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Abstra
t
Atmospheric turbulence limits the resolving power of astronomical telescopes by distorting

the paths of light between distant objects of interest and the imaging camera at the telescope.

After many light-years of travel, passing through the turbulence in that last 100km of a

photon’s journey results in a blurred image in the telescope, no less than 1” (arc-second)

in width. To achieve higher resolutions, corresponding to smaller image widths, various

methods have been proposed with varying degrees of effectiveness and practicality.

Space telescopes avoid atmospheric turbulence completelyand are limited in resolution

solely by the size of their mirror apertures. However, the design and maintenance cost of

space telescopes, which increases prohibitively with size, has limited the number of space

telescopes deployed for astronomical imaging purposes. Ground based telescopes can be

built larger and more cheaply, so atmospheric compensationschemes using adaptive optical

cancellation mirrors can be a cheaper substitute for space telescopes.

Adaptive optics is referred to here as the use of electronic control of optical component to

modify the phase of an incident ray within an optical system like an imaging telescope. Fast

adaptive optics systems operating in real-time can be used to correct the optical aberrations

introduced by atmospheric turbulence. To compensate thoseaberrations, they must first

be measured using a wavefront sensor. The wavefront estimate from the wavefront sensor

can then be applied, in a closed-loop system, to a deformablemirror to compensate the

incoming wavefront.

Many wavefront sensors have been proposed and are in used today in adaptive optics and

atmospheric turbulence measurement systems. Experimental results comparing the perfor-

mance of wavefront sensors have also been published. However, little detailed analyses

of the fundamental similarities and differences between the wavefront sensors have been

performed.
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vi Abstract

This study concentrates on four main types of wavefront sensors, namely the Shack-Hartmann,

pyramid, geometric, and the curvature wavefront sensors, and attempts to unify their de-

scription within a common framework. The quad-cell is a wavefront slope detector and is

first examined as it lays the groundwork for analysing the Shack-Hartmann and pyramid

wavefront sensors.

The quad-cell slope detector is examined, and a new measure of performance based on the

Strehl ratio of the focal plane image is adopted. The quad-cell performance based on the

Strehl ratio is compared using simulations against the Cramer-Rao bound, an information

theoretic or statistical limit, and a polynomial approximation. The effects of quad-cell

modulation, its relationship to extended objects, and the effect on performance are also

examined briefly.

In the Shack-Hartmann and pyramid wavefront sensor, a strong duality in the imaging and

aperture planes exists, allowing for comparison of the performance of the two wavefront

sensors. Both sensors subdivide the input wavefront into smaller regions, and measure the

local slope. They are equivalent in every way except for the order in which the subdivision

and slope measurements were carried out. We show that this crucial difference leads to a

theoretically higher performance from the pyramid wavefront sensor. We also presented

simulations showing the trade-off between sensor precision and resolution.

The geometric wavefront sensor can be considered to be an improved curvature wavefront

sensor as it uses a more accurate algorithm based on geometric optics to estimate the wave-

front. The algorithm is relatively new and has not found application in operating adaptive

optics systems. Further analysis of the noise propagation in the algorithm, sensor resolu-

tion, and precision is presented. We also made some observations on the implementation

of the geometric wavefront sensor based on image recovery through projections.
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Prefa
e
I began my postgraduate studies as a Masters student in 2002,under the supervision of Dr

Richard Lane. As part of the requirements for the Masters degree, I took courses in Optical

Engineering, Computational Image Recovery, Advanced Systems and Control, Techniques

in Observational Astronomy and Applied Electromagnetism.The thesis component of the

course involved a simulation of atmospheric turbulence forwide field imaging and correc-

tion.

The Electrical and Computer Engineering department collaborated with the Physics and

Astronomy Department on an atmospheric sensing and tip/tilt correction system for the

university’s Mt John Observatory. I had the opportunity to work on the camera software

and optical layout calibration for the rig, and was invited to the observatory on several trips

to test the system and gather data.

In order to investigate further the performance limits of wavefront sensors, I also began to

study the operation of wavefront sensors. To study alternatives to adaptive optics, I adapted

the simulations for wide-field imaging through turbulence to examine the phase retrieval

problem and employed phase diversity to resolve the ambiguity inherent in phase retrieval.

Most of that work was exploratory in nature, and is not documented here.

After upgrading my Masters degree into a PhD degree, initialwork with wavefront sensors

involved a comparison between the curvature sensor and the geometric wavefront sensor.

The exact geometric optics model in the geometric sensor provided it with the obvious ad-

vantage when solving for the inverse solution. However, since real images also contain

photon noise, how does this advantage translate to practical applications? This motivates

the work (Chapter 7) into the comparison between the geometric and curvature wavefront

sensors. During the work with photon noise in the geometric wavefront sensor, some in-

teresting properties of the Zernike polynomials under projections were observed, and are

described in the Appendix.
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xvi Preface

Around the time I was analysing noise propagation through the geometric wavefront sensor,

I inherited some Matlab code from Richard Clare for simulating the pyramid wavefront

sensor. The wavefront estimation routines use direct inversion of a linear model. However,

an empirically determined and turbulence dependent scale factor is required to account for

the changing sensitivity in the pyramid sensor during operation. Difficulties in determining

this scale factor are compounded in closed-loop compensated systems.

This motivated a return to the analysis of the quad-cell (Chapter 5) even though it is well-

covered in the literature. The result of that analysis, along with the Fourier duality property,

is useful for comparing the performance of the Shack-Hartmann to the pyramid wavefront

sensor in Chapter 6. Simulations with different lenslet sizes were carried out to demonstrate

the precision-resolution trade-off in the Shack-Hartmannsensor.

0.1 Thesis organisation

The contents of each chapter in this thesis are summarised here. Chapter 1 to Chapter 4

introduce all the preliminaries required to understand thesubsequent chapters, and contain

no new materials. My new contributions are presented in Chapters 5 to 7.

Chapter 1 provides an introduction to the field of astronomical imaging and the role of

adaptive optics in combating atmospheric turbulence. Alternatives to adaptive optics like

computer post-processing are also discussed.

Chapter 2 introduces the mathematical techniques and notations used in the subsequent

chapters of this thesis. Linear systems theory and probabilistic or statistical techniques are

fundamental to the description of atmospheric turbulence,optics, and wavefront sensors.

Chapter 3 reviews the field of optics. Beginning with the geometric ray tracing model, the

laws of refraction and reflection and their use in optical systems are described. Diffraction

is approximated with the Fresnel and Fraunhofer diffraction models, which are the main

mathematical tools used in this thesis. Lastly, the newer optical techniques of Fourier optics

and the field transport equations are introduced.

Chapter 4 provides an overview of the statistical properties of atmospheric turbulence, and

the wavefront sensors used to detect them. The four main sensors studied in this thesis

—the Shack-Hartmann, the pyramid, the curvature, and the geometric wavefront sensors

are introduced and a unifying theme is suggested.



0.2 Supporting publications xvii

Chapter 5 lays the groundwork for the analyses of the Shack-Hartmann and pyramid wave-

front sensors by characterising the quad-cell wavefront slope sensor. The performance of

the quad-cell is examined and the result is extended to applyto the analysis of wavefront

sensors. Conventional quad-cell analysis cannot be applied to closed-loop adaptive optics

systems, so the novel contribution from this analysis is a simplified closed-loop analysis of

wavefront sensors.

Chapter 6 compares the performance of the Shack-Hartmann and the pyramid wavefront

sensors. After developing the Fourier duality of the two wavefront sensors, the quad-cell

analysis is applied to compare the slope estimation performance of both wavefront sen-

sors. A unique aspect of this work lies in the use of Fourier duality, which provides a neat

classification of the various sensor functions for direct comparison.

Chapter 7 compares the performance of the geometric and the curvature wavefront sensors.

The two sensors are physically identical, and their only difference lies in their wavefront

estimation algorithm. The geometric wavefront sensor is shown to be an exact model of

geometric optics through ray-tracing, while the curvaturesensor is shown to be a simplified

approximation of the geometric sensor. This chapter proposes a new noise propagation

analysis for the geometric wavefront sensor and explores the resolution limits posed by

diffraction.

Chapter 8 concludes with a summary and some discussions on future work.

The Appendix also includes some interesting observations and a conjecture on the proper-

ties of the projections of Zernike polynomials, which provides a potentially useful tool for

the recovery of images through projections.

0.2 Supporting publications

A number of journal and conference publications resulted from work on this thesis. These

are listed below.

T.Y. Chew and R.G. Lane, “Estimating phase aberrations fromintensity data”, inProceed-

ings of Image and Vision Computing New Zealand 2003 (IVCNZ’03) , D. G. Bailey ed.,

181-186.

T.Y. Chew, R.M. Clare and R. G. Lane, “A Cramer-Rao bound analysis of the Shack-
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Hartmann and pyramid wavefront sensors”, inProceedings of Image and Vision Computing

New Zealand 2004 (IVCNZ’04), D. Pairman, H. North and S. McNeill, eds., 227-232.

T.Y. Chew and R.G. Lane, “Benefits of a single photon wavefront sensor”, inProceedings

of Image and Vision Computing New Zealand (IVCNZ’05), B. McCane, ed. 85-89.

T.Y. Chew, R.M. Clare and R.G. Lane, “A comparison of the Shack-Hartmann and pyramid

wavefront sensors”, inOptics Communications, 222666888 (2), 189-195 (2006).



Chapter 1Introdu
tion to Astronomi
al Imaging
The increasing size of ground-based astronomical telescopes has led to the ability to see

fainter objects. In the absence of the atmosphere, larger telescope sizes not only increase

the light gathering power of telescopes, but also increase the resolution of telescopes, al-

lowing for finer details in astronomical images to be measured. In practice, the increase in

size has not been matched by increased resolution, since theatmospheric refractive index

fluctuations caused by turbulence distort the light rays from distant stars unevenly across the

telescope aperture. This degrades the resolution of all ground-based telescopes to about 1”

(arc-second), regardless of telescope size. When astronomical objects are viewed through

large astronomical telescopes, they appear blurred and distorted, with the distortion chang-

ing over time. Figure 1.1(a) shows a simulated image of a pairof binary stars blurred by

atmospheric turbulence when viewed through a large telescope, at an instance in time. The

same image is shown in Figure 1.1(b) with adaptive optics to partially cancel the effects of

the atmosphere.

Several methods are available to combat the distortions introduced by the atmosphere. The

ideal method is to avoid the atmosphere, by using space-based telescopes. In 1990, NASA

deployed the 2.4m Hubble space telescope into low earth orbit. It was initially plagued by

spherical aberrations, but was successfully repaired in-orbit, and has provided astronomers

with deep space images of the universe for close to 15 years. From the original estimated

cost of about US$400 million, the telescope eventually costover US$2 billion, and has

been estimated to cumulatively cost up to US$14 billion (inflation adjusted). The Hubble

space telescope has not been operating since 2004 followingthe failure of the imaging

spectrograph, and now has an uncertain future. Without further repairs and maintenance,

1



2 Introduction to Astronomical Imaging

Speckle image

(a) A pair of double stars seen through a frozen
instance of atmospheric turbulence.

Corrected speckle image

(b) The double stars with partial correction of
the same turbulence using adaptive optics.

Figure 1.1 Simulations of the effects of adaptive optics on atmospheric turbulence induced
blurring.

the telescope will eventually re-enter the atmosphere [4].

The successor to the Hubble Space Telescope, the James Webb Space Telescope [5], is in its

preliminary design stages and is planned for launch in 2013.The telescope is designed with

a 6.5m folding mirror and operates at infra-red wavelengthsof 0.6 to 28µm. The telescope

will orbit the sun at the L2 Lagrange point between the Sun andthe Earth, 1.5 million km

away. The budget for the James Webb Space Telescope project is currently about US$ 3.5

billion, which is US$ 1 billion over-budget.

Due to the prohibitive cost of space telescopes, more practical solutions are needed to over-

come the effects of atmospheric turbulence. Adaptive optics systems for ground-based

telescopes provide an alternative solution. Using opticalelements which modify the propa-

gation of light to cancel the effects of atmospheric turbulence, image quality can be restored

to near the ideal performance. More importantly, this correction can be achieved over a

range of light frequencies and consequently is more useful than computer post-processing

methods.

Adaptive optics systems are used today in most large opticaltelescopes for compensat-

ing the effects of atmospheric turbulence. The design of an adaptive optics system must

consider the costs and appropriateness of ever changing technology, the characteristics of

atmospheric turbulence at a specific observation site, and the type of observation to be

performed at the site. These observations consist mainly ofspectroscopy, photometry and

direct imaging.



1.1 Adaptive optics 3

Spectroscopy [99] is the analysis of the composition of stars or materials by decomposing

light into its component spectra. The spectrograph performance (spectral resolution) is

determined by a narrow slit in the spectrograph. The size of the slit is traditionally matched

to, and limited by, the blurred focal plane image of a point-source object, so adaptive optics

can be used to reduce the slit size and increase the spectrograph resolution.

Photometry is the measurement of stellar magnitudes (intensity) [108]. The main objective

is consistent measurement of intensities, so image resolution is normally not important for

performance. Adaptive optics has limited applicability inthis area, and in fact, by reducing

the light throughput, actually degrades system performance.

Direct imaging, whether by a recording medium like photographic plates or CCD cam-

eras, is similar to sight in the human eye. The intensity distribution of a distant object

is re-imaged with a lens or mirror, and then recorded. The imaged objects can be point-

source stars, double stars, distant extended objects like star systems, galaxies and nebulae,

or nearby extended objects like planets and comets. Image sharpness, resolution and con-

trast are important, and adaptive optics can play a crucial role in such applications. Unlike

spectroscopic applications, images recorded directly maybe further enhanced with com-

puter post-processing.

A promising new technique for high resolution imaging, interferometric imaging, provides

very high but selective resolution by using multiple telescopes arranged on long baselines

of nearly hundreds of meters. The long distances involved require precise calibration of the

phase delay arising from the different imaging path lengthsand atmospheric turbulence.

The major contribution to image degradation comes from the phase piston term between

widely separated apertures. Techniques in adaptive opticshave also been adapted to this

specialised application.

1.1 Adaptive optics

In 1953, Babcock [9] suggested the first adaptive optics system [62, 85, 101] for real-time

aberration compensation. An adaptive optics system is shown in Figure 1.2, consisting of a

wavefront sensor to measure aberrations caused by the atmosphere, a wavefront corrector or

deformable mirror driven in closed loop by a command computer, and an imaging channel

that carries out the scientific observations.



4 Introduction to Astronomical Imaging

Atmospheric
turbulence

Residual
wavefront
(Error)

Residual
wavefront
Estimate

Wavefront
Estimate

Deformable
mirror

Wavefront
sensor

Control
computer

Science
image

Telescope
aperture

Beam
splitter

Figure 1.2 Real-time correction of atmospheric turbulence with a closed-loop adaptive
optics system.

1.1.1 Atmospheric turbulence

Atmospheric turbulence is caused by the mixing of air of different temperature and pressure,

and water vapour. The turbulent motion of air starts from large scale motions, but through

the viscosity and friction of moving air, the motion ends at smaller and smaller scales, and

eventually dissipates as heat. This process results in fluctuations in the refractive index

of air, so these “Tremors of the atmosphere”, as described bySir Isaac Newton [64], are

perceived from the ground by the naked eye as the “twinkling of fixd Stars”.

Although turbulence is considered to be present in the wholeof the atmospheric tropo-

sphere and stratospheric layers, its strongest measurableeffects are usually localised to

several strong layers, typically located about 10km high inthe sky. Often, strong ground

layers are also present. The increasing awareness of the presence of strong ground layers in

recent years has led to greater care being taken to select suitable sites, and the adoption of

construction practices that reduce the observatory thermal signature to reduce ground layer

turbulence [85,101].
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Several statistical measures of the severity of turbulenceare used as rule-of-thumb indica-

tors of the image quality or “seeing” achievable at an observatory site [89]. They are typi-

cally expressed as angles of seeing (size of a blurred point-source), the isoplanatic angleθ0,

usually around a few arc-seconds, turbulence cell size (also known as Fried’s parameterr0,

usually from 5 to 20 cm), or a rate of change (Greenwood’s frequency fG, typically in the

20 to 100 Hz range). All these quantities are derived from therefractive index fluctuations

of turbulence (as measured by the structure constantC2
N) and wind speed. The statistical

properties of atmospheric turbulence are examined furtherin Section 4.1.

1.1.2 Wavefront sensors

Wavefront sensors are used to estimate the image aberrations caused by the atmosphere.

The most practical way today to measure turbulence is to measure its effect on light. The

most commonly used wavefront sensor, the Shack-Hartmann wavefront sensor [72] (to be

examined in Section 6.3) is shown in Figure 1.3, and illustrates most of the basic principles

of wavefront sensors.

Figure 1.3 The Shack-Hartmann wavefront sensor divides the circular telescope aperture
into smaller regions, and combines the local slope signals (shown as arrows in each sub-
region) to form the full wavefront estimate over the whole aperture.

The Shack-Hartmann sensor consists of an array of lenslets spread across the telescope

aperture, subdividing it into smaller regions. The effect of atmospheric turbulence is lo-

calised within each lenslet and proportionately reduced. The lenslet image is displaced

randomly over time, but since the lenslet size is usually chosen to be approximately equal

to r0, maintains an image size close to the un-aberrated case. Theimage displacement is
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linearly proportional to the slope of the atmospheric wavefront [93]. In general, all wave-

front sensors produce a vector signal derived from the wavefront slope over sub-regions in

the aperture and invert the linear relationship to recover the full wavefront across the whole

telescope aperture.

Like all wavefront sensor, the Shack-Hartmann sensor does not work well with dim objects

and requires at least 20 photons in each sub-aperture to provide useful wavefront estimates.

Therefore, the wavefront estimate is frequently obtained from measurements on a nearby

guide star instead of the target star itself. This avoids theloss of light from the target

star measurements and may even allow a brighter star to be used for wavefront sensing.

However, a nearby natural guide star is often unavailable. Observatories today [2, 3, 6, 7]

are equipped with artificial laser guide star systems that can form a bright spot high in the

atmosphere at selected positions.

1.1.3 Imaging camera

The first imaging devices are based on photosensitive materials coated on photographic

film. Today, most imaging devices have been replaced by semiconductor technology, such

as linear arrays of charge-coupled devices (CCD), or more recently, complementary metal-

oxide-semiconductor (CMOS) sensors. Most wavefront sensors use CCD sensors as their

light detector, so the characteristics of CCD detectors play an important role in the perfor-

mance of wavefront sensors.

The most important characteristics of CCD imaging devices are their efficiency, spectral

sensitivity and noise levels. CCD devices can detect as muchas 90% of available photons

if substrate thinning and back illumination are employed with close packing of the indi-

vidual photosites (fill factor). Additionally, anti-reflection and fluorescence (expanding the

spectral sensitivity range) coatings are often used [1].

CCD cameras are also affected by noise during their operation. Thermal or dark noise arises

from accumulated random fluctuations of electrons in thermal motion. Dark noise obeys

Poisson statistics and accumulates over time at a rate proportional to the temperature of the

imaging site. It is reasonably consistent for any individual pixel. Read-out noise or read

noise is a bias introduced mainly by the amplifiers in the on-board measurement electronics.

It is roughly proportional to the amplifier gain. Knowledge of the noise statistics allows

their effects to be reduced by proper calibration of images with averaged noise frames.
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Aside from instrumentation noise, images are sometimes affected by cosmic rays, which

typically saturate individual pixels, creating a salt and pepper noise effect. Typically, single

saturated pixels are removed in a separate preprocessing step to remove this noise. At low

light levels, randomness in the photon arrival process gives rise to noise obeying Poisson

statistics. Poisson noise cannot be reduced except by increasing the received light level.

Witthoft [113] investigated a way to reduce photon noise relative to detector read noise by

image intensification.

1.1.4 Control computer

A control computer transforms signals from a wavefront sensor into the appropriate actua-

tion voltage signals. The signals drive the deformable mirror in a closed loop control sys-

tem. The corrections applied by the system have to take placefaster than the atmospheric

time constant, which is typically a few milliseconds [101].

The control computer is modelled as a simple closed loop control system. The most sig-

nificant effect arising from turbulence is image displacement, caused by the tip/tilt term, so

providing a separate flat mirror significantly reduces the demand on the deformable mirror.

For this reason, it is sufficient to consider only a single channel here. Figure 1.4 shows the

layout of a tip and tilt only adaptive optics system or an image displacement stabiliser. The

incoming light, the light from a distant star, provides the input signal. The output is the

stabilised image used for scientific observations. Instrumentation noise (at the tilt sensor)

and photon noise (inherent in the input) are also present.

The performance of the system is determined by the classicalfactors [23] in a control

system: the noise level, the delay introduced by each component in the adaptive optics

system, and the rate of change of atmospheric turbulence.

1.1.5 Deformable mirrors

Optical phase compensation devices work by introducing a phase shift along the light path

of an optical system. Devices based on birefringent materials or LCD phase shifters can

be used for manipulating optical phase directly. However, the aberrations created by atmo-

spheric turbulence, resulting from irregular refractive index fluctuations in the air, is depen-

dent on the light wavelength. Deformable mirror membranes are used in practical systems,

since they cancel aberrations by physical path differencesinstead of phase and have no

wavelength dependence. Furthermore, deformable mirrors show a uniform response, and
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Figure 1.4 The feedback control loop for an image stabiliser adaptive optics system.

have short response times.

Segmented mirrors were used in early mirror prototypes, buthave fallen from favour be-

cause of their high wavefront fitting errors at the edges. Themost commonly used de-

formable mirror today has continuous facesheets. The facesheet is a flexible reflecting

membrane supported by many micro-actuators that can be adjusted at high speeds to shape

the mirror surface. The micro-actuators are usually built from ferroelectric ceramic materi-

als that have a piezoelectric response to strong electric fields. The bimorph mirror, another

deformable mirror with continuous facesheets, uses two piezoelectric ceramic wafers that

locally contract in opposing directions when a voltage is applied through an electrode, caus-

ing a local deformation around the electrode [85].

The mechanical properties of the mirror actuators determine the characteristics of deformable

mirrors. The stroke (amount of movement) determines the maximum phase correction that

can be compensated by the mirror. The number and positions ofthe actuators limit the

complexity of the phase function that can be compensated. The geometry of the actuators

also affects the coupling between actuators, with the elasticity of the coupling determining

the response time (typically in the millisecond range) of deformable mirrors.

1.2 Post-processing of images

Computer post-processing of images is an attractive alternative to adaptive optics. This may

also complement an adaptive optics system at a later stage, to enhance the output images
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from the adaptive optics system.

The model for the blurring introduced by the atmosphere is given by

d(x,y) = f (x,y)⊙h(x,y)+n(x,y) (1.1)

where f (x,y) is the original image, blurred byh(x,y), the instantaneous atmospheric point-

spread-function at a certain time, andn(x,y) is the additive noise. The contaminated final

imaged(x,y), along with constraints made using assumptions of the properties of atmo-

spheric blurring, is used to recover the original image. Image restoration using deconvo-

lution belongs to the class of inverse problems, where a model of the forward problem is

inverted to recover the original image, often solved using iterative techniques [74].

Post-processing techniques require light to be detected before processing offline, unlike

fully online adaptive optics systems. This has the disadvantage that it cannot be used in

cascade with non-imaging observations like spectroscopy or interferometry, which require

real-time compensation.

1.2.1 Image deconvolution

In conventional image deconvolution, the contaminated imaged(x,y) is known along with

an approximate model of the blurring,h(x,y). Given these two datasets, the original image

f (x,y) can be recovered by reversing the equivalent filtering operation. A knowledge of the

energy statistics of the original image compared to the noise can be used to design optimal

filters known as Wiener filters. In astronomical imaging, theshot noise from randomness

in photon arrivals dominates then(x,y) term. For this class of problems, alternatives like

the CLEAN and Richardson-Lucy iterative algorithms are more commonly applied. They

are maximum likelihood solutions for Poisson noise statistics [55,79].

A more challenging class of problems is encountered when theonly measurement available

is from d(x,y), so the original imagef (x,y) has to be recovered along with the blurring

functionh(x,y) too. In astronomical imaging, this is mitigated by storing and processing

a large number of frames of the image (refer Equation 1.2). Over all frames, the original

image remains the same, while the atmospheric blurring function and noise vary, giving

di(x,y) = f (x,y)⊙hi(x,y)+ni(x,y) (1.2)



10 Introduction to Astronomical Imaging

with i representing an image frame index.

The blind deconvolution problem is frequently under-constrained due to the small number

of measurements compared to the image that is to be recovered. The possible solutions

to the problem are frequently restricted by additional constraints arising from the physical

limits of the imaging problem, such as positivity, smoothness and finite support of images.

A related and more restricted class of problems can be used for recovery of the atmospheric

phase aberrations that lead to image blurring.

1.2.2 Phase retrieval

Phase retrieval refers to the class of techniques used to recover the phase information using

the information from intensity and prior information [24, 59, 92]. It is applied in fields

as diverse as astronomical imaging, microscopy, crystallography, sonar, and radar, among

others [60]. Most spectacularly, it has been used to estimate the aberrations in the Hubble

space telescope [82] using only the aberrated stellar images captured from the telescope

while in Earth orbit.

When a distant star (f (x,y) being a point-source object) is imaged through the atmosphere,

the measured image is given by

d(x,y) = δ (x,y)⊙h(x,y)+n(x,y)

= h(x,y)+n(x,y) (1.3)

Usually, the atmospheric turbulence is approximated by a single layer of phase-screen that

adds random phase perturbations to the passing light. As shown later in Section 3.3.2,

h(x,y) is derived from the Fourier Transform of the telescope aperture function and phase

aberrations propagated from the phase-screen.

h(x,y) =
∣

∣

∣
F

{

A(u,v)eiφ(u,v)
}∣

∣

∣

2
(1.4)

Here, the image magnitude at the imaging plane,h(x,y), and the aperture magnitude,A(u,v)

(usually taken to be circ(
√

u2+v2)), are known. Using two images, the phaseφ(u,v) needs
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to be recovered. From this point of view, all imaging resultsin a lost of phase information,

since only the magnitude of a complex field is measurable.

From Equation 1.4, three classes of solutions to the phase estimateφ̂(u,v) that produce the

same output imageh(x,y) exist

{φ̂(u,v)+c},{φ̂(u,v)+2πk(u,v)},{φ̂(−u,−v)} (1.5)

for integer values ofk(u,v) and forA(u,v) = A(−u,−v) (circular symmetry is common in

telescope apertures).

The absolute phase value has no effect on the imaging problem, so the first class of ambigu-

ity is usually resolved by setting the DC term to zero,∑u∑v φ̂(u,v) = 0. The second class

of ambiguity results from the 2π wrap-around in the phase representation. This may be re-

solved by phase unwrapping techniques commonly used elsewhere in signal processing, or

by applying a smoothness constraint to the solution. The third ambiguity is not resolvable,

and in practice, additional information is required from other sources (an estimate of the

original solution provides a good starting point).

Setting aside these ambiguities, most solutions to the phase retrieval problem are iterative

techniques aimed at reducing some error measure. For example, using an initial guess of

the phase function̂φ(u,v), an estimate for the imagêh(x,y) is produced, and compared

to the actual imageh(x,y). The initial estimate of the phase is modified iteratively tore-

duce the difference between the corresponding image estimate and the measured image.

Alternatively, in the Gerchberg-Saxton method [32], the estimate of the complex field is

transformed back and forth through the Fourier domain. In each domain, a projection op-

eration based on constraints imposed by the measured intensity of the image is performed.

Resolving the ambiguity to the phase retrieval problem requires additional measurements.

Additional measurements not only collect more light (increasing the signal to noise ratio),

but can also measure slightly different aspects of the data.Phase diversity is a concept sim-

ilar to diversity in wireless radio communications. The same phase aberration is measured

through different “channels” to provide multiple viewpoints on the same data.
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1.2.3 Phase diversity

In phase diversity [35, 48], extra measurements of the same object and phase aberrations

are taken to help condition the problem, and resolve ambiguities. In the simplest case,

controlled phase aberrations are added to a second light path to create a second image, such

as

h1(x,y) =
∣

∣

∣
F

{

A(u,v)eiφ(u,v)
}∣

∣

∣

2

h2(x,y) =
∣

∣

∣
F

{

A(u,v)ei(φ(u,v)+∆φ(u,v))
}∣

∣

∣

2
(1.6)

The most popular form of phase diversity is the quadratic wavefront ∆φ(u,v) ∝ u2 + v2,

which corresponds to a defocus. This is usually chosen for its simple implementation.

Figure 1.5 Adding a quadratic phase term using a defocus.

The extra defocused plane image directly helps to resolve the ambiguity in rotationally

symmetric solutions, and often also allows iterative algorithms to converge faster. When

the phase to be estimated is small, an even simpler linearised solution is possible [36].

Phase retrieval has been proposed for measuring optical misalignment in segmented tele-

scopes [70] and even in a real-time experimental adaptive optics control system [52]. This

method has also been extended to wider fields of view [34].

The defocused phase diversity arrangement is actually similar to the physical layout of the

curvature sensor, which will be examined in Chapter 7. However, unlike the curvature

sensor, the defocus in the phase diversity arrangement is much smaller, so that non-linear

diffraction effects dominate over geometric optics. The short defocus length also results in

the output signal having a higher sensitivity to the input phase.
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The optimal form for the diversity wavefront remains an openquestion, and has been ex-

plored [57]. More generally, the extra measurements may be different from the original

image in several ways. Other means of diversity can be obtained through using a different

part of the light spectrum, different imaging positions, orby taking a sequence of images.

1.2.4 Conclusion

In conclusion, most image processing algorithms can run on cheap off-the-shelf hardware,

but may take up too much time to be practical for real-time use. In contrast, in an adap-

tive optics system, the feedback loop allows for higher loopgains, potentially leading to

higher performance. For certain applications, spectrography for example, the output from

an adaptive optics system needs to be further processed optically, so post-processing tech-

niques have limited uses here.
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Chapter 2 Mathemati
al ba
kground
Linear algebra and the theory of linear systems are used heavily in optical systems for

describing light propagation and image transformation. The use of transforms in linear

systems theory also requires manipulation of complex numbers. We introduce the mathe-

matical notation used in this thesis, and examine some commonly used special functions

and their properties.

2.1 Vectors and matrices

Vectors, being 1D arrays of numbers, are represented with bold lower case lettersvvv. The

nth element of the vector is represented with a subscriptvvvn, with the first element indexed

starting from 1. Matrices can be viewed as extensions of vectors, being composed of 2D

arrays of numbers. Matrices are represented with bold uppercase lettersMMM, with the element

at row i and columnj beingMMMi j . The trace (sum of diagonal elements), transpose, inverse,

and pseudo-inverse of the matrixMMM are denoted bytr {MMM}, MMMT , MMM−1 andMMM+ respectively.

Matrix multiplication is often used to describe a linear operator on sampled 1D signals

represented as vectors. The precise definition for the pseudo-inverse of a matrix varies

depending on the application and is defined separately for each problem.

In this thesis, we frequently encounter 2D signals in the form of images or projections.

Instead of using a separate notation for linear operations on 2D signals, we continue to use

2D matrix operators and 1D vectors. The 2D signal, represented as a matrix, is stacked

into a vector and multiplied with a matrix representing a linear operation on the image. A

matrixMMM of sizen by m is stacked into a vectorvvv by

15
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vvvi = MMMi′ j ′ (2.1)

for i′ = mod(i,n) and j ′ = ceil
(

i−1
n

)

, where the mod operation takes the remainder ofi

divided byn, and ceil rounds a fractional non-integer number upwards.

This reduces a 2D matrix to a 1D vector by rearranging the columns of the matrix in order,

into a column vector. If applicable, the result of a linear operationNNN on the signalvvv, vvv′′′ = NNNvvv

can be unstacked into ann′ by m′ matrix by

MMM′′′
i j = vvv′′′i+n′( j−1) (2.2)

In linear operations, matrices are used as a compact notation to describe weighted sums of

signal components. Using a matrix representation for a problem allows results from linear

algebra theory to be used. From a practical point of view, many high quality and tested

numerical recipes for matrices can be reused in simulations.

2.2 Complex numbers

Complex numbers first arise as general solutions to quadratic polynomials. A complex

numbera+ ib is sum of a real and imaginary component. The imaginary component is

formed fromi, defined as
√
−1. Complex numbers, and functions of complex numbers are

frequently plotted on an Argand diagram as vectors with rectangular coordinates, as shown

in Figure 2.1.

a

b

Imaginary, i

Real

r

q

Figure 2.1 Argand diagram for the complex number a+ ib, represented as a vector, with
the real and imaginary components lying along the x and y axes. The magnitude is r and
the argument is θ .

Using this geometric representation, we can also representa complex number with its length
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and orientation, using a polar coordinate. The length or magnitude of a complex number,

and its orientation, measured by its angle (argument) from the x-axis, is defined by

r =
√

a2+b2 a = r cosθ

θ = tan−1
(

b
a

)

b = r sinθ

(2.3)

The polar and rectangular forms of a complex number is linkedby1

a+ ib = r cosθ + i sinθ = reiθ (2.4)

The magnitude and argument representation is commonly usedto represent the magnitude

and phase of a sinusoid, resulting in a complex field representation for electromagnetic

waves.

The conjugate of a complex numberc= a+ ib is defined to bea− ib, and is represented by

c.

2.3 Special functions

Some special functions are frequently used throughout the thesis, and are outlined here.

They frequently have discontinuities or infinities, and aremore appropriately termed gen-

eralised functions or distributions.

2.3.1 Circ function

The circ function is a 2D circular symmetric function that isuseful for describing the cir-

cular aperture of telescopes, lenses and other optical components. Due to its circular sym-

metry, the circ function is also frequently parametrised using a single variable, as is shown

here

1A specific form of Equation 2.4,eiπ + 1 = 0, is said to form the most beautiful equation in the world,
since it relates many of the most important constants from the major branches of mathematics together.
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circ(r) =







1 for r < 1

0 otherwise.
(2.5)

wherex2 +y2 = r2.

2.3.2 Rect function

The rect function can be used to describe rectangular aperture in optical components. In two

dimensions, the rectangular function rect(x)rect(y) is separable into the products of two 1D

functions, and provide a convenient way to analyse systems by reducing the dimensionality

of the problem.

rect(x) =







1 for−1
2 < x < 1

2

0 otherwise.
(2.6)

2.3.3 Step function

The Heaviside step function is used to describe a discontinuity between two regions. This

can be seen in the analysis of the knife-edge test in the pyramid wavefront sensor.

U(x) =







1 for x≥ 0

0 for x < 0
(2.7)

The related signum function is also commonly used for the same purpose.

sgn(x) =



















−1 for x < 0

0 whenx = 0

1 for x > 0

(2.8)

2.3.4 Tri function

The triangular function is also useful for describing certain functions like the optical transfer

function of square lenses.
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tri(x) =







1−|x| for |x| < 1

0 everywhere else.
(2.9)

2.3.5 Sinc function

The sinc function arises in the analysis of the diffraction patterns of images, and gives a

convenient shorthand for dealing with the Fourier transforms of rectangular functions.

sinc(x) =
sin(πx)

πx
(2.10)

2.3.6 Bessel functions

The family of functions known as the Bessel functions are frequently encountered in prob-

lems with rotational symmetry. The zeroth order Bessel function may be variously defined

to be the solution to the differential equation

x2d2y
d2 +x

dy
dx

+x2y = 0 (2.11)

or with its power series

J0(x) = 1− x2

4
+

x4

64
− x6

2304
... (2.12)

or as the solution to the integral

J0(x) =
1

2π

∫ 2π

0
cos(xcosφ) dφ (2.13)

The last integral definition provides some intuition into the nature of the Bessel function.

Using a coordinate transform mapping the rectangular coordinates(x,y) to the rotated co-

ordinates(u,v) = (xcosφ + ysinφ ,−xsinφ + ycosφ), Equation 2.13 can be defined only

along the x-axis (y = 0) as
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J0(x) = J0(x,0) =
1

2π

∫ 2π

0
cos(u) dφ (2.14)

This shows thatJ0(x) is a sum of 2D cosinusoidal gratings over all orientations, as shown

in Figure 2.2.

x

y

x

y

x

y

x

y
y=J0(x)

Figure 2.2 The zeroth-order Bessel function as a sum of 2D cosinusoidal waves (with the
u-axes shown) rotated over all directions φ in the 2D plane. A 1D slice of the rotationally
symmetric sum (a 2D function) is shown plotted.

More generally, other Bessel functions of the first kind, of orderα are solutions to

x2d2y
d2 +x

dy
dx

+(x2−α2)y = 0 (2.15)

with the power series representation

Jα(x) =
∞

∑
m=0

[

(−1)m

m!Γ(m+α +1)

(x
2

)2m+α
]

(2.16)

whereΓ(x) is the Gamma function.

2.3.7 Jinc function

The Jinc function is the rotationally symmetric analogue tothe sinc function.
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Jinc(x) =
J1(πx)

2x
(2.17)

The projection of the rotationally symmetric Jinc functionis a sinc.

∫ ∞

−∞
Jinc(

√

x2 +y2) dx=

∫ ∞

−∞
Jinc(r) dx= sinc(x) (2.18)

The first few zeros of the Jinc function are located atx = 1.220, 2.233, 3.239 ... etc.

Some useful properties of the Jinc function are shown here.

Jinc(0) =
π
4

(2.19)

∫ ∞

−∞
Jinc(x)2 dx=

2
3

(2.20)

∫ ∞

0
xJinc(x)2dx=

1
8

(2.21)

Equation 2.21 is useful for finding the volume under the circularly symmetric Jinc(x)2

function.

∫ 2π

0

∫ ∞

0
Jinc(r)2r dr dθ =

∫ 2π

0

1
8

dθ =
π
4

(2.22)

2.3.8 Chirp function

The chirp function describes a signal with a linearly increasing “instantaneous” frequency.

Here, it is generalised to a complex exponential with quadratic phase.

f (x) = eiaxx2
(2.23)

The 2D chirp function is a separable function form from the products f (x) f (y). When



22 Mathematical background

fx = fy, the chirp function also possesses a circular symmetry.

f (x,y) = eiaxx2
eiayy2

= eiar2
(2.24)

for r2 = x2 +y2.

