the brightest spot in the image. Tledisplacement measures
actually correspond to different slope estimates.

The centroid displacement corresponds to the mean wavedigpe at the aperture. Most
Zernike terms have a mean slope component, so their pregeac@avefront can result

in a displacement in the image centroid. Given a centroitnese, the corresponding

Zernike coefficients cannot be determined unambiguouslgeshe slope component may
be attributed to any Zernike term with a non-zero mean slope.

Alternatively, the displacement of the brightest spot i@ itnage corresponds to the least-
squares wavefront slope at the aperture, as previouslgiegal in Section 4.3.1. Since the
Zernike slope term is orthogonal to all the other higher o@krnike modes, the presence
of higher order Zernike modes do not contribute to any imagplacement. Therefore, a

single displacement estimate can unambiguously detertheenagnitudes of the tip and

tilt Zernike terms. Additionally, the least-squares estie) being independent of the higher
order Zernike terms, are not affected by image truncatidwt is, in the spatial domain, the

position of the bright spot is a local measurement, and ddmnaffected by the boundaries
of the image.

Suppose the intensity distribution is modelled as a prdipalistribution, the centroid
then corresponds to the mean of the distribution, while t&ton of the brightest spot
corresponds to the mode of the distribution. As will be shinere, the image displacement
estimate provided by a quad-cell corresponds to the medidredlistribution. From this
point of view, the quad-cell represents a compromise betfieeing the mean slope and
the least-squares slope, taking into account the limiatimposed by read noise.
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5.2 Slope detection with Quad-cells

To maximise the signal strength and minimise read noise enctmtroid estimator, the
image is frequently under-sampled. At the extreme, thiddda the quad-cell detector,
which consists of 2x2 detector elements as shown in Figie Bhe quad-cell detector
is a common feature in many wavefront sensors, and is exanmndetail by Tyler and
Fried [100].

The quad-cell image is nominally centered on the cornercadjato all four cells. In this
position, all four cells will measure the same amount oftighny image displacements
in the x-direction can then be measured by comparing intensitygdgim the two halves
of the plane made up 4; + Az on one side, and, + A4 on the other. Similarly, any
displacements in thg-direction is given by comparing; + A, with Az + A4 [69, 100].

For small displacement&x, the intensity in the two halved; + Az and Ay + A4 of the
plane will show opposing changes. The quad-cell formuleoimmonly taken to be the
differential signal A2 +A4) — (A1+As), which is monotonically related to the displacement
of the image. This differential signal is in fact the centréormula. However, because of
the loss of information in the image truncation and now, &lem sub-Nyquist sampling,
the signal no longer corresponds to the mean wavefront sibie aperture.

Ar=A2=A3=A4 )
Larger image

Al A2 Al Az
: \.A <>
A3 Aa
A3 A4
Sensor signal .
(A+A)-(AFA)) Sensor signal
Sope g
(Gain/Sensitivity) Displacemem
4 Displacement
N —
Image width Image width
~linear range wider linear range

Figure 5.2 Detection of image spot displacement with a quad-cell. When the image is
shifted as outlined by the dots, the intensity measurements (no longer equal, as printed in
grey) on both halves of the quad-cell plane provide a displacement estimate. This signal
is approximately linear for small displacements, and saturates for larger displacements. A
larger image size (right) results in a wider range for which the signal is linear, at the expense
of the signal gain or sensitivity.
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5.2.1 Quad-cell formula

The precise variation in intensity with image displacendapends on the intensity distri-
bution within the image itself. Consider the normalisedwdagspectrunh(u,v), where

" [ h(uv) dudv=1 (5.5)
[.].

Changing from angular to spatial coordinatgs¥) = (u,v), the normalised image at the

focal plane ish'(x,y) = f—lzh(%,¥) where f is the telescope focal length. For total mean
intensity ofN photons, the image itself H (x,y). Figure 5.3 shows the intensity signal in

each half of the image plane for a displacentnt

A

~-h’(0)

AFA, = ho’(x)dx

=AX

¢ Displacemelrn

AX

Figure 5.3 Small displacements in the 1D PSF results in opposing intensity changes in
each half of the quad-cell. The mean wavefront slope at the aperture is then given by
W, = £

The differential quad-cell signal is given by

(Ao +Aq) — (AL +Ag)
00 00 0 00
= /0 /WNH(X—Ax,y—Ay)dy dx—/m/mNH(x—Ax,y—Ay)dy dx

_ N( _th”(xm)(—/_;Axh”(mdx)

- N (/Ow h”()(’)d)(—/_ow h”(x’)d%) _oN (/O_Axh”(x’)dX) (5.6)

whereh’” (x) is a 1D projection of the normalised image distributiof(x) = [ H (x,y) dy,
andx' = x— Ax. The integral ovey also eliminates the displaceméxy in the orthogonal
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axis, allowing us to ignore it, simplifying the equation.

The first term of Equation 5.6 is independent of the imageldtgment. It is usual here
[66, 67, 80, 110] to make the assumption thdk,y) is modelled by a Gaussian profile.
However, the much weaker assumption that the image inteisséqual on both sides of
the image peak, is enough to allow us to ignore the first tefns [Bads to

(A2+A4> - (Al +A3) = —2N (/O_AX h”(X)dX)
2NAXH’ (0) (5.7)

Q

The quad-cell signal is a non-linear function of the imageptlicemeniAx. The non-
linearity, shown in Figure 5.2, is of the form of a saturatiamve. For small displacements,
it is approximately linear, with the signal gain (slope)rmedetermined by the shape of the
speckle image. For larger displacements, the signal 4asij@nd it is no longer possible to
estimate the magnitude of the image displacement.

Using the linear approximation, the wavefront slope, ot®diby dividing the image dis-
placement over the focal length(from Equation 5.2), is

A

1
W (Aot+As—A1—Ag) = o= (Ao +As— Ay — Ag) (5.8)

1
~ 2NH(0)f 2Nh(0)
with the corresponding formulad§ + A4 — A; — Ap) for the slope in the y-direction (refer
to Figure 5.2)h(0) is the 1D angular spectrurfi’ h(0,v) dv.

The sensitivity of the quad-cellNh(0), measures the ratio between changes in the wave-
front slope and the corresponding changes to the quadnatelisity measurements. This

is the reciprocal of the gain, which is a scale factor tunetdhduoperation to estimate the
slope from the quad-cell intensity measurements.

5.2.2 Slope estimation errors

In the presence of photon noise, with an expected photontamfud, the signal in each
quad-cell is independent of the other quad-cells with aavere of%. The variance of
(A2+As) — (A1 + Agz) is the sum of their individual variances, givi?hg Thus combined,
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the quad-cell slope variance (error due to photon nois&aslj00]

. 1 )2 1
EVMmM_mw6V:(mmmJ N = aNh(0)? (-9)

In practice, the quad-cell signal is also corrupted by detaead noise. Assuming inde-
pendent and uniform read noise in each quad-cell detecigf ahe slope variance due to
read noise is

2 2
) 4g2— % (5.10)

EI’ = <(\M_V\&>2>r = < r— Nzh(o)z

2Nh(0)

In both error expressiong(0) can be expressed &$,(0), wherehy(0) is the diffraction-
limited image peak, whil€ is the 1D analogue of the Strehl ratio.

The performance of the quad-cell is derived by Tyler anddq1€0], assuming diffraction-
limited imaging = 1) when the image is an Airy disc (this has the form (i€ as
explained in Equation 2.64). Additionally, analyticalstbns to diffraction-limited images
of extended round objects were also given.

The results from [100] may be summarised more simply by uEiggation 5.9 and some
identities. In a Jing)? circularly symmetric image, the volume under the surfacg is
(Equation 2.22), and the image heighfigEquation 2.19). The maximum height of its 1D
projection, |, Jing /X2 +y2)2 dyatx= 0 is given by Equation 2.20 &s The first zero of
the image is at = 1.22. By appropriately scaling the dimensions of the (fijcfunction

to match the image at the telescope focal plane, we can déeviecal plane image peak
due to a circularly symmetric aperture.

For a circular telescope aperture of diam@&ewith a diffraction-limited image (of an Airy
disc) (Equation 2.17) with its first zero crossing aZZ% radians, and photon count of 1
(corresponding to the volume), the peak of the 1D projedson
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Substitutingh(0) into the quad-cell displacement estimator variance (Egqoat.9) results
in

Q

35/2\?
0351 512

For comparison, the commonly used Gaussian approximatibe dimage on the quad-cell,
as used in Welsh and Gardner [110] or Parenti and Sasielgyé®¢h had actually started
from the image Strehl), is shown here.

1 w2
h(u,v) 27_[02e 202
0 1 w2
h(u) = /wh(u,v)dv: \/ﬁae 202 (5.13)

. . . . 1
whereo is the width of the image, anfa(0) is T

For a circular telescope aperture of diamddeand diffraction-limited imaging, the best
Gaussian approximation is far = 0.43% radians. Using the Gaussian approximation to
the Airy disc, the error contributions to the slope estinthte to photon noise is given by

1 0.29 /A2
Ep_4Nh(O)2_ N (5) (-14)

The read noise contribution is
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2 2 2
o 1ll6or (A
B = N2h(0)2 N2 \D (5.15)

Unlike the photon noise variance which, obeying Poissosastatistics, is inversely pro-
portional to the total intensity illuminating the quadicéte read noise is inversely propor-
tional to the squared intensity.

5.3 Fundamental bound on quad-cell performance

The main properties of a quad-cell are the extent of its linegion, and the sensor gain or
sensitivity, which affects the signal-to-noise ratio. Ylaee dependent on the shape of the
image and the operating light level. The operating perforreaof a quad-cell is determined
by the light level. However, image shape, which is alsoalfihas a less clear impact on
performance.

The sensitivity of a quad-cell isNh(0), where the value dfi(0) can be approximated by
the maximum value or peak of the image. For a Gaussian imhgdntage peak varies
in inverse proportion to the image width. Hence, it is comnfmmthe image width to be
used as an indication of the sensor sensitivity. Howeveshas/n above, the image peak
is the more direct performance measure, and for irreguidrped images (more common
in closed loop adaptive optics systems after partial ctioey; is the correct and more
accurate quantity to use.

The amplitude of the image is more conveniently expressedfesction of the peak am-
plitude of the diffraction-limited image. It is in fact thélanalogy of the conventional 2D
Strehl ratio. From simulations, it was found empiricalhatih 1p ~ FED in Kolmogorov
turbulence, where k is around 0.6 to 0.7.

5.3.1 Cramer-Rao Lower Bound

Given a set of observations (photon locations) derivedaarig from the image, the esti-
mation of image displacement can be formulated as a stafigtstimation problem. Using
the Fisher information (leading to the Cramer-Rao lowerrat)wof a probability density
function, we can quantify the fundamental limit on the perfance of a displacement esti-
mator. With a lower Cramer-Rao bound, the slope estimat@otentially be more precise.
Equivalently, fewer photons are required to achieve thael@tevel of precision.
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The Cramer-Rao bound provides a useful comparison withgtiaator variance provided
by the quad-cell, quantifying the loss of information in thead-cell arising from its coarse
sampling. In contrast, as pointed out in Section 5.1.1, &mroid estimator has an infinite
variance, and so has limited use as a benchmark for compariso

The quad-cell image is a probability density function pagtised by its positior) = X/,
which is the displacement in 1D. The Fisher information efithagef (x,y|0) is given by

J:<[%Inf(x|9)r>:—<;—622Inf(x\9)> (5.16)

Here, the expression for the Fisher information may be sfieglfurther, since the param-
eter@ simply describes a translation of the density functfgr y|6 = X') = f(x—X,y),

0 0
g feye=x) = S5inf(x—x.y)
0
- —E(Inf(x—x’,y) (5.17)

The expectation is taken over all poiritsy). The shape of the image remains unchanged
when shifted, so the expectation is independent of theipasit, which can be ignored.
The CRLB when observing 1 photon is the inverse of the Figtifermation.

o > - = : 2
<[(§ixln f(x,y)r> e 5 [j—xln f(x,y)] f(x,y) dx dy

(5.18)

A more realistic comparison with the quad-cell would restiihe image intensity distribu-
tion to 1D, since the quad-cell measurem@ht+ As) — (A1 + Ag) is fully integrated over
1 axis, and is unable to measure the full 2D shape of the imelgee1D CRLB is given by

1 1
0% 1p > = (5.19)

<[§—Xln f(x)]2> e, [dixln f(x)r f(x) dx
wheref(x) = [* f(x,y) dy.
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Equation 5.19 shows that the Cramer-Rao bound for any im&ggadement estimator
depends only on the shape of the image. The best images fdacksnent estimation has

low Cramer-Rao bounds. The denominator in the CRL%CIn f(x)r, is maximised by
images with strongly varying profiles or slopes. Similatlye displacement of smooth
images (which are highly blurred) is harder to estimate.inmugations, Equation 5.18 and
Equation 5.19 are computed numerically from random speaokdges because of the lack
of an analytical formula for a random speckle.

5.4 Signal modulation and extended objects

The sensitivity and linear range of a quad-cell is dependaniage shape, which is de-
pendent on atmospheric turbulence and the effects of agagtics compensation. Some-
times, the sensitivity of the quad-cell may be too high, dmelitmage will be difficult to
position on the centre of the quad-cell. Here, we show howirtteege shape can effec-
tively be modified using modulation to provide more contreéothe operating range of
the quad-cell. Modulation in a quad-cell signal reducesdssitivity and increases the
linear range [22, 76].

The signal from the quad-cell can be modulated by oscilljative image over the quad-
cell in a periodic motion using an oscillating tip/tilt mom:. The ideal modulation path is
a diamond shaped traverse that spends the same amount ameach quadrant of the
guad-cell. Practical modulation schemes approximatenttisa circular path, as shown in
Figure 5.4.

Figure 5.4 Modulation by displacing the image at the focal plane along a path. In practi-
cal implementations, the circular path on the left approximates the diamond shaped path
typically used for analysis (right).

During modulation, the image on the quad-cell is displacguethding on its position along
the modulation path. The normalised image is now

Nxyl)=hx-X,y—Y) (5.20)
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wherex andy’ are the displacement along tkendy axes for each positiohalong the
modulation path.

To analyse the properties of a modulated quad-cell, thel@mlzan be reduced to the
estimation of a 1D displacemenfix. At each modulation position, the signal from the
quad-cell, extending Equation 5.7, is

(A2+Ag) — (A1 +Ag) = —2N /O_Axh"(x—%) dx (5.21)

whereh”(x) = [%, N (x,y)dy.

The full modulated signal is obtained by integrating thedyaall signal over the whole
modulation path.

Fmil) (Ao Ao~ (As+Ag)) (5.22)

where the quad-cell signal (as given in Equation 5.21) iddpnt on the modulation path
positionl.

m(l) is the modulation function, representing the weightingfiertime spent in each modu-
lation position along the x-axis. Here, we see the advargfgsing a diamond modulation
path, since the “projected” modulation sweep speed is aohstol = X'.

1 ofor—Lox<l
mx)=¢ m 2 2 (5.23)
0 elsewhere

wherel, represents the modulation width.

Equation 5.22 effectively blurs the image over a larger areshe quad-cell, as shown in
Figure 5.5.

Using a diamond modulation path, the modulated signal is
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Modulation width of / Equivalent spot width
9
b’ ,.(0)

— —

AX

Figure 5.5 Shown in 1D, the modulation function blurs the image (left) in a controlled man-
ner, producing the equivalent image with a rectangular shape on the right. For illustrative
purposes, the equivalent image function has not been normalised, so it has a larger area
under its curve - for analysis, the area under each image should be held constant.

