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Abstract. An isotropic elastic porous structure whose initial geometry is regular 

(periodically uniform) will experience non-uniform deformation when a viscous 

fluid flows through the matrix under the influence of an externally applied pres-

sure difference. In such a case, the flow field will experience a non uniform pres-

sure gradient whose magnitude increases in the direction of bulk flow. The closed 

solution to the problem of low Re flow through deformable porous media requires 

the simultaneous solution of the flow field in the void space and of the stress 

distribution in the solid matrix. The focus of the current study is to attempt to 

predict the pressure distribution of the flow field based only on the geometry of 

the media. The intention is to eventually simplify the coupled fluid-solid problem 

by replacing explicitly solution of the flow field with a pressure boundary condi-

tion in the stress distribution of the solid matrix.  
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1 Introduction 

 

At low Re and in a uniform porous medium, the flow rate is directly proportional to 

the pressure gradient (Darcy’s Law). The permeability, K, of the medium characterizes 

this relationship and it is determined experimentally or numerically from the relation: 
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Here U is the seepage velocity, µ is the dynamic viscosity, ΔL represents the length 

of the porous medium and ΔP is the difference in average pressure experienced by the 

fluid. The permeability is always a function of geometry regardless of any heterogene-

ity in the flow field [1]. The importance of considering the local pore structure for media 

with geometry that varies in the direction perpendicular to the direction of bulk flow 

has been well studied, see for example the seminal work by Vafai in [2]. The descrip-

tions of slurry flow through evolving dendritic structures in [3] [4] emphasize that mac-

roscopic modelling is greatly improved when local heterogeneity in the structure is 

taken into account. One of the pore structures presented therein is represented by bun-

dles of capillary tubes that experience periodic constrictions and expansions. Permea-

bility predictions that consider such serial type changes in tube geometry have been 



2 

presented that relate the permeability to the pore diameters, porosity, and a pore size 

density [5-8]. When the porous medium is not uniform in the direction of bulk flow, 

the permeability varies in this direction as well. In a recent publication, a method is 

presented that allows the prediction of local losses of low Re flow through a porous 

matrix composed of layers of orthogonally oriented parallelepipeds for which the local 

geometry varies discreetly in the direction of bulk flow [9, 10].  The important take-

away from these works is that even in the presence of non-uniform periodic matrix 

geometry, it is possible to predict the local losses as long as there is full knowledge of 

the geometry. 

With this in mind, consider the case of an initially uniform porous medium that is 

composed of a linearly elastic material. It is anticipated that the local pore structure of 

such a matrix may deform under the stresses associated with the pressure drop experi-

enced by the fluid as it passes through the medium. In this case, the linear relationship 

between flow rate and pressure drop that is exhibited by non-deformable media is not 

preserved. As the total pressure drop is increased, the matrix experiences local pore 

structure deformations (constrictions) resulting in increased local resistance to the flow. 

This result has been shown experimentally [11, 12]. The deformation of an elastic po-

rous media is non-uniform. At the inlet of the media (free surface), deformations are 

smallest and lateral displacement of the media is the largest. Conversely, at the outlet 

of the media (a fixed surface), the deformations are the largest while the displacement 

is zero. This was illustrated in the work by Munro et al [13] that considered the low Re 

flow of  glycerol through elastic porous media in an experimental test rig that relates 

global pressure drop to flow rate. Using that experiment, we found that the deformation 

of an elastic porous media is non-uniform. Unpublished results of related experiments 

are shown in Fig. 1. At the inlet of the media (this corresponds to the highest layer 

number), the deformations are smallest and lateral displacement of the media is the 

largest. Conversely, at the outlet of the media (a fixed surface represented in Fig. 1 by 

the lowest layer number)), the deformations are the largest while the displacement is 

nearly zero.  
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Fig. 1. Relative displacement of different layers of an elastic porous media subjected to flows 

with different total pressure drops.  

This work is motivated by the complexity of the problem of incompressible low Re 

flow through a deformable porous media. The solution to this problem requires the 

simultaneous solution of the flow field in the void space and of the stress distribution 

in the solid matrix. Previously, attempts have been made to address the solution theo-

retically [14-17].  The relatively recent review by Hou et al. provides a clear description 

of the numerical requirements of the Fluid-Solid Interaction (FSI) [18]. A summary of 

the FSI problem outlined in that paper follows. 

The equations of motion in the fluid domain is: 

 ( ) 0f f f f f f

t i j j i j ij iv v v b  +  − − =   (2) 

If the flow is incompressible, the conservation of mass of the flow states that: 

 0f

i iv =   (3) 

For an incompressible Newtonian flow the fluid stress is represented by: 

 
f

ij ij ijp  = − +   (4) 

Where p is the static pressure and the fluid shear is determined by: 

 ( )2 3ij ij ij kke e  = −   (5) 

Here 
f f

ij j i i je v v=  +  . 