The real quadratic exponential function or the Gaussian function, is a special case of the

chirp function.

f (x) = e−πx2
(2.25)

This is the basic form for the normal distribution function used in statistics to describe many

naturally occurring statistical distributions.

2.3.9 Delta function

The delta function is a convenient mathematical shorthand used to model sharp impulse

events very with short time-scales. In images, this can model a point-source object so small

that the signal is 0 everywhere except at a point, yet possesses a finite integral nonetheless.

δ (x) =







undefined(∞) for x = 0

0 everywhere else.

and
∫ ∞

−∞
δ (x) dx = 1 (2.26)

The delta function possesses the sifting property that allows us to decompose all functions

into an integral sum of delta functions. It also acts as a functional that maps a function to a

scalar value, namely, the value of the function at the position of the delta functionx′.

f (x) =
∫ ∞

−∞
f (x′)δ (x−x′)dx′ (2.27)

for all functions f (x).
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2.3.10 Comb function

The comb function (also known as the Shah function) is formedfrom equally spaced delta

functions. It is used for representing the signal sampling process.

comb(x) =
∞

∑
k=−∞

δ (x−k) (2.28)

2.4 Linear systems

Many physical processes can be idealised as black boxes withlinear properties, as shown in

Figure 2.3. For all combination of inputsf (x) andg(x) to the black box, the output obeys

the following linear superposition principles

H { f (x)+g(x)} = H { f (x)}+H {g(x)} (2.29)

for constantsa andb, and whereH { f (x)} represents the linear operationH on the input

function f (x).

Signal Output

Linear time/space
invariant system

S

Noise

Figure 2.3 A linear system. The output for any fixed input is identical across all time.
Scaling the input will also scale the output function identically.

A linear operation can be described by its response to an impulse input function or the

kernel. In images, the impulse is equivalent to a point-source input, so the impulse response

is also known as the point-spread-function (PSF). Let the impulse response of a system

be characterised byh(x;x′), which represents the output due to an impulse input atx′, or

δ (x−x′). The linearity of the operation means that any outputF(x) can be formed by the

summed impulse response to its inputf (x), which can be decomposed into delta functions

using the sifting property.
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F(x) = H { f (x)}

= H

{

∫ ∞

−∞
f (x′)δ (x−x′)dx

}

=

∫ ∞

−∞
f (x′)H

{

δ (x−x′)
}

dx′

=
∫ ∞

−∞
f (x′)h(x;x′) dx′ (2.30)

2.4.1 Linear shift invariant systems

In a special class of linear operations that are time or spaceinvariant, the impulse response

is

h(x,x′) = h(x−x′), ∀x′ (2.31)

This shift invariance means that the output of the system at all times or spatial positions is

the same, except for the shifted time or position.

f (x−x′) → F(x−x′), for all functionsf (x) (2.32)

In such systems, Equation 2.30 reduces to an operation knownas convolution.

F(x) = f (x)⊙h(x) =
∫ ∞

−∞
f (x′)h(x−x′) dx′

F(x,y) = f (x,y)⊙h(x,y) =
∫ ∞

−∞
f (x′,y′)h(x−x′,y−y′) dx′ dy′ (2.33)

for either 1D - f (x), or 2D signalsf (x,y).

Several properties of linear shift invariant systems, expressed using the convolution opera-

tor, are frequently used. They are the commutative, distributive, associative, shift-invariant,

differentiation and the delta function identity properties.
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Commutative

f (x)⊙g(x) = g(x)⊙ f (x) (2.34)

Distributive

[a f(x)+bg(x)]⊙h(x) = a( f (x)⊙h(x))+b(g(x)⊙h(x)) (2.35)

Associative

( f (x)⊙g(x))⊙h(x) = f (x)⊙ (h(x)⊙g(x)) = f (x)⊙h(x)⊙g(x) (2.36)

Shift-invariance

F(x) = f (x)⊙g(x) → F(x−x′) = f (x−x′)⊙g(x) (2.37)

Differentiation

d
dx

( f (x)⊙g(x)) =

(

d
dx

f (x)

)

⊙g(x) = f (x)⊙
(

d
dx

g(x)

)

(2.38)

Delta function

f (x)⊙δ (x−x′) = f (x−x′) (2.39)

Projection

∫ ∞

−∞
[a(x,y)⊙b(x,y)] dy =

∫ ∞

−∞
a(x,y) dy⊙b(x,y)

= a(x,y)⊙
∫ ∞

−∞
b(x,y) dy (2.40)

Generally, the convolution operation results in a smoothedoutput function. For images, this

means that all imaging operations degrade the resolution ofthe transmitted image. In fact,

in the limit, repeated convolution with random point-spread-functions results in Gaussian

shaped images, a consequence quantified by the Central LimitTheorem in statistics.
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Correlation

The correlation operation is mathematically similar to theconvolution operation. It is used

as a measure of the similarity (measured in the least-mean-square sense) between two func-

tions, and forms the basis for matched filter designs, which “searches” for a signal template

embedded within some signal. The displacementx that maximises the correlation is the

position of the best match betweenf (x) andg(x).

f (x)⋆g(x) =
∫ ∞

−∞
f (x′)g(x′−x) dx′ = f (x)⊙g(−x) (2.41)

The correlation operation is thus similar to the convolution operation, and is distributive

and shift invariant, but not commutative or associative. The effect of the differentiation

operator under correlation is

d
dx

( f (x)⋆g(x)) = − f (x)⋆

(

d
dx

g(x)

)

(2.42)

2.4.2 Transforms

A special set of input functions to linear systems, known as the system eigenfunctions, have

the property that they remain unchanged after being operated upon, only shifted in position

and scaled in amplitude. The eigenfunctions of linear shiftinvariant systems are sinusoids.

A linear operation can be described in terms of the amplitudeand phase (position) shift

imparted to sinusoids. This alternative description of thesystem is also known as the system

transfer functionH( f ), where

H {sin(2π f x)} = |H( f )|sin(2π f x+argH( f )) (2.43)

Using convolution, the impulse response fully describes a system. All input functions are

decomposed into individual impulse functions, and passed through the system. The output

of the system is the combination of all the scaled and shiftedimpulse responses.

Using the transfer function description, inputs to a linearsystem are broken down into

sums of sinusoidal functions. The output from the system is the sum from the outputs of
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the individual input sinusoidal components, as described by the transfer function.

For f (x) = ∑
i

Ai sin(2π fix)

H { f (x)} = H

{

∑
i

Ai sin(2π fix)

}

= ∑
i
|H( fi)|Ai sin(2π fix+argH( fi)) (2.44)

This example illustrates an alternative description of linear systems by transforming the in-

puts and outputs into a different domain, presenting different views of the same data. Linear

operators can also undergo transformations, and be described as operations on signals in the

alternative domain. The system transfer function is the dual of the convolution operation. It

is a powerful alternative for describing linear systems. The decomposition of a signal into

sinusoidal waveforms is the basis of the Fourier transform.

2.4.3 Fourier transform

By decomposing a signal into its constituent frequencies, the Fourier transform converts a

time or spatial waveform into a function in frequency space.The Fourier transform is simi-

lar in action to the prism in a spectrograph, which breaks down star-light into its constituent

frequencies. The alternative representation provided by the transform is especially useful

for understanding periodic signals.

While there is no standard notation for describing the Fourier transform, the notation in

Goodman [38] is used in this thesis. For any well behaved function g(x), which may be

complex valued, there exists a unique Fourier transform

G( fX) = F {g(x)} =
∫ ∞

−∞
g(x)e−i2π fXx dx (2.45)

for spatial coordinatesx and frequency along thex-axis fX.

The Fourier transform can be extended to higher dimensions when transforming functions

involving many variables or dimensions. They are separableinto individual components

along each (rectangular) axis. For example, the 2D Fourier transform can be expressed as
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separate Fourier transforms along thex andy axes.

G( fX, fY) = F {g(x,y)}

=

∫ ∞

−∞

(

∫ ∞

−∞
g(x,y)e−i2π fXx dx

)

e−i2π fYy dy

=

∫ ∞

−∞

∫ ∞

−∞
g(x,y)e−i2π( fXx+ fYy) dx dy (2.46)

with the corresponding frequency componentsfX and fY.

The inverse Fourier transform recovers the original signalfrom its Fourier transform

F
−1{F {g(x,y)}} = F

{

F
−1{g(x,y)}

}

= g(x,y) (2.47)

g(x,y) = F
−1{G( fX, fY)} =

∫ ∞

−∞

∫ ∞

−∞
G( fX, fY)ei2π( fXx+ fYy) d fX d fY (2.48)

for all continuous functionsg(x,y).

The forward and inverse Fourier transforms are very similar, differing only in the sign of

the exponential phase term. The forward Fourier transform can thus be used instead of

the inverse Fourier transform for recovering an image. In optical systems, this successive

Fourier transform of an image results in inversion of the propagated image.

g(u,v) = F {F {g(x,y)}} =

∫ ∞

−∞

∫ ∞

−∞
G( fX, fY)e−i2π(u fX+v fY) d fX d fY = g(−x,−y)

(2.49)

Properties of the Fourier transform

By representing all signals as waves with frequency and phase, the Fourier transform is also

useful for describing interference effects that commonly occur in the diffraction of light.

Various properties of the Fourier transform [38] are outlined below.
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Linearity

F {a f(x,y)+bg(x,y)} = aF { f (x,y)}+bF {g(x,y)} (2.50)

The Fourier transform is a linear transform. The addition operator in the spatial domain

corresponds to the addition operator in the Fourier domain.

Scale

ForF( fX, fY) = F { f (x,y)}

F { f (ax,by)} =
1

|ab|F(
fX
a

,
fY
b

) (2.51)

Scaling the spatial coordinates results in an inverse scaleof the corresponding frequency.

Shift - Exponential phase

ForF( fX, fY) = F { f (x,y)}

F { f (x−a,y−b)} = F( fX, fY)e−i2π( fXa+ fYb) (2.52)

A spatial shift in the spatial domain results in an exponential phase factor in the Fourier

domain.

Convolution and multiplication

F { f (x,y)⊙g(x,y)} = F { f (x,y)}F {g(x,y)} (2.53)

F { f (x,y)g(x,y)} = F { f (x,y)}⊙F {g(x,y)} (2.54)

The correspondence between convolution and multiplication, as hinted at the beginning of

the section, is an important one. Equation 2.53 provides thedescription for the system

transfer functionF {g(x,y)} given the point-spread-functiong(x,y).
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Correlation

The correlation operator is similar to a convolution, and from Equation 2.53, can be ex-

pressed as

F { f (x,y)⋆g(x,y)} = F

{

f (x,y)⊙g(−x,−y)
}

= F( fX, fY)G( fX, fY) (2.55)

The special case of auto-correlation reduces to

|F( fX, fY)|2 = F { f (x,y)⋆ f (x,y)} (2.56)

The squared magnitude of the Fourier transform of a functionis also known as the power

spectrum or the spectral density of the function. The power spectrum is a real quantity

which shows the breakdown of the signal power within each frequency.

Rayleigh and Parseval’s Theorem (Conservation of Energy)

In a new twist to Pythagoras’ theorem, the total energy in a signal is preserved during

the Fourier transform. In physical situations,| f (x,y)|2 might represent the power den-

sity within a telescope aperture (integrated to give the total power or intensity), while

|F( fX, fY)|2 would represent the propagating power density spread over various directions.

∫ ∞

−∞

∫ ∞

−∞
| f (x,y)|2 dx dy=

∫ ∞

−∞

∫ ∞

−∞
|F( fX, fY)|2 d fX d fY (2.57)

Differentiation

F

{

d
dx

f (x)

}

= i2π fXF( fX) (2.58)

Under differentiation, the Fourier transform of a functionis multiplied by the frequency.



2.4 Linear systems 31

Rotational symmetry in the Fourier transform

For the special case of rotationally symmetric functions, the Fourier transform exhibits

some surprising and useful properties. Consider a rotationally symmetric signalf (x,y) that

only has a radialr dependence,

f (x,y) = f (
√

x2 +y2) = f (r) (2.59)

Due to the rotational symmetry of its Fourier transform, we employ a rectangular to polar

coordinates transform in the spatial and frequency domain,that is, from(x,y) and( fX, fY)

to (r,θ) and(ρ,φ). The Fourier transform is

F( fX, fY) =
∫ ∞

−∞

∫ ∞

−∞
f (x,y)e−i2π( fXx+ fYy) dx dy

F(ρ,φ) =
∫ 2π

0

∫ ∞

0
f (r)e−i2π(ρ cosφ r cosθ+ρ sinφ r sinθ )r dr dθ

=

∫ ∞

0
r f (r)

∫ 2π

0
e−i2πρr cos(φ−θ ) dθ dr

=
∫ ∞

0
r f (r)

∫ 2π

0
cos(2πρr cos(φ −θ))− i sin(2πρr cos(φ −θ)) dθ dr

F(ρ) =

∫ ∞

0
2πr f (r)J0(2πrρ) dr (2.60)

using the identities

∫ 2π

0
cos(2πρr cos(φ −θ)) dθ = 2πJ0(2πrρ) (2.61)

from Equation 2.13, and

∫ 2π

0
sin(2πρr cos(φ −θ)) dθ = 0 (2.62)

due to the odd-symmetry of the sine function.



32 Mathematical background

Conveniently, the 2D Fourier transform can be reduced to a 1Dtransform with the zeroth

order Bessel function of the first kind as a kernel. Known as the Hankel transform or the

Fourier-Bessel transform, the rotationally symmetric Fourier transform inherits some of

properties of the 2D Fourier transform (subject to the symmetry constraint). Defining the

Hankel transform as

H { f (r)} = F(ρ) = 2π
∫ ∞

0
r f (r)J0(2πrρ) dr (2.63)

we obtain the following properties.

f (r) F(ρ) = H { f (r)}
f (ar) 1

a2 F(ρ
a)

f (r)⊙g(r) F(ρ)G(ρ)

r2 f (r) −∇∇∇2F(ρ)

Table 2.1 Properties of the Hankel Transform.

The Jinc function

In this thesis, the Fourier transform of circ(x,y) is often required. Being a circularly sym-

metric function, we can use the Hankel transform to simplifythe problem.

F {circ(x,y)} = H {rect(r)}

= 2π
∫ R

0
rJ0(2πrρ) dr =

RJ1(2πρR)

ρ
= 4R2Jinc(2Rρ) (2.64)

whereJ1(x) and Jinc(x) are defined in Equation 2.16 and Equation 2.17, and the radius

R= 1. Here, we also used the identity
∫ x

0 x′J0(x′) dx′ = xJ1(x).

The result from Equation 2.64 actually corresponds to the equation used to describe the

optical field in the imaging plane of a telescope with an un-aberrated, circularly symmetric

aperture2.

2The propagation of light can be described with a Fourier transform. The optical properties of the Fourier
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Fourier transforms of common functions

The Fourier transforms of some commonly used functions havesome useful properties, and

merit some attention.

f (x) F( fX) =
∫ ∞
−∞ f (x)e−i2π fXx dx

δ (x) 1

Rect(x) Sinc( fX)

U(x) 1
i2π fX

1√
2πσ e−

x2

2σ2 e−2π2σ2 f 2
X

cos(2π f0x) 0.5δ ( fX + f0)+0.5δ ( fX − f0)

circ(
√

x2 +y2) 4Jinc(
√

f 2
X+ f 2

Y
2 )

Table 2.2 Table of Fourier Transform pairs of commonly used functions.

Interestingly, the transform of the Gaussian function, is also a Gaussian function3. The

Gaussian function is simple to specify and intuitively satisfying as a blurring function in

images. Additionally Fourier analysis of images is helped by both the function and trans-

form being real. The Fourier Transform of a Gaussian can be derived from the identity

∫ ∞

−∞
e−cx2

dx=

√

π
c

(2.65)

the Fourier transform of the functione−cx2
is

transform will be examined in Section 3.3.2.
3An easy way to account for the scale factors is to considerF

{

Gaussian{0,σ2}(x)
}

∝

Gaussian{0, 1
σ2}(u) = ke

− u2
(

2 1
σ2

)

for u = 2π f (radians). The Fourier transform must equal 1 atu = 0 (the
DC term), so the scale factor,k, for the exponential, must be 1.
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F

{

e−cx2
}

=

∫ ∞

−∞
e−cx2

e−i2π f x dx

= e

(

iπ f√
c

)2 ∫ ∞

−∞
e

(√
cx+ iπ f√

c

)2

dx

=

√

π
c

e−
π2 f2

c (2.66)

Signal representation and the Discrete Fourier Transform

The continuous function transforms are useful as a mathematical aid in the analysis of

continuous signals. In practice, signals are frequently measured or sampled at discrete times

and recorded or quantised as discrete values. For this, the continuous Fourier transform is

re-framed as a discrete transform. We must first examine the properties of discrete signals.

Sampling

In imaging applications, a square array of intensity detectors, such as the CCD or CMOS

detector, records intensity falling on the detectors at regular intervals. Each sample of the

signal is measured over the area covered by each detector. A convenient approximation for

sampled signals assumes that the original signal is sampledpoint-wise by multiplication

with a regularly spaced array of delta functions. For a 1D signal, this is

fS(x) =
∞

∑
n=−∞

f (x)δ (x−n∆x)

= f (x)comb∆x(x) (2.67)

This is in fact a notational convenience, and represents a simplification of the more rigorous

representationfS(n∆x) =
∫ ∞
−∞ f (x)δ (x−n∆x) dx.

As an example, consider the class of all sinusoids sampled atintervals of∆x. Any signal can

be recovered from its samples exactly by fitting a sinusoid tothe sampled points. However,

multiple solutions are possible - forsin(2π f x) sampled atfS, there are an infinite number

of solutions of the form
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sin(2π f ′x)wheref ′ = f ±n fs (2.68)

for all integersn.

In general, the effect of sampling on a signal’s spectrum canbe found (using the property

that the comb function is self-similar under the Fourier transform).

F { fS(x)} = F { f (x)comb∆x(x)}
= F( fX)⊙combFs( fX) (2.69)

The convolution of the signal transform with the periodic array of deltas is shown for a

band-limited signal in Figure 2.4. The sampling frequency is inversely proportional to the

spacing of the samplesFs = 1
∆x. Here, each “island” of spectra is an exact copy of the next,

and provides no additional information. At lower frequencies, the spectra of the sampled

signal may start to overlap, resulting in aliasing, which interferes with interpretation of

the signal. Provided the sampling frequency is high enough,a good representation of the

original signal is recorded, and no information is lost.

Figure 2.4 The effect of sampling (with frequency Fs) on a band-limited signal. At lower
sampling frequencies, some parts of the signal spectra may overlap.

Nyquist sampling criterion

The sampling frequency required to sample a signal without aliasing depends on the signal

to be sampled. Rapidly changing signals need to be sampled ata higher rate compared

to slowly changing signals. From Equation 2.68 and Figure 2.4, the lowest sampling fre-

quency, known as the Nyquist frequency, has to be two times the highest frequency present

in the signal.

Discrete Fourier Transform
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Having defined a representation for discrete signals, we candefine the Discrete Fourier

Transform (DFT). The DFT of a signalf [n] = fS(n∆x) with N total samples is given by

F [k] = F { f [n]} =
1
N

N−1

∑
n=0

f [n]e−i2πk n
N (2.70)

for integers 0≤ k,n < N.

The equivalent matrix formulation, representing with vectorsFFFn = F [n] and fff n = f [n], is

FFF = MMM fff (2.71)

whereMMMnm = e−i 2πnm
N

The basis vectors inMMM are orthogonal with respect to each other, and normalised. From the

properties of orthogonal matrices [8], the inverse Fouriertransform matrixMMM−1 = MMM∗ =

MMMT = M, or

f [n] =
N−1

∑
k=0

F[k]ei2πn k
N (2.72)

The signal representation in both the time and frequency domain is discrete and finite. Aside

from the discreteness of the signals, the properties of the DFT (Section 2.4.3) are similar

to the continuous Fourier Transform. However, the signal and spectra are additionally

implicitly assumed to be periodic, sof [n+N] = f [n] andF[k+N] = F[k]. In practice, this

periodicity assumption leads to discontinuities between the beginning and end of sampled

signals, as shown in Figure 2.5.

Figure 2.5 The assumption of periodicity leads to discontinuities in sampled signals.

This periodicity also affects the discrete convolution operation. To extend the convolution

operation to discrete signals, we require the discrete convolution operation to be
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h[n] = f [n]⊙g[n] =
2N−1

∑
n′=0

f [n′]g[n−n′] (2.73)

for 0≤ n < 2N, with g[n−n′] = 0 whenn−n′ < 0.

The indirect convolution operation, wheref [n] andg[n] are transformed into the frequency

domain, multiplied (Equation 2.53), and inverse transformed back to the time domain again,

results in the circular convolution operation

h[n] = f [n]⊙g[n] =
N−1

∑
n′=0

f [n′]g[n−n′] (2.74)

for 0 ≤ n < N, and with wrap around (due to periodicity)g[n−n′] = g[N + n−n′] when

n−n′ < 0.

To obtain the more useful convolution defined in Equation 2.73, the signalsf [n] andg[n]

should in general be zero-padded to double their original sizes. The effect of “circular-

ity” from convolution in the Fourier domain is still present, but the separation between

the periodic signals now removes any overlap when convolving. This effect is the dual of

the aliasing problem when the repeated (periodic) signal spectra of under-sampled signals

overlap. This requirement to zeropad signals also applies when measuring a signal’s spec-

tral density, since the squared magnitude requires multiplication in the Fourier domain of a

signal with itself, and corresponds to a correlation operation in the spatial domain.

In imaging application, for 2D images sampled over a square grid array, the 2D DFT is

separable into 2 1D transforms and is straight-forward to compute given the 1D DFT. Other

sampling strategies are also available in 2D, (for example rectangular grids, or hexagonal

patterns) but are not considered in this thesis.

Fast Fourier Transform

For anN-point signal, the DFT is formed from anNXN matrix multiplication, and requires

N2 operations. For signals sampled over a long time (largeN), the computational costs of

the DFT become prohibitive. An optimisation, called the Fast Fourier transform (FFT) [15]

is available for speeding up calculations of the discrete signal spectrum. The FFT is strictly

a computational optimisation, and otherwise produces identical results to the DFT. First,

the signal is split into two half-period components



38 Mathematical background

N−1

∑
n=0

f [n]e−i2πk n
N =

N
2−1

∑
n=0

f [n]e−i2πk n
N +

N−1

∑
n=N

2

f [n]e−i2πk n
N

=
M−1

∑
n=0

f [n]e−i2π k
2

n
M +

M−1

∑
m=0

f [m+M]e−i2π k
2(m+M

M )

=
M−1

∑
p=0

(

f [p]+e−i2π k
2 f [p+M]

)

e−i2π k
2

p
M (2.75)

The DFT of the N-point signal can now be decomposed into 2 DFT’s of 2 N
2 -point signals.

For integer 0≤ k′ < M and for evenk = 2k′

F[k] =
M−1

∑
p=0

( f [p]+ f [p+M])e−i2πk′ p
M (2.76)

whereas for oddk = 2k′ +1

F[k] =
M−1

∑
p=0

(

( f [p]− f [p+M])ei2π p
M

)

e−i2πk′ p
M (2.77)

This division of a problem in two smaller sub-problems afterN steps results in an algorith-

mic complexity ofN logN compared to theN2 of the naive matrix multiplication method.

With the discovery of the FFT, Fourier analysis became a convenient and practical tool that

found widespread use.

Aside from the complex exponential basis functions, other similar basis functions like the

Hadamard basis functions and the discrete cosine functions(used in the jpeg image encod-

ing standard) may also be used for representing discrete transforms of signals. Other more

general transforms like the wavelet transform and the Gabortransform are commonly used

in image processing, but have found no application in this thesis.

2.4.4 Zernike polynomials

Depending on the particular geometry of the functions beingtransformed, a different set of

bases functions may be used. The Zernike polynomials are a set of functions defined on
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a circle of radius 1 [65]. Due to their rotational invarianceand circular support, they are

traditionally used for describing optical aberrations in optical instruments. More recently,

they are used to describe aberrations in the human eye, and also those resulting from atmo-

spheric turbulence. Their use in digital watermarking of images has also been suggested.

They are defined in polar coordinates as products of radialRm
n (r) (wherer is the radius) and

angular functions (sin and cos terms of the azimuthal angleθ ). The Zernike polynomials

on the unit circle (r ≤ 1) are defined as

Zi(r,θ) =



















√
n+1R0

n(r) if m = 0,
√

n+1Rm
n (r)

√
2cos(mθ) if m 6= 0, and i is even,

√
n+1Rm

n (r)
√

2sin(mθ) if m 6= 0, and i is odd,

(2.78)

where

Rm
n (r) =

n−m
2

∑
s=0

(−1)s(n−s)!

s![n+m
2 −s]![n−m

2 −s]!
rn−2s (2.79)

for non-negative integral values of n and m, withm≤ n andn−|m| being even.i represents

the mode ordering number for the polynomials, and follows the numbering convention used

by Noll [65].

The lower order Zernike polynomials loosely corresponds tothe classical Seidel aberra-

tions for describing imperfect optical systems. These are shown in Figure 2.6 with their

corresponding names.

Unlike the Seidel aberrations, the Zernike polynomials form a complete set of orthogonal

bases functions over the unit circle.

∫ 2π

0

∫ ∞

0
Zi(r,θ)Z j(r,θ)A(r,θ) rdr dθ =







0 ∀i 6= j

1 ∀i = j
(2.80)

whereA(r,θ) is the aperture weighting function (
∫ ∞
−∞
∫ ∞
−∞ A(r,θ)dx dy= 1), beingA(r,θ) =

1
π within the unit circle, and 0 everywhere else.
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Figure 2.6 The Zernike polynomials and their closest corresponding Seidel aberrations.

The property of orthogonality is convenient for treating the modes separately without hav-

ing to balance the aberration terms, as for the Seidel aberrations in classical optics. Since

they form a complete set, the Zernike polynomials can represent any arbitrary phase func-

tion over a unit circle with a weighted sum

φ(r,θ) =
∞

∑
i=1

αiZi(r,θ) (2.81)

with ααα , the vectorised form of all coefficientsαi, being sufficient to describe the phase.

The orthogonality of the Zernike polynomials conserves theenergy of the phase in the

weighted sum representation.

∫ 2π

0

∫ ∞

0
φ(r,θ)2A(r,θ) rdr dθ =

∞

∑
i=1

α2
i (2.82)

The Zernike polynomials also possess the property of rotational invariance. As represented



2.4 Linear systems 41

using Equation 2.81, rotating any arbitrary function preserves the energy in the Zernike

modes at each radial order and azimuthal frequency. Equation 2.85 shows that after rotat-

ing through any arbitrary angleψ, the energy present in each radial order and azimuthal

frequency remain constant.

If

φ(r,θ) =
∞

∑
i=0

αiZi(r,θ) (2.83)

and

φ(r,θ +ψ) =
∞

∑
i=0

α ′
i Zi(r,θ) (2.84)

then the coefficients are the “same”, in the sense that pairs of the Zernike coefficients within

the same radial order contain the same amount of energy

∑
i∈Sn,m

α2
i = ∑

i∈Sn,m

α ′2
i ∀n,m (2.85)

whereSn,m refers to the set of all Zernike modes with radial ordern and azimuthal frequency

m.

That is, for a fixedn andm, Rm
n (r)cos(m(θ +ψ)), the sine and cosine terms are

Zc(r,θ) = Rm
n (r)cos(m(θ +ψ)),and

Zs(r,θ) = Rm
n (r)sin(m(θ +ψ)) (2.86)

Their corresponding coefficients

α2
s +α2

c = const (2.87)

for any arbitrary rotationψ, holdingn andm constant.
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For numerical simulations, discrete versions of the Zernike polynomials are required. How-

ever, unlike well-known transforms like the Discrete Fourier Transform or the Discrete Co-

sine Transform, there are no discrete orthogonal basis functions to represent the Zernike

polynomials. We are therefore limited to a discrete approximation of the Zernike polyno-

mials.

2.5 Probability and statistics

The field of optical imaging inherently deals with random statistical phenomena. From

the unknown light source, through the random transmission medium, to the detection and

measurement of light, a statistical treatment is required to quantify the randomness and

uncertainty of the whole system. We shall describe the optical imaging problem using a

probabilistic framework.

Probability

Probability is used to describe chance or random events. TheTheory of Probability was

given a mathematical foundation in the mid-17th century by correspondences between the

mathematicians Blaise Pascal and Pierre Fermat. The probability or likelihood of an event

is measured using a real number ranging from 0 to describe events that will not occur to

1 to describe events that are certain to occur. In addition tothe law governing mutually

exclusive events, these three axioms form the fundamental basis for probability

0≤ P(A) ≤ 1

P(S) = 1 =⇒ S is certain to occur

P(A1 ∪ A2) = P(A1)+P(A2) for mutually exclusive eventsA1 andA2 (2.88)

As an example, consider the probability of obtaining a certain face up when throwing a 6

sided die. If each face isjust as likelyas any other face to appear facing upwards when the

die is thrown, the probability of a successful throw is1
6.

P(A) = lim
N→∞

n
N

(2.89)



2.5 Probability and statistics 43

This assigns a numerical value to events in terms of their frequency of appearance in the

long run. It is intuitively satisfying, and also obeys the basic axioms of probability.

Another example involving discrete probabilities is the photon count measurement in an

imaging process. The behaviour of photon arrival obeys Poisson statistics, and this phe-

nomenon is particularly significant at low light levels. This is an example of how prob-

abilistic frameworks are used for describing measurement uncertainty, noise or random

signals. The probability of obtaining a photon countx for a light detector is given by

P(x) =
e−µ µx

x!
(2.90)

whereµ is the expected (average) photon count for the detector overmany experiments.

A Poisson distribution with a high mean value can be approximated using Gaussian white

noise for analysis purposes.

The probability distribution functions for these two different types of random phenomena

are shown in Figure 2.7.

P(X)

X

Figure 2.7 Two different types of probability distribution functions taking discrete values.

The concept of probability also extends to continuous variables. In this thesis, the wavefront

slope of atmospheric turbulence is assumed to take on randomvalues over time, averaging

around 0. In fact, the probability distribution function for the wavefront slope is Gaussian,

so the probability density of the wavefront slope beingx is

p(x) =
1√
2πσ

e−
x2

2σ2 (2.91)

where the varianceσ2 quantifies the spread (width) of the distribution.
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The distribution function is plotted in Figure 2.8. When describing probabilities of con-

tinuous variables, the probability of any specific slopex is a density value. Integrating

the density function over a range of values provides a numerical probability value, so we

measure probabilities over a range of slopes instead. The shaded area under the curve in

Figure 2.8 is the probability that an observed wavefront hasa slope that lies within the

shaded range.

X

Figure 2.8 The bell-shaped Gaussian or normal probability distribution function.

Moments of a distribution

Often, when describing a probability distribution function, instead of providing the whole

probability distribution function in minute detail, we areonly interested in a few of the more

important features, like the general shape or position of the distribution. The moments of

a distribution often provide a concise and mathematically convenient description of the

distribution. The first moment of a distribution is the mean of the distribution.

〈X〉 =
∫ ∞

−∞
xp(x) dx (2.92)

where〈X〉 is a shorthand for the expected value of the random variableX.

The variance is described by the second moment of a distribution. The higher moments are

given by

〈Xn〉 =
∫ ∞

−∞
xnp(x) dx (2.93)

To fully specify many distributions, only the lowest moments are required. For example,

the Gaussian distribution is specified by its mean and variance, and the Poisson distribution

is specified by its mean.

Characteristic functions and Fourier Transforms



2.5 Probability and statistics 45

Another common transformation of the probability distribution function is taking its char-

acteristic function,

φX(v) =
〈

eivX〉 (2.94)

This is the similar to the Fourier transform, and in fact, represents an alternative represen-

tation of the PDF in a different domain. The exponential (on the right hand side) is a sum

of all powers ofX, so the characteristic function is effectively a weighted sum of all the

moments of the distribution.

The properties of the Fourier transform apply to the characteristic function. For example,

the distribution of the sum of two random variablesX andY is the convolution of their re-

spective distribution functions. The characteristic function is the product of their individual

characteristic functions.

φX+Y(v) = φX(v)φY(v) (2.95)

As another example, knowing the Fourier transform of the Gaussian function, we can find

the characteristic function of a normal distribution. Given the distribution

p(x) =
1√
2πσ

e−
x2

2σ2 (2.96)

and its Fourier transform (see Equation 2.66)

P( f ) = e−2π2 f 2σ2
(2.97)

the characteristic function of a Gaussian probability distribution function is given by
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〈

eicX〉 =

∫ ∞

−∞
p(x)eicx dx

= P
(

f = − c
2π

)

= e−
c2σ2

2 (2.98)

This identity is also useful for expressing various quantities like the Strehl ratio or the

telescope optical transfer function in terms of the phase structure function. These quantities

will be examined later in Section 4.1 and Chapter 4.

Distributions of multiple variables

When dealing with multiple random variables, the moments ofa probability distribution

can be extended to describe the interaction between variables - how do two variables change

together (does one increase while another decreases?). Themost used measure of the rela-

tionship between a pair of linear variables is their correlation. The correlation coefficient

between two variablesX andY with joint distributionp(x,y) is given by

〈(X− X̄)(Y−Ȳ)〉
σXσY

=
〈XY〉− X̄Ȳ

σXσY
(2.99)

The numerator,〈(X− X̄)(Y−Ȳ)〉, known as the covariance, is an extension of the variance

measure of a single variable. These quantities are multivariate extensions of moments as

defined by

〈XY〉 =
∫ ∞

−∞

∫ ∞

−∞
xyp(x,y) dx dy (2.100)

A correlation coefficient of 1 describes a linear increasingrelationship between two vari-

ables, while−1 describes a decreasing relationship. If the two variablesare independent,

then their correlation coefficient is 0 (however, if two variables have a correlation coefficient

of 0, no conclusion on their independence may be drawn).

The joint probability distribution function of independent variables is the product of their

individual (marginal) probability distribution functions. The multivariate Gaussian distri-
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bution is useful for illustrating the case when variables may not be independent.

Multivariate Gaussian distributions

A direct extension of Equation 2.91 to problems involving multiple independent and iden-

tically distributed Gaussian variables is given in Equation 2.101.

p(xxx) =
1

√
2πσ2N e−

1
2σ2 xxxTxxx (2.101)

Here,p(xxx) is a single-valued probability distribution function, which is dependent on many

input variables, here represented as a vectorxxx. It is a product of the marginal distributions

of all the individual variables. In general, these variables might not be independent, nor

would they be identically described by the same mean and variance. In such cases, the

more general expression for a multi-variate Gaussian distribution is

p(xxx) =
1

√

(2π)N |CCC|
e−

1
2xxxTCCC−1xxx (2.102)

whereCCC =
〈

xxxxxxT
〉

, and |CCC| is its determinant. Without loss of generality, we have also

assumed that the mean of all variables are 0.

The covariance matrixCCC describes the correlation between the variables, and can bediago-

nalised with a singular value decomposition. This corresponds to a coordinate transforma-

tion of thexxx vector, so the new coordinate axes now represent independent variables.

2.5.1 Random signals and random processes

A random signal is sequence of random variables over time or space. A random or stochas-

tic process describes a set of (or an ensemble of) space/timevarying signals. Random

processes are random in the sense that repeated experimentswill give rise to different out-

comes - a signal taking on random temporal or spatial values.A probability distribution is

defined to describe the chance of observing any function fromthe sample space.

The theory of random processes can be used to model the wavefront aberrations caused by

the atmosphere. In the absence of any prior knowledge about the atmosphere, the pressure,

temperature and humidity in the atmosphere can be modelled as a random function that
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t2t1

t

Figure 2.9 The values taken by these random functions at times t1 and t2 are described
by random variables. Just like random variables, we can examined their statistics and
correlation with each other over time.

changes over space and time. The resulting optical aberrations are the result of combining

many random processes. As long as the underlying random processes have finite variance,

the final statistical behaviour of their sum obeys the Gaussian distribution. However, in

adaptive optics, the variance of the phase piston term caused by atmospheric turbulence has

an infinite variance. Fortunately, the piston term is not measurable and is usually removed

during calculations, so the phase statistics can be modelled using Gaussian distributions.

Stationary and non-stationary signals

A random signal may have signal statistics that remain constant over time. This is referred

to as strict sense stationarity. The mean and variance of thesignal value at all times is

a constant. A looser restriction, that the signal has a constant mean, and auto-correlation

that is dependent only on the time/position difference, gives us the larger set of wide sense

stationary processes.

The covariance function of the signal is defined to be

B(t, t ′) =
〈

( f (t)−〈 f 〉)( f (t + t ′)−〈 f 〉)
〉

(2.103)

where〈 f 〉 is the mean signal value (time independent).

For stationary signals, there is not dependence, and for wide sense stationary signals, only

a t ′ dependence,B(t, t ′) = B(t ′). The signal variance at timet corresponds toB(t,0). When

the mean〈 f 〉 is 0, we have the auto-correlation functionB(t, t ′) = 〈 f (t) f (t + t ′)〉.

The statistics of atmospheric turbulence change wildly over large distances or time scales,

but are approximately stationary over smaller distances and time scales. It can be described
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using the model of wide sense stationary signals.

Structure function

The covariance function is undefined for some functions. Forexample, there is no mean-

ingful absolute value for the aberration phase function, which may be infinite depending

on the optical model used. The atmospheric phase structure function, which uses a relative

phase difference, is substituted instead. It is defined as

Dφ (xxx′′′) =
〈

(φ(xxx)−φ(xxx+xxx′′′))2〉 (2.104)

This phase structure function is frequently used as a placeholder for the mathematical ma-

nipulation of the phase covariance function using

Dφ (xxx′′′) = 2Bφ (000)−2Bφ (xxx′′′) (2.105)

Power spectra of random signals

As shown in Equation 2.56, the power spectral density of a function is given by the Fourier

transform of its auto-correlation function. More generally, for wide sense stationary random

processes, which may not be square integrable (undefined Fourier transform), the same

relationship exists. This is known as the Wiener-Khintchine or the Khintchine-Kolmogorov

theorem. We can use this to analyse of the power spectra of atmospheric turbulence, which

is a random process with fractal-like properties.

