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Abstract 

 

This project was aimed at synthesising, characterising and examining the properties of the 

novel polyamine ligand 4’-{2’”-(12-Amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine 

and its related complexes. The ligand would be based around the 4’-(o-toluyl)-2,2’:6’,2”-

terpyridine framework and have potential applications in analytical chemistry. 

 

The 4’-(o-toluyl)-2,2’:6’,2”-terpyridine framework would have a tail attached on the 

functionalised o-toluyl methyl  group. The ortho toluyl functionality was chosen so that the 

donor atom containing tail would be directed back towards the coordination site. This would 

make it easier for the tail to interact with a central metal ion. There is potential to be able to 

change the number and type of donor atom in the tail so that the ligand may be metal ion 

selective. As the tail would contain donor atoms, the denticity of the ligand would be 

increased making it more applicable for complexometric titrations. The 2,2’:6’,2” terpyridines 

exhibit strong colours when coordinated to selective metal ions and so would have potential 

applications in colorimetry also. 

 

The ligand was successfully synthesised and characterised. In a multi-step process, the 4’-(o-

toluyl)-2,2’:6’,2”-terpyridine underwent radical bromination before the tail was attached. The 

tail used in this research was N,N'-bis (3-aminopropyl)ethane-1,2-diamine (3,2,3-tet). The 

secondary amines in this polyamine tail were protected before addition to the brominated 4’-

(o-toluyl)-2,2’:6’,2”-terpyridine to ensure terminal addition. After the tail addition, a two step 

separation process purified a sample of 4’-{2’”-(12-Amino-2,6,9-triazadodecyl)-phenyl}-

2,2’:6’,2”-terpyridine for analysis. Due to the late stage in this research where a successful 
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separation technique was found, little work was done on examining the properties of this 

ligand and its complexes. 
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Chapter 1: Introduction 
 
 

1.1 General Overview 
 

This thesis describes the synthesis and study of a new polydentate ligand, 4’-{2’”-(12-amino-

2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine, which contains a terpyridine fragment 

along with additional amine donor groups in a flexible tail. This introductory chapter 

therefore discusses the background chemistry relevant to the synthesis and potential 

applications for this type of ligand. 

 

Denticity is a term used in coordination chemistry which describes the type and number of 

donor atoms on a ligand which can coordinate to a central atom, usually a metal ion. 

Ambidentate, monodentate, bidentate and polydentate are the most commonly used related 

expressions. Ambidentate indicates more than one type of donor or heteroatom is included 

in the ligand. An example of an ambidentate ligand would be the thiocyanate ion (NCS-) as it 

is able to bind through the N atom or the S atom. A ligand which has three or more donor 

atoms for coordination is often called polydentate. An example of a polydentate ligand is 

terpyridine. This ligand has three N atoms and frequently binds in a meridional manner 

around an octahedral metal ion. 

 

Polydentate ligands are able to form one or more chelate rings (from the Greek word chelè, 

meaning claw). This is where two of the donor atoms together with other atoms of the 

ligand form a ring with the central metal atom. The chelate effect is the name given to the 

extra stability that is observed for complexes of chelating ligands compared to those of the 
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equivalent number of monodentate ligands1. The extra stability can be understood in two 

ways. For example, if an ammonia ligand dissociates from a metal ion, it is easily lost into the 

solution surrounding the complex. If, however, one of the donor atoms of a tridentate ligand 

dissociates, it is far less likely that the second and/or third donor atom/s would dissociate at 

the same time so that the ligand would be lost into the surrounding solution. The donor 

atom that had dissociated is held close and is therefore more likely to recoordinate than if it 

was free in solution. Secondly, there is a gain in stability that is achieved through the more 

positive entropy change associated with complexation of a polydentate compared to that for 

monodentate ligands. When a polydentate ligand replaces some or all of the monodentate 

ligands on a metal ion, more disorder is generated2. In a reaction where the number of 

product molecules are greater than the number of starting reagent molecules, there are more 

degrees of freedom in the product, greater disorder, and therefore the reaction has a positive 

change in entropy. In the reaction between cobalt(II) hexahydrate and tpy, three molecules 

on the left produce the seven molecules on the right: 

 

[Co(H2O)6]
2+ + 2tpy →  [Co(tpy)2]

2+ + 6H2O 

 

There are effects which can reduce the stability of the chelates. These include ring strain, 

especially in rigid ligands, ligand to ligand repulsion and the effective positive charge of the 

metal ion being reduced as more ligands are attached to the metal ion. The strength of metal-

ligand (d-π*) back donation in terpyridine’s enables them to bind strongly to a variety of 

metal ions3. This characteristic, the chelate effect and the tuned properties, through 

functionalised substituents (Fig 1-3), facilitate terpyridine’s use in many applications.  
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For example, polydentate ligands can be exploited in the area of complexometric titrations 

and colorimetry. These two analytical techniques can be used to determine the concentration 

of metal ions in aqueous solutions.  In the field of complexometric titrations, polydentate 

ligands are able to react more completely and often react with metal ions in a single step 

process. This gives the titration curves a sharper end point4 (Figure 1-1). 

 

Figure 1-1 Titration curves of a tetradentate ligand (A), a bidentate ligand (B) and a monodentate ligand (C). 
Douglas A. Skoog, Donald M. West, F. James Holler. Analytical Chemistry. An Introduction. Saunders College 
Publishing, U.S.A. 1994, p 239. 
 

The end point is distinguished by observing a significant change in colour or, more 

commonly, by detecting the activity (concentration) of anionic species using an ion-selective 

electrode (ISE). The ISE can detect the activity of the metal ion directly (pMn+). Detection 

can also be through pH by using an indicator, such as erichrome black, which consumes H+ 

ions at specific pHs when it is displaced from the metal ion by the complexing agent5. 

 

Colorimetry is used to determine the concentration of metal ions in aqueous solution. This 

technique can also detect the presence of a particular metal by visual means6. The 

concentration is established using a spectrophotometer which operates in the UV/Visible 



 4 

region (200 – 800nm). From a series of complexes of known concentration, a set of 

absorbance values are established and a graph constructed. An absorbance reading from a 

sample of unknown concentration can then be obtained. This reading can then be 

interpolated directly from the graph or inserted into the equation, for the slope of the graph, 

to find the unknown concentration.  

Terpyridines, or more specifically, 2,2’:6’,2”-terpyridine (tpy), is a ligand that is polydentate. 

Tpy can be modified with substituents, as we will show later, so that the denticity can be 

increased. Tpy also contains a conjugated system. A conjugated system generally enables a 

ligand to give a range of strong colours in the visible region when coordinated with a variety 

of metal ions. These intense colours facilitate ease of detection, as the presence of a 

particular metal ion can be identified by the human eye without the need for expensive 

diagnostic equipment.  It is well documented that tpy gives an array of intense colours with a 

variety of metal ions7, 8 &9. These characteristics make tpy ideal for use in colorimetry and 

could also provide applications in complexometric titrations. 

 

1.2 Structures of 2,2’:6’,2”-Terpyridines 
 

The tpy molecule contains three coupled pyridine rings. The central pyridine is coupled at 

the 2 and 6 positions to the other two pyridine rings. Both the outer two pyridine groups are 

coupled to the central pyridine at their 2 position. Rotation about the 2-2’ and 6’-2” bonds 

enables tpy to act as a tridentate ligand (Fig. 1 -2). The rigid planar geometry forces tpy to 

bind to a central octahedral metal ion in a meridional manner. For nomenclature purposes, 

positions on the left hand pyridine ring will be numbered 1 – 6, the central pyridine ring 1’ – 

6’ and the right hand pyridine ring 1” – 6”. In the case of presence of a 4’-aryl group, 
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positions will be numbered 1’” – 6’”, and any major substituents will be labelled ortho (o), meta 

(m) or para (p) according to their position on the 4’-aryl ring. 

 

N

N

N
2 2' 6'

2"

2'" or ortho

4'

 
Figure 1-2 The unsubstituted structure of o-toluyl- 2,2':6',2"-terpyridine. 
 

 
 There are many positions where the tpy ligand can have different substituents added (Fig. 1-

3). These substituents are usually already part of tpy precursors10. Substituents in the 3 – 6 

and 3” – 6” positions are called terminally substituted 2,2’:6’,2”-terpyridines as they are on 

the terminal rings. These substituents can be symmetrical or unsymmetrical. Terminal 

substitutions have, so far, been reported only in very limited numbers11, 12 & 13. 

 

By far the most substitutions have been in the 4’ position. In this position, the substituent is 

directed away from the meridional coordination site of the ligand. There are two main 

synthetic pathways for adding substituents in the 4’ position after construction of the tpy 

framework, shown in the scheme below. Firstly (route a), 4’-terpyridinoxy derivatives are 

easily accessible via a nucleophilic aromatic substitution of 4’-haloterpyridines by primary 
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alcohols and analogs and secondly (route b) by SN2-type nucleophilic substitution of the 

alcoholates of 4’-hydroxyterpyridines14. 

N
H

N N

O

PCl5, POCl3
ROH

N

N

N

R

N

N

N

OR

ROH

Ph3P,

Diisopropylazodicarboxylate

route a

route b

Figure 1-3  2,6-bis(2-pyridyl)-4(1H)-pyridone with route a) the nucleophilic aromatic substitution via a 4’-halo 
terpyridine and route b) an SN2-type nucleophilic substitution. 
 

 

4’-Arylterpyridines can also be synthesised from the starting materials via the Kröhnke ring 

closure method (Figure 1-4). More details on these reactions are given in Section 1.4, 

Synthesis of Terpyridines. 

 

Once again the majority of the functional substituents, of the aryl group are in the para 

position and, point directly away from the coordination site. The ortho site could be exploited 

so that a “tail” containing donor atoms would be directed back towards the coordination site 

(Figure 1-5). The “R” group, or tail, would now be able to interact with the metal ion and 
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more closely to the rest of the ligand. This close interaction with the tail could thereby 

influence the properties, such as fluorescence, redox potential and colour intensity of the 

complex.  

 

 
Figure 1-4 The Kröhnke ring closure synthetic route of a 4’ aryl-terpyridine. Inset shows the origin of the 4’-
aryl substituent, o-toluyl aldehyde. 
 

 
Figure 1-5 Terpyridine with a poly heteroatom “tail” interacting with a central metal ion. 
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With the addition of the tail, the shape of this molecule is reminiscent of a scorpion as it 

bites through the three pyridine nitrogen atoms and the tail comes over the top to “sting” 

the metal centre. It could be said that this molecule is more scorpion-like than the classes of 

ligands called scorpionates15 or scorpiands 16(Figure 1-6). 

 

 

Figure 1-6 Examples from the classes of ligands called scorpionates15 (left) and scorpiands16 (right) 
 

 

1.3 History of Terpyridines 
 

Sir Gilbert Morgan and Francis H. Burstall were the first to isolate terpyridine in the 1930’s.  

They achieved this by heating between one and eight litres of pyridine in a steel autoclave to 

340°C, at 50 atms, with anhydrous ferric chloride for 36 hours17. Since this discovery, 

terpyridines have been widely studied. As of the late 1980’s, research into terpyridines and 

their applications has grown exponentially (Fig. 1-4). The application of tpys in 

supramolecular chemistry has certainly contributed to this growth18. 
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Figure 1-7 A graph of a search done using SciFinder on articles containing the term terpyridine as of 
30/10/2008 
 

 

1.4 Synthesis of Terpyridines 
 

There are two commonly used synthetic routes for the production of terpyridines. These are 

the cross-coupling and the ring assembly methods. The cross-coupling method has mostly 

given poor conversions and has been the less favoured of the two. The Kröhnke ring 

assembly method has, to date, been the more popular method.  

 

The Stille cross-coupling reaction is a palladium catalysed carbon-carbon bond generation 

from the reaction of organotin reagents19. The mechanism of the reaction is still the subject 

of debate20,21 (Fig. 1-7). It appears that the 2,6-dibromo-pyridine completes two cycles to 

form the 2,2’:6’,2’’-terpyridine. It is also possible that there are two palladium catalysts acting 

simultaneously on the 2,6-dibromo-pyridine. 
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Figure 1-8 A generic Stille coupling synthesis of 2,2’:6’,2” terpyridine. (Py = pyridine). Below is a mechanism 
proposed by Espinet and associates Arturo L. Casado, Pablo Espinet and Ana M. Gallego.  J. Am. Chem. Soc. 
2000, 122, p 11771 – 11782. 
 
 

This method of tpy synthesis could become more popular than the conventional ring closure 

method as cross-coupling becomes more efficient. Schubert and Eschbaumer recently 

described the formation of 5,5”-dimethyl-2,2’:6’,2”-terpyridine with a yield of 68% using the 

Stille cross-coupling method22. Efficiency aside, the fact remains that organotin compounds 

are volatile and toxic which creates environmental issues23.  

The Kröhnke ring closure synthesis24 is well known and widely used25,26,27,28&29 . The ring 

closure is facilitated by ammonia condensation with the appropriate enone or a 1,5 diketone 

(Figure 1-9).  
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Figure 1-9 The Kröhnke style synthesis for 4’-(o-touyl)-2,2’:6’,2”-terpyridine. 
 

Sasaki et al. reports yields of up to 85% from some Kröhnke style condensations for 

synthesizing tpys30. Wang and Hanan describe a facile “one-pot” Kröhnke style synthesis of 

4’-aryl-2,2’:6’,2”-terpyridines31. Cave and associates have investigated ‘green’ solvent free 

alternatives to the Kröhnke synthesis32,33. 

 

These different syntheses have enabled substitution of the tpy ligand at most positions. This 

has allowed their application in many areas of structural chemistry such as coordination 

chemistry, polymer and supramolecular chemistry. The different substituents, in different 

positions, also change the properties of tpy. Much tpy research is based around the changes 

in properties that the addition of different substituents gives this ligand and its complexes. 
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The substituents can change the electronic and spectroscopic properties of tpy complexes. 

The change in tpy properties depends upon the electron donating and withdrawing 

characteristics and the position of the substituents34. 

 

 

1.5 Properties and Applications of Terpyridines 

 

The properties of tpy complexes are wide, varied and interesting. These properties are the 

reason that tpy complexes potentially have many practical applications35. Some examples are 

a conjugated polymer with pendant ruthenium tpy trithiocyanato complexes with charge 

carrier properties for potential application in photovoltaic cells36. A redox active bis (tpy) 

iron complex for charge storage which can be applied to the field of electronic memory 

storage37. The photoactive properties of tpy complexes lead to potential applications in 

organic light emitting diodes38 and plastic solar cells39. Only the examples more important 

and relevant to this project will be described in more detail. 

 

Luminescence is an important property that has potential applications in sensors. 

Luminescence is the emission of radiation/photons from a complex after the electronic 

excitation of the complex by radiation. The two mechanistic categories of luminescence are 

fluorescence and phosphorescence. Fluorescence is the emission of a photon with a lower 

energy (longer wavelength) than the radiation that was absorbed to increase the energy of the 

system. This mechanism is spin allowed and typically has half-lives in the order of 

nanoseconds. Phosphorescence is also the emission of a photon lower in energy than the 

radiation that was absorbed. This mechanism is spin forbidden, which usually results in a 
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significantly longer lifetime than in fluorescence. There are many complexes containing tpy 

that display luminescent behaviour and could be applied in the field of sensors. The choice 

of metal center is somewhat limited as most transition metals (d1 – d9) are able to quench any 

luminophore in close proximity. They achieve this via electron transfer, redox, or by energy 

transfer due to partially filled d shells of low energy40. 

 

Kumar and Singh recently described an eight coordinate complex of samarium and 

terpyridine [SmCl2(tpy)(CH3OH)2]Cl. Although the emission spectrum was not shown in this 

paper for this complex, it was stated that all four samarium derivatives displayed the same 

emission features. Therefore [SmCl2(terpy)(CH3OH)2]Cl has similar features to the spectrum 

for [SmCl3(bipy)2(CH3OH)] which showed metal centered emission peaks at 562.0, 597.0, 

664.0 and 715nm41. Zhang et al describe their spectroscopic studies of a multitopic tpy 

ligand, 4’-(4-pyridyl)-2,2’:6’,2’’-terpyridine with a range of metal ions. They show that this 

ligand shows increasing luminescence, with increasing concentration, when coordinated to 

cobalt(II) and iron(II). The complexes then experienced luminescence quenching once the 

concentration exceeded 1.3 x 10-5 mol L-1. When 4’-(4-pyridyl)-2,2’:6’,2’’-terpyridine was 

coordinated to samarium(III), europium(III) and terbium(III), the complexes showed both 

ligand and lanthanide ion emission42. 

 

Redox potential is another reported property of tpy complexes. Molecules that display redox 

properties have prospective applications in charge storage43, solar cells44 and photocatalysis45  

Houarner-Rassin et al investigate a new heteroleptic bis(tpy) ruthenium complex that has 

improved photovoltaic photoconversion efficiency because of an appended oligothiophene 

on the tpy ligand. It was proposed that the appended oligothiophene unit decreased the rate 
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of the charge recombination process. Equally important, is the development of solid state 

strategies for real world applications. This is because the presence of liquid electrolyte in cells 

limits the industrial application due to the electrolytes long term stability46. This polymer 

coating has the potential to replace the liquid electrolytes are currently used in solar panels. 

Alternative sources of energy become increasingly important, especially as the worlds 

resources come under increasing pressure47 

 

Molecular storage/switches are another area of importance. Advances in research give us the 

ability to develop applications with ever decreasing energy requirements using nanoscale 

technology48. Pipes and Meyer report on a terpyridine osmium complex 

[(tpy)OsVI(O)2(OH)]+ that has a reversible three electron couple at the same potential49. 

 

Colorimetry is the measurement of the change in the colour or intensity of light because of a 

chemical reaction. Metal ions are able to undergo a significant colour change when they 

exchange ligands. Detection can be identified by the naked human eye or the detection limit 

can be lowered significantly and read more precisely with an absorbance spectrometer50. This 

is a field in which this project could have potential applications. Kröhnke has already 

mentioned that some tpys are highly sensitive reagents for detecting iron(II) 51. Zuo-Qin 

Liang et al developed a novel colorimetric chemosensor containing terpyridine capable of 

detecting relative amounts of both iron (II) and iron (III) in solution using light-absorption 

ratio variation approach52. Previous chemosensors have only been able to detect the total 

amount of Fe(II) + Fe(III) in solution. Coronado et al described a tpy ruthenium dye, 

[(2,2’:6’,2”-terpyridine-4,4’,4”-tricarboxylate)ruthenium(II) tris(tetrabutylammonium) 
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tris(isothiocyanate)]. The dye was able to detect and be specific for mercury(II) ions to 150 

ppb53. From the crystals of a similar complex, where bis(2,2’-bipyridyl-4,4’-dicarboxylate) 

 replaced (2,2’:6’,2”-terpyridine-4,4’,4”-tricarboxylate), it was found that the mercury ions 

bound to the sulphur atom of the dye’s thiocyanate group This sensor also exhibited 

reversible binding by washing with potassium iodide. It was postulated that the iodide ions 

from the potassium iodide formed a stable complex with the mercury ions thereby releasing 

them from the ruthenium-tpy complex. In a later paper, Shunmugam and associates54 detail 

tpy ligand derivatives able to detect mercury(II) ions in aqueous solution. The tpy ligands are 

able to selectively detect mercury(II) ions over other environmentally relevant metal ions 

such as CaII, BaII, PbII, CoII, CdII, NiII, MgII, ZnII, and CuII. They report a detection limit of 2 

ppb, the EPA standard for mercury(II) in drinking water. 

 

There’s no doubt that tpys have potential applications in the field of colorimetry. An area 

that has yet to reach its full potential is complexometry. Complexometry traditionally uses 

polydentate ligands and the closer the denticity to the coordination number of the target 

metal ion, the sharper the end-point55. The deprotonated form of EDTA is a typical agent, as 

it is hexadentate. This enables the ligand to completely encapsulate the target metal ion. Why 

have tpys been overlooked in the field of complexometric titrations? Perhaps it is because 

they are only tridentate and this is considered insufficient because if tridentate tpy was 

titrated against a metal ion with a coordination number of 6, two end points would be 

detected with each stepwise formation56. What if the denticity of tpys could be increased so 

that they too, could encapsulate the entire target metal ion? And, what if, tpys could be 

‘tuned’ to suit a particular metal ion? We could use our knowledge of chemistry, such as hard 

soft acid base theory and preferential coordination number, to design these adaptations. 
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With the substituent in the 4’ position, tpy has this functional group directed away from the 

coordination site. This may have been because the researchers were only interested in the 

effect these substituents had on the properties of the complex with tridentate binding. In 

this project we describe a tpy ligand that has been designed so that the substituent is directed 

back towards the coordination site. This tpy ligand is based on 2,2’:6’,2” terpyridine with a 

4’-aryl substituent. The difference with the 4’-aryl group on this tpy is that its functional 

group is in the ortho position. Most previously reported tpy ligand derivatives with a 4’-aryl 

group have had the functional group in the para position. If this functional group was in the 

ortho position of the 4’ aryl substituent, it would now be positioned back towards the 

tridentate coordination site and could also be further functionalised. This ortho substituent 

could also contain donor atoms which would increase the denticity of the tpy ligand. There is 

scope to change the type and number of donor atoms in the substituent and as a result the 

tpy could be tuned to be specific for a particular metal ion. 

 

There is a possibility that this ligand could form dimers, trimers or even undergo 

polymerisation when coordinating with metal ions. Formation of monomeric complexes may 

well be entropically favoured, but other effects may overcome this. Polymerisation could 

happen when the three terpyridine nitrogen atoms bind to one metal and the tail to a second. 