The equation of motion for the solid matrix is: 

 ( ) 0s s s s s s

t i j j i j ij iv v v b  +  − − =   (6) 

Here the superscript f denotes association with the flow field, the superscript s denotes 

association with the solid matrix, and b is a body force. The solid side velocity is the 

total time derivative of the solid displacement field s s

i iv u= . For the elastic solid, the 

structural stress obeys Hooke’s law: 
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 2s

ij ij kk ijG   = +   (7) 

Where the strain is  ( ) 2ij j i i ju u =  +  , the Lame constant is 

( )( )1 1 2E   = + −   and the shear modulus is ( )( )2 1G E = + , E is the Young’s 

Modulus, and ν is the Poisson’s ratio. 

The interface conditions at the fluid-solid interfaces are: 

 f s

i iv v=   (8) 

 
f s

ij ijn n  =    (9) 

There are obvious inherent complications of this problem; in particular, that the lo-

cation at which these interface conditions are applied will change as the solid experi-

ences elastic deformation. Consider that many applications of this problem seek only 

to know the final state of the flow field. In such cases the question might be asked: 

“Given an applied pressure, and the initial geometry of the solid matrix, what is the 

final geometry of the solid and the resulting flow rate of the fluid?” The motivation 

behind the current paper is to take a step toward the approximation of the final flow 

configuration without explicitly solving Eqs. (2)−(9).  

Consider the problem of the response of the solid matrix to a known stress field at 

the solid-fluid interface. In such a case the term
f

ij n   is known everywhere on the fluid 

solid interface so that Eq. (9) may be treated as a boundary condition in order to to 

determine the solution of Eqs. (6)-(7). This paper considers a recent publication [9] that 

develops a correlation that can return the fluid stress distribution at the fluid-solid in-

terface given the geometry of the solid, the total pressure drop experienced by the fluid, 

and the fluid viscosity. In the following text, a summary of  the correlation developed 

in Ref. [9] is presented. The suggestion here is that in the future, researchers could use 

such  correlations as a simplification to determine an approximate solution to the FSI 

problem of viscous low Re flow through an elastic porous medium. 

2 The Geometry 

This section describes the regular periodic Cartesian geometry that was developed and 

tested in [13]. The uniform version of this geometry is introduced in order to highlight 

its important characteristics. Then a manner of describing the variation in this geometry 

is presented. Consider the regular periodic geometry representative of the Cartesian 

matrix structure depicted in Fig. 2. The longitudinal axis directions of adjacent layers 

are perpendicular to one another. In order to introduce tortuosity, parallel layers are 

offset by a single pore thickness. The colored regions correspond to the space occupied 

by the solid matrix and the clear regions correspond to the pore space. 
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Fig. 2. Porous Structure (left); Side views in the x-z and y-z planes with dash-dot lines 

indicating planes of symmetry (right). Note that the planes of symmetry bisect the pores in 

laternating directions. 

The anticipated symmetry of the flow may be used in order to simplify the geometry 

to a single prepresentative pore structure. This is depicted in Figure 3. In order to intro-

duce porosity variation in the direction of bulk flow, the geometry of each solid layer 

is varied. Consider Fig. 3 depicting representative views of a single pore channel 

through the matrix. In Figure 3c a depiction of a pore channel through a non-uniform 

matrix geometry is presented. Here each solid layer experiences a decrease in its char-

acteristic geometry in the direction of bulk flow, z , and this decrease is proportional 

to a variation parameter, ε. Simultaneously each solid layer also experiences an increase 

in its characterizing length perpendicular to the direction of bulk flow ( x in this view) 

and this increase is also proportional to the variation parameter ε. 
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Fig. 3.  a) the representative pore structure through the uniform Cartesian matrix (constant β), 

b) the geometric characterization of the pore structure in a single layer, c) the representative 

pore structure for a non-uniform medium in which each layer’s variation parameter, ε, increases 

in the direction of flow 

The parameter, ε, whose influence on the local pore geometry is depicted in Fig. 3c, 

is analogous to the strain experienced in an elastic deformation. In this way the variation 

parameter of each layer may be defined by the relation: 

 0

0 0SOLID SOLID

zz
L

L L


   −
 =   
   

  (10) 

where 
0L  is the characteristic length when 0 = .  