Power densities of fractals

Using the Wiener-Khintchine theorem, random fractals can have a defined power spectra.

The self-similarity or scaling of fractals means that theirspectra must possess certain prop-

erties. Consider a random fractal processf (x) which is self-similar to1
rH f (rx) when scaled

by r, with (0 < H < 1) being the fractal Hurst dimension, which is a measure of the self-

similarity of fractals [71]. The power spectral density (from its Fourier transform) is also

self-similar under scaling. Defining
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F( fX) = F { f (x)}

F {g(x)} = F

{

1
rH f (rx)

}

=
1

rH+1F

(

fX
r

)

(2.106)

Being the same fractal, their power spectra (with appropriate matching of scale) are equal

1
r

Pg( fX) = Pf ( fX)

r
1

r2H+2

∣

∣

∣

∣

F

(

fX
r

)∣

∣

∣

∣

2

= |F ( fX)|2

1
r2H+1Pf

(

fX
r

)

= Pf ( fX)

(2.107)

The power law obeyed byPf ( fX) ∝ ( fX)k solves tok = −(2H + 1). It is interesting to

compare this to the Kolmogorov power law (to be explained in Chapter 4) which exhibits

k = −11
3 so its Hurst dimension isH = 4

3.

2.5.2 Bayesian estimation

Conditional probability

The conditional probability of an event A given that anotherevent B has occurred is denoted

by P(A|B). For example, when throwing two dice, thea priori probability of obtaining a

sum of 4 is 1
12. However, if we know that one of the dice has landed with a 2 facing up, then

the probability of obtaining a sum of 4, that is, of obtaininga 2 on the second dice, becomes
1
6. Had we obtained a 5 on one die, we would have been able to say that regardless of the

outcome of the second dice, the probability of obtaining a sum of 4 is 0 (not possible).

Knowledge of the outcome of one event sometimes allows us to make better estimates of

the probability of a second related event.

The relationship between the conditional probability and joint probability of two events are

given by
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P(A|B) =
P(A∩B)

P(B)
(2.108)

In our previous example, letA represents the event “obtaining a sum of 4”,B1 the event

“obtaining 2 on the first die”, andB2 the event “obtaining a 5 on the second die”.

P(A|B1) =
P(A∩B1)

P(B1)
=

P(X)P(B1)

P(B1)
=

1
36
1
6

=
1
6

(2.109)

where X refers to the event “obtaining a 2 on the second die”, with the outcome of the first

and the second die being independent events. Similarly,P(A∩B2) = 0, soP(A|B2) = 0.

Reversed conditional probability

Reversing the example, if we are given A (sum of dice = 4), and need to determine the

probabilities of each outcome on the second die (X) without any prior knowledge of B (the

outcome of the first die), we will need

P(X|A) =
P(X∩A)

P(A)
=

P(X)P(B= A−X)

P(A)

=







1
6× 1

6
1
12

for x = 1,2,3

0 for x = 4,5,6
(2.110)

Often, the “reversed” conditional probability of Equation2.110 is easier to derive from the

“forward” conditional probabilityP(A|X) using

P(X|A) =
P(X∩A)

P(A)
=

P(X∩A)

P(X)

P(X)

P(A)
=

P(A|X)P(X)

P(A)
(2.111)

Extended to continuous random functions, this forms the basis for Bayesian estimation

using noisy measurements.
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Maximum likelihood and Maximum A Posteriori estimation

Bayesian estimation is used for estimation from noisy measurements by taking into account

noise statistics. A common example in this thesis is the linear problem

ddd = HHHααα +nnn (2.112)

whereααα is some quantity (to be estimated) producing a noisy signalddd through the linear

processHHH. The noise statistics is known in advance, and frequently represent either white

noiseP(ni) = 1√
2πσni

e
− n2

i
2σ2

ni , or photon noise, in which caseP(di) =
e−µi µdi

i
di !

, for the Poisson

mean and varianceµ being the expected value ofddd, anddddi = (HHHααα)i .

The estimate forααα is denoted byα̂αα, and under maximum likelihood estimation, is found

by maximising the likelihood

lnP(α̂αα|ddd) = lnP(ddd|α̂αα)+ lnP(α̂αα)− lnP(ddd) (2.113)

The reversed form of the conditional probability is often easier to derive from the statistics

of the noise. For uncorrelated white noise

lnP(ddd|α̂αα) = lnP(nnn = ddd−HHHα̂αα)

= ln



Πi
1√

2πσni

e
− n2

i
2σ2

ni





= ∑
i

ln
1√

2πσni

− n2
i

2σ2
ni

=⇒ ∑
i
−(di − (HHHα̂αα)i)

2

2σ2
ni

(2.114)

Thea priori likelihood function lnP(α̂αα) describes our prior estimate for the likelihood of

the quantities to be estimated. Frequently, no prior assumption of the likelihood of any

particular solution is made (uniform distribution). This corresponds to the maximum like-

lihood solution, where only the first term of Equation 2.113,as shown in Equation 2.114,
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is used. Thea priori likelihood of α̂αα is independent of̂ααα and can be ignored.

The third term of Equation 2.113 is always ignored, as it has no dependence on̂ααα.

For the specific case of random Gaussian noise, Gaussian priors, and vector valued quanti-

ties ofN measurements, the prior distribution is (refer Equation 2.102)

P(ααα) =
1

√

(2π)N |CCCααα |
e−

1
2αααTCCC−1

ααα ααα (2.115)

the noise is

P(nnn) =
1

√

(2π)N |CCCnnn|
e−

1
2nnnTCCC−1

nnn nnn (2.116)

and the solution is

α̂αα = (HHHTCCC−1
nnn HHH +CCC−1

ααα )−1HHHTCCC−1
nnn ddd (2.117)

The inverse is more conveniently represented4 with fewer matrix inversions [56] as

(HHHTCCC−1
nnn HHH +CCC−1

ααα )−1HHHTCCC−1
nnn = CCCαααHHHT(((HHHCαHHHT +++Cn)))

−1 (2.118)

The maximum likelihood solution is a special case, whereCCCααα is ignored because it has no

effect on the solution. When the noise covariance is the identity matrix (independent and

identically distributed across all measurements), the solution is

α̂αα = (HHHTHHH)−1HHHTddd (2.119)

This corresponds to the least squares error minimisation problem. Using a Bayesian frame-

work, we see that the intuitive notion of least squares data fitting is based on several as-

4Although this equivalence identity requires great revelation to infer, its proof, with hindsight, is simple.
Pre-multiplying byHHHTCCC−1

nnn HHH +CCC−1
ααα and post-multiplying byHHHCαHHHT +CCCnnn on both sides result in equivalence.
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sumptions (prior information, noise model) that are otherwise implicit. Aside from image

processing, the Bayesian reasoning technique is also used in a wide range of statistics based

problems like belief and inference systems, control theory, and modelling. It is an intuitive

yet formal and practical tool for reasoning with randomnessor uncertainty.

2.5.3 Information Theory

In 1948, Claude Shannon [90] proposed a quantity that he termed entropy for measuring the

“rate” of information production. A random source of information is assumed to produce

N discrete symbols with probabilitiespi for 1 < i < N. The entropy measure,H, of this

source has to satisfy three conditions.

1. H is continuous inpi ,

2. When allpi ’s are identical,H increases monotonically with increasingN,

3. If the information source is combined from multiple sourcesSi , then the total entropy

is a weighted sum of the individual entropies of the information sources. The weights are

proportional to the probability of obtaining each subset ofsymbols,H = ∑P(Si)Hi.

Shannon showed that the only valid formula forH is proportional to∑ pi ln pi . However,

entropy is not the only possible formulation for measuring information. In the field of

statistical estimation, another quantity known as the Fisher information [30, 51] is used to

measure the information content of continuous random distributions.

Fisher information

To understand the Fisher information of a random distribution, we begin with the parameter

estimation problem. We are often interested in the mean, variance or some other parameter

characterising a probability distribution.

For a probability distributionpθ (xxx) or equivalentlyp(xxx|θ) parametrised by an unknownθ ,

an estimatêθ (xxx) is obtained by observing the outcomesxxx drawn from the distribution. This

estimate can be considered to be a random variable. Its mean and variance are given by

〈

θ̂(xxx)
〉

=

∫ ∞

−∞
θ̂(xxx)p(xxx) dxxx (2.120)
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and

var
{

θ̂(xxx)
}

=
〈

(θ̂(xxx)−θ)2〉 (2.121)

Estimators with low variances are generally better than those with higher variances. When

the estimator is an unbiased estimator,
〈

θ̂(xxx)
〉

= θ . The minimum variance unbiased esti-

mator, or MVU, is frequently used as an optimality criterionin statistical estimation. The

minimum lower bound on the variance of unbiased estimators is given by the Cramer-Rao

lower bound (CRLB)5. Using the Cauchy-Schwarz inequality,

〈

(θ̂ −θ)
∂

∂θ
ln p(xxx|θ)

〉

≤
〈

(θ̂ −θ)2〉
〈

[

∂
∂θ

ln p(xxx|θ)

]2
〉

〈

θ̂
∂

∂θ
ln p(xxx|θ)

〉

−θ
〈

∂
∂θ

ln p(xxx|θ)

〉

≤ var
{

θ̂
}

J

var
{

θ̂
}

≥

〈

θ̂ ∂
∂θ ln p(xxx|θ)

〉

−0

J
=

1
J

(2.122)

whereJ is the Fisher information6. Two equivalent forms forJ are

J =

〈

[

∂
∂θ

ln p(xxx|θ)

]2
〉

= −
〈

∂ 2

∂θ2 ln f (xxx|θ)

〉

(2.123)

The Fisher information is a measure of the “spread” of the probability distribution function.

The larger the spread in the distribution function, the morevariable the outcomes of the

random process, and subsequently, the higher the variance of the estimator. The Fisher

information can also be interpreted as a measure of how much information is obtained from

each observation of a random event.

In general, there is no known mechanical procedure for deriving minimum variance unbi-

ased estimators. However, in linear processes, an efficientestimator (one that achieves the

5The CRLB only applies to unbiased estimators. Biased estimators can potentially achieve lower estimator
variances.

6s = ∂
∂θ ln p(x|θ ) is also known as the score function and is similar in form to entropy and the log-

likelihood function.
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CRLB) is often straight-forward to derive. For some problems, an efficient estimator may

not exist so the minimum variance unbiased estimator does not achieve the CRLB.

Multiple parameter estimation

The Cramer-Rao Lower Bound for estimators with multiple (vector) parametersθθθ is similar

to the scalar case

JJJ =
〈

sss(((θθθ ,,,XXX)))sssT(((θθθ ,,,XXX)))
〉

= −
〈

∂
∂θθθ

(

∂
∂θθθ

ln f (xxx|θθθ )

)〉

(2.124)

or

Ji j =

〈

∂ ln p(xxx|θθθ)

∂θi

∂ ln p(xxx|θθθ)

∂θ j

〉

= −
〈

∂ 2 ln p(xxx|θθθ)

∂θi∂θ j

〉

(2.125)

The variance of thei-th parameter is given by

var
{

θ̂θθ i

}

≥
(

JJJ−1)

ii (2.126)



Chapter 3 Opti
s
Today, optical systems like telescopes, microscopes and spectrographs are commonly used

for scientific observations and measurements. Their invention arose from the needs of

astronomical observations, and experiments by Galileo, Newton, Huygens, Hooke, and

others on the nature of colour and light in the 16th to 17th century.

From everyday experience, it is obvious that light rays travel in straight lines, and upon

meeting an obstruction, will cast a shadow. The path of theselight rays can be modified

by shaped and optically active materials like mirrors, prisms and lenses, to form telescopes

and microscopes.

However, light had also been observed to possess wave-like properties. Hooke had sug-

gested a wave theory of light as early as 1665, while Huygens published a description on

the propagation of wavefronts in 1678. In 1803, Young provided conclusive evidence of

interference in light, demonstrating in sunlight, with “a slip of card”, the light and dark

fringes resulting from light cancellation.

In this section, we introduce the theory of light and providesome examples of optical

systems and their usage.

3.1 Geometric optics

The theory of geometric optics assumes that light travels ina straight line. Light travels

from a light source in a straight line, and stops when absorbed by any object in their path,
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leaving dark regions of shadows behind the object. The direction of the light rays can be

changed using mirrors, lenses, and prisms.

i r

Figure 3.1 Reflection of a light ray along the plane of propagation (plane of incidence).

Figure 3.1 shows a light ray reflecting off a mirror at the sameangler as the incident

anglei. The incident and reflected angles are usually defined with respect to the mirror

normal, which is the dotted line perpendicular to the mirrorsurface at the point of reflection.

The angle of reflection rule also applies to curved mirror surfaces, where the normal is

perpendicular to the mirror surface.

z

x

q

h R

Figure 3.2 Light from a distant object reflecting off a curved mirror surface. The mirror
curvature (and the corresponding shorter focal distance) is shown exaggerated here for
illustration.

This is shown in Figure 3.2, where a spherical mirror focusesparallel light rays from a dis-

tant object onto a point (the focus) at the optical axis. For amirror with radius of curvature

R, the height of the mirror surfaceh(x) and its slopehx(x) are

h(x) = R−
√

R2−x2

tanθ = hx(x) =
x√

R2−x2
(3.1)

whereθ is the angle (in radians) between the mirror normal to the horizontal (and light

ray).
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In optical systems analysis, the paraxial approximation for ray tracing is commonly used.

It assumes light rays that are close to the optical axes throughout the optical system and

small light ray angles. The small ray angles can then be approximated to first order by

sinθ ≈ θ

cosθ ≈ 1

tanθ ≈ θ ≈ x
R

(3.2)

whereθ is the ray angle (in radians) with the paraxial axis.

Every ray intersects the optical axis at

f = h(x)+xtan(2θ) ≈ h(x)+
x

2tanθ
≈ h(x)+

R
2
≈ R

2
(3.3)

By concentrating diffused light rays onto a single point, the spherical mirror forms an image

of the distant object at the focus. In practice, image detectors need to be placed out of the

way of the incoming light, so additional reflectors are used to redirect the light.

An alternative to imaging using reflection from mirrors, is to use refraction through trans-

parent materials. Refraction occurs when light passes fromone medium into another

medium, changing its speed, and direction.

i

r

n1 n2

Figure 3.3 Refraction of a light ray at the boundary of two transparent materials.

Here, the incident and refracted angles are defined with respect to the normal at the bound-

ary between the two media. Figure 3.3 shows a light ray changing its direction after entering

the second medium. The change in direction is given by Snell’s law,
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sinθ1

v1
=

sinθ2

v2
n1sinθ1 = n2sinθ2 (3.4)

whereni , the refractive index for a medium, is defined to bec
vi

, the ratio between the speed

of light in vacuum to the speed of light in mediumi.

A related property of refraction is dispersion, which results from wavelength-dependence

in the refractive index. Light from different wavelengths or colours is refracted by different

amounts, separating the components of light. This creates the colours in rainbows, and is

used in prisms for spectrography.

Refraction in lenses

Similar to mirrors, lenses are used to create an inverted andscaled image of distant objects

using refraction. Unlike mirrors, lenses transmit light, so the optical axis is not folded or

mirrored, allowing images to be formed along the optical axis without obscuration of the

aperture from other optical elements.

o
i

f

ho

hi

Figure 3.4 Imaging an object at o with a lens of focal length f . The real image i is rotated
and scaled by the imaging operation.

Figure 3.4 shows the transmissive lens imaging an object at distanceo (in contrast, Fig-

ure 3.2 is equivalent to imaging an object at infinity). The distances of the object and image

from the lens are determined by the thin lens approximation equation. Aside from sign

changes, this equation applies identically to the optical analysis of both reflective mirrors

and transmissive lenses.

1
f

=
1
i
+

1
o

(3.5)

The image magnificationM = hi
ho

is a function of the object distance and lens focal length



3.1 Geometric optics 61

M = f
o− f . The ratio of the focal length to the lens diameter (not shownin the figure), is also

known as the F-number or the F-ratio.

F =
f
D

(3.6)

The F-number is a measure of the effect of the optical system on light. Larger F-numbers

indicate that light is bent more passing through the system,and as a rule of thumb, suffers

from more aberrations. Aberrations in optical systems are also caused by imperfections

in the lens shape, lens surface, and off-axis imaging, and isexplained more in subsequent

sections.

3.1.1 Optical path length

The speed of light in any media is slower than speed of light invacuum, so the refractive

index is always greater than 1. Because light can travel at different speeds across different

media, it is convenient to measure the path length travelledas an equivalent distance in

vacuum. The optical path length through a medium is the same distance travelled in vacuum

in the same time period. Figure 3.5 shows 3 different media with different refractive indices.

d1

n2

d3

n3n1

d2

l

Figure 3.5 The light path length for 3 different transparent media compared to the path
length of light in a vacuum.

The total time taken by light to travel through all three layers are given byc
(

d1
v1

+ d2
v2

+ d3
v3

)

,

or ∑3
i=1nidi. In general the optical path length for any media is found by integrating the

refractive index along the light path

∫ L

0
n(l)dl (3.7)

starting from 0 and ending atL.
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The optical path length is the uniform measure of distance for light in different types of

media. The laws of reflection and refraction can be derived from the principle of least

action, or in optics, the principle of shortest optical path. Given a set of paths between two

points, that path taken by the light ray is the path that takesthe least amount of time (has

the shortest optical path). Figure 3.6 illustrates the principle for a straight path, a reflected

path (off the mirror), and on the right, a refracted path through two different media.

Figure 3.6 The path between two points “chosen” by a beam of light is the one with the
shortest total optical path length.

3.1.2 Wavefront

Dz
Dx

z

x

(x,z)

Figure 3.7 Propagation of wavefront along the z-axis.

The propagation of light rays away from an object can also be described using light wave-

fronts. The wavefront is a surface of constant optical path length from a common source.

At any point, the direction of wavefront propagation is perpendicular to the wavefront slope

at that point, as shown in Figure 3.7. Here, an analogy can be drawn with surface water
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waves, where the direction of wave travel corresponds to light rays, and ripples correspond

to wavefronts.

At any point (x,z) within the propagation region, the phase of the complex fieldφ(x,z)

can be found from the wavefront,φ(x,z) = kW(x,z). This wavefront function represents

the optical path length (in distance units) from thez = 0 plane. The relative advance or

retardation of the different light rays across the plane of propagation is found from their

wavefront differences.

Given a wavefrontW(x,z) propagating in the z-direction, the Wavefront Transport Equation

is found from

W(x+∆x,z+∆z) = W(x,z)+
√

∆x2 +∆z2

W(x,z)+Wx(x,z)∆x+Wz(x,z)∆z ≈ W(x,z)+∆z

(

1+
1
2

(

∆x
∆z

)2
)

Wz(x,z) = 1− 1
2
Wx(x,z)

2 (3.8)

whereWz(x,z) andWx(x,z) = ∆x
∆z ≪ 1 are the wavefront derivatives along the z and x-axes.

The first term of Equation 3.8 is due to the increasing opticalpath length as the wavefront

travels, and doesn’t affect the direction that light travels in. Changes in direction are caused

by the second wavefront slope term. The effects of diffraction on the transport equation are

given in Section 3.4,

Using the concept of wavefronts, the effects of reflection and refraction, in changing the di-

rection of light, can be described as modifications to the wavefront. Active optical surfaces

modify the direction of light rays, so the equivalent changes to the wavefront, as shown in

Figure 3.8, can be inferred.

Similar to Equation 3.1, the presence of a quadratic term in the wavefront corresponds to a

focusing action. Imperfections in optical systems result in deviations in the wavefront from

the quadratic shape. These imperfections, known as opticalaberrations, cause blurring in

images. Aberrations cannot be avoided completely, but through good design, can be min-

imised. The analysis of optical systems involves the adjustment of the shapes and positions

of lenses to optimise for the conflicting requirements for image position and magnifica-
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Figure 3.8 Effect of optical lenses on the wavefront.

tion, width of the field of view, aperture size (brightness),and minimisation of aberrations

(image blurring).

3.2 Optical analysis

It is conventional to use right-handed coordinate axes in anoptical system and shown in

Figure 3.9. The wavefront shown in Figure 3.9 also has a negative curvature.

z

x

y

Figure 3.9 The right-handed Cartesian coordinates conventionally used in optical analysis.
Light is shown travelling from the left to the right along the optical (z) axis.

3.2.1 Geometric optics

The ray-tracing equations of Equation 3.9 and Equation 3.10[83] use geometric optics to

describe light rays. They always travel in a direction perpendicular to the local wavefront

slope.

x′(x,y) = x+zWx(x,y,0) (3.9)

y′(x,y) = y+zWy(x,y,0) (3.10)
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where(x′,y′,z) represents the location of the ray within the x-y plane at z, from the ray

starting at(x,y,0).

The intensity at any point in the propagation path is given bythe light ray density through

that point. Figure 3.10 shows the propagation of a wavefrontwith a uniform negative

curvature (constantWxx=−2a,Wyy=−2b). The intensity along the optical axis is inversely

related to the cross-sectional area (shown in rectangles) of the light beam. Relative to the

intensity before propagation,I(z= 0),

I(z)A(z) = I(0)A(0) = IDxDy

I(z) =
IDxDy

dx(z)dy(z)

=
I

1+z(Wxx+Wyy)+z2WxxWyy
(3.11)

whereA(z) is the cross-sectional area of the propagating beam, with dimensionsdx(z) and

dy(z) (Dx = dx(0), Dy = dy(0)) as shown in Figure 3.10.

W(x) = -ax -by
2 2

x

z

f =x 2a
1

Dx

d (z) = Dy y fy

f -zy

Wxx

1
=-

=D (1+zW )y yy

y
d (z) = Dx x fx

f -zx =D (1+zW )x xx

f =y 2b
1

Wyy

1
=-

Dy

Figure 3.10 Changes in intensity over distance due to a wavefront curvature. The pres-
ence of a negative curvature (a≥ 0, and b≥ 0) focuses incoming light rays, resulting in a
brightening in the intensity.

Since the intensity is determined by the local wavefront curvature, we can estimate the

wavefront curvature from changes in the intensity after propagating the wavefront. In fact,

this method forms the basis for the curvature wavefront sensor, to be explained in later

sections.

In the general case, for wavefronts with different curvature-axis orientations, the intensity

is given by Equation 3.12.
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I(x′,y′,z+∆z) =
I(x,y,z)

1+H(x,y,z)∆z+K(x,y,z)∆z2 (3.12)

for H(x,y,z) = ∇2W(x,y,z) =Wxx(x,y,z)+Wyy(x,y,z), the Laplacian or the mean curvature

of the wavefront andK(x,y,z) = Wxx(x,y,z)Wyy(x,y,z)−Wxy(x,y,z)2, the Gaussian curva-

ture of the wavefront. The mean and Gaussian curvatures are defined as the mean (up to a

scale factor) and product of the principal curvaturesWuu andWvv for u andv lying along the

axes of the principal curvatures.

3.2.2 Seidel aberrations

Traditionally, optical aberrations are classified according to their polynomial expansion.

The classical Seidel aberrations are third order approximations to wavefronts, with five

known aberrations, namely spherical, coma, astigmatism, curvature of field, and distortion.

The wavefront shape and corresponding effect on image is shown in Figure 3.11 as ray-

intercept diagrams, another tool commonly used to describeaberrations.

3.3 Diffraction

Under geometric optics, a perfect lens would focus light from distant point sources down to

a point. This image is infinitesimally small, and infinitely bright. Clearly, this is impossible,

and shows that geometric optics is merely an approximation.In fact, there is a lower limit

to the size of the point source image, determined by diffraction effects. Diffraction refers

to the behaviour of light not predicted by geometric optics.

For a full description of light, we begin with the foundationfor electromagnetism, Maxwell’s

Equations. These four equations unify electric and magnetic field theory.

∇∇∇×EEE = −µ
∂HHH
∂ t

∇∇∇×HHH = ε
∂EEE
∂ t

∇∇∇ · εEEE = 0

∇∇∇ ·µHHH = 0 (3.13)



3.3 Diffraction 67

z

x

z

y

(a) Rays with different heights
come to focus at varying dis-
tance(spherical)

z

y

z

x

(b) Rays from different sides come
to focus at different distances(coma)

(c) Position dependent deformation
of a grid-line image.(distortion)

z

x

(d) Curved imaging
plane.(field/Petzval curvature)

z

x

z

y

(e) Rays at different orientations
come to focus at different focal dis-
tances.(astigmatism)

Figure 3.11 The Seidel aberrations.
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whereE andH are the electric and magnetic field vectors respectively, and ε andµ are the

medium permittivity and permeability respectively (in vacuum, they are denoted byε0 and

µ0). The permittivity and permeability of free space (vacuum)is linked to the speed of light

in a vacuum byc = 1√µ0ε0
.

For a linear, isotropic, homogeneous and non-dispersive propagation medium,E and H

have identical forms.

∇∇∇2EEE− n2

c2

∂ 2EEE
∂ t2 = 0

∇∇∇2HHH − n2

c2

∂ 2HHH
∂ t2 = 0 (3.14)

wheren =
√

ε
ε0

is the refractive index.

Both E andH are symmetrical in all vector components, so only a single scalar equation

suffices for expressing all components.

∇∇∇2u− n2

c2

∂ 2u
∂ t2 = 0 (3.15)

whereu may be any ofEEEx, EEEy, EEEz, HHHx, HHHy, or HHHz.

Although this breaks down when the medium is inhomogeneous,or anisotropic (for ex-

ample, boundary conditions imposed by obstructions), the scalar diffraction approximation

remains useful and accurate when the diffracting structures are large, and diffraction angles

are kept small.

3.3.1 Scalar diffraction theory

The scalar field of Equation 3.15 is a space and time varying quantity

u(x,y,z, t) = A(x,y,z)cos(2π f t +φ(x,y,z)) (3.16)

where f , A andφ are the wave frequency, amplitude and phase respectively.
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It can be also be represented in a phasor or complex form.

U(x,y,z) = A(x,y,z)eiφ(x,y,z) (3.17)

sou(x,y,z, t) = U(x,y,z)e−i2π f t.

Using the phasor representation, Equation 3.15 becomes theHelmholtz equation [38],

∇∇∇2U +k2U = 0 (3.18)

for k = 2π
λ , where the wavelengthλ = c

n f .

Using Green’s Theorem from calculus, and the Green’s function G(r) = eikr

r , a few formu-

lations for the diffraction equation have been proposed.

∫∫∫

V

[

U∇2G−G∇2U
]

dv=
∫∫

S

[

U
∂G
∂n

−G
∂U
∂n

]

ds (3.19)

for a volume V and surface S, where∂∂n is a partial derivative on the surface in the normal

outward direction.

When bothU andG obey the Helmholtz equation,

∫∫

S

[

U
∂G
∂n

−G
∂U
∂n

]

ds= const (3.20)

taking the limit in the volume around the point of interest(ξ ,η,z) allows us to find the field

there in terms of the field specified by an enclosing surface. This is the integral theorem of

Helmholtz and Kirchhoff.

4πU(ξ ,η,z) =
∫∫

SP

[

U
∂G
∂n

−G
∂U
∂n

]

ds=
∫∫

S

[

U
∂G
∂n

−G
∂U
∂n

]

ds (3.21)

for SP being the surface enclosing the point(ξ ,η,z), andS being the surface containing

some input field.

The Rayleigh-Sommerfeld diffraction equations are derived from different choices for Green’s
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function in the integral. The first and second Rayleigh-Sommerfeld solutions are

U(ξ ,η) =
1
iλ

∫ ∞

−∞

∫ ∞

−∞
U(x,y)

eikr

r
cosθ dx dy (3.22)

U(ξ ,η) =
1

2π

∫ ∞

−∞

∫ ∞

−∞

∂U(x,y)
∂n

eikr

r
dx dy (3.23)

The Rayleigh-Sommerfeld diffraction formula is given by

UUU(ξ ,η,z) =
∫ ∞

−∞

∫ ∞

−∞
UUU(x,y,0)h(x,y;ξ ,η) dx dy (3.24)

The first Rayleigh-Sommerfeld solution will be used in all subsequent calculations due to

its simplicity.

3.3.2 Fourier optics

A few convenient approximations can be used in the typical aperture diffraction problem.

The imaging distance is usually much larger than the diffracting aperture,z≫ x andz≫ y.

The large distance allows us to approximater by [38,68]

r =
√

z2+(x−ξ )2 +(y−η)2

= z

√

1+

(

x−ξ
z

)2

+

(

y−η
z

)2

≈ z

(

1+
1
2

(

x−ξ
z

)2

+
1
2

(

y−ξ
z

)2
)

(3.25)

Using this first order approximation for r, and assuming thatthe diffraction angle of inter-

ested is very small as is usually the case, cosθ = 1, the Rayleigh-Sommerfeld kernel can

be reduced to
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h(x,y;ξ ,η) =
1

iλ r
eikr cosθ

≈ 1
iλz

e
ikz

(

1+ 1
2

(

x−ξ
z

)2
+ 1

2

(

y−ξ
z

)2
)

=
eikz

iλz
ei k

2z((x−ξ )2+(y−η)2) (3.26)

leading to the Fresnel approximation

U(ξ ,η,z) =
eikz

iλz

∫ ∞

−∞

∫ ∞

−∞
UUU(x,y,0)ei k

2z((x−ξ )2+(y−η)2) dx dy

(3.27)

Equation 3.27 is also known as the near field equation. In the far field, whenz is much

larger, we can further approximateei k
2z(x

2+y2) by 1. This leads to the Fraunhofer diffraction

equation, which has the same form as a Fourier transform!

U(ξ ,η,z) =
eikz

iλz
ei k

2z(ξ
2+η2)

∫ ∞

−∞

∫ ∞

−∞
UUU(x,y,0)ei k

2z(x
2+y2)e−i 2π

λz(xξ+yη) dx dy

≈ eikz

iλz
ei k

2z(ξ
2+η2)

∫ ∞

−∞

∫ ∞

−∞
UUU(x,y,0)e−i 2π

λz(xξ+yη) dx dy (3.28)

Using the Fourier transform, the wave-like interference properties of the imaging process

can be decomposed into its component angular spectra. The properties of the Fourier trans-

form like linearity, the scaling property, or more usefully, the convolution-multiplication

law, also corresponds to various optical imaging operations.

From the linearity of the Fourier transform, brighter apertures fields result in proportion-

ately brighter angular spectra. Additionally, the individual angular spectra of different sub-

apertures sum. From Parseval’s theorem, the total intensity in the angular spectrum is con-

served. Due to scaling, larger apertures result in narrowerangular spectra, and conversely,

smaller apertures result in angular spectra that is more spread out.
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In the Fourier displacement or shift property, displacements in the aperture result in linear

phase shifts in the angular spectra. The converse, a more relevant property, is that a phase

shift at the aperture results in a displacement of the angular spectra. Finally, from the

convolution-multiplication theorem, we discover a new class of optical transformations.

Fourier optical image processing in the frequency domain (focal plane) represent a new and

powerful class of techniques that sometimes cannot be done purely in the spatial domain

(aperture plane).

3.3.3 Fourier imaging with lenses

The effect of lenses on light can also be described using Fourier optics. The curved surface,

or gradient in the refractive index of a transparent opticalmaterial, and the corresponding

optical path differences, adds additional phase terms to the transmitted light. The wavefront

added by a convex lens of uniform refractive index is proportional to the thickness of the

lens.

For a spherical lens with radii of curvaturesR1 andR2, the thin lens approximation (called

the Lensmaker’s equation) for its thickness is

∆(x,y) = ∆0−
x2+y2

2

(

1
R1

− 1
R2

)

= ∆0−
x2 +y2

2(n−1) f
(3.29)

with a lens refractive index ofn and resultant focal length off for the lens.

The added phase term from the lens curvature, ignoring the constant phase terms due to∆0,

is

eik(n−1)(∆(x,y)−∆0) = e
−ik(n−1) x2+y2

2

(

1
R1

− 1
R2

)

= e−i k
2 f (x

2+y2) (3.30)

Adding the thin lens phase term to the aperture field in Equation 3.27, the complex field

after passing through the lens (Fresnel propagation) is
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UUU(ξ ,η,z) =
eikz

iλz
ei k

2z(ξ
2+η2)

∫ ∞

−∞

∫ ∞

−∞
UUU(x,y,0)e−i k

2 f (x
2+y2)ei k

2z(x
2+y2)e−i 2π

λz(xξ+yη) dx dy

(3.31)

At the focal plane, wherez= f , the exponential phase terms cancel, leaving

eikz

iλz
ei k

2z(ξ
2+η2)

∫ ∞

−∞

∫ ∞

−∞
UUU(x,y,0)e−i 2π

λz(xξ+yη) dx dy (3.32)

This is the same form as the Fourier or Fraunhofer far-field, except it is at a convenient

finite distance, readily setup in laboratory experiments.

3.4 Transport equations

The Parabolic Equation (as explained by Teague [96]) is an approximation to the scalar

wave equation (Equation 3.15) and is an alternative representation of the Fresnel propaga-

tion equation (Equation 3.27) [97].

i
∂
∂z

u(rrr)+
∇∇∇2u(rrr)

2k
+ku(rrr) = 0 (3.33)

whererrr represents(x,y) (transverse plane to the propagation directionz), k= 2π
λ is assumed

to be constant (monochromatic light), and∇∇∇2u(rrr) = ∂ 2

∂x2 u(rrr)+ ∂ 2

∂y2u(rrr) is the Laplacian of

the complex field along the transverse plane.

The complex fieldu(rrr) travels along thez direction, and can be broken down into the

amplitude (intensity) and phase or wavefront parts,

u(rrr) =
√

I(rrr)eiφ(rrr)

I(rrr) = |u(rrr)|2

W(rrr) =
λφ
2π

=
λ arg(u(rrr))

2π
(3.34)
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The parabolic equation may be thought of as a transport equation, (a Field Transport Equa-

tion (FTE)), that describes the evolution of the complex field u(rrr) along thez-axis.

∂u
∂z

= i
∇2u
2k

+ iku (3.35)

(dropping the(rrr) for succinctness)

In Teague’s analysis [95,97], the Field Transport Equationis broken down into the Intensity

and Wavefront Transport Equations.

The ITE is

∂ I
∂z

= −I∇2W−∇I ·∇W (3.36)

and the WTE is

∂W
∂z

= 1− |∇W|2
2

+
λ 2

16π2

∇2I
I

− λ 2

32π2

|∇I |2
I2 (3.37)

Here, similar to the previously defined Laplacian∇2W = Wxx+Wyy, the gradient is taken in

the plane transverse to the optical axis∇W = Wxx̂+Wyŷ. |∇W|2 stands forW2
x +W2

y .

This has the advantage of separating the intensity distribution (image) of a complex field,

a measurable quantity, from the wavefront distribution, which is not directly measurable.

Solutions to the ITE for image propagation over short distances, in setups similar to phase

diversity [95,98], have been proposed as a method for phase retrieval [39,40,45] and wave-

front sensing [87,114].

In the wavefront sensor known as the curvature sensor, scintillation at the telescope aper-

ture is ignored. The Intensity Transport Equation can be applied with the approximation
∂ I
∂z =−I∇2W, ignoring the second term,−∇I ·∇W, which represents the intensity gradient.

Any changes in intensity during propagation is approximated by the wavefront curvature at

the telescope aperture. The second term of the Intensity Transport Equation describes the

displacement or directionality of light propagation due tothe wavefront slope. An alterna-

tive interpretation of the ITE is previously described in Equation 3.9 and Equation 3.10.
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The Intensity Transport Equation has been studied in great detail in the literature cited pre-

viously. Understandably, less attention has been given to the Wavefront Transport Equation,

since the wavefront is not directly measurable. However, certain properties of the WTE are

useful in describing geometric optics as a subset of diffractive optics.

The geometric optics approximation of the WTE is given by itsfirst two terms

∂W
∂z

= 1− |∇W|2
2

(3.38)

This simplified WTE was first introduced in Equation 3.8 and ignores the diffractive wave

nature of light by lettingλ = 0. Equation 3.38 describes the direction of propagation of

a wavefront in terms of the wavefront slope, affirming the principle of ray tracing at a

direction normal to the wavefront, previously described inEquation 3.9 and Equation 3.10.
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Chapter 4 Adaptive opti
s
This chapter examines the effects of atmospheric turbulence on optical systems. Atmo-

spheric turbulence is a random process that follows Kolmogorov statistics [53], and is mod-

elled within optical systems as optical aberrations. It is typically characterised by a few

parameters that are introduced in Section 4.1.1.

Wavefront sensors are used to measure the aberrations caused by atmospheric turbulence.

Section 4.3 introduces the problem of slope estimation. Section 4.4 generalises slope esti-

mation to full wavefront sensing, introducing the four major classes of wavefront sensors

studied in this thesis, the Shack-Hartmann, pyramid, geometrical and curvature sensors.

The four wavefront sensors will be further developed and uniformly compared in subse-

quent chapters.

4.1 Kolmogorov turbulence

Big whorls have little whorls,

Which feed on their velocity;

Little whorls have smaller whorls,

And so on unto viscosity.

L. F. Richardson (1881-1953)

The atmosphere of the Earth is in a constant state of change, driven by heat from the sun,

pressure differences across the globe, and the rotation of the Earth itself. The dissipation
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of heat energy creates vortices of turbulence in the atmosphere, gradually shrinking in size

until the energy is lost to the friction from the viscosity ofair. The largest and smallest

vortex sizes in this energy transfer correspond to the outerand inner scale of the turbulence.

Based on dimensional analysis of the energy transfer from the outer and inner scales, the

statistics of the turbulence spectrum can be shown to obey a−11
3 power law1, known as the

Kolmogorov power law [54].

Φn( fff ) = 0.033C2
N fff−

11
3 (4.1)

where fff is the frequency, andC2
N is known as the index structure coefficient.

It is the irregular temperature and pressure changes in the atmosphere that causes fluctua-

tions in the refractive index of air which ultimately degrades the image quality. The struc-

ture function of the refractive index fluctuations is given by the index structure coefficient,

which varies according to

Dn(ρρρ) =
〈

(n(rrr)−n(rrr +ρρρ))2〉= C2
N |ρρρ|

2
3 (4.2)

whereρρρ andrrr are 3-dimensional position vectors, andn(rrr) is the refractive index at position

rrr.

