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DEGREE AND THE BRAUER-MANIN OBSTRUCTION

BRENDAN CREUTZ, BIANCA VIRAY, AND AN APPENDIX BY ALEXEI N. SKOROBOGATOV

Abstract. Let X ⊂ Pn

k
is a smooth projective variety of degree d over a number field k

and suppose that X is a counterexample to the Hasse principle explained by the Brauer-
Manin obstruction. We consider the question of whether the obstruction is given by the
d-primary subgroup of the Brauer group, which would have both theoretic and algorithmic
implications. We prove that this question has a positive answer in the case of torsors
under abelian varieties, Kummer varieties and (conditional on finiteness of Tate-Shafarevich
groups) bielliptic surfaces. In the case of Kummer varieties we show, more specifically, that
the obstruction is already given by the 2-primary torsion. We construct a conic bundle over
an elliptic curve that shows that, in general, the answer is no.

1. Introduction

Let X be a smooth projective and geometrically integral variety over a number field k.
Manin observed that any adelic point (Pv) ∈ X(Ak) that is approximated by a k-rational
point must satisfy relations imposed by elements of BrX , the Brauer group of X [Man71].
Indeed, for any element α ∈ BrX := H2

et(X,Gm), the set of adelic points on X that are
orthogonal to α, denoted X(Ak)

α, is a closed set containing the k-rational points of X . In
particular,

X(Ak)
Br :=

⋂

α∈BrX

X(Ak)
α = ∅ =⇒ X(k) = ∅.

In this paper, we investigate whether it is necessary to consider the full Brauer group
or whether one can determine a priori a proper subgroup B ⊂ BrX that captures the

Brauer-Manin obstruction to the existence of rational points, in the sense that the following
implication holds:

X(Ak)
Br = ∅ =⇒ X(Ak)

B :=
⋂

α∈B

X(Ak)
α = ∅ .

This is of interest from both theoretical and practical perspectives. On the one hand, iden-
tifying the subgroups for which this holds may shed considerable light on the nature of
the Brauer-Manin obstruction, and, on the other hand, knowledge of such subgroups can
facilitate computation Brauer-Manin obstructions in practice.

We pose the following motivating question.

Question 1.1. Suppose that X →֒ Pn is embedded as a subvariety of degree d in projective
space. Does the d-primary subgroup of BrX capture the Brauer-Manin obstruction to rational
points on X?
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More intrinsically, let us say that degrees capture the Brauer-Manin obstruction on X if the
d-primary subgroup of BrX captures the Brauer-Manin obstruction to rational points on X
for all integers d that are the degree of some k-rational globally generated ample line bundle
on X . Since any such line bundle determines a degree d morphism to projective space and
conversely, it is clear that the answer to Question 1.1 is affirmative when degrees capture
the Brauer-Manin obstruction.

1.1. Summary of results. In general, the answer to Question 1.1 can be no (see the
discussion in §1.2). However, there are many interesting classes of varieties for which the
answer is yes. We prove that degrees capture the Brauer-Manin obstruction for torsors under
abelian varieties, for Kummer varieties, and, assuming finiteness of Tate-Shafarevich groups
of elliptic curves, for bielliptic surfaces. We also deduce (from various results appearing
in the literature) that degrees capture the Brauer-Manin obstruction for all geometrically
rational minimal surfaces.

Assuming finiteness of Tate-Shafarevich groups, one can deduce the result for torsors under
abelian varieties rather easily from a theorem of Manin (see Remark 4.4 and Proposition 4.9).
In §4 we unconditionally prove the following much stronger result.

Theorem 1.2. Let X be a k-torsor under an abelian variety, let B ⊂ BrX be any subgroup,
and let d be any multiple of the period of X. In particular, d could be taken to be the degree
of a k-rational globally generated ample line bundle. If X(A)B = ∅, then X(A)B[d∞] = ∅,
where B[d∞] ⊂ B is the d-primary subgroup of B.

This not only shows that degrees capture the Brauer-Manin obstruction (apply the theorem
with B = BrX), but also that the Brauer classes with order relatively prime to d cannot
provide any obstructions to the existence of rational points.

Remark 1.3. As one ranges over all torsors of period d under all abelian varieties over
number fields, elements of arbitrarily large order in of (BrV )[d∞] are required to produce
the obstruction (see Proposition 4.10).