The lateral expansion may also be related to this longitudinal compression by a pa-

rameter,  , that is analogous to the Poisson ratio. It is defined as: 
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yx

z z


  

 =   
    

  (11) 

In this way the pore structure and the porosity of each layer are also related directly 

to the parameters through the parameters   and  . In the direction of bulk flow, the 

characteristic pore length of the ith layer is: 

 ( ), 0 1z i iL L = −   (12) 

Consider next the lengths of the pore sides that are perpendicular to the direction of 

flow (oriented respectively along the x and y coordinates). The length of one of these 

sides is always equal to the constant L0 while the length of the other side may vary 

between layers and the orientations of these side lengths alternate coordinate directions 
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(x or y) between adjacent layers. The length of the side that is free to experience a 

contraction or an expansion is linearly related to the variation parameter by some posi-

tive constant, ν. In this way, the ith layer’s pore length perpendicular to the direction of 

bulk flow may be described by the relation: 

 ( )0 1
2

i i

L
= −   (13) 

In the work done in this study the parameter  does not vary. However the variation 

parameter  will change between layers. When the value of ε in the medium varies 

discreetly between layers of the medium, and when its value in each layer is known, 

the permeability of any layer “i” may be described to be dependent only on the values 

of the variation parameter (i) of that layer εi , (ii) of its upstream neighbor εi−1, and (iii) 

of its downstream neighbor εi+1. The study [9] determines the functional relationships 

between the dimensionless parameters: 

 ( )1 12

0

, ,i

i i i

K
f

L
  − +=   (14) 

If the permeability can be determined from knowledge of the matrix geometry, then 

it is results of numerical simulations are used to investigate the nature of this depend-

ence and then these results are used to determine a best fit curve to predict the depend-

ence of permeability on the local variation parameters. 

3 Simulations 

While numerical simulations are not the focus of this study, we later develop correla-

tions using the results of numerical simulations, and thus we provide some details of 

the numerical computations here. These simulations were conducted using the Software 

COMSOL® Multiphysics version 4.3. An Intel® Core™ i7-3770 CPU @ 3.40 GHz 

with 32.0 GB RAM was used to run the simulations. The stationary “laminar Flow” 

model was used to simulate the steady solution. Symmetry boundary conditions were 

implemented on surfaces corresponding to planes of symmetry and no slip boundary 

conditions were imposed on surfaces corresponding to the fluid-solid interfaces. A tet-

rahedral mesh was used. Grid refinement studies were conducted and the mesh was 

refined until there a was a less than 0.1% difference in flow solutions. This was listed 

as an “extra fine” mesh in the mesh settings. 

At the inlet and outlet of the pore structure, uniform pressures were specified.  To 

ensure that the permeabilities of our correlation have no Re dependency, the inlet and 

outlet pressures were chosen so that the local Reynolds number remained below about 

0.1. We simulated the laminar Newtonian flow of a viscous incompressible liquid with 

a density of 103kg.m-3 and a viscosity of 0.1 Pa.s-1. 

In the correlations discussed later, local pressure losses are related to pore geometry. 

The numerical results of the flow field were post processed for use in the correlations 

as follows. At specified cross sections of the pore structure, average pressures were 

determined from the simulated results using the COMSOL® “Surface Average” tool. 

The results at each cross section were saved in a table and exported. We used the “Sur-
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face Integration” tool to determine the total flow rate at some cross sections perpendic-

ular to the direction of bulk flow. The “Surface Average” tool is used to determine the 

average pressure along the planes in the fluid domain that correspond to the interfaces 

between the layers. For each geometric configuration, the flow rate and average pres-

sures are exported and then in a MatLab script the permeability of each simulation is 

calculated. The MatLab function “lsqcurvefit” is used to determine the least squares 

best fit curve for the correlations which are described next. 

4 Correlations 

It is anticipated that at very low Re, the dimensionless permeability is dependent only 

on the local pore geometry; the lateral the dimensionless permeability of any particular 

layer depends only on the relative variation in the pore geometry of that layer and of 

those associated with the adjacent layers as implied by Eq. (14). Simulations are con-

ducted of flows through different pore structure geometries of  6 layers. There first 3 

layers always have the same value of the variation parameter,  . The last 3 layers share 

an identical variation parameter that. In this way, there is a change in the variation pa-

rameter at the interface between layer 3 and layer 4 as depicted in Figure 4. In all sim-

ulations, the parameter characterizing lateral variation in geometry that appears in Eq. 