The fluctuations in the refractive index are assumed to be symmetrical in all directions

for small distances. Under this isotropic behaviour, the scalar quantity|ρρρ| is sufficient to

describeDn(ρρρ). Changes in the refractive index of the atmosphere causes deformations in

the wavefront of the light passing through. The total phase fluctuation at any point on the

ground is found by integrating the deformations over the whole path of the light ray through

the atmosphere.

φ(x,y) =
2π
λ

∫ ∞

0
n(x,y,z) dz (4.3)

whereλ is the wavelength of the light.

Equation 4.2 and Equation 4.3 allows us to derive the phase structure function, which de-

termines the statistics of the wavefront aberration at ground level due to turbulence.

1As such, many important quantities in this section have characteristic power laws in fractions of1
3.
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Dφ (xxx′′′) =
〈

(φ(xxx)−φ(xxx+xxx′′′))2〉= 2.91k2secγ
∣

∣xxx′′′
∣

∣

5
3

∫ ∞

0
C2

N(z) dz (4.4)

wherexxx andxxx′′′ are 2-dimensional position vectors, andγ is an angular distance from the

zenith. The air mass, secγ, a measure of the thickness of the atmosphere (and turbulence)

that light needs to travel through, is minimised by timing astronomical observations to take

place near the zenith (overhead).

Phase−screen

Figure 4.1 Simulation of a phase-screen obeying Kolmogorov statistics.

The profile ofC2
n(z) over height is specific to the observatory site and conditions. For

analysis purposes, a few models are frequently used for comparison. Each model relates

the averageC2
N to the heightz. For example, the most common Hufnagel-Valley Boundary

model is

C2
n(z) = 5.94×10−23z10e−z

(

W
27

)

+2.7×10−16e−
2z
3 +Ae−10z (4.5)

whereW is related to the wind speed, andA the ground boundary layer.

Other wind/turbulence profile models like the SLC Day and Night models are also used. To

a first approximation, most of the atmospheric turbulence can be assumed to be confined to

a few strong layers, and in many cases, a single dominant layer close to the ground. In this

thesis, simulations of turbulence use only a single layer represented using a phase-screen.

As such, the preciseC2
N(z) profile is not considered.

4.1.1 Optical effect of atmospheric turbulence

The optical effect of atmospheric turbulence can be summarised with a few commonly cited

parameters.
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Fried’s parameter

The degradation in resolving power of a telescope is measured by Fried’s parameter,r0.

Also known as the seeing cell size, it is the effective telescope diameter caused by atmo-

spheric turbulence.

r0 =

(

0.423k2secγ
∫ ∞

0
C2

n(z) dz

)− 3
5

(4.6)

Hence, in the presence of uncompensated atmospheric turbulence, the maximum achievable

resolution is equivalent to that from a telescope of diameter r0 without the atmosphere.

The most instructive trends from Equation 4.6 forr0 are r0 ∝ λ
6
5 and r0 ∝ secγ−

3
5 . The

increase inr0 with increasing wavelength increases the effective telescope diameter. This

can also be seen in Equation 4.3, where the largerr0 results in reduced phase errors. Many

imaging telescopes work in the infra-red spectrum to reducethe effects of atmospheric

turbulence. Adaptive optics compensation in the infra-redis also more effective than at

shorter wavelengths. Wavefront sensor systems often piggy-back on the same path, sensing

in the unused ultra-violet region.

Usingr0, we can also rewrite Equation 4.4 into a more convenient form.

Dφ (xxx′′′) =
〈

∣

∣φ(xxx)−φ(xxx+++xxx′′′)
∣

∣

2
〉

= 6.88

( |xxx′′′|
r0

)
5
3

(4.7)

Isoplanatic angle

The blurring caused by the atmosphere is not uniform across the whole sky. However, for

a limited area, it is relatively constant. The isoplanatic angle is a rough measure of the

angular distance over which no appreciable changes can be observed.

θ0 =

(

2.91k2(secγ)
8
3

∫ ∞

0
C2

n(z)z
5
3 dz

)− 3
5

(4.8)

The isoplanatic angle is strongly determined by the turbulence higher in the atmosphere,

since there is az
5
3 height dependency in Equation 4.8. The sec

8
5 γ factor of the air mass also
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makes off-zenith imaging problematic.

Greenwood frequency

The evolution of turbulence over time is typically related to its spatial statistics using Tay-

lor’s frozen flow hypothesis. Under this hypothesis, the turbulence itself is assumed to be

static, but is blown across the field of view of the telescope.The temporal statistics of at-

mospheric turbulence can thus be determined by the spatial structure function and the wind

speed [44].

When wind velocity profiles are available, the atmospheric rate of change can be described

using the Greenwood frequency.

fG = 2.31λ− 6
5

(

secγ
∫ ∞

0
C2

n(z)V(z)
5
3 dz

)3
5

(4.9)

whereV(z) is the wind velocity at heightz.

Zernike modes of atmospheric turbulence

When circular apertures are used for imaging, as shown in Figure 4.1, the phase function

can be described in terms of its component Zernike modes (Equation 2.81, reproduced here

in rectangular coordinates), as in classical optics.

φ(x,y) =
∞

∑
i=1

αiZi(x,y) (4.10)

An example is shown in Figure 4.2, where a static phase-screen is decomposed into its

individual Zernike modes, and arranged in increasing orderusing Noll’s numbering scheme.

The most significant contribution to the atmospheric phase-screen tend to come from the

lower order Zernike modes, corresponding to image displacement and defocus, followed

by higher order aberrations like astigmatism and coma. The expected magnitude of each

Zernike component is 0, but the expected power (squared magnitude) of each component

can be found analytically and expressed as the phase covariance matrix [65].

Although theoretically, any set of orthogonal bases functions is acceptable, when we are

limited to a truncated representation of phase function dueto the use of a finite num-
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Phasescreen Zernike modes

Zernike coefficients

Figure 4.2 The magnitudes of the Zernike modes of one simulated atmospheric turbulence
instance. Note that the piston term, corresponding to mode 1 (equivalent to the mean value
of the simulated phase representation), does not affect the image.

ber of modes, the choice of functions should be selected to contain as much information

as possible (on average). The optimal choice would be the Karhunen-Loeve2 functions,

whose coefficients are statistically uncorrelated (diagonal covariance matrix). Although the

Karhunen-Loeve transform for atmospheric turbulence cannot be expressed analytically, it

can in practice be expressed in terms of Zernike polynomial expansions.

As can be seen in Table 4.1, the covariance matrix for the Zernike terms is almost diag-

onal, showing low correlation between terms and decreasingpower with higher orders.

When truncating the Zernike coefficient representations, the lowest order modes should

be retained to represent the most amount of energy. The almost diagonal covariance ma-

trix means the Zernike polynomial representation is a good approximations to the optimal

Karhunen-Loeve transform for atmospheric turbulence. Fora finite number of terms, the

covariance matrix can be de-correlated (diagonalised intoprincipal components) to give the

Karhunen-Loeve functions.

The phase variance over a circular region scales as(D/r0)
5
3 , whereD is the diameter of

that region. Most of the power is present in the lower order modes (diagonal matrix terms),

showing that near fit of the Zernike polynomials to the Karhunen-Loeve functions of tur-

bulence. For higher order modes, the residual estimation error after removing the firstN

modes from Kolmogorov turbulence is given by

2This is equivalent to the use of the Karhunen-Loeve transform as the most efficient compression scheme
in signal processing. The Karhunen-Loeve functions are in effect the eigenfunctions of Kolmogorov turbu-
lence.
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(

D
r0

) 5
3 α2 α3 α4 α5 α6 α7 α8 α9 α10

α2 0.448 0 0 0 0 0 -0.0141 0 0

α3 0 0.448 0 0 0 -0.0141 0 0 0

α4 0 0 0.0232 0 0 0 0 0 0

α5 0 0 0 0.0232 0 0 0 0 0

α6 0 0 0 0 0.0232 0 0 0 0

α7 0 -0.0141 0 0 0 0.0062 0 0 0

α8 -0.0141 0 0 0 0 0 0.0062 0 0

α9 0 0 0 0 0 0 0 0.0062 0

α10 0 0 0 0 0 0 0 0 0.0062

Table 4.1 Covariances of the first 10 Zernike coefficients, scaled by
(

D
r0

) 5
3
.

EN ≈ 0.2944N−
√

3
2

(

D
r0

)
5
3

(4.11)

4.2 Laser guide stars

In adaptive optics, the wavefront distortion for the objectof interest is usually estimated

from a nearby reference star. This avoids using light from the object itself, a method which

reduces throughput to the observation path. It also allows adaptive optics correction to

be used for objects that may be too dim for wavefront sensing.The reference star has

to be bright and close enough to the object to provide a good wavefront estimate, ideally

well within the isoplanatic angleθ0. There are not enough natural guide stars to allow

observations of all interesting astronomical objects.

Observatories today use laser beacons as artificial guide stars to provide a bright reference

source, extending the sky coverage [29,69,80,110]. Laser guide stars are formed using one

or more laser beams pointed near the object of interest. The artificial star can be formed by

either Rayleigh scattering or by sodium resonance fluorescence.

Rayleigh scattering is based on scattering by air moleculesin the lower atmosphere. The

height of laser guide stars based on Rayleigh scattering is limited to between 5 to 20 km,

which is approximately the same height as atmospheric turbulence. The thinner atmosphere

at higher altitude also limits the brightness of Rayleigh laser guide stars. However, although



84 Adaptive optics

the turbulence layers here are weak, they are still significant because of thez
5
3 height de-

pendence of the atmospheric isoplanatic angle (Equation 4.8) and temporal rate of change

(Equation 4.9).

An alternative scattering method uses the sodium layer present at 90 km in the mesospheric

layer [63]. Sodium atoms are resonant at 589.2 (D2) and 589.6 (D1) nm, scattering laser

beams of that wavelength. Sodium laser guide stars can create light sources that are not only

brighter than Rayleigh laser guide stars of equivalent power, but also higher, allowing the

turbulence at higher altitudes to be measured. Sodium beacons are thus generally preferred

to Rayleigh beacons.

4.2.1 Cone effect and anisoplanatism

A guide star and the object of interest are not affected by thesame patch of atmospheric

turbulence. The angular separation between the object and the guide star is bounded by the

isoplanatic angleθ0 [101], the angle over which turbulence effects may be considered to be

constant [28]. The mean squared phase error for a separationof θ is on average

σ2
φ =

(

θ
θ0

)
5
3

rad2 (4.12)

Additionally, in laser guide stars, the limited height of the beacon (as opposed to the very

distant natural star), also gives rise to what is known as thecone effect.

Figure 4.3 The limited height of laser guide stars compared to distant stars restricts its
measurement of atmospheric turbulence.

The use of laser guide stars is often associated with multi-conjugate adaptive optics [50,58].

Multiple guide stars are used to cover a larger patch of the sky [78]. Additionally, within the
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adaptive optics correction system, multiple mirrors are conjugated (hence the name) to var-

ious heights in the atmosphere to provide optimal correction. Since propagated light suffers

from both phase and amplitude fluctuations, and deformable mirrors can only provide phase

compensation, the most effective compensation is obtainable only by conjugating the mir-

ror compensation to the height of the turbulence, effectively compensating the turbulence

before the propagation that causes intensity fluctuations [25].

Although laser guide stars seem to provide the ultimate solution to the sky coverage and

guide-star brightness problem, they have a major drawback.The laser beam displacements

in the outgoing and returning beam cancel because they pass through the same turbulence,

causing no apparent displacement in the guide star image. Because of this, laser guide stars

cannot be used to improve the wavefront slope estimate. Thisis a great disadvantage as

wavefront slope comprises 87% of the wavefront errors caused by the atmosphere (as seen

in the first 2 terms of the covariance matrix in Table 4.1). Optimal slope detection under

limited light thus remains a very important step for image improvement, and motivates the

discussion in Chapter 5.

4.3 Wavefront slope estimation

The phase of the complex field at optical wavelengths cannot be measured directly. Its effect

on images can however be seen when light is allowed to propagate. Wavefront sensing is

basically a means of relating intensity measurements to phase aberrations. We begin by

observing the propagation of light through an aperture under Fresnel diffraction, as shown

in Figure 4.4. The simulation is carried out with a discrete approximation to Equation 3.27.
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Figure 4.4 The effects of wavefront errors on the propagation of light through free space.

The circles represent the centroid of the image after propagating through free space. In
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Teague’s moment analyses [96,97], the first moment, the centroid, travels in a straight line

at a direction perpendicular to the mean wavefront slope at the aperture. This also agrees

with the geometric optics model of light (Equation 3.9 and Equation 3.10), which predicts

that the image is displaced in proportion to the global wavefront slope at the telescope

aperture.

Over longer distances, the image displacement is larger, and an increasing variation in the

intensity is observed. We expect the image at infinity to showthe most amplitude variation

in response to phase fluctuations at the aperture. In practice, a focusing lens can be placed

at the aperture to reduce the equivalent propagation distance to the focal length of the lens.

The lens also concentrates light, intensifying the image signal. Intuitively, the focal plane

is thus the optimal position for slope detection.

4.3.1 Focal plane image displacement and the wavefront slope

The relationship between the mean slope and the displacement of the image centroid lies at

the heart of most wavefront sensors. This relationship can be shown mathematically in the

case of a uniformly illuminated and symmetric aperture as

∫ ∞

−∞
x|i(x)|2 dx

= −i
∫ ∞

−∞
ixF

{(

A(u)eiφ(u)
)

⋆
(

A(u)eiφ(u)
)}

dx

= −i
d
du

[(

A(u)eiφ(u)
)

⋆
(

A(u)eiφ(u)
)]

∣

∣

∣

∣

u=0

= −i
∫ ∞

−∞
A(u)eiφ(u) d

du
A(u+0)eiφ(u+0) du

= −i
∫ ∞

−∞
A(u)

d
du

A(u) du−
∫ ∞

−∞
A(u)2φu(u) du

= −A(u)2
∫ ∞

−∞
φu(u) du (4.13)

wherex = 2πu
λz .

Least-squares slope estimate

The mean slope is the averaged wavefront slope over the wholeaperture. However, due

to the averaging operation of the centroid estimator, undercertain conditions, an image
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may “look” displaced, but still have a centroid of zero. An example of this is shown in

Figure 4.5.

x

Figure 4.5 A wavefront with 0 mean slope at the aperture, resulting in an image with a
centroid of 0. Although the bulk of the image is slightly displaced to the left, the centroid
is weighted by distance over the whole image, and is sensitive to the position of distant
speckles.

To maximise the Strehl ratio of an image, an adaptive optics system should compensate

for image displacements, not by centroiding, but by centering on the brightest point of a

speckle (the shift-and-add algorithm). Since the Strehl ratio is approximately related to the

squared phase error, brightest spot centering correspondsto estimating the plane of best fit

to wavefront aberrations in the least-square sense, as pointed out by Glindemann [33]. This

is shown as a line of best fit to the wavefront in Figure 4.5.

The optimal estimates of the second and third Zernike terms are defined to be the least-

squares fit of a plane to the wavefront. The position of the brightest point, an alternative to

the centroid as a displacement estimator, is thus useful formeasuring the wavefront slope

in the least-squares sense.

In practice, the wavefront sensors examined in this thesis make use of quad-cells (examined

later) for estimating displacement or slope. The undersampling in the quad-cell renders the

position estimation of the brightest spot impractical. Subsequently, since the displacement

estimate provided by the quad-cell is in fact an estimate of the image centroid, more em-

phasis is placed on the centroid estimator.
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Estimation of higher order wavefront modes

If we are only interested in the global slope estimation fromimage displacements, then the

optimal position for measuring the image is at the focal plane, as explained by van Dam and

Lane [104]. While the global slope measurement provided by the quad-cell accounts for

most of the wavefront error in Kolmogorov turbulence, it is still necessary to estimate the

shape of the wavefront aberration function within the wholeaperture. Wavefront sensors

are used to detect the higher order modes in the turbulence.

Global slope estimation with quad-cells can be extended to estimate higher order modes by

subdividing the wavefront aberrations at the telescope aperture into smaller regions. Within

the smaller area, the effects of higher order aberrations are less severe, and the effects of

the local wavefront function dominates. The local wavefront within each sub-region can

then be measured independently. The sensor signal is typically linear with respect to some

function of the wavefront (for example, the wavefront slopeor curvature). The sensor signal

ddd is thus given by a matrix operation (HHH) with the wavefront Zernike coefficientsααα.

ddd = HHHααα +nnn (4.14)

wherennn represents measurement noise in the wavefront sensor.

The higher order wavefront aberrations at the telescope aperture can be found from a linear

combination of the local slope signals. Here, the sensor measurementsddd is a finite vector,

while the wavefront coefficientsααα is in fact infinite. In practice, a finite number of coeffi-

cients are estimated, since (as shown in Equation 4.11), theerror in the subsequent higher

order modes decreases, so the energy in Kolmogorov turbulence is mostly present in the

lower order modes.

Depending on the statistics of the noise present in the sensor signalddd, various solutions

for ααα are obtained. As introduced previously in Section 2.5.2, two Bayesian methods for

inverting Equation 4.14, the Maximum Likelihood and Maximum A Posteriori solutions,

are commonly used here.

The Maximum Likelihood solution, assuming white noisennn, is given by

α̂αα = (HHHTHHH)−1HHHTddd (4.15)
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Given a finite number of measurements inddd, under low light conditions, with higher noise

levels in the measurement, or when more coefficients (α̂αα) are required from the wavefront

sensors, additional constraints are required to conditionthe problem. In such situations,

prior knowledge of the statistical distributions of coefficients can be useful, resulting in

a Maximum A Posteriori solution of Equation 2.117. Here, thecovariance matrix of the

Zernike coefficients provide a convenient way to specify prior knowledge of the turbulence

statistics. The MAP estimate is optimal as long as the model of the prior is accurate, and is

independent of the basis functions chosen to represent the prior.

In many adaptive optics systems, the compensating mirror (Section 1.1.5) is built from ac-

tuators that correct the wavefront using local mechanical perturbations. Thus, an alternative

problem that is also linear, but consisting of zonal wavefront estimates, can be formulated.

In zonal estimation systems, prior information, in the formof the measurement covariance

matrix, can be obtained from the covariance analysis in Wallner [107].

4.4 Wavefront sensors

In this thesis, four different wavefront sensors: the Shack-Hartmann, pyramid, curvature

and geometric wavefront sensors, are examined in detail. For comparison purposes, a uni-

fied framework is developed to place the wavefront sensors incontext.

4.4.1 Shack-Hartmann sensor

The Shack-Hartmann sensor [72, 85] consists of an array of lenslets placed at a plane con-

jugated to the telescope aperture. Each lenslet subdividesthe aperture plane into smaller

subapertures, and forms a low resolution image of the objectat its focal plane.

Object

Quad-cells

Lenslets

Turbulence

Figure 4.6 Simplified layout of a Shack-Hartmann sensor.
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When the lenslets are approximately the same size as the coherence lengthr0 of the atmo-

spheric turbulence, the images formed by the lenslets are approximately the same size as the

equivalent diffraction limited images formed by the lenslet (for example, with perfect tele-

scope optics, and no atmospheric turbulence). At this size,the major effect of turbulence is

in the local wavefront slope over each lenslet, giving rise to random image displacements,

as shown in Figure 4.7.

Figure 4.7 Simulated image from a Shack-Hartmann sensor, with sensor signals super-
imposed (not drawn to scale).

The signal from a Shack-Hartmann sensor is formed from the image displacements, which

are linearly related to the wavefront slopes. Since differentiation (slope of wavefront) is

a linear process, the slopes are in related to the coefficients of the Zernike polynomials in

Equation 2.81.

The intensity of the image under each lenslet is measured with CCD detector arrays. The

displacement of the image can be measured using the centroidestimator of Equation 5.1.

In practice, to reduce the effect of read-noise in the CCD detectors, quad-cells are used to

determine the displacement of the image.

The lenslet size is typically unchangeable for a fixed optical configuration, and needs to be

tailored to the local turbulence conditions. There is a trade-off between the more precise

estimate available from larger lenslets, with the better spatial resolution or sampling avail-

able from having more (and smaller) lenslets. A simulation for choosing the optimal lenslet

size is presented in Section 6.3.2.

Image displacement is almost3 independent of wavelength. This allows the Shack-Hartmann

3Some wavelength dependent refractive effect exists, and isused in polychromatic guide stars for tip/tilt
estimation [27].
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sensor to be used with broadband or white light, which maximises the amount of light used.

Additionally, smaller extended objects are not resolvablethrough the small lenslets, and are

suitable for use as guide stars. The simplicity and robustness of the Shack-Hartmann sensor

has led to its widespread adoption in adaptive optics systems.

4.4.2 Pyramid wavefront sensor

The pyramid sensor consists of a pyramid-shaped prism at thefocal plane of the telescope,

and some re-imaging optics behind it. It was first suggested in various forms by Babcock

and Ragazzoni [9,76], and improves upon the qualitative Foucault knife edge test [26,111]

by allowing quantitative measurements of wavefronts to be made.

Figure 4.8 The pyramid wavefront sensor consists of a pyramidal prism at the focal plane.
The subdivided field in each quadrant is re-imaged into 4 separate sub-images.

The pyramid sensor subdivides the complex field at the telescope focal plane into quadrants,

and re-images each quadrant into 4 images of the telescope aperture. The pyramidal prism

is there simply to spread out the sub-images to avoid overlaps. For analysis purposes, the

prism may be ignored, as only the subdivision operation is important here.

The sensitivity and linearity of the pyramid sensor are a function of the image size, and

artificially enlarging the image size on the pyramid can be beneficial. The most common

method is to achieve this by a repetitive motion to increase its apparent size. This is exam-

ined further in Section 6.4.

As a first approximation, the light distributions within each individual sub-images may be

ignored, by considering only their total intensities. Thisresults in four intensity measure-

ments, one for each quadrant in the focal plane. This is of course equivalent to a focal plane

quad-cell for estimating image displacement, which corresponds to the global wavefront

slope at the aperture.
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By extension, due to linearity in the image intensities, as shown in Section 6.4, the intensity

distribution in the sub-images is proportional to local wavefront slopes in the aperture plane.

Figure 4.9 shows how a local wavefront slope in the aperture translates to localised intensity

changes in each of the re-imaged apertures beyond the telescope focal plane.

Four aperture images from a pyramid sensor

50 100 150 200 250

50

100

150

200

250

Figure 4.9 The re-imaged telescope aperture in the pyramid sensor, showing the signal
arising from a flat wavefront with a small local perturbation.

The re-imaged copies of the aperture are blurred by the prismsubdivision at the telescope

focal plane. Roughly speaking, each subdivision, or facet of the pyramid, retains only14
of the illumination at the focal plane. This loss of information from the subdivision pro-

cess determines the ultimate limit to the resolution of the wavefront estimate of a pyramid

wavefront sensor.

Chapter 6 further demonstrates that the pyramid wavefront sensor is in fact a dual of the

Shack-Hartmann sensor, with many equivalent functions performed in the dual Fourier

space.

4.4.3 Curvature sensor

The curvature sensor is an image based wavefront sensor thatmeasures wavefront curvature

instead of slope. It was proposed by Roddier [86] as a simple low-order wavefront sensor

especially tailored to astronomical imaging applicationsas opposed to earlier systems ori-

ented towards military uses. It has found widespread use in infra-red applications where

the effect of turbulence is less severe. The curvature sensor consists of two imaging planes

placed before and after the nominal focal plane of a telescope.
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Figure 4.10 Layout of a curvature sensor showing the in-focus (above) and outside-focus
imaging planes (below). The dashed lines represent the paths of light rays when there
are no wavefront errors. On the right, the same aberration with a local slope causes an
opposing displacement in the intensity signals in each image plane.

Using this layout, any wavefront errors at the aperture plane shows up as opposing intensity

changes in the two out-of-focus imaging planes. In the example shown in Figure 4.10, a

small negative curvature is added to the wavefront in the centre of the aperture. This causes

the focal point for that sub-region in the aperture to move forward, so the corresponding

region becomes brighter (and smaller) in the in-focus image, and darker (and larger) in

the outside-focus image. The intensity within that sub-region in the two image planes is

approximately proportional to the wavefront curvature, asshown in Equation 3.11.

The sensor output is taken to be the intensity difference between the two imaging planes,

and is proportional to the wavefront curvature. For a small change in curvature∆H(x,y,0)

at the aperture, the corresponding change in intensity after propagating a distance ofz is

∆I(x,y,z)≈−zI(x,y,0)∆H(x,y,0) (4.16)

In the original curvature sensor, it was proposed that the sensor outputs be sent directly

to a bimorph deformable mirror, which will respond with a proportional curvature on its

surface. In practice, additional processing of the sensor signal is required to match the

characteristics of each component.

There are questions as to the accuracy of a sensor signal formed from the intensity differ-

ences in the two imaging planes. As exaggerated in Figure 4.10, curvature errors in the
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wavefront not only result in local intensity changes, but also changes in the size of the

image (sub-region). The most significant outcome of this effect can be seen at the edges

of images. In practice, wavefront sensors treat the boundary of images as differential sig-

nals proportional to the wavefront slope. This raises the significant question of how the

boundary slope signal is to be separated from the internal curvature signal.

The misalignment error also arises when the mean local slopewithin a sub-region results in

a displacement of the intensity signal, so that the bright and dark spots in the two defocused

imaging planes are no longer aligned, as shown in Figure 4.10(right). A better solution

to the curvature sensor equation has been proposed by van Damand Lane [102] to take

into account the full geometric optics behaviour of light. This new method is known as the

geometric wavefront sensor.

4.4.4 Geometric wavefront sensor

The geometric wavefront sensor is a slope sensor. The physical layout of the geometric

wavefront sensor is identical to the curvature sensor. However, it uses an improved inter-

pretation of the intensity distribution in the out-of-focus images, using an exact geometric

optics solution to recover wavefront aberrations by a ray tracing process.

To illustrate the underlying philosophy of the geometric wavefront sensor, we simplify the

wavefront propagation problem to 1D, as shown in Figure 4.11.

Plane A

Plane B

Wavefront

Wavefront

Intensity

Intensity

Figure 4.11 A simple defocus in the wavefront causes the image of the aperture to be
smaller but brighter.

Light propagates in a direction perpendicular to the wavefront slope (Equation 3.9). At

the same time, the intensity changes as it is concentrated ordispersed, as described by

Equation 3.11. With a 1D aperture, these equations are reduced to
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xB = xA +∆zWx(xA,zA) (4.17)

where∆z= zB−zA andWx is the wavefront slope along the x-axis.

for a light ray atxA in the aperture, travelling toxB in the image plane. The intensity changes

are given by

I(xB,zB) =
I(xA,zA)

1+∆zWxx(xA,zA)
(4.18)

The wavefront slope at the aperture can be recovered by tracing the light ray path between

the aperture and image planes. Figure 4.12 shows the same wavefront from Figure 4.11,

with the light rays found from comparing the intensities between the two planes. Intuitively,

due to the conservation of light, the total intensity between any two light rays (shaded region

of Figure 4.12) must be constant.

∫ xA

−∞
I(x,zA)dx=

∫ xB

−∞
I(x,zB)dx (4.19)

The wavefront slope atxA is given byxB−xA
∆z .

Dx

W (x )x A

XA

XB

P1

Plane A
(aperture
plane)

Plane B
(imaging
plane)

Dz

P2

Figure 4.12 Geometric optics model for the propagation of light.

Equation 4.19 allows the positions of the light rays to be recovered from the intensity dis-

tribution at planesA andB. Ray tracing provides an exact solution to the problem, as can

be seen from equating the intensity between the two light rays P1 andP2.
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∫ xA

−∞
I(x,zA) dx =

∫ xB

−∞
I(x′,zB) dx′

=

∫ xB

−∞

I(x′,zA)

1+∆zWxx(x′,zA)
dx′

=
∫ xB−∆zWx

−∞

IA(x)
1+∆zWxx

(1+∆zWxx) dx (4.20)

substitutingx′ = x+∆zWx(x,zA) for dx′ = (1+∆zWxx(x,zA))dx.

The exact wavefront slope can be estimated by equating the limits to the integrals in Fig-

ure 4.20.

xB−xA = ∆zWx (4.21)

so the wavefront slope is exactlyWx(x,zA) = ∆x(x)
∆z .

Chapter 7 expands on the application of this method to the wavefront sensing, and provides

a comparison of the performance of the geometric sensor to the curvature sensor.

4.4.5 Unifying theme

All the wavefront sensors examined share the same principles of operation. To estimate the

complex field at the telescope, scintillation is assumed to be insignificant, and the amplitude

can be assumed to be constant, leaving only the phase to be estimated. The wavefront or

phase is not directly measurable, but wavefront slope or curvature can be inferred through

intensity measurements.

In wavefront sensors, a wavefront is propagated through an aperture, producing intensity

fluctuations in the propagating field. The effect of wavefront aberrations on the intensity of

a propagating field is most pronounced when the propagation distance is large. In all four

wavefront sensors, the most appropriate models for the diffraction effects are the Fresnel or

Fraunhofer approximations.

In the presence of strong wavefront aberrations, diffraction effects are small by compar-

ison to geometric effects, so geometric optics [38] provides a good approximation of the

intensity propagation model, and so is a good description ofhow wavefront sensors work.

However, as the image is compensated and approaches its diffraction limit, the geometri-
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cal optics assumptions begin to fail. Under such conditions, Fourier optics is required and

diffraction effects determine the ultimate performance limits of the wavefront sensors.

Using a geometric optics approximation allows wavefront sensing with extended objects or

under broadband light. This flexibility extends the range ofapplication of wavefront sen-

sors. Additionally, the linearity and “localisation” property of geometric optics allows the

wavefront to be subdivided directly into smaller sub-problems. Through such subdivision,

higher order wavefront components can be estimated.

Depending on the wavefront sensor, the wavefront at the aperture can be subdivided explic-

itly at the aperture plane, implicitly at the focal plane, orsomewhere in between. Within

a sub-region in the divided aperture, a linear relation exists between the intensity and the

local wavefront slope or curvature. Once such a model or forward problem of a wavefront

sensor is obtained, the wavefront estimation problem is solved by inverting the forward

problem. In this thesis, the inversion if framed in terms of the maximum-likelihood or

maximum-a-posteriori methods.

Resolution-precision trade-off

The subdivision operation is equivalent to a wavefront sampling operation. The resolution

of the wavefront estimate is thus dependent on the size of thesubdivision; the smaller

the sub-apertures, the finer the sampling. However, using smaller sub-apertures results

in a lower precision in the individual local wavefront estimates. The trade-off between

resolution and precision is an example of the space-bandwidth constant in the dual-space

description of signals, and is examined in Section 6.1.

Most wavefront sensors have a tunable gain or sensitivity that affects the precision of the

wavefront estimate. The sensitivity may be directly adjusted as in an optical modulation

scheme or an electronic gain. Alternative, it may only be present implicitly in the image

Strehl, and is not directly adjustable. Where possible, by reducing the sensitivity of a

wavefront sensor, it may be possible to reduce the non-linearities in the sensor. Hence,

the precision of the wavefront estimate can also be balancedagainst non-linear errors in

wavefront sensors.
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4.5 Conclusion

By focusing on how the designs of the wavefront sensors are connected, it is our hope

that ultimately, all four wavefront sensors considered here can be shown to be equivalent.

Interestingly, two related techniques in scintillation estimation, the scidar and slodar de-

vices, resemble the pyramid sensor physically, so a greaterunified theory for understanding

wavefront and scintillation detection could be a good extension to the current framework.

In Chapter 6, the Fourier equivalence between the Shack-Hartmann and pyramid wavefront

sensors is developed. By the equivalence between individual components of the wavefront

sensors, the performance of the wavefront sensors can be compared.

Chapter 7 compares the curvature sensor against the geometric wavefront sensor. Since the

wavefront sensors are physically identical, a comparison of the noise propagation through

their algorithms is made.

Finally, although this thesis will focus mostly on the fundamental performance of wavefront

sensors, in practice, we also need to consider instrument noise. Practical considerations

usually result in design configurations that do not allow thefull use of the wavefront sensors

as described in the following sections.



Chapter 5 Quad-
ells
In this chapter, we examine the problem of wavefront slope estimation in greater depth. We

have shown in Section 4.3.1 that the global mean wavefront slope at the telescope aperture

is proportional to the image centroid at the focal plane.

The fundamental limit to the estimation of image centroid arises from photon noise in the

image intensity measurements. Photon noise refers to the fluctuations in the photon count in

each image detector element due to the Poisson arrival process of photons. For an expected

mean value ofN, the photon count fluctuates about its expected mean value with a variance

also equal toN.

The intensity distribution in an image is proportional to the density of photon arrivals. Con-

sequently, an image can alternatively be seen to represent the probability density function

for photons. Estimating some of the properties of an image, like its displacement, is then

equivalent to parametric estimation of a known probabilitydistribution. Using the Cramer-

Rao bound [51], the ideal theoretical performance for any displacement estimator is shown

to be related to the image shape.

Starting with the measurement of images with CCD arrays [112], we show how the presence

of instrument read noise and photon noise lead to trade-offswhich lead to the quad-cell. Al-

though the quad-cell is the most commonly used image displacement estimator, because of

under-sampling, it does not (strictly speaking) measure the image centroid. In this chapter,

we compare the performance of quad-cells to the theoreticalCramer-Rao lower bound for

displacement estimators.

99



100 Quad-cells

Most conventional analyses have concentrated on the image width as the factor that deter-

mines performance [66, 69, 110]. In this chapter, the image peak is shown to be a more

appropriate measure of quad-cell performance. This also simplifies the analysis of the

closed-loop performance of the quad-cell. The performanceof the quad-cell derived here

is then extended to general slope estimation in wavefront sensors in subsequent chapters.

5.1 Displacement estimation

Images are typically measured using an array of detectors atthe image plane, providing a

sample of the intensity distributions at discrete points inthe image plane.

Figure 5.1 The sampling of an image using a finite array of detectors.

The maximum frequency component in an image is limited by theextent of the aperture

correlation function (Equation 2.56). For a circularly symmetric aperture of diameterD,

the radius of the aperture correlation function, which has two times the extent of the aper-

ture function, isD. The sampling interval that satisfies the Nyquist sampling frequency

(Section 2.4.3 and Shannon [90]) (reciprocal of 2D, or two times the highest frequency in

the signal) is given by∆x
λ f = 1

2D , that is∆x = λ f
2D , which is approximately a quarter the size

of the diffraction limited image. Assuming the Nyquist sampling criterion is satisfied, from

a square array of image samples, the image centroid calculated by

x̂ =
∑x ∑yxI(x,y)

∑x∑y I(x,y)
, ŷ =

∑x ∑yyI(x,y)

∑x ∑y I(x,y)
(5.1)

is related to the mean wavefront slope at the aperture by

Ŵx =
x̂
f

(5.2)
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where f is the focal length of the telescope, andŴx is the mean wavefront slope at the

telescope aperture in thex-axis.

In the presence of photon noise, the centroid is a random variable. The variance of the

denominator in the centroid term can be ignored when the noise level is low. Photon noise

has Poisson statistics, so the variance in any intensity measurement in a photo-detector is

the same as the expected intensity in the detector. Within a scale factor, the mean and

variance of the centroid estimator is given by

〈

∑
x

∑
y

xI(x,y)

〉

= ∑
x

∑
y

x〈I(x,y)〉

= ∑
x

∑
y

xI(x,y) (5.3)

var

(

∑
x

∑
y

xI(x,y)

)

= ∑
x

∑
y

x2var(I(x,y))

= ∑
x

∑
y

x2I(x,y) (5.4)

The expected mean and variance of the centroid estimator corresponds to the mean and

variance of the image when it is interpreted to be a probability distribution.

5.1.1 Centroid estimator variance

For a finite aperture with a discontinuity at the edges, the asymptotic decay in the focal

plane image intensity over the image width,x, is x−2. Unfortunately, because the intensity

decay is slower thanx−1, this means that the variance in the image centroid estimatein

Equation 5.4 is infinite when computed over an infinite plane [47].

In practice, the image measurement area is finite as shown in Figure 5.1. The centroid

variance for ax−2 intensity decay is proportional to the area over which the image is mea-

sured, so the upper bound to the centroid variance is limitedby the truncated measurement

region. The image truncation produces a bias in the centroidestimator towards zero and

also removes any intensity beyond the outer boundaries of the detector. Any intensity here
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is spread out by the high frequency phase noise at the aperture, so image truncation at the

focal plane effectively acts as a low-pass filter for the phase signal [73].

However, image truncation also causes some information in the image to be lost, so any

CCD centroid estimators is no longer statistically optimal. Section 5.3.1 examines the

statistical optimality property of a displacement estimator.

In modal wavefront estimation, an aberration function is often expressed as a combination

of a finite number of Zernike terms. The relationship betweenthe individual Zernike terms

and the resulting image displacement is dependent on how theimage displacement is mea-

sured. Usually, the image displacement refers to either theimage centroid displacement,

or the displacement of the brightest spot in the image. The two displacement measures

actually correspond to different slope estimates.

The centroid displacement corresponds to the mean wavefront slope at the aperture. Most

Zernike terms have a mean slope component, so their presencein a wavefront can result

in a displacement in the image centroid. Given a centroid estimate, the corresponding

Zernike coefficients cannot be determined unambiguously, since the slope component may

be attributed to any Zernike term with a non-zero mean slope.

Alternatively, the displacement of the brightest spot in the image corresponds to the least-

squares wavefront slope at the aperture, as previously explained in Section 4.3.1. Since the

Zernike slope term is orthogonal to all the other higher order Zernike modes, the presence

of higher order Zernike modes do not contribute to any image displacement. Therefore, a

single displacement estimate can unambiguously determinethe magnitudes of the tip and

tilt Zernike terms. Additionally, the least-squares estimate, being independent of the higher

order Zernike terms, are not affected by image truncation. That is, in the spatial domain, the

position of the bright spot is a local measurement, and cannot be affected by the boundaries

of the image.