NI—

/_m(><’)((A2+A4)—(A1+A3))d>(

_ /Zm(x’)( ZN/ ' (x— x’))dxd%

= —ZN/O AX/mm h’(x—x") dX dx

[ee]

NI—

= —2N/ > [m(x) ©h’(x)] dx (5.24)

Indeed, as pointed out by many authors [46, 100], the bigrceused by the modulation
in Equation 5.24 is equivalent to imaging with an extendepatn(x,y). In that case,
instead of dealing with the point-spread-functigix,y), the image at the focal plane is
expressed as a convolution of the object with the pointegpfanction. By substituting
with o(x,y) ®@h'(x,y), the modulated signal is (by Equation 2.40)

_2N/ a x) ©h’(x) ©m(x)] dx (5.25)

with o'(x) = [, 0o(x,y) dy being the 1D distribution of the extended object, an(ct) the
modulation function defined above.

Comparing Equation 5.7 to Equation 5.24 and Equation 5.25see that the effect of
extended objects, modulation, or both, can be simplifieddsyming an equivalent image
at the quad-cell.
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heqX) = 0'(x) © h"(x) ©m(x) (5.26)

The effect of a modulation is to linearise the response ofadepell and reduce its sensi-
tivity in a controlled fashion. Typically, the modulatioridth is selected to be larger than
the image width itself, so the exact shape of the image nodlom@tters. For a modulation
width I, the height of the equivalent imad(0) is then{. The slope estimate from a
modulated quad-cell is given by

a o (M+A) - (AL+Ag)
- 2N, (0) f
I

o g et As— Al —Ag) (5.27)

Q

The spatial modulation widthis scaled by the telescope focal lendtto give the equiva-
lent angular modulation width olff radians. The slope estimate is no longer dependent on
the image shape, and is now linear over the wider rang}eraﬂians.

The trade-off under modulation is the decreased sengitfithe quad-cell, so the slope
variance increases with the modulation width. The slop@amae under modulation is

2 | 2

5.4.1 Circular modulation paths

The diamond shaped path used for analysis above is not srapottgh for use in physical
systems, where circular paths are used instead. For aainmddulation, the weighting
functionm(l) is equally weighted over a circular path. The modulatedadign

/OZH%T (Ao+Aq) — (AL +Ag)) B (5.29)

where the quad-cell signal is dependent on the modulatisitipn.

Expressing Equation 5.29 in transformed rectangular ¢oates, we arrive at the equiva-
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lent modulation weighting function in 1D by integrating agpthe circular path parametrised
by the angled (I’ = ; cosb).

|
— 1 l
/2, = (Ae+ A1) — (AL +Ag) ———=dI (5.30)
- [\2_ 2
‘ (2)c—1
compared with Equation 5.22, this givesl’) = 7( |1)2 =
m/(3)%-1"

Equivalent alternatives to image modulation have beenestgd, and include using dif-
fuser plates [77], imaging of extended objects [46], or gshre blurring caused by atmo-
spheric turbulence itself [21].

5.5 Closed-loop operation

The above analysis, in common with most published analyssessjmes a constant image
at the focal plane on the quad-cell. For a more completentrexat, we are also interested
in the behaviour of the quad-cell when the image shape is etibmof random turbu-
lence. In practice, the time averaged performance of thd-ga# is not only a function of
turbulence, but also the characteristics of the closeg-&maptive optics system used.

5.5.1 Statistical analysis of quad-cell performance

The performance of the quad-cell in open loop is found fromdhsemble average of the
slope variance (error) over the turbulence process andlagohoton arrival process.

In a closed-loop system, the performance of the quad-céhked to other components
in the system, although it is often attributed only to thedyaall sensitivity [22, 75]. The
control system of a closed-loop wavefront compensatiotesyss shown in Figure 5.6.
Successive wavefront estimates are added to the curreefrwat estimate through a cor-
recting deformable mirror, allowing the system to track éwer changing turbulence. The
integrating function of the correcting mirror results in @antrol system with an internal
state. A complete analysis of such a closed-loop systengusintrol theory is presented
by Parenti and Sasiela [69, 116]. Here, we have simplifiecttadysis by considering only
the steady state response of a closed-loop system. Thiexapgtes slowly varying tur-
bulence or equivalently a fast loop response, and is suffiteeillustrate the performance
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improvement compared to open loop conditions.

Wavefront
—~

Noise

Residual
wavefront
(Error)
Adjustable

gain

Residual
wavefront
Estimate

Deformable ﬁ

mirror

Varying ~ sensor
sensitivity

Wavefront j
Estimate

Figure 5.6 Control path of a wavefront sensor in a closed-loop adaptive optics system.
Here, G, = 2Nh (refer to Appendix) is the changing sensitivity of the quad-cell caused by
the changing |mage and G; is the adjustable feedback loop gain.

During normal operation, the temporal slope signal is estia from the quad-cell signal
through an adjustable ga®, (analogous t@>; in Figure 5.6 without loop closure), which
also determines the slope variance. After adjustment,pgtimmal value for this gain, which
now remains constant over the course of operation, minsniseslope error,

(M —W)?)) = ({(Ga(A2+As—A1—Ag) ~Wy)?))
= ({(Ga(2NN(OMW+ np) —We)?))
= ({(G2(GaWk+1p) —W)?)) (5.31)

wheren represents the photon noise term in the quad-cell sighAals A> — A; — A4), and
G1 = 2Nh(0) the sensitivity or gain of the quad-cell. The expectatiorstaken over the
random wavefront and photon arrival processes.

The wavefront slope and photon noise distributions botrelmero mean. Assuming no
correlation between the wavefront slope, photon noise,imade (\Wh(0) <\/\&np> =
{nph(0)) = 0), the optimal value 06; is

<Gl> <Wx2>

%2 = G W+ ()

(5.32)
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A simpler solution, usingGy (A2 + A1 — A1 — Az) — W) =0 or

1 1
©2= 16 = 2N (hO) (633)

can be used instead. Keeping the combined feedback loopcgastant, this solution
represents an approximation to Equation 5.32 Wfﬂf@ is very small compared to the
other quantities, and the variancehg) is small compared téh(0))2.

The slope error expression of Equation 5.9 remains validspeeial case of Equation 5.33
when the image speckle is unchanging. Note that the shont ¢&posure equivalent of
Gy = <Gil> = <2N—ﬁ(0)> for Equation 5.33 cannot be realised in practice, since twer
time scale involved, the system gé&m is static.

5.6 Non-linear errors in the quad-cell

The derivation of the quad-cell error in Equation 5.9 assuthat the image displacement
is small. The linear approximation in Equation 5.7 is moracatly

ro_ (Pt A)— (At Ag)
2Nh(0)
—2N [3 ™h(x) dx
2Nh(0)
— [5™h(x) dx

= m (5.34)

When the image displacement is large, the non-linearitygoéfon 5.34 becomes sig-
nificant. In the extreme case where the quad-cell signakiguently over-saturated, the
guad-cell signal can be simplified to a piecewise-linearagmation, where the signal is
either saturated (constant) or linear with respect to inthag@acement.
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A N whenW, > T%O)

—Ox

(Aot Aa) = (AL t+Ag) = —ZN/O h(x) dx= ¢ 2Nh(O\W when—z5 <W, <zl
—N whenW, < —T%O)

In that case, the error is

T%O) —W,  whenW > —ZNﬁ(O)
‘%VX =W —W)2=1¢ 0 When—ZN—ﬁ(O) < W < zN—r11(0) (5.36)

—T%O) — W, whenW < ——ZNﬁ(O)

and the expected error is

() = /_Z%VXP(WXWWA (5.37)

5.7 Quad-cell performance comparisons

In this section, the behaviour of Equation 5.9 in turbuleisaestimated using a simulation.
From the simulation, the slope variance from the quad-satbmpared to the theoretical
Cramer-Rao lower bound for slope estimators. Additionallg also confirm the simula-
tion results by comparison with Yura’s ( [115]) approxinaatifor tip/tilt corrected image

profiles.

In the simulation, we model the effects of atmospheric tlghce as wavefront aberrations
with Kolmogorov statistics. A sample of Kolmogorov phaseegns at variou% is gener-

ated using the fractal method of Harding and Johnston [4.a8sume a single layer of
turbulence at the telescope aperture plane, which is focos® a quad-cell. The peak of
the turbulence degraded image on the quad-cell then detesntine variance of the slope
estimator as given by Equation 5.9. The average image pesékchtturbulence level de-
scribes the performance of the quad-cell. As shown in Eqndii33, the averaged slope

variance is; <%(0)> .
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At the same time, the shape of the image distribution at tbalfolane also determines the
Cramer-Rao bound for the slope estimate, as given by Equatid® and Equation 5.19. In
this simulation, the CRLB is calculated by discrete nunardifferentiation. Again, the
CRLB is averaged over all simulated phase-screens at emir(}ge) of turbulence.

5.7.1 Tipltilt compensated approximation

Using the rule-of-thumb that atmospheric turbulence déggaand reduces the resolution

of a large telescope to be equivalent to a smaller telescapedvameterrg, the resolution

of the image at the focal plane is approximatedléﬁi. In fact, the long-term exposure

image is Gaussian shaped, with the best fit to the image wieanitith (standard deviation)
il 1224 1.22\

of the Gaussian i5 7 ~ 0.43 .

fo fo

In Yura’s work [115], the effect of tip/tiltlcompensation time image size is accounted for
by the enlargement af to (14 0.37(12)3). For this centroidl based slope estimator, the
variance, as given by the best fitting Gaussian, is

i 1.22) — for % >1
Std.de\W} = 2@o<1+0~37(ﬁ°)3> (5.38)
1.2 D
275D for Ty < 1

When% < 1, for low levels of turbulence, the effects of turbulence aegligible, so the
variance is limited by the size of the telescope aperunestead ofr .

Simulation results

The measured quad-cell errors, CRLB and Yura’s theoregigpfoximations are shown in
Figure 5.7. Not surprisingly, with higher turbulence whae focal plane image is highly
blurred, the estimation error increases. The measuretseagoee very closely with Yura’s
approximation, confirming the validity of our approach. Gmared to the CRLB, the errors
are not more than a few times larger than the theoreticalljesable minimum, so using a
guad-cell for slope sensing represents an acceptabledfgdgven its simplicity.

Based on the previous assumption of the peak of each imagg bentered on the quad-

1Given a Gaussian profile, the centroid estimator no longeirfaite variance, and is in fact the optimal
displacement estimator. Note that in this model, the estim@erformance is derived from thmage width
but is equivalent to the formulation based on image heigitesthe image shape is fixed.
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Figure 5.7 Errors in the slope estimate of a quad-cell due to photon noise (solid-dotted
line) as compared to the CRLB in 1D (solid line) and Yura’s approximation (dotted). The
slope standard deviation is expressed in multiples of % [rad].

cell, the expressions developed here are only valid forlsmalge displacements. Under
open loop conditions, when the randomly displaced imagegerssly misaligned with
the centre of the quad-cell, an additional non-linear eisontroduced. The exact value
of h(0) is also subject to the randomness of each image, so itsefifferfrom the average
guad-cell sensitivity will give rise to further errors. Tdeeerrors are collectively grouped
into the non-linear error term, and will be included in siatidns of the wavefront sensors
in the following sections.

5.8 Conclusion

After examining the direct centroiding approach for cadtulg image displacement, and
encountering problems with photon and read noise, we rethecdisplacement or slope
estimator to a quad-cell. Assuming small image displaceésnienthe quad-cell, a linear
approximation is use to examine the estimation errors irgtleal-cell. The critical factor
affecting the performance of the quad-cell is the image slueythe quad-cell. The closed-
loop behaviour of the quad-cell is abstracted to a modeleirttage shape on the quad-cell.
The quad-cell modulation process can also be describedrega-snanipulation operation
for adjusting the performance of the quad-cell.

In this chapter, a simulation of the errors in the quad-satiimpared with the fundamental
performance limit for any image displacement estimat@ Ghamer-Rao lower bound. The
work in Yura [115] is also extended and modified slightly toyade a second data-point for
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comparison and validation. This leaves us satisfied thajulae-cell is most appropriate as
a practical image displacement estimator.

The slope measurement process in the quad-cell forms the foasvavefront sensing in

the Shack-Hartmann and the pyramid wavefront sensors.ngatudied the behaviour of
the quad-cell, the extension to wavefront sensing of highéer modes is straight-forward,
and we can begin to examine these wavefront sensors in themapter.



Chapter 6

Comparison of the Shack-Hartmann
and pyramid wavefront sensor

The previous chapter has shown that the precision of the-gehdlope estimate is de-

termined by the image intensity and Strehl ratio. This chajioks at the subdivision

operation used to split the basic quad-cell arrangememti®e4.3.1) into smaller prob-

lems. Global slope estimation with quad-cells can be exdrid estimate higher order
modes in wavefront aberrations by subdividing the wavdfedrerrations at the telescope
aperture into smaller regions, or subdividing the imagitane and re-imaging, as in the
pyramid sensor. All the wavefront sensors introduced ingB#rad4 subdivide the complex
field, but this is performed along the optical path at diffé¢ngositions.

6.0.1 Resolution and precision

The subdivision of a complex field forms the common basis dhlwavefront sensors
examined in this chapter. In estimating the overall wavdffanction, two important fac-
tors to consider are the resolution and precision of the fareestimate. In a quad-cell,
the precision of the wavefront slope estimate at the tef@seperture plane is determined
by the image Strehl and intensity at the telescope focalepldrarge telescope apertures
(more light), or small levels of turbulence (higher Strehdsult in more precise wavefront
estimates.

In the original quad-cell arrangement, only a plane of bédbfthe wavefront, derived
from the global wavefront slope estimate, is available. oligh a subdivision process,

121
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more slope measurements within the same area can be obtdinedpatial resolution of
the wavefront refers to the spatial sampling of the wavefestimate within the aperture.
At higher resolutions, the sensor estimate can approxitmetevavefront more closely,
allowing more types of aberrations to be corrected.

Given a finite amount of light, the subdivision size and positis crucial to achieving
optimal performance. Precision and resolution are in fatginined by a space-bandwidth
trade-off. We examine here the implications of the spacedadth trade-off in wavefront
Sensors.

6.1 The Fourier Transform in wavefront sensors

In an optical system aimed at a point-source object, the t@nfjelds between the aper-
ture and focal planes are related by the Fourier transfornopdgating a complex field
A(u,v)e?UV) from the telescope aperture plane, whafe,v) is the aperture magnitude
function, andg(u, V) is the phase function, results in a complex fiald,y) at the focal
plane given by (Equation 3.28)

u(x,y) = /w /w AU, v)e UV g 3T W) gy gy— /00 /w p(u,v)e AT W) gy dy
o T 6.1)
where (u,v) and (x,y) represent the spatial coordinates in the aperture and fdaaks
respectivelyp is the wavelength of the monochromatic light source (theefrawnt is given
by W (u,v) = 2}\—"(p(u,v)), andf is the focal length of the optical system. The complex field
u(x,y) should not be confused with the coordinati the aperture plane.

The image at the focal plane is given by the squared-magndbt x,y). When normalised

to sum to 1, it is the point-spread-function of the opticadtsyn.

_ u(x,y)[>
o 5 lu(x )| dx dy

h(x,y) (6.2)

Using the Fourier equivalence of functions in correspogdhaurier domains, we can better
understand the operations of both wavefront sensors anidilyompare their functions.
The Fourier relationship between the aperture and focalgsl@nables us to derive dual
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operators in each domain. As shown in Equation 4.13, theéaisment at the spatial plane
is linearly related to the wavefront slope in the FouriemglaThis duality between image
displacement and wavefront slope forms the fundamentéaiiion of wavefront sensing.

The resolution and precision constraint is located in opygpSourier spaces, and is subject
to the space-bandwidth limitation. In the spatial domae,gpatial width of a signal is

Ax = \// / X2 |u(x,y)|? dx dy 6.3)
In the Fourier domain, the width of the corresponding spectis
Au— \// / W2 |p(u,v)[? du dv (6.4)

According to the uncertainty principle, the space-bandhvpioduct is a constant, and rep-
resents a more general limit to the precision that is acbhieva any physical system. In

wavefront sensors, this represents the sampling betweespttial and the Fourier fre-

guency domain.

1

Depending on other system constraints that need to be edfisine can choose between
having many high noise measurements, or fewer low noiseungagnts, while still satis-
fying the space-bandwidth limit.