Then, three terpyridine nitrogen atoms from a second ligand bind to that second metal atom 

and its tail to a third metal atom and so on. 
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Chapter 2: Ligand Synthesis 
 

2.1 Introduction 
 
The aim of the research presented in this thesis was to synthesise and characterise a new 

polydentate ligand based on the 4’(o-toluyl)-2,2’: 6’,2”-terpyridine framework and explore its 

coordination chemistry. The 4’-(o-toluyl)-2,2’:6’,2”-terpyridine was chosen because there was 

potential for the methyl group on the 4’ toluyl ring to cause this ring to twist because of 

steric effects. This twist and the position of the methyl group on the ring means that the 

methyl group will now be directed back over the top of the ligand towards the tridentate tpy 

binding site. A tail containing donor atoms can now be attached to increase the denticity of 

the ligand and therefore binding to a central metal ion.  

 

The plan to synthesise this new polydentate ligand is shown in the retrosynthetic analysis in 

the figure below (Figure 2-1). The tail addition is achieved via a radical bromination of 4’-(o-

toluyl)-2,2’:6’,2”-terpyridine which in turn comes from the Kröhnke style ring closure of 2-

methyl-1-[3-(2-pyridyl)-3-oxypropenyl]-benzene and (2-pyridacyl)-pyridinium iodide. 
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Figure 2-1 The retrosynthetic analysis of 4’-{2’”-(12-amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine 
 

2.2 Results and Discussion 
 

2.2.1 4’-(o-Toluyl)-2,2’:6’,2”-terpyridine Synthesis 
 

Two methods were explored for the synthesis of 4’-(o-toluyl)-2,2’:6’,2”-terpyridine. The three 

step Field et al method76 gave a very pure product, after recrystallisation, but I obtained only 

poor overall yield at just 4% and it was very labour intensive. The second method is the 

Hanan “1 pot” synthesis75.  I could increase the scale of that synthesis 5-fold without 

compromising the better yield, of over 51%. This synthesis gave a far greater yield and could 
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be produced in larger individual quantities with less time being consumed than with the three 

step method. 

 

The 1H NMR spectra of the two precursors in the three step method, 2-methyl-1-[3-(2-

pyridyl)-3-oxypropenyl]-benzene (Figure 2-3) and (2-pyridacyl)-pyridinium iodide (Figure 

2-5) were compared with the literature results of Field et al 76 and Ballardini et al 77, 

respectively, to confirm that the correct product had formed.  

 

2-Methyl-1-[3-(2-pyridyl)-3-oxypropenyl]-benzene is a key intermediate in the three step 

synthesis of 4’-(o-toluyl)-2,2’:6’,2”-terpyridine. It is obtained through a reaction of equal 

molar amounts of 2-acetylpyridine and o-tolualdehyde. A yield of 34% was recorded and the 

product was off-white in colour and its physical appearance fluffy or fibrous. 

 

The assignment of proton positions will be made using the numbering system for 2-methyl-

1-[3-(2-pyridyl)-3-oxypropenyl]-benzene shown in Figure 2-2. In the 1H NMR spectrum for 

2-methyl-1-[3-(2-pyridyl)-3-oxypropenyl]-benzene (Figure 2-3), there are 11 proton 

environments for the 13 protons. The signals assigned to the methyl group (posn 16) and 

methylene proton (posn 8) adjacent to the carbonyl carbon are the most obvious, with 

chemical shifts of 2.56 ppm and 8.80 ppm, and relative integral values of 3 and 1 

respectively. The large downfield chemical shift of the peak at 8.80 ppm is due to the 

deshielding nature of the carbonyl group. The doublet for the alkene proton adjacent to the 

carbonyl carbon arises from the coupling to the single alkene proton (posn 9) on the adjacent 

carbon atom. The remaining peaks, from 7.26 ppm to 8.30 ppm correspond to the aryl and 

pyridine protons (posns 2 – 5 and 11 – 14). 
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Figure 2-2 The numbering system for 2-Methyl-1-[3-(2-pyridyl)-3-oxypropenyl]-benzene 
 

 
Figure 2-3 The 1H NMR spectrum of 2-methyl-1-[3-(2-pyridyl)-3-oxypropenyl]-benzene 
 

 

(2-Pyridacyl)-pyridinium iodide is the second intermediate required in the three step 

synthesis of 4’-(o-toluyl)-2,2’:6’,2”-terpyridine. It is obtained from reaction between iodine, 

pyridine and 2-acetylpyridine under inert conditions. A yield of 26% was obtained and the 

product was yellow/green and crystalline in appearance. 

 

The numbering system for (2-pyridacyl)-pyridinium iodide is shown in Figure 2-4. The 1H 

NMR spectrum for (2-pyridacyl)-pyridinium iodide (Figure 2-5) shows there are 8 proton 

environments for the 11 protons. The singlet peak at 4.60 ppm was assigned to the two 
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protons on the carbon (posn 8) adjacent to the carbonyl carbon (posn 7) as no coupling to 

others protons is observed. This spectrum is consistent with the description in the 

literature77. 

 

 
Figure 2-4 The numbering system for (2-pyridacyl)-pyridinium iodide 
 

 

 
Figure 2-5 The 1H NMR spectrum for (2-pyridacyl)-pyridinium iodide 
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4’-(o-Toluyl)-2,2’:6’,2”-terpyridine was synthesised by two methods as mentioned previously. 

The third step, in the three step method, involves a Michael addition followed by an aldol 

condensation between 2-methyl-1-[3-(2-pyridyl)-3-oxypropenyl]-benzene and (2-pyridacyl)-

pyridinium iodide. The “1 pot” method is a reaction between 1 molar equivalent of o-

tolualdehyde and 2 molar equivalents of 2-acetylpyridine. In both cases the product was a 

yellowish white precipitate. 

 

Complete assignments of 1H and 13C NMR spectra were made and were consistent with the 

values given in the literature76. COSY, NOESY and HSQC spectra were also obtained. The 

1H NMR spectrum (Figure 2-7) shows a total of 17 protons in the 10 environments. The o-

toluyl methyl group has a singlet peak at 2.38 ppm. The only other singlet peak in this 

spectrum is for the 3’ and 5’ protons at 8.49 ppm. The doublet peak at 8.70 – 8.72 ppm 

shows four protons in similar environments. Previous papers have assigned these peaks to 

6,6” at 8.72 ppm and for 3,3” at 8.71 ppm51, 76. 

 

N

N

N
2 2' 6'

2"

2'" or ortho

4'

3 3"

5"'

 
Figure 2-6 The numbering system for 4’-(o-toluyl)-2,2’:6’,2”-terpyridine 
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Figure 2-7 The 1H NMR spectrum for 4’-(o-toluyl)-2,2’:6’,2”-terpyridine. 
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The COSY spectrum (Figure 2-8) shows that the overlapping doublets at 8.70 to 8.72 ppm 

both have couplings to protons at 7.90 ppm and around 7.30 ppm. The triplet at 7.90 ppm is 

coupled to the doublet peak for 3,3” protons and so can be assigned to the 4,4” protons. In 

a similar way the peaks at around 7.30 ppm can then be assigned 5,5” protons. All the peaks 

for the pyridyl rings have now been assigned. The remaining peaks are assigned to the 4’-

toluyl ring. This group of peaks wasn’t able to be distinguished further by the other 

spectroscopic methods used. 

 

The two NOESY spectra gave no useful results for o-toluyl-2,2’:6’,2”-terpyridine after the 

molecule was irradiated at 8.49 ppm and 2.38 ppm.  

 

The HSQC spectrum (Figure 2-9) shows 9 carbon atoms, with protons attached, in the 

aromatic region. Four of these have the protons at 7.30 to 7.34 ppm. The methyl group can 

be assigned to the peak at 20.74 ppm. 

 

The 13C NMR spectrum (Figure 2-10) gives information on the quaternary carbon atoms 

which can be assigned based on them typically having lower peak heights and through cross-

referencing with the HSQC spectrum. There are five environments for the quaternary 

carbon atoms which is consistent with the five shorter peaks in the spectrum. These peaks 

we found at 156.5, 155.6, 152.2, 139.9 and 135.4 ppm. Three of these peaks are the shortest, 

152.2, 139.9 and 135.4 ppm. These can be assigned to the quaternary carbon atoms, 4’, 1’” 

and 6”’. The other two peaks at 156.5 and 155.6 ppm, which have double the peak heights 

due to symmetry in the molecule, represent the quaternary carbons 2,2” and 2’,6’.  
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Figure 2-8 The COSY spectrum for 4’-(o-toluyl)-2,2’:6’,2”-terpyridine. 
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Figure 2-9 The HSQC spectrum for 4’-(o-toluyl)-2,2’:6’,2”-terpyridine. 
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Figure 2-10 The 13C NMR spectrum for 4’-(o-toluyl)-2,2’:6’,2”-terpyridine. 
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2.2.2 The Radical Bromination Reaction 

The radical bromination step was initially performed in benzene and gave only mediocre 

results. Yields were low and there was always some starting material present, approximately 

10%, in the final product. Carbon tetrachloride solvent was tried next in attempts to improve 

yields as it has no C-H bonds and doesn’t easily undergo free radical reactions57. This 

approach was tried and found to be a great success. Not only were yields increased, but the 

final product was found to be of higher purity.  

 

The radical bromination was a delicate reaction that required more care than with the 

previous reactions in this sequence. This reaction was carried out under inert conditions. 

Special care was also taken with all reaction vessels and solvent to remove the maximum 

amount of moisture content. The reaction vessels were stored in an oven (70°C) prior to the 

reaction. The carbon tetrachloride was dried over phosphorous pentoxide and this mixture 

was then heated at reflux in a still under inert conditions for four hours prior to use. The 

crude product of this reaction, 4’-(2-(bromomethyl)phenyl)-2,2’:6’,2”-terpyridine, was used 

directly because of its tendency to decompose. When benzene was the solvent, the yield was 

38% and when using carbon tetrachloride, yields of up to 64% were achieved. 

 

Crude samples of this molecule were characterized using 1H NMR, COSY, HSQC and 13C 

NMR spectroscopy. Only 1H NMR and COSY spectra will be discussed as interest was 

principally focused on the extent of the radical bromination. Assignment of proton positions 

on this molecule follows the same numbering system of 4’-(o-toluyl)-2,2’:6’,2”-terpyridine 

(Figure 2-6). The 1H NMR spectrum (Figure 2-11) clearly shows a new peak, in comparison 

to the 1H NMR spectrum for 4’-(o-toluyl)-2,2’:6’,2”-terpyridine, at 4.45 ppm for the 
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brominated o-toluyl methyl group. There is also a small peak at 2.30 ppm in the spectrum 

which can be assigned to the o-toluyl-methyl group of unreacted 4’-(o-toluyl)-2,2’:6’,2”-

terpyridine. A doublet peak has appeared at 7.42 ppm out of the cluster of peaks 

representing the 4’-toluyl and 5,5” protons. The integral for this peak is consistent with it 

being due to a single proton and it is therefore assigned to the 4’ toluyl proton. There are 

only two possibilities for doublets in the 4’ toluyl ring, 3’” and 6”’ protons, as the 4’” and 5”’ 

proton peaks will appear to be triplets. This doublet most likely represents the 3’” proton 

and has moved downfield, presumably due to the electronegativity of the bromine atom. 

 

The COSY spectrum (Figure 2-12) shows coupling of the new doublet peak at 7.42 ppm and 

the cluster of peaks but no coupling to the other terpyridine protons. This confirms that this 

proton is part of the 4’-toluyl ring. 

 

The mass spectrum of 4’-(2-(bromomethyl)phenyl)-2,2’:6’,2”-terpyridine (Figure 2-13) 

showed good results with peaks at 402.0603 and at 404.0605. This two peak set, two units 

apart, is typical of mass spectra for bromine containing molecules. The isotope pattern was 

in agreement with the calculated isotope pattern. 
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Figure 2-11 The 1H NMR spectrum for 4’-(2-(bromomethyl)phenyl)-2,2’:6’,2”-terpyridine 
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Figure 2-12 The COSY spectrum for 4’-(2-(bromomethyl)phenyl)-2,2’:6’,2”-terpyridine 
 

 
Figure 2-13 4’-(2-(bromomethyl)phenyl)-2,2’:6’,2”-terpyridine mass spectrum (bottom) and calculated isotope 
pattern (top) 
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2.2.3 N,N'-bis (3-aminopropyl)ethane-1,2-diamine (3,2,3 tet) 
Protection Product: 1,5,8,12-Tetraazadodecane 

 

  

The addition of the tail or more precisely, the site at which the addition took place on the 

polyamine tail was the next challenge. The site was an issue because we wanted a terminal 

addition to take place, but secondary amines are often more reactive than primary amines 

because of their higher basicity. There is, however more steric hindrance involved with the 

secondary amines. Mixtures would likely result and these may prove difficult to separate. The 

direct approach was attempted in case it did prove to be straight-forward but mixtures were 

produced, and separation attempts failed.  

 

A way of protecting these secondary amines was needed. A route similar to that which has 

been employed for the production of macrocyclic polyamines was used (Figure 5-6). In this 

reaction, the polyamine underwent a double condensation reaction with glyoxal and formed 

a ring-like structure called a bisaminal. This produced tertiary amines from the secondary 

amines and secondary amines from the primary amines. The reaction had the two-fold effect 

of protecting the secondary amines and producing more reactive terminal amines. The plan 

was to use N,N'-bis(3-aminopropyl)ethane-1,2-diamine (3,2,3-tet) for the tail of the ligand. 

In the protection reaction, it was predicted that the glyoxal would add in a vicinal manner 

(Figure 2-14). If this protection chemistry was done on N,N’-bis(2-aminoethyl)-ethane-1,2-

diamine (2,2,2 tet), the dialdehyde can add in a vicinal or geminal manner giving a mixture of 

isomers. Previous studies have shown that the dialdehyde adds in such a manner that 

products with as many six-membered rings as possible are preferentially formed58.  The 
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dialdehyde adds in a vicinal manner with 3,2,3 tet because if the glyoxal added in a geminal 

fashion, two seven membered rings would form on the propanyl sections of the 3,2,3-tet 

rather than two six membered rings. 

 
Figure 2-14 The vicinal and geminal isomer formation from the protection chemistry of 2,2,2 tet and 3,2,3 tet 
 
 

A good yield of 82% of the bisaminal was obtained. 

 

For the assignment of proton positions on this molecule, refer to Figure 2-15. The 1H NMR 

spectrum (Figure 2-16) shows eight similar environments for the 18 protons. The only likely 

assignment that can be made from this spectrum is for the singlet peak at 2.57 ppm. These 

peaks can be assigned to the two protons on the methine carbon atoms (posn 13 and posn 

14) that originated from the glyoxal. 

 

 
Figure 2-15 The numbering system of the bisaminal, 1,5,8,12-tetraazadodecane, for the assignment of protons 
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Figure 2-16  The 1H NMR spectrum for the bisaminal 1,5,8,12-tetraazadodecane 
 
 

The COSY spectrum (Figure 2-17) gives us a little more information. The peak for posn 13 

and 14 protons is just visible at 2.57 ppm and shows no coupling to another proton. 

Immediately beside this is a peak at 2.63 ppm with coupling to one other proton at 2.43 ppm 

only. These two peaks can be assigned to the ethane-1,2-diyl section of the polyamine (posn 

6 and posn 7), on the bisaminal. 
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Figure 2-17 The COSY spectrum for the bisaminal 1,5,8,12-tetraazadodecane 
 

 

Single crystals suitable for X-ray diffraction studies grew on standing the oily product. The 

X-ray crystal structure for the bisaminal, 1,5,8,12-tetraazadodecane, (Figure 2-18) shows the 

carbon atom, C10, bonded to atoms N1 and N2, and the carbon atom, C9, bonded to atoms 

N3 and N4. This confirms the vicinal addition of the dialdehyde, glyoxal, to the tetraamine, 

3,2,3 tet. Atoms C9 and C10 originate from glyoxal. This vicinal addition gives results in the 

structure having all of its three rings being six-membered, which is the preferred outcome 

for this type of reaction58. 
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Figure 2-18 The X-ray crystal structure for the bisaminal, 1,5,8,12-tetraazadodecane, excluding hydrogen atoms 
for clarity 
 

The X-ray structure showing attached hydrogen atoms (Figure 2-19) reveals their different 

environments and is consistent with the complexity of the 1H NMR spectrum. For a proton 

bonded to C7, rather than give a simple triplet signal, it instead gives a multiplet as both 

protons attached to C7 are in different environments, albeit very similar. They still show 

coupling to the adjacent protons of C6 and C8, which themselves are in different 

environments. Figure 2-19 also shows the conformation of the three rings to be all chair 

structures. 
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Figure 2-19 The X-ray crystal structure for the bisaminal, 1,5,8,12-tetraazadodecane, including protons. 
 

The X-ray crystal packing diagrams are shown in Figure 2-20 and Figure 2-21 and the space 

group is R3c. The total occupancy of the unit cell is four with a volume of 4858.5 Å3 and 

angles of α 90° β 90° γ 120°. There is no evidence of hydrogen bonding between molecules 

as the smallest distance between a hydrogen atom and a nitrogen atom on another molecule 

is greater than 2.9 Å. It is possible the molecules are held together via van der Waals 

interactions. 
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Figure 2-20 The X-ray crystal packing diagram for the bisaminal, 1,5,8,12-tetraazadodecane, extended outside 
the unit cell 
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Figure 2-21 The X-ray crystal packing diagram for the bisaminal 1,5,8,12-tetraazadodecane 
 

2.2.4 The Amination Reaction 
 

 

Once the secondary amines in the linear tetraamine had been protected, terminal addition to 

the 4’-(2-(bromomethyl)phenyl)-2,2’:6’,2”-terpyridine could take place. It was found that 

better results were achieved if the reaction mixture of solvent and the bisaminal were heated 

to reflux prior to the addition of the brominated tpy. Dried solvent was used in order to 

reduce the amount of degradation of 4’-(2-(bromomethyl)phenyl)-2,2’:6’,2”-terpyridine to its 

hydroxyl derivative. After overnight heating at reflux, the resulting mixture was then ready 

for purification. 
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The final challenge was with the purification of 4’-{2’”-(12-amino-2,6,9-triazadodecyl)-

phenyl}-2,2’:6’,2”-terpyridine. The sizes of the molecules in the final reaction mixture were 

vastly different. Based on this knowledge, column chromatography was chosen. Tests were 

carried out with thin layer chromatography to find the best stationary and mobile phases. 

Alumina was used in the column as the amine tended to “stick” when silica was used as the 

stationary phase. Two mobile phases were chosen, the first being chloroform to remove the 

two starting materials. A combination of acetonitrile, water and potassium nitrate saturated 

methanol formed the second eluent to pass through the column. This eluent has proved 

useful previously in the research group59. The final part of the purification was to remove the 

nitrate salts left from the second eluent. This was accomplished by a dichloromethane 

extraction, which also removed any remaining water. 

 

The nomenclature of the basic 2,2’:6’,2”-terpyridine has been covered (Figure 1-2). For the 

assignment of protons and carbons on the tail from NMR spectra, the carbon atoms will be 

numbered 1 – 9 starting at the toluyl end and likewise for the protons attached to those 

carbon atoms (Figure 2-22). 
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Figure 2-22 The numbering of carbon atoms for the assignment of NMR spectral peaks on the tail region of 
4’-{2’”-(12-amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine 
 
 
The terpyridine region of the 1H NMR spectrum (Figure 2-23) remains relatively unchanged 

from those in the terpyridine synthetic intermediates. The only major difference is the 

emergence of a doublet from the cluster of peaks between 7.27 to 7.36 ppm. This emergence 

of the doublet is similar to the change in the terpyridine region after the radical bromination. 

In the aliphatic region, a new singlet at 3.73 ppm most likely belonging to C1 protons and 

has an integral value of 2. Also in the aliphatic region, there is no peak at 4.47 ppm. This 

indicates that there is no 4’-(2-(bromomethyl)phenyl)-2,2’:6’,2”-terpyridine present. The next 

two sets of peaks are a multiplet and a triplet pair, each set in close proximity at 2.56 – 2.63 

ppm and 2.79 – 2.87 ppm and both have an integral value of 6. The final peaks of interest 

are a pair of triplets at 1.55 ppm and 1.66 ppm, both with an integral value of 2. The total 

integral value for the aliphatic region is 18 and this value is expected. The total number of 

protons attached to carbon atoms in this molecule is 32 and integration of 1H NMR 

spectrum is consistent with this analysis. 
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Figure 2-23 The 1H NMR spectrum for 4’-{2’”-(12-amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine 
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This molecule is expected to have 9 carbon atoms with protons attached in the aromatic 

regions. There are only 9 peaks in the aromatic region because of symmetry within the 

molecule. The aromatic section of the HSQC spectrum (Figure 2-24) confirms this. 

 

The tail region of 4’-{2’”-(12-amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine is also 

expected to have 9 carbon atoms with protons attached. The HSQC spectrum for the 

aliphatic region (Figure 2-25) shows the C1 protons/carbon at the coordinates 3.83,50.83 

ppm and confirms the presence of the remaining eight carbon atoms with protons attached. 

The HSQC spectrum shows a carbon atom peak at 40.5 ppm, protons at 2.94 ppm, which is 

appropriate for a carbon atom next to a primary amine. The tail region only has one carbon 

atom adjacent to a primary amine so this peak can be assigned to protons attached to C9. 