Suppose the intensity distribution is modelled as a probability distribution, the centroid

then corresponds to the mean of the distribution, while the position of the brightest spot

corresponds to the mode of the distribution. As will be shownhere, the image displacement

estimate provided by a quad-cell corresponds to the median of the distribution. From this

point of view, the quad-cell represents a compromise between finding the mean slope and

the least-squares slope, taking into account the limitations imposed by read noise.
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5.2 Slope detection with Quad-cells

To maximise the signal strength and minimise read noise in the centroid estimator, the

image is frequently under-sampled. At the extreme, this leads to the quad-cell detector,

which consists of 2x2 detector elements as shown in Figure 5.2. The quad-cell detector

is a common feature in many wavefront sensors, and is examined in detail by Tyler and

Fried [100].

The quad-cell image is nominally centered on the corner adjacent to all four cells. In this

position, all four cells will measure the same amount of light. Any image displacements

in thex-direction can then be measured by comparing intensity changes in the two halves

of the plane made up ofA1 + A3 on one side, andA2 + A4 on the other. Similarly, any

displacements in they-direction is given by comparingA1+A2 with A3+A4 [69,100].

For small displacements∆x, the intensity in the two halvesA1 + A3 andA2 + A4 of the

plane will show opposing changes. The quad-cell formula is commonly taken to be the

differential signal(A2+A4)−(A1+A3), which is monotonically related to the displacement

of the image. This differential signal is in fact the centroid formula. However, because of

the loss of information in the image truncation and now, alsofrom sub-Nyquist sampling,

the signal no longer corresponds to the mean wavefront slopeat the aperture.

A = A = A = A1 2 3 4

A1 A2

A3 A4

A + A < A + A1 3 2 4

A1 A2

A3 A4

Displacement

Sensor signal

Displacement

Sensor signal

Image width
wider linear range

Image width
linear range

(A +A )-(A +A )2 4 1 3

Larger image

Slope
(Gain/Sensitivity)

Figure 5.2 Detection of image spot displacement with a quad-cell. When the image is
shifted as outlined by the dots, the intensity measurements (no longer equal, as printed in
grey) on both halves of the quad-cell plane provide a displacement estimate. This signal
is approximately linear for small displacements, and saturates for larger displacements. A
larger image size (right) results in a wider range for which the signal is linear, at the expense
of the signal gain or sensitivity.
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5.2.1 Quad-cell formula

The precise variation in intensity with image displacementdepends on the intensity distri-

bution within the image itself. Consider the normalised angular spectrumh(u,v), where

∫ ∞

−∞

∫ ∞

−∞
h(u,v) du dv= 1 (5.5)

Changing from angular to spatial coordinates( x
f ,

y
f ) = (u,v), the normalised image at the

focal plane ish′(x,y) = 1
f 2h( x

f ,
y
f ) where f is the telescope focal length. For total mean

intensity ofN photons, the image itself isNh′(x,y). Figure 5.3 shows the intensity signal in

each half of the image plane for a displacement∆x.

h’(0)

Dx

A +A  =  Nh’(x)dx1 3

Dx

-

-

A +A  = Nh’2 4 (x)dx
Dx-

Displacement

Figure 5.3 Small displacements in the 1D PSF results in opposing intensity changes in
each half of the quad-cell. The mean wavefront slope at the aperture is then given by
Wx = ∆x

f .

The differential quad-cell signal is given by

(A2+A4)− (A1+A3)

=

∫ ∞

0

∫ ∞

−∞
Nh′(x−∆x,y−∆y)dy dx−

∫ 0

−∞

∫ ∞

−∞
Nh′(x−∆x,y−∆y)dy dx

= N

(

∫ ∞

−∆x
h′′(x′)dx′−

∫ −∆x

−∞
h′′(x′)dx′

)

= N

(

∫ ∞

0
h′′(x′)dx′−

∫ 0

−∞
h′′(x′)dx′

)

−2N

(

∫ −∆x

0
h′′(x′)dx′

)

(5.6)

whereh′′(x) is a 1D projection of the normalised image distribution,h′′(x) =
∫ ∞
−∞ h′(x,y) dy,

andx′ = x−∆x. The integral overy also eliminates the displacement∆y in the orthogonal
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axis, allowing us to ignore it, simplifying the equation.

The first term of Equation 5.6 is independent of the image displacement. It is usual here

[66, 67, 80, 110] to make the assumption thath′(x,y) is modelled by a Gaussian profile.

However, the much weaker assumption that the image intensity is equal on both sides of

the image peak, is enough to allow us to ignore the first term. This leads to

(A2+A4)− (A1+A3) = −2N

(

∫ −∆x

0
h′′(x)dx

)

≈ 2N∆xh′′(0) (5.7)

The quad-cell signal is a non-linear function of the image displacement∆x. The non-

linearity, shown in Figure 5.2, is of the form of a saturationcurve. For small displacements,

it is approximately linear, with the signal gain (slope) being determined by the shape of the

speckle image. For larger displacements, the signal saturates, and it is no longer possible to

estimate the magnitude of the image displacement.

Using the linear approximation, the wavefront slope, obtained by dividing the image dis-

placement over the focal lengthf (from Equation 5.2), is

Ŵx =
1

2Nh′′(0) f
(A2+A4−A1−A3) =

1
2Nh(0)

(A2+A4−A1−A3) (5.8)

with the corresponding formula (A3 +A4−A1−A2) for the slope in the y-direction (refer

to Figure 5.2).h(0) is the 1D angular spectrum
∫ ∞
−∞ h(0,v) dv.

The sensitivity of the quad-cell, 2Nh(0), measures the ratio between changes in the wave-

front slope and the corresponding changes to the quad-cell intensity measurements. This

is the reciprocal of the gain, which is a scale factor tuned during operation to estimate the

slope from the quad-cell intensity measurements.

5.2.2 Slope estimation errors

In the presence of photon noise, with an expected photon count of N, the signal in each

quad-cell is independent of the other quad-cells with a variance of N
4 . The variance of

(A2 +A4)− (A1 +A3) is the sum of their individual variances, givingN. Thus combined,
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the quad-cell slope variance (error due to photon noise) is [66,100]

Ep =
〈

(Ŵx−Wx)
2〉

p =

(

1
2Nh(0)

)2

N =
1

4Nh(0)2 (5.9)

In practice, the quad-cell signal is also corrupted by detector read noise. Assuming inde-

pendent and uniform read noise in each quad-cell detector ofσ2
r , the slope variance due to

read noise is

Er =
〈

(Ŵx−Wx)
2〉

r =

(

1
2Nh(0)

)2

4σ2
r =

σ2
r

N2h(0)2 (5.10)

In both error expressions,h(0) can be expressed asΓho(0), whereho(0) is the diffraction-

limited image peak, whileΓ is the 1D analogue of the Strehl ratio.

The performance of the quad-cell is derived by Tyler and Fried [100], assuming diffraction-

limited imaging (Γ = 1) when the image is an Airy disc (this has the form Jinc(x)2, as

explained in Equation 2.64). Additionally, analytical solutions to diffraction-limited images

of extended round objects were also given.

The results from [100] may be summarised more simply by usingEquation 5.9 and some

identities. In a Jinc(r)2 circularly symmetric image, the volume under the surface isπ
4

(Equation 2.22), and the image height isπ
4 (Equation 2.19). The maximum height of its 1D

projection,
∫ ∞
−∞ Jinc(

√

x2+y2)2 dyatx= 0 is given by Equation 2.20 as23. The first zero of

the image is atr = 1.22. By appropriately scaling the dimensions of the Jinc(r)2 function

to match the image at the telescope focal plane, we can derivethe focal plane image peak

due to a circularly symmetric aperture.

For a circular telescope aperture of diameterD, with a diffraction-limited image (of an Airy

disc) (Equation 2.17) with its first zero crossing at 1.22λ
D radians, and photon count of 1

(corresponding to the volume), the peak of the 1D projectionis
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h(0) =

(

2
3
π
4

)(

1.22

1.22λ
D

)

=

(

8
3π
)

λ
D

(5.11)

Substitutingh(0) into the quad-cell displacement estimator variance (Equation 5.9) results

in

Ep =

(

3π
16

)2

N

(

λ
D

)2

≈ 0.35
N

(

λ
D

)2

(5.12)

For comparison, the commonly used Gaussian approximation of the image on the quad-cell,

as used in Welsh and Gardner [110] or Parenti and Sasiela [69](which had actually started

from the image Strehl), is shown here.

h(u,v) =
1

2πσ2e−
u2+v2

2σ2

h(u) =

∫ ∞

−∞
h(u,v)dv=

1√
2πσ

e−
u2

2σ2 (5.13)

whereσ is the width of the image, andh(0) is 1√
2πσ .

For a circular telescope aperture of diameterD and diffraction-limited imaging, the best

Gaussian approximation is forσ = 0.43λ
D radians. Using the Gaussian approximation to

the Airy disc, the error contributions to the slope estimatedue to photon noise is given by

Ep =
1

4Nh(0)2 =
0.29
N

(

λ
D

)2

(5.14)

The read noise contribution is
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Er =
σ2

r

N2h(0)2 =
1.16σ2

r

N2

(

λ
D

)2

(5.15)

Unlike the photon noise variance which, obeying Poisson noise statistics, is inversely pro-

portional to the total intensity illuminating the quad-cell, the read noise is inversely propor-

tional to the squared intensity.

5.3 Fundamental bound on quad-cell performance

The main properties of a quad-cell are the extent of its linear region, and the sensor gain or

sensitivity, which affects the signal-to-noise ratio. They are dependent on the shape of the

image and the operating light level. The operating performance of a quad-cell is determined

by the light level. However, image shape, which is also critical, has a less clear impact on

performance.

The sensitivity of a quad-cell is 2Nh(0), where the value ofh(0) can be approximated by

the maximum value or peak of the image. For a Gaussian image, the image peak varies

in inverse proportion to the image width. Hence, it is commonfor the image width to be

used as an indication of the sensor sensitivity. However, asshown above, the image peak

is the more direct performance measure, and for irregularlyshaped images (more common

in closed loop adaptive optics systems after partial correction), is the correct and more

accurate quantity to use.

The amplitude of the image is more conveniently expressed asa fraction of the peak am-

plitude of the diffraction-limited image. It is in fact the 1D analogy of the conventional 2D

Strehl ratio. From simulations, it was found empirically that Γ1D ≈ Γk
2D in Kolmogorov

turbulence, where k is around 0.6 to 0.7.

5.3.1 Cramer-Rao Lower Bound

Given a set of observations (photon locations) derived randomly from the image, the esti-

mation of image displacement can be formulated as a statistical estimation problem. Using

the Fisher information (leading to the Cramer-Rao lower bound) of a probability density

function, we can quantify the fundamental limit on the performance of a displacement esti-

mator. With a lower Cramer-Rao bound, the slope estimate canpotentially be more precise.

Equivalently, fewer photons are required to achieve the desired level of precision.
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The Cramer-Rao bound provides a useful comparison with the estimator variance provided

by the quad-cell, quantifying the loss of information in thequad-cell arising from its coarse

sampling. In contrast, as pointed out in Section 5.1.1, the centroid estimator has an infinite

variance, and so has limited use as a benchmark for comparison.

The quad-cell image is a probability density function parametrised by its positionθ = x′,

which is the displacement in 1D. The Fisher information of the imagef (x,y|θ) is given by

J =

〈

[

∂
∂θ

ln f (xxx|θ)

]2
〉

= −
〈

∂ 2

∂θ2 ln f (xxx|θ)

〉

(5.16)

Here, the expression for the Fisher information may be simplified further, since the param-

eterθ simply describes a translation of the density functionf (x,y|θ = x′) = f (x−x′,y),

∂
∂θ

ln f (x,y|θ = x′) =
∂

∂x′
ln f (x−x′,y)

= − ∂
∂x

ln f (x−x′,y) (5.17)

The expectation is taken over all points(x,y). The shape of the image remains unchanged

when shifted, so the expectation is independent of the position x′, which can be ignored.

The CRLB when observing 1 photon is the inverse of the Fisher information.

σ2
x̂′ ≥

1
〈

[

∂
∂x ln f (x,y)

]2
〉 =

1
∫ ∞
−∞
∫ ∞
−∞

[

∂
∂x ln f (x,y)

]2
f (x,y) dx dy

(5.18)

A more realistic comparison with the quad-cell would restrict the image intensity distribu-

tion to 1D, since the quad-cell measurement(A2+A4)− (A1+A3) is fully integrated over

1 axis, and is unable to measure the full 2D shape of the image.The 1D CRLB is given by

σ2
x̂′−1D ≥ 1

〈

[

∂
∂x ln f (x)

]2
〉 =

1
∫ ∞
−∞

[

∂
∂x ln f (x)

]2
f (x) dx

(5.19)

where f (x) =
∫ ∞
−∞ f (x,y) dy.
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Equation 5.19 shows that the Cramer-Rao bound for any image displacement estimator

depends only on the shape of the image. The best images for displacement estimation has

low Cramer-Rao bounds. The denominator in the CRLB,
[

∂
∂x ln f (x)

]2
, is maximised by

images with strongly varying profiles or slopes. Similarly,the displacement of smooth

images (which are highly blurred) is harder to estimate. In simulations, Equation 5.18 and

Equation 5.19 are computed numerically from random speckleimages because of the lack

of an analytical formula for a random speckle.

5.4 Signal modulation and extended objects

The sensitivity and linear range of a quad-cell is dependenton image shape, which is de-

pendent on atmospheric turbulence and the effects of adaptive optics compensation. Some-

times, the sensitivity of the quad-cell may be too high, and the image will be difficult to

position on the centre of the quad-cell. Here, we show how theimage shape can effec-

tively be modified using modulation to provide more control over the operating range of

the quad-cell. Modulation in a quad-cell signal reduces itssensitivity and increases the

linear range [22,76].

The signal from the quad-cell can be modulated by oscillating the image over the quad-

cell in a periodic motion using an oscillating tip/tilt mirror. The ideal modulation path is

a diamond shaped traverse that spends the same amount of timeover each quadrant of the

quad-cell. Practical modulation schemes approximate thiswith a circular path, as shown in

Figure 5.4.

Figure 5.4 Modulation by displacing the image at the focal plane along a path. In practi-
cal implementations, the circular path on the left approximates the diamond shaped path
typically used for analysis (right).

During modulation, the image on the quad-cell is displaced depending on its position along

the modulation pathl . The normalised image is now

h′(x,y, l) = h′(x−x′,y−y′) (5.20)
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wherex′ andy′ are the displacement along thex andy axes for each positionl along the

modulation path.

To analyse the properties of a modulated quad-cell, the problem can be reduced to the

estimation of a 1D displacement∆x. At each modulation position, the signal from the

quad-cell, extending Equation 5.7, is

(A2+A4)− (A1+A3) = −2N
∫ −∆x

0
h′′(x−x′) dx (5.21)

whereh′′(x) =
∫ ∞
−∞ h′(x,y)dy.

The full modulated signal is obtained by integrating the quad-cell signal over the whole

modulation path.

∮

m(l) ((A2+A4)− (A1+A3)) dl (5.22)

where the quad-cell signal (as given in Equation 5.21) is dependent on the modulation path

positionl .

m(l) is the modulation function, representing the weighting forthe time spent in each modu-

lation position along the x-axis. Here, we see the advantageof using a diamond modulation

path, since the “projected” modulation sweep speed is constant, sol = x′.

m(x′) =







1
lm

for − l
2 < x′ < l

2

0 elsewhere
(5.23)

wherelm represents the modulation width.

Equation 5.22 effectively blurs the image over a larger areaon the quad-cell, as shown in

Figure 5.5.

Using a diamond modulation path, the modulated signal is
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Modulation width of l Equivalent spot width

Dx

h’ (0)eqv

Figure 5.5 Shown in 1D, the modulation function blurs the image (left) in a controlled man-
ner, producing the equivalent image with a rectangular shape on the right. For illustrative
purposes, the equivalent image function has not been normalised, so it has a larger area
under its curve - for analysis, the area under each image should be held constant.

∫ l
2

− l
2

m(x′)((A2+A4)− (A1+A3))dx′

=

∫ ∞

−∞
m(x′)

(

−2N
∫ −∆x

0
h′′(x−x′)

)

dx dx′

= −2N
∫ −∆x

0

∫ ∞

−∞
m(x′) h′′(x−x′) dx′ dx

= −2N
∫ −∆x

0

[

m(x)⊙h′′(x)
]

dx (5.24)

Indeed, as pointed out by many authors [46, 100], the blurring caused by the modulation

in Equation 5.24 is equivalent to imaging with an extended object o(x,y). In that case,

instead of dealing with the point-spread-functionh′(x,y), the image at the focal plane is

expressed as a convolution of the object with the point-spread-function. By substituting

with o(x,y)⊙h′(x,y), the modulated signal is (by Equation 2.40)

−2N
∫ −∆x

0

[

o′(x)⊙h′′(x)⊙m(x)
]

dx (5.25)

with o′(x) =
∫ ∞
−∞ o(x,y) dy being the 1D distribution of the extended object, andm(x) the

modulation function defined above.

Comparing Equation 5.7 to Equation 5.24 and Equation 5.25, we see that the effect of

extended objects, modulation, or both, can be simplified by assuming an equivalent image

at the quad-cell.
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h′′eqv(x) = o′(x)⊙h′′(x)⊙m(x) (5.26)

The effect of a modulation is to linearise the response of a quad-cell and reduce its sensi-

tivity in a controlled fashion. Typically, the modulation width is selected to be larger than

the image width itself, so the exact shape of the image no longer matters. For a modulation

width l , the height of the equivalent imageh′′eqv(0) is then 1
l . The slope estimate from a

modulated quad-cell is given by

Ŝx ≈ (A2+A4)− (A1+A3)

2Nh′′eqv(0) f

≈ l
2N f

(A2+A4−A1−A3) (5.27)

The spatial modulation widthl is scaled by the telescope focal lengthf to give the equiva-

lent angular modulation width oflf radians. The slope estimate is no longer dependent on

the image shape, and is now linear over the wider range ofl
f radians.

The trade-off under modulation is the decreased sensitivity of the quad-cell, so the slope

variance increases with the modulation width. The slope variance under modulation is

Ep =
l2

4N2 f 2var{A2+A4−A1−A3} =
l2

4N f2 (5.28)

5.4.1 Circular modulation paths

The diamond shaped path used for analysis above is not smoothenough for use in physical

systems, where circular paths are used instead. For a circular modulation, the weighting

functionm(l) is equally weighted over a circular path. The modulated signal is

∫ 2π

0

1
2π

((A2+A4)− (A1+A3)) dθ (5.29)

where the quad-cell signal is dependent on the modulation position.

Expressing Equation 5.29 in transformed rectangular coordinates, we arrive at the equiva-
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lent modulation weighting function in 1D by integrating along the circular path parametrised

by the angleθ (l ′ = l
2 cosθ ).

∫ l
2

− l
2

1
π

((A2+A4)− (A1+A3))
1

√

( l
2)2− l ′2

dl′ (5.30)

compared with Equation 5.22, this givesm(l ′) = 1

π
√

( l
2)2−l ′2

.

Equivalent alternatives to image modulation have been suggested, and include using dif-

fuser plates [77], imaging of extended objects [46], or using the blurring caused by atmo-

spheric turbulence itself [21].

5.5 Closed-loop operation

The above analysis, in common with most published analyses,assumes a constant image

at the focal plane on the quad-cell. For a more complete treatment, we are also interested

in the behaviour of the quad-cell when the image shape is a function of random turbu-

lence. In practice, the time averaged performance of the quad-cell is not only a function of

turbulence, but also the characteristics of the closed-loop adaptive optics system used.

5.5.1 Statistical analysis of quad-cell performance

The performance of the quad-cell in open loop is found from the ensemble average of the

slope variance (error) over the turbulence process and alsothe photon arrival process.

In a closed-loop system, the performance of the quad-cell islinked to other components

in the system, although it is often attributed only to the quad-cell sensitivity [22, 75]. The

control system of a closed-loop wavefront compensation system is shown in Figure 5.6.

Successive wavefront estimates are added to the current wavefront estimate through a cor-

recting deformable mirror, allowing the system to track theever changing turbulence. The

integrating function of the correcting mirror results in a control system with an internal

state. A complete analysis of such a closed-loop system using control theory is presented

by Parenti and Sasiela [69,116]. Here, we have simplified theanalysis by considering only

the steady state response of a closed-loop system. This approximates slowly varying tur-

bulence or equivalently a fast loop response, and is sufficient to illustrate the performance
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improvement compared to open loop conditions.

Wavefront

G2

G1

Residual
wavefront
(Error)

Residual
wavefront
Estimate

Wavefront
Estimate

Adjustable
gain

Varying
sensitivity

Noise

Deformable
mirror

Wavefront
sensor

Figure 5.6 Control path of a wavefront sensor in a closed-loop adaptive optics system.
Here, G1 = 1

2Nh(0) (refer to Appendix) is the changing sensitivity of the quad-cell caused by
the changing image, and G2 is the adjustable feedback loop gain.

During normal operation, the temporal slope signal is estimated from the quad-cell signal

through an adjustable gainG2 (analogous toG2 in Figure 5.6 without loop closure), which

also determines the slope variance. After adjustment, the optimal value for this gain, which

now remains constant over the course of operation, minimises the slope error,

〈〈

(Ŵx−Wx)
2〉〉 =

〈〈

(G2(A2+A4−A1−A3)−Wx)
2〉〉

=
〈〈

(G2(2Nh(0)Wx+np)−Wx)
2〉〉

=
〈〈

(G2(G1Wx +np)−Wx)
2〉〉 (5.31)

wherenp represents the photon noise term in the quad-cell signals (A4+A2−A1−A4), and

G1 = 2Nh(0) the sensitivity or gain of the quad-cell. The expectations are taken over the

random wavefront and photon arrival processes.

The wavefront slope and photon noise distributions both have zero mean. Assuming no

correlation between the wavefront slope, photon noise, andimage (〈Wxh(0)〉 =
〈

Wxnp
〉

=
〈

nph(0)
〉

= 0), the optimal value ofG2 is

G2 =
〈G1〉

〈

W2
x

〉

〈

G2
1

〉

〈W2
x 〉+

〈

n2
p

〉 (5.32)
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A simpler solution, using〈G2(A2+A4−A1−A3)−Wx〉 = 0 or

G2 =
1

〈G1〉
=

1
2N 〈h(0)〉 (5.33)

can be used instead. Keeping the combined feedback loop gainconstant, this solution

represents an approximation to Equation 5.32 when
〈

n2
p

〉

is very small compared to the

other quantities, and the variance ofh(0) is small compared to〈h(0)〉2.

The slope error expression of Equation 5.9 remains valid as aspecial case of Equation 5.33

when the image speckle is unchanging. Note that the short term exposure equivalent of

G2 =
〈

1
G1

〉

=
〈

1
2Nh(0)

〉

for Equation 5.33 cannot be realised in practice, since overthe

time scale involved, the system gainG2 is static.

5.6 Non-linear errors in the quad-cell

The derivation of the quad-cell error in Equation 5.9 assumes that the image displacement

is small. The linear approximation in Equation 5.7 is more exactly

Ŵx =
(A2+A4)− (A1+A3)

2Nh(0)

=
−2N

∫ −∆x
0 h(x) dx

2Nh(0)

=
−∫ −∆x

0 h(x) dx

h(0)
(5.34)

When the image displacement is large, the non-linearity in Equation 5.34 becomes sig-

nificant. In the extreme case where the quad-cell signal is frequently over-saturated, the

quad-cell signal can be simplified to a piecewise-linear approximation, where the signal is

either saturated (constant) or linear with respect to imagedisplacement.
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(A2+A4)− (A1+A3) = −2N
∫ −∆x

0
h(x) dx=



















N whenWx > 1
2h(0)

2Nh(0)Wx when− 1
2h(0) < Wx < 1

2h(0)

−N whenWx < − 1
2h(0)

(5.35)

In that case, the error is

e2
Ŵx

= (Ŵx−Wx)
2 =



















1
2h(0) −Wx whenWx > 1

2Nh(0)

0 when− 1
2Nh(0) < Wx < 1

2Nh(0)

− 1
2h(0) −Wx whenWx < − 1

2Nh(0)

(5.36)

and the expected error is

〈

e2
Ŵx

〉

=
∫ ∞

−∞
e2
Ŵx

P(Wx)dWx (5.37)

5.7 Quad-cell performance comparisons

In this section, the behaviour of Equation 5.9 in turbulenceis estimated using a simulation.

From the simulation, the slope variance from the quad-cell is compared to the theoretical

Cramer-Rao lower bound for slope estimators. Additionally, we also confirm the simula-

tion results by comparison with Yura’s ( [115]) approximation for tip/tilt corrected image

profiles.

In the simulation, we model the effects of atmospheric turbulence as wavefront aberrations

with Kolmogorov statistics. A sample of Kolmogorov phase-screens at variousDr0
is gener-

ated using the fractal method of Harding and Johnston [42]. We assume a single layer of

turbulence at the telescope aperture plane, which is focused onto a quad-cell. The peak of

the turbulence degraded image on the quad-cell then determines the variance of the slope

estimator as given by Equation 5.9. The average image peak ateach turbulence level de-

scribes the performance of the quad-cell. As shown in Equation 5.33, the averaged slope

variance is 1
2N〈h(0)〉 .
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At the same time, the shape of the image distribution at the focal plane also determines the

Cramer-Rao bound for the slope estimate, as given by Equation 5.18 and Equation 5.19. In

this simulation, the CRLB is calculated by discrete numerical differentiation. Again, the

CRLB is averaged over all simulated phase-screens at each level (D
r0

) of turbulence.

5.7.1 Tip/tilt compensated approximation

Using the rule-of-thumb that atmospheric turbulence degrades and reduces the resolution

of a large telescope to be equivalent to a smaller telescope with diameterr0, the resolution

of the image at the focal plane is approximated by1.22λ
r0

. In fact, the long-term exposure

image is Gaussian shaped, with the best fit to the image when the width (standard deviation)

of the Gaussian is1
2
√

2
1.22λ

r0
≈ 0.431.22λ

r0
.

In Yura’s work [115], the effect of tip/tilt compensation onthe image size is accounted for

by the enlargement ofr0 to (1+0.37
( r0

D

)
1
3). For this centroid1 based slope estimator, the

variance, as given by the best fitting Gaussian, is

Std.dev{Ŵx} =











1.22λ

2
√

2r0(1+0.37( r0
D )

1
3 )

for D
r0

> 1

1.22λ
2
√

2D
for D

r0
< 1

(5.38)

When D
r0

< 1, for low levels of turbulence, the effects of turbulence are negligible, so the

variance is limited by the size of the telescope apertureD instead ofr0.

Simulation results

The measured quad-cell errors, CRLB and Yura’s theoreticalapproximations are shown in

Figure 5.7. Not surprisingly, with higher turbulence when the focal plane image is highly

blurred, the estimation error increases. The measured errors agree very closely with Yura’s

approximation, confirming the validity of our approach. Compared to the CRLB, the errors

are not more than a few times larger than the theoretically achievable minimum, so using a

quad-cell for slope sensing represents an acceptable trade-off, given its simplicity.

Based on the previous assumption of the peak of each image being centered on the quad-

1Given a Gaussian profile, the centroid estimator no longer has infinite variance, and is in fact the optimal
displacement estimator. Note that in this model, the estimator performance is derived from theimage width,
but is equivalent to the formulation based on image height since the image shape is fixed.
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Figure 5.7 Errors in the slope estimate of a quad-cell due to photon noise (solid-dotted
line) as compared to the CRLB in 1D (solid line) and Yura’s approximation (dotted). The
slope standard deviation is expressed in multiples of λ

D [rad].

cell, the expressions developed here are only valid for small image displacements. Under

open loop conditions, when the randomly displaced images are grossly misaligned with

the centre of the quad-cell, an additional non-linear erroris introduced. The exact value

of h(0) is also subject to the randomness of each image, so its difference from the average

quad-cell sensitivity will give rise to further errors. These errors are collectively grouped

into the non-linear error term, and will be included in simulations of the wavefront sensors

in the following sections.

5.8 Conclusion

After examining the direct centroiding approach for calculating image displacement, and

encountering problems with photon and read noise, we reducethe displacement or slope

estimator to a quad-cell. Assuming small image displacements in the quad-cell, a linear

approximation is use to examine the estimation errors in thequad-cell. The critical factor

affecting the performance of the quad-cell is the image shape on the quad-cell. The closed-

loop behaviour of the quad-cell is abstracted to a model of the image shape on the quad-cell.

The quad-cell modulation process can also be described as a shape-manipulation operation

for adjusting the performance of the quad-cell.

In this chapter, a simulation of the errors in the quad-cell is compared with the fundamental

performance limit for any image displacement estimator, the Cramer-Rao lower bound. The

work in Yura [115] is also extended and modified slightly to provide a second data-point for
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comparison and validation. This leaves us satisfied that thequad-cell is most appropriate as

a practical image displacement estimator.

The slope measurement process in the quad-cell forms the basis for wavefront sensing in

the Shack-Hartmann and the pyramid wavefront sensors. Having studied the behaviour of

the quad-cell, the extension to wavefront sensing of higherorder modes is straight-forward,

and we can begin to examine these wavefront sensors in the next chapter.



Chapter 6Comparison of the Sha
k-Hartmannand pyramid wavefront sensor
The previous chapter has shown that the precision of the quad-cell slope estimate is de-

termined by the image intensity and Strehl ratio. This chapter looks at the subdivision

operation used to split the basic quad-cell arrangement (Section 4.3.1) into smaller prob-

lems. Global slope estimation with quad-cells can be extended to estimate higher order

modes in wavefront aberrations by subdividing the wavefront aberrations at the telescope

aperture into smaller regions, or subdividing the imaging plane and re-imaging, as in the

pyramid sensor. All the wavefront sensors introduced in Chapter 4 subdivide the complex

field, but this is performed along the optical path at different positions.

6.0.1 Resolution and precision

The subdivision of a complex field forms the common basis of both wavefront sensors

examined in this chapter. In estimating the overall wavefront function, two important fac-

tors to consider are the resolution and precision of the wavefront estimate. In a quad-cell,

the precision of the wavefront slope estimate at the telescope aperture plane is determined

by the image Strehl and intensity at the telescope focal plane. Large telescope apertures

(more light), or small levels of turbulence (higher Strehl), result in more precise wavefront

estimates.

In the original quad-cell arrangement, only a plane of best fit to the wavefront, derived

from the global wavefront slope estimate, is available. Through a subdivision process,

121
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more slope measurements within the same area can be obtained. The spatial resolution of

the wavefront refers to the spatial sampling of the wavefront estimate within the aperture.

At higher resolutions, the sensor estimate can approximatethe wavefront more closely,

allowing more types of aberrations to be corrected.

Given a finite amount of light, the subdivision size and position is crucial to achieving

optimal performance. Precision and resolution are in fact determined by a space-bandwidth

trade-off. We examine here the implications of the space-bandwidth trade-off in wavefront

sensors.

6.1 The Fourier Transform in wavefront sensors

In an optical system aimed at a point-source object, the complex fields between the aper-

ture and focal planes are related by the Fourier transform. Propagating a complex field

A(u,v)eiφ(u,v) from the telescope aperture plane, whereA(u,v) is the aperture magnitude

function, andφ(u,v) is the phase function, results in a complex fieldu(x,y) at the focal

plane given by (Equation 3.28)

u(x,y) =

∫ ∞

−∞

∫ ∞

−∞
A(u,v)e−iφ(u,v)e−i 2π

λ f (ux+vy) du dv=

∫ ∞

−∞

∫ ∞

−∞
p(u,v)e−i 2π

λ f (ux+vy) du dv

(6.1)

where(u,v) and (x,y) represent the spatial coordinates in the aperture and focalplanes

respectively,λ is the wavelength of the monochromatic light source (the wavefront is given

by W(u,v) = 2π
λ φ(u,v)), and f is the focal length of the optical system. The complex field

u(x,y) should not be confused with the coordinateu in the aperture plane.

The image at the focal plane is given by the squared-magnitude ofu(x,y). When normalised

to sum to 1, it is the point-spread-function of the optical system.

h(x,y) =
|u(x,y)|2

∫ ∞
−∞
∫ ∞
−∞ |u(x,y)|2 dx dy

(6.2)

Using the Fourier equivalence of functions in corresponding Fourier domains, we can better

understand the operations of both wavefront sensors and explicitly compare their functions.

The Fourier relationship between the aperture and focal planes enables us to derive dual
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operators in each domain. As shown in Equation 4.13, the displacement at the spatial plane

is linearly related to the wavefront slope in the Fourier plane. This duality between image

displacement and wavefront slope forms the fundamental limitation of wavefront sensing.

The resolution and precision constraint is located in opposing Fourier spaces, and is subject

to the space-bandwidth limitation. In the spatial domain, the spatial width of a signal is

∆x =

√

∫ ∞

−∞

∫ ∞

−∞
x2 |u(x,y)|2 dx dy (6.3)

In the Fourier domain, the width of the corresponding spectrum is

∆u =

√

∫ ∞

−∞

∫ ∞

−∞
u2 |p(u,v)|2 du dv (6.4)

According to the uncertainty principle, the space-bandwidth product is a constant, and rep-

resents a more general limit to the precision that is achievable in any physical system. In

wavefront sensors, this represents the sampling between the spatial and the Fourier fre-

quency domain.

∆x∆u =
1

4π
(6.5)

Depending on other system constraints that need to be satisfied, one can choose between

having many high noise measurements, or fewer low noise measurements, while still satis-

fying the space-bandwidth limit.

6.2 Wavefront subdivision

The quad-cell at the focal plane of a telescope provides onlya global slope measurement.

The quad-cell can be replaced with a transmissive pyramidalprism to re-image the aperture,

as seen in Figure 6.1(a). Integrating the total intensity ineach aperture image will reproduce

what is still equivalent to the quad-cell, providing a way tomeasure the global wavefront

slope. However, since images of the aperture are now available, more local slope variations

within the aperture can be measured [9,76].
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(a) (b)

Quad-cells

Lenslets

Aperture images

Figure 6.1 Extension of the quad-cell to estimate higher order wavefront slopes.

Alternatively, the complex field at the telescope can be directly divided into separate regions

using a lenslet array in the aperture, and refocused, as shown in Figure 6.1(b). The image

displacement at the focal plane of each sub-region corresponds to the local wavefront slope

over that region [72,85]. The subdivision operation may also be implicit, as in the curvature

and geometric sensors, where the equivalent subdivision occurs at an intermediate position

between the aperture and focal planes. Chapter 7 examines the curvature and geometric

wavefront sensors.

This chapter examines two extreme positions for subdividing the complex field, as rep-

resented by the Shack-Hartmann (aperture subdivision, [12, 16]) and pyramid wavefront

(focal plane subdivision) sensors. In the following sections, we consider the effects of pho-

ton and read noise on the slope estimation errors in both types of wavefront sensors. By

extending Equation 5.9 to the measurement of local slopes (for higher order aberrations),

we may directly compare the slope estimation performance oftwo wavefront sensors.

The Fourier duality between the two wavefront sensors also provides additional insight into

their similarities and differences. Many operations in both wavefront sensors can be shown

to be equivalent. However, there are also critical differences that confer advantages to the

pyramid wavefront sensor.

6.2.1 Resolution and precision of wavefront sensors

Figure 6.2 shows a simplified layout of the Shack-Hartmann sensor and a focal plane lenslet

array or the pyramid sensor. In the Shack-Hartmann sensor, alenslet array produces multi-

ple images of an object through the telescope aperture. In contrast, the focal plane lenslets
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re-image the aperture plane through the equivalent of a 2x2 lenslet array at the focal plane,

creating multiple images of the aperture.

Accuracy
Accuracy

Resolution

Resolution

(a) The relationship be-
tween resolution and
precision in wavefront
sensors.

Object Object

(a) (b)
CCD imagers

Lenslets

Quad-cells

Lenslets

Aperture images

(b) The duality and equiv-
alence between the subdivi-
sion and slope detection in
wavefront sensors.

Figure 6.2 A comparison of the Shack-Hartmann and pyramid wavefront sensors.

In wavefront sensors, the resolution of the slope estimate is inversely proportional to the

spatial extent over which the local slopes are estimated, while the precision, or variance

of the estimates, is determined by the measurement fluctuations caused by photon noise.

The aperture subdivision operation in the Shack-Hartmann is a rectangular windowing op-

eration. This is equivalent to convolution with the sinc function in the lenslet focal plane

(Equation 2.53), or a blurring operation.

In both wavefront sensors, a displacement measurement at the focal plane corresponds to a

wavefront slope measurement in the aperture plane. To be more precise, the displacement

measurement is initially performed by sampling the total intensity within the rectangular

CCD arrays used to subdivide the measurement plane. This convolution and sampling op-

eration corresponds to a multiplication (with a sinc) and sampling operation at the aperture

plane. The intensity summing operation results in a loss in the higher frequency compo-

nents in the recovered wavefront.

The Shack-Hartmann sensor subdivides the field at the aperture plane, and forms arrays of

images of the object (assumed here to be an unresolved point-source) at the focal plane of

the lenslets. The lenslet images are blurred by the subdivision operation at the dual aperture

plane and thus enlarged, are focused onto arrays of quad-cells. Each quad-cell consists of

2x2 intensity detector sections that subdivide the image plane.

The pyramid sensor subdivides the complex field at the telescope focal plane, and re-images

the telescope aperture onto CCD detectors. The image sampling process by the CCD array
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implicitly subdivides the image. The aperture image subdivision has a direct analogy to

the aperture subdivision with lenslets in the Shack-Hartmann sensor. Similarly, the focal

plane subdivision operation is analogous to the quad-cell slope measurement operation in

the Shack-Hartmann sensor. In contrast to the Shack-Hartmann sensor, slope sensing in the

pyramid sensor occurs before aperture subdivision, so no blurring of the focal plane image

occurs.

Although the similarity may not be obvious at first, the slopemeasurement operation is

in fact identical in both wavefront sensors. In the Shack-Hartmann, this is performed by

comparing the intensity within the quad-cells, while in thepyramid sensor, the displacement

of the single focal plane image is derived from comparisons of the intensity measurements

in each facet of the pyramidal prism.

6.3 Shack-Hartmann wavefront sensor

As shown in Figure 6.2(a), the spatial resolution of the wavefront at the aperture is given

by the size of the lenslets of the Shack-Hartmann sensor —with more lenslets, more slope

measurements are obtained, providing finer sampling of the wavefront.