We use Theorem 1.2 to deduce that degrees capture the Brauer-Manin obstruction on
certain quotients of torsors under abelian varieties. This method is formalized in Theorem 5.1
and applied in §5.1 to prove the following.

Theorem 1.4. Let X be a bielliptic surface and assume that the Albanese torsor Alb1
X is

not a nontrivial divisible element in the Tate-Shafarevich group, X(k,Alb0
X). Then degrees

capture the Brauer-Manin obstruction to rational points on X.

Remark 1.5. As shown by Skorobogatov [Sko99], the Brauer-Manin obstruction is insufficient
to explain all failures of the Hasse principle on bielliptic surfaces. Therefore, if X is a
bielliptic surface of degree d, then it is possible that X(Ak)

Brd 6= ∅ and X(k) = ∅. However,
Theorem 1.4 shows that in this case one also has that X(Ak)

Br 6= ∅.
Before stating our results on Kummer varieties we fix some notation. We say that X

satisfies BMd if the d-primary subgroup of BrX captures the Brauer-Manin obstruction,
i.e., if the following implication holds:

X(Ak)
Br = ∅ =⇒ X(Ak)

Brd :=
⋂

α∈(BrX)[d∞]

X(Ak)
α = ∅ .
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We say that X satisfies BM⊥
d if there is no prime-to-d Brauer-Manin obstruction, i.e., if the

following implication holds

X(Ak) 6= ∅ =⇒ X(Ak)
Br

d⊥ :=
⋂

α∈(BrX)[d⊥]

X(Ak)
α 6= ∅ ,

where (BrX)[d⊥] denotes the subgroup of elements of order prime to d. These properties
are birational invariants of smooth projective varieties (see Lemma 2.5).

Remark 1.6. Note that BM1 and BM⊥
1 are equivalent; they hold if and only if

X(Ak) 6= ∅ ⇐⇒ X(Ak)
Br 6= ∅.

More generally, global reciprocity shows that the same is true of BMd and BM⊥
d whenever

(BrX)[d∞] = (Br k)[d∞] In general, however, BMd and BM⊥
d are logically independent.

The following theorem and its corollary are proved in §5.2. We refer to that section for
the definition of a Kummer variety.

Theorem 1.7. Kummer varieties satisfy BM2.

Corollary 1.8. Degrees capture the Brauer-Manin obstruction on Kummer varieties.

Theorem 1.7 complements the recent result of Skorobogatov and Zarhin that Kummer
varieties satisfy BM⊥

2 [SZ, Theorem 3.3]. As remarked above, this is logically independent
from Theorem 1.7 except when (BrX)[2∞] consists solely of constant algebras. In [SZ,
Theorem 4.3] it is shown that (BrX)[2∞] = (Br0X)[2∞] for Kummer varieties attached
to 2-coverings of products of hyperelliptic Jacobians with large Galois action on 2-torsion.
This is the case of interest in [HS16] where it is shown that (conditionally on finiteness of
Tate-Shafarevich groups) some Kummer varieties of this kind satisfy the Hasse principle.
Skorobogatov and Zarhin have shown that these Kummer varieties have no nontrivial 2-
primary Brauer classes [SZ, §§4 & 5]. Given this, both Theorem 1.7 and [SZ, Theorem 3.3]
provide an explanation for the absence of any condition on the Brauer group in [HS16, Thms.
A and B].

After seeing a draft of this paper, Skorobogatov noted that it is possible to use our results
(specifically Lemma 4.6) to extend the proof of [SZ, Theorem 3.3] to obtain the following
common generalization.

Theorem 1.9. Let X be a Kummer variety over a number field k and suppose B ⊂ BrX is
a subgroup. If X(A)B = ∅, then X(A)B[2∞] = ∅.

This is the analog for Kummer varieties of Theorem 1.2 above. The proof is given in the
appendix by Skorobogatov.

1.2. Discussion. Question 1.1 trivially has a positive answer when X(Ak)
Br 6= ∅ and, in

particular when X(k) 6= ∅. At the other extreme, the answer is also yes when either X(Ak) =
∅ or Alb1

X(Ak)
Br = ∅ (see Corollary 4.5). In particular, the answer is yes for varieties

satisfying the Hasse principle.
Theorem 1.2 shows that the answer is yes for curves of genus 1. For curves of genus at

least 2 it has been conjectured that the Brauer-Manin obstruction is the only obstruction to
the existence of rational points [Poo06,Sto07]. This had previously been posed as a question
[Sko01, Page 133]. We have little evidence to suggest that degrees capture the Brauer-Manin
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obstruction on higher genus curves, but we are also unaware of any higher genus curve X
and prime p for which it can be shown that X does not satisfy BMp.