 

The complete COSY spectrum for 4’-{2’”-(12-amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-

terpyridine (Figure 2-26) shows the couplings in the aromatic region to be similar to 4’-(2-

(bromomethyl)phenyl)-2,2’:6’,2”-terpyridine. The peak at 8.49 ppm has no coupling and can 

be assigned to 3’,5’ protons. A peak at 7.59 ppm has coupling to a peak at 7.46 ppm but no 

coupling to any of the terpyridine protons at 8.69 ppm for H6,6”, 8.67 ppm for H3,3”, 8.49 

ppm for H3’,5’, 7.92 ppm for H4,4” and 7.39 ppm for H5,5”. From the 1H NMR spectrum, this 

peak at 7.59 ppm is a doublet and has an integral value of 1 and therefore must be on the 

toluyl ring and represent the 3’” or 6’” proton.   
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Figure 2-24 The aromatic section of the HSQC for 4’-{2’”-(12-amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-
terpyridine 
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Figure 2-25 The aliphatic section of the HSQC spectrum for 4’-{2’”-(12-amino-2,6,9-triazadodecyl)-phenyl}-
2,2’:6’,2”-terpyridine 
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Figure 2-26 The complete COSY spectrum for 4’-{2’”-(12-amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-
terpyridine  
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A close-up view of the COSY spectrum for the tail region (Figure 2-27) shows two peaks, 

2.89 ppm and 2.71 ppm, coupled to each other but not to any of the other protons. These 

two peaks can be assigned to the four ethane-1,2-diyl section protons (posn C5 and posn C6). 

The peak at 2.89 ppm can be integrated, giving an expected value of 2. Integration of all 

peaks in the tail region, excluding the methylene protons at posn C1 gives the expected value 

of 16. The two peaks at 1.75 ppm and at 1.64 ppm are both coupled to two other proton 

environments but not to each other. Both have an integral value of 2 and can be assigned to 

the central protons of the propane-1,3-diyl sections of the tail, posn C3 and posn C8. One of 

these peaks, at 1.75 ppm is coupled to a peak already assigned C9 at 2.94 ppm from the 

chemical shift due to a primary amine in the HSQC spectrum. Therefore, the peak at 1.75 

ppm can be assigned protons on C8. These are coupled to another peak at 2.72 ppm, which 

can therefore be assigned to protons on C7 

 

A NOESY 1D spectrum was obtained (Figure 2-28) to establish coupling between the 

methylene protons, posn C1, and any other protons on the aromatic section of the molecule. 

A sample was irradiated at 3.74 ppm, the chemical shift predicted to be that for the 

methylene protons. The spectrum shows coupling to protons at 8.39 ppm, 7.47 ppm and 

2.62 ppm. The peak at 8.39 ppm has already been assigned as the singlet peak for the 3’, 5’ 

protons. The peak at 7.47 ppm is the doublet that emerged from the cluster in 4’-o-toluyl 

2,2’:6’,2” terpyridine, at 7.30 – 7.34 ppm, after both the radical bromination and tail 

attachment reactions. The peak at 7.47 ppm can be assigned to the 3”’ proton on the o-toluyl 

ring as there is no coupling in the COSY to the pyridine protons. The peak at 2.62 ppm can 

be assigned protons on C2. 

 



 48 

 
Figure 2-27 The close-up view of the tail region of 4’-{2’”-(12-amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-
terpyridine 
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Figure 2-28 The 1D NOESY spectrum for 4’-{2’”-(12-amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-
terpyridine with irradiation at 3.74 ppm 
 
 

From the close-up COSY spectrum (Figure 2-27) for the tail region, C2 at 2.62 ppm is 

coupled to the central propane-1,3-diyl protons on C3, at 1.63 ppm. These are coupled to 

protons on C4 at 2.93 ppm. The peak at 1.74 ppm can be assigned to the other central 

propane-1,3-diyl protons on C8. The peak assigned to protons on C8 is coupled to two other 

peaks at 2.72 ppm and 2.95 ppm. These are assigned to the protons on C7 and C9, but at 

this stage there is uncertainty which is which. 

 

The mass spectrum of 4’-{2’”-(12-amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine 

contains peaks that can be assigned to both the H+ (Figure 2-29) and Na+ (Figure 2-30)  

adducts, with major peaks at 496.3153 and 518.3011 respectively. The observed isotope 

patterns were in agreement with the calculated isotope patterns. 
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Figure 2-29 4’-{2’”-(12-amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine (H+)Mass Spectrum (below) 
and calculated isotope pattern (above) 
 

 

 
Figure 2-30 4’-{2’”-(12-amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine (Na+)Mass Spectrum (below) 
with the calculated isotope pattern (above) 
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The original attempt to add the unprotected 3,2,3 tet to 4’-(2-(bromomethyl)phenyl) 

2,2’:6’,2” terpyridine was not particularly successful. The clue to this unsuccessful attempt 

was the 1H NMR spectrum (Figure 2-31) of the aromatic region of a purified sample. In 

particular, the spectrum showed multiple peaks for the singlet of the 3’,5’ protons at 8.42 

ppm. This indicated the presence of impurities. There were broad overlapping peaks in the 

tail region. 

 

Now that a 1H NMR spectrum of a purified successful addition is available (Figure 2-23), 

comparisons can be made to see if any 4’-{2’”-(12-amino-2,6,9-triazadodecyl)-phenyl}-

2,2’:6’,2”-terpyridine was present in the original sample. In Figure 2-31, the most notable 

peak is at 3.73 ppm and this is the same chemical shift for the peak assigned to C1 (Figure 

2-23). It is not a clean singlet peak though, which could indicate either the presence of an 

impurity or the tail attaching through the secondary amine in some instances. 
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Figure 2-31 The 1H NMR spectrum of the purified results from the original attempt at adding the unprotected 
3,2,3 tet tail to 4’-(2-(bromomethyl)-phenyl) 2,2’:6’,2” terpyridine. 
 

 



 53 

2.3 Summary 
 
The synthesis of this ligand brought about a few challenges. The more important of those 

challenges were the ones that required alterations to the reference experimental procedures. 

They also proved to be the most satisfying achievements. 

 

The radical bromination reaction gave mediocre yields when performed in benzene as in the 

literature. The solvent was changed to carbon tetrachloride and the yields improved 

significantly. The protection of the polyamine tail, 3,2,3-tet, to ensure terminal addition 

proved another important step. Because of the reactivity of the secondary amines, terminal 

addition could not be guaranteed. The amine underwent a double condensation reaction to 

form three six-membered rings. The secondary amines were now tertiary amines and the 

primary amines were now secondary amines. For the addition of this molecule to the 

brominated 4’-(o-toluyl)-2,2’:6’,2”-terpyridine, the reaction conditions were altered from the 

literature conditions by applying heat to the system which increased the yield of 4’-{2’”-(12-

amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine. The purification was the biggest 

breakthrough of this project. Without this, the reaction product mix was too complicated to 

decipher by NMR techniques.  The aliphatic region peaks were broad and no definitive 

information could be obtained in this area other than there was no 4’-(2-(bromomethyl)-

phenyl) 2,2’:6’,2” terpyridine present. The aromatic region had a doubling of some peaks 

which was indicative of there being two 2,2’:6’,2”-terpyridine products present. 
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Chapter 3: Metal Complexes & Characterisation 
 

 
The previous chapter describes the synthesis and characterisation of a range of molecules, 

some of which are potential ligands.  Attempts were made to prepare complexes and 

produce X-ray quality crystals from 4’-(o-toluyl)-2,2’:6’,2”-terpyridine and its derivatives with 

a range of metal ions such as iron(II), copper(II), cobalt(II), zinc(II), and silver(I). This 

chapter describes the synthesis and characterisation of the successful attempts. 

 

3.1.1 [Cu(ottp)Cl2]·CH3OH 
 

 

Copper(II) chloride was dissolved into methanol and added to a solution of 4’-(o-toluyl)-

2,2’:6’,2”-terpyridine and chloroform. Ether was then diffused into the resulting blue 

solution. Initial attempts to achieve X-ray quality crystals of this copper-terpyridine complex 

proved difficult. The products formed using vapour diffusion methods were very fine 

needles, micro-crystals and precipitate. The diffusion rate was slowed, by capping the vial 

containing the sample with the cap having a 1 mm hole drilled through it, which resulted in 

blue, cubic X-ray quality crystals. 

 

The X-ray crystal structure (Figure 3-1) shows the copper ion is bound to one 4’-(o-toluyl)-

2,2’:6’,2”-terpyridine ligand and two chloride ions, to form a distorted trigonal bipyrimidal 

complex. The crystal system is triclinic and the space group P-1. The o-toluyl ring is twisted 

to an angle of 46.1° because of steric clashes between its methyl group and the 3’,5’ protons. 
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In contrast, the X-ray crystal structure of the free ligand shows this twist to be 77.2° 60. 

Although not shown in this diagram, there is hydrogen bonding between the chloride ion 

(Cl1) and the methanol’s hydroxyl hydrogen (O100) with a distance of 2.381 Å. 

 
Figure 3-1 The X-ray crystal structure for the (4’-(o-toluyl)-2,2’:6’,2”-terpyridine)-copper complex 
 

 

The packing diagrams for the (4’-(o-toluyl)-2,2’:6’,2”-terpyridine)-copper complex shows 

interactions between the copper atom of one complex to the copper atom on the adjacent 

complex and also the chloride ion bonded to it. In Figure 3-2, the copper-copper distance is 

4.029 Å and at this distance, are unlikely to be interacting. The copper chloride bonds are 
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2.509 Å and the copper-chloride interaction to an adjacent complex is 3.772 Å. In Figure 

3-3, there is hydrogen bonding holding pairs of complexes to other pairs of complexes.  This 

involves hydrogen bonding between 3,3” or 5,5” posn  hydrogen atoms and the chloride 

ions, Cl2A and Cl2F, and is 2.381 Å within the unit cell and 2.626 Å. to an adjacent unit cell. 

 
Figure 3-2 The X-ray crystal structure packing diagram for the (4’-(o-toluyl)-2,2’:6’,2”-terpyridine)-copper 
complex with interactions between the metal center and chloride ligands 
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Figure 3-3 The X-ray crystal structure packing diagram for the (4’-(o-toluyl)-2,2’:6’,2”-terpyridine)-copper 
complex with chloride atom/copper atom interactions and the chloride atom/hydrogen atom interactions. 
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3.1.2 [Co(ottp)2]Cl2·2.25CH3OH 
 
 

The cobalt(II) chloride was dissolved in methanol and added, in a 1:2 molar ratio, to a 

solution of 4’-(o-toluyl)-2,2’:6’,2”-terpyridine and chloroform. Ether was diffused into the 

solution and red/brown X-ray quality crystals had formed after two days.  

 

The presence of two chloride anions in the X-ray structure implies it is a cobalt(II) complex. 

Zhong Yu et al61 describe two cobalt terpyridine complexes where each has the cobalt in 

either the 2+ or 3+ O.S. and coloured red and orange respectively. Table 3-1 lists the Co–N 

bond lengths and crystal colours for some cobalt terpyridine complexes with cobalt in a 

variety of oxidation and spin states and includes data from the complex 

[Co(ottp)2]Cl2·2.25CH3OH. Ana Galet et al 62 investigated the crystal structures of cobalt(II) 

complexes in low spin (L.S) and high spin (H.S) states and Brian N. Figgis et al 63 examined 

the crystal structure of a cobalt(III) terpyridine complex. From this information, the colour 

and bond length comparisons are consistent with the cobalt(II) formulation revealed by the 

X-ray structure solution: [Co(ottp)2]Cl2·2.25CH3OH.  

 
Table 3-1 The bond lengths and colours of cobalt terpyridine complexes with cobalt in different 
oxidation and spin states. 

N Atom N.o. Co(II) L.S. Co(II) H.S. Co(III) [Co(ottp)2.Cl2]. 2.25CH3OH 
1 1.950 2.083 1.930 2.003 
2 1.856 1.904 1.863 1.869 
3 1.955 2.089 1.926 2.001 
4 1.944 2.093 1.937 2.182 
5 1.862 1.906 1.853 1.939 
6 1.948 2.096 1.921 2.162 

Crystal Colour Green Brown Pale 
Yellow 

Red/Brown 
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As expected, the six coordinate cobalt atom coordinated with two 4’-(o-toluyl)-2,2’:6’,2”-

terpyridine ligands and formed the distorted octahedral complex in Figure 3-4. The crystal 

system is monoclinic and the space group P21/n. The two central pyridine nitrogen-cobalt 

atom bond lengths at 1.867 Å (N21-Co1) and 1.93 Å (N61-Co1), are shorter than the four 

outer pyridine nitrogen-cobalt atom bond lengths, 2001 – 2.182 Å. This is expected because 

of the rigidity of the ligand as the two outer terpyridine nitrogen atoms, on each ligand, hold 

the central terpyridine nitrogen atoms closer to the metal ion. One of the terpyridine units 

sits a little further away from the cobalt atom, approximately 0.15 Å, than the other 

terpyridine unit. One of the methanol solvent molecules, containing oxygen O101, only has 

¼ occupancy. 

 

The packing diagram (Figure 3-5) show two complexes containing the atoms, Co1A and 

Co1B that have interactions between the chloride counter ions (Cl1A and Cl1B). The 

chloride ion, Cl1A is hydrogen bonding with one of the o-toluyl methyl hydrogen atoms in 

of complex A and with the 5” hydrogen atom of one ligand in complex B. The bond lengths 

are 2.765 Å and 2.760 Å respectively. This chloride ion also hydrogen bonds with the 

hydroxyl hydrogen atom from one of the methanol solvent molecules, O20A, and has a 

bond length of 2.313 Å. The second chloride ion, Cl1B, has similar hydrogen bonding 

interactions with the 5” hydrogen atom from the same ligand Cl1A interacts with in complex 

A, with the 3” hydrogen atom, again, with the same ligand Cl1A interacts with in complex B 

and with the hydroxyl group of the other methanol solvent molecule O20B. 
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Figure 3-4 The X-ray crystal diagram of the bis(4’-(o-toluyl)-2,2’:6’,2”-terpyridine)cobalt complex 
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Figure 3-5 The X-ray crystal structure of the bis(4’-(o-toluyl)-2,2’:6’,2”-terpyridine)-cobalt complex with 
interactions of solvent molecules and counter ions 
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3.1.3 [Fe(ottp)2][PF6]2 
 
 
Addition of iron(II) to two molar equivalents of 4’-(o-toluyl)-2,2’:6’,2”-terpyridine gave a 

purple solution. Solid material was obtained by addition of [PF6]
- salts. We were unable to 

obtain X-ray quality crystals for this complex. Characterisation was undertaken using 

elemental analysis, UV/Visible and Mass spectrometry, 1H NMR, COSY and HSQC. 

 

The calculated elemental analysis was consistent with the actual elemental analysis found. 

The UV/visible spectrum (Figure 3-6) was consistent with other literary examples64,74. 

 

 

 
Figure 3-6 UV/vis for (ottp)2 Fe complex. ε = 13492, (conc = 2.8462 x 10-5 mol L-1.) 
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Significant changes in chemical shifts in the 1H NMR spectrum (Figure 3-7) were observed 

on coordination of the two 4’-(o-toluyl)-2,2’:6’,2”-terpyridine ligands to an iron(II) ion 

compared to that of the uncoordinated ligand (Figure 2-7). There has been a general 

downfield shift for most of the peaks. The 3’,5’ proton singlet now appears at 9.29 ppm as 

opposed to 8.49 ppm in the 1H NMR spectrum of the uncoordinated ligand. The 3’,5’ 

proton peak now appears downfield from the 3,3” proton doublet peak at 8.95 ppm. Two of 

the peaks, for the 5,5” and 6,6” posn protons, have moved upfield instead. The peak for the 

two 6,6” protons have shifted from 8.72 ppm into the cluster of peaks at 7.57 – 7.61 ppm. 

The triplet 5,5” proton peak which was originally in the cluster of peaks at 7.30 – 7.36 ppm 

has also shifted downfield to 7.27 ppm. 

 

This upfield shift of the 5,5” and 6,6” proton peaks is commonly seen in bis(tpy)-complex 

1H NMR spectra. The shift is brought about by the perpendicular geometry of the ligands on 

the metal. This means that these two pairs of protons, more so the 6,6” protons, on one 

ligand, are now located above the ring plane of the aromatic ring of the other ligand64,65 & 66.  

 

The COSY spectrum for the aromatic region of the bis(4’-(o-toluyl)-2,2’:6’,2”-terpyridine)-

iron complex (Figure 3-8) shows the coupling of these shifted proton peaks. As expected, 

the 3’,5’ singlet is not coupled to any other protons. The 3,3” doublet (8.95 ppm) is coupled 

to the 4,4” triplet (8.06 ppm) which is coupled to the 5,5” triplet (7.27 ppm) which is 

coupled to the 6,6” doublet (7.58 ppm). 
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Figure 3-7 The 1H NMR spectrum of the bis(4’-(o-toluyl)-2,2’:6’,2”-terpyridine)-iron complex 
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Figure 3-8 The COSY spectrum for the aromatic region of the bis(4’-(o-toluyl)-2,2’:6’,2”-terpyridine)-iron 
complex 
 

 
Figure 3-9 The HSQC spectrum of the the bis(4’-(o-toluyl)-2,2’:6’,2”-terpyridine)-iron complex 
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The HSQC spectrum for the bis(4’-(o-toluyl)-2,2’:6’,2”-terpyridine)-iron complex (Figure 3-9) 

also shows some minor chemical shifts in the carbon atoms when compared with the HSQC 

spectrum for the uncoordinated ligand (Figure 2-9). 

 

 

3.1.4 [(Cl-ottp)Cu(µ-Cl)(µ-Br)Cu(Cl-ottp)][PF6]2 
 

 

Copper(II) chloride was dissolved in water and added to a solution of 4’-(2-

(bromomethyl)phenyl)-2,2’:6’,2”-terpyridine in ethanol resulting in a blue/green solution. 

The copper complex was precipitated out of the aqueous mixture by the addition of 

saturated ammonium hexafluorophosphate in methanol. The precipitate was filtered, washed 

with H2O and then CH2Cl2, dried and dissolved in CH3CN. Recrystallisation of the 

precipitate required a controlled diffusion rate as in the copper-(4’-(o-toluyl)-2,2’:6’,2”-

terpyridine) crystal formation technique. Ether was diffused into the dissolved complex 

which afforded blue-green needles of X-ray quality.  

 

The X-ray crystal structure (Figure 3-10) shows the complex has distorted trigonal 

bipyrimidal geometry. The dimer is bridged by one chloride ion and one bromide ion. Each 

bridging halide atom has 50% occupancy which is shown more clearly in the asymmetric unit 

in Figure 3-11. The only source of bridging bromide ions is from the 4’-(2-

(bromomethyl)phenyl)-2,2’:6’,2”-terpyridine starting material. The bromide ions have 

exchanged with the chloride ions from the copper salt. This appears to be a facile enthalpy 

driven process67. The preparation of heavier halides from lighter halides in early transition 
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metals was first reported in 1925 by Biltz and Keunecke68. The bond enthalpy for carbon-

bromine is 276 kJ mol-1 and for copper-bromide, 331 kJ mol-1 69. The bond enthalpy for 

copper-chloride is 383 kJ mol-1 and for carbon-chlorine, 397 kJ mol-1 70. It is therefore more 

thermodynamically favorable for the bromide ion to be bonded to the copper ion and the 

chlorine atom to be bonded to the carbon atom. The information gathered for the copper 

halide bond enthalpies did not stipulate the oxidation state of the copper ion only that the 

species was diatomic, but the bulk of the difference can be attributed to the relative strengths 

of the carbon halide bonds, and so the argument is probably still valid. 

 

Figure 3-12 gives a view along the plane of the pyridine rings showing the bond angles of the 

bridging halide-copper more clearly. All the bridging halide-copper bond angles fall between 

84.3° and 95.9°. 

 

The X-ray crystal structure packing diagram, without counter ions (Figure 3-13), shows 

hydrogen bonding between the bridging halides and a hydrogen atom on the o-toluyl methyl 

group. The electron withdrawing effects of the chlorine atom attached to the o-toluyl methyl 

carbon atom has probably made this hydrogen atom more electron deficient in nature. The 

X-ray crystal structure packing diagram with counter ions (Figure 3-14) show another level 

of bonding. The [PF6]
- ions are hydrogen bonding to some 6, 3’/5’ and 6” hydrogen atoms 

on the pyridine rings. These hydrogen bonding distances fall in the range 2.244 Å – 2.930 Å. 
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Figure 3-10 The X-ray crystal structure of the dimeric [(Cl-ottp)Cu(µ-Cl)(µ-Br)Cu(Cl-ottp)] complex with the 
two PF6 counter ions shown 
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Figure 3-11 The asymmetric unit of the X-ray crystal structure of the [(Cl-ottp)Cu(µ-Cl)(µ-Br)Cu(Cl-ottp)] 
complex with a view of the Br/Cl 50% occupancy 
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Figure 3-12 A view of the X-ray crystal structure of the [(Cl-ottp)Cu(µ-Cl)(µ-Br)Cu(Cl-ottp)] complex 
looking along the plane of the pyridine rings. 
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Figure 3-13 The X-ray crystal structure packing diagram for the [(Cl-ottp)Cu(µ-Cl)(µ-Br)Cu(Cl-ottp)] complex 
without counter ions 
 

 
Figure 3-14 The X-ray crystal structure packing diagram for the [(Cl-ottp)Cu(µ-Cl)(µ-Br)Cu(Cl-ottp)] complex 
with PF6 counter ions 
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3.1.5 The Iron(II) 2’”-patottp Complex 
 

Iron(II) chloride was dissolved in water and added to a solution of 4’-{2’”-(12-amino-2,6,9-

triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine in methanol, which resulted in an intense purple 

solution. Saturated ammonium hexafluorophosphate in methanol was added to the solution 

and a purple precipitate formed. The precipitate was filtered, washed with water, then with 

dichloromethane, dried and then dissolved in acetonitrile. No X-ray quality crystals resulted 

from numerous crystallisation attempts using a variety of techniques. 