6.2 Wavefront subdivision

The quad-cell at the focal plane of a telescope provides amjpbal slope measurement.
The quad-cell can be replaced with a transmissive pyrarmitsh to re-image the aperture,
as seenin Figure 6.1(a). Integrating the total intensigaich aperture image will reproduce
what is still equivalent to the quad-cell, providing a waynteasure the global wavefront
slope. However, since images of the aperture are now algjlaore local slope variations
within the aperture can be measured [9, 76].
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Figure 6.1 Extension of the quad-cell to estimate higher order wavefront slopes.

Alternatively, the complex field at the telescope can bedtlyalivided into separate regions
using a lenslet array in the aperture, and refocused, asrsimkigure 6.1(b). The image
displacement at the focal plane of each sub-region corretspio the local wavefront slope
over that region [72,85]. The subdivision operation mayp als implicit, as in the curvature
and geometric sensors, where the equivalent subdivisicurs@t an intermediate position
between the aperture and focal planes. Chapter 7 examieesuthiature and geometric
wavefront sensors.

This chapter examines two extreme positions for subdigidite complex field, as rep-

resented by the Shack-Hartmann (aperture subdivision1f]2 and pyramid wavefront

(focal plane subdivision) sensors. In the following seasiove consider the effects of pho-
ton and read noise on the slope estimation errors in bottstgpavavefront sensors. By

extending Equation 5.9 to the measurement of local slopeh({§her order aberrations),
we may directly compare the slope estimation performante@ivavefront sensors.

The Fourier duality between the two wavefront sensors aisaiges additional insight into
their similarities and differences. Many operations infbativefront sensors can be shown
to be equivalent. However, there are also critical diffeemnthat confer advantages to the
pyramid wavefront sensor.

6.2.1 Resolution and precision of wavefront sensors

Figure 6.2 shows a simplified layout of the Shack-Hartmamsaeand a focal plane lenslet
array or the pyramid sensor. In the Shack-Hartmann sensmsket array produces multi-
ple images of an object through the telescope aperture.nmasi, the focal plane lenslets
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re-image the aperture plane through the equivalent of aéhxdlét array at the focal plane,
creating multiple images of the aperture.

Resolution

[ [T T

Y Object ¥ Object

Accuracy Lenslets X = —

A P Accuracy
—— Quad-cells
- HoLenslets
Aperture images
CCD imagers
_[TWTT] [TWTT1 P
Resolution (a) (b)

(@) The relationship bgb) The duality and equiv-
tween resolution andlence between the subdivi-
precision in  wavefronsion and slope detection in
Sensors. wavefront sensors.

Figure 6.2 A comparison of the Shack-Hartmann and pyramid wavefront sensors.

In wavefront sensors, the resolution of the slope estingteviersely proportional to the
spatial extent over which the local slopes are estimatedgewine precision, or variance
of the estimates, is determined by the measurement fluothisatiaused by photon noise.
The aperture subdivision operation in the Shack-Hartmamrectangular windowing op-
eration. This is equivalent to convolution with the sincdtian in the lenslet focal plane
(Equation 2.53), or a blurring operation.

In both wavefront sensors, a displacement measuremerd &idal plane corresponds to a
wavefront slope measurement in the aperture plane. To be precise, the displacement
measurement is initially performed by sampling the totémsity within the rectangular
CCD arrays used to subdivide the measurement plane. Thielehion and sampling op-
eration corresponds to a multiplication (with a sinc) anaglng operation at the aperture
plane. The intensity summing operation results in a losdénhigher frequency compo-
nents in the recovered wavefront.

The Shack-Hartmann sensor subdivides the field at the apgitane, and forms arrays of
images of the object (assumed here to be an unresolved gminte) at the focal plane of
the lenslets. The lenslet images are blurred by the suloiivigeration at the dual aperture
plane and thus enlarged, are focused onto arrays of quisd-Eelch quad-cell consists of
2x2 intensity detector sections that subdivide the imageel

The pyramid sensor subdivides the complex field at the tefestocal plane, and re-images
the telescope aperture onto CCD detectors. The image sagnpiocess by the CCD array
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implicitly subdivides the image. The aperture image suisthw has a direct analogy to
the aperture subdivision with lenslets in the Shack-Hantmsensor. Similarly, the focal
plane subdivision operation is analogous to the quad-tmlesmeasurement operation in
the Shack-Hartmann sensor. In contrast to the Shack-Hansensor, slope sensing in the
pyramid sensor occurs before aperture subdivision, souraitd) of the focal plane image
occurs.

Although the similarity may not be obvious at first, the slopeasurement operation is
in fact identical in both wavefront sensors. In the Shackuann, this is performed by
comparing the intensity within the quad-cells, while in gygamid sensor, the displacement
of the single focal plane image is derived from comparisdrib@intensity measurements
in each facet of the pyramidal prism.

6.3 Shack-Hartmann wavefront sensor

As shown in Figure 6.2(a), the spatial resolution of the \irre at the aperture is given
by the size of the lenslets of the Shack-Hartmann sensor k-witre lenslets, more slope
measurements are obtained, providing finer sampling of thefront.

On the other hand, with fewer larger lenslets, the imageleafdcal plane of the lenslets
are smaller and brighter, providing better slope estim@b@ger variance). Although larger
lenslets have higher illumination and higher image peakarfation of image shape), the
higher illumination alone within a lenslet does not lead ny anprovement in the preci-
sion of the global averaged slope. As will be shown in Secfiéhl (and summarised in
Table 6.1), since the total illumination remains constém, only improvement in overall
precision arises from the higher image peaks in each lenslet

A zonal wavefront estimate can be reconstructed by intatpg between the local sen-
sor slope signals. Southwell [93] explored the differenpsl reconstruction geometry for
interpolating between measurements and derived theiectisp error performances.

Alternatively, the wavefront estimate can be expressedring of the Zernike coefficients,
giving rise to a modal estimate. Section 4.3.1 reconstcutite full wavefront estimate
from sensor (in the Shack-Hartmann, local slope) measurEmmeilthough the Zernike
polynomials are orthogonal, their slopes are not, so a falirixiinversion is required to
solve for wavefront coefficients. The optimal MAP solutian the Shack-Hartmann sensor
is derived in Bakut et. al [10].
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The following section derives a performance measure foStreck-Hartmann based on the
image Strehl, as an extension of the quad-cell, to faalitatomparison with the pyramid

sensor. The same statistical estimation framework is asd tb examine the optimal sub-
division size for the lenslets in the Shack-Hartmann serBaois completes the discussion
on the trade-off between the precision and resolution ofefrant estimates in the Shack-
Hartmann sensor. The analysis here also provides the lmagokdifor understanding the

way the pyramid sensor “side-steps” the resolution-precismit.

6.3.1 Shack-Hartmann slope errors

In the Shack-Hartmann sensor, the variance in the slopaa&stifor each lenslet is caused
by two components, photon noise and read noise in the CCatdete Using the photon
noise error expression of Equation 5.9 and Equation 5.10@cfwdssumes a read noise of
o? in each detector element of the quad-cells), the variandg jrithe slope estimate for a
lenslet (averaging over the random photon and read-noikeed variations), is

e = ((Wg—wg)?) =65, +e
1

2
aNh (02 % N2y (0)2 ©©)

wherees, is the slope error due to photon noise @&gds the slope error due to read noise.
hi(0) is the peak of the projected angular spectrum of the leriglet)(= [, hi(x,y)dX).

The global slope estimate at the aperture is formed by a wemgbum of the local slope
signal in all lenslets. The weighting assigned to each &rsgnal is given by the pro-
portion of the lenslet area to the total aperture area. Assythere areéM lenslets in the
Shack-Hartmann sensor, the global slope estimate is

WL — 1y Rl

s 6.7
MR (6.7)

whereW is the global wavefront tilt estimate in the Shack-Hartmaansor, andvs is the
local wavefront tilt estimate in th# lenslet.R; represents the area of th2lenslet.

The photon count within a lenslet can be assumed to be propaltto the lenslet area,
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giving

W, = S NG, (6.8)
° i; Neot 3 '
with N; being the photon count in th&" lenslet, and\iot = Y N; being the total photon
count over the whole aperture.

The total variance in the global mean slope given by the Shiokmann sensor (from
averaging the fluctuations due to photon noise) is

Es = (Ws—W)?) =Es, +Es = % (ﬁfes

13 Ni o?
TN i; <4hi(0)2 ” hi(O)Z) (6.9)

with thei in e to differentiate the local slope error between each lenslet

Assuming a local slope estimator that is optimal in the stigfl sense (the minimum vari-
ance unbiased estimator [51] that achieves the Cramer-Bandh as examined in Sec-
tion 5.3) is available for each measurement, and the measmts in each sub-region are
statistically independent, then the global slope estichatigh the weighting proposed in
Equation 6.7 is optimal, and forms a minimum variance urdzasstimator.

The quad-cell, due to under-sampling and measurementationgis not a minimum vari-
ance estimator (as demonstrated in Figure 5.7). Also, ibarsually some correlation be-
tween the measurements in neighbouring Shack-HartmasletenSo although the global
slope estimate in Equation 6.7 is not a minimum variancenegé, it is a good estimate
that compares well to the theoretical limit (Section 5.7.1)

6.3.2 Lenslet size

In this section, we examine the performance trade-off wewlin varying the subdivision

size in the Shack-Hartmann wavefront sensor, and show hewlerives the optimal lenslet
size. Frequently in closed-loop systems, the image displaats in the Shack-Hartmann
guad-cell detectors are small, allowing non-linearitiegshe Shack-Hartmann quad-cell



6.3 Shack-Hartmann wavefront sensor 129

detectors to be ignored, giving a linear wavefront modalrestor. From the quad-cell
signals in each lenslet, a maximum-likelihood solutiormwavefront is obtained. In spite
of its slightly lower performance, the maximum-likelihosdlution is chosen in favour of
amaximum a posteriogolution because it is sufficient for the analysis here asdipler.

The performance of the Shack-Hartmann sensor is deternbiyé¢le size of the lenslets
used. A trade-off exists between larger lenslet sizes whiokide more precise wavefront
estimates, and smaller lenslet sizes, which increase sbéuten of the wavefront estimate.
To examine this trade-off, we compare the error terms in theck-Hartmann sensor over
different lenslet sizes. The wavefront sensor is modellgd (from Section 2.5.2)

d=Ha-+n (6.10)

whereH is the model of the wavefront sensor that includes the etiestubdivision size,
and the noise in the slope measuremenisare modelled by zero-mean Gaussian noise
(Equation 6.6). The Zernike decomposition of Kolmogororbtuencea are also zero-
mean and take on Gaussian statistics.

The maximum-likelihood inverse ¢ is (Equation 2.119)

HY =(HTH) tHT (6.11)

The forward and inverse matrices are generally not of fulkrasoH™H = P is not the
identity matrix, but a projection matrix describing the efgtable modes in the coefficient
vectora. Terms ina that are not detectable corresponds to zeroes iR tmetrix.

The wavefront estimation error, taking the expectatiorr alie turbulencear and photon
noisen is

<trace<(H+d —a)(H"d— a)T> >a,n

= trace((1—P)(aa™), (I1-P)) —i-trace(HJr (nnT>nH+T> (6.12)
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We used the property that the turbulence and photon noiseeatemean Gaussians and
uncorrelated to each othéan™) = 0.

Simulation

Simulations of a Shack-Hartmann sensor is performed byrgéng 200 random Kol-
mogorov phase-screen%0 E& 8) as the turbulence, then measuring the sensor performance
when estimating 8 Zernike modes in the turbulence. The waneéstimates across differ-

ent configurations of the Shack-Hartmann with different benof lenslets (ranging from

1, 2, 4,8, 16, 32, to 64 lenslets across the telescope apat@56 pixels), adding Pois-
son noise with a mean of 800 photons (averaged over 50 phatise frames for each
turbulence instance), are then compared.

Figure 6.3 illustrates the trade-off between sensor prtend resolution, and shows each
term of Equation 6.12 separately.

14+
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Figure 6.3 The effect of increasing the number of lenslet (and reducing their size corre-
spondingly) in the Shack-Hartmann sensor.

Due to the limited resolution of the wavefront sensor, onlyrated and finite number of
Zernike modes can be estimated. The first term of Equatidhduéntifies this error, which
is effectively a wavefront fitting error. This error is deplemt on the Zernike coefficient
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covariance matriq = (aa'), which is derived from the statistics of Kolmogorov tur-
bulence. When more (smaller) lenslets (plotted over theis-af Equation 6.12) are used
to subdivide the telescope aperture, more slope measuteganbe made, increasing the
sensor resolution and reducing the fitting error (shown aslfshed “fitting” error curve).
The fitting error increases again when there are more thaBZxslets used because of
the increasing inaccuracy in modelling Zernike waveframtctions as discrete pixel grid
elements.

The second term of Equation 6.12 is the photon noise errgrggation term, and describes
the precision of the wavefront estimate produced by the fmartesensor (shown as the
dot-dashed “Photon noise” error curve). More (smallerklets produce larger images at
their focal planes, reducing the precision of their slop@esge. Here, in contrast to the
fitting error, having more lenslets lead to less preciseeslegtimates, corresponding to
higher errors in the wavefront estimate. Again, modellingcicuracies lead to a break in
the error trends beyond 32x32 lenslets.

The sum of the fitting error and photon noise errors (the dotBum” error curve) do
not correspond to the actual measured sensor error (thek“Sansor” error curve). The
discrepancy is small and can be ignored as it arises from mglemaccuracies due to the
discretisation from pixelisation and increased non-lirexeors at smaller lenslets sizes.

In summary, smaller lenslet sizes lead to more wavefrontendbing detected, but with
lower precision. Conversely, with larger lenslets, fewarafront modes are detectable, but
with higher precision. The combined total error in the ShEektmann sensor is minimised
by matching the size of the lenslets to atmospheric turlmglerr-rom this analysis of the
trade-off between sensor precision and resolution, thenapienslet size is found to be
related to the turbulence coherence lengghconfirming the rule-of-thumb used for sizing
lenslets to matchg in the Shack-Hartmann sensor.

6.4 Pyramid wavefront sensor

For analysis purposes, the analogy between displacem@miésn at the focal plane of
the pyramid sensor and displacement estimation in qudsl-cah be generalised to NxN

1The sampled, discretised Zernike polynomials (on a rectiangirray) are no longer mutually orthogo-
nal. The residual errors due to the sampling process depetideonumber of pixels used to represent the
polynomials or the frequency content of the Zernike polyr@mSince the higher Zernike modes have a
higher frequency content, the discretisation error is eigfig prominent at higher modes, so the number of
modes simulated should be kept low.
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centroid estimators, just as in the quad-cell [18]. In tlysigalent arrangement, the pyra-
mid sensor consists of an array of lenslets, subdividingtimeplex field at the focal plane.

Each lenslet delineates a square section of the focal flareigh which the complex field

is focused to form low-resolution images of the telescoptape.

Mathematically, the propagation of the complex field at #legcope aperture to the tele-
scope focal plane is described by an optical Fourier transfoAt the focal plane, it is
windowed or subdivided by the lenslet array, and each sgiomas then propagated again
with a Fourier transform to the lenslet focal plane. Becahseocal plane represents the
frequency domain of the complex field at the aperture pldme stibdivision operation at
the focal plane can be described by a filtering operation.

The lenslet windows act as two dimensional “brick-wall"dit$ in the frequency domain,
so the equivalent operation in the spatial domain (aftemaging the aperture) from the
Fourier convolution-multiplication relationship is a bling with the sinc kernel. This blur-
ring or low-pass filtering is determined by the size and pasiof each lenslet.

The lenslet transmittance is a rectangular window with disi@nsAx by Ay, and centred
on X,Y), through which the complex field(x, y) is transmitted and re-imaged.

S(x,y) = (6.13)

L for (X = §) <x< (X + 8. (Y =) <y< ¥+ )
0 otherwise.