On the other hand, with fewer larger lenslets, the images at the focal plane of the lenslets

are smaller and brighter, providing better slope estimates(lower variance). Although larger

lenslets have higher illumination and higher image peaks (afunction of image shape), the

higher illumination alone within a lenslet does not lead to any improvement in the preci-

sion of the global averaged slope. As will be shown in Section6.3.1 (and summarised in

Table 6.1), since the total illumination remains constant,the only improvement in overall

precision arises from the higher image peaks in each lenslet.

A zonal wavefront estimate can be reconstructed by interpolating between the local sen-

sor slope signals. Southwell [93] explored the different slope reconstruction geometry for

interpolating between measurements and derived their respective error performances.

Alternatively, the wavefront estimate can be expressed in terms of the Zernike coefficients,

giving rise to a modal estimate. Section 4.3.1 reconstructed the full wavefront estimate

from sensor (in the Shack-Hartmann, local slope) measurements. Although the Zernike

polynomials are orthogonal, their slopes are not, so a full matrix inversion is required to

solve for wavefront coefficients. The optimal MAP solution for the Shack-Hartmann sensor

is derived in Bakut et. al [10].
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The following section derives a performance measure for theShack-Hartmann based on the

image Strehl, as an extension of the quad-cell, to facilitate a comparison with the pyramid

sensor. The same statistical estimation framework is also used to examine the optimal sub-

division size for the lenslets in the Shack-Hartmann sensor. This completes the discussion

on the trade-off between the precision and resolution of wavefront estimates in the Shack-

Hartmann sensor. The analysis here also provides the background for understanding the

way the pyramid sensor “side-steps” the resolution-precision limit.

6.3.1 Shack-Hartmann slope errors

In the Shack-Hartmann sensor, the variance in the slope estimate for each lenslet is caused

by two components, photon noise and read noise in the CCD detectors. Using the photon

noise error expression of Equation 5.9 and Equation 5.10 (which assumes a read noise of

σ2
r in each detector element of the quad-cells), the variance inŵsi , the slope estimate for a

lenslet (averaging over the random photon and read-noise induced variations), is

es =
〈

(ŵsi −wsi )
2〉= esp +esr

=
1

4Nihi(0)2 +σ2
r

1

N2
i hi(0)2

(6.6)

whereesp is the slope error due to photon noise andesr is the slope error due to read noise.

hi(0) is the peak of the projected angular spectrum of the lenslet (hi(x) =
∫ ∞
−∞ hi(x,y)dx).

The global slope estimate at the aperture is formed by a weighted sum of the local slope

signal in all lenslets. The weighting assigned to each lenslet signal is given by the pro-

portion of the lenslet area to the total aperture area. Assuming there areM lenslets in the

Shack-Hartmann sensor, the global slope estimate is

Ŵs =
∑M

i=1Riŵsi

∑M
i=1Ri

(6.7)

whereŴs is the global wavefront tilt estimate in the Shack-Hartmannsensor, and ˆwsi is the

local wavefront tilt estimate in theith lenslet.Ri represents the area of theith lenslet.

The photon count within a lenslet can be assumed to be proportional to the lenslet area,
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giving

Ŵs =
M

∑
i=1

Ni

Ntot
ŵsi (6.8)

with Ni being the photon count in theith lenslet, andNtot = ∑i Ni being the total photon

count over the whole aperture.

The total variance in the global mean slope given by the Shack-Hartmann sensor (from

averaging the fluctuations due to photon noise) is

Es =
〈

(Ŵs−Ws)
2〉= Esp +Esr =

M

∑
i

(

Ni

Ntot

)2

esi

=
1

N2
tot

M

∑
i=1

(

Ni

4hi(0)2 +
σ2

r

hi(0)2

)

(6.9)

with the i in esi to differentiate the local slope error between each lenslet.

Assuming a local slope estimator that is optimal in the statistical sense (the minimum vari-

ance unbiased estimator [51] that achieves the Cramer-Rao bound, as examined in Sec-

tion 5.3) is available for each measurement, and the measurements in each sub-region are

statistically independent, then the global slope estimated with the weighting proposed in

Equation 6.7 is optimal, and forms a minimum variance unbiased estimator.

The quad-cell, due to under-sampling and measurement truncation, is not a minimum vari-

ance estimator (as demonstrated in Figure 5.7). Also, thereis usually some correlation be-

tween the measurements in neighbouring Shack-Hartmann lenslets. So although the global

slope estimate in Equation 6.7 is not a minimum variance estimate, it is a good estimate

that compares well to the theoretical limit (Section 5.7.1).

6.3.2 Lenslet size

In this section, we examine the performance trade-off involved in varying the subdivision

size in the Shack-Hartmann wavefront sensor, and show how one derives the optimal lenslet

size. Frequently in closed-loop systems, the image displacements in the Shack-Hartmann

quad-cell detectors are small, allowing non-linearities in the Shack-Hartmann quad-cell
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detectors to be ignored, giving a linear wavefront modal estimator. From the quad-cell

signals in each lenslet, a maximum-likelihood solution to the wavefront is obtained. In spite

of its slightly lower performance, the maximum-likelihoodsolution is chosen in favour of

amaximum a posteriorisolution because it is sufficient for the analysis here and issimpler.

The performance of the Shack-Hartmann sensor is determinedby the size of the lenslets

used. A trade-off exists between larger lenslet sizes whichprovide more precise wavefront

estimates, and smaller lenslet sizes, which increase the resolution of the wavefront estimate.

To examine this trade-off, we compare the error terms in the Shack-Hartmann sensor over

different lenslet sizes. The wavefront sensor is modelled with (from Section 2.5.2)

ddd = HHHααα +nnn (6.10)

whereHHH is the model of the wavefront sensor that includes the effectof subdivision size,

and the noise in the slope measurements,nnn, are modelled by zero-mean Gaussian noise

(Equation 6.6). The Zernike decomposition of Kolmogorov turbulenceααα are also zero-

mean and take on Gaussian statistics.

The maximum-likelihood inverse ofHHH is (Equation 2.119)

HHH+ = (HHHTHHH)−1HHHT (6.11)

The forward and inverse matrices are generally not of full rank, soHHH+HHH = PPP is not the

identity matrix, but a projection matrix describing the detectable modes in the coefficient

vectorααα. Terms inααα that are not detectable corresponds to zeroes in thePPP matrix.

The wavefront estimation error, taking the expectation over the turbulenceααα and photon

noisennn is

〈

trace
(

(HHH+ddd−ααα)(((HHH+ddd−−−ααα)))T
)〉

ααα,nnn

= trace
(

(((III −−−PPP)))
〈

ααααααT〉

ααα (((III −−−PPP)))
)

+ trace
(

HHH+
〈

nnnnnnT〉

nnnHHH+T
)

(6.12)
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We used the property that the turbulence and photon noise arezero-mean Gaussians and

uncorrelated to each other
〈

αααnnnT
〉

= 000.

Simulation

Simulations of a Shack-Hartmann sensor is performed by generating 200 random Kol-

mogorov phase-screens (D
r0

= 8) as the turbulence, then measuring the sensor performance

when estimating 8 Zernike modes in the turbulence. The wavefront estimates across differ-

ent configurations of the Shack-Hartmann with different number of lenslets (ranging from

1, 2, 4, 8, 16, 32, to 64 lenslets across the telescope aperture of 256 pixels), adding Pois-

son noise with a mean of 800 photons (averaged over 50 photon noise frames for each

turbulence instance), are then compared.

Figure 6.3 illustrates the trade-off between sensor precision and resolution, and shows each

term of Equation 6.12 separately.
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Figure 6.3 The effect of increasing the number of lenslet (and reducing their size corre-
spondingly) in the Shack-Hartmann sensor.

Due to the limited resolution of the wavefront sensor, only alimited and finite number of

Zernike modes can be estimated. The first term of Equation 6.12 quantifies this error, which

is effectively a wavefront fitting error. This error is dependent on the Zernike coefficient



6.4 Pyramid wavefront sensor 131

covariance matrixCααα =
〈

ααααααT
〉

, which is derived from the statistics of Kolmogorov tur-

bulence. When more (smaller) lenslets (plotted over the x-axis of Equation 6.12) are used

to subdivide the telescope aperture, more slope measurements can be made, increasing the

sensor resolution and reducing the fitting error (shown as the dashed “fitting” error curve).

The fitting error increases again when there are more than 32x32 lenslets used because of

the increasing inaccuracy in modelling Zernike wavefront functions as discrete pixel grid

elements1.

The second term of Equation 6.12 is the photon noise error propagation term, and describes

the precision of the wavefront estimate produced by the wavefront sensor (shown as the

dot-dashed “Photon noise” error curve). More (smaller) lenslets produce larger images at

their focal planes, reducing the precision of their slope estimate. Here, in contrast to the

fitting error, having more lenslets lead to less precise slope estimates, corresponding to

higher errors in the wavefront estimate. Again, modelling inaccuracies lead to a break in

the error trends beyond 32x32 lenslets.

The sum of the fitting error and photon noise errors (the dotted “Sum” error curve) do

not correspond to the actual measured sensor error (the solid “Sensor” error curve). The

discrepancy is small and can be ignored as it arises from modelling inaccuracies due to the

discretisation from pixelisation and increased non-linear errors at smaller lenslets sizes.

In summary, smaller lenslet sizes lead to more wavefront modes being detected, but with

lower precision. Conversely, with larger lenslets, fewer wavefront modes are detectable, but

with higher precision. The combined total error in the Shack-Hartmann sensor is minimised

by matching the size of the lenslets to atmospheric turbulence. From this analysis of the

trade-off between sensor precision and resolution, the optimal lenslet size is found to be

related to the turbulence coherence length,r0, confirming the rule-of-thumb used for sizing

lenslets to matchr0 in the Shack-Hartmann sensor.

6.4 Pyramid wavefront sensor

For analysis purposes, the analogy between displacement estimation at the focal plane of

the pyramid sensor and displacement estimation in quad-cells can be generalised to NxN

1The sampled, discretised Zernike polynomials (on a rectangular-array) are no longer mutually orthogo-
nal. The residual errors due to the sampling process depend on the number of pixels used to represent the
polynomials or the frequency content of the Zernike polynomial. Since the higher Zernike modes have a
higher frequency content, the discretisation error is especially prominent at higher modes, so the number of
modes simulated should be kept low.
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centroid estimators, just as in the quad-cell [18]. In this equivalent arrangement, the pyra-

mid sensor consists of an array of lenslets, subdividing thecomplex field at the focal plane.

Each lenslet delineates a square section of the focal plane,through which the complex field

is focused to form low-resolution images of the telescope aperture.

Mathematically, the propagation of the complex field at the telescope aperture to the tele-

scope focal plane is described by an optical Fourier transform. At the focal plane, it is

windowed or subdivided by the lenslet array, and each sub-region is then propagated again

with a Fourier transform to the lenslet focal plane. Becausethe focal plane represents the

frequency domain of the complex field at the aperture plane, the subdivision operation at

the focal plane can be described by a filtering operation.

The lenslet windows act as two dimensional “brick-wall” filters in the frequency domain,

so the equivalent operation in the spatial domain (after re-imaging the aperture) from the

Fourier convolution-multiplication relationship is a blurring with the sinc kernel. This blur-

ring or low-pass filtering is determined by the size and position of each lenslet.

The lenslet transmittance is a rectangular window with dimensions∆x by ∆y, and centred

on (x′,y′), through which the complex fieldu(x,y) is transmitted and re-imaged.

s(x,y) =







1 for (x′− ∆x
2 ) < x < (x′ + ∆x

2 ), (y′− ∆y
2 ) < y < (y′ + ∆y

2 )

0 otherwise.
(6.13)

Each windowed complex field is propagated with another Fourier transform to the lenslet

focal plane, where a blurred and inverted image of the telescope aperture is formed.

α(ξ ,η)eiθ (ξ ,η) = F {s(x,y)u(x,y)}
= F {s(x,y)}⊙F {u(x,y)}

= ∆xe−i 2π
λ f x′ξ sinc(

∆x
λ f

ξ )∆ye−i 2π
λ f y′ηsinc(

∆y
λy

η)

⊙ A(−ξ ,−η)eiφ(−ξ ,−η) (6.14)

The extent of the blur is determined by the convolution kernel, a two-dimensional sinc

function (first term of Equation 6.14). The wider the lenslets, the narrower the sinc function,
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and the less blurring is present in their aperture images2.

Returning to the problem of global mean slope estimation, wecan ignore local slope dis-

tributions, and sum the image intensity over the whole aperture. The total intensity in each

aperture image is (by Parseval’s theorem) the same as the total intensity that passes through

the corresponding lenslet.

∫ ∞

−∞

∫ ∞

−∞

∣

∣

∣
α(ξ ,η)eiθ (ξ ,η)

∣

∣

∣

2
dξdη =

∫ ∞

−∞

∫ ∞

−∞
|s(x,y)u(x,y)|2 dxdy (6.15)

This problem reduces to the familiar image displacement (centroid) estimation problem at

the telescope focal plane.

A practical advantage to imaging with a CCD array in the pyramid sensor is the pixel bin-

ning function. Whether implemented in hardware or software, pixel binning easily allows

for effectively variable pixel sizes. In the Shack-Hartmann sensor, this is equivalent to

varying the size of the lenslets, a function that is not possible in practice.

6.4.1 Pyramid sensor slope errors

In this section, we restrict our attention to the pyramid wavefront sensor, which is a 2x2

quad-cell arrangement at the focal plane. The intensity over each quadrant in the focal

plane is found from the total intensity of its correspondingaperture image.

In most analyses of the pyramid sensor performance, the image width is used as a measure

of the sensitivity of the pyramid sensor [22,75]. In contrast, the analysis here uses the image

height, as previously explained in Chapter 5. Using the quad-cell formula at the focal plane

(Equation 5.9 and Equation 5.10), the error in the slope estimate is given by

Ep =
〈

(Ŵp−Wp)
2〉= Ep

p +Er
p

=
1

4Ntothtel(0)2 +Pσ2
r

1

N2
tothtel(0)2

(6.16)

2Analytical approximations to Equation 6.14 have been derived by assuming a rectangular telescope aper-
ture and a uniform wavefront slope within the telescope aperture [18]. Based on the assumptions outlined,
the aperture images can be expressed as exponential integral functions defined to beEi(x) = −∫ ∞

−x
e−t

t dt.
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where the subscriptp denotes the pyramid sensor, andhtel(0) is the 1D image peak (the

projected angular spectrum from the telescope). In the read-noise calculations, we assume

the use of P pixels to measure the aperture image, with independent read-noise ofσ2
r in

each detector element.

Given the global slope estimate, an average of the local slope measurements, the noise

present in each local slope measurement isP times larger

ep =
〈

(ŵp−wp)
2〉

= PEp

=
1

4Nihtel(0)2 +σ2
r

1

N2
i htel(0)2

(6.17)

6.4.2 Duality with the Shack-Hartmann

Using Fourier optics we have seen that the telescope aperture and focal planes behave as

dual spaces, where the subdivision operation in one plane results in a reduction in the

resolution in the dual plane [17]. The Shack-Hartmann sensor may be seen as a complement

to its dual, the pyramid sensor, which operates with the opposing planes in the telescope.

This duality reveals that the dual wavefront sensors are identical in all respects, except for

the order of the subdivision and slope measurement operations. The performance limit of

the wavefront sensors is closely tied to the subdivision andslope measurement operation,

and the optical planes where these operations are performed.

In the Shack-Hartmann sensor, the slope is measured at the focal plane of lenslets which

subdivide the aperture plane, so the sensor performance is limited by the size of the lenslets.

In the pyramid sensor, the slope measurement is performed atthe telescope focal plane, so

its measurement precision is limited by the size of the telescope aperture. From compar-

isons of the correspondence between the wavefront sensors,we expect the performance of

the pyramid wavefront sensor to be higher than the performance of the Shack-Hartmann

sensor.
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6.5 Comparisons of sensor performance

To compare the performance of the pyramid sensor to the Shack-Hartmann sensor, we as-

sume that, relative to the aperture image size, the CCD detector pixel size in the pyramid

sensor is matched to the relative size of the lenslets in the Shack-Hartmann sensor. This

is done by settingM, the number of lenslets in the Shack-Hartmann sensor, equalto P,

the number of pixels per aperture image in the pyramid sensor. For example, Figure 6.2(a)

shows 6 lenslets across the telescope aperture in the Shack-Hartmann sensor, simplified

to 1 dimension. Correspondingly in Figure 6.2(b), there are6 imaging pixels across each

aperture image in the pyramid sensor. This means that both sensors have the same number

of slope measurements, and consequently can be expected to estimate the same number of

modes in the turbulence.

To simplify the analysis, we assume a square telescope aperture. In the Shack-Hartmann

sensor, we further assume thathi(0) no longer varies from lenslet to lenslet. Reducing

the summation in Equation 6.9, and usingNtot = MNi (uniformly illuminated telescope

aperture), the slope variance is

Es =
1

4Ntothi(0)2 +
Mσ2

r

N2
tothi(0)2

(6.18)

It should be noted that Equation 6.18 biases the slope variance marginally in favour of the

Shack-Hartmann sensor, since in a circular telescope aperture, partially illuminated lenslets

have a lowerhi(0) and consequently contribute higher noise.

To compare the Shack-Hartmann sensor performance to the pyramid sensor, we divide

Equation 6.18 by Equation 6.16. The mean sensor errors caused by photon noise, as derived

from a single frame of turbulence, is

Es

Ep
=

htel(0)2

hi(0)2 (6.19)

Unlike conventional analyses which do not unify the wavefront sensors [106, 109], the

advantage of using a common dual framework for describing the wavefront sensors has

allowed us to “cancel” many similarities in two what initially looked very different sensors,
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Slope variance[rad2]
Shack-Hartmann Pyramid

Photon noise Read noise Photon noise Read noise

Per measurement ∝ ( λ
d )2

Ni
σ2

r
(λ

d )
2

N2
i

∝ ( λ
D )2

Ni
σ2

r
( λ

D)
2

N2
i

Averaged global tilt ∝ ( λ
d )2

Ntot
Mσ2

r
( λ

d )
2

N2
tot

∝ ( λ
D )2

Ntot
Pσ2

r
( λ

D)
2

N2
tot

Resolution [m] d d

Table 6.1 Summary of the ideal wavefront sensor performance (photon noise). In the
Shack-Hartmann sensor, D =

√
Md, and Ntot = MNi, where M is the number of lenslets.

The pyramid sensor configuration is matched to the Shack-Hartmann sensor by making
P = M.

leaving a direct comparison of the differences between the two sensors.

6.5.1 Strehl as performance measure

As an ideal performance benchmark, the results for the diffraction-limited case is sum-

marised in Table 6.1. Under ideal conditions, the performance of the pyramid sensor is
(D

d

)2
times better than the Shack-Hartmann sensor3.

In practice, the performance of wavefront sensors in operational adaptive optics systems is

less than perfect. After averaging the “instantaneous” result of Equation 6.19 over time (or

the turbulence process), the actual average performance ofwavefront sensors can be related

to the ideal situation using the Strehl ratio as shown in Equation 6.20.

〈Es〉
〈

Ep
〉 =

〈

htel(0)2
〉

〈hi(0)2〉 =
〈Γtel〉2htel0(0)2

〈Γi〉2hi0(0)2
(6.20)

wherehtel0 andhi0 represents the telescope (pyramid sensor) and lenslet (Shack-Hartmann)

image peaks under diffraction limited conditions, andΓ the Strehl of their respective long-

term exposure in closed loop (Γh0(0) = h(0)). Γ is in fact the 1D analogy of the con-

ventional 2D Strehl ratio. From separate simulations, it isestimated thatΓ1D ≈ Γk
2D in

Kolmogorov turbulence, wherek is around 0.6 to 0.7.

The Strehl of the long-term exposure image provides the openloop [89] performance of

3The Shack-Hartmann sensor could be configured so that there is only one lenslet,n = 1, across the
aperture (allowing only the global mean slope is to be estimated). Such a configuration results in equal
performance between the two sensors.
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the sensors. With tip/tilt correction, the sensor performance is given by the Strehl of the

short-term exposure image. We are interested in the performance of the wavefront sensors

when the higher order wavefronts are corrected, when the compensated image takes on a

characteristic core and halo structure [85].

Under low turbulence levels (smallD
r0

), the performance of the Shack-Hartmann sensor (the

Strehl ratio of each lenslet image) does not change significantly. In contrast, the pyramid

sensor image resolution is roughly equivalent to that from atelescope of diameterr0, so

the Strehl ratio and performance of the pyramid sensor imagedrops significantly. Under a

closed-loop system, we expect the performance of both wavefront sensors to improve again.

The pyramid sensor should now show a higher level of improvement in its performance.

6.6 Simulation of operating conditions

Kolmogorov phase-screens [42] are used to simulate the effects of atmospheric turbulence,

and estimated using their Zernike modes. By keeping the number of Zernike modes under

consideration low (20 modes) and using 64x64 pixels for the aperture size, discretisation

errors are kept low, and are insignificant. The closed-loop wavefront is approximated by

completely cancelling the 8 lowest modes in the wavefront.

In the Shack-Hartmann sensor, the complex field at the aperture is divided into 8x8 lenslets

and propagated using a Discrete Fourier Transform onto quad-cells. The pyramid sensor

divides the complex field at the focal plane into 2x2 quadrants, and re-images the aperture

onto 8x8 pixels. This is equivalent toM = P = 82 in Equation 6.18 and Equation 6.16.

Poisson noise with mean photon count of 800 is then added to the measured images. The

final wavefront errors due to Poisson noise are normalised tobe equivalent to a mean photon

count of 1.

6.6.1 Photon noise

In the first simulation, the performance of the wavefront sensors is determined by the vari-

ance in their wavefront slope estimates only. This is measured from the difference between

the slope estimates in the absence and presence of photon (Poisson) noise. The absolute

slope errors (difference between estimated and true slopes) contain additional errors due to

the non-linearity of quad-cells, and are considered separately.

We first confirm the accuracy of Equation 6.9 and Equation 6.16by comparing them to the
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simulated slope errors. The simulated sensor performance under closed-loop conditions,

with the lowest 8 modes being fully compensated, is shown in Figure 6.4 asDr0
is varied from

0 to 25. In both sensors, the simulated and predicted slope errors are in close agreement for

low turbulence levels of up toDr0
= 10. This confirms the accuracy of the predictions given

by Equation 6.9 and Equation 6.16 using the Strehl ratio. As expected, the performance

of the pyramid sensor surpasses the performance of the Shack-Hartmann sensor. At low

turbulence levels, the sensor performance approaches the ideal performance, with the error

in the pyramid sensor beingDd = 8 (square-root of the quantities in Table 6.1) times lower

than the Shack-Hartmann error.
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Figure 6.4 Comparison of the simulated and predicted slope errors due to photon noise
as D

r0
is varied, with closed-loop compensation in place. The curves represent the Shack-

Hartmann sensor slope error measured directly in the simulations (SHm) compared to the
predicted slope error (SHp, Equation 6.9), and the equivalent pyramid sensor slope er-
ror measured in the simulations (Pym) compared to the predicted slope error (Pyp, Equa-
tion 6.16).

In Figure 6.5, we compare the open loop performance against the closed loop performance

of both wavefront sensors, and confirm the improvement in closed loop. The performance

of both sensors improve in closed loop because the long-termexposure images in both sen-

sors now have higher Strehl ratios. In contrast to the Shack-Hartmann sensor, where the

blurring of the long-term exposure image is dominated by random image displacements

within each lenslet, the pyramid sensor image is blurred by the wavefront across the whole

aperture, and consequently, improves much more in closed loop, particularly at higher tur-

bulence (Dr0
) levels.
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Figure 6.5 Simulations of the performance of the wavefront sensors with photon noise
only. The curves represent the Shack-Hartmann sensor slope error in open loop (SHo) and
in closed loop (SHc), along with the pyramid sensor slope error in open loop (Pyo) and in
closed loop (Pyc).

6.6.2 Noise from non-linear errors

Although the sensor performance under photon noise as shownhere clearly favours the

pyramid sensor, in fact, the non-linearity of quad-cells also lead to errors in the slope esti-

mate. The combined errors from photon noise and non-linearity in the wavefront sensors

are shown in Figure 6.6. The estimation errors are now largercompared to Figure 6.5,

with the performance in open loop of the pyramid sensor now being comparable to the

Shack-Hartmann.

Under closed-loop operating conditions, the non-linear error in the both sensors is reduced

to produce a better estimate of the wavefront. However, in the Shack-Hartmann, there is no

increase in sensitivity of the measurement as a whole, sincethe size of the speckle image

under each lenslet remains unchanged.

6.7 Conclusion

The Shack-Hartmann sensor subdivides the telescope aperture and measures the local slope

within each subaperture using a quad-cell. The resolution of the wavefront estimate is in-

versely proportional to the size of subapertures, while theprecision of the measurements is

determined by the image height, which is roughly proportional to the size of the subaper-

tures.
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Figure 6.6 Simulations of the full performance of the sensors taking all other errors into
account. The curves represent the Shack-Hartmann sensor in open (SHo) and closed
loop (SHc) along with the pyramid sensor in open (Pyo) and closed loop (Pyc). In both
cases, closed-loop operation (circled lines) show an improvement over open loop operation
(uncircled lines).

Compensation of the wavefront results in a reduction in the mean slope across each lenslet,

with no significant corresponding reduction in the lenslet spot size (sensitivity). On average,

there is now a smaller signal, without a corresponding offset in increased sensitivity, which

is limited by the lenslet size.

In the pyramid sensor, the wavefront slope is estimated by comparing the intensity changes

in each facet of the pyramidal prism. The precision of the wavefront slope estimate is

determined by the image height at the focal plane, which is inturn determined by the size

of the telescope aperture.

The wavefront resolution of the pyramid sensor is given by the CCD sampling at the aper-

ture image plane. Each detector element in the CCD array provides a measurement of

the slope within the equivalent region bounded by the detector. More wavefront slope

measurements can be obtained by increasing the sampling density of the CCD detector

elements. This can be achieved by reducing the physical sizeof the CCD detectors4, or

equivalently, by optically magnifying the aperture image before sampling. In contrast, the

Shack-Hartmann configuration cannot be re-sized dynamically. Thus freed from physical

limitations to the subdivision size, the wavefront resolution in the pyramid sensor is only

limited by blurring in the aperture images.

4Alternatively, the CCD pixel size may often be increased using the built-in on-chip binning function.
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It is important to note that the resolution-precision constraints examined in Section 6.3.2

does not apply identically to pyramid sensor. The precisionof the global wavefront slope

is not constrained by the aperture image subdivision operation which occursafter the slope

has been measured at the focal plane. Unlike the Shack-Hartmann sensor, the trade-off

between resolution and precision is limited only by the sizeof the telescope aperture, not

by the size of the aperture subdivisions.

In this chapter, we used the duality between the Shack-Hartmann sensor and the pyramid

wavefront sensor to compare their performance, and have shown that the pyramid sensor

is fundamentally better. We have shown, through simulations, that in practice, the pyramid

sensor can provide significant advantages over the Shack-Hartmann sensor in closed-loop

wavefront compensation systems. In open loop conditions, the performance of the pyramid

sensor is roughly similar to the Shack-Hartmann sensor.

In our comparisons, we suggested the use of the Strehl ratio (defined on 1D-images), as op-

posed to the sometimes ambiguous image width, as a more precise and convenient measure

of the sensitivity of the wavefront sensors, particularly in closed loop operation. The degra-

dation in sensitivity of the sensors is thus characterised by the Strehl ratio of the adaptive

optics system.
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Chapter 7Wavefront sensing from defo
usedimages
This chapter examines the curvature sensor and the geometric wavefront sensors. In con-

trast to the explicit aperture subdivision process in the Shack-Hartmann and pyramid wave-

front sensor, these sensors implicitly subdivide the telescope aperture. Under geometric

optics, the propagation of light through a medium results inintensity fluctuations related to

the wavefront. The changes in intensity can be used in the wavefront sensors to recover the

wavefront aberrations.

Figure 7.1 shows the propagation of a 1D aberrated wavefrontfrom plane A to plane B.

As an intuitive analogy, wavefront aberrations are water ripples in a bathtub illuminated

from the top. Ripples on the water surface change the direction of the light rays travelling

downwards, resulting in corresponding light and dark fringes at the bottom of the bathtub.

The direction and change in intensity as light propagates are described by Equation 3.9 and

Equation 3.12.

uA Plane A

Plane BuB

vA

vB

P1
P2

Dz

Figure 7.1 The effect of wavefront perturbations on the direction of light rays.
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The actual wavefront sensing arrangement is shown in Figure7.2, where the complex field

at the telescope aperture is allowed to propagate, but not all the way to the focal plane.

Instead, at two opposing out-of-focus planes, the defocused outline of the telescope aperture

is imaged, and subdivided into local intensity measurements.

In Figure 7.2, a small aberrated wavefront section has been shown highlighted. The small

positive wavefront curvature error causes the light rays within that region to be spread out,

so they now focus at a point after the original prime focal plane. The corresponding changes

in the out-of-focus intensity measurements allow this wavefront change to be measured and

localised1.

rotate

f

f(f- )l
l

f(f+ )l
l

Inside focus
Outside focus

l l

I (x,y)+

I (x,y)- I(x,y)

Figure 7.2 The physical layout (top) of a geometric wavefront sensor, with an optically
equivalent arrangement, for ease of analysis, shown (bottom). This is equivalent to a wave-
front (windowed by the aperture alone) propagating in free space. Note that the equivalent
outside-focus image is rotated.

The intensity changes at the out-of-focus planes can be described by geometric optics. To

simplify the analysis, Figure 7.2(bottom) also shows an equivalent optical arrangement [88]

for wavefront sensing, where the focusing mirror or lens in the telescope is replaced by an

equivalent free space propagation.

From Equation 3.30, a telescope with focal length f introduces a quadratic phase term

e−i k
2 f (x

2+y2). Given a complex fieldA(x,y)eiφ(x,y) at the telescope aperture, the complex

field after propagating a distance ofz is

1Here, the intensities at the out-of-focus measurement planes (atf ± l ) change in opposing ways - inside
focus, it is dimmer, while outside focus, it is brighter.
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A(x,y)eiφ(x,y)e−i k
2 f (x

2+y2)⊙ei k
2z(x

2+y2)

=

∫ ∞

−∞

∫ ∞

−∞
A(x′,y′)eiφ(x′,y′)e−i k

2 f (x
′2+y′2)ei k

2z((x−x′)2+(y−y′)2) dx′dy′

= ei k
2 f

z′
z x2
∫ ∞

−∞

∫ ∞

−∞
A(x′,y′)eiφ(x′,y′)ei k

2z′ ((
z′
z x−x′)2+( z′

z y−y′)2) dx′dy′

= ei k
2 f

z′
z x2
(

A(x,y)eiφ(x,y) ⊙ei k
2z′ (x

2+y2)
)∣

∣

∣

( z′
z x, z′

z y)
(7.1)

where 1
z′ = 1

z − 1
f or z′ = z f

f−z is the equivalent propagation distance without the quadratic

phase term. This result is the same as the geometric optics based thin-lens equation of

Equation 3.5.

Under the equivalent optical arrangement, the image at the inside-focus planez = f − l

is identical to (but smaller than) the image at( f−l) f
l without the quadratic phase term.

The outside focus, atz = f + l , is similarly equivalent to a virtual propagation distance

of − ( f+l) f
l , with an additional image inversion or rotation about the axis of propagation.

The defocusl is usually small enough2 that the equivalent virtual propagation distances are

approximately± f 2

l .

The inputs to the wavefront sensors come from measurements of the out-of-focus images.

A simulation of the propagated and defocused aperture images, with some turbulence, is

shown in Figure 7.3. By design,l is adjusted so that the imaging plane is placed far enough

from the focal plane to minimise the effects of diffraction on the defocused images. The

diffraction effects are small enough that they are smoothedout by the image blurring and

sampling operation carried out by CCD detectors, and are notvisible in the sampled image.

The blurred outlines of the telescope aperture remain visible, allowing the effect of any

wavefront aberrations on the images to be described using geometric optics alone.

The displacementl trades off the sensitivity of the wavefront sensor against its resolution.

As quantified in Equation 7.6, the intensity fluctuations in the defocused images are roughly

proportional tol and I (the mean intensity). The resolution, corresponding roughly to

the size of the dark and bright patches in the images, is determined by diffraction effects,

and is inversely proportional to
√

l , as shown later in Section 7.4.3. With smallerl , or

larger equivalent propagation distancesz′, the sensitivity is increased, at the cost of a lower

2As an example, on a 1m F/10 telescope (focal length 10m), a defocus ofl = 2cm (and corresponding

image size of 2mm) is equivalent to a virtual propagation distance ofz≈ f 2

l = 5km.
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resolution [91].

(a) Inside-focus image
from the wavefront sensor,
i+(x,y).

(b) Outside-focus image
from the wavefront sensor,
i−(x,y).

Figure 7.3 Defocused images from two opposing planes.

In the following simulations, photon noise is simulated using a Poisson model, while read

noise is ignored3.

P(I(x,y)|i(x,y)) = ∏
∀(x,y)

e−i(x,y)i(x,y)I(x,y)

I(x,y)!
(7.2)

where i(x,y) and I(x,y) are the intensity measurements before and after the addition of

noise, respectively.

The input measurements to the wavefront sensors are thus

I+(x,y) = i+(x,y)+n+(x,y) (7.3)

and

I−(x,y) = i−(x,y)+n−(x,y) (7.4)

wherei+/−(x,y) and I+/−(x,y), represents the intensities before and after the addition of

noisen+/−(x,y), respectively.

3Typical astronomical observations operate under low lightlevels, and with cooled equipment, to give
low instrument noise. Avalanche photo diodes (which have noread noise) have also been used [85, 88] for
curvature sensing. Since read noise is only an instrumentation limitation, it is ignored in subsequent analyses.
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Figure 7.4 shows the large visible effects of photon noise, from a mean total photon count

of 40000, on an image. Most simulations in this section assume even higher noise levels,

with photon counts of 800, so a method for accumulating and averaging the signal is re-

quired. The fluctuations in the measured intensity distribution can be reduced by software

averaging, or by adjusting the size of the CCD detector elements. The increased integration

area of each detector element results in fewer detectors (fewer measurements) and lower

read noise, but also a correspondingly reduced image spatial resolution.

Noiseless image.
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Figure 7.4 Effect of photon (Poisson) noise on input image with total flux of 30000 photons.
The telescope aperture is 250 pixels in diameter, equivalent to 1m. The input image has
been propagated 14km, assuming a light wavelength of 600nm. The wavefront aberrations
are small enough D

r0
= 0.1 that no intensity fluctuations could be observed.

Section 7.1 and Section 7.2 examine the geometric optics formulation for recovering the

wavefront. Section 7.3 then introduces the curvature sensor approximation. Finally, sec-

tion 7.4 investigates the effects of photon noise on each wavefront sensor.

7.1 Geometric optics solution

In this section, we examine the free space propagation of wavefronts using the geometric

optics model, and derive a solution for recovering the wavefront from its effects on light

intensity, expanding on its original introduction by van Dam and Lane. [102]. Referring to

Figure 7.1, the direction of travel of the light rays at a particular section of an aberration

wavefront is perpendicular to the wavefront slope (slope ofthe water surface in the bath-

tub analogy) at that point. Mathematically, referring to Equation 3.9, the initial and final

positions of a light ray are related to the wavefront slope by
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xB = xA +∆zWx(xA) (7.5)

wherexA andxB are ray-intercepts of the ray with planes A and B respectively.

The irregular wavefront causes the propagating light rays to spread out and concentrate

unevenly. The intensity at any point is proportional to the density of light rays passing

through that point. For example, in Figure 7.1, the concentration of light rays around point

v causes a relative brightening on the intensity atvB compared tovA, while the diffusion of

light rays at point u causes a corresponding relative darkening of the intensity atuB. In 1D,

Equation 3.12 reduces to

IB(xB) =
IA(xA)

1+∆zH(xA)+∆z2K(xA)
=

IA(xA)

1+∆zH(xA)
(7.6)

whereIA(x) and IB(x) represent the intensity distributions in the planes A and B respec-

tively. In 1D, the mean wavefront curvature at plane A isH(x) =Wxx(x), while the Gaussian

curvature at plane A isK(x) = 0.

Figure 7.5 illustrates this for a wavefront at the originating plane A with a uniform negative

curvature,W(x) = −ax2, for a > 0. The illumination at A is assumed constant (IA(x) = IA)

within a window representing a finite optical aperture. The wavefront slope at plane A,

Wx(x) = −2ax, determines the direction in which the light rays leave plane A.

Plane A

Plane B

Wavefront

Wavefront

Intensity

Intensity

Figure 7.5 A simple defocus in the wavefront causes the image of the aperture to be
smaller but brighter. All rays move at 90◦ from the wavefront slope.

xB = xA−2axA∆z (7.7)

The uniform parabolic wavefront gives rise to a uniform focusing action, which causes the

intensity distribution at plane B to be the same shape as the intensity distribution at plane
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A, but smaller and brighter.

IB(x) = IB =
IA

1−2a∆z
(7.8)

From the intensity distribution alone, we can recover the original wavefront aberrations

using the positions of light rays. Figure 7.6 shows Figure 7.5 with some light ray positions

inferred. The leftmost rayP1 defines the edges of the aperture.P2 is then reconstructed by

making use of the fact that the total intensity between the two raysP1 andP2 is constant.

Dx

W (x )x A

XA

XB

P1

Plane A
(aperture
plane)

Plane B
(imaging
plane)

Dz

P2

Figure 7.6 The shaded regions in each plane are equal in area (intensity), so the starting
and ending points of the light ray P2 lie along the boundary of the shaded regions. Thus
given the direction of the light ray, the corresponding wavefront slope at plane A, Wx(xA),
can be found.