 

Although the iron(II) and 4’-{2’”-(12-amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-

terpyridine were added in a 1:1 stoichiometric ratio, there was no guarantee that they had 

coordinated in this fashion. A variety of analytical techniques were employed to try and 

determine the stoichiometric ratio. 

 

1H NMR spectrometry was attempted for comparison with the characteristic chemical shifts 

described in section 3.1.3 for the bis(ottp)Fe complex. The 1H NMR spectrum peaks had all 

broadened to a degree that it was hard to distinguish that the spectrum was of a 4’-{2’”-(12-

amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine derivative. It was also not possible 

to distinguish a peak at approximately 9.3 ppm to determine if the complex contained one, 

two or a mixture of both terpyridine units. There could be two reasons for this 

phenomenon. Some of the iron(II) could have been oxidised to iron(III). The resulting 

material would be paramagnetic and degrade the spectrum. Alternatively the spin state of the 

iron could be approaching the point were it is about to cross-over. Spin crossover (S.C) 

behaviour in bis(2,2’:6’,2”-terpyridine)iron(II) complexes is sensitive to Fe-N bond length. 
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This behaviour can be enhanced by producing steric hindrance about the terminal rings71. 

Constable et al 72 investigated S.C. in bis(2,2’:6’,2”-terpyridine)Fe(II) complexes with steric 

bulk added to the 4,4” and 6,6” posn. They found L.S. complexes were purple and H.S. 

complexes were orange, although some of the purple solutions contained both species. 1H 

NMR data taken from these solutions found the peaks to have broadened considerably. 

Dong-Woo Yoo et al 73 investigate a novel mono (2,2’:6’,2”-terpyridine)Fe(II) derivative 

which is green. Of the information given above, comparison between the Constable et al 74 

L.S. complex and the 4’-{2’”-(12-amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine 

iron(II) complex in this thesis can be made with regards to the solution colour and 1H NMR 

spectral characteristics. It is possible that the Fe(II) in the 4’-{2’”-(12-amino-2,6,9-

triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine iron(II) complex solution is mainly L.S. and 

contains some iron(II) in the H.S. state. Further analysis such as Mössbauer spectroscopy 

and magnetic susceptibility measurements would confirm this. Temperature dependent 

NMR experiments may also be informative. 

 

The results from elemental analysis did not allow us to determine the composition of the 

material, which means that we could not infer the oxidation state of the iron based on the 

number of counter ions. Calculations based on modelling of possible stoichiometric 

combinations pointed towards the complex being a 1:1 ratio but no models were close 

enough to be definite match. 

 

A sample was run through mass spectrometry in positive ion mode. A major peak showed at 

548 for a singly charged species which is just two mass units away from our complexes 
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calculated anisotopic mass, but again, not close enough to give a definitive stoichiometric 

ratio. 

 

A UV/visible spectrum (Figure 3-15) was obtained and compared to that for the bis(ottp)Fe 

complex (Figure 3-6). Both spectra were remarkably similar and both had a peak at 560 nm. 

The extinction coefficients calculated for the bis(ottp)Fe and mono or bis 4’-{2’”-(12-amino-

2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine iron(II) complex combinations all 

indicated metal to ligand charge transfer (MLCT). The values were significantly lower for the 

4’-{2’”-(12-amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine iron(II) complex than 

for the [Fe(ottp)2][PF6]2 complex. The similar appearance of the spectra might lead to the 

inference that this species is a Fe(patottp)2 complex, but the lower extinction coefficient, 

different NMR behaviour and elemental analysis results may be a better fit for a 1:1 complex. 

Overall it is not apparent at this time whether this complex contains one or two ligands per 

metal ion. 

 

 
Figure 3-15 UV/vis spectrum of (patottp)Fe complex. ε = 2381.8 (conc = 1.9943 x 10-4 mol L-1) or 4522.1 for 
bis complex (conc = 1.0504 x 10-4 mol L-1) 
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3.1.6 Miscellaneous 2”’-patottp Complexes 
  

Other attempts were made to made to form X-ray quality crystals with 4’-{2’”-(12-amino-

2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine and other metals. CuCl2, CoCl2, ZnCl2 and 

AgCl were separately dissolved in water and added to separate solutions of 4’-{2’”-(12-

amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine in methanol in a 1:1 stoichiometry. 

All solutions were then treated with PF6
- salts. None of the complexes yielded X-ray quality 

crystals from a variety of recrystallisation procedures. The copper and cobalt complex es 

formed blue/green and red/brown precipitates respectively. When the insoluble, brown 

complexes of zinc and silver were removed from the solvents, they were found to be of a 

thick oily consistency. This could be an indication that the zinc and silver complexes were 

polymeric in nature.  

 

Mass spectrometry was performed on these complexes but the spectra of all samples were 

inconclusive due to the possibility of contamination. 

 

 

3.2 Summary 
 

 

4’-(o-Toluyl)-2,2’:6’,2”-terpyridine and some of its derivatives were coordinated to metal ions 

to obtain X-ray quality crystals for characterisation. The complex, [(Cl-ottp)Cu(µ-Cl)(µ-

Br)Cu(Cl-ottp)] gave an added bonus in that it displayed some interesting halide exchange 

chemistry. The bromine atom from 4’-(2-(bromomethyl)phenyl)-2,2’:6’,2”-terpyridine had 
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exchanged with one of the chloride atoms from the copper(II) chloride salt and formed a 

bridge, along with the remaining chloride, to another copper atom.  

 

Unfortunately, X-ray quality crystals were not able to be produced form any of the 

complexes of 4’-{2’”-(12-amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine. There is 

obviously further investigation needed into the iron complex with regard to possible spin 

crossover and oxidation state properties. 
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 Chapter 4: Conclusions and Future Work 
 

 

The research described in the second chapter of this thesis involved the synthesis and 

characterisation of the novel ligand 4’-{2’”-(12-amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-

terpyridine. 

 

The ligand synthesis was followed by NMR at each step to investigate purity and reaction 

completion. 4’-(o-Toluyl)-2,2’:6’,2”-terpyridine was characterised by 1H NMR, 13C NMR, 

COSY and HSQC. The chemical shifts for the protons in the o-toluyl ring and 5,5” protons 

were not assigned due to being in very close proximity but were consistent with the 

literature60.  

 

Proof of a successful radical bromination came from 1H NMR data and from the [(Cl-

ottp)Cu(µ-Cl)(µ-Br)Cu(Cl-ottp)] complex (pg 66) which has a bridging bromine atom of 

50% occupancy.  

 

The protection of N,N'-bis(3-aminopropyl)ethane-1,2-diamine (3,2,3 tet) to give the 

bisaminal, 1,5,8,12-tetraazadodecane proved to be successful after comparison with NMR 

data in the literature.  

 

The goal of this project was to synthesis and characterise the novel ligand, 4’-{2’”-(12-

amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine. This was achieved and proven by a 

variety of NMR techniques.  
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Future work on this project would involve analysing the properties of 4’-{2’”-(12-amino-

2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine and its complexes. Due to the lateness of 

the breakthrough with the purification, little data was obtained in this area. There was some 

doubt as to the oxidation state of the iron complex as it was possible it had undergone an 

oxidation process. 

 

Other tails containing different donor atoms could be added to the 4’-(o-toluyl)-2,2’:6’,2”-

terpyridine framework. Using hard/soft acid base knowledge and known preferences for 

coordination number, the ligand could be tuned to be selective for specific metal ions in 

solution. We only have to look at how metal ores are found in nature to find the best 

examples of their preferred ligands. The tail could also have other structural features such as 

some rigidity and/or an aromatic segment which could assist crystal formation, with added 

π-π stacking, more so than the tail derived from N,N’-bis(3-aminopropyl)ethane-1,2-diamine. 
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Chapter 5: Experimental 
 

5.1 Materials 
 
All reagents and solvents used were, of reagent grade or better, used unpurified unless 

otherwise stated. All deuterated NMR solvents were supplied by Cambridge Isotope 

Laboratories.  

5.2 Nuclear Magnetic Resonance (NMR) 
 

1H, COSY, NOESY and HSQC experiments were all recorded on a Varian INOVA 500 

spectrometer at 23°C, operating at 500 MHz.  The INOVA was equipped with a variable 

temperature and inverse-detection 5 mm probe or a triple-resonance indirect detection PFG. 

The 13C NMR spectra were recorded on either a Varian UNITY 300 NMR spectrometer 

equipped with a variable temperature direct broadband 5 mm probe, at 23°C, operating at 75 

MHz or on a Varian INOVA 500 spectrometer at 23°C, operating at 125 MHz, using a 5mm 

variable temperature switchable PFG probe.  Chemical shifts are expressed in parts per 

million (ppm) on the δ scale, and were referenced to the appropriate solvent peaks: CDCl3 

referenced to CHCl3 at δH 7.25 (1H) and CHCl3 at δC 77.0 (13C); CD3OD referenced to 

CHD2OD at δH 3.31 (1H) and CD3OD at δC 49.3 (13C); DMSO-d6 referenced to 

CD3(CHD2)SO at δH 2.50 (1H) and (CD3)2SO at δC 39.6 (13C).   

The peaks are described as singlets (s), doublets (d), triplets (t) or multiplets (m). 
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5.3 Synthesis of 4’-(o-Tolyl)-2,2’:6’,2”-terpyridine. 

Two synthetic routes for 2,2’:6’,2” terpyridine were investigated in this project. They both 

follow existing synthesises for p-toluyl 2,2’:6’,2” terpyridine, both with modifications. 

Scheme 1 describes a “one pot” synthesis by Hanan and Wang75. Scheme 2 is a three step 

synthesis reported by Field et al76 and Ballardini et al77. 

 

 

Scheme 1. “One Pot” Method. 

 

Figure 5-1 Shows the “one pot” synthesis of 4’-(o-toluyl)-2,2’:6’,2”-terpyridine. The o-toluyl aldehyde is the 
source of the ortho methyl group on the 4’” benzyl ring. 
 

 

o-Toluyl aldehyde (2.4 g,  20 mmol) was added to i-propyl alcohol (100 mL)  whilst stirring 

with a magnetic flea. To this solution, 2-acetylpyridine (4.84 g, 40 mmol), KOH pellets (3.08 

g, 40 mmol) and concentrated ammonia solution (58 mL, 50 mmol) was added. The solution 

was the heated at reflux for four hours during which time a white precipitate had formed. 

The solution was cooled to room temperature and then filtered under vacuum through a 

glass frit. The ppt. was washed with 50% ethanol and then recrystallised in ethanol. 
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Yield = 35358 g (51.2%). Mp (70 - 73°C). 1H NMR (500 MHz CDCl3): δ = 8.72 (d, 2H, 

H6,6”), 8.71 (d, 2H, H3,3”), 8.49 (s, 2H, H3’, 5’) 7.90 (t, 2H, H4,4”) 7.30 – 7.36 (m, 6H, H5,5”,toluyl) 

2.38 (s, 3H, CH3). 
13C NMR (75 MHz, CDCl3) 156.5, 155.6, 152.2, 149.4, 139.9, 137.1, 135.4, 

130.7, 129.7, 128.5, 126.2, 124.1, 121.9, 121.6, 20.7 (CH3). MS(ES) m/z: 324.1383 ([M+H+], 

100%) 

 

 

Scheme 2. Three Step Method. 

 

Part 1. Synthesis of 2-methyl-1-[3-(2-pyridyl)-3-oxypropenyl]-benzene. 

 

 
Figure 5-2 the Field et al preparation was followed in the above synthesis of 2-methyl-1-[3-(2-pyridyl)-3-
oxypropenyl]-benzene76. 
 

 

A solution of o-toluyl aldehyde (2.402 g, 20 mmol) and ethanol (100 mL) was cooled to 0°C 

in an ice bath whilst stirring with a magnetic flea. 2-Acetylpyridine (2.422 g, 20 mmol) was 

added to the cooled solution and 1 M NaOH (20 mL, 20 mmol) was added drop wise. The 
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resulting mixture was stirred for another 3 hours at 0°C. The resulting ppt was vacuum 

filtered through a glass frit, washed with a small amount of ice cold ethanol and dried. 

Yield = 2.75 g (33.9%). Mp (75 - 77°C). 1H NMR (300 MHz CDCl3): δ = 8.75 (d, 1H), 8.21 

– 8.29 (m, 3H), 7.90 (d, 1H), 7.84 (d, 1H), 7.51 (d, 1H), 7.31 (d, 1H), 7.24 – 7.29 (m, 2H), 

2.52 (s, 3H, CH3) 

 

 

Part 2. Synthesis of (2-pyridacyl)-pyridinium Iodide 

 

 

Figure 5-3 the Ballardini et al preparation of (2-pyridacyl)pyridinium Iodide was followed77, scaled down. 
 

Iodine (13.567 g, 50 mmol) was added to pyridine (47 mL) and warmed on a steam bath. 

The resulting mixture was added, under nitrogen, to 2-acetylpyridine (20 mL, 180 mmol) and 

the mixture stirred at reflux for 4 hours. The ppt was filtered under vacuum through a glass 

frit and washed with pyridine (20 mL). The ppt was then added to a boiling suspension of 

activated charcoal (1 spatula) and EtOH (660 mL). The mixture was filtered whilst still hot 

and allowed to cool where yellow/green crystals resulted. 

Yield = 10.37 g (25.9%) Mp (212 - 213°C) 1H NMR (500 MHz CD3OD) δ = 8.96 (d, 2H), 

8.81 (d, 1H), 8.73 (t, 1H), 8.22 (t, 2H), 8.13 (d, 1H), 8.08 (d, 1H), 7.74 (t, 1H), 4.60 (s, 2H). 
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Part 3. Synthesis of 4’-o-toluyl 2,2’:6’,2” Terpyridine. 

 

 

Figure 5-4 the third and final step of a Field et al preparation76 where a Michael addition followed by ring 
closure give 4’-o-toluyl 2,2’:6’,2” terpyridine. 
 

2-Methyl-1-[3-(2-pyridyl)3-oxypropenyl]benzene (0.445 g, 2 mmol)  was added to EtOH (8 

mL) and stirred with a magnetic flea until dissolved. (2-pyridacyl)pyridinium Iodide (0.68 g, 2 

mmol)  and ammonium acetate (10 g, 20 mmol)  was added to the above solution and stirred 

at reflux for 3½ hours. The solution was cooled to room temperature and the resulting ppt 

filtered under vacuum through a glass frit. The ppt was washed with 50% EtOH (20 mL), 

dried and then recrystallised in EtOH.. 

Yield = 0.265 g (41.0%) (overall yield = 3.6%) 1H NMR (500 MHz CDCl3) δ = 8.71 (d, 4H), 

8.48 (s, 2H), 7.91 (t, 2H), 7.26 – 7.38 (m, 6H), 2.38 (s, 3H, CH3) 
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5.4 Bromination of 4’-(o-toluyl)-2,2’:6’,2”-terpyridine. 

 

Figure 5-5 The radical bromination of 4’-(o-toluyl)2,2’:6’,2” terpyridine to give 4’-(2-(bromomethyl)phenyl) 
2,2’:6’,2” terpyridine. 
 

 
Carbon tetrachloride (CCl4) (~500 mL) was stored over phosphorus pentoxide (P2O5) for 

initial drying for at least 4 days. Further drying was completed by heating at reflux under N2 

for 4 hours. CCl4 (50 mL) was extracted using a syringe that had been dried in a 70°C oven 

and flushed with N2 and then transferred into a 250 mL 3-necked round bottom flask that 

had also been dried in a 70°C oven and flushed with N2. Whilst stirring with a magnetic flea 

and flushing with N2, 4’(o-toluyl)-2,2’:6’,2”-terpyridine (0.84 g, 2.6 mmol), purified N-

bromosuccinimide (NBS)78 (0.46 g, 2.6 mmol)  and a catalytic amount of purified dibenzoyl 

peroxide79 was added to the 3-neck round bottom flask. The solution was irradiated with a 

tungsten lamp whilst at reflux, under N2, for 4 hours. The solution was cooled to room 

temperature and filtered under vacuum through a glass frit where the filtrate contained the 

brominated 4’(o-toluyl)-2,2’:6’,2”-terpyridine. The excess CCl4 was removed under vacuum 

and the dried product dissolved in a 2:1 mix of EtOH and acetone. This solution was heated 

on a steam bath and cooled to room temperature and then stored in a -18°C freezer 
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overnight. The pale yellow ppt is filtered off through a glass frit and dried under vacuum. 

The ppt was stored in an airtight light excluding container. 

Yield = 2.60 g (64%) Mp (138 - 140°C) 1H NMR (500 MHz CDCl3) δ = 8.72 (d, 2H), 8.71 

(d, 2H), 8.58 (s, 2H), 7.91 (t, 2H), 7.58 (d, 1H), 7.35 – 7.44 (m, 5H), 4.45 (s, 2H, CH2Br). 13C 

NMR (75 MHz CDCl3) 156.2, 155.8, 150.5, 149.5, 140.1, 137.3, 135.3, 131.2, 130.4, 129.2, 

129.0, 124.2, 121.8, 121.7, 31.8 (CH2Br). MS(ES) m/z: 402.0603, 403.0625 ([M+H+]) 

 

5.5 Protection Chemistry for N,N'-bis(3-aminopropyl)ethane-

1,2-diamine (3,2,3 tet). 

 

Figure 5-6 A Claudon et al preparation gives protection of the 2° amines80. 3° Amines are formed via a 
condensation reaction between 3,2,3 tet and glyoxal to produce the bisaminal, 1,5,8,12-tetraazadodecane, on the 
right. 
 

 

Glyoxal (726 mg, 5 mmol) was added to EtOH (10 mL). The mixture was added to  N,N'-

bis(3-aminopropyl)ethane-1,2-diamine (3,2,3 tet) (871 mg, 5 mmol) also in EtOH (10 mL). 

The resulting mixture was stirred for 2½ hours. Excess solvent was then removed under 

vacuum. CH3CN (20 mL) and a few drops of water was then added to the residual oil and 

the solution heated at reflux overnight. The CH3CN was removed under vacuum, the residue 

taken up in toluene and then filtered to remove the polymers. Excess solvent was removed 
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under vacuum which afforded an oily residue. Upon sitting for 3 days, the bisaminal, 

1,5,8,12-tetraazadodecane, started to form crystals. 

Yield = 3.96 g (81.5%) 1H NMR δ = 3.12 (2H), 2.93 (2H), 2.63 & 2.43 (4H, H6,7), 2.57 (2H, 

H13,14), 2.20 (2H), 1.79 (2H), 1.76 (2H), 1.54 (2H). 13C NMR (75 MHz CDCl3) 79.45, 54.84, 

54.81, 52.68, 52.61, 43.05, 43.03, 26.65, 26.64. 

 

 

5.6 Addition of Protected Tetraamine to Brominated 
Terpyridine and Deprotection 

 

 
Figure 5-7 after addition of a brominated “R” group to the protected tetraamine, “R” = 4’-(o-toluyl)-2,2’:6’,2”- 
terpyridine the “tail” can then undergo deprotection. 
 

 

Bisaminal (0.9715 g, 5 mmol) was added to dry CH3CN (20 mL) whilst stirring and heated to 

reflux. 4’-(2-(Bromomethyl)phenyl)-2,2’:6’,2”-terpyridine (2.0114 g, 5 mmol) was added  to 

the preheated mixture and stirred at reflux overnight. Excess solvent was removed under 

vacuum.  

 

Hydrazine monohydrate (10 mL) was added to the residue and heated to reflux whilst 

stirring for 2 hours. The solution was allowed to cool to room temperature and the 
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hydrazine removed under vacuum. The residue was taken up in CHCl3 and insoluble 

polymers removed by filtering. Excess solvent was removed under reduced pressure to give 

an oily residue of crude aminated terpyridine product. 

Yield (crude) = 1.67 g (64%)  

5.7 Purification of 4’-{2’”-(12-amino-2,6,9-triazadodecyl)-

phenyl}-2,2’:6’,2”-terpyridine. 

An 25 mm x 230 mm column was ½ filled with an alumina and CHCl3 slurry and allowed to 

settle for 2 hours. The crude aminated terpyridine product was dissolved in a little CHCl3 

and loaded onto the top of the column. The initial eluent was 100 mL CHCl3 which removed 

unreacted linear amine and the starting material, 4’-(o-toluyl)-2,2’:6’,2”-terpyridine. The 

eluent was then changed to a blend of CH3CN, water and methanol saturated with KNO3 

(10:2:1 ratio) of which 100 mL was passed through the column to remove the aminated 

tepyridine. This solvent mixture was removed by reduced pressure and the aminated 

terpyridine removed from the resulting mixture with CH2Cl2. This solution then had the 

solvent removed under vacuum to give a purified sample of 4’-{2’”-(12-amino-2,6,9-

triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine. 