Each windowed complex field is propagated with another Eouransform to the lenslet
focal plane, where a blurred and inverted image of the tefgsaperture is formed.

a(E,mefen = Z{s(xyu(xy)}
= F{sxy)}oZ{uxy)}
— Axei%%ésinc(f—);fmyei%y”sinc(%n)

© A(—&,—n)d?=&=1) (6.14)

The extent of the blur is determined by the convolution keragwo-dimensional sinc
function (first term of Equation 6.14). The wider the lens)¢te narrower the sinc function,
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and the less blurring is present in their aperture images

Returning to the problem of global mean slope estimationcareignore local slope dis-
tributions, and sum the image intensity over the whole apertThe total intensity in each
aperture image is (by Parseval’s theorem) the same as Hi@tiensity that passes through
the corresponding lenslet.

[ [ |amé®en| dedn= [ [" scyueyP ddy  (6.9)

This problem reduces to the familiar image displacementt{ogl) estimation problem at
the telescope focal plane.

A practical advantage to imaging with a CCD array in the pydasensor is the pixel bin-

ning function. Whether implemented in hardware or softwpneel binning easily allows

for effectively variable pixel sizes. In the Shack-Hartmasensor, this is equivalent to
varying the size of the lenslets, a function that is not gesn practice.

6.4.1 Pyramid sensor slope errors

In this section, we restrict our attention to the pyramid gfeant sensor, which is a 2x2
guad-cell arrangement at the focal plane. The intensity eaeh quadrant in the focal
plane is found from the total intensity of its correspondapgrture image.

In most analyses of the pyramid sensor performance, thedwadih is used as a measure
of the sensitivity of the pyramid sensor [22,75]. In contytfse analysis here uses the image
height, as previously explained in Chapter 5. Using the epedidformula at the focal plane
(Equation 5.9 and Equation 5.10), the error in the slopenegé is given by

Ep = (Wp—Wp)?) = Ep+Ep
1 1
= INeghee (02 PO N Eahai 02 NZheer (0)2 (6.16)

2Analytical approximations to Equation 6.14 have been @éerlyy assuming a rectangular telescope aper-
ture and a uniform wavefront slope within the telescope tapef18]. Based on the assumptions outlined,
the aperture images can be expressed as exponential irftegrtions defined to b&i(x) = — [, & dt
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where the subscripgb denotes the pyramid sensor, dmg(0) is the 1D image peak (the
projected angular spectrum from the telescope). In the-neék calculations, we assume
the use of P pixels to measure the aperture image, with imdigpe read-noise af? in
each detector element.

Given the global slope estimate, an average of the locaksihpasurements, the noise
present in each local slope measurememttisnes larger

(6.17)

6.4.2 Duality with the Shack-Hartmann

Using Fourier optics we have seen that the telescope apahd focal planes behave as
dual spaces, where the subdivision operation in one plasdtsein a reduction in the
resolution in the dual plane [17]. The Shack-Hartmann semsy be seen as a complement
to its dual, the pyramid sensor, which operates with the simgoplanes in the telescope.

This duality reveals that the dual wavefront sensors anetici in all respects, except for
the order of the subdivision and slope measurement opesatibhe performance limit of
the wavefront sensors is closely tied to the subdivisionsgaoge measurement operation,
and the optical planes where these operations are performed

In the Shack-Hartmann sensor, the slope is measured atd¢hkediane of lenslets which

subdivide the aperture plane, so the sensor performancated by the size of the lenslets.
In the pyramid sensor, the slope measurement is perforntee &lescope focal plane, so
its measurement precision is limited by the size of the telps aperture. From compar-
isons of the correspondence between the wavefront semg@estpect the performance of
the pyramid wavefront sensor to be higher than the perfoceaf the Shack-Hartmann
sensor.
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6.5 Comparisons of sensor performance

To compare the performance of the pyramid sensor to the SHadknann sensor, we as-
sume that, relative to the aperture image size, the CCD wbetpixel size in the pyramid
sensor is matched to the relative size of the lenslets in HaelSHartmann sensor. This
is done by settindgM, the number of lenslets in the Shack-Hartmann sensor, e¢qual
the number of pixels per aperture image in the pyramid seewrexample, Figure 6.2(a)
shows 6 lenslets across the telescope aperture in the $tatkiann sensor, simplified
to 1 dimension. Correspondingly in Figure 6.2(b), there@mmaging pixels across each
aperture image in the pyramid sensor. This means that boHosehave the same number
of slope measurements, and consequently can be expectstihtate the same number of
modes in the turbulence.

To simplify the analysis, we assume a square telescopeuapetin the Shack-Hartmann
sensor, we further assume th®t0) no longer varies from lenslet to lenslet. Reducing
the summation in Equation 6.9, and usiNg: = MN; (uniformly illuminated telescope
aperture), the slope variance is

1 Mo?
Es = r 6.18
) ANt (02 NZ,:hi (0)2 (6.18)

It should be noted that Equation 6.18 biases the slope \@iararginally in favour of the
Shack-Hartmann sensor, since in a circular telescopewapepartially illuminated lenslets
have a loweh;(0) and consequently contribute higher noise.

To compare the Shack-Hartmann sensor performance to tlaenpyrsensor, we divide
Equation 6.18 by Equation 6.16. The mean sensor errors@¢aygghoton noise, as derived
from a single frame of turbulence, is

Es . Ptel (O>2

Ep - hi(0)2

(6.19)

Unlike conventional analyses which do not unify the wavefrsensors [106, 109], the
advantage of using a common dual framework for describiegwhvefront sensors has
allowed us to “cancel” many similarities in two what inifialooked very different sensors,
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. Shack-Hartmann Pyramid
Slope variance[r&] : : . .
Photon noisg Read noise Photon noisg Read noise
A2 A2 A2 A2
Per measurement| O % oﬁ(;ig O % af(ﬁiz)
A2 A\2 A\2 A)?
Averaged global tilt] O (,f,"t)t MUE@ O (,\',Dt)t PUE@
0 ot o ot
Resolution [m] d d

Table 6.1 Summary of the ideal wavefront sensor performance (photon noise). In the
Shack-Hartmann sensor, D = v/Md, and Nt = MN;, where M is the number of lenslets.
The pyramid sensor configuration is matched to the Shack-Hartmann sensor by making
P=M.

leaving a direct comparison of the differences betweenwoestensors.

6.5.1 Strehl as performance measure

As an ideal performance benchmark, the results for theadifion-limited case is sum-
marised in Table 6.1. Under ideal conditions, the perforreanf the pyramid sensor is
(%)2 times better than the Shack-Hartmann sehsor

In practice, the performance of wavefront sensors in ofmsralt adaptive optics systems is
less than perfect. After averaging the “instantaneougilted Equation 6.19 over time (or
the turbulence process), the actual average performaneavefront sensors can be related
to the ideal situation using the Strehl ratio as shown in EHqna.20.

(Es) _ (ei(0?) _ (Tiel)*hrep(0)?

(Ep) (02— (ri)?h,(0)2
wherehe|, andhj, represents the telescope (pyramid sensor) and lensletk$tartmann)
image peaks under diffraction limited conditions, dnthe Strehl of their respective long-
term exposure in closed loopifp(0) = h(0)). T is in fact the 1D analogy of the con-
ventional 2D Strehl ratio. From separate simulations, g#smated thaf 1p ~ 5y in
Kolmogorov turbulence, wheteis around 0.6 to 0.7.

(6.20)

The Strehl of the long-term exposure image provides the épasm [89] performance of

3The Shack-Hartmann sensor could be configured so that thesely one lensletn = 1, across the
aperture (allowing only the global mean slope is to be edtdja Such a configuration results in equal
performance between the two sensors.
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the sensors. With tip/tilt correction, the sensor perfarogais given by the Strehl of the

short-term exposure image. We are interested in the peafocenof the wavefront sensors
when the higher order wavefronts are corrected, when thgeosated image takes on a
characteristic core and halo structure [85].

Under low turbulence levels (smz%), the performance of the Shack-Hartmann sensor (the
Strehl ratio of each lenslet image) does not change signtficaln contrast, the pyramid
sensor image resolution is roughly equivalent to that frotal@escope of diameteap, so

the Strehl ratio and performance of the pyramid sensor indagjes significantly. Under a
closed-loop system, we expect the performance of both waviesensors to improve again.
The pyramid sensor should now show a higher level of imprardnm its performance.

6.6 Simulation of operating conditions

Kolmogorov phase-screens [42] are used to simulate thetefté atmospheric turbulence,
and estimated using their Zernike modes. By keeping the puwitZernike modes under
consideration low (20 modes) and using 64x64 pixels for fertare size, discretisation
errors are kept low, and are insignificant. The closed-loagefront is approximated by
completely cancelling the 8 lowest modes in the wavefront.

In the Shack-Hartmann sensor, the complex field at the ajgegulivided into 8x8 lenslets
and propagated using a Discrete Fourier Transform onto-qabsl The pyramid sensor
divides the complex field at the focal plane into 2x2 quadraahd re-images the aperture
onto 8x8 pixels. This is equivalent td = P = 82 in Equation 6.18 and Equation 6.16.
Poisson noise with mean photon count of 800 is then addecetm#asured images. The
final wavefront errors due to Poisson noise are normalisbd &muivalent to a mean photon
count of 1.

6.6.1 Photon noise

In the first simulation, the performance of the wavefrontseesa is determined by the vari-
ance in their wavefront slope estimates only. This is messtrom the difference between
the slope estimates in the absence and presence of photiesdRponoise. The absolute
slope errors (difference between estimated and true slepesain additional errors due to
the non-linearity of quad-cells, and are considered séglgra

We first confirm the accuracy of Equation 6.9 and Equation Byléomparing them to the
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simulated slope errors. The simulated sensor performandericlosed-loop conditions,
with the lowest 8 modes being fully compensated, is shownguare 6.4 a#% is varied from
0to 25. In both sensors, the simulated and predicted slopeseare in close agreement for
low turbulence levels of up t&o = 10. This confirms the accuracy of the predictions given
by Equation 6.9 and Equation 6.16 using the Strehl ratio. ¥®eeted, the performance
of the pyramid sensor surpasses the performance of the $tatann sensor. At low
turbulence levels, the sensor performance approacheddahkgerformance, with the error
in the pyramid sensor bein% = 8 (square-root of the quantities in Table 6.1) times lower
than the Shack-Hartmann error.

Slope error comparisons
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Figure 6.4 Comparison of the simulated and predicted slope errors due to photon noise
as % is varied, with closed-loop compensation in place. The curves represent the Shack-
Hartmann sensor slope error measured directly in the simulations (SH,) compared to the
predicted slope error (SH,, Equation 6.9), and the equivalent pyramid sensor slope er-
ror measured in the simulations (Pym,) compared to the predicted slope error (Py,, Equa-
tion 6.16).

In Figure 6.5, we compare the open loop performance agdiestibsed loop performance
of both wavefront sensors, and confirm the improvement isezldoop. The performance
of both sensors improve in closed loop because the long¢gposure images in both sen-
sors now have higher Strehl ratios. In contrast to the Slhbaokmann sensor, where the
blurring of the long-term exposure image is dominated bydoam image displacements
within each lenslet, the pyramid sensor image is blurrechbytavefront across the whole
aperture, and consequently, improves much more in closgy] fmarticularly at higher tur-
bulence £) levels.
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Photon noise error
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Figure 6.5 Simulations of the performance of the wavefront sensors with photon noise
only. The curves represent the Shack-Hartmann sensor slope error in open loop (SH,) and
in closed loop (SH.), along with the pyramid sensor slope error in open loop (Py,) and in
closed loop (Pyc).

6.6.2 Noise from non-linear errors

Although the sensor performance under photon noise as shevenclearly favours the

pyramid sensor, in fact, the non-linearity of quad-celiodead to errors in the slope esti-
mate. The combined errors from photon noise and non-lityei@rithe wavefront sensors
are shown in Figure 6.6. The estimation errors are now lacgerpared to Figure 6.5,

with the performance in open loop of the pyramid sensor noimgoeomparable to the

Shack-Hartmann.

Under closed-loop operating conditions, the non-lineesran the both sensors is reduced
to produce a better estimate of the wavefront. However,a@rack-Hartmann, there is no
increase in sensitivity of the measurement as a whole, sirecsize of the speckle image
under each lenslet remains unchanged.

6.7 Conclusion

The Shack-Hartmann sensor subdivides the telescope epartd measures the local slope
within each subaperture using a quad-cell. The resolutidheowavefront estimate is in-
versely proportional to the size of subapertures, whileptieeision of the measurements is
determined by the image height, which is roughly proposdldo the size of the subaper-
tures.
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Figure 6.6 Simulations of the full performance of the sensors taking all other errors into
account. The curves represent the Shack-Hartmann sensor in open (SH,) and closed
loop (SH.) along with the pyramid sensor in open (Py,) and closed loop (Py.). In both
cases, closed-loop operation (circled lines) show an improvement over open loop operation
(uncircled lines).

Compensation of the wavefront results in a reduction in tbamslope across each lenslet,
with no significant corresponding reduction in the lenspettsize (sensitivity). On average,
there is now a smaller signal, without a corresponding bifsecreased sensitivity, which
is limited by the lenslet size.

In the pyramid sensor, the wavefront slope is estimated bypewing the intensity changes
in each facet of the pyramidal prism. The precision of the eftant slope estimate is
determined by the image height at the focal plane, which tarin determined by the size
of the telescope aperture.

The wavefront resolution of the pyramid sensor is given l&y@CD sampling at the aper-
ture image plane. Each detector element in the CCD arrayiges\a measurement of
the slope within the equivalent region bounded by the deteciore wavefront slope
measurements can be obtained by increasing the samplirsgtydeh the CCD detector
elements. This can be achieved by reducing the physicalo§itee CCD detectofs or
equivalently, by optically magnifying the aperture imagd#dre sampling. In contrast, the
Shack-Hartmann configuration cannot be re-sized dynamicBhus freed from physical
limitations to the subdivision size, the wavefront resiantin the pyramid sensor is only
limited by blurring in the aperture images.

4Alternatively, the CCD pixel size may often be increaseagshe built-in on-chip binning function.
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It is important to note that the resolution-precision coaists examined in Section 6.3.2
does not apply identically to pyramid sensor. The precisibtihe global wavefront slope
is not constrained by the aperture image subdivision ojerathich occursafter the slope
has been measured at the focal plane. Unlike the Shack-Hantreensor, the trade-off
between resolution and precision is limited only by the sikéhe telescope aperture, not
by the size of the aperture subdivisions.

In this chapter, we used the duality between the Shack-Heminsensor and the pyramid
wavefront sensor to compare their performance, and hawerstiat the pyramid sensor
is fundamentally better. We have shown, through simulatitimt in practice, the pyramid
sensor can provide significant advantages over the Shaxtkabian sensor in closed-loop
wavefront compensation systems. In open loop condititvesperformance of the pyramid
sensor is roughly similar to the Shack-Hartmann sensor.

In our comparisons, we suggested the use of the Strehl gefméd on 1D-images), as op-
posed to the sometimes ambiguous image width, as a moras@m@uil convenient measure
of the sensitivity of the wavefront sensors, particulangiosed loop operation. The degra-
dation in sensitivity of the sensors is thus characterigethe Strehl ratio of the adaptive

optics system.
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Chapter 7

Wavefront sensing from defocused
Images

This chapter examines the curvature sensor and the geometvefront sensors. In con-

trast to the explicit aperture subdivision process in thacBFHartmann and pyramid wave-
front sensor, these sensors implicitly subdivide the telpe aperture. Under geometric
optics, the propagation of light through a medium resulistensity fluctuations related to

the wavefront. The changes in intensity can be used in thefn@vt sensors to recover the
wavefront aberrations.

Figure 7.1 shows the propagation of a 1D aberrated wavefront plane A to plane B.
As an intuitive analogy, wavefront aberrations are watgplas in a bathtub illuminated
from the top. Ripples on the water surface change the diredti the light rays travelling
downwards, resulting in corresponding light and dark fesat the bottom of the bathtub.
The direction and change in intensity as light propagateslescribed by Equation 3.9 and
Equation 3.12.