Assuming that the light rays in the region from plane A to B never cross over each other

(as when the wavefront distortions and propagation distances are small), the positions ofP1

and any rayP2 can be recovered unambiguously4. Propagating from plane A to plane B,

the intensity distribution is stretched and compressed butnot lost by the changing light ray

positions. This intuitive notion of the principle of the conservation of light can be expressed

mathematically as

4If any light rays cross, it is no longer possible to unambiguously recover the positions and directions of
the light rays. In regions where light rays intersect, also known as caustics, diffraction effects are especially
prominent [94], and the geometric optics approximation breaks down. For example, in the extreme, the geo-
metric optics model breaks down at the focal plane (where alllight rays meet), and the intensity distribution
has to be described using scalar diffraction theory instead.
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CIB(xB) =

∫ xB

−∞
IB(x′)dx′, x′ = x+∆zWx(x)

=

∫ xB

−∞

IA(x)
1+∆zWxx(x)

dx′

=
∫ xA

−∞

IA(x)
1+∆zWxx(x)

(1+∆zWxx(x))dx

=

∫ xA

−∞
IA(x)dx

= CIA(xA) (7.9)

whereIA(x) and IB(x) are the intensity distributions across planes A and B respectively.

The wavefront slopeWx(xA) is xB−xA
∆z = ∆x

∆z.

The cumulative intensity matching process is also known as histogram specification [14,

37]. From this process, the displacement of each light ray isfound. The wavefront slopes,

in plane A at the base of each ray, are found from Equation 7.5.In the example given above,

the original wavefront isW(xA) = −ax2
A). The cumulative intensity distributions are

CIB(xB) = IBxB + N
2

CIA(xA) = IAxA + N
2 (7.10)

whereN =
∫ ∞
−∞ IA(x) dx=

∫ ∞
−∞ IB(x) dx is the total intensity.

By matching the ray positions using histogram specification, as shown in Figure 7.7,

CIB(xB) = CIA(xA)

IBxB = IAxA (7.11)

we recover the slope of the original wavefront. Consequently, the wavefront can be calcu-

lated exactly (to within the geometric optics approximation).
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Wx(xA)∆z = ∆x

Wx(xA) =
xB−xA

∆z

=
xA

(

IA
IB
−1
)

∆z
= −2axA (7.12)

x

C (x)IA

C (x)IB

W (x) = x(x)x D

W(x)
x

x

Figure 7.7 Solution to the wavefront slope using histogram specification. The ray positions
are found by matching equal levels in the histograms. From the ray positions, the original
wavefront slope and finally the wavefront itself, is recovered.

7.1.1 Minimising diffraction effects

To confirm the validity of the geometric optics model, and to show how diffraction effects

can be ignored, the Fresnel diffraction formula is used. This allows simulations of free

space propagation with full diffraction effects to be performed.

As an example of the effects diffraction can have during propagation, a random wavefront

aberration at a square telescope aperture of length 1m is propagated to several distances

ranging from±30km to±120km. Although the optical Fresnel propagation model is in

2D, the geometry of the problem is reduced to one dimension byletting the complex field

at the aperture vary across 1 axis only. Figure 7.8 shows the intensity distribution at 30km,

the closest propagation distance simulated.

The intensity distribution at this distance no longer has any sharp edges because of the
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Figure 7.8 Geometric wavefront sensing with 1D images of an aperture 1m in diameter,
propagated 30km in front of (solid line), and behind (dotted line), the aperture.

smoothing caused by diffraction5. The effects of diffraction are stronger at longer distances.

By keeping the propagation distance suitably close, the geometric optics solution is kept

accurate. At 30km, the effects of diffraction are still minimal, and the original outline of

the aperture can still be seen. The intensity fluctuations inthe propagated image form the

input to the wavefront reconstruction process. The sensitivity of the sensor is proportional

to the distance of propagation.

Using histogram specification, the wavefront is estimated and compared with the actual

wavefront in Figure 7.9. At 30km, the wavefront estimate is agood approximation of the

original simulated wavefront function. The propagation process has blurred the aperture

image in a low-pass filtering operation. This causes the estimated wavefront to be smoother

and lower in spatial resolution than the original wavefront. Over larger distances, the blur-

ring increases, so our wavefront estimate becomes smootherand less accurate.

Short propagation distances ensure that the histogram specification process is accurate

enough to obtain an accurate estimate of the wavefront at thetelescope aperture. At long

distances, when diffraction effects dominate, the relationship to the wavefront is non-linear,

and falls into the class of phase retrieval problems. The presence of two images (previously

shown to be optically equivalent to slightly defocused planes) correspond to two phase

diverse measurements, and is commonly known as the phase diversity (with defocus) prob-

lem.

It is assumed in the following discussions that the imaging planes are sufficiently defocused

5This smoothing size is roughly on the order of
√

λz, known as the Fresnel length [38]. The Fresnel
blurring determines the resolution of the wavefront estimate.
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Figure 7.9 Comparison of the actual phase at the imaging aperture (solid, jagged line) with
the phase estimate after propagating through various distances. The larger the propagation
distance, the smoother the wavefront estimate, and the more the deviation from the actual
wavefront.

from the focal plane that diffraction has minimal effects onour results.

7.2 Geometric wavefront sensor

In this section, the geometric wavefront sensor is generalised to estimate two dimensional

wavefronts [105]. The geometric wavefront sensor is a slopebased sensor. In two dimen-

sions, light rays continue to travel perpendicular to wavefront slopes, and intensity, now

determined by the density of light rays within an area, is still conserved. However, the

endpoints of any light ray can no longer be inferred directlyby ray tracing or histogram

specification. For example, the left-edge of the 1D aperturein Figure 7.6 defines the two

points in each plane A and B, corresponding to the initial andfinal positions of the leftmost

light ray. However, in 2D, the outer edges of the aperture arenow defined not by points, but

by curves. The location and direction of light rays, now withan extra degree of freedom,

can no longer be recovered.

In Section 7.1.1, a two dimensional wavefront was recoveredby treating it as a one di-

mensional wavefront, since the wavefront function is constant in one axis. This provides a

clue as to how a two dimensional wavefront can be estimated using geometric optics. The

images are reduced by a series of projections to a number of one dimensional image slices,

similar to the radon transform used in medical CT applications. Each slice, consisting of the
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integrated intensity along an axis, as shown in Figure 7.10 for a single projection direction,

is related to the wavefront projection along the same axis.

I(x,y)

I(
v
) 

=
(x

,y
) 

d
u

I
-

u

v

x

y

Figure 7.10 A single projection in the radon transform for 2D wavefront reconstruction.

To derive the relationship between the projections of images and the projections of wave-

front functions, the ray-tracing histogram specification process is performed on the pro-

jected intensity distribution. For example, taking the y-axis as the projection direction, the

2D version of the histogram specification problem, the ray tracing process of Equation 7.9,

is equivalent to

∫ xA

−∞

∫ ∞

−∞
IA(x,y) dy dx=

∫ xB

−∞

∫ ∞

−∞
IB(x,y) dy dx (7.13)

with IA(x,y) andIB(x,y) being the 2D intensity distributions at planes A and B.

The wavefront slope at the aperture is approximately

∫ ∞
−∞ IA(x,y)Wx(x,y)dy
∫ ∞
−∞ IA(x,y)dy

=
∆x(x)

∆z
=

xB−xA

∆z
(7.14)

To see how Equation 7.14 works, consider the example of a constant wavefront slope and

intensity across the aperture. The intensity distributions across the two out-of-focus planes,

IA(x,y) andIB(x,y), have the exact same shape except for a displacement. When projected

into 1D, through histogram specification, the constant displacement (∆x) across the aper-

ture can be found, allowing the magnitude of the slope in the wavefront to be recovered.

Similarly, extending this to higher orders of aberrations requires the “slice displacements”,

∆x, to be measured from more projections over different directions6.

6The number of projection angles used determines the resolution and fitting errors in the wavefront esti-
mate. For example, simulations in this thesis use up to 10 projection angles to recover 20 Zernike modes.
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In practice, using the linearity of the problem, we may associate each Zernike mode directly

to their effects on the image intensity. Given a decomposition of some wavefrontW(x,y)

into its Zernike coefficients, with each coefficient given byαi = 1
π
∫

W(x,y)Zi(x,y)dx dy,

Equation 7.14 is linear function of the coefficientsααα.

ddd = HHHααα (7.15)

whereddd is the signal vector formed from the displacements∆x(x)7, as found through his-

togram specification.

Given the signals obtained from histogram specification8, Equation 7.15 can be inverted

to recover the wavefront function. Although the Maximum A Posteriori solution is theo-

retically the most optimal, in practice, at high photon counts (low photon noise levels), a

least-squares solution (equivalent to the Maximum-Likelihood solution, with uniform white

noise assumptions) is found to be adequate.

ααα = (HHHTHHH)+HHHTddd (7.16)

The solution to the geometric wavefront sensor is a system oflinear equations. The sensor

output, although derived using a non-linear algorithm, canbe linearly related to the input

wavefront coefficients. Additionally, prior information on the wavefront coefficients can

also be included in Equation 7.16, resulting in an MAP solution. Geometric optics represent

a practical wavefront sensing solution that is physically simpler than the Shack-Hartmann

and Pyramid wavefront sensors.

7.3 Curvature sensor

Due to the novelty of the method, the algorithm for geometricwavefront sensing has not

been applied on working adaptive optics systems. Today, thealgorithm used in wavefront

estimation with defocused images is largely based on curvature estimation, first proposed

by Roddier in 1988 [13,83,86].

7The vectors of displacement signals in each projection direction are combined by stacking the vectors
together to form a single vector.

8Note that although histogram specification is a non-linear process, the remaining parts of the geometric
wavefront sensor is linear.
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The curvature sensor was initially proposed as a simple and effective method for low-order

adaptive optics in infra-red applications. Requiring onlytwo defocused image measure-

ments, the physical simplicity of the curvature sensor has lead to its widespread use. The

initial design for the sensor provides for curvature signals sent to adaptive optics systems

with membrane or bimorph mirrors as wavefront correctors9. This is particularly conve-

nient as the bimorph mirrors respond to a curvature signal because of their mechanical

properties. In practice, instrumental limitations necessitate the use of more complex de-

signs to match the signal between the wavefront sensor and the mirror actuators [85].

The curvature sensor uses the same defocused image data usedby the geometric wavefront

sensor. However, the curvature sensor makes some simplifying assumptions, resulting in

the estimation of wavefront curvature instead of slopes. Equation 3.12 is reproduced in

Equation 7.17 with the approximation(xB,yB) = (xA,yA), essentially ignoring any displace-

ments in the local intensity signals during image propagation. Furthermore, the wavefront

shape is implicitly assumed to be locally spherical, so the eccentricity or Gaussian curvature

K(x,y) = 0.

IB(xB,yB) =
IA(xA,yA)

1+∆zH(xA,yA)+∆z2K(xA,yA)

IB(x,y) ≈ IA(x,y)
1+∆zH(x,y)

≈ IA(x,y)− IA(x,y)∆zH(x,y) (7.17)

The approximate intensity difference from propagating a wavefront a distance∆z is then

∆I(x,y) = IB(x,y)− IA(x,y) = −∆zIA(x,y)H(x,y) (7.18)

With two images defocused in opposing directions, symmetrically displaced about the focal

point of the telescope, the intensity in each plane providesa differential signal10 approxi-

mating the wavefront curvature. Where a region is brighter in one image, it is darker in the

other. The curvature sensor signal, formed from the difference between these two out-of-

9This is essentially a zonal correction scheme, since the curvatures are computed within separate hexago-
nal regions, and corrected by mirrors driven by signals proportional to the local curvature.

10The differential signal allows scintillation or intensityfluctuations in the telescope aperture to be can-
celled.
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focus images, is

S(x,y) = I+(x,y)− I−(x,y)

≈ −2∆zI(x,y)H(x,y) (7.19)

whereI+(x,y) andI−(x,y) represent the two defocused images measured by the curvature

sensor11. I(x,y) andH(x,y) are the intensity and the wavefront curvature at the aperture

plane.

The wavefront curvature is thus given by

H(x,y) ≈ − S(x,y)
2I(x,y)∆z

≈ − S(x,y)
(I+(x,y)+ I−(x,y))∆z

(7.20)

The 1D example in Figure 7.5 is useful to illustrate the curvature sensing algorithm. The

same wavefront is recovered by integrating the curvature signal twice, as shown in Fig-

ure 7.11.

x

x

x

Signal (Curvature estimate) = W  (x) =xx I - IA B

Wavefront estimate = W(x) = W (x) dxx

Slope estimate = W (x) =   s(x) dxx

-

x

-

x

Figure 7.11 Estimation of wavefront from Figure 7.5 with the sensor signal s(x) on top, and
the recovered wavefront (with edge effect errors) at the bottom.

The wavefront estimate near the edges of the telescope aperture is no longer accurate. By

propagating a flat wavefront with an overall tilt, Figure 7.12 reveals the presence of edge

11Recall from Figure 7.2 that the defocused images are equivalent to free space propagation, butI−(x,y)
needs to be rotated 180 degrees.
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effects [88] in the differential image signal. Since the wavefront has no curvature, a clear

boundary between the edge signal and the zero curvature region can be seen.

Plane A

Plane B

Difference

Figure 7.12 A wavefront that is only tilted has zero curvature and produces no curvature
signal. An edge signal is still produced.

By ignoring displacements in the signal due to the wavefrontslope, the curvature sensor

has introduced estimation errors in the curvature signal. More significantly, as shown by

the example in Figure 7.11 (compare Figure 7.7), an additional source of error in the edge

signal is also present.

Arising from image subtraction over mis-matched aperture edges, the edge signal is pro-

portional to the radial wavefront slope at the edges of the telescope aperture. Practical

curvature sensors must therefore model the edge signal separately from the central curva-

ture region [11, 31, 41]. The output from a curvature sensor thus has two components, a

curvature signal, and an edge signal. In general, the exact extent of the edge signal cannot

be determined, so the boundary to separate the two types of signals remains ambiguous.

7.3.1 Error approximation estimation

The error in the curvature sensor approximation, compared to the geometric wavefront

sensor, is given by (continuing from Equation 7.6)

∆IB(xB,yB) = IBgeo(xB,yB)− IBcurv(xB,yB)

=
IA(xA,yA)

1+∆zH(xA,yA)+∆z2K(xA,yA)
− IA(xB,yB)

1+∆zH(xB,yB)
(7.21)

Due to the division operation, the error is a non-linear function of distance and wavefront

curvature. Linear approximations [49, 61] to Equation 7.21, up to the first order, has been
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derived from the equivalent Intensity Transport Equation (Equation 3.36) representation.

The error in the curvature sensor, extended to the second order by van Dam and Lane [103],

is (all functions are evaluated at(xB,yB))

I(z+∆z) =
I(z)

1+H∆z+(K−T)∆z2 (7.22)

whereT = WxWxxx+WxWxyy+WyWxxy+WyWyyy = WxHx +WyHy is the displacement error

of H. The Laplacian curvatureH represents a first order change in the intensity, while K

and T are both second order errors.

However, even a second order error approximation is insufficient for extended analyses of

the curvature sensor. The in-focus and outside-focus imageplanes, given by a Taylor series

expansion aboutI(z), are

I(z+∆z)− I(z) = ∑
n

(

∂ n

∂zn I(z)

)

(∆z)n

n!

I(z−∆z)− I(z) = ∑
n

(

∂ n

∂zn I(z)

)

(−∆z)n

n!
(7.23)

The curvature sensor signal is the differential signal between the out-of-focus planes. The

second order terms in the sensor signal cancel,

I(z+∆z)− I(z−∆z) = 2∑
n

(

∂ n

∂zn I(z)

)

∆zn

n!
, ∀ n odd (7.24)

The third order error term thus needs to be retained for further analysis of the curvature

sensor. As an example, the first few terms in the Taylor seriesexpansion of Equation 7.22

are
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I(z+∆z)− I(z) = Iz∆z+ Izz
∆z2

2
+ Izzz

∆z3

6
+ ...

≈ −I(z)H∆z− I(z)(K−T +H2)∆z2

+I(z)H(2(K−T)−H2)∆z3 (7.25)

whereIz≈−IH andIzz≈−2I(K−T +H2), andIzzz= 6IH (2(K−T)−H2).

Therefore, even a slightly extended analysis of signal displacement (T) in the curvature

sensor must incorporate at least the third order in the errorexpansion. In contrast, the

geometric sensor has the advantage of an exact geometric model. This effectively accounts

for both the displacement (T) and curvature uniformity (K) transparently.

7.3.2 Direct comparison with the geometric wavefront sensor

To compare the curvature sensor to the geometric wavefront sensor, we re-formulate the

image difference as the difference between two integrated images. This is similar to, and

allows comparison with, the histogram specification step, as shown in Figure 7.13. In the

histogram specification step, the geometric wavefront sensor makes use of the displacement

signal between two defocused images. In contrast, the curvature sensor uses the direct

difference signal between the two images12.

Both sensors then integrate the resultant difference signal to arrive at the wavefront. From

this comparison, we can see that the key difference between the two wavefront sensors

comes from the geometric wavefront sensor taking the horizontal difference in the his-

tograms, which corresponds to the light ray displacement, giving the actual wavefront slope.

Here, the more accurate geometric sensor model eliminates any signal mismatch between

the two image planes, removing the distinction between the edge and curvature regions. The

errors introduced by the curvature sensor approximation are quantified by the difference

between the “horizontal” and “vertical” histogram differences.

For small wavefront perturbations, as in a closed-loop adaptive optics system,CIA andCIB

will be very similar, and the difference between the geometric sensor and the curvature

sensor is small. With larger wavefront aberrations, as in open loop operating conditions,

12Hence, in its simplest form, a closed-loop control strategysimply tries to cancel the curvature sensor
signal by matching the two out-of-focus images.
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Figure 7.13 Comparison of the histogram specification process(a) with curvature sens-
ing(b) in the estimation of slopes.

the edge signal errors in the curvature sensor become more significant, and the geometric

wavefront sensor can provide more accurate wavefront estimates.

7.4 Theoretical performance

7.4.1 Photon noise analysis

Although the curvature and geometric wavefront sensors usethe same inputs as data, the

theoretical treatment of the wavefront sensing problem as presented by the geometric wave-

front sensor is more precise. The principle of ray tracing todeduce the wavefront is also

intuitively more consistent with geometric optics especially when applied to regions near

the aperture edge, where the curvature sensor treatment is more messy.

This section examines the effect of photon noise on both wavefront sensors. A comparison

of the two wavefront sensors is performed while ignoring read-noise to avoid detracting

from the main analysis. The effects of photon noise, as continuing from Figure 7.4, are

assumed to obey Poisson noise statistics, with independentnoise in each imaging detector.

The effect of various steps of each wavefront sensor algorithm on this noise is described,

and the methods required to filter the noise are derived.
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7.4.2 Intensity normalisation

The measured photon counts in the defocused images are determined by the Poisson statis-

tics of photon noise, with variance equal to the mean or expected photon count. The photon

noise in each pixel is independent and under bright illuminations, with high photon flux

levels (above 50 photons), is approximately Gaussian. Withthe fluctuation caused by pho-

ton noise, the total photon count in each defocused image mayno longer be equal. This

difference in intensity results in mismatched histograms with unequal heights, as shown in

Figure 7.14, so the histogram specification process is no longer defined. This problem is

especially significant at extremely low light levels when individual photons are measurable.

Since an assumption of the ray tracing algorithm is that intensity is conserved, in order to

apply histogram specification to wavefront estimation, thehistograms must be matched. To

satisfy this constraint, the intensities in the two images must be equalised, either by the

addition or subtraction of a constant offset, or by scaling the intensity values of the two

images.

The addition or subtraction of constant offsets may result in negative image intensity val-

ues. Furthermore, a constant offset maintains the mismatchin their histograms. Since it

is the intensitydistributionor shape that is used for estimating the wavefront, and not the

absolute intensity levels, a more appropriate solution is to normalise the images by scal-

ing the intensity values. This aligns the endpoints of the image histograms, as shown in

Figure 7.14.

Figure 7.14 Due to fluctuations in the measured intensity, the image histograms are no
longer matched (left), and have an undefined histogram specification. The images are
equalised by the normalisation of the total intensity (right) to a nominal photon count of 1.

The normalisation step is dependent on the noise present in each image. Figure 7.15 shows

the equivalent noise after intensity equalisation, obtained by subtracting the normalised
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noisy image (or its histogram) from the original image13. The division by the total pho-

ton count (image plus noise) introduces some negative correlation into each pixel in the

measurement plane.

Figure 7.15 The noise after normalisation of the histogram is largest in the centre of the
aperture, and zero at both endpoints, corresponding to the edges of the aperture.

The correlation can be derived by returning to the example inSection 7.1, where we start

with the expected (noiseless) intensity measurementIB(x), and add noise to getIB(x) +

nB(x). The signal is then scaled to equalise the intensity level. The equivalent noise in the

scaled signal is defined to be

IB(x)+n′B(x)

∑x IB(x)
=

IB(x)+nB(x)

∑x [IB(x)+nB(x)]
(7.26)

wherenB(x) is the photon noise at planeB, and the high intensity Gaussian approximation

is assumed to hold true.n′B(x) is the equivalent normalised noise term after scaling the

image intensity.

Re-arranging Equation 7.26, the normalised noise term now has an additional term depen-

dent on the total noise level and the intensity in each pixel.

13Drawn to scale, in actual simulations, the histogram noise is too small to be seen against the scale of the
histograms.
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n′B(x) =
nB(x)∑x IB(x)− IB(x)∑xnB(x)

∑x(IB(x)+nB(x))

≈ nB(x)Itot − IB(x)∑xnB(x)
Itot

= nB(x)− ntot

Itot
IB(x) (7.27)

with the approximation∑xnB(x) = ntot = 0 in the denominator.

The modified noise covariance matrix can be expressed in terms of the original raw Poisson

noise covariance matrix. The original noise is assumed to beapproximately Gaussian (due

to a high photon count) and independent between pixels, withthe noise variance equal to

the intensity in that pixel,

〈nB(x)nB(y)〉 = δxyIB(x) = δxyIB(y) (7.28)

whereδxy is the Kronecker delta (being 1 forx = y, and 0 otherwise).

The noise in the pixels is independent from each other, (the noise correlation between differ-

ent pixels is zero), allowing Equation 7.29 the be reduced using 〈nB(y)ntot〉= 〈nB(y)∑i nB(i)〉=
〈

nB(y)2
〉

= IB(y) and
〈

n2
tot

〉

=
〈

(∑i nB(i))
(

∑ j nB( j)
)〉

= ∑i j 〈nB(i)nB( j)〉 = Itot, as follows

Cn′B
(x,y) =

〈

n′B(x)n′B(y)
〉

≈
〈(

nB(x)− ntot

Itot
IB(x)

)(

nB(y)− ntot

Itot
IB(y)

)〉

= 〈nB(x)nB(y)〉− IB(x)
Itot

〈nB(y)ntot〉−
IB(y)
Itot

〈nB(x)ntot〉+
〈

n2
tot

〉 IB(x)IB(y)

I2
tot

= 〈nB(x)nB(y)〉− IB(x)IB(y)
Itot

(7.29)

As a special case, let the noise variance in each pixel with a uniform intensity distribution

acrossN pixels beσ2 (equal to the intensityIB(x) in each pixel). Being uniform uncorre-

lated Gaussian noise,C(x,y) = δxyσ2. The covariance of the normalised noise, with a slight

negative correlation between each pixel, is then
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Cn′B
(x,y) =

(

δxy−
1
N

)

σ2, or, arranged into matrices

Cn′B
=

(

III − 1
N

111

)

σ2 (7.30)

In the subsequent histogram specification step, the image and noise are first integrated to

form a histogram. Histogram formation, a cumulative summing operation, is linear and

can be described using the matrix operationCCCsum. The integrated noise was originally

a Brownian noise. With normalisation, the histogram noise is still similar to Brownian

noise, but with the additional condition that the noise at the endpoints (edges of aperture) is

constrained to be 0.

The covariance matrix for the normalised histogram or integrated noise is given by

〈

CCCsumnnn′′′BBB(((CCCsumnnn′′′BBB)))T
〉

= CCCsum

〈

nnn′′′BBBnnn
′T
BBB

〉

CCCT
sum

= CCCsumCCCn′B
CCCT

sum

=
(

min(x,y)− xy
N

)

σ2 (7.31)

The variance of the normalised histogram noise, given by thediagonal elements of the ma-

trix in Equation 7.31, is(x− x2

N )σ2. Such a noise distribution is also commonly encountered

in Monte-Carlo analysis and is known as the Brownian bridge14.

After the image histograms have been formed, the next step inthe geometric wavefront

sensing algorithm is histogram specification, a non-linearprocess, introducing higher or-

der errors into the data. To simplify analysis, especially at lower noise levels, histogram

specification can be approximated with histogram subtraction as shown in Figure 7.16.

At low noise levels, the change from histogram specificationto subtraction has negligible

effects on the noise statistics, as the output noise is not noticeably different from the input.

This allows us to replace the non-linear step with a linear one for noise analysis purposes.

14The Brownian bridge is commonly defined to be the processw(x)− xw(1) bound to 0 at the endpoints
x = 0 andx = 1, with w(x) being a Brownian process with variance var{w(x)} = x. The Brownian bridge has
a variance that depends on position,x−x2.
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x

C (x)IA

C (x)IB

Figure 7.16 Approximating histogram specification with histogram subtraction.

The total effect on the noise is thus a combination of all linear steps —normalisation (re-

sulting in NNN′′′), image projection (PPP), subtraction, and histogram formation or integration

(CCC)

NNN = CCCPPPNNN′′′PPPTCCCT (7.32)

7.4.3 Limits to resolution due to diffraction

Diffraction limits the resolution of the wavefront estimate in both the geometric and curva-

ture wavefront sensors. The spatial resolution of the wavefront estimate is determined by

the spatial blurring of the images at the out-of-focus images. The operation of the wavefront

sensors put them in the Fresnel diffraction region, so Fresnel diffraction is the dominant op-

eration. The extent of the smoothing during intensity propagation is known as the Fresnel

length, or the Fresnel invariant or scale [38] (pg70).

Fresnel length

To illustrate the general behaviour of field propagation under Fresnel diffraction, we ob-

serve the effect of a small localised phase perturbation,∆φ(x,y), in a complex field,A(x,y)eiφ(x,y).

The propagated intensity in the Fresnel region is given by the Fresnel convolution equation

(from Equation 3.27)
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|u(x,y)|2 =
∣

∣

∣
A(x,y)eiφ(x,y)⊙F

∣

∣

∣

2
(7.33)

whereF is the Fresnel kernelei k
2z(x

2+y2).

Due to due to the small phase perturbation∆φ(x,y), the change in the propagated image

intensity is

∣

∣

∣
(A(x,y)ei(φ(x,y)+∆φ(x,y)))⊙F

∣

∣

∣

2
−
∣

∣

∣
A(x,y)eiφ(x,y)⊙F

∣

∣

∣

2

=
∣

∣

∣
A(x,y)eiφ(x,y)⊙F + p(x,y)⊙F

∣

∣

∣

2
−
∣

∣

∣
A(x,y)eiφ(x,y)⊙F

∣

∣

∣

2

= |u(x,y)+ p(x,y)⊙F|2−|u(x,y)|2

= |u(x,y)|2 +2Re{u(x,y)(p(x,y)⊙F)}+ |p(x,y)⊙F |2−|u(x,y)|2

= 2Re{u(x,y)p(x,y)⊙F}+ |p(x,y)⊙F|2 (7.34)

with the field perturbationp(x,y) being related to the phase perturbation by

p(x,y) = A(x,y)eiφ(x,y)+i∆φ(x,y)−A(x,y)eiφ(x,y)

≈ A(x,y)eiφ(x,y)i∆φ(x,y) (7.35)

In Equation 7.34, the second order perturbation term|p(x,y)⊙F|2 can be ignored, leaving

the larger first order perturbation term 2Re{u(x,y)p(x,y)⊙F}. This change in intensity

can also be represented as

2Re{u(x,y)p(x,y)⊙F}
= 2Re{u(x,y)}Re{p(x,y)⊙F}+2Im{u(x,y)}Im{p(x,y)⊙F} (7.36)

For simplicity, the phase perturbation is assumed to be a small circular region with a con-

stant phase offset.
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∆φ(x,y) = mcirc(kx,ky) (7.37)

For a small enough circular diameterD (given by a largek), the Fresnel convolution of the

field perturbation approximates Fraunhofer diffraction. The Fraunhofer diffraction pattern

from a circular disc is given by the Jinc or Airy function witha quadratic phase term.

2Re{u(x,y)}Re{ei k
2zr2

Jinc(
D

2λz
r)}+2Im{u(x,y)}Im{ei k

2zr2
Jinc(

D
2λz

r)}

= 2Re{u(x,y)}Jinc(
D

2λz
r)cos(

k
2z

r2)+2Im{u(x,y)}Jinc(
D

2λz
r)sin(

k
2z

r2) (7.38)

Equation 7.38 is effectively a modulation of the intensity by Jinc and sinusoidal functions.

The perturbation modulation functions are shown in Figure 7.17, separately (top) and com-

bined (bottom). The widths of the Jinc and sinusoidal terms are λz
D and

√
λz respectively.

Re{i(x)}

cos(   x )
k
2z

2

Jinc(    x)
pD
2 zl

Figure 7.17 ”Linearised” point-spread-function of Fresnel propagation for a sub-aperture.

Although not strictly accurate, the blurring function in Figure 7.17 may be considered to be

the approximate extent of the point-spread-function of theFresnel kernel. This describes

the propagation of the aperture phase function to the defocused imaging plane, and consists

of a central region about
√

λz in width, and side-lobes bound by an envelope that is about
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λz
D in width. The fringes in the side-lobes oscillate so fast that they are smoothed out when

averaged over the whole phase function, and in any case, are under-sampled in practice.

The bound on the spatial resolution of the wavefront estimate is thus determined by the

central lobe,
√

λz.

This measure of blurring applies only for short distances, where the Fresnel approximation

is valid. At larger distances, the effects of Fraunhofer diffraction (on the order ofλz
Dtel

,

with Dtel being the aperture of the optical system) supersedes Fresnel diffraction, so the

Fresnel length is no longer the dominant blurring term. Shown in Figure 7.18, the nominal

division between the Fresnel and Fraunhofer regions is normally consider to be the Rayleigh

distancezR =
D2

tel
λ , which is also where the Fresnel length is equal to the aperture diameter

of the imaging system,
√

λz= λz
Dtel

(leading to
√

λz= D).
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Figure 7.18 Approximate boundaries of the Fresnel and Fraunhofer regions for a planar
wavefront.

The blurring due to Fresnel diffraction is independent of the telescope aperture size and the

complex field at the aperture. In particular, the severity ofatmospheric turbulence has no

significant effect on the resolution of the geometric and curvature wavefront sensors when

operated in the geometric optics region.

Although the Fresnel approximation is valid over all distances where the Fraunhofer ap-

proximation is applicable, the Fresnel length as a measure of blurring is only valid at short

distances (in the Fresnel region). The Fraunhofer or far-field diffraction pattern has an

approximate width ofλz
Dtel

, but only if no aberrations are present at the imaging aperture.
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In contrast to the constant Fresnel length in the Fresnel diffraction region, the Fraunhofer

image size is enlarged by the presence of aberrations. For example, under Kolmogorov

turbulence, the long-term exposure image is roughlyλz
r0

in size. Fried’s parameter,r0, is

commonly thought of as the equivalent diameter of an un-aberrated (smaller) imaging aper-

ture.

In summary, the blurring due to diffraction is dependent on several factors. At short dis-

tances, within the Fresnel diffraction region, the image blurring is given by the Fresnel

length,
√

λz, and is independent of the wavefront at the aperture. At longer distances, the

Fraunhofer approximation dominates, and the image size is determined by the wavefront at

the imaging aperture, and the size of the aperture.

Fresnel blurring in wavefront sensors

The defocused imaging planes in the geometric and curvaturewavefront sensors are dis-

placed from the focus sufficiently to allow the geometric optics approximation to be used.

This is equivalent to imaging in the Fresnel region (z′ ≪ zR), so the Fresnel length is the

most appropriate measure of sensor resolution, and represents the limit to the resolution

that is achievable in the wavefront sensors. The geometric optics approximation is only

valid when applied to image features larger in scale than theFresnel length, and no longer

apply on scales smaller than the Fresnel length.

The Fresnel length is given by
√

λz′, wherez′ is the virtual propagation distance, which

was previously shown to be related to the actual telescope dimensions byz′ ≈ f 2

l . In actual

terms, the blurring caused by Fresnel diffraction in the defocused imaging planes is given

by re-scaling (see Equation 7.1)

√

λz′
z
z′

=
√

λ l (7.39)

The direct Fresnel length expression
√

λz or
√

λ ( f − l) is no longer valid because it is

larger than the image size, as explained by Equation 7.38. The effect of diffraction, as

previously calculated, (represented in Figure 7.17), requires the image to be larger than

either of
√

λzor λz
D , an assumption that is no longer valid.

Figure 7.19 demonstrates the decreasing sensor resolution(due to increased blurring along

the positive y-axis) against distance. The resolution limits posed by Fraunhofer (λz
Dtel

)
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Figure 7.19 Wavefront spatial resolution of the curvature sensor.

and Fresnel (
√

λz) diffraction are shown in solid lines, with the “cross-over” point at the

Rayleigh distanceD
2

λ markedP1. The propagation distance has to be less than this, and is

thus constrained to lie to the left ofP1.

The conventional measure of the (spatial) wavefront resolution of the curvature wavefront

sensor [43, 84, 86] is frequently explained by Fraunhofer diffraction only, and is therefore

assumed to be limited by the wavefront aberrations at the aperture, as shown with the dotted

line (λz
r0

). Under closed-loop operation, when the input wavefront ispartially compensated

(resulting in a larger equivalentr0), the performance of the curvature sensor then increases.

However, the conventional measure of spatial resolution using Fraunhofer diffraction over-

estimates the achievable resolution, which is determined by Fresnel diffraction. The optimal

propagation distance of curvature sensors is usually closer than r2
0

λ (similar to the Rayleigh

distance), the “cross-over” point where the Fresnel lengthis greater thanλz
r0

. Furthermore,

the diffraction blurring anticipated byλz
r0

is not valid in the Fresnel region. Even in the

Fraunhofer region,λz
r0

refers to the approximate width of the long-term exposure image,

whereas a short-term exposure image is more appropriate forcomparison with the Fresnel

length.

Therefore, the resolution achievable in the defocused wavefront sensors is determined by

the defocus distance, and is proportional to
√

λ l . This is worse than the often cited value

determined from Fraunhofer diffraction or the severity of turbulence,r0. The limit posed by
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Fresnel diffraction is not affected by the increased sensitivity during operation in a closed-

loop adaptive optics system. However, closed-loop operation can lead to improved perfor-

mance (Section 7.3.1) by reducing modelling errors in the wavefront sensors.

7.5 Simulations

Section 7.3.1 introduced a treatment of the errors in the curvature sensor. Due to non-

linearities and the complexity of the error propagation analysis, a simpler approximate way

to compare sensor performance is through simulations of thesensors under various condi-

tions.

Kolmogorov phase-screens are generated independently [42] with turbulence severity forDr0

ranging from 0.1 to 25. Assuming a telescope diameter of 1m, discretised with 250 pixels,

the phase-screens are then propagated forward and backwardthrough free-space to various

distances ranging from±14000m to±200000m. Each pair of propagated images represent

the defocused inputs to the wavefront sensors.

Although both wavefront sensors can work with broadband light, only narrowband light at

600nm is used to reduce the computational effort. At this wavelength, the Rayleigh dis-

tance is approximately 1700000m, and the extreme range of the propagation distance cho-

sen (200000m) already suffers from some diffraction, and the propagatedimage no longer

resembles an image of the telescope aperture. Similarly, atthe highest phase aberrations

( D
r0

= 25), the defocused images are too aberrated, and the simulation results are less useful.

In both the geometric and the curvature wavefront sensors, only the first 20 Zernike modes

are considered in the simulation, with the remaining higherorders ignored when calculating

the phase error. 16 projection angles are used in the geometric sensor, and are more than

enough15 to completely and unambiguously recover the first 20 Zernikemodes in the wave-

front. Photon noise with Poisson statistics, assuming a mean of 500 photons in each image,

is added to the defocused images. As described in previous sections, image normalisation

is performed to equalise the intensity in both images. Although this is only necessary in the

geometric wavefront sensor, it is also performed in the curvature sensor for consistency, to

aid comparison.

At 500 photons, the mean intensity is high enough that the effects of image normalisation is

15As explained in the Appendix, more than 10 samples or 5 projections are required for the maximum
azimuthal frequency of 5.
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minimal. The simpler Gaussian noise model and its corresponding least-mean-square solu-

tion is chosen over the optimal Brownian bridge noise model,which requires a maximum-

likelihood solution. The inverse wavefront estimation problem is thus performed using

direct least-squares matrix inversion in both sensors.
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Figure 7.20 The geometric and curvature wavefront sensors at D
r0

= 2, without photon
noise (solid line) and with photon noise (dashed line). The datapoints corresponding to the
propagation distances used in the simulation are marked with circles.

Figure 7.20 shows the wavefront estimation error in both wavefront sensors for the first

20 Zernike modes with and without photon noise. In the absence of photon noise, the

only sources of error are modelling errors (only in the curvature sensor) and the lowered

resolution due to Fresnel diffraction (both types of errorsincrease with distance). This holds

for the geometric sensor in the simulation results, but not for the curvature sensor because

of modelling errors. To keep the curvature sensor comparable to the geometric sensor, a

matrix is used to describe linear relationship between the input wavefront and curvature

sensor signal, so the edge signal is not explicitly modelled. As a result, the curvature sensor

under-estimates the wavefront slope, the largest phase term.

When Poisson noise (with a mean of 500 photons in each image) is added, the errors in

both wavefront sensors are dominated by photon noise. The sensitivity of the sensors in-
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creases with propagation distance, so the error decreases with distance. With the precision

of the sensors reduced by photon noise, the large resulting error reduces the relative error

contribution from the effects of diffraction. Thus, at low photon counts, Fresnel diffraction

is not an important factor in determining the resolution-precision trade-off in the geometric

and curvature wavefront sensors. In contrast, in the Shack-Hartmann sensor, as explained

in Section 6.3.2, both resolution and precision can have significant effects on the combined

sensor error, so the trade-off between resolution and precision is an important concern.
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Figure 7.21 Errors in the geometric wavefront sensor (solid lines) and curvature sensor
(dashed lines) without photon noise, with increasing turbulence levels of D

r0
=0.5, 1, and 2.