Yield = 162 mg (9.7%) 1H NMR (500 MHz CD2Cl2): δ = 8.70 (d, 2H, H6,6”), 8.68 (d, 2H, 

H3,3”), 8.50 (s, 2H, H3’, 5’), 7.92 (t, 2H, H5,5”), 7.58 (d, 1H, H3”’) 7.45 (t, 1H, H4’”) 7.37 – 7.43 (m, 

4H, H4,4”,5’”, 6”’), 3.73 (s, 2H, HC1), 2.94 (d, 2H, HC9), 2.93 (d, 2H, HC4), 2.89 & 2.71 (d, 4H, HC5 

& C6), 2.72 (d, 2H, HC7), 2.62 (d, 2H, HC2), 1.75 (t, 2H, HC8), 1.63 (t, 2H, HC3). MS(ES) m/z: 

496.3153 ([M+H+]), 518.3011 ([M+Na+]). 
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5.8 Metal Complexes of 4’-(o-Toluyl)-2,2’:6’,2”-terpyridine 
(ottp) and Derivatives 

 

5.8.1  Cu(ottp)Cl2·CH3OH 
 
Copper(II) chloride (11.3 mg, 6.648 x 10-4 mol) was dissolved in methanol (5 mL) and added 

to a solution of 4’-(o-toluyl)2,2’:6’,2”-terpyridine (21.5 mg, 6.648 x 10-4 mol) in CHCl3 (2 

mL). The resulting solution turned blue. An NMR vial was 1/3 filled with the solution and a 

cap with a 1 mm hole drilled in it secured onto the vial. Vapour diffusion of ether into the 

ethanol/CHCl3 solution resulted in the formation of small blue cubic crystals after a week. 

 

5.8.2  [Co(ottp)2]Cl2·2.25CH3OH 
 

Cobalt(II) chloride (30.7 mg, 1.29 x 10-4 mol) was dissolved in a solution of methanol (5 mL) 

and added to a solution of 4’-(o-toluyl)2,2’:6’,2”-terpyridine (83.4 mg, 2.58 x 10-4 mol) in 

CHCl3 (2 mL). The resulting solution turned red/brown. An NMR vial was 1/3 filled with 

the solution and vapour diffusion of ether into the ethanol/ CHCl3 solution resulted in the 

formation of medium red/brown cubic crystals after 2 days. 

5.8.3 [Fe(ottp)2][PF6]2 
 

Iron(II) chloride (13.2  mg, 6.64 x 10-5 mol) was dissolved in water (3 mL) and added to a 

solution of 4’-(o-toluyl)2,2’:6’,2”-terpyridine (42.9 mg, 1.33 x 10-4 mol) in ethanol (3 mL) and 

the resulting solution turned intense purple. Two drops of ammonium hexafluorophosphate 

saturated methanol was added and the complex fell out of solution as a precipitate. The 
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precipitate was washed with water and then with CH2Cl2 to remove uncoordinated ligand 

and metal salts. The complex was then analysed by 1H NMR, COSY, HSQC and elemental 

analysis. 

Absorption spectra in CH3CN (λmax, εmax): 560 nm, 13492 M-1cm-1. Anal. Calcd. for 

C44H34ClF6FeN6P: C, 59.85; H, 3.88; N, 9.52. Found: C 59.53; H 3.91; N 9.64. 1H NMR (500 

MHz CDCl3): δ = 9.29 (s, 2H, H3’, 5’), 8.95 (d, 2H, H3,3”), 8.06 (t, 2H, H4,4”), 7.82 (d, 1H, H3’”), 

7.57 – 7.61 (m, 5H, H6,6”,4’”,5’”,6’”), 2.76 (s, 3H, CH3). 

 
 

5.8.4  [(Cl-ottp)Cu(µ-Cl)(µ-Br)Co(Cl-ottp)][PF6]2 
 

Copper(II) chloride (15.6 mg, 9.15 x 10-5 mol) was dissolved in water (5 mL) and added to a 

solution of 4’-(2-(bromomethyl)phenyl)-2,2’:6’,2”-terpyridine (36.8 mg, 9.15 x 10-5 mol) 

dissolved in ethanol (5 mL). The resulting solution turned blue/green to which two drops of 

ammonium hexafluorophosphate saturated methanol was added. A pale blue/green 

precipitate resulted. The solution was filtered and the precipitate washed with water. To 

remove any excess metal salts, and then with CH2Cl2, to remove any excess 4’-(2-

(bromomethyl)phenyl)-2,2’:6’,2”-terpyridine. The precipitate was dissolved in CH3CN (1 mL) 

and vapour diffusion of pet ether into the CH3CN solution resulted in blue/green needle-

like crystals over one week. 
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5.8.5 The Iron(II) 2”’-patottp Complex  
 

Iron(II)chloride (7.9 mg, 3.983 x 10-5 mol) was dissolve in water and added to a solution of 

4’-{2’”-(12-amino-2,6,9-triazadodecyl)-phenyl}-2,2’:6’,2”-terpyridine (19.7 mg, 3.983 x 10-5 

mol) in methanol (1 mL). Two drops of saturated ammonium hexafluorophosphate in 

methanol was added to the resulting purple solution and a precipitate resulted. The purple 

precipitate was filtered and washed with water and then with CH2Cl2 and dried. The 

precipitate was then dissolved in CH3CN and pet ether was diffused into this solution. No 

X-ray quality crystals resulted. 

Absorption spectra in CH3CN (λmax, εmax): 560 nm, 2381.8 M-1cm-1 (ML) or 4522.1 M-1cm-1 

(ML2). Anal. Calcd. for C30H36ClF12FeN7P2: C, 41.14; H, 4.14; N, 11.19. Found: C 41.44; H 

3.65; N 9.71. MS(ES) m/z: 548.0375 ([M+H+]) 
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Figure 5-8 Shows the general overall reaction scheme from start to finish and includes the coordination of the 
ligand to a central metal ion. 
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 Appendix 

X-ray Crystallography Tables 
 
Crystals were mounted on a glass fibre using perfluorinated oil.  Data were collected at low 

temperature using a APEX II CCD area detector.  The crystals were mounted 37.5 mm from 

the detector and irradiated with graphite monochromised Mo Kα (γ = 0.71073 Å) radiation.  

The data reduction was performed using SAINTPLUS1.  Intensities were corrected for 

Lorentzian polarization effects and for absorption effects using multi-scan methods.  Space 

groups were determined from systematic absences and checked for higher symmetry.  

Structures were solved by direct methods using SHELXS-972 and refined with full-matrix 

least squares on F2 using SHELXL-973 or with SHELXTL4.  All non-hydrogen atoms were 

refined anisotropically, unless specified otherwise. Hydrogen atom positions were placed at 

ideal positions and refined with a riding model.    

 
 

1.1 Table 1.  1,5,8,12-Tetraazadodecane  
 
Identification code   PATBA  
   
Empirical formula    C10 H20 N4  
   
Formula weight   196.30  
 
Temperature    119(2) K  
   
Wavelength     0.71073 A  
   
Crystal system, space group  rhombohedral, R3c  
   
Crystal size     0.83 x 0.15 x 0.10 mm  
  
Crystal colour    colourless 
 
Crystal form    needle 
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Unit cell dimensions   a = 23.9469(9) A   alpha = 90 deg.  
     b = 23.9469(9) A    beta = 90 deg.  
     c = 9.7831(5) A   gamma = 120 deg.  
   
Volume    4858.5(4) A3  
   
Z, Calculated density   18, 1.208 Mg/m3  
   
Absorption coefficient   0.076 mm-1 
 
Absorption Correction   multiscan 
   
F(000)     1944  
   
Theta range for data collection  1.70 to 25.04 deg.  
   
Limiting indices   -28<=h<=28, -28<=k<=28, -11<=l<=11  
   
Reflections collected / unique  7266 / 1914 [R(int) = 0.0374]  
   
Completeness to theta = 25.04  100.0 %  
   
Max. and min. transmission  0.9924 and 0.9394  
   
Refinement method    Full-matrix least-squares on F2  
   
Data / restraints / parameters  1914 / 1 / 127  
   
Goodness-of-fit on F2   1.031  
   
Final R indices [I>2sigma(I)]  R1 = 0.0368, wR2 = 0.1000  
   
R indices (all data)    R1 = 0.0433, wR2 = 0.1075  
   
Absolute structure parameter   2(3)  
   
Largest diff. peak and hole   0.310 and -0.305 e.A-3  
 

 

 

1.2 Table 2.   

Atomic coordinates ( x 104) and equivalent isotropic  

displacement parameters (A2 x 103) for PATBA.  

U(eq) is defined as one third of the trace of the orthogonalized  

Uij tensor.  
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         ________________________________________________________________  

   

x  y  z  U(eq)  

         ________________________________________________________________  

   

          N(3)  4063(1)  2018(1)  1185(2)  25(1)  

          N(2)  4690(1)  1452(1)  2651(2)  28(1)  

          C(10)  4962(1)  2152(1)  2638(2)  25(1)  

          N(1)  5290(1)  2443(1)  3909(2)  32(1)  

          N(4)  4740(1)  3015(1)  2254(2)  31(1)  

          C(9)  4441(1)  2323(1)  2413(2)  24(1)  

          C(7)  3828(1)  2903(1)  986(2)  34(1)  

          C(2)  5561(1)  1580(1)  4150(2)  38(1)  

          C(3)  5207(1)  1300(1)  2814(2)  35(1)  

          C(5)  3793(1)  1322(1)  1262(2)  33(1)  

          C(6)  3553(1)  2181(1)  1036(2)  32(1)  

          C(4)  4328(1)  1166(1)  1401(2)  34(1)  

          C(8)  4264(1)  3222(1)  2201(2)  36(1)  

          C(1)  5805(1)  2299(1)  4200(2)  41(1)  

         ________________________________________________________________  

 

 

 

1.3 Table 3.   

Bond lengths [A] and angles [deg] for PATBA.  
           _____________________________________________________________  

   

            N(3)-C(5)  1.459(3)  

            N(3)-C(6)  1.462(3)  

            N(3)-C(9)  1.460(2)  
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            N(2)-C(10)  1.464(3)  

            N(2)-C(4)  1.456(3)  

            N(2)-C(3)  1.463(3)  

            C(10)-N(1)  1.449(3)  

            C(10)-C(9)  1.512(3)  

            C(10)-H(10A)  1.0000  

            N(1)-C(1)  1.466(3)  

            N(1)-H(1A)  0.8800  

            N(4)-C(9)  1.450(3)  

            N(4)-C(8)  1.455(3)  

            N(4)-H(4A)  0.8800  

            C(9)-H(9A)  1.0000  

            C(7)-C(6)  1.513(3)  

            C(7)-C(8)  1.512(3)  

            C(7)-H(7A)  0.9900  

            C(7)-H(7B)  0.9900  

            C(2)-C(3)  1.520(3)  

            C(2)-C(1)  1.518(4)  

            C(2)-H(2A)  0.9900  

            C(2)-H(2B)  0.9900  

            C(3)-H(3A)  0.9900  

            C(3)-H(3B)  0.9900  

            C(5)-C(4)  1.509(3)  

            C(5)-H(5A)  0.9900  

            C(5)-H(5B)  0.9900  

            C(6)-H(6A)  0.9900  

            C(6)-H(6B)  0.9900  

            C(4)-H(4B)  0.9900  

            C(4)-H(4C)  0.9900  

            C(8)-H(8A)  0.9900  

            C(8)-H(8B)  0.9900  

            C(1)-H(1B)  0.9900  
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            C(1)-H(1C)  0.9900  

            C(5)-N(3)-C(6)  110.93(16)  

            C(5)-N(3)-C(9)  109.72(15)  

            C(6)-N(3)-C(9)  109.89(15)  

            C(10)-N(2)-C(4) 110.52(16)  

            C(10)-N(2)-C(3) 109.77(17)  

            C(4)-N(2)-C(3)  110.72(17)  

            N(1)-C(10)-N(2) 111.56(15)  

            N(1)-C(10)-C(9) 108.47(16)  

            N(2)-C(10)-C(9) 110.86(16)  

            N(1)-C(10)-H(10A) 108.6  

            N(2)-C(10)-H(10A) 108.6  

            C(9)-C(10)-H(10A) 108.6  

            C(10)-N(1)-C(1) 111.77(17)  

            C(10)-N(1)-H(1A) 124.1  

            C(1)-N(1)-H(1A) 124.1  

            C(9)-N(4)-C(8)  111.72(18)  

            C(9)-N(4)-H(4A) 124.1  

            C(8)-N(4)-H(4A) 124.1  

            N(4)-C(9)-N(3)  108.13(15)  

            N(4)-C(9)-C(10) 108.76(16)  

            N(3)-C(9)-C(10) 111.96(15)  

            N(4)-C(9)-H(9A) 109.3  

            N(3)-C(9)-H(9A) 109.3  

            C(10)-C(9)-H(9A) 109.3  

            C(6)-C(7)-C(8)  110.36(17)  

            C(6)-C(7)-H(7A) 109.6  

            C(8)-C(7)-H(7A) 109.6  

            C(6)-C(7)-H(7B) 109.6  

            C(8)-C(7)-H(7B) 109.6  

            H(7A)-C(7)-H(7B) 108.1  

            C(3)-C(2)-C(1)  110.00(18)  
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            C(3)-C(2)-H(2A) 109.7  

            C(1)-C(2)-H(2A) 109.7  

            C(3)-C(2)-H(2B) 109.7  

            C(1)-C(2)-H(2B) 109.7  

            H(2A)-C(2)-H(2B) 108.2  

            N(2)-C(3)-C(2)  109.80(18)  

            N(2)-C(3)-H(3A) 109.7  

            C(2)-C(3)-H(3A) 109.7  

            N(2)-C(3)-H(3B) 109.7  

            C(2)-C(3)-H(3B) 109.7  

            H(3A)-C(3)-H(3B) 108.2  

            N(3)-C(5)-C(4)  109.95(18)  

            N(3)-C(5)-H(5A) 109.7  

            C(4)-C(5)-H(5A) 109.7  

            N(3)-C(5)-H(5B) 109.7  

            C(4)-C(5)-H(5B) 109.7  

            H(5A)-C(5)-H(5B) 108.2  

            N(3)-C(6)-C(7)  111.32(18)  

            N(3)-C(6)-H(6A) 109.4  

            C(7)-C(6)-H(6A) 109.4  

            N(3)-C(6)-H(6B) 109.4  

            C(7)-C(6)-H(6B) 109.4  

            H(6A)-C(6)-H(6B) 108.0  

            N(2)-C(4)-C(5)  109.81(17)  

            N(2)-C(4)-H(4B) 109.7  

            C(5)-C(4)-H(4B) 109.7  

            N(2)-C(4)-H(4C) 109.7  

            C(5)-C(4)-H(4C) 109.7  

            H(4B)-C(4)-H(4C) 108.2  

            N(4)-C(8)-C(7)  108.45(17)  

            N(4)-C(8)-H(8A) 110.0  

            C(7)-C(8)-H(8A) 110.0  
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            N(4)-C(8)-H(8B) 110.0  

            C(7)-C(8)-H(8B) 110.0  

            H(8A)-C(8)-H(8B) 108.4  

            N(1)-C(1)-C(2)  111.60(19)  

            N(1)-C(1)-H(1B) 109.3  

            C(2)-C(1)-H(1B) 109.3  

            N(1)-C(1)-H(1C) 109.3  

            C(2)-C(1)-H(1C) 109.3  

            H(1B)-C(1)-H(1C) 108.0  

           _____________________________________________________________  

   

           Symmetry transformations used to generate equivalent atoms:  

             

 'x, y, z'  
 '-y, x-y, z'  
 '-x+y, -x, z'  
 '-y, -x, z+1/2'  
 '-x+y, y, z+1/2'  
 'x, x-y, z+1/2'  
 'x+2/3, y+1/3, z+1/3'  
 '-y+2/3, x-y+1/3, z+1/3'  
 '-x+y+2/3, -x+1/3, z+1/3'  
 '-y+2/3, -x+1/3, z+5/6'  
 '-x+y+2/3, y+1/3, z+5/6'  
 'x+2/3, x-y+1/3, z+5/6'  
 'x+1/3, y+2/3, z+2/3'  
 '-y+1/3, x-y+2/3, z+2/3'  
 '-x+y+1/3, -x+2/3, z+2/3'  
 '-y+1/3, -x+2/3, z+7/6'  
 '-x+y+1/3, y+2/3, z+7/6'  
 'x+1/3, x-y+2/3, z+7/6' 
 
 
 

1.4  Table 4.   

Anisotropic displacement parameters (A2 x 103) for PATBA.  

The anisotropic displacement factor exponent takes the form:  

-2 pi2 [ h2 a*2 U11 + ... + 2 h k a* b* U12 ]  
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_______________________________________________________________________  

   

U11 U22 U33 U23 U13 U12  

    

_______________________________________________________________________  

   

    N(3)  26(1) 26(1) 23(1) -2(1) -3(1) 13(1)  

    N(2)  33(1) 30(1) 25(1)  2(1) 1(1) 19(1)  

    C(10) 24(1) 28(1) 20(1) 2(1) 3(1) 11(1)  

    N(1)  32(1) 38(1) 28(1) -6(1) -7(1) 19(1)  

    N(4)  27(1) 25(1) 38(1) 0(1) -3(1) 12(1)  

    C(9)  24(1) 26(1) 20(1) -1(1) 1(1) 12(1)  

    C(7)  36(1) 40(1) 34(1) 3(1) 0(1) 25(1)  

    C(2)  36(1) 58(2) 33(1) 13(1) 5(1) 33(1)  

    C(3)  41(1) 44(1) 33(1) 8(1) 6(1) 31(1)  

    C(5)  33(1) 28(1) 33(1) -6(1) -4(1) 13(1)  

    C(6)  26(1) 37(1) 35(1) -2(1) -5(1) 16(1)  

    C(4)  41(1) 31(1) 32(1) -6(1) -3(1) 21(1)  

    C(8)  45(1) 32(1) 40(1) -1(1) -2(1) 25(1)  

    C(1)  31(1) 57(2) 36(1) 3(1) -4(1) 23(1)  

    

_______________________________________________________________________  

 
 
 

1.5  Table 5.   

Hydrogen coordinates ( x 104) and isotropic  displacement parameters (A2 x 103) for 
PATBA.  

   

         ________________________________________________________________  
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x y z U(eq)  

         ________________________________________________________________  

   

          H(10A)  5280 2338 1873 30  

          H(1A)  5191 2677 4441 38  

          H(4A)  5159 3279 2197 37  

          H(9A)  4148 2183 3225 28  

          H(7A)  3472 3000 991 40  

          H(7B)  4076 3077 130 40  

          H(2A)  5929 1502 4229 46  

          H(2B)  5266 1365 4928 46  

          H(3A)  5513 1483 2040 42  

          H(3B)  5023 827 2812 42  

          H(5A)  3540 1116 427 39  

          H(5B)  3500 1148 2059 39  

          H(6A)  3251 1999 1816 39  

          H(6B)  3309 1984 187 39  

          H(4B)  4144 693 1426 40  

          H(4C)  4620 1337 602 40  

          H(8A)  4481 3697 2107 43  

          H(8B)  4007 3098 3053 43  

          H(1B)  5986 2466 5118 49  

          H(1C)  6156 2522 3522 49  

         ________________________________________________________________  
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2.1 Table 1.  [Cu(ottp)]Cl2·CH3OH 

Crystal data and structure refinement for [Cu(ottp)]Cl2·CH3OH  
   
Identification code   L1CuA 
   
Empirical formula    C23 H21 Cl2 Cu N3 O  
   
Formula weight     489.87  
   
Temperature     110(2) K  
   
Wavelength    0.71073 A  
   
Crystal system, space group   Triclinic, P-1 
 
Crystal size     0.42 x 0.36 x 0.20 mm  
  
Crystal colour    blue 
 
Crystal form    block 
  
Unit cell dimensions   a = 8.0345(11) A  alpha = 74.437(4) deg.  
      b = 9.0879(14) A beta = 76.838(4) deg.  
      c = 15.404(2) A gamma = 82.023(4) deg.  
   
Volume     1051.4(3) A3  
   
Z, Calculated density   2, 1.547 Mg/m3  
   
Absorption coefficient   1.313 mm-1 
 
Absorption correction    Multi-scan 
   
F(000)     502  
    
Theta range for data collection  2.33 to 25.05 deg.  
   
Limiting indices    -9<=h<=5, -10<=k<=10, -18<=l<=18  
   
Reflections collected / unique  6994 / 3664 [R(int) = 0.0432]  
   
Completeness to theta = 25.00 98.0 %  
   
Max. and min. transmission   0.769 and 0.367  
   
Refinement method    Full-matrix least-squares on F2  
   



 105 

Data / restraints / parameters  3664 / 0 / 274  
   
Goodness-of-fit on F2   1.122  
   
Final R indices [I>2sigma(I)]   R1 = 0.0401, wR2 = 0.1164  
   
R indices (all data)    R1 = 0.0429, wR2 = 0.1188  
   
Largest diff. peak and hole   0.442 and -0.801 e.A-3  
 
 
 

2.2 Table 2.   

Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2 x 103) for 
[Cu(ottp)]Cl2.CH3OH. U(eq) is defined as one third of the trace of the orthogonalized Uij 
tensor.  