(13) is constant and equal to 0.4 =  

In order to simplify the subsequent analysis, the downstream change in the vari-

ation parameter of layer “i” is introduced: 

 
1i i i  −

−  −   (15) 

and the upstream change in the variation parameter of layer “i” is: 

 1i i i  +

+  −   (16) 

 

Fig. 4. The geometry of the pore structure used in the simulations to determine in the permea-

bility data used in the correlations 

In this way, from the each simulation, two values of the local permeability may be 

estimated (one for layer i = 3 and one for layer i = 4) from the relation: 

 
( )

,SIM i

i i

U
K

P L


=


  (17) 
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The simulated permeability values may be explicitly linked to their corresponding 

variation parameter values ε, ε+, ε−. In the simulations that are used to develop the cor-

relation, the variation in geometry is constrained such that 0≤ε≤0.6 and 0≤ε±≤0.6. From 

the data of 11 simulations in this range, a good representation of the permeability’s 

dependence on geometry is: 

 ( ) ( )2

1 2 3 4 5 6 72

0

K
a a a a a a a

L
     − += + + + + + +    (18) 

The constants 
1 7a a−  of Eq. (18) are then determined using the method of least 

squares from this data and are: 

 

2 3

4 5

6

1

7
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2.774 03 4.556 03

2.790 03 4.586 03

a E E E

E E

a a
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E Ea a

= − − − −

− − −

= =

−

=

= =− −

=   (19) 

 

5 Test Case 

In this section, the prediction of the pressures resulting from flows through the geome-

try depicted in Fig. 5 is presented. The geometry of the pore channel the total pressure 

drop 
TP  over the porous medium are specified. The predicted permeability of each 

layer of the structure is first evaluated from constants of Eq. (19) with the correlation: 

 ( ) ( )2

1 2 3 4 5 6 72

0

1,2...,11i

i i i i i i

K
a a a a a a a i

L
     + −= + + + + + + =   (20) 

The upstream change in the variation parameter of the first layer and the downstream 

change in the variation parameter of the last layer are set to zero 
1 0N − + =  = . The 

volumetric flow rate is related to the total pressure drop using a simple resistor repre-

sentation:  

 

( )
1

1T T

N

i i

i

P A
Q

L K


=


=


  (21) 

Here AT is the total area perpendicular to the direction of flow, and the height of each 

layer,
iL , may be determined from that layer’s variation parameter by Eq. (12). The 

prediction of the drop in the average pressures across each layer may then be evaluated 

from the relation: 

 
( ) 2

0

     1,2,...,12i

i i

Q
P i

K L L


 = =   (22) 

The inlet and outlet pressures (gage) are specified to be 100 Pa and 0 Pa respectively 

and gravitational effects are neglected. The fluid density is 103 kg.m-3 and the fluid 

viscosity is 0.1 Pa.s-1. The geometric parameters used are 3

0 10 mL −=  and 0.4 = .  
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The test case geometry that is depicted in 5,  represents an 11 layer structure that has 

a uniformly increasing value of the variation parameter so that the first layer has a var-

iation parameter of 
1 0 =  and each subsequent layer’s variation parameter increases 

by 0.05 ( 0.05 1,...,10i i + = =  and 0.05 2,...,11i i − = − = ). 

 

Fig. 5. A depiction of the geometry of 11 layer structure with a uniform change in 

variation parameter Δε+= −Δε−=0.05. 

 

A comparison between the results of the numerical simulations conducted in 

COMSOL and the predictions of the correlation resulting from Eqs. (20)−(22) are pre-

sented in Fig. 6. The pressure drop over each layer increases with increasing ε in a 

quadratic manner (as is anticipated) and the correlation’s predictions agree well with 

the simulation. The calculated average pressure at each layer’s outlet is depicted ex-

plicitly in Fig. 6 in showing excellent agreement. A solid line has been added here to 

accentuate the deviation of this pressure distribution from that represented by a flow 

exhibiting a uniform pressure gradient (the magnitude of the slope of this line is pro-

portional to the effective permeability of the medium). The correlation’s predicted vol-

umetric flow rate of Eq. (21) agrees to within 1% of that determined from the results of 

the numerical simulation. 
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Fig. 6. The comparison between the pressure at the layer interfaces determined by the 

numerical simulation and by the correlation of Eq. (20)of the predict the Reduced 

Correlation of Eq. (18) of a) the difference in average pressure across each layer, and 

b) the pressure at each layer outlet 

6 Conclusions 

An empirical correlation is presented that relates the dimensionless permeability to the 

local pore geometry. Given only the information of the fluid viscosity, the local matrix 

geometry, and total pressure drop, the correlation is able to predict global flow rate and 

the average pressure at any cross section.  It is the intent of this research that in the 

future such correlations will be applied to the FSI problem of laminar flows through 

elastic porous media. It is anticipated that it will be possible to estimate the solution of 

the solid matrix without explicitly solving the CFD problem by focusing only on the 

solution to the solid matrix in a computational mechanics model. The correlation de-

veloped in this study should be applied to estimate the average pressure at each solid-

liquid interfacial surface within each layer of the matrix. In this way the pressure bound-

ary condition of these faces will be dependent on the deformation associated with each 

layer its adjacent layers. 
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