Each datapoint is also marked with a circle.

Figure 7.21 compares the errors in the geometric wavefront sensor with the curvature wave-

front sensor. The curves approximate the sensor estimationerror and loss in resolution by

measuring the total error without photon noise (effectively reproducing Figure 7.20 with-

out photon noise, and for a wider range of turbulence levels). While the error curves in

both sensors increase with the turbulence level, the geometric wavefront sensor always out-

performs the curvature sensor with a lower error at most distances. At larger distances and

turbulence wavefronts, the geometric wavefront sensor seems to under-perform the curva-

ture sensor. This is due to the assumptions of geometric optics breaking down (refer to the

commentary to Figure 7.6 on ray crossings), and stronger diffraction effects.

In the presence of photon noise (Figure 7.22), no discernable difference (within the simu-

lation tolerance) between the two sensors can be observed. Although the geometric sensor

also out-performs the curvature sensor at higher turbulence levels (not shown here), the
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results are inconclusive there because of the severe diffraction and ray crossing effects.
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Figure 7.22 Errors in the geometric wavefront sensor (solid lines) and curvature sensor
(dashed lines) with photon noise, with increasing turbulence levels of D

r0
=0.5, 1, and 2.

Each datapoint is also marked with a circle.

Figure 7.23 shows the total estimation errors for the geometric wavefront sensor with pho-

ton noise (mean 500 photons) at different levels of turbulence. The error in the geometric

wavefront sensor increases with turbulence level (D
r0

). This is consistent with geometric op-

tics where increasing the phase aberration (and consequently the wavefront slope) requires

the propagation distancez to be decreased proportionately, in order to keep the propagated

image constant. There appears to be an optimal propagation distance where the error is

lowest —beyond that, the error increases again because the image is too distorted from the

diffraction and ray crossings.

7.6 Conclusion

The geometric sensor uses geometric optics to estimate wavefront from defocused images

through ray-tracing. The position and displacement of the light rays are recovered using

histogram specification, and used to infer the wavefront at the optical aperture. The algo-

rithm assumes that the wavefront is small enough, so that no light rays cross path within

the propagation region. The histogram specification step also requires the intensity in both

defocused images to be equal, and requires the images to be normalised in the presence

of noise. Image normalisation modifies the noise statisticsinto a Brownian bridge. In the
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Figure 7.23 The effect of increasing turbulence on the estimation error in the geometric
wavefront sensor, for D

r0
=0.5 (solid line, circular points), 2 (dashed line, triangular points),

and 4 (dot-dashed line, square points).

simulations performed in this section, the precise statistics of sensor noise is not important,

so the least-squares approach is chosen because of its simplicity and robustness.

The curvature sensor is an approximation to the geometric wavefront sensor. Using a few

simplifying assumptions, the difference between two defocused images are used as an es-

timate of the wavefront curvature. Extended analyses of thecurvature sensor have focused

on the lower order errors in the intensity and wavefront propagation equations. Due to the

complexity of the analyses, a direct simulation is used to compare the geometric sensor

with the curvature sensor.

It was found that the geometric sensor achieves lower wavefront estimation errors compared

to the curvature sensor in the absence of noise. This reflectsthe more accurate geometric

optics algorithm in the geometric wavefront sensor16. In the presence of photon noise, there

may be some improvements, but the major factor determining performance, sensitivity,

is common to both wavefront sensors, so no major improvementcan be seen. Perhaps

simulations with larger wavefronts (and shorter propagation distances to ensure that the

geometric optics approximations are met) will show a difference in performance.

The effects of diffraction (loss in sensor resolution) within the geometric optics region were

16Note however that there are some simulation modelling errors in the curvature sensor.
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found to be negligible compared to the effects of photon noise (reduced sensor precision).

Outside of the geometric region, where Fraunhofer diffraction dominates (largez), or where

there were too many ray crossings (large wavefronts,D
r0

), the geometric optics approxima-

tion breaks down, and the error increases quickly.
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Chapter 8 Con
lusion
This thesis examined four main types of wavefront sensors inadaptive optics systems. A

uniform description of the sensors was provided and the fundamental performance limits

of the sensors were compared using a geometric optics model.

8.1 Summary

Atmospheric turbulence distorts the images collected by astronomical imaging telescopes,

degrading resolution. Real-time adaptive optics systems detect the wavefront aberrations

introduced by atmospheric turbulence and correct them using a deformable mirror, in a

closed-loop system. Due to the relative youth of this field, many possible designs for wave-

front sensors exist, but have not been examined and comparedin great detail. This thesis

proposes a unified framework for presenting the operation ofwavefront sensors to allow a

uniform comparison of the wavefront sensors.

Chapters 1 to 4 introduced various concepts and mathematical tools used in the subsequent

chapters.

The quad-cell is an image displacement estimator consisting of intensity detectors arranged

in a 2x2 array. It is often employed at the focal plane, where image displacement corre-

sponds to the aberration wavefront slope at the optical aperture. The main sources of noise

examined in the quad-cell are instrument read noise and photon noise. After developing the

Strehl ratio for measuring quad-cell performance, severaldifferent methods for quantifying

the performance of the quad-cell are compared. Compared to the fundamental limit posed
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by the Cramer-Rao bound, slope estimation with the quad-cell is an attractive trade-off

given its simplicity and cost. In the Shack-Hartmann and pyramid wavefront sensors, the

quad-cell arrangement is used to estimate wavefront aberrations.

Due to the duality between the imaging and aperture planes, there is a fundamental trade-off

between resolution and precision in the Shack-Hartmann andpyramid wavefront sensors.

The trade-off is described in terms of the Fourier transformand shown with simulations

in Section 6.3.2. The resolution is determined by the wavefront sub-division operation,

which separates a wavefront into smaller sections. Within each section, the precision of the

wavefront estimate is determined by a local slope sensing operation (using the quad-cell).

By comparing sensor operations in the dual imaging planes, acomparison of the precision

of the two sensors is made based on the quad-cell analysis. The crucial difference in the

order of the sub-division operation leads to a theoretically higher performance from the

pyramid wavefront sensor. Simulations within a range of operating conditions show better

performance from the pyramid wavefront sensor. From a practical standpoint, the pyramid

sensor also allows more flexibility in adjusting the sensor resolution and precision.

The geometric and curvature wavefront sensors are the otherpair of wavefront sensors

compared in this thesis because of their similarities. The sensor inputs consist of two op-

posing equally defocused images. The geometric sensor is shown to be a geometric optics

model which recovers the wavefront aberration at the optical aperture by ray tracing. The

more popular curvature wavefront sensor is shown to be an approximation to the geometric

wavefront sensor. The simpler algorithm in the curvature sensor is at a cost to estimation

performance due to curvature signal displacement and mis-matched aperture edge signals.

An analysis of the effect of photon noise on the measurement precision of the geometric

wavefront sensor, resulting in a Brownian noise model, is presented. Diffraction also limits

performance by reducing the sensor resolution. The conventional Fraunhofer diffraction

model is shown to over-estimate the performance achievablein the defocused sensors, and

the Fresnel diffraction model is suggested as a replacement.

Some observations are also presented on the implementationof the geometric wavefront

sensor, based on image recovery through projections.
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8.2 Future work

Further extensions to much of the ideas presented in this thesis would be helpful in resolving

several outstanding issues. In this section, I suggest someof the more interesting and

potentially fruitful areas of discussion.

The quad-cell is the one of the longest known slope detector and is well-understood. Even

then, new interpretations of the slope detection operationand novel variations on the quad-

cell theme continue to be implemented, as seen in the pyramidwavefront sensor. The

image truncation on the boundaries of the quad-cell performa spatial filtering operation,

but issues of aliasing and truncation introduced in Section4.3.1 and Section 5.1.1 remain

under-explored.

The closed-loop model presented in Chapter 6 is very much simplified in order to contrast

the Shack-Hartmann and pyramid wavefront sensors. A detailed model of the dynami-

cally compensated system, incorporating atmospheric statistics and control systems anal-

ysis, would help characterise the compensated output over time. The modelling process

would involve estimating the relative contribution of eachparameter in the system, and

knowing which ones are not important, and could safely be ignored.

The degradation in resolution due to diffraction effects inthe defocused wavefront sensors

have been explained using Fresnel diffraction. Using the Fourier transform analysis, and a

more precise definition of resolution, it may be possible to quantify the effects of diffraction

on sensor resolution. On a more practical note, simulationsof Fresnel diffraction require a

discretised approximation of the Fresnel kernel and propagated field. For a fixed pixel size,

there is a limit to the shortest possible propagation distance that can be simulated. Simple

techniques to shorten this constraint would have been useful in the simulation for Chapter 7.

The behaviour of the geometric sensor in the presence of photon noise was simulated with

a high number of photons, approximating Gaussian white noise. In the extreme, with low

photon counts, the geometric sensor is much more unpredictable. Unlike the three other

fully linear sensors, at low photon count levels, the presence of each single individual pho-

ton can have wildly different effects on the sensor output.

In the geometric wavefront sensor, the observed property ofthe Zernike polynomials under

projection, presented in the Appendix of this thesis, is also an unsolved conjecture. A proof

of this conjecture would complete the modal wavefront analysis of the geometric wavefront
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sensor.

8.2.1 Unification of wavefront sensors

The chapter layout of this thesis reflects the similarity between pairs of wavefront sensors

—the Shack-Hartmann and the pyramid wavefront sensors thatform a dual Fourier pair,

and the geometric and curvature sensor that are based on the same inputs. A theoretical

framework linking any of the Shack-Hartmann or pyramid sensors with the geometric or

curvature sensors would complete a link forming an series oftransformations between any

two sensor.

One possible direction here would be to focus on the similarities between the Shack-

Hartmann and curvature wavefront sensors. At the same time,this complements the ex-

perimental comparisons reported by Rigaut et. al [81].

In the Shack-Hartmann sensor, a wavefront is first subdivided into smaller sections. The

mean slope within each section is estimated using a quad-cell positioned at the focal plane.

By defocusing the measurement plane, as shown in Figure 8.1(a), then recombining (revers-

ing the subdivision operation) the quad-cell detectors to form an imaging array, we obtain

the curvature sensor.

(a) (b)
Focal plane quad-cells

Defocused
plane
quad-cells

Figure 8.1 A side-by-side comparison of the Shack-Hartmann (a) and curvature (b) wave-
front sensor.

In the curvature sensor, the wavefront subdivision operation is now implicit in image for-

mation, which localises the wavefront signal. The quad-cell slope detection equation needs

to be updated to take into account any intensity “spill-over” from the newly joined neigh-

bouring detector elements. The intensity level in each detector element results from the

gain or loss of light to and from its neighbours. Any change inthe intensity thus arises

from the difference in the wavefront slope at the pixel boundaries, proportional to the mean
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curvature of the wavefront within the pixel or sub-aperture.

Further analyses could also incorporate the scidar and slodar techniques into this wavefront

sensor framework, since they have very similar optical arrangements.
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Appendix
8.3 Projections of Zernike polynomials

During my analyses of the geometric wavefront sensor involving the radon transform, some

useful properties of the Zernike polynomials were observed. The properties of the Zernike

polynomials under projection may find wider application in many projection based imaging

techniques like computed tomography imaging or magnetic resonance imaging.

It was found that the rotational invariance of the Zernike polynomials translates to a pro-

jection direction invariance after a radon transform. Furthermore, all Zernike polynomials

within the same radial order seem to possess the same primaryprojection function. Since

the recovery of any image (within a circular support region)from their projections can be

described by its Zernike polynomial representation, the properties of the Zernike polyno-

mials can be used simplify the inverse problem by reducing itinto smaller sub-problems

for each Zernike radial group.

The properties observed here represent a special case of Cormack’s projection functions

[19], which examined the projection of radially symmetrical functions, their inverses, and

the uniqueness of the solution. Indeed, in a subsequent paper [20](Part 2), Cormack de-

scribed the Zernike polynomials and demonstrated in an experiment their projection solu-

tions. However, the conventions used to describe the Zernike polynomials were slightly

different from those adopted here.

The definitions for the Zernike polynomials in Equation 2.78, adopted from Noll [65], is

reproduced here for reference.
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Zi(r,θ) =



















√
n+1R0

n(r) if m = 0,
√

n+1Rm
n (r)

√
2cos(mθ) if m 6= 0, and i is even,

√
n+1Rm

n (r)
√

2sin(mθ) if m 6= 0, and i is odd,

(8.1)

where

Rm
n (r) =

n−m
2

∑
s=0

(−1)s(n−s)!

s![n+m
2 −s]![n−m

2 −s]!
rn−2s (8.2)

for 0 ≤ r ≤ 1 and non-negative integral values of n and m, withm≤ n andn−|m| being

even.

The polar coordinates(r,θ) can be converted back and forth to rectangular coordinates

(x,y). Let the x-axis be parallel to the line along azimuthal angle0, and the y-axis toπ2
radians. The radon transform of a particular Zernike polynomial Zi(x,y) is defined to be

ζi(u,φ) =
∫ ∞

−∞
Zi(x,y) dv (8.3)

where the projection is taken along thev-axis corresponding to the (parallel to a line at)

angleφ . Theu-axis is orthogonal to thev-axis and lies alongφ + π
2 .

For example, integrating along the y-axis corresponds toφ = π
2 .

ζi(u,
π
2

) =
∫ ∞

−∞
Zi(x,y) dy, for u = x (8.4)

Depending on the symmetry of the Zernike polynomials, theirprojections are given by
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ζi(u,
π
2

) =

∫ 0

−∞
Zi(x,y) dy+

∫ ∞

0
Zi(x,y) dy

=
∫ ∞

0
Zi(x,−y) dy+

∫ ∞

0
Zi(x,y) dy

=



















ζ ′
(n,0)(u) if m = 0,

ζ ′
(n,m)(u) if m 6= 0, and i is even,

0 if m 6= 0, and i is odd,

(8.5)

For oddi andm 6= 0, Zi(x,−y) =−Zi(x,y), so the projection along the y-axis is 0. For even

i, or whenm= 0, Zi(x,−y) = Zi(x,y), no cancellation occurs, and the resulting “primary

projection” is namedζ ′ with the corresponding radial ordern and azimuthal frequencym

as subscripts.

For any arbitrary rotation angleφ , a Zernike polynomial can be expressed in terms of

the sinusoidal and cosinusoidal Zernike pairs with the sameradial order and azimuthal

frequency (this is trivially true whenm = 0). Consequently, the projection of a Zernike

polynomial along any arbitrary angle is a weighted sum of thesinusoidal projection (always

0) and the cosinusoidal projection. For all eveni, and corresponding pairi ±11, this is

ζi(u,φ) =

∫ ∞

−∞
Zi(r,θ) dv

=
∫ ∞

−∞
Zi(r,θ +φ) dx

=

∫ ∞

−∞
Zi

(

r,θ +φ − π
2

)

dy

=

∫ ∞

−∞
cos
(

m(φ − π
2

)
)

Zi(r,θ)−sin
(

m(φ − π
2

)
)

Zi±1(r,θ) dy

= cos
(

m(φ − π
2

)
)

∫ ∞

−∞
Zi(r,θ) dy−0

= ζ ′
(n,m)(u)cos(m(φ − π

2
)) (8.6)

Figure 8.3 shows the projection of astigmatism, the 5th Zernike polynomial, over several

1Examples of the Zernike pairs are the tip/tilt terms 2 and 3, the astigmatic terms 6 and 5, or the coma
terms 8 and 7.
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Zernike
5

Figure 8.2 The 5th Zernike polynomial, corresponding to astigmatism.

angles. The projection functions are identical over all angles to within a scale factor. This

confirms the result from Equation 8.6.

The coefficients of the original pair of Zernike polynomialscan be derived by fitting the

projections to cos
(

m(φ − π
2)
)

. To recover a Zernike pair with azimuthal frequencyM, the

Nyquist limit requiresmore than2M samples over a revolution of projections. Since the

projections at anglesφ and φ + π
2 are the same (reflections), this requires more thanM

equally spaced projections in the radon transform.

We now examine the primary projection, which, for all cosinusoidal terms, is given by

ζ ′
(n,m)(u) =

∫ ∞

−∞
Zi(x,y) dy

=
∫ ∞

−∞

√
n+1Rm

n (r)cos(mθ)







1 if m = 0,
√

2 if m 6= 0







dy (8.7)

Ignoring all constant scale factors, within the same radialorder, the primary projection

∫ ∞

−∞
Rm

n (r)cos(mθ) dy (8.8)
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Figure 8.3 The projection of Z5 (see Figure 8.2) over one revolution, showing the invariance
of the projection image (to within a scale factor). Note also that the top-half of the plots are
the same (they are actually reflected across the y-axis) as the plots in the bottom-half, since
they are simply projections in opposite directions.

is identical for allm, so the primary projection is in fact parametrised only byn, ζ ′
n(u). As

shown in Table 8.1, the projections are given by Chebyshev Polynomials of the 2nd kind.

I am not aware of any analytical proof for this assertion. However, using symbolic inte-

gration techniques, this observation has been verified up toat leastn = 100. I propose the

conjecture that all Zernike polynomials with the same radial order have the same primary

projection function (ignoring the 1 or
√

2 scale factor in Equation 8.7), regardless of az-

imuthal frequency. An exception to this are polynomials with odd i (as has been shown,

these have projections of zero), using the Noll [65] numbering convention. Perhaps some

of the identities and reasoning in [20] could be used to provethis.
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n Polynomial number Projection
∫ ∞
−∞ Rm

n (r)cos(mθ )dy√
1−x2

0 1 2

1 2-3 2x

2 4-6 −2
3 + 8

3x2

3 7-10 −2x+4x3

4 11-15 2
5 − 24

5 x2 + 32
5 x4

5 16-21 2x− 32
3 x3 + 32

3 x5

6 22-28 −2
7 + 48

7 x2− 160
7 x4 + 128

7 x6

7 29-36 −2x+20x3−48x5 +32x7

8 37-45 2
9 − 80

9 x2 + 160
3 x4− 896

9 x6 + 512
9 x8

9 46-55 2x−32x3 + 672
5 x5− 1024

5 x7 + 512
5 x9

10 56-66 − 2
11 + 120

11 x2− 1120
11 x4+ 3584

11 x6− 4608
11 x8 + 2048

11 x10

Table 8.1 Prime projections of the Zernike polynomials.

8.3.1 Projection functions of Zernike polynomials

Table 8.1 shows the symbolically computed projection functions within some radial order

n, and their corresponding Zernike polynomials, up ton = 10. The symbolic integration

involved in the projection is partly simplified using the Chebyshev identity.

∫ ∞

−∞
Rm

n (r)cos(mθ) dy =

∫ ∞

−∞
Rm

n (r)(2cosθ cos((m−1)θ)−cos((m−2)θ)) dy

= 2x
∫ ∞

−∞

Rm
n (r)
r

cos((m−1)θ) dy

−
∫ ∞

−∞
Rm

n (r)cos((m−2)θ) dy (8.9)

8.3.2 Final thoughts

The chief disadvantage of this method is that the tabulated polynomials need to be discre-

tised into a matrix and least-squares inverted in order to obtain the Zernike decomposition

of an image from its projections. An analytical expression for Table 8.1 would result in a

more practical inversion process.



Referen
es
[1] CCD Primer (http://www.ing.iac.es/˜smt/CCDPrimer/CCDPrimer.htm).

[2] Gemini Observatory: exploring the universe from both hemispheres

(http://www.gemini.edu).

[3] Large Binocular Telescope Observatory (http://medusa.as.arizona.edu/lbto/).

[4] Main Hubble Page (http://hubble.nasa.gov/).

[5] The James Webb Space Telescope (http://www.jwst.nasa.gov/).

[6] The Very Large Telescope Project (http://www.eso.org/projects/vlt/).

[7] W. M. Keck Observatory (http://www.keckobservatory.org/).

[8] Howard Anton and Chris Rorres.Elementary Linear Algebra. John Wiley and Sons,

7th edition, 1994.

[9] H. W. Babcock. The possibility of compensatinhg astronomical seeing.Publications

of the Astronomical Society of the Pacific, 65:229–236, 1953.

[10] P. A. Bakut, V. E. Kirakosyants, V. A. Loginov, C. J. Solomon, and J. C. Dainty.

Optimal wavefront reconstruction from a shack-hartmann sensor by use of a bayesian

algorithm.Opt. Comm., 104:10–15, 1994.

[11] Salvador Bara, Susana Rios, and Eva Acosta. Integral evaluation of the modal phase

coefficients in curvature sensing: Albrecht’s cubatures.J. Opt. Soc. Am. A, 13:1467–

1474, July 1996.

[12] Jeffrey D. Barchers, David L. Fried, and Donald J. Link.Evaluation of the per-

formance of hartmann sensors in strong scintillation.Appl. Opt., 41(6):1012–1021,

February 2002.

191



192 REFERENCES

[13] Jacques M. Beckers. Interpretation of out-of-focus star images in terms of wave-front

curvature.J. Opt. Soc. Am. A, 11(1):425–427, 1994.

[14] Richard Berry and James Burnell.The Handbook of Astronomical Image Processing.

Willmann-Bell, 2000.

[15] Ronald Newbold Bracewell. Fourier analysis and imaging. Kluwer Aca-

demic/Plenum Publishers, 1st edition, 2003.

[16] Genrui Cao and Xin Yu. Accuracy analysis of a hartmann-shack wavefront sensor

operated with a faint object.Opt. Eng., 33(7):2331–2335, July 1994.

[17] Richard M. Clare and Richard G. Lane. Comparison of wavefront sensing with the

shack-hartmann and pyramid sensors.Proceedings of SPIE, 5490:1211–1222, 2004.

[18] Richard M. Clare and Richard G. Lane. Wavefront sensingfrom subdivision of the

focal plane with a lenslet array.Appl. Opt., 43:4080–4087, 2004.

[19] A. M. Cormack. Representation of a function by its line integrals, with some radio-

logical applications.Journal of Applied Physics, 34(9):2722–2727, 1963.

[20] A. M. Cormack. Representation of a function by its line integrals, with some radio-

logical applications. ii.Journal of Applied Physics, 35(10):2908–2913, 1964.

[21] Joana B. Costa. Modulation effect of the atmosphere in apyramid wave-front sensor.

Appl. Opt., 44(1):60–66, January 2005.

[22] S. Esposito and A. Riccardi. Pyramid wavefront sensor behaviour in partial correc-

tion adaptive optic systems.A&A., 369:L9–L12, 2001.

[23] G. F. Franklin et. al.Feedback control of dynamic systems. Prentice-Hall, 4th edition,

2002.

[24] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21:2758–2769,

1982.

[25] Ralf C. Flicker. Sequence of phase correction in multiconjugate adaptive optics.Opt.

Lett., 26(22):1743–1745, 2001.

[26] L. M. Foucault. Mmoire sur la construction des tlescopes en verre argent.Ann. Obs.

Imp. Paris, 5:197–237, 1859.



REFERENCES 193

[27] R. Foy, A. Migus, F. Biraben, G. Grynberg, P. R. McCullough, and M. Tallon. The

polychromatic artificial sodium star: A new concept for correcting the atmospheric

tilt. Astronomy and Astrophysics Supplement Series, 111:569–578, 1995.

[28] David L. Fried. Anisoplanatism in adaptive optics.J. Opt. Soc. Am., 72(1):52–61,

January 1982.

[29] David L. Fried and John F. Belsher. Analysis of fundamental limits to artificial-

guide-star adaptive-optics-system performance for astronomical imaging. J. Opt.

Soc. Am. A, 11(1):277–287, January 1994.

[30] B. Roy Frieden.Physics from Fisher information: A unification. Cambridge Univer-

sity Press, New York, 1998.

[31] Christ Ftaclas and Alex Kostinski. Curvature sensors,adaptive optics and neumann

boundary conditions.Appl. Opt., 40(4):435–438, 2001.

[32] R. W. Gerchberg and W. O. Saxton. A practical algorithm for the determination of

the phase from image and diffraction plane pictures.Optik, 35:237–246, 1972.

[33] Andreas Glindemann. Improved performance of adaptiveoptics in the visible.J.

Opt. Soc. Am. A, 11(4):1370–1375, 1994.

[34] R. A. Gonsalves. Nonisoplanatic imaging by phase diversity. Opt. Lett., 19(7):493–

495, 1993.

[35] Robert A. Gonsalves. Phase retrieval and diversity in adaptive optics.Opt. Lett.,

21(5):829–832, 1982.

[36] Robert A. Gonsalves. Small-phase solution to the phase-retrieval problem. Opt.

Lett., 26(10):684–685, 2001.

[37] Rafael C. Gonzalez and Richard E. Woods.Digital Image Processing. Addison-

Wesley Pub, 3 edition, 1992.

[38] J. Goodman.Introduction to Fourier Optics. McGraw-Hill, New York, 1996.

[39] T. E. Gureyev and K. A. Nugent. Phase retrieval with the transport-of-intensity

equation. ii. orthogonal series solution for nonuniform illumination.J. Opt. Soc. Am.

A, 13(8):1670–1682, 1996.



194 REFERENCES

[40] T. E. Gureyev, A. Roberts, and K. A. Nugent. Phase retrieval with the transport-of-

intensity equation: matrix solution with use of zernike polynomials.J. Opt. Soc. Am.

A, 12(9):1932–1941, 1995.

[41] Inwoo Han. New method for estimating wavefront from curvature signal by curve

fitting. Opt. Eng., 34(4):1232–1237, 1995.

[42] C. M. Harding, R. A. Johnston, and R. G. Lane. Fast simulation of a kolmogorov

phase screen.Appl. Opt., 38(11):2161–2170, 1999.

[43] Paul Hickson. Wave-front curvature sensing from a single defocused image.J. Opt.

Soc. Am. A, 11(5):1667–1673, May 1994.

[44] Hirofumi Horikawa, Naoshi Baba, Masashi Ohtsubo, YujiNorimoto, Tetsuo

Nishimura, and Noriaki Miura. Wind-flow measurement over the subaru telescope.

Appl. Opt., 43(15):3097–3102, 2004.

[45] Kazuichi Ichikawa, Adolf W Lohmann, and Mitsuo Takeda.Phase retrieval based

on the irradiance transport equation and the fourier transform method: experiments.

Appl. Opt., 27(16):3433–3436, 1988.

[46] Ignacio Iglesias, Roberto Ragazzoni, Yves Julien, andPablo Artal. Extended source

pyramid wave-front sensor for the human eye.Optics Express, 10(9):419–428, 2002.

[47] Roy Irwan. Wavefront sensing in Astronomical Imaging. PhD thesis, University of

Canterbury, 1999.

[48] Stuart M. Jefferies, Michael Lloyd-Hart, E. Keith Hege, and James Georges. Sensing

wave-front amplitude and phase with phase diversity.Appl. Opt., 41(11):2095–2102,

April 2002.

[49] Dustin C. Johnston, Brent L. Ellerbroek, and Stephen M.Pompea. Curvature sensing

analysis.SPIE Proceedings - Adaptive Optics in Astronomy, pages 528–538, 1994.

[50] Dustin C. Johnston and Byron M. Welsh. Analysis of multiconjugate adaptive optics.

J. Opt. Soc. Am. A, 11(1):394–408, January 1994.

[51] Steven M. Kay.Fundamentals of Statistical Signal Processing: estimation theory.

Prentice Hall, 1993.

[52] Richard L. Kendrick, D. S. Acton, and A. L. Duncan. Phase-diversity wave-front

sensor for imaging systems.Appl. Opt., 33(27):6533–6546, September 1994.



REFERENCES 195

[53] A. N. Kolmogorov.(Russian) Dokl. Akad, Nauk SSSR, 30:229, 1941.

[54] A. N. Kolmogorov.The local structure of turbulence in incompressible viscous fluids

for very large reynolds’ numbers. Wiley-Interscience, New York, 1961.

[55] R. G. Lane. Methods for maximum-likelihood deconvolution. J. Opt. Soc. Am. A,

13(10):1992–1998, October 1996.

[56] N. F. Law and R. G. Lane. Wavefront estimation at low light levels. Opt. Comm.,

126:19–24, 1996.

[57] David J. Lee, Michael C. Roggemann, and Byron M. Welsh. Cramer-rao analysis of

phase-diverse wave-front sensing.J. Opt. Soc. Am. A, 16(5):1005–1015, 1999.

[58] Michael Lloyd-Hart and N. Mark Milton. Fundamental limits on isoplanatic cor-

rection with multiconjugate adaptive optics.J. Opt. Soc. Am. A, 20(10):1949–1957,

October 2003.

[59] D. Russell Luke, James V. Burke, and Richard G. Lyon. Optical wavefront recon-

struction: Theory and numerical methods.SIAM Review, 44(2):169–224, 2002.

[60] R. P. Millane. Phase retrieval in crystallography and optics. J. Opt. Soc. Am. A,

7:394–411, 1990.

[61] Mark Milman, David Redding, and Laura Needels. Analysis of curvature sensing for

large-aperture adaptive optics systems.J. Opt. Soc. Am. A, 13(6):1226–1238, 1996.

[62] Peter W. Milonni. Adaptive optics for astronomy.American Journal of Physics,

67(6):476–485, June 1999.

[63] Peter W. Milonni, Robert Q. Fugate, and John M. Telle. Analysis of measured photon

returns from sodium beacons.J. Opt. Soc. Am. A, 15(1):217–233, 1998.

[64] Isaac Newton. Opticks or a treatise of the reflexions, refractions, inflexions and

colours of light. 1704.

[65] Robert J. Noll. Zernike polynomials and atmospheric turbulence.J. Opt. Soc. Am.,

66(3):207–211, 1976.

[66] Scot S. Olivier and Donald T. Gavel. Tip-tilt compensation for astronomical imaging.

J. Opt. Soc. Am. A, 11(1):368–378, 1994.



196 REFERENCES

[67] Scot S. Olivier, Claire E. Max, Donald T. Gavel, and James M. Brase. Tip-tilt com-

pensation: Resolution limits for ground-based telescopesusing laser guide star adap-

tive optics.The Astrophysical Journal, 407:428–439, 1993.

[68] Athanasios Papoulis.Systems and Transforms with Applications in Optics. McGraw-

Hill Book Company, 1968.

[69] Ronald R. Parenti and Richard J. Sasiela. Laser-guide-star systems for astronomical

applications.J. Opt. Soc. Am. A, 11(1):288–309, 1994.

[70] R. G. Paxman and J. R. Fienup. Optical misalignment sensing and image reconstruc-

tion using phase diversity.J. Opt. Soc. Am. A, 5(6):914–923, June 1988.

[71] Maria Petrou and Pedro Garcia Sevilla.Image Processing, Dealing with Texture.

John Wiley and Sons, Ltd, 1st edition, 2006.

[72] Ben C. Platt and Roland Shack. History and principles ofshack-hartmann wavefront

sensing.Journal of Refractive Surgery, 17:S573–S577, 2001.

[73] Lisa A. Poyneer and Bruce Macintosh. Spatially filteredwave-front sensor for high-

order adaptive optics.J. Opt. Soc. Am. A, 21(5):810–819, 2004.

[74] J. Primot, G. Rousset, and J. C. Fontanella. Deconvolution from wavefront sensing:

a new technique for compensating turbulence degraded images. J. Opt. Soc. Am. A,

9:1598–1608, 1990.

[75] R. Ragazzoni and J. Farinato. Sensitivity of a pyramidic wave front sensor in closed

loop adaptive optics.A&A., 350:L23–L26, 1999.

[76] Roberto Ragazzoni. Pupil plane wavefront sensing withan oscillating prism.Journal

of Modern Optics, 43(2):289–293, 1996.

[77] Roberto Ragazzoni, Emiliano Diolaiti, and Elise Vernet. A pyramid wavefront sensor

with no dynamic modulation.Opt. Comm., 208:51–60, 2002.

[78] Roberto Ragazzoni, Enrico Marchetti, and Gianpaolo Valente. Adaptive-optics cor-

rections available for the whole sky.Nature, 403:54–56, January 2000.

[79] W.H. Richardson. Bayesian-based iterative method of image restoration.J. Opt. Soc.

Am., 62(1):55, 1972.

[80] F. Rigaut and E. Gendron. Laser guide star in adaptive optics: the tilt determination

problem.A&A., 261:677–684, 1992.



REFERENCES 197

[81] Francois Rigaut, Brent L. Ellerbroek, and Malcolm J. Northcott. Comparison of

curvature-based and shack-hartmann-based adaptive optics for the gemini telescope.

Appl. Opt., 36(13):2856–2868, 1997.

[82] Claude Roddier and Francois Roddier. Combined approach to the hubble space tele-

scope wave-front distortion analysis.Appl. Opt., 32(16):2992–3008, June 1993.

[83] Claude Roddier and Francois Roddier. Wave-front reconstruction from defocused

images and the testing of ground-based optical telescopes.J. Opt. Soc. Am. A,

10(11):2277–2287, 1993.

[84] F. Roddier. Error propagation in a closed-loop adaptive optics system: a comparison

between shack-hartmann and curvature wave-front sensors.Opt. Comm., 113:357–

359, 1995.

[85] F. Roddier, editor.Adaptive Optics in Astronomy. Cambridge University Press, 1999.

[86] Francois Roddier. Curvature sensing and compensation: a new concept in adaptive

optics.Appl. Opt., 27(7):1223–1225, 1988.

[87] Francois Roddier. Wavefront sensing and the irradiance transport equation.Appl.

Opt., 29(10):1402–1403, 1990.

[88] Francois Roddier, Malcolm Northcott, and J. Elon Graves. A simple low-order adap-

tive optics system for near-infrared applications.Publications of the Astronomical

Society of the Pacific, 103:131–149, January 1991.

[89] M. C. Roggemann and B. Welsh.Imaging through turbulence. The CRC Press, 1st

edition, 1996.

[90] Claude E. Shannon. A mathematical theory of communication. The Bell System

Technical Journal, 27:379–423, 1948.

[91] M. Soto and E. Acosta. Performance analysis of curvature sensors: optimum posi-

tioning of the measurement planes.Optics Express, 11(20):2577–2588, 2003.

[92] W. H. Southwell. Wave-front analyzer using a maximum likelihood algorithm.J.

Opt. Soc. Am., 67(3):396–399, 1976.

[93] W. H. Southwell. Wave-front estimation from wave-front slope measurements.J.

Opt. Soc. Am., 70(8):998–1006, August 1980.

[94] Jakob J. Stamnes.Waves in Focal Regions. IOP Publishing Limited, 1986.



198 REFERENCES

[95] N. Streibl. Phase imaging by the transport equation of intensity. Opt. Comm.,

49(1):6–9, 1984.

[96] Michael Reed Teague. Irradiance moments: their propagation and use for unique

retrieval of phase.J. Opt. Soc. Am., 72(9):1199–1209, 1982.

[97] Michael Reed Teague. Deterministic phase retrieval: agreen’s function solution.J.

Opt. Soc. Am., 73(11):1434–1441, 1983.

[98] Michael Reed Teague. Image formation in terms of the transport equation.J. Opt.

Soc. Am. A, 2(11):2019–2026, 1985.

[99] Stephen F. Tonkin.Practical Amateur Spectroscopy (Patrick Moore’s Practical As-

tronomy). Springer-Verlag London Ltd, 2002.

[100] Glenn A. Tyler and David L. Fried. Image-position error associated with a quadrant

detector.J. Opt. Soc. Am. A, 72(6):804–808, June 1982.

[101] Robert K. Tyson. Introduction to Adaptive Optics. The International Society for

Optical Engineering, 2000.

[102] M. A. van Dam and R. G. Lane. Direct wavefront sensing using geometric optics.

In High Resolution Wavefront Control: Methods, Devices and Applications IV, Pro-

ceedings of SPIE, volume 4825, 2002.

[103] M. A. van Dam and R. G. Lane. Extended analysis of curvature sensing.J. Opt. Soc.

Am. A, 19(7):1390–1397, July 2002.

[104] M. A. van Dam and R. G. Lane. Tip/tilt estimation from defocused images.J. Opt.

Soc. Am. A, 19(4):745–752, Apr 2002.

[105] M. A. van Dam and R. G. Lane. Wave-front sensing from defocused images using

wave-front slopes.Appl. Opt., 41(26):5497–5502, September 2002.

[106] Christophe Verinaud. On the nature of the measurements provided by a pyramid

wave-front sensor.Opt. Comm., 233:27–38, 2004.

[107] Edward P. Wallner. Optimal wave-front correction using slope measurements.J.

Opt. Soc. Am., 73(12):1771–1776, 1983.

[108] Brian D. Warner.A practical guide to lightcurve photometry and analysis. Springer

Science+Business Media Inc, 1st edition, 2006.



REFERENCES 199

[109] Byron M. Welsh, Brent L. Ellerbroek, Michael C. Roggemann, and Timothy L. Pen-

nington. Fundamental performance comparison of a hartmannand a shearing inter-

ferometer wave-front sensor.Appl. Opt., 34(21):4186–4195, 1995.

[110] Byron M. Welsh and Chester S. Gardner. Performance analysis of adaptive-optics

systems using laser guide stars and slope sensors.J. Opt. Soc. Am. A, 6(12):1913–

1923, 1989.

[111] R. Gale Wilson. Wavefront-error evaluation by mathematical analysis of experimen-

tal foucault-test data.Appl. Opt., 14(9):2286–2297, 1975.

[112] Kim A. Winick. Cramer-rao lower bounds on the performance of charge-coupled-

device optical position estimators.J. Opt. Soc. Am. A, 3(11):1809–1815, November

1986.

[113] Carl Witthoft. Wavefront sensor noise reduction and dynamic range expansion by

means of optical image intensification.Opt. Eng., 29(10):1233–1238, October 1990.

[114] Simon C. Woods and Alan H. Greenaway. Wave-front sensing by use of a green’s

function solution to the intensity transport equation.J. Opt. Soc. Am. A, 20(3):508–

512, 2003.

[115] H. T. Yura. Short-term average optical-beam spread ina turbulent medium.J. Opt.

Soc. Am., 63(5):567–572, 1973.

[116] Fabio E. Zocchi. A simple analytical model of adaptiveoptics for direct detection

free-space optical communication.Opt. Comm., 248:359–374, 2005.