   
         ________________________________________________________________  
   

x  y  z  U(eq)  
         ________________________________________________________________  
   
          Cu(1)  4760(1)  1300(1)  3743(1)  19(1)  
          Cl(1)  3938(1)  2973(1)  2295(1)  32(1)  
          Cl(2)  2683(1)  1891(1)  4867(1)  27(1)  
          N(11)  6568(3)  2640(3)  3788(2)  20(1)  
          C(11)  8174(4)  2279(3)  3352(2)  21(1)  
          C(12)  9544(4)  3056(4)  3333(2)  27(1)  
          C(13)  9240(4)  4274(4)  3745(2)  30(1)  
          C(14)  7597(4)  4693(4)  4150(2)  29(1)  
          C(15  )6288(4) 3832(4)  4167(2)  25(1)  
          N(21)  6813(3)  369(3)  3086(2)  18(1)  
          C(21)  8293(4)  1012(3)  2900(2)  19(1)  
          C(22)  9728(4)  502(3)  2329(2)  21(1)  
          C(23)  9599(4)  -687(3)  1937(2)  21(1)  
          C(24)  8058(4)  -1393(3) 2190(2)  22(1)  
          C(25)  6690(4)  -825(3)  2767(2)  20(1)  
          N(31)  3845(3)  -613(3)  3630(2)  21(1)  
          C(31)  4970(4)  -1421(3) 3099(2)  20(1)  
          C(32)  4565(4)  -2710(4) 2910(2)  26(1)  
          C(33)  2931(4)  -3199(4) 3286(2)  28(1)  
          C(34)  1775(4)  -2373(4) 3819(2)  28(1)  
          C(35)  2265(4)  -1085(4) 3974(2)  24(1)  
          C(41)  11050(4) -1251(4) 1282(2)  22(1)  
          C(42)  12012(4) -248(4)  536(2)  24(1)  
          C(43)  13299(4) -890(4)  -61(2)  30(1)  
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          C(44)  13672(4) -2452(4) 75(2)  33(1)  
          C(45)  12733(5) -3431(4) 813(2)  33(1)  
          C(46)  11430(4) -2826(4) 1402(2)  26(1)  
          C(47)  11681(5) 1469(4)  332(2)  33(1)  
          O(100)  7007(4)  5138(3)  1737(2)  42(1)  
          C(100)  8287(6)  4604(4)  1076(3)  43(1)  
         ________________________________________________________________  
 
 
 

2.3 Table 3.   

Bond lengths [A] and angles [deg] for [Cu(ottp)]Cl2.CH3OH  

           _____________________________________________________________  
   
            Cu(1)-N(21)   1.942(2)  
            Cu(1)-N(31)   2.042(3)  
            Cu(1)-N(11)   2.044(3)  
            Cu(1)-Cl(2)   2.2375(8)  
            Cu(1)-Cl(1)   2.5093(9)  
            N(11)-C(15)   1.333(4)  
            N(11)-C(11)   1.352(4)  
            C(11)-C(12)   1.378(4)  
            C(11)-C(21)   1.480(4)  
            C(12)-C(13)   1.386(5)  
            C(12)-H(12)   0.9500  
            C(13)-C(14)   1.375(5)  
            C(13)-H(13)   0.9500  
            C(14)-C(15)   1.387(5)  
            C(14)-H(14)   0.9500  
            C(15)-H(15)   0.9500  
            N(21)-C(25)   1.329(4)  
            N(21)-C(21)   1.336(4)  
            C(21)-C(22)   1.388(4)  
            C(22)-C(23)   1.397(4)  
            C(22)-H(0MA)   0.9500  
            C(23)-C(24)   1.401(4)  
            C(23)-C(41)   1.488(4)  
            C(24)-C(25)   1.381(4)  
            C(24)-H(7TA)   0.9500  
            C(25)-C(31)   1.485(4)  
            N(31)-C(35)   1.341(4)  
            N(31)-C(31)   1.351(4)  
            C(31)-C(32)   1.376(4)  
            C(32)-C(33)   1.391(4)  
            C(32)-H(32)   0.9500  
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            C(33)-C(34)   1.375(5)  
            C(33)-H(33)   0.9500  
            C(34)-C(35)   1.379(5)  
            C(34)-H(34)   0.9500  
            C(35)-H(35)   0.9500  
            C(41)-C(46)   1.392(4)  
            C(41)-C(42)   1.407(4)  
            C(42)-C(43)   1.394(5)  
            C(42)-C(47)   1.505(5)  
            C(43)-C(44)   1.378(5)  
            C(43)-H(43)   0.9500  
            C(44)-C(45)   1.380(5)  
            C(44)-H(44)   0.9500  
            C(45)-C(46)   1.377(5)  
            C(45)-H(45)   0.9500  
            C(46)-H(46)   0.9500  
            C(47)-H(8TA)   0.9800  
            C(47)-H(8TB)   0.9800  
            C(47)-H(8TC)   0.9800  
            O(100)-C(100)   1.408(4)  
            O(100)-H(100)   0.8400  
            C(100)-H(10A)   0.9800  
            C(100)-H(10B)   0.9800  
            C(100)-H(10C)   0.9800  
            N(21)-Cu(1)-N(31)  79.26(10)  
            N(21)-Cu(1)-N(11)  79.11(10)  
            N(31)-Cu(1)-N(11)  156.56(10)  
            N(21)-Cu(1)-Cl(2)  162.50(8)  
            N(31)-Cu(1)-Cl(2)  99.06(7)  
            N(11)-Cu(1)-Cl(2)  98.83(7)  
            N(21)-Cu(1)-Cl(1)  93.36(7)  
            N(31)-Cu(1)-Cl(1)  94.40(7)  
            N(11)-Cu(1)-Cl(1)  95.77(7)  
            Cl(2)-Cu(1)-Cl(1)  104.15(3)  
            C(15)-N(11)-C(11)  119.0(3)  
            C(15)-N(11)-Cu(1)  126.3(2)  
            C(11)-N(11)-Cu(1)  114.7(2)  
            N(11)-C(11)-C(12)  121.8(3)  
            N(11)-C(11)-C(21)  113.8(3)  
            C(12)-C(11)-C(21)  124.4(3)  
            C(11)-C(12)-C(13)  118.5(3)  
            C(11)-C(12)-H(12)  120.7  
            C(13)-C(12)-H(12)  120.7  
            C(14)-C(13)-C(12)  119.8(3)  
            C(14)-C(13)-H(13)  120.1  
            C(12)-C(13)-H(13)  120.1  
            C(13)-C(14)-C(15)  118.5(3)  
            C(13)-C(14)-H(14)  120.8  
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            C(15)-C(14)-H(14)  120.8  
            N(11)-C(15)-C(14)  122.2(3)  
            N(11)-C(15)-H(15)  118.9  
            C(14)-C(15)-H(15)  118.9  
            C(25)-N(21)-C(21)  121.1(3)  
            C(25)-N(21)-Cu(1)  119.2(2)  
            C(21)-N(21)-Cu(1)  119.5(2)  
            N(21)-C(21)-C(22)  120.9(3)  
            N(21)-C(21)-C(11)  112.5(3)  
            C(22)-C(21)-C(11)  126.5(3)  
            C(21)-C(22)-C(23)  118.9(3)  
            C(21)-C(22)-H(0MA)  120.5  
            C(23)-C(22)-H(0MA)  120.5  
            C(22)-C(23)-C(24)  118.5(3)  
            C(22)-C(23)-C(41)  122.4(3)  
            C(24)-C(23)-C(41)  119.1(3)  
            C(25)-C(24)-C(23)  119.0(3)  
            C(25)-C(24)-H(7TA)  120.5  
            C(23)-C(24)-H(7TA)  120.5  
            N(21)-C(25)-C(24)  121.3(3)  
            N(21)-C(25)-C(31)  112.5(3)  
            C(24)-C(25)-C(31)  126.2(3)  
            C(35)-N(31)-C(31)  118.1(3)  
            C(35)-N(31)-Cu(1)  127.6(2)  
            C(31)-N(31)-Cu(1)  114.16(19)  
            N(31)-C(31)-C(32)  122.7(3)  
            N(31)-C(31)-C(25)  114.0(3)  
            C(32)-C(31)-C(25)  123.2(3)  
            C(31)-C(32)-C(33)  118.3(3)  
            C(31)-C(32)-H(32)  120.8  
            C(33)-C(32)-H(32)  120.8  
            C(34)-C(33)-C(32)  119.2(3)  
            C(34)-C(33)-H(33)  120.4  
            C(32)-C(33)-H(33)  120.4  
            C(33)-C(34)-C(35)  119.3(3)  
            C(33)-C(34)-H(34)  120.3  
            C(35)-C(34)-H(34)  120.3  
            N(31)-C(35)-C(34)  122.3(3)  
            N(31)-C(35)-H(35)  118.9  
            C(34)-C(35)-H(35)  118.9  
            C(46)-C(41)-C(42)  119.2(3)  
            C(46)-C(41)-C(23)  118.6(3)  
            C(42)-C(41)-C(23)  122.2(3)  
            C(43)-C(42)-C(41)  117.8(3)  
            C(43)-C(42)-C(47)  118.7(3)  
            C(41)-C(42)-C(47)  123.5(3)  
            C(44)-C(43)-C(42)  122.1(3)  
            C(44)-C(43)-H(43)  118.9  
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            C(42)-C(43)-H(43)  118.9  
            C(43)-C(44)-C(45)  119.8(3)  
            C(43)-C(44)-H(44)  120.1  
            C(45)-C(44)-H(44)  120.1  
            C(46)-C(45)-C(44)  119.2(3)  
            C(46)-C(45)-H(45)  120.4  
            C(44)-C(45)-H(45)  120.4  
            C(45)-C(46)-C(41)  121.8(3)  
            C(45)-C(46)-H(46)  119.1  
            C(41)-C(46)-H(46)  119.1  
            C(42)-C(47)-H(8TA)  109.5  
            C(42)-C(47)-H(8TB)  109.5  
            H(8TA)-C(47)-H(8TB)  109.5  
            C(42)-C(47)-H(8TC)  109.5  
            H(8TA)-C(47)-H(8TC)  109.5  
            H(8TB)-C(47)-H(8TC)  109.5  
            C(100)-O(100)-H(100)  109.5  
            O(100)-C(100)-H(10A)  109.5  
            O(100)-C(100)-H(10B)  109.5  
            H(10A)-C(100)-H(10B) 109.5  
            O(100)-C(100)-H(10C)  109.5  
            H(10A)-C(100)-H(10C) 109.5  
            H(10B)-C(100)-H(10C) 109.5  
           _____________________________________________________________  
   
           Symmetry transformations used to generate equivalent atoms:  
             

 x, y, z   -x, -y, -z 
 
 
 

2.4 Table 4.   

Anisotropic displacement parameters (A2 x 103) for [Cu(ottp)]Cl2.CH3OH The anisotropic 
displacement factor exponent takes the form:  

 -2 pi2 [ h2 a*2 U11 + ... + 2 h k a* b* U12 ]  
   
    
_______________________________________________________________________  
   

U11 U22 U33 U23 U13 U12  
    
_______________________________________________________________________  
   
    Cu(1) 17(1) 23(1) 18(1) -9(1) 1(1) -4(1)  
    Cl(1)  25(1) 40(1) 22(1) 1(1) -1(1) -1(1)  
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    Cl(2)  25(1) 36(1) 22(1) -15(1) 5(1) -6(1)  
    N(11) 18(1) 25(1) 18(1) -7(1) 0(1) -4(1)  
    C(11) 23(2) 22(2) 16(1) -4(1) 0(1) -5(1)  
    C(12) 23(2) 32(2) 26(2) -11(1) 1(1) -6(1)  
    C(13) 29(2) 35(2) 29(2) -14(1) 1(1) -14(1)  
    C(14) 33(2) 31(2) 28(2) -16(1) 0(1) -9(1)  
    C(15) 24(2) 28(2) 23(2) -13(1) 1(1) -2(1)  
    N(21) 16(1) 22(1) 17(1) -5(1) -3(1) -5(1)  
    C(21) 19(1) 22(2) 16(1) -3(1) -3(1) -2(1)  
    C(22) 22(2) 24(2) 18(2) -4(1) -1(1) -7(1)  
    C(23) 22(2) 24(2) 14(1) -4(1) -2(1) -1(1)  
    C(24) 24(2) 23(2) 19(2) -7(1) -2(1) -6(1)  
    C(25) 23(2) 21(2) 16(1) -4(1) 0(1) -4(1)  
    N(31) 18(1) 24(1) 18(1) -4(1) -1(1) -6(1)  
    C(31) 20(2) 25(2) 16(1) -5(1) -3(1) -6(1)  
    C(32) 25(2) 30(2) 24(2) -12(1) 1(1) -4(1)  
    C(33) 28(2) 31(2) 31(2) -13(1) -4(1) -10(1)  
    C(34) 21(2) 37(2) 25(2) -7(1) 0(1) -10(1)  
    C(35) 18(2) 30(2) 21(2) -6(1) 0(1) -2(1)  
    C(41) 23(2) 27(2) 18(2) -9(1) -4(1) -4(1)  
    C(42) 24(2) 30(2) 20(2) -9(1) -2(1) -3(1)  
    C(43) 27(2) 40(2) 22(2) -12(1) 0(1) -5(1)  
    C(44) 24(2) 49(2) 28(2) -24(2) 0(1) 4(2)  
    C(45) 41(2) 30(2) 29(2) -14(1) -8(2) 8(2)  
    C(46) 30(2) 27(2) 21(2) -7(1) -2(1) -1(1)  
    C(47) 39(2) 30(2) 24(2) -5(1) 7(2) -6(1)  
    O(100) 42(2) 41(2) 44(2) -27(1) 7(1) -5(1)  
    C(100) 57(3) 37(2) 32(2) -15(2) 5(2) -7(2)  
    
_______________________________________________________________________  
 
 
 

2.5 Table 5.  

Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for 
[Cu(ottp)]Cl2.CH3OH 

   
         ________________________________________________________________  
   

x   y   z  U(eq)  
         ________________________________________________________________  
   
          H(12)  10671  2763  3043  32  
          H(13)  10165  4819  3748  36  
          H(14)  7363  5552  4412  35  
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          H(15)  5154  4101  4458  30  
          H(0MA)  10781  953  2207  26  
          H(7TA)  7956  -2249  1968  26  
          H(32)  5382  -3252  2532  31  
          H(33)  2617  -4093  3176  34  
          H(34)  651  -2686  4079  33  
          H(35)  1455  -512  4336  28  
          H(43)  13939  -230  -579  35  
          H(44)  14572  -2854  -338  39  
          H(45)  12984  -4509  914  39  
          H(46)  10772  -3502  1903  32  
          H(8TA)  10444  1750  398  49  
          H(8TB)  12259  1921  -298  49  
          H(8TC)  12124  1855  764  49  
          H(100)  6093  4739  1796  63  
          H(10A)  9414  4821  1131  64  
          H(10B)  8084  5123  459  64  
          H(10C)  8254  3496  1176  64  
         ________________________________________________________________  
 
 
 

  
 
 

3.1 Table 1.  [Co(ottp)2·Cl2]·2.25CH3OH 

Crystal data and structure refinement for [Co(ottp)2·Cl2]·2.25CH3OH  
   
Identification code   L1CoA  
   
Empirical formula   C46.25 H42.50 Cl2 Co N6 O2.50  
   
Formula weight    852.19  
   
Temperature    114(2) K  
   
Wavelength     0.71073 A  
   
Crystal system, space group  monoclinic, P21/n  
   
Crystal size     0.34 x 0.11 x 0.08 mm 
 

Crystal colour    red-brown 
 
Crystal form    block  
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Unit cell dimensions    a = 9.0517(10) A alpha = 90 deg.  
     b = 41.431(5) A  beta = 107.147(7) deg.  
     c = 11.7073(15) A  gamma = 90 deg.  
   
Volume     4195.3(9) A3  
   
Z, Calculated density   4, 1.349 Mg/m3  
   
Absorption coefficient   0.584 mm-1  
   
F(000)      1772  
   
Theta range for data collection  0.98 to 25.02 deg.  
   
Limiting indices   -10<=h<=10, -49<=k<=49, -13<=l<=13  
   
Reflections collected / unique  55339 / 7394 [R(int) = 0.1164]  
   
Completeness to theta = 25.00  99.9 %  
   
Max. and min. transmission  1.000000  0.673456 
 
Refinement method    Full-matrix least-squares on F2  
   
Data / restraints / parameters  7394 / 0 / 506  
   
Goodness-of-fit on F2    1.072  
   
Final R indices [I>2sigma(I)]  R1 = 0.0648, wR2 = 0.1813  
   
R indices (all data)    R1 = 0.1074, wR2 = 0.2109  
   
Largest diff. peak and hole  529 and -0.690 e.A-3  
 
 
 

3.2 Table 2.   

Atomic coordinates ( x 104) and equivalent isotropic  displacement parameters (A2 x 
103) for [Co(ottp)2.Cl2]. 2.25CH3OH.  

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.  
   
         ________________________________________________________________  
   

x  y  z  U(eq)  
         ________________________________________________________________  
   
          Co(1)  4721(1)  1226(1)  1777(1)  15(1)  
          N(11)  3132(5)  880(1)  1626(4)  18(1)  
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          C(11)  2351(6)  802(1)  477(5)  18(1)  
          C(12)  1305(6)  551(1)  204(5)  20(1)  
          C(13)  1064(6)  368(1)  1113(5)  26(1)  
          C(14)  1866(6)  445(1)  2278(5)  27(1)  
          C(15)  2889(6)  701(1)  2499(5)  21(1)  
          N(21)  3905(4)  1219(1)  113(4)  16(1)  
          C(21)  4406(5)  1437(1)  -553(5)  18(1)  
          C(22)  3758(6)  1450(1)  -1770(5) 20(1)  
          C(23)  2568(5)  1234(1)  -2339(4) 18(1)  
          C(24)  2063(6)  1014(1)  -1630(5) 20(1)  
          C(25)  2745(6)  1010(1)  -417(4)  17(1)  
          N(31)  6059(5)  1566(1)  1378(4)  18(1)  
          C(31)  5621(5)  1648(1)  187(5)  18(1)  
          C(32)  6224(6)  1912(1)  -234(5)  25(1)  
          C(33)  7333(6)  2099(1)  579(5)  30(1)  
          C(34)  7809(6)  2010(1)  1765(5)  28(1)  
          C(35)  7147(6)  1746(1)  2136(5)  24(1)  
          C(41)  1841(6)  1256(1)  -3652(5) 20(1)  
          C(42)  1337(6)  1561(1)  -4124(5) 26(1)  
          C(43)  619(7)  1601(2)  -5339(5) 34(2)  
          C(44)  438(7)  1338(2)  -6078(5) 37(2)  
          C(45)  940(6)  1040(2)  -5635(5) 32(1)  
          C(46)  1663(6)  990(1)  -4413(5) 24(1)  
          C(47)  2239(7)  657(2)  -3978(6) 37(2)  
          N(51)  6426(5)  838(1)  2180(4)  20(1)  
          C(51)  6973(6)  782(1)  3359(5)  18(1)  
          C(52)  7842(6)  510(1)  3834(5)  24(1)  
          C(53)  8142(6)  285(1)  3041(5)  26(1)  
          C(54)  7576(6)  341(1)  1822(5)  26(1)  
          C(55)  6726(6)  617(1)  1439(5)  24(1)  
          N(61)  5515(4)  1251(1)  3504(4)  17(1)  
          C(61)  5047(6)  1494(1)  4093(5)  19(1)  
          C(62)  5686(6)  1534(1)  5313(5)  20(1)  
          C(63)  6819(6)  1318(1)  5949(5)  22(1)  
          C(64)  7250(6)  1065(1)  5340(5)  20(1)  
          C(65)  6580(5)  1038(1)  4121(5)  17(1)  
          N(71)  3435(5)  1631(1)  2160(4)  19(1)  
          C(71)  3891(6)  1714(1)  3327(4)  18(1)  
          C(72)  3348(6)  1990(1)  3741(5)  23(1)  
          C(73)  2293(6)  2186(1)  2928(5)  28(1)  
          C(74)  1844(6)  2104(1)  1743(5)  26(1)  
          C(75)  2439(6)  1829(1)  1387(5)  25(1)  
          C(81)  7602(6)  1361(1)  7248(5)  21(1)  
          C(82)  7569(7)  1100(1)  8018(5)  27(1)  
          C(83)  8337(6)  1122(2)  9222(5)  29(1)  
          C(84)  9157(7)  1396(2)  9668(5)  36(2)  
          C(85)  9200(7)  1652(2)  8925(5)  33(1)  
          C(86)  8400(6)  1641(1)  7711(5)  25(1)  
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          C(87)  8434(7)  1937(2)  6953(6)  36(2)  
          Cl(1)  9027(2)  344(1)  7102(1)  25(1)  
          Cl(2)  4360(2)  2211(1)  6859(1)  25(1)  
          C(111)  5000  0  5000  19(3)  
          O(101)  5462(12) 353(3)  5380(10) 63(3)  
          O(201)  7181(5)  317(1)  9002(4)  47(1)  
          C(211)  5725(8)  172(2)  8526(7)  53(2)  
          O(301)  2415(7)  2204(2)  8721(6)  73(2)  
          C(311)  2819(19) 2510(4)  9342(14) 166(6)  
         ________________________________________________________________  
 
 
 