: ?UA — Va . TPlane A
T T T T
TV T
[ \ \ P ’Pz \ | \ w / Az
/ \ | \ ]\M/ \ “’ /
/ | \‘ \ H/ | \ / / L
Ug Vg Plane B

Figure 7.1 The effect of wavefront perturbations on the direction of light rays.
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The actual wavefront sensing arrangement is shown in Fig2ievhere the complex field
at the telescope aperture is allowed to propagate, but httealway to the focal plane.
Instead, at two opposing out-of-focus planes, the defatasdine of the telescope aperture
is imaged, and subdivided into local intensity measurement

In Figure 7.2, a small aberrated wavefront section has beenrshighlighted. The small
positive wavefront curvature error causes the light rayteiwithat region to be spread out,
so they now focus at a point after the original prime focahplal'he corresponding changes
in the out-of-focus intensity measurements allow this Vilamre change to be measured and
localised.

Inside focus .
+——1 Outside focus

_fift)
/

Figure 7.2 The physical layout (top) of a geometric wavefront sensor, with an optically
equivalent arrangement, for ease of analysis, shown (bottom). This is equivalent to a wave-
front (windowed by the aperture alone) propagating in free space. Note that the equivalent
outside-focus image is rotated.

The intensity changes at the out-of-focus planes can beideddy geometric optics. To
simplify the analysis, Figure 7.2(bottom) also shows anvedent optical arrangement [88]
for wavefront sensing, where the focusing mirror or lendimtelescope is replaced by an
equivalent free space propagation.

From Equation 3.30, a telescope with focal length f intregduea quadratic phase term

e 12 0¢Y)  Given a complex field\(x,y)@?0%) at the telescope aperture, the complex
field after propagating a distance i

IHere, the intensities at the out-of-focus measuremenegléatf + 1) change in opposing ways - inside
focus, it is dimmer, while outside focus, it is brighter.
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% -7 lorZ = zf — is the equivalent propagation distance without the quadrat

phase term. ThIS result is the same as the geometric opteesiithin-lens equation of
Equation 3.5.

1
Where? =

Under the equivalent optical arrangement, the image atrtbide-focus plane = f — |

is identical to (but smaller than) the image%flll without the quadratic phase term.
The outside focus, at= f + 1, is similarly equivalent to a virtual propagation distance
of —(”l')f, with an additional image inversion or rotation about thesaf propagation.
The defocus is usually small enougtthat the equivalent virtual propagation distances are
approximatelyj:fl—2

The inputs to the wavefront sensors come from measuremetite out-of-focus images.

A simulation of the propagated and defocused aperture isjagéh some turbulence, is
shown in Figure 7.3. By desighjs adjusted so that the imaging plane is placed far enough
from the focal plane to minimise the effects of diffraction the defocused images. The
diffraction effects are small enough that they are smoothédy the image blurring and
sampling operation carried out by CCD detectors, and argisitile in the sampled image.
The blurred outlines of the telescope aperture remain leisddlowing the effect of any
wavefront aberrations on the images to be described usimmegeic optics alone.

The displacemerittrades off the sensitivity of the wavefront sensor agaiisstasolution.
As quantified in Equation 7.6, the intensity fluctuationshia tiefocused images are roughly
proportional tol and| (the mean intensity). The resolution, corresponding rtyugt
the size of the dark and bright patches in the images, isdeted by diffraction effects,
and is inversely proportional t¢/l, as shown later in Section 7.4.3. With smallgior
larger equivalent propagation distanzggthe sensitivity is increased, at the cost of a lower

2As an example, on a 1m F/10 telescope (focal length 10m), acdsfofl = 2cm (and corresponding
image size of 2mm) is equivalent to a virtual propagatiotediise ofz ~ fl—z = 5km
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resolution [91].

(&) Inside-focus imagéb) Outside-focus image
from the wavefront sensofrom the wavefront sensor,

i+(x,y). i*(xay)'

Figure 7.3 Defocused images from two opposing planes.

In the following simulations, photon noise is simulatedngsa Poisson model, while read
noise is ignoredl

e_i (xy) i (X, y)l (xy)
L(x,y)!

P (xy)li(xy)) = (7.2)
V!:,ly)

wherei(x,y) andl(x,y) are the intensity measurements before and after the addifio
noise, respectively.

The input measurements to the wavefront sensors are thus

I+<X7y) = i+(X7 y) + n+<X,y) (73)
and

- (%y) =1-(Xy) +n_(x,y) (7.4)

wherei,_(x,y) andl,_(xy), represents the intensities before and after the addifion o
noisen ,_(X,y), respectively.

3Typical astronomical observations operate under low lighels, and with cooled equipment, to give
low instrument noise. Avalanche photo diodes (which haveeaal noise) have also been used [85, 88] for
curvature sensing. Since read noise is only an instrumentémitation, it is ignored in subsequent analyses.
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Figure 7.4 shows the large visible effects of photon noisenfa mean total photon count
of 40000, on an image. Most simulations in this section agsewen higher noise levels,
with photon counts of 800, so a method for accumulating amulaming the signal is re-

quired. The fluctuations in the measured intensity distitloucan be reduced by software
averaging, or by adjusting the size of the CCD detector elésnd he increased integration
area of each detector element results in fewer detectore(fmeasurements) and lower
read noise, but also a correspondingly reduced image bpegt@ution.

Noiseless image. Poisson noise, 40000 photons.

200
250
300

350

100 200 300 100 200 300

Figure 7.4 Effect of photon (Poisson) noise on input image with total flux of 30000 photons.
The telescope aperture is 250 pixels in diameter, equivalent to 1m. The input image has
been propagated 14km, assuming a light wavelength of 600hm. The wavefront aberrations
are small enough % = 0.1 that no intensity fluctuations could be observed.

Section 7.1 and Section 7.2 examine the geometric opticsuilation for recovering the
wavefront. Section 7.3 then introduces the curvature segggaroximation. Finally, sec-
tion 7.4 investigates the effects of photon noise on eacleftant sensor.

7.1 Geometric optics solution

In this section, we examine the free space propagation oéfr@wts using the geometric
optics model, and derive a solution for recovering the wargffrom its effects on light

intensity, expanding on its original introduction by vanrand Lane. [102]. Referring to
Figure 7.1, the direction of travel of the light rays at a aiar section of an aberration
wavefront is perpendicular to the wavefront slope (slopthefwater surface in the bath-
tub analogy) at that point. Mathematically, referring touBtion 3.9, the initial and final

positions of a light ray are related to the wavefront slope by
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Xg = Xa +AZW(Xa) (7.5)

wherexa andxg are ray-intercepts of the ray with planes A and B respegtivel

The irregular wavefront causes the propagating light rayspread out and concentrate
unevenly. The intensity at any point is proportional to tlemsity of light rays passing
through that point. For example, in Figure 7.1, the conegiain of light rays around point
v causes a relative brightening on the intensitysatompared twa, while the diffusion of
light rays at point u causes a corresponding relative damgesf the intensity atig. In 1D,
Equation 3.12 reduces to

_ 1A(Xa) _ 1Al

1+ AzH(Xa) +AZ2K(Xa) 14+ AzH(Xa)
wherela(x) andlg(x) represent the intensity distributions in the planes A anc$pec-
tively. In 1D, the mean wavefront curvature at plane Nix) =Wx(X), while the Gaussian
curvature at plane A iK(x) = 0.

(7.6)

|B(XB)

Figure 7.5 illustrates this for a wavefront at the origingtplane A with a uniform negative
curvature\V(x) = —ax?, for a > 0. The illumination at A is assumed constaii(k) = |)
within a window representing a finite optical aperture. Thevefront slope at plane A,
Wi (X) = —2ax, determines the direction in which the light rays leave plan

Intensity

Wavefront

Plane A

Intensity l
L \Z Plane B

Wavefront

Figure 7.5 A simple defocus in the wavefront causes the image of the aperture to be
smaller but brighter. All rays move at 90° from the wavefront slope.

Xg = Xp — 2axXaAZ (7.7)

The uniform parabolic wavefront gives rise to a uniform feicig action, which causes the
intensity distribution at plane B to be the same shape astkasity distribution at plane
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A, but smaller and brighter.

Ia

80 =le = T—%anz

(7.8)
From the intensity distribution alone, we can recover thgioal wavefront aberrations
using the positions of light rays. Figure 7.6 shows FiguBewith some light ray positions
inferred. The leftmost raf?; defines the edges of the apertuRe.is then reconstructed by
making use of the fact that the total intensity between theraysP; andP. is constant.

AW (X ) Plane A
XATA «— (aperture
1 ‘ / plane)
e
, Az
U
) \ l / Plane B
X Y (imaging
AX T plane)

Figure 7.6 The shaded regions in each plane are equal in area (intensity), so the starting
and ending points of the light ray P, lie along the boundary of the shaded regions. Thus
given the direction of the light ray, the corresponding wavefront slope at plane A, W (Xa),
can be found.

Assuming that the light rays in the region from plane A to B eresross over each other
(as when the wavefront distortions and propagation dissace small), the positions Bf
and any rayP can be recovered unambiguouslyPropagating from plane A to plane B,
the intensity distribution is stretched and compressedhbtltost by the changing light ray
positions. This intuitive notion of the principle of the c@rvation of light can be expressed
mathematically as

4If any light rays cross, it is no longer possible to unambigglp recover the positions and directions of
the light rays. In regions where light rays intersect, alsown as caustics, diffraction effects are especially
prominent [94], and the geometric optics approximatioraksedown. For example, in the extreme, the geo-
metric optics model breaks down at the focal plane (wherlgdit rays meet), and the intensity distribution
has to be described using scalar diffraction theory instead
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XB

Clxe) = / Ig(X)dX, X = X+ AZWi(X)

—00

% 1a(X)
—oo 1+ AZWy(X)

_ [ X
= | T (1+ AZWx(X))dx

_ / | A)dX
— L0 (7.9)

wherela(x) andlg(x) are the intensity distributions across planes A and B resedy

The wavefront slop(xa) is 22 = %z(-

The cumulative intensity matching process is also knownistedram specification [14,
37]. From this process, the displacement of each light régued. The wavefront slopes,
in plane A at the base of each ray, are found from Equationii the example given above,
the original wavefront i8V(xa) = —axi). The cumulative intensity distributions are

Cig(xe) = lpXg + 5

C|A(XA> = |AXA+% (7.10)
whereN = [%_1a(X) dx= [*_1g(X) dxis the total intensity.

By matching the ray positions using histogram specificatasshown in Figure 7.7,

ClB(XB) = ClA(XA)
Isxg = IaXa (7.11)

we recover the slope of the original wavefront. Conseqyetité wavefront can be calcu-
lated exactly (to within the geometric optics approximajio
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Wi(xa)Az = AX

W)~ 22

XA <:—’; — l)
= —ZaSAZ (7.12)

W (x) = Ax(x)

[

W)

X

Figure 7.7 Solution to the wavefront slope using histogram specification. The ray positions
are found by matching equal levels in the histograms. From the ray positions, the original
wavefront slope and finally the wavefront itself, is recovered.

7.1.1 Minimising diffraction effects

To confirm the validity of the geometric optics model, andiiow how diffraction effects
can be ignored, the Fresnel diffraction formula is used.sH®tiows simulations of free
space propagation with full diffraction effects to be penfed.

As an example of the effects diffraction can have during pgapion, a random wavefront
aberration at a square telescope aperture of length 1m pagated to several distances
ranging from+30km to+120km. Although the optical Fresnel propagation model is in
2D, the geometry of the problem is reduced to one dimensidetlipng the complex field

at the aperture vary across 1 axis only. Figure 7.8 showsiteasity distribution at 30km,
the closest propagation distance simulated.

The intensity distribution at this distance no longer hag stmarp edges because of the
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Intensity

0 . . . . . . . )
-0.8 -0.6 -0.4 -02 0 02 0.4 0.6 0.8
Position [m]

Figure 7.8 Geometric wavefront sensing with 1D images of an aperture 1m in diameter,
propagated 30km in front of (solid line), and behind (dotted line), the aperture.

smoothing caused by diffractiénThe effects of diffraction are stronger at longer distance
By keeping the propagation distance suitably close, thengéic optics solution is kept
accurate. At 30km, the effects of diffraction are still nmval, and the original outline of
the aperture can still be seen. The intensity fluctuatiorieeémpropagated image form the
input to the wavefront reconstruction process. The sentgitbf the sensor is proportional
to the distance of propagation.

Using histogram specification, the wavefront is estimated @ompared with the actual
wavefront in Figure 7.9. At 30km, the wavefront estimate goad approximation of the
original simulated wavefront function. The propagationgass has blurred the aperture
image in a low-pass filtering operation. This causes thenestid wavefront to be smoother
and lower in spatial resolution than the original wavefrddver larger distances, the blur-
ring increases, so our wavefront estimate becomes smaathldess accurate.

Short propagation distances ensure that the histogramfispgon process is accurate
enough to obtain an accurate estimate of the wavefront aetescope aperture. At long
distances, when diffraction effects dominate, the reteindp to the wavefront is non-linear,
and falls into the class of phase retrieval problems. Thegree of two images (previously
shown to be optically equivalent to slightly defocused pncorrespond to two phase
diverse measurements, and is commonly known as the phassiti(with defocus) prob-
lem.

It is assumed in the following discussions that the imagiaggs are sufficiently defocused

5This smoothing size is roughly on the orderfz, known as the Fresnel length [38]. The Fresnel
blurring determines the resolution of the wavefront estena
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Figure 7.9 Comparison of the actual phase at the imaging aperture (solid, jagged line) with
the phase estimate after propagating through various distances. The larger the propagation
distance, the smoother the wavefront estimate, and the more the deviation from the actual
wavefront.

from the focal plane that diffraction has minimal effectsaum results.

7.2 Geometric wavefront sensor

In this section, the geometric wavefront sensor is gerssdlto estimate two dimensional
wavefronts [105]. The geometric wavefront sensor is a shgsed sensor. In two dimen-
sions, light rays continue to travel perpendicular to wewetf slopes, and intensity, now
determined by the density of light rays within an area, il stinserved. However, the

endpoints of any light ray can no longer be inferred direbtjyray tracing or histogram

specification. For example, the left-edge of the 1D aperlituieigure 7.6 defines the two
points in each plane A and B, corresponding to the initialf@mal positions of the leftmost

light ray. However, in 2D, the outer edges of the aperturenaredefined not by points, but
by curves. The location and direction of light rays, now wathextra degree of freedom,
can no longer be recovered.

In Section 7.1.1, a two dimensional wavefront was recovénedreating it as a one di-
mensional wavefront, since the wavefront function is cantsin one axis. This provides a
clue as to how a two dimensional wavefront can be estimatied ggometric optics. The
images are reduced by a series of projections to a numbeleadiomensional image slices,
similar to the radon transform used in medical CT applicatidcach slice, consisting of the
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integrated intensity along an axis, as shown in Figure 701@ &ingle projection direction,
is related to the wavefront projection along the same axis.

Figure 7.10 A single projection in the radon transform for 2D wavefront reconstruction.

To derive the relationship between the projections of isagyed the projections of wave-
front functions, the ray-tracing histogram specificationgess is performed on the pro-
jected intensity distribution. For example, taking thexysaas the projection direction, the
2D version of the histogram specification problem, the ragitrg process of Equation 7.9,
is equivalent to

/XA/ A(Xy) dy dx= / / B(X,y) dy dx (7.13)

with 1a(x,y) andlg(x,y) being the 2D intensity distributions at planes A and B.

The wavefront slope at the aperture is approximately

fj’oo |A<X7y)V\&<X7y)dy . AX<X) . XB — Xa
[Sulalxy)dy Az Az

(7.14)

To see how Equation 7.14 works, consider the example of aaoingavefront slope and
intensity across the aperture. The intensity distribitiacross the two out-of-focus planes,
Ia(X,y) andlg(x,y), have the exact same shape except for a displacement. Whjentpd
into 1D, through histogram specification, the constantldsgment £x) across the aper-
ture can be found, allowing the magnitude of the slope in theefront to be recovered.
Similarly, extending this to higher orders of aberratioaguires the “slice displacements”,
Ax, to be measured from more projections over different divect.