In higher dimensions it is not generally true that degrees capture the Brauer-Manin ob-
struction. One reason for this is that while the set {d ∈ N : X satisfies BMd} is a birational
invariant, the set of integers that arise as degrees of globally generated ample line bundles
on X is not. Exploiting this one can construct examples (even among geometrically rational
surfaces) for which degrees do not capture the Brauer-Manin obstruction (See Lemma 2.6
and Example 2.7). At least in the case of surfaces, this discrepancy can be dealt with by
considering only minimal surfaces, i.e., surfaces which do not contain a Galois-invariant
collection of pairwise disjoint (−1)-curves.

Different and more serious issues are encountered in the case of nonrational surfaces of
negative Kodaira dimension. In §6 we give an example of a minimal conic bundle over
an elliptic curve for which degrees do not capture the Brauer-Manin obstruction. This is
unsurprising (and somewhat less disappointing) given the known pathologies of the Brauer-
Manin obstruction on quadric fibrations [CTPS16]. In §6 we note that degrees do capture the
Brauer-Manin obstruction on minimal rational conic bundles and on Severi-Brauer fibrations
over elliptic curves with finite Tate-Shafarevich group (See Theorem 6.1).

For a minimal del Pezzo surface of degree d, degrees capture the Brauer-Manin obstruction
as soon as BMd holds. This is because the canonical class generates the Picard group, except
when the surface is P2, a quadric or a rational conic bundle [Has09, Theorem 3.9], in which
cases it follows from results mentioned above. Moreover, BMd holds trivially when the
degree, d, is not equal to 2 or 3. Indeed, when d = 1 there must be a rational point and
when d > 3 the exponent of BrX/Br0X divides d [Cor07, Theorem 4.1]1. Swinnerton-Dyer
has shown that any cubic surface such that exp(BrX/Br0X) 6= 3 must satisfy the Hasse
principle, implying that the answer is yes for d = 3 [SD93, Cor. 1]. Whether the analogous
property holds for del Pezzo surfaces of degree 2 was considered by Corn [Cor07, Question
4.5], but remained open. Recently this has been settled by Nakahara who shows that the odd
torsion Brauer classes on a del Pezzo surface of degree 2 cannot obstruct the Hasse principle
[Nak17].

Taken together, the results mentioned in the previous two paragraphs combine to yield
the following.

Theorem 1.10. Degrees capture the Brauer-Manin obstruction on geometrically rational
minimal surfaces over number fields.

Our results above give an affirmative answer for two of the four classes of surfaces of
Kodaira dimension 0, the other two being K3 and Enriques surfaces. For these, all known
examples of Brauer-Manin obstructions to rational points come from the 2-torsion subgroup
of the Brauer group and the question thus has an affirmative answer, as the Néron-Severi
lattice is even. However, concrete examples of K3 surfaces exhibiting nonconstant elements of
odd order in their Brauer group are scarcely represented in the literature, so this alone should
not be taken as serious evidence of a positive answer in general. That being said, we note
the work of Ieronymou-Skorobogatov [IS15] showing that there are quite often nonconstant
elements of odd order in the Brauer groups of diagonal quartic surfaces over Q but that these

1In fact, it is well-known that del Pezzo surfaces of degree at least 5 have trivial Brauer group and satisfy
the Hasse principle (see, e.g., [Cor07, Thm. 4.1] and [VA13, Thm. 2.1]).
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nevertheless satisfy BM⊥
2 . This has been extended to some diagonal quartics over general

number fields by Nakahara [Nak17]. These are K3 surfaces that are geometrically Kummer,
but not necessarily Kummer over their base field.

1.3. The analog for 0-cycles of degree 1. One further motivation for studying the ques-
tion of whether degrees capture the Brauer-Manin obstruction to rational points is that the
analogue for 0-cycles of degree 1 is expected to hold. Conjecture (E) on the sufficiency of the
Brauer-Manin obstruction