3.3  Table 3.   

Bond lengths [A] and angles [deg] for [Co(ottp)2.Cl2]. 2.25CH3OH  

           _____________________________________________________________  
   
            Co(1)-N(21)   1.869(4)  
            Co(1)-N(61)   1.939(4)  
            Co(1)-N(31)   2.001(4)  
            Co(1)-N(11)   2.003(4)  
            Co(1)-N(71)   2.162(4)  
            Co(1)-N(51)   2.182(4)  
            N(11)-C(15)   1.332(7)  
            N(11)-C(11)   1.361(6)  
            C(11)-C(12)   1.378(7)  
            C(11)-C(25)   1.479(7)  
            C(12)-C(13)   1.376(7)  
            C(12)-H(12)   0.9500  
            C(13)-C(14)   1.381(8)  
            C(13)-H(13)   0.9500  
            C(14)-C(15)   1.379(8)  
            C(14)-H(14)   0.9500  
            C(15)-H(15)   0.9500  
            N(21)-C(21)   1.357(6)  
            N(21)-C(25)   1.359(6)  
            C(21)-C(22)   1.373(7)  
            C(21)-C(31)   1.471(7)  
            C(22)-C(23)   1.407(7)  
            C(22)-H(22)   0.9500  
            C(23)-C(24)   1.399(7)  
            C(23)-C(41)   1.486(7)  
            C(24)-C(25)   1.372(7)  
            C(24)-H(24)   0.9500  
            N(31)-C(35)   1.341(6)  
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            N(31)-C(31)   1.374(6)  
            C(31)-C(32)   1.377(7)  
            C(32)-C(33)   1.397(8)  
            C(32)-H(32)   0.9500  
            C(33)-C(34)   1.377(8)  
            C(33)-H(33)   0.9500  
            C(34)-C(35)   1.378(8)  
            C(34)-H(34)   0.9500  
            C(35)-H(35)   0.9500  
            C(41)-C(46)   1.398(7)  
            C(41)-C(42)   1.400(7)  
            C(42)-C(43)   1.388(8)  
            C(42)-H(42)   0.9500  
            C(43)-C(44)   1.373(9)  
            C(43)-H(43)   0.9500  
            C(44)-C(45)   1.362(9)  
            C(44)-H(44)   0.9500  
            C(45)-C(46)   1.402(8)  
            C(45)-H(45)   0.9500  
            C(46)-C(47)   1.510(8)  
            C(47)-H(47A)   0.9800  
            C(47)-H(47B)   0.9800  
            C(47)-H(47C)   0.9800  
            N(51)-C(51)   1.342(6)  
            N(51)-C(55)   1.343(7)  
            C(51)-C(52)   1.394(7 )  
            C(51)-C(65)   1.492(7)  
            C(52)-C(53)   1.399(8)  
            C(52)-H(52)   0.9500  
            C(53)-C(54)   1.387(8)  
            C(53)-H(53)   0.9500  
            C(54)-C(55)   1.377(8)  
            C(54)-H(54)   0.9500  
            C(55)-H(55)   0.9500  
            N(61)-C(65)   1.350(6)  
            N(61)-C(61)   1.355(6)  
            C(61)-C(62)   1.384(7)  
            C(61)-C(71)   1.476(7)  
            C(62)-C(63)   1.398(7)  
            C(62)-H(62)   0.9500  
            C(63)-C(64)   1.389(7)  
            C(63)-C(81)   1.487(7)  
            C(64)-C(65)   1.381(7)  
            C(64)-H(64)   0.9500  
            N(71)-C(75)   1.349(6)  
            N(71)-C(71)   1.350(6)  
            C(71)-C(72)   1.389(7)  
            C(72)-C(73)   1.393(7)  
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            C(72)-H(72)   0.9500  
            C(73)-C(74)   1.369(8)  
            C(73)-H(73)   0.9500  
            C(74)-C(75)   1.377(8)  
            C(74)-H(74)   0.9500  
            C(75)-H(75)   0.9500  
            C(81)-C(86)   1.391(8)  
            C(81)-C(82)   1.412(8)  
            C(82)-C(83)   1.379(8)  
            C(82)-H(82)   0.9500  
            C(83)-C(84)   1.371(9)  
            C(83)-H(83)   0.9500  
            C(84)-C(85)   1.378(9)  
            C(84)-H(84)   0.9500  
            C(85)-C(86)   1.393(8)  
            C(85)-H(85)   0.9500  
            C(86)-C(87)   1.517(8)  
            C(87)-H(87A)   0.9800  
            C(87)-H(87B)   0.9800  
            C(87)-H(87C)   0.9800  
            C(111)-O(101)#1  1.550(11)  
            C(111)-O(101)   1.550(11)  
            O(101)-H(11A)  0.8400  
            O(201)-C(211)   1.405(8)  
            O(201)-H(201)   0.8400  
            C(211)-H(21A)   0.9800  
            C(211)-H(21B)   0.9800  
            C(211)-H(21C)   0.9800  
            O(301)-C(311)   1.451(15)  
            O(301)-H(301)   0.8400  
            C(311)-H(31A)   0.9800  
            C(311)-H(31B)   0.9800  
            C(311)-H(31C)   0.9800  
            N(21)-Co(1)-N(61)  177.51(18)  
            N(21)-Co(1)-N(31)  81.29(17)  
            N(61)-Co(1)-N(31)  98.20(17)  
            N(21)-Co(1)-N(11)  80.97(17)  
            N(61)-Co(1)-N(11)  99.56(17)  
            N(31)-Co(1)-N(11)  162.24(17)  
            N(21)-Co(1)-N(71)  99.08(17)  
            N(61)-Co(1)-N(71)  78.44(16)  
            N(31)-Co(1)-N(71)  84.40(17)  
            N(11)-Co(1)-N(71)  99.12(16)  
            N(21)-Co(1)-N(51)  104.45(17)  
            N(61)-Co(1)-N(51)  78.03(16)  
            N(31)-Co(1)-N(51)  97.50(16)  
            N(11)-Co(1)-N(51)  86.23(16)  
            N(71)-Co(1)-N(51)  156.42(16)  
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            C(15)-N(11)-C(11)  118.1(4)  
            C(15)-N(11)-Co(1)  127.5(3)  
            C(11)-N(11)-Co(1)  114.0(3)  
            N(11)-C(11)-C(12)  121.9(5)  
            N(11)-C(11)-C(25)  113.5(4)  
            C(12)-C(11)-C(25)  124.6(5)  
            C(13)-C(12)-C(11)  119.4(5)  
            C(13)-C(12)-H(12)  120.3  
            C(11)-C(12)-H(12)  120.3  
            C(12)-C(13)-C(14)  118.7(5)  
            C(12)-C(13)-H(13)  120.7  
            C(14)-C(13)-H(13)  120.7  
            C(15)-C(14)-C(13)  119.4(5)  
            C(15)-C(14)-H(14)  120.3  
            C(13)-C(14)-H(14)  120.3  
            N(11)-C(15)-C(14)  122.5(5)  
            N(11)-C(15)-H(15)  118.7  
            C(14)-C(15)-H(15)  118.7  
            C(21)-N(21)-C(25)  120.4(4)  
            C(21)-N(21)-Co(1)  119.4(3)  
            C(25)-N(21)-Co(1)  120.1(3)  
            N(21)-C(21)-C(22)  120.6(4)  
            N(21)-C(21)-C(31)  112.1(4)  
            C(22)-C(21)-C(31)  127.2(5)  
            C(21)-C(22)-C(23)  120.0(5)  
            C(21)-C(22)-H(22)  120.0  
            C(23)-C(22)-H(22)  120.0  
            C(24)-C(23)-C(22)  118.2(5)  
            C(24)-C(23)-C(41)  122.1(4)  
            C(22)-C(23)-C(41)  119.6(5)  
            C(25)-C(24)-C(23)  119.6(5)  
            C(25)-C(24)-H(24)  120.2  
            C(23)-C(24)-H(24)  120.2  
            N(21)-C(25)-C(24)  121.2(5)  
            N(21)-C(25)-C(11)  111.3(4)  
            C(24)-C(25)-C(11)  127.5(5)  
            C(35)-N(31)-C(31)  118.0(4)  
            C(35)-N(31)-Co(1)  127.8(4)  
            C(31)-N(31)-Co(1)  113.4(3)  
            N(31)-C(31)-C(32)  122.2(5)  
            N(31)-C(31)-C(21)  113.1(4)  
            C(32)-C(31)-C(21)  124.6(5)  
            C(31)-C(32)-C(33)  118.5(5)  
            C(31)-C(32)-H(32)  120.8  
            C(33)-C(32)-H(32)  120.8  
            C(34)-C(33)-C(32)  119.2(5)  
            C(34)-C(33)-H(33)  120.4  
            C(32)-C(33)-H(33)  120.4  
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            C(33)-C(34)-C(35)  119.6(5)  
            C(33)-C(34)-H(34)  120.2  
            C(35)-C(34)-H(34)  120.2  
            N(31)-C(35)-C(34)  122.4(5)  
            N(31)-C(35)-H(35)  118.8  
            C(34)-C(35)-H(35)  118.8  
            C(46)-C(41)-C(42)  119.8(5)  
            C(46)-C(41)-C(23)  122.9(5)  
            C(42)-C(41)-C(23)  117.2(5)  
            C(43)-C(42)-C(41)  120.8(5)  
            C(43)-C(42)-H(42)  119.6  
            C(41)-C(42)-H(42)  119.6  
            C(44)-C(43)-C(42)  118.9(6)  
            C(44)-C(43)-H(43)  120.6  
            C(42)-C(43)-H(43)  120.6  
            C(45)-C(44)-C(43)  121.0(6)  
            C(45)-C(44)-H(44)  119.5  
            C(43)-C(44)-H(44)  119.5  
            C(44)-C(45)-C(46)  121.7(6)  
            C(44)-C(45)-H(45)  119.1  
            C(46)-C(45)-H(45)  119.1  
            C(41)-C(46)-C(45)  117.7(5)  
            C(41)-C(46)-C(47)  122.9(5)  
            C(45)-C(46)-C(47)  119.4(5)  
            C(46)-C(47)-H(47A)  109.5  
            C(46)-C(47)-H(47B)  109.5  
            H(47A)-C(47)-H(47B)  109.5  
            C(46)-C(47)-H(47C)  109.5  
            H(47A)-C(47)-H(47C)  109.5  
            H(47B)-C(47)-H(47C)  109.5  
            C(51)-N(51)-C(55)  117.6(5)  
            C(51)-N(51)-Co(1)  111.8(3)  
            C(55)-N(51)-Co(1)  128.9(4)  
            N(51)-C(51)-C(52)  122.9(5)  
            N(51)-C(51)-C(65)  114.3(4)  
            C(52)-C(51)-C(65)  122.7(5)  
            C(51)-C(52)-C(53)  118.2(5)  
            C(51)-C(52)-H(52)  120.9  
            C(53)-C(52)-H(52)  120.9  
            C(54)-C(53)-C(52)  119.0(5)  
            C(54)-C(53)-H(53)  120.5  
            C(52)-C(53)-H(53)  120.5  
            C(55)-C(54)-C(53)  118.5(5)  
            C(55)-C(54)-H(54)  120.7  
            C(53)-C(54)-H(54)  120.7  
            N(51)-C(55)-C(54)  123.7(5)  
            N(51)-C(55)-H(55)  118.1  
            C(54)-C(55)-H(55)  118.1  
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            C(65)-N(61)-C(61)  119.7(4)  
            C(65)-N(61)-Co(1)  120.6(3)  
            C(61)-N(61)-Co(1)  119.6(3)  
            N(61)-C(61)-C(62)  121.1(5)  
            N(61)-C(61)-C(71)  114.9(4)  
            C(62)-C(61)-C(71)  123.9(5)  
            C(61)-C(62)-C(63)  119.4(5)  
            C(61)-C(62)-H(62)  120.3  
            C(63)-C(62)-H(62)  120.3  
            C(64)-C(63)-C(62)  118.9(5)  
            C(64)-C(63)-C(81)  119.6(5)  
            C(62)-C(63)-C(81)  121.5(5)  
            C(65)-C(64)-C(63)  119.2(5)  
            C(65)-C(64)-H(64)  120.4  
            C(63)-C(64)-H(64)  120.4  
            N(61)-C(65)-C(64)  121.8(5)  
            N(61)-C(65)-C(51)  113.8(4)  
            C(64)-C(65)-C(51)  124.5(4)  
            C(75)-N(71)-C(71)  118.0(4)  
            C(75)-N(71)-Co(1)  128.7(4)  
            C(71)-N(71)-Co(1)  112.6(3)  
            N(71)-C(71)-C(72)  121.9(5)  
            N(71)-C(71)-C(61)  114.1(4)  
            C(72)-C(71)-C(61)  123.9(5)  
            C(71)-C(72)-C(73)  118.9(5)  
            C(71)-C(72)-H(72)  120.5  
            C(73)-C(72)-H(72)  120.5  
            C(74)-C(73)-C(72)  119.0(5)  
            C(74)-C(73)-H(73)  120.5  
            C(72)-C(73)-H(73)  120.5  
            C(73)-C(74)-C(75)  119.2(5)  
            C(73)-C(74)-H(74)  120.4  
            C(75)-C(74)-H(74)  120.4  
            N(71)-C(75)-C(74)  122.9(5)  
            N(71)-C(75)-H(75)  118.6  
            C(74)-C(75)-H(75)  118.6  
            C(86)-C(81)-C(82)  119.8(5)  
            C(86)-C(81)-C(63)  122.2(5)  
            C(82)-C(81)-C(63)  118.0(5)  
            C(83)-C(82)-C(81)  120.2(5)  
            C(83)-C(82)-H(82)  119.9  
            C(81)-C(82)-H(82)  119.9  
            C(84)-C(83)-C(82)  119.8(6)  
            C(84)-C(83)-H(83)  120.1  
            C(82)-C(83)-H(83)  120.1  
            C(83)-C(84)-C(85)  120.5(5)  
            C(83)-C(84)-H(84)  119.7  
            C(85)-C(84)-H(84)  119.7  
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            C(84)-C(85)-C(86)  121.2(6)  
            C(84)-C(85)-H(85)  119.4  
            C(86)-C(85)-H(85)  119.4  
            C(81)-C(86)-C(85)  118.5(5)  
            C(81)-C(86)-C(87)  123.0(5)  
            C(85)-C(86)-C(87)  118.6(5)  
            C(86)-C(87)-H(87A)  109.5  
            C(86)-C(87)-H(87B)  109.5  
            H(87A)-C(87)-H(87B)  109.5  
            C(86)-C(87)-H(87C)  109.5  
            H(87A)-C(87)-H(87C)  109.5  
            H(87B)-C(87)-H(87C)  109.5  
            O(101)#1-C(111)-O(101) 180.0(3)  
            C(111)-O(101)-H(11A)  109.5  
            C(211)-O(201)-H(201)  109.5  
            O(201)-C(211)-H(21A)  109.5  
            O(201)-C(211)-H(21B)  109.5  
            H(21A)-C(211)-H(21B) 109.5  
            O(201)-C(211)-H(21C)  109.5  
            H(21A)-C(211)-H(21C) 109.5  
            H(21B)-C(211)-H(21C) 109.5  
            C(311)-O(301)-H(301)  109.5  
            O(301)-C(311)-H(31A)  109.5  
            O(301)-C(311)-H(31B)  109.5  
            H(31A)-C(311)-H(31B) 109.5  
            O(301)-C(311)-H(31C)  109.5  
            H(31A)-C(311)-H(31C) 109.5  
            H(31B)-C(311)-H(31C) 109.5  
           _____________________________________________________________  
 
           Symmetry transformations used to generate equivalent atoms:  
           #1 -x+1,-y,-z+1      
 
 
 

3.4 Table 4.  

Anisotropic displacement parameters (A2 x 103) for [Co(ottp)2.Cl2]. 2.25CH3OH   

The anisotropic displacement factor exponent takes the form:  
-2 pi2 [ h2 a*2 U11 + ... + 2 h k a* b* U12 ]  

 
    _____________________________________________________________________  
 

U11 U22 U33 U23 U13 U12  
    _____________________________________________________________________ 
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    Co(1) 16(1) 15(1) 13(1) 0(1) 0(1) -1(1)  
    N(11) 18(2) 20(2) 16(2) -1(2) 4(2) 1(2)  
    C(11) 19(3) 18(3) 18(3) 1(2) 4(2) 1(2)  
    C(12) 19(3) 20(3) 17(3) -3(2) -1(2) -4(2)  
    C(13) 27(3) 18(3) 30(3) 1(2) 4(2) -5(2)  
    C(14) 32(3) 25(3) 23(3) 2(2) 8(3) -1(2)  
    C(15) 26(3) 24(3) 13(3) -2(2) 9(2) -1(2)  
    N(21) 16(2) 13(2) 14(2) -2(2) 0(2) -1(2)  
    C(21) 16(2) 16(3) 19(3) -2(2) 3(2) 0(2)  
    C(22) 25(3) 19(3) 16(3) 2(2) 4(2) -1(2)  
    C(23) 16(2) 21(3) 15(3) -1(2) 3(2) 3(2)  
    C(24) 20(3) 16(3) 20(3) -5(2) 0(2) -4(2)  
    C(25) 17(2) 16(3) 17(3) -2(2) 2(2) -2(2)  
    N(31) 16(2) 18(2) 17(2) -2(2) -1(2) -1(2)  
    C(31) 15(2) 19(3) 18(3) -3(2) -1(2) -1(2)  
    C(32) 24(3) 29(3) 20(3) 3(2) 4(2) -6(2)  
    C(33) 32(3) 26(3) 27(3) 4(3) 3(3) -12(3)  
    C(34) 24(3) 26(3) 30(3) -2(3) 0(3) -8(2)  
    C(35) 21(3) 28(3) 17(3) -3(2) -1(2) 0(2)  
    C(41) 18(3) 27(3) 13(3) -1(2) 3(2) -5(2)  
    C(42) 24(3) 28(3) 22(3) 3(2) 1(2) -1(2)  
    C(43) 26(3) 42(4) 27(3) 13(3) -1(3) 1(3)  
    C(44) 30(3) 59(5) 16(3) 6(3) -2(3) -3(3)  
    C(45) 24(3) 46(4) 23(3) -10(3) 4(2) -9(3)  
    C(46) 19(3) 31(3) 21(3) -5(2) 5(2) -1(2)  
    C(47) 45(4) 33(4) 33(4) -12(3) 13(3) 1(3)  
    N(51) 20(2) 23(2) 15(2) -4(2) 3(2) -2(2)  
    C(51) 16(2) 18(3) 19(3) -2(2) 5(2) 1(2)  
    C(52) 26(3) 23(3) 18(3) 1(2) 1(2) 5(2)  
    C(53) 25(3) 23(3) 28(3) -1(2) 6(2) 2(2)  
    C(54) 20(3) 27(3) 30(3) -10(3) 10(2) -1(2)  
    C(55) 21(3) 29(3) 21(3) -6(2) 7(2) -3(2)  
    N(61) 14(2) 17(2) 17(2) 2(2) 1(2) 3(2)  
    C(61) 20(3) 17(3) 19(3) -3(2) 5(2) -2(2)  
    C(62) 25(3) 15(3) 18(3) -4(2) 2(2) 0(2)  
    C(63) 25(3) 18(3) 20(3) 0(2) 2(2) 5(2)  
    C(64) 22(3) 17(3) 17(3) 1(2) 1(2) 6(2)  
    C(65) 16(2) 14(3) 19(3) 2(2) 1(2) 1(2)  
    N(71) 15(2) 20(2) 17(2) 0(2) -3(2) 1(2)  
    C(71) 17(2) 18(3) 15(3) -1(2) 0(2) -2(2)  
    C(72) 24(3) 24(3) 16(3) -3(2) -2(2) 3(2)  
    C(73) 28(3) 24(3) 28(3) -1(2) 4(3) 11(2)  
    C(74) 22(3) 27(3) 22(3) 4(2) -3(2) 8(2)  
    C(75) 24(3) 30(3) 16(3) 3(2) -4(2) 1(2)  
    C(81) 20(3) 23(3) 16(3) -5(2) 2(2) 5(2)  
    C(82) 31(3) 24(3) 23(3) -1(2) 2(3) 6(2)  
    C(83) 31(3) 37(4) 15(3) 6(3) 3(2) 6(3)  
    C(84) 37(3) 44(4) 18(3) -2(3) -3(3) 11(3)  
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    C(85) 33(3) 31(3) 28(3) -5(3) -4(3) 3(3)  
    C(86) 25(3) 26(3) 21(3) 1(2) 0(2) 4(2)  
    C(87) 30(3) 34(4) 35(4) 0(3) -3(3) 2(3)  
    Cl(1)  28(1) 23(1) 24(1) 2(1) 5(1) 1(1)  
    Cl(2)  33(1) 19(1) 20(1) 0(1) 3(1) -1(1)  
    _____________________________________________________________________ 
 
 
 

3.5 Table 5.  

Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for 
[Co(ottp)2.Cl2]. 2.25CH3OH.  

   
         ________________________________________________________________  
   

x y z U(eq)  
         ________________________________________________________________  
   
          H(12)  756 505 -605 24  
          H(13)  359 192 942 31  
          H(14)  1715 323 2922 32  
          H(15)  3440 751 3303 25  
          H(22)  4112 1605 -2228 24  
          H(24)  1253 867 -1987 24  
          H(32)  5894 1966 -1060 30  
          H(33)  7754 2285 318 36  
          H(34)  8589 2130 2324 34  
          H(35)  7474 1689 2959 28  
          H(42)  1489 1743 -3607 31  
          H(43)  258 1808 -5653 40  
          H(44)  -44 1363 -6912 44  
          H(45)  797 862 -6168 38  
          H(47A)  3269 673 -3400 55  
          H(47B)  2294 524 -4657 55  
          H(47C)  1527 557 -3594 55  
          H(52)  8220 478 4674 28  
          H(53)  8724 95 3334 31  
          H(54)  7771 193 1264 31  
          H(55)  6329 653 602 28  
          H(62)  5358 1706 5714 24  
          H(64)  7996 911 5757 24  
          H(72)  3690 2045 4566 28  
          H(73)  1890 2375 3192 33  
          H(74)  1130 2234 1174 31  
          H(75)  2135 1775 561 30  
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          H(82)  7015 909 7706 33  
          H(83)  8298 949 9741 34  
          H(84)  9701 1409 10495 43  
          H(85)  9785 1838 9247 40  
          H(87A)  8484 1868 6164 53  
          H(87B)  9345 2068 7343 53  
          H(87C)  7496 2065 6862 53  
          H(11A)  6287 354 5946 94  
          H(201)  7645 322 8477 71  
          H(21A)  5845 -63 8528 80  
          H(21B)  5262 247 7705 80  
          H(21C)  5054 231 9014 80  
          H(301)  1818 2238 8031 109  
          H(31A)  2990 2477 10200 248  
          H(31B)  1975 2664 9038 248  
          H(31C)  3765 2594 9207 248  
         ________________________________________________________________  
 
 
 

  
 

4.1 Table 1.  [(Cl-ottp)Cu(µ-Cl)(µ-Br)Cu(Cl-ottp)]2PF6 

Crystal data and structure refinement for [(Cl-ottp)Cu(µ-Cl)(µ-Br)Cu(Cl-ottp)]2PF6 

   
   
 Identification code   PATBR 
   
 Empirical formula   C22 H16 Br0.50 Cl1.50 Cu F6 N3 P  
   
 Formula weight   624.02  
   
 Temperature    122(2) K  
   
 Wavelength    0.71073 A  
   
 Crystal system, space group  monoclinic, P21/n  
   
Crystal size     0.76 x 0.20 x 0.14 mm 
 
 Crystal colour    blue-green 
 
 Crystal form    needle    
 
Uniit cell dimensions    a = 16.6918(10) A    alpha = 90 deg.  
     b = 7.0247(4) A     beta = 100.442(3) deg.  
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      c = 19.6665(12) A    gamma = 90 deg.  
   