5The number of projection angles used determines the résoland fitting errors in the wavefront esti-
mate. For example, simulations in this thesis use up to 1jg@@iion angles to recover 20 Zernike modes.
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In practice, using the linearity of the problem, we may aggeeach Zernike mode directly
to their effects on the image intensity. Given a decompmrsitif some wavefroritV(x, y)
into its Zernike coefficients, with each coefficient given doy= %fW(x, Y)Zi(x,y)dx dy,
Equation 7.14 is linear function of the coefficiemts

d=Ha (7.15)

whered is the signal vector formed from the displacememtéx)’, as found through his-
togram specification.

Given the signals obtained from histogram specific&tidguation 7.15 can be inverted
to recover the wavefront function. Although the Maximum AsRwiori solution is theo-
retically the most optimal, in practice, at high photon dsufiow photon noise levels), a
least-squares solution (equivalent to the Maximum-Lh@did solution, with uniform white
noise assumptions) is found to be adequate.

a=(H'H)*Hd (7.16)

The solution to the geometric wavefront sensor is a systeimedir equations. The sensor
output, although derived using a non-linear algorithm, loardinearly related to the input
wavefront coefficients. Additionally, prior informatiomadhe wavefront coefficients can
also be included in Equation 7.16, resulting in an MAP solutiGeometric optics represent
a practical wavefront sensing solution that is physicaltymder than the Shack-Hartmann
and Pyramid wavefront sensors.

7.3 Curvature sensor

Due to the novelty of the method, the algorithm for geometrawefront sensing has not
been applied on working adaptive optics systems. Todaaltjeithm used in wavefront
estimation with defocused images is largely based on aureadstimation, first proposed
by Roddier in 1988 [13, 83, 86].

"The vectors of displacement signals in each projectiorctioe are combined by stacking the vectors
together to form a single vector.

8Note that although histogram specification is a non-lineacgss, the remaining parts of the geometric
wavefront sensor is linear.
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The curvature sensor was initially proposed as a simple Hectiee method for low-order
adaptive optics in infra-red applications. Requiring oty defocused image measure-
ments, the physical simplicity of the curvature sensor basd Ito its widespread use. The
initial design for the sensor provides for curvature sigrssnt to adaptive optics systems
with membrane or bimorph mirrors as wavefront corre®ofBhis is particularly conve-
nient as the bimorph mirrors respond to a curvature signedulmee of their mechanical
properties. In practice, instrumental limitations negass the use of more complex de-
signs to match the signal between the wavefront sensor @naitinor actuators [85].

The curvature sensor uses the same defocused image datayubedyeometric wavefront
sensor. However, the curvature sensor makes some sinmglifgsumptions, resulting in
the estimation of wavefront curvature instead of slopesuafiqn 3.12 is reproduced in
Equation 7.17 with the approximatidrg, yg) = (Xa,Ya), €ssentially ignoring any displace-
ments in the local intensity signals during image propagatFurthermore, the wavefront
shape is implicitly assumed to be locally spherical, so teestricity or Gaussian curvature
K(x,y) = 0.

IA(Xa, YA)
1+ AzH(xa, ya) +AZ2K (Xa, Ya)
~ IA(X7y)
ls(xy) ~ 1+AzH(x,y)
~ Ia(XYy) —la(X,y)AzH(X,y) (7.17)

Ig(XB,YB) =

The approximate intensity difference from propagating aeffant a distancézis then

Al (X7 y) = IB(Xv y) - IA(Xv y) = _AZ|A(X7 y)H (X7 y) (718)

With two images defocused in opposing directions, symrmetyi displaced about the focal
point of the telescope, the intensity in each plane providdiferential signdP approxi-

mating the wavefront curvature. Where a region is bright@me image, it is darker in the
other. The curvature sensor signal, formed from the diffeeebetween these two out-of-

9This is essentially a zonal correction scheme, since theaturres are computed within separate hexago-
nal regions, and corrected by mirrors driven by signals pridgnal to the local curvature.
10The differential signal allows scintillation or intensitijuctuations in the telescope aperture to be can-
celled.
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focus images, is

S(X7y) = I+(X7y>_|—(x7y)
—2Az1(x,y)H (X,y) (7.19)

Q

wherel (x,y) andl_(x,y) represent the two defocused images measured by the cwevatur
sensofl. 1(x,y) andH(x,y) are the intensity and the wavefront curvature at the apertur
plane.

The wavefront curvature is thus given by

CSxy)
- 21(xy)Az
S(x,y)
(I (x,y) +1-(x,y))Az (7.20)

Q

H(x,y)

Q

The 1D example in Figure 7.5 is useful to illustrate the cturasensing algorithm. The
same wavefront is recovered by integrating the curvatugeasitwice, as shown in Fig-
ure 7.11.

Slgnal (Curvature estimate) = W _(x) =1, - I,

‘ X
T Slope estimate = W (x) = Js(x) dx

‘ X
I Wavefront estimate = W(x) jW (x) dx

‘ X

Figure 7.11 Estimation of wavefront from Figure 7.5 with the sensor signal s(x) on top, and
the recovered wavefront (with edge effect errors) at the bottom.

The wavefront estimate near the edges of the telescopauapéstno longer accurate. By
propagating a flat wavefront with an overall tilt, Figure Z reveals the presence of edge

HRecall from Figure 7.2 that the defocused images are equivéb free space propagation, butx,y)
needs to be rotated 180 degrees.
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effects [88] in the differential image signal. Since the efaont has no curvature, a clear
boundary between the edge signal and the zero curvatu@regn be seen.

VM
VW

Difference L

i

Figure 7.12 A wavefront that is only tilted has zero curvature and produces no curvature
signal. An edge signal is still produced.

By ignoring displacements in the signal due to the wavefstope, the curvature sensor
has introduced estimation errors in the curvature signareMsignificantly, as shown by
the example in Figure 7.11 (compare Figure 7.7), an additisource of error in the edge
signal is also present.

Arising from image subtraction over mis-matched apertulges, the edge signal is pro-
portional to the radial wavefront slope at the edges of thestepe aperture. Practical
curvature sensors must therefore model the edge signaiadelyarom the central curva-

ture region [11, 31,41]. The output from a curvature senlos thas two components, a
curvature signal, and an edge signal. In general, the extaniteof the edge signal cannot
be determined, so the boundary to separate the two typegralsiremains ambiguous.

7.3.1 Error approximation estimation

The error in the curvature sensor approximation, compaveithé geometric wavefront
sensor, is given by (continuing from Equation 7.6)

Alg(X8,YB) = IBgeo(XB:YB) — IBour (X8, YB)

_ |a(Xa, YA) |a(X8,YB) (7.21)

1+AzH(xa,Ya) +AZ2K (Xa,Ya) 1+ AzH(Xg,Y8)

Due to the division operation, the error is a non-linear fiorcof distance and wavefront
curvature. Linear approximations [49, 61] to Equation 7134 to the first order, has been
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derived from the equivalent Intensity Transport EquatiBguation 3.36) representation.

The error in the curvature sensor, extended to the secomd lobydrzan Dam and Lane [103],
is (all functions are evaluated étg,Ys))

1(2)

1(z+Az) =
(2402 = T it (k=T

(7.22)

whereT = WM + WeWayy + WMy -+ WWyyy = WeHy +- W, Hy is the displacement error
of H. The Laplacian curvaturel represents a first order change in the intensity, while K
and T are both second order errors.

However, even a second order error approximation is inseiffi¢or extended analyses of
the curvature sensor. The in-focus and outside-focus irpkges, given by a Taylor series
expansion abodt(z), are

(2402 —1(2) = z(j—;uz)) (Anzfn
l(z—02)—1(2) = z(%uz)) (_ﬁz)n (7.23)

The curvature sensor signal is the differential signal leetwthe out-of-focus planes. The
second order terms in the sensor signal cancel,

1 (z+Az) — | (z— Az) = 22( )Anz” vV nodd (7.24)

The third order error term thus needs to be retained for énréimalysis of the curvature
sensor. As an example, the first few terms in the Taylor sexpansion of Equation 7.22
are
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AZ? iV

—1(2HAZ—1(2)(K = T +H?)AZ
+(2H(2(K —T)—H?)AZ (7.25)

Q

wherel, ~ —IH andl;~ —2I (K — T +H?), andl;;= 61H (2(K — T) — H?).

Therefore, even a slightly extended analysis of signalldegment T) in the curvature
sensor must incorporate at least the third order in the expansion. In contrast, the
geometric sensor has the advantage of an exact geometr.nidik effectively accounts
for both the displacemenT{ and curvature uniformityK) transparently.

7.3.2 Direct comparison with the geometric wavefront senso

To compare the curvature sensor to the geometric wavefeordos, we re-formulate the
image difference as the difference between two integratedjes. This is similar to, and
allows comparison with, the histogram specification stepsreown in Figure 7.13. In the
histogram specification step, the geometric wavefrontmanakes use of the displacement
signal between two defocused images. In contrast, the wuevaensor uses the direct
difference signal between the two imaéfes

Both sensors then integrate the resultant difference kigraarive at the wavefront. From
this comparison, we can see that the key difference betwesiwo wavefront sensors
comes from the geometric wavefront sensor taking the hotadifference in the his-
tograms, which corresponds to the light ray displacemeavifgthe actual wavefront slope.

Here, the more accurate geometric sensor model eliminatesignal mismatch between

the two image planes, removing the distinction betweendige @and curvature regions. The
errors introduced by the curvature sensor approximatiegaantified by the difference

between the “horizontal” and “vertical” histogram diffeces.

For small wavefront perturbations, as in a closed-loop adapptics systenC;, andC,
will be very similar, and the difference between the geormetensor and the curvature
sensor is small. With larger wavefront aberrations, as iendpop operating conditions,

?Hence, in its simplest form, a closed-loop control strategyply tries to cancel the curvature sensor
signal by matching the two out-of-focus images.
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Figure 7.13 Comparison of the histogram specification process(a) with curvature sens-
ing(b) in the estimation of slopes.

the edge signal errors in the curvature sensor become ngni#icant, and the geometric
wavefront sensor can provide more accurate wavefront attsn

7.4 Theoretical performance

7.4.1 Photon noise analysis

Although the curvature and geometric wavefront sensorghessame inputs as data, the
theoretical treatment of the wavefront sensing problentesgmted by the geometric wave-
front sensor is more precise. The principle of ray tracingeduce the wavefront is also
intuitively more consistent with geometric optics espkgiavhen applied to regions near
the aperture edge, where the curvature sensor treatmentésmessy.

This section examines the effect of photon noise on both frawvesensors. A comparison
of the two wavefront sensors is performed while ignoringdreaise to avoid detracting
from the main analysis. The effects of photon noise, as oaintg from Figure 7.4, are
assumed to obey Poisson noise statistics, with independés® in each imaging detector.
The effect of various steps of each wavefront sensor alguoriin this noise is described,
and the methods required to filter the noise are derived.
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7.4.2 Intensity normalisation

The measured photon counts in the defocused images arendetdrby the Poisson statis-
tics of photon noise, with variance equal to the mean or expigzhoton count. The photon
noise in each pixel is independent and under bright illutnems, with high photon flux
levels (above 50 photons), is approximately Gaussian. WetHluctuation caused by pho-
ton noise, the total photon count in each defocused imagermodgnger be equal. This
difference in intensity results in mismatched histogranth wnequal heights, as shown in
Figure 7.14, so the histogram specification process is ngelodefined. This problem is
especially significant at extremely low light levels whediindual photons are measurable.

Since an assumption of the ray tracing algorithm is thahisitg is conserved, in order to

apply histogram specification to wavefront estimation hHistograms must be matched. To
satisfy this constraint, the intensities in the two imagasstibe equalised, either by the
addition or subtraction of a constant offset, or by scalimg intensity values of the two

images.

The addition or subtraction of constant offsets may resultégative image intensity val-
ues. Furthermore, a constant offset maintains the mismatttteir histograms. Since it
is the intensitydistributionor shape that is used for estimating the wavefront, and mot th
absolute intensity levels, a more appropriate solutiomw isdrmalise the images by scal-
ing the intensity values. This aligns the endpoints of thagmhistograms, as shown in
Figure 7.14.

—>|<<4

Figure 7.14 Due to fluctuations in the measured intensity, the image histograms are no
longer matched (left), and have an undefined histogram specification. The images are
equalised by the normalisation of the total intensity (right) to a nominal photon count of 1.

The normalisation step is dependent on the noise preseatimimage. Figure 7.15 shows
the equivalent noise after intensity equalisation, olgdiby subtracting the normalised
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noisy image (or its histogram) from the original imadeThe division by the total pho-
ton count (image plus noise) introduces some negative latioe into each pixel in the
measurement plane.

Figure 7.15 The noise after normalisation of the histogram is largest in the centre of the
aperture, and zero at both endpoints, corresponding to the edges of the aperture.

The correlation can be derived by returning to the exampkgeiction 7.1, where we start
with the expected (noiseless) intensity measuremgix), and add noise to geg(x) +
ne(X). The signal is then scaled to equalise the intensity levieé dquivalent noise in the
scaled signal is defined to be

ls(¥)+ng(X) _ _ 18(X)+Nns(X)
— (7.26)
>xIB(X)  3x[lB(X) +ne(X)]
whereng(x) is the photon noise at plafg and the high intensity Gaussian approximation
is assumed to hold trueng(x) is the equivalent normalised noise term after scaling the

image intensity.

Re-arranging Equation 7.26, the normalised noise term ramiah additional term depen-
dent on the total noise level and the intensity in each pixel.

prawn to scale, in actual simulations, the histogram naigeo small to be seen against the scale of the
histograms.
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) = Ne(X) 3 x18(X) — Ig(X) ¥ xNB(X)
o Sx(18(X) +ne(X))
ne(X)ltot — I8(X) 3 xNB(X)

ltot

— na(x) - () (7.27)

ltot

Q

with the approximatiory , ng(X) = ntot = 0 in the denominator.

The modified noise covariance matrix can be expressed irstefthe original raw Poisson
noise covariance matrix. The original noise is assumed t@pipeoximately Gaussian (due
to a high photon count) and independent between pixels, twémoise variance equal to
the intensity in that pixel,

(e (X)ne(y)) = Syle(X) = dxyla(Y) (7.28)

wheredyy is the Kronecker delta (being 1 far=y, and 0 otherwise).

The noise in the pixels is independent from each other, (@sercorrelation between differ-
ent pixels is zero), allowing Equation 7.29 the be reduc&mu®ig(y)niot) = (Ne(Y) Sins(i)) =
(ne(y)?) =le(y) and(ni) = ((Sins()) (35ne(i))) = Zij (ne(ne(j)) = liot, as follows

Cy,(xy) = (ng(¥)ng(y))

(na(Y)Ntot) — l—o (Ng(X)Ntot) + <nt20t> IB(’?%“’)

tot

(7.29)

As a special case, let the noise variance in each pixel withifarmn intensity distribution
acrossN pixels beg? (equal to the intensityg(x) in each pixel). Being uniform uncorre-
lated Gaussian nois€(x,y) = dx02. The covariance of the normalised noise, with a slight
negative correlation between each pixel, is then
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1 . ,
Cr(Xy) = (@y— N) o?, or, arranged into matrices
1 2
Cy = (1-11)o (7.30)

In the subsequent histogram specification step, the imag@aise are first integrated to
form a histogram. Histogram formation, a cumulative sungroperation, is linear and
can be described using the matrix operat@pn The integrated noise was originally
a Brownian noise. With normalisation, the histogram nossstill similar to Brownian
noise, but with the additional condition that the noise atehdpoints (edges of aperture) is
constrained to be 0.