 Volume    2267.8(2) A3  
   
 Z, Calculated density   4, 1.828 Mg/m3  
   
Absorption coefficient    2.159 mm-1 
 
Absorption Correction   multi-scan 
   
F(000)     1240  
   
 Theta range for data collection 2.48 to 25.05 deg.  
   
 Limiting indices     -19<=h<=19, -8<=k<=8, -23<=l<=23  
   
 Reflections collected / unique  40691 / 4016 [R(int) = 0.0476]  
   
 Completeness to theta = 25.05 99.9 %  
   
 Max. and min. transmission  0.7520 and 0.2908  
   
Refinement method    Full-matrix least-squares on F2  
   
 Data / restraints / parameters  4016 / 0 / 320  
   
 Goodness-of-fit on F2   1.053  
   
 Final R indices [I>2sigma(I)]  R1 = 0.0458, wR2 = 0.1258  
   
R indices (all data)    R1 = 0.0594, wR2 = 0.1363  
   
 Largest diff. peak and hole   0.965 and -0.516 e.A-3  

4.2  Table 2.  

Atomic coordinates ( x 104) and equivalent isotropic  displacement parameters (A2 x 
103) for [(Cl-ottp)Cu(µ-Cl)(µ-Br)Cu(Cl-ottp)]2PF6 

  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.  
 
________________________________________________________________  

x   y   z  U(eq)  
________________________________________________________________  
Cu(1) 5313(1)  12645(1) 4990(1)  27(1)  

Br(1) 3990(9)  13663(18) 4749(8)  37(1)  

Cl(1) 4020(20) 13850(50) 4780(20) 37(1)  

Cl(2) 8068(1)  5700(2)  4495(1)  60(1)  

N(1) 5581(2)  12787(5) 4026(2)  29(1)  
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N(2) 6376(2)  11466(4) 5158(2)  25(1)  

N(3) 5356(2)  11742(5) 5978(2)  28(1)  

C(1)  5108(3)  13504(6) 3465(2)  36(1)  

C(2) 5388(3)  13698(7) 2845(2)  42(1)  

 C(3) 6166(3)  3154(7)  2814(3)  44(1)  

C(4) 6652(3)  12385(6) 3389(2)  37(1)  

C(5) 6348(3)  12216(6) 3990(2)  30(1)  

C(6) 6799(2)  11423(6) 4643(2)  27(1)  

 C(7) 7587(3)  10693(6) 4766(2)  33(1)  

 C(8) 7916(2)  10040(6) 5422(2)  32(1)  

 C(9) 7445(2)  10097(6) 5938(2)  30(1)  

 C(10)  6670(2) 10811(5) 5785(2)  26(1)  

 C(11) 6076(2)  10937(5) 6260(2)  27(1)  

 C(12) 6232(3)  10272(7)  6930(2)  35(1)  

 C(13) 5629(3)  10454(7) 330(2)  41(1)  

 C(14) 4899(3)  11290(6) 7043(3)  39(1)  

 C(15) 4780(3)  11904(6) 6370(2)  34(1)  

 C(16) 8772(3)  9325(7)  5595(2)  39(1)  

 C(17)  9400(3)  10613(9) 5781(3)  49(1)  

 C(18) 10195(3) 10003(11) 5969(3)  57(2)  

 C(19) 10365(3) 8125(11) 5972(3)  66(2)  

 C(20) 9764(4)  6843(11)  5799(4)  79(2)  

 C(21) 8947(3)  7416(9)  608(4)   68(2)  

 C(22) 8294(4)  5970(9)  5420(6)  101(3)  

 P(1) 7500  -2097(3) 2500   68(1)  

 P(2) 7500   5072(3)  7500   54(1)  

 F(10) 8070(5)  3664(9)  2884(4)  174(3)  

 F(11) 6924(2)  477(7)  2113(2)  86(1)  

 F(12) 6996(3)  2086(6)  3114(3)  93(1)  

 F(20)  7753(4)  3433(7)  7040(3)  119(2)  

 F(21) 6655(3)  5024(9)  7052(4)  171(3)  

F(22) 7771(5)  6690(7)  7048(3)  144(3)  
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________________________________________________________________  

 

4.3 Table 3.  

Bond lengths [A] and angles [deg] for [(Cl-ottp)Cu(µ-Cl)(µ-Br)Cu(Cl-ottp)]2PF6 

 

           _____________________________________________________________  

   

            Cu(1)-N(2)  1.931(3) Cu(1)-N(1)  2.027(4)  

            Cu(1)-N(3)  2.033(4) Cu(1)-Cl(1)  2.29(4)  

            Cu(1)-Br(1)  2.287(15) Cu(1)-Cl(1)#1  2.71(3)  

            Cu(1)-Br(1)#1  2.851(12) Br(1)-Cu(1)#1  2.851(12)  

            Cl(1)-Cu(1)#1  2.71(3)  Cl(2)-C(22)  1.800(11)  

            N(1)-C(1)  1.333(6) N(1)-C(5)  1.355(5)  

            N(2)-C(10)  1.325(5) N(2)-C(6)  1.336(5)  

            N(3)-C(15)  1.343(5) N(3)-C(11)  1.352(5)  

            C(1)-C(2)  1.391(7) C(1)-H(1A)  0.9500  

            C(2)-C(3)  1.365(7) C(2)-H(2A)  0.9500  

            C(3)-C(4)  1.377(7) C(3)-H(3A)  0.9500  

            C(4)-C(5)  1.374(6) C(4)-H(4A)  0.9500  

            C(5)-C(6)  1.475(6) C(6)-C(7)  1.391(6)  

            C(7)-C(8)  1.386(6) C(7)-H(7A)  0.9500 

C(8)-C(9)  1.393(6) C(8)-C(16)  1.494(6) 

C(9)-C(10)  1.369(6)  

            C(9)-H(9A)  0.9500  C(10)-C(11)  1.482(5)  

            C(11)-C(12)  1.378(6) C(12)-C(13)  1.391(6)  

            C(12)-H(12A)  0.9500  C(13)-C(14)  1.378(7)  

            C(13)-H(13A)  0.9500  C(14)-C(15)  1.371(7)  

            C(14)-H(14A)  0.9500  C(15)-H(15A)  0.9500  

            C(16)-C(21)  1.372(8) C(16)-C(17)  1.383(7)  

            C(17)-C(18)  1.380(7) C(17)-H(17A)  0.9500  
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            C(18)-C(19)  1.349(10) C(18)-H(18A)  0.9500  

            C(19)-C(20)  1.345(10) C(19)-H(19A)  0.9500  

            C(20)-C(21)  1.406(8) C(20)-H(20A)  0.9500  

            C(21)-C(22)  1.486(9) C(22)-H(22A)  0.9900  

            C(22)-H(22B)  0.9900  P(1)-F(10)#2  1.558(5)  

            P(1)-F(10)   1.558(5)  

            P(1)-F(11)#2   1.591(4)  

            P(1)-F(11)   1.591(4)  

            P(1)-F(12)#2   1.591(4)  

            P(1)-F(12)   1.591(4)  

            P(2)-F(21)   1.522(4)  

            P(2)-F(21)#3   1.522(5)  

            P(2)-F(22)   1.559(5)  

            P(2)-F(22)#3   1.559(5)  

            P(2)-F(20)   1.569(5)  

            P(2)-F(20)#3   1.569(5)  

   

            N(2)-Cu(1)-N(1)  80.19(14)  

            N(2)-Cu(1)-N(3)  80.21(14)  

            N(1)-Cu(1)-N(3)  158.97(13)  

            N(2)-Cu(1)-Cl(1)  176.3(8)  

            N(1)-Cu(1)-Cl(1)  100.2(11)  

            N(3)-Cu(1)-Cl(1)  98.9(11)  

            N(2)-Cu(1)-Br(1)  172.7(3)  

            N(1)-Cu(1)-Br(1)  99.2(4)  

            N(3)-Cu(1)-Br(1)  99.3(4)  

            Cl(1)-Cu(1)-Br(1)  3.7(10)  

            N(2)-Cu(1)-Cl(1)#1  91.4(8)  

            N(1)-Cu(1)-Cl(1)#1  87.5(9)  

            N(3)-Cu(1)-Cl(1)#1  100.6(9)  

            Cl(1)-Cu(1)-Cl(1)#1  92.3(11)  

            Br(1)-Cu(1)-Cl(1)#1  95.9(9)  



 128 

            N(2)-Cu(1)-Br(1)#1  91.6(3)  

            N(1)-Cu(1)-Br(1)#1  88.4(4)  

            N(3)-Cu(1)-Br(1)#1  99.7(4)  

            Cl(1)-Cu(1)-Br(1)#1  92.2(8)  

            Br(1)-Cu(1)-Br(1)#1  95.7(4)  

            Cl(1)#1-Cu(1)-Br(1)#1  90.9(12)  

            Cu(1)-Br(1)-Cu(1)#1  84.3(4)  

            Cu(1)-Cl(1)-Cu(1)#1  87.7(11)  

            C(1)-N(1)-C(5)   119.5(4)  

            C(1)-N(1)-Cu(1)  126.4(3)  

            C(5)-N(1)-Cu(1)  113.9(3)  

            C(10)-N(2)-C(6)  122.7(3)  

            C(10)-N(2)-Cu(1)  118.8(3)  

            C(6)-N(2)-Cu(1)  118.4(3)  

            C(15)-N(3)-C(11)  118.4(4)  

            C(15)-N(3)-Cu(1)  128.2(3)  

            C(11)-N(3)-Cu(1)  113.4(3)  

            N(1)-C(1)-C(2)   121.4(4)  

            N(1)-C(1)-H(1A)  119.3  

            C(2)-C(1)-H(1A)  119.3  

            C(3)-C(2)-C(1)   119.0(4)  

            C(3)-C(2)-H(2A)  120.5  

            C(1)-C(2)-H(2A)  120.5  

            C(2)-C(3)-C(4)   119.8(5)  

            C(2)-C(3)-H(3A)  120.1  

            C(4)-C(3)-H(3A)  120.1  

            C(5)-C(4)-C(3)   119.1(5)  

            C(5)-C(4)-H(4A)  120.5  

            C(3)-C(4)-H(4A)  120.5  

            N(1)-C(5)-C(4)   121.2(4)  

            N(1)-C(5)-C(6)   113.9(4)  

            C(4)-C(5)-C(6)   124.9(4)  
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            N(2)-C(6)-C(7)   119.4(4)  

            N(2)-C(6)-C(5)   113.2(3)  

            C(7)-C(6)-C(5)   127.5(4)  

            C(8)-C(7)-C(6)   119.1(4)  

            C(8)-C(7)-H(7A)  120.4  

            C(6)-C(7)-H(7A)  120.5  

            C(7)-C(8)-C(9)   119.2(4)  

            C(7)-C(8)-C(16)  121.7(4)  

            C(9)-C(8)-C(16)  119.1(4)  

            C(10)-C(9)-C(8)  119.1(4)  

            C(10)-C(9)-H(9A)  120.4  

            C(8)-C(9)-H(9A)  120.4  

            N(2)-C(10)-C(9)  120.5(4)  

            N(2)-C(10)-C(11)  112.9(3)  

            C(9)-C(10)-C(11)  126.7(4)  

            N(3)-C(11)-C(12)  122.3(4)  

            N(3)-C(11)-C(10)  114.4(4)  

            C(12)-C(11)-C(10)  123.3(4)  

            C(11)-C(12)-C(13)  118.6(4)  

            C(11)-C(12)-H(12A)  120.7  

            C(13)-C(12)-H(12A)  120.7  

            C(14)-C(13)-C(12)  119.0(4)  

            C(14)-C(13)-H(13A)  120.5  

            C(12)-C(13)-H(13A)  120.5  

            C(15)-C(14)-C(13)  119.4(4)  

            C(15)-C(14)-H(14A)  120.3  

            C(13)-C(14)-H(14A)  120.3  

            N(3)-C(15)-C(14)  122.3(4)  

            N(3)-C(15)-H(15A)  118.8  

            C(14)-C(15)-H(15A)  118.8  

            C(21)-C(16)-C(17)  119.1(5)  

            C(21)-C(16)-C(8)  121.6(5)  
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            C(17)-C(16)-C(8)  119.2(5)  

            C(18)-C(17)-C(16)  120.9(6)  

            C(18)-C(17)-H(17A)  119.5  

            C(16)-C(17)-H(17A)  119.5  

            C(19)-C(18)-C(17)  119.7(6)  

            C(19)-C(18)-H(18A)  120.1  

            C(17)-C(18)-H(18A)  120.1  

            C(20)-C(19)-C(18)  120.5(5)  

            C(20)-C(19)-H(19A)  119.8  

            C(18)-C(19)-H(19A)  119.8  

            C(19)-C(20)-C(21)  121.3(7)  

            C(19)-C(20)-H(20A)  119.4  

            C(21)-C(20)-H(20A)  119.4  

            C(16)-C(21)-C(20)  118.5(6)  

            C(16)-C(21)-C(22)  121.3(5)  

            C(20)-C(21)-C(22)  120.2(6)  

            C(21)-C(22)-Cl(2)  109.5(6)  

            C(21)-C(22)-H(22A)  109.8  

            Cl(2)-C(22)-H(22A)  109.8  

            C(21)-C(22)-H(22B)  109.8  

            Cl(2)-C(22)-H(22B)  109.8  

            H(22A)-C(22)-H(22B)  108.2  

            F(10)#2-P(1)-F(10)  90.0(7)  

            F(10)#2-P(1)-F(11)#2  179.3(4)  

            F(10)-P(1)-F(11)#2  90.6(4)  

            F(10)#2-P(1)-F(11)  90.6(4)  

            F(10)-P(1)-F(11)  179.3(4)  

            F(11)#2-P(1)-F(11)  88.7(3)  

            F(10)#2-P(1)-F(12)#2  89.7(3)  

            F(10)-P(1)-F(12)#2  90.7(3)  

            F(11)#2-P(1)-F(12)#2  90.2(2)  

            F(11)-P(1)-F(12)#2  89.4(2)  
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            F(10)#2-P(1)-F(12)  90.7(3)  

            F(10)-P(1)-F(12)  89.7(3)  

            F(11)#2-P(1)-F(12)  89.4(2)  

            F(11)-P(1)-F(12)  90.2(2)  

            F(12)#2-P(1)-F(12)  179.4(4)  

            F(21)-P(2)-F(21)#3  177.5(5)  

            F(21)-P(2)-F(22)  91.1(4)  

            F(21)#3-P(2)-F(22)  90.7(4)  

            F(21)-P(2)-F(22)#3  90.7(4)  

            F(21)#3-P(2)-F(22)#3  91.1(4)  

            F(22)-P(2)-F(22)#3  86.4(4)  

            F(21)-P(2)-F(20)  88.2(4)  

            F(21)#3-P(2)-F(20)  90.0(4)  

            F(22)-P(2)-F(20)  94.1(3)  

            F(22)#3-P(2)-F(20)  178.8(4)  

            F(21)-P(2)-F(20)#3  90.0(4)  

            F(21)#3-P(2)-F(20)#3  88.2(4)  

            F(22)-P(2)-F(20)#3  178.8(4)  

            F(22)#3-P(2)-F(20)#3  94.1(3)  

            F(20)-P(2)-F(20)#3  85.6(5)  

           _____________________________________________________________  

   

           Symmetry transformations used to generate equivalent atoms:  

#1 -x+1,-y+3,-z+1  #2 -x+3/2,y,-z+1/2  #3 -x+3/2,y,-z+3/2      

   

4.4 Table 4.   

Anisotropic displacement parameters (A2 x 103) for [(Cl-ottp)Cu(µ-Cl)(µ-Br)Cu(Cl-
ottp)]2PF6 

The anisotropic displacement factor exponent takes the form:  

-2 pi2 [ h2 a*2 U11 + ... + 2 h k a* b* U12 ]  

   



 132 

_______________________________________________________________________  

   

U11 U22 U33 U23 U13 U12  

    

_______________________________________________________________________  

   

    Cu(1) 23(1) 24(1) 35(1) -4(1) 4(1) 2(1)  

    Br(1) 28(1) 29(2) 53(2) -11(2) 1(1) 0(1)  

    Cl(1)  28(1) 29(2) 53(2) -11(2) 1(1) 0(1)  

    Cl(2)  52(1) 44(1) 82(1) -22(1) 8(1) -7(1)  

    N(1)  30(2) 23(2) 32(2) -5(1) 3(2) 1(1)  

    N(2)  24(2) 22(2) 30(2) -1(1) 7(1) 0(1)  

    N(3)  24(2) 21(2) 39(2) -3(1) 8(2) 0(1)  

    C(1)  39(2) 25(2) 39(2) -5(2) -4(2) 3(2)  

    C(2)  56(3) 33(2) 34(2) 1(2) -2(2) 3(2)  

    C(3)  58(3) 39(3) 34(2) 3(2) 8(2) -5(2)  

    C(4)  41(3) 36(2) 37(2) -1(2) 13(2) -4(2)  

    C(5)  32(2) 23(2) 34(2) -2(2) 5(2) -1(2)  

    C(6)  28(2) 24(2) 31(2) -3(2) 8(2) -1(2)  

    C(7)  26(2) 37(2) 38(2) 0(2) 13(2) 1(2)  

    C(8)  23(2) 33(2) 40(2) 1(2) 7(2) 0(2)  

    C(9)  27(2) 33(2) 30(2) 3(2) 2(2) -1(2)  

    C(10)  25(2) 23(2) 29(2) -2(2) 6(2) -3(2)  

    C(11)  25(2) 23(2) 34(2) -7(2) 7(2) -5(2)  

    C(12)  32(2) 37(2) 36(2) -1(2) 8(2) -1(2)  

    C(13)  45(3) 45(3)     35(2) -5(2) 14(2) -7(2)  

    C(14) 37(2) 37(2) 48(3) -12(2) 22(2) -8(2)  

    C(15)     27(2) 29(2) 49(3) -10(2) 13(2) 3(2)  

    C(16) 25(2) 55(3) 38(3) 9(2) 9(2) 4(2)  

    C(17) 31(3) 68(3) 48(3) -5(3) 7(2) -3(2)  

    C(18) 30(3) 98(5) 43(3) -3(3) 3(2) -5(3)  

    C(19) 26(3) 114(6) 60(4) 33(4) 12(2) 15(3)  
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    C(20) 39(3) 73(4) 127(6) 36(4) 17(4) 22(3)  

    C(21) 30(3) 62(4) 113(6) 24(4) 17(3) 10(3)  

    C(22) 42(4) 45(4) 217(11) 13(5) 25(5) 10(3)  

    P(1)  52(1) 51(1) 112(2) 0 45(1) 0  

    P(2)  58(1) 33(1) 60(1) 0 -21(1)  0  

    F(10) 246(7) 122(4) 193(7) 76(4) 142(6) 127(5)  

    F(11) 45(2) 108(3) 102(3) -2(3) 10(2) 13(2)  

    F(12) 74(3) 88(3) 133(4) 7(3) 64(3) 1(2)  

    F(20) 149(5) 75(3) 130(4) -28(3) 12(4) 25(3)  

    F(21) 118(4) 126(5) 219(7) -8(5) -100(5) 40(4)  

    F(22) 261(8) 69(3) 118(4) 22(3) 77(5) -7(4)  

    

_______________________________________________________________________  

   

4.5 Table 5.   

Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2 x 103) for 
[(Cl-ottp)Cu(µ-Cl)(µ-Br)Cu(Cl-ottp)]2PF6 

.  

         ________________________________________________________________  

   

x y z U(eq) 

         ________________________________________________________________  

   

          H(1A) 4569 13890 3490 43  

          H(2A) 5043 14202 2448 51  

          H(3A) 6371 13306 2397 53  

          H(4A) 7190 11976 3370 45  

          H(7A) 7896 10644 4405 39  

          H(9A) 7659 9647 6390 36  

          H(12A) 6741 9702 7115 42  

          H(13A) 5719 10009 7794 49  
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          H(14A) 4481 11440 7309 46  

          H(15A) 4273 12464 6175 41  

          H(17A) 9283 11936 5778 59  

          H(18A) 10622 10901 6095 69  

          H(19A) 10912 7704 6099 79  

          H(20A) 9894 5526 5806 95  

          H(22A) 7798 6377 5590 122  

          H(22B) 8474 4736 5638 122  

         ________________________________________________________________  
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