The covariance matrix for the normalised histogram or irgtgl noise is given by

<CSUH{]‘3(CSUH{“3)T> = Csum<n;3n/|_;,r>c-srum
= CSUﬁcn{gC—srum

— (min(x, y) — %) o? (7.31)

The variance of the normalised histogram noise, given byifgonal elements of the ma-
trix in Equation 7.31, igx— Xﬁz)az. Such a noise distribution is also commonly encountered
in Monte-Carlo analysis and is known as the Brownian brifige

After the image histograms have been formed, the next stéipeigeometric wavefront
sensing algorithm is histogram specification, a non-lingacess, introducing higher or-
der errors into the data. To simplify analysis, especidalioaer noise levels, histogram
specification can be approximated with histogram subtracis shown in Figure 7.16.

At low noise levels, the change from histogram specificatmaubtraction has negligible
effects on the noise statistics, as the output noise is rnataadly different from the input.
This allows us to replace the non-linear step with a linea fon noise analysis purposes.

The Brownian bridge is commonly defined to be the proegss — xw(1) bound to 0 at the endpoints
x =0 andx = 1, with w(x) being a Brownian process with variance fa@fx) } = x. The Brownian bridge has
a variance that depends on positign; X°.
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Figure 7.16 Approximating histogram specification with histogram subtraction.

The total effect on the noise is thus a combination of alldmsteps —normalisation (re-
sulting in N’), image projectionP), subtraction, and histogram formation or integration
©)

N=CPN'P'C’ (7.32)

7.4.3 Limits to resolution due to diffraction

Diffraction limits the resolution of the wavefront estireah both the geometric and curva-
ture wavefront sensors. The spatial resolution of the wamtfestimate is determined by
the spatial blurring of the images at the out-of-focus insaddne operation of the wavefront
sensors put them in the Fresnel diffraction region, so Fladiffraction is the dominant op-
eration. The extent of the smoothing during intensity pgaten is known as the Fresnel
length, or the Fresnel invariant or scale [38] (pg70).

Fresnel length

To illustrate the general behaviour of field propagationarréresnel diffraction, we ob-
serve the effect of a small localised phase perturbafigiy, y), in a complex fieldA(x, y)& ?0Y).
The propagated intensity in the Fresnel region is given byAiesnel convolution equation
(from Equation 3.27)



7.4 Theoretical performance 167

. 2
u(x,y) [ = |Ax,y) €Y o F (7.33)
whereF is the Fresnel kerngl %0¢+Y").

Due to due to the small phase perturbatlop(x,y), the change in the propagated image
intensity is

. 2 ) 2
‘(A(x, y)e (PO +A0y)) o F ‘ _ ‘ A(x,y)g90Y) o F )
, 2 _ X
= \A(X, y)E?Y OF +p(xy) OF \ - )A(x, y)EoY) o F )

= [u(x,y) + px,y) ©F|? — |u(x,y)[?
= u(x,y)[* +2Re{u(x,y) (p(x,y) © F)} + |p(x,y) © F|* — Ju(x,y)]
= 2Re{U(xy)p(xy) ©F } +|p(x,y) O F (7.34)

2

with the field perturbatiom(x,y) being related to the phase perturbation by

P(XY) = A(XY)ePONTAY) _ p(x y)e @)
A(xY)E?Yinp(x,y) (7.35)

Q

In Equation 7.34, the second order perturbation tgsfr,y) © F \2 can be ignored, leaving
the larger first order perturbation ternR&u(x,y)p(x,y) ®F}. This change in intensity
can also be represented as

2Re{u(x,y)p(x,y) ©F }
= 2Re{u(x,y)}Re{p(x,y) ©F} +2Im{u(x,y) HIm{p(x,y) ©F } (7.36)

For simplicity, the phase perturbation is assumed to be dl simaular region with a con-
stant phase offset.
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A@(x,y) = mcirc(kx ky) (7.37)

For a small enough circular diamef@r(given by a large), the Fresnel convolution of the
field perturbation approximates Fraunhofer diffractiomeTraunhofer diffraction pattern
from a circular disc is given by the Jinc or Airy function withquadratic phase term.

F+ 2Im{u(x,y)}lm{ejzkzrz\]inc(ir)}

RE[U(x,y) I REEE Jing(—> -

_r)

2Az
. D K D .. k.,

= 2Re{u(x,y)}J|nc(mr)cos(2—Zr )+2Im{u(x,y)}Jlnc(mr)sm(z—zr ) (7.38)

Equation 7.38 is effectively a modulation of the intensifydinc and sinusoidal functions.
The perturbation modulation functions are shown in Figui& /separately (top) and com-
bined (bottom). The widths of the Jinc and sinusoidal terms\f,éand\/)\ zrespectively.

—JincGrx)

cos(2—kzx2)

Figure 7.17 ’Linearised” point-spread-function of Fresnel propagation for a sub-aperture.

Although not strictly accurate, the blurring function irgkire 7.17 may be considered to be
the approximate extent of the point-spread-function ofRhesnel kernel. This describes
the propagation of the aperture phase function to the deéatimaging plane, and consists
of a central region abouf'A z in width, and side-lobes bound by an envelope that is about
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%Z in width. The fringes in the side-lobes oscillate so fast thay are smoothed out when

averaged over the whole phase function, and in any case naer-sampled in practice.
The bound on the spatial resolution of the wavefront esgénmthus determined by the
central lobey/Az

This measure of blurring applies only for short distancdsne the Fresnel approximation
is valid. At larger distances, the effects of Fraunhofefrdition (on the order o%,
with Dye being the aperture of the optical system) supersedes HFrai$inaction, so the
Fresnel length is no longer the dominant blurring term. ShowFigure 7.18, the nominal
division between the Fresnel and Fraunhofer regions is allyrwonsider to be the Rayleigh
distancezg = %, which is also where the Fresnel length is equal to the apediameter
of the imaging systemy/Az= %(Ieading toy/Az= D).

Fresnel t Fraunhofer
approximation: approximation

\ Limits of Fresnel approximation

" Rayleigh distance

Fraunhofer
blurring

Fresnel

blurring %\

Figure 7.18 Approximate boundaries of the Fresnel and Fraunhofer regions for a planar
wavefront.

The blurring due to Fresnel diffraction is independent eftiélescope aperture size and the
complex field at the aperture. In particular, the severitatoiospheric turbulence has no

significant effect on the resolution of the geometric and/ature wavefront sensors when

operated in the geometric optics region.

Although the Fresnel approximation is valid over all distes where the Fraunhofer ap-
proximation is applicable, the Fresnel length as a meadkioing is only valid at short
distances (in the Fresnel region). The Fraunhofer or f&i-fidfraction pattern has an
approximate width of%, but only if no aberrations are present at the imaging apertu
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In contrast to the constant Fresnel length in the Fresnihdtfon region, the Fraunhofer
image size is enlarged by the presence of aberrations. FEonge, under Kolmogorov
turbulence, the long-term exposure image is rou%ﬂym size. Fried’s parametery, is
commonly thought of as the equivalent diameter of an unrabet (smaller) imaging aper-
ture.

In summary, the blurring due to diffraction is dependent ewesal factors. At short dis-
tances, within the Fresnel diffraction region, the imagerihg is given by the Fresnel
length,v/Az and is independent of the wavefront at the aperture. Atdodistances, the
Fraunhofer approximation dominates, and the image sizetesmhined by the wavefront at
the imaging aperture, and the size of the aperture.

Fresnel blurring in wavefront sensors

The defocused imaging planes in the geometric and curvatavefront sensors are dis-
placed from the focus sufficiently to allow the geometriciopapproximation to be used.
This is equivalent to imaging in the Fresnel regiah< zr), so the Fresnel length is the
most appropriate measure of sensor resolution, and repsetfee limit to the resolution

that is achievable in the wavefront sensors. The geomepticoapproximation is only

valid when applied to image features larger in scale tharfrteenel length, and no longer
apply on scales smaller than the Fresnel length.

The Fresnel length is given byAZ, whereZ is the virtual propagation distance, which
was previously shown to be related to the actual telescaperiions by’ ~ fl—z In actual
terms, the blurring caused by Fresnel diffraction in theode$ed imaging planes is given
by re-scaling (see Equation 7.1)

\/Tg — VAl (7.39)

The direct Fresnel length expressigilz or \/A(f —1) is no longer valid because it is
larger than the image size, as explained by Equation 7.3& €efflect of diffraction, as
previously calculated, (represented in Figure 7.17), ireguthe image to be larger than
either ofv/Azor %Z, an assumption that is no longer valid.

Figure 7.19 demonstrates the decreasing sensor resof{dtierto increased blurring along
the positive y-axis) against distance. The resolutiontBnposed by FraunhoferDﬂfl)
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Figure 7.19 Wavefront spatial resolution of the curvature sensor.

and Fresnely' A 2) diffraction are shown in solid lines, with the “cross-o¥goint at the
Rayleigh distanc@)‘—2 markedP;. The propagation distance has to be less than this, and is
thus constrained to lie to the left 6%.

The conventional measure of the (spatial) wavefront regolwof the curvature wavefront
sensor [43, 84, 86] is frequently explained by Fraunhoftfradition only, and is therefore
assumed to be limited by the wavefront aberrations at thewpeas shown with the dotted
line (r—oz). Under closed-loop operation, when the input wavefropiigially compensated
(resulting in a larger equivaleng), the performance of the curvature sensor then increases.

However, the conventional measure of spatial resolutiamgusSraunhofer diffraction over-
estimates the achievable resolution, which is determigdad&snel diffraction. The optimal
propagation distance of curvature sensors is usually |ctbaer/\—g (similar to the Rayleigh
distance), the “cross-over” point where the Fresnel lemgtreater thaq‘f. Furthermore,
the diffraction blurring anticipated b% is not valid in the Fresnel region. Even in the
Fraunhofer regionf(‘—oZ refers to the approximate width of the long-term exposurage)
whereas a short-term exposure image is more appropriat®foparison with the Fresnel
length.

Therefore, the resolution achievable in the defocused fn@viesensors is determined by
the defocus distance, and is proportionalal. This is worse than the often cited value
determined from Fraunhofer diffraction or the severitywsbulencerg. The limit posed by
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Fresnel diffraction is not affected by the increased seityiduring operation in a closed-
loop adaptive optics system. However, closed-loop opmratan lead to improved perfor-
mance (Section 7.3.1) by reducing modelling errors in theefrant sensors.

7.5 Simulations

Section 7.3.1 introduced a treatment of the errors in theature sensor. Due to non-
linearities and the complexity of the error propagationgsia, a simpler approximate way
to compare sensor performance is through simulations aehsors under various condi-
tions.

Kolmogorov phase-screens are generated independenthyfdhzurbulence severity fo%
ranging from 0.1 to 25. Assuming a telescope diameter of 1seretised with 250 pixels,
the phase-screens are then propagated forward and badkwaudh free-space to various
distances ranging front14000n to +200000n. Each pair of propagated images represent
the defocused inputs to the wavefront sensors.

Although both wavefront sensors can work with broadbaniatJignly narrowband light at
600nm is used to reduce the computational effort. At thiselength, the Rayleigh dis-
tance is approximately 17000@0and the extreme range of the propagation distance cho-
sen (200000) already suffers from some diffraction, and the propagatexje no longer
resembles an image of the telescope aperture. Similartipeabighest phase aberrations
(% = 25), the defocused images are too aberrated, and the siomulesults are less useful.

In both the geometric and the curvature wavefront sensatg tbe first 20 Zernike modes
are considered in the simulation, with the remaining higinders ignored when calculating
the phase error. 16 projection angles are used in the georsetrsor, and are more than
enough® to completely and unambiguously recover the first 20 Zermikees in the wave-
front. Photon noise with Poisson statistics, assuming awn&a00 photons in each image,
is added to the defocused images. As described in previatissg, image normalisation
is performed to equalise the intensity in both images. Altgtothis is only necessary in the
geometric wavefront sensor, it is also performed in the @ume sensor for consistency, to
aid comparison.

At 500 photons, the mean intensity is high enough that treetffof image normalisation is

15As explained in the Appendix, more than 10 samples or 5 piiojes are required for the maximum
azimuthal frequency of 5.
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minimal. The simpler Gaussian noise model and its corredipgrieast-mean-square solu-
tion is chosen over the optimal Brownian bridge noise modklch requires a maximum-

likelihood solution. The inverse wavefront estimation ldeam is thus performed using
direct least-squares matrix inversion in both sensors.
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Figure 7.20 The geometric and curvature wavefront sensors at % = 2, without photon
noise (solid line) and with photon noise (dashed line). The datapoints corresponding to the
propagation distances used in the simulation are marked with circles.

Figure 7.20 shows the wavefront estimation error in bothefrant sensors for the first
20 Zernike modes with and without photon noise. In the absaighoton noise, the
only sources of error are modelling errors (only in the ctuke sensor) and the lowered
resolution due to Fresnel diffraction (both types of erincsease with distance). This holds
for the geometric sensor in the simulation results, but aotle curvature sensor because
of modelling errors. To keep the curvature sensor comparabthe geometric sensor, a
matrix is used to describe linear relationship between nipaiti wavefront and curvature
sensor signal, so the edge signal is not explicitly modekexa result, the curvature sensor
under-estimates the wavefront slope, the largest phase ter

When Poisson noise (with a mean of 500 photons in each imagg)ded, the errors in
both wavefront sensors are dominated by photon noise. Trisitisgty of the sensors in-
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creases with propagation distance, so the error decreadedistance. With the precision

of the sensors reduced by photon noise, the large resultiogreduces the relative error

contribution from the effects of diffraction. Thus, at lolwgion counts, Fresnel diffraction

is not an important factor in determining the resolutioegision trade-off in the geometric

and curvature wavefront sensors. In contrast, in the Shirkmann sensor, as explained
in Section 6.3.2, both resolution and precision can havafgignt effects on the combined

sensor error, so the trade-off between resolution andgogcis an important concern.
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Figure 7.21 Errors in the geometric wavefront sensor (solid lines) and curvature sensor
(dashed lines) without photon noise, with increasing turbulence levels of %:0.5, 1, and 2.
Each datapoint is also marked with a circle.

Figure 7.21 compares the errors in the geometric wavefearga with the curvature wave-
front sensor. The curves approximate the sensor estimationand loss in resolution by
measuring the total error without photon noise (effecyivelproducing Figure 7.20 with-
out photon noise, and for a wider range of turbulence levalghile the error curves in
both sensors increase with the turbulence level, the gemmetvefront sensor always out-
performs the curvature sensor with a lower error at mosadcss. At larger distances and
turbulence wavefronts, the geometric wavefront sensanse¢e under-perform the curva-
ture sensor. This is due to the assumptions of geometricopteaking down (refer to the
commentary to Figure 7.6 on ray crossings), and stronggadifon effects.

In the presence of photon noise (Figure 7.22), no disceendifference (within the simu-
lation tolerance) between the two sensors can be obsendthugjh the geometric sensor
also out-performs the curvature sensor at higher turbeléevels (not shown here), the
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results are inconclusive there because of the severedifireand ray crossing effects.
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Figure 7.22 Errors in the geometric wavefront sensor (solid lines) and curvature sensor
(dashed lines) with photon noise, with increasing turbulence levels of %=0.5, 1, and 2.
Each datapoint is also marked with a circle.

Figure 7.23 shows the total estimation errors for the genowhvefront sensor with pho-

ton noise (mean 500 photons) at different levels of turbederThe error in the geometric
wavefront sensor increases with turbulence Ie?oel (This is consistent with geometric op-
tics where increasing the phase aberration (and consdytiemtvavefront slope) requires
the propagation distan@o be decreased proportionately, in order to keep the paipéeg

image constant. There appears to be an optimal propagastande where the error is
lowest —beyond that, the error increases again becausm#geiis too distorted from the
diffraction and ray crossings.

7.6 Conclusion

The geometric sensor uses geometric optics to estimatefroavérom defocused images
through ray-tracing. The position and displacement of itet Irays are recovered using
histogram specification, and used to infer the wavefronhatoptical aperture. The algo-
rithm assumes that the wavefront is small enough, so thaighorays cross path within
the propagation region. The histogram specification step r@quires the intensity in both
defocused images to be equal, and requires the images torimalised in the presence
of noise. Image normalisation modifies the noise statigtitsa Brownian bridge. In the
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Phase error(radz)

Distance(m) 5

Figure 7.23 The effect of increasing turbulence on the estimation error in the geometric
wavefront sensor, for %:0.5 (solid line, circular points), 2 (dashed line, triangular points),
and 4 (dot-dashed line, square points).

simulations performed in this section, the precise stesistf sensor noise is not important,
so the least-squares approach is chosen because of itscsiyrgoid robustness.

The curvature sensor is an approximation to the geometnvefn@ant sensor. Using a few
simplifying assumptions, the difference between two de$ec images are used as an es-
timate of the wavefront curvature. Extended analyses oftineature sensor have focused
on the lower order errors in the intensity and wavefront pggiion equations. Due to the
complexity of the analyses, a direct simulation is used tmgare the geometric sensor
with the curvature sensor.

It was found that the geometric sensor achieves lower waneéstimation errors compared
to the curvature sensor in the absence of noise. This refleetsore accurate geometric
optics algorithm in the geometric wavefront se§omn the presence of photon noise, there
may be some improvements, but the major factor determineréppnance, sensitivity,
is common to both wavefront sensors, so no major improveroamtbe seen. Perhaps
simulations with larger wavefronts (and shorter propagatlistances to ensure that the
geometric optics approximations are met) will show a défere in performance.

The effects of diffraction (loss in sensor resolution) witthe geometric optics region were

1®Note however that there are some simulation modelling sirothe curvature sensor.
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found to be negligible compared to the effects of photona@ieduced sensor precision).
Outside of the geometric region, where Fraunhofer diffeactiominates (large), or where
there were too many ray crossings (large wavefro%bs,the geometric optics approxima-
tion breaks down, and the error increases quickly.
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Chapter 8

Conclusion

This thesis examined four main types of wavefront sensoeglaptive optics systems. A
uniform description of the sensors was provided and thedorehtal performance limits
of the sensors were compared using a geometric optics model.

8.1 Summary

Atmospheric turbulence distorts the images collected bhypasmical imaging telescopes,
degrading resolution. Real-time adaptive optics systeetsatl the wavefront aberrations
introduced by atmospheric turbulence and correct themgusideformable mirror, in a

closed-loop system. Due to the relative youth of this fieldngnpossible designs for wave-
front sensors exist, but have not been examined and compagedat detail. This thesis

proposes a unified framework for presenting the operatiomayefront sensors to allow a
uniform comparison of the wavefront sensors.

Chapters 1 to 4 introduced various concepts and mathermatoda used in the subsequent
chapters.

The quad-cell is an image displacement estimator congisfimtensity detectors arranged
in a 2x2 array. It is often employed at the focal plane, wharage displacement corre-
sponds to the aberration wavefront slope at the opticataq@erThe main sources of noise
examined in the quad-cell are instrument read noise andphmatise. After developing the
Strehl ratio for measuring quad-cell performance, sefi@rent methods for quantifying
the performance of the quad-cell are compared. Compardgktiuhdamental limit posed
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by the Cramer-Rao bound, slope estimation with the quddisan attractive trade-off
given its simplicity and cost. In the Shack-Hartmann andapyid wavefront sensors, the
guad-cell arrangement is used to estimate wavefront ahmrsa

Due to the duality between the imaging and aperture plaher ts a fundamental trade-off
between resolution and precision in the Shack-Hartmanrpgraimid wavefront sensors.
The trade-off is described in terms of the Fourier transfamd shown with simulations
in Section 6.3.2. The resolution is determined by the wavefsub-division operation,
which separates a wavefront into smaller sections. Withghesection, the precision of the
wavefront estimate is determined by a local slope sensiegabipn (using the quad-cell).

By comparing sensor operations in the dual imaging planespgarison of the precision
of the two sensors is made based on the quad-cell analysescrlicial difference in the
order of the sub-division operation leads to a theoreticaifjher performance from the
pyramid wavefront sensor. Simulations within a range ofrafiieg conditions show better
performance from the pyramid wavefront sensor. From a mactandpoint, the pyramid
sensor also allows more flexibility in adjusting the sengsptution and precision.

The geometric and curvature wavefront sensors are the p#ienf wavefront sensors
compared in this thesis because of their similarities. Tresar inputs consist of two op-
posing equally defocused images. The geometric sensoovesto be a geometric optics
model which recovers the wavefront aberration at the olpéiparture by ray tracing. The
more popular curvature wavefront sensor is shown to be araippation to the geometric
wavefront sensor. The simpler algorithm in the curvatureseeis at a cost to estimation
performance due to curvature signal displacement and ratstrad aperture edge signals.

An analysis of the effect of photon noise on the measuremeaigpon of the geometric
wavefront sensor, resulting in a Brownian noise model, ésented. Diffraction also limits
performance by reducing the sensor resolution. The comraitFraunhofer diffraction
model is shown to over-estimate the performance achievalie defocused sensors, and
the Fresnel diffraction model is suggested as a replacement

Some observations are also presented on the implementdtibie geometric wavefront
sensor, based on image recovery through projections.
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8.2 Future work

Further extensions to much of the ideas presented in thessthuld be helpful in resolving
several outstanding issues. In this section, | suggest sdntiee more interesting and
potentially fruitful areas of discussion.

The quad-cell is the one of the longest known slope detecisawell-understood. Even

then, new interpretations of the slope detection operatr@hnovel variations on the quad-
cell theme continue to be implemented, as seen in the pyramigfront sensor. The

image truncation on the boundaries of the quad-cell perfarspatial filtering operation,

but issues of aliasing and truncation introduced in Secti@il and Section 5.1.1 remain
under-explored.

The closed-loop model presented in Chapter 6 is very muchlsied in order to contrast

the Shack-Hartmann and pyramid wavefront sensors. A éetaiiodel of the dynami-

cally compensated system, incorporating atmospherisstatand control systems anal-
ysis, would help characterise the compensated output owet tThe modelling process
would involve estimating the relative contribution of eguérameter in the system, and
knowing which ones are not important, and could safely beriga.

The degradation in resolution due to diffraction effectthi@ defocused wavefront sensors
have been explained using Fresnel diffraction. Using th&iEotransform analysis, and a
more precise definition of resolution, it may be possibletargify the effects of diffraction
on sensor resolution. On a more practical note, simulabbisesnel diffraction require a
discretised approximation of the Fresnel kernel and prafeabfield. For a fixed pixel size,
there is a limit to the shortest possible propagation degtd@hat can be simulated. Simple
techniques to shorten this constraint would have been Lisghe simulation for Chapter 7.

The behaviour of the geometric sensor in the presence obphugise was simulated with
a high number of photons, approximating Gaussian whiteendisthe extreme, with low
photon counts, the geometric sensor is much more unpréticténlike the three other
fully linear sensors, at low photon count levels, the preseaf each single individual pho-
ton can have wildly different effects on the sensor output.

In the geometric wavefront sensor, the observed propeittyeaZ ernike polynomials under
projection, presented in the Appendix of this thesis, is als unsolved conjecture. A proof
of this conjecture would complete the modal wavefront asialgf the geometric wavefront
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Sensor.

8.2.1 Unification of wavefront sensors

The chapter layout of this thesis reflects the similaritynsetn pairs of wavefront sensors
—the Shack-Hartmann and the pyramid wavefront sensorddhata dual Fourier pair,
and the geometric and curvature sensor that are based oartifeisputs. A theoretical
framework linking any of the Shack-Hartmann or pyramid sessvith the geometric or
curvature sensors would complete a link forming an serigsaosformations between any
two sensor.

One possible direction here would be to focus on the sinigaribetween the Shack-
Hartmann and curvature wavefront sensors. At the same tlmecomplements the ex-
perimental comparisons reported by Rigaut et. al [81].

In the Shack-Hartmann sensor, a wavefront is first subdivide smaller sections. The
mean slope within each section is estimated using a quagastioned at the focal plane.
By defocusing the measurement plane, as shown in Figura)3thén recombining (revers-
ing the subdivision operation) the quad-cell detectorotanfan imaging array, we obtain
the curvature sensor.

e P ) e S|
— =

—1 —1 — Defocused

plane L : .
quad-cells P

Focal plane quad-cells

(a) (b)

Figure 8.1 A side-by-side comparison of the Shack-Hartmann (a) and curvature (b) wave-
front sensor.

In the curvature sensor, the wavefront subdivision opanas now implicit in image for-
mation, which localises the wavefront signal. The quadistepe detection equation needs
to be updated to take into account any intensity “spill-6¥yem the newly joined neigh-
bouring detector elements. The intensity level in eachaleteslement results from the
gain or loss of light to and from its neighbours. Any changehia intensity thus arises
from the difference in the wavefront slope at the pixel bames, proportional to the mean
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curvature of the wavefront within the pixel or sub-aperture

Further analyses could also incorporate the scidar andustedhniques into this wavefront
sensor framework, since they have very similar opticalreyeanents.
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Appendix

8.3 Projections of Zernike polynomials

During my analyses of the geometric wavefront sensor inuglthe radon transform, some
useful properties of the Zernike polynomials were observda properties of the Zernike
polynomials under projection may find wider application iamg projection based imaging
techniques like computed tomography imaging or magnesicnmance imaging.

It was found that the rotational invariance of the Zernikéypomials translates to a pro-
jection direction invariance after a radon transform. Rernore, all Zernike polynomials
within the same radial order seem to possess the same prprggection function. Since
the recovery of any image (within a circular support regifsajn their projections can be
described by its Zernike polynomial representation, treperties of the Zernike polyno-
mials can be used simplify the inverse problem by reducingté smaller sub-problems
for each Zernike radial group.

The properties observed here represent a special case wiaClis projection functions
[19], which examined the projection of radially symmettitanctions, their inverses, and
the uniqueness of the solution. Indeed, in a subsequent g2@¢Part 2), Cormack de-
scribed the Zernike polynomials and demonstrated in anrerpat their projection solu-
tions. However, the conventions used to describe the Zempdynomials were slightly
different from those adopted here.

The definitions for the Zernike polynomials in Equation 2.@8opted from Noll [65], is
reproduced here for reference.
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VNn+1R(r) ifm=0,
Z(r,8) = ¢ /n+1RM(r)v/2cosmd) if m#0,andiis even, (8.1)

VN+IRM(r)v/2sin(mf) if m# 0, and i is odd,

where

2 (D=9
R0 =2 s s g 82)

2

for 0 <r <1 and non-negative integral values of n and m, witkc n andn — |m| being
even.

The polar coordinateg, 8) can be converted back and forth to rectangular coordinates
(x,y). Let the x-axis be parallel to the line along azimuthal arijlend the y-axis td;
radians. The radon transform of a particular Zernike poigiaZz;(x,y) is defined to be

00

Gi(u, @) :/mZi(x,y) dv (8.3)

where the projection is taken along ti#@xis corresponding to the (parallel to a line at)
angleg. Theu-axis is orthogonal to the-axis and lies along+ 3.

For example, integrating along the y-axis correspondgo7.

a(ug) = [ Zixy)dy foru=x (8.4)

Depending on the symmetry of the Zernike polynomials, thesjections are given by
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) = [ 2oy ays [Tz oy

- /szi(x, -y) dy+/0wzi(x,y) dy

{fng () ifm=0,
= ¢/ (u) if m#0,andiis even, (8.5)

(n,m)

0 if m=#£ 0, and i is odd,

For oddi andm+ 0, Z;(x, —y) = —Zi(Xx,y), so the projection along the y-axis is 0. For even
i, or whenm= 0, Z(x,—Y) = Z(X,y), no cancellation occurs, and the resulting “primary
projection” is named,’ with the corresponding radial ordarand azimuthal frequenay

as subscripts.

For any arbitrary rotation angleg, a Zernike polynomial can be expressed in terms of
the sinusoidal and cosinusoidal Zernike pairs with the sesdél order and azimuthal
frequency (this is trivially true whem = 0). Consequently, the projection of a Zernike
polynomial along any arbitrary angle is a weighted sum ofkihasoidal projection (always
0) and the cosinusoidal projection. For all eveand corresponding pait: 11, this is

00

Zi(u7 (P> - ooZI

= Z. r,6+o¢)d

- /_wzi <r,9—i—q)——) dy

— /_Zcos( (90——)> Z(r,0) — sin(m(go—g)> Zia(r,0) dy
= cos(m((p—i) /_wZ‘(r’e) dy—0

= Zfom(Woosm(p— 7)) (8.6)

Figure 8.3 shows the projection of astigmatism, the 5th ikerpolynomial, over several

'Examples of the Zernike pairs are the tip/tilt terms 2 anch8,dstigmatic terms 6 and 5, or the coma
terms 8 and 7.
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Zernlke5

Figure 8.2 The 5" Zernike polynomial, corresponding to astigmatism.

angles. The projection functions are identical over alllesa¢o within a scale factor. This
confirms the result from Equation 8.6.

The coefficients of the original pair of Zernike polynomiabn be derived by fitting the
projections to cofm(¢ — 7)). To recover a Zernike pair with azimuthal frequeriy the
Nyquist limit requiresmore than2M samples over a revolution of projections. Since the
projections at angleg and @ + J are the same (reflections), this requires more thlan
equally spaced projections in the radon transform.

We now examine the primary projection, which, for all cosioual terms, is given by

@ = [ 2%y dy

= /w vNn+ 1RM(r) cos(mo) tom=0, dy (8.7)
o V2ifm#£0

Ignoring all constant scale factors, within the same raalidér, the primary projection

/_0; R™(r)cogmo) dy (8.8)
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Figure 8.3 The projection of Zs (see Figure 8.2) over one revolution, showing the invariance
of the projection image (to within a scale factor). Note also that the top-half of the plots are
the same (they are actually reflected across the y-axis) as the plots in the bottom-half, since
they are simply projections in opposite directions.

is identical for allm, so the primary projection is in fact parametrised onlynbg/(u). As
shown in Table 8.1, the projections are given by Chebyshé&mnBmials of the 2nd kind.

| am not aware of any analytical proof for this assertion. ldeer, using symbolic inte-
gration techniques, this observation has been verified ap lEasin = 100. | propose the

conjecture that all Zernike polynomials with the same rgdider have the same primary
projection function (ignoring the 1 oy'2 scale factor in Equation 8.7), regardless of az-

imuthal frequency. An exception to this are polynomialshwatddi (as has been shown,

these have projections of zero), using the Noll [65] nuntigedonvention. Perhaps some

of the identities and reasoning in [20] could be used to pthige
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n | Polynomial numbe Projection/== R'T\(/ri f‘jgme)dy

0 1 2

1 2-3 2X

2 4-6 _% + %XZ

3 7-10 —2x+4x°

4 11-15 2- 24)(2Jr 352)(4

5 16-21 2X X+ 32

6 22-28 _7 +4 7 190)(4 T 1$8X6

7 29-36 — 2%+ 203 — 48 + 3/

3 37-45 280,02 160,48 896,6 | 512,8
9 46-55 P 32x3 672 672 1024X7 512 512
10 56-66 —Z2 . 1m0p 1120X4 n 35?4)(6 4608X8 209,10

Table 8.1 Prime projections of the Zernike polynomials.

8.3.1 Projection functions of Zernike polynomials

Table 8.1 shows the symbolically computed projection fiomst within some radial order
n, and their corresponding Zernike polynomials, umte 10. The symbolic integration

involved in the projection is partly simplified using the @lgshev identity.

| Ry cosme) dy

8.3.2 Final thoughts

/m RI(r) (2cos cog((m—1)6) — cos(m— 2)8)) dy
2x/°° @eos{(m— 1)0) dy
- [ R cos(m-2)6) dy

(8.9)

The chief disadvantage of this method is that the tabulapdghpmials need to be discre-
tised into a matrix and least-squares inverted in order tainlthe Zernike decomposition
of an image from its projections. An analytical expressionTable 8.1 would result in a
more practical inversion process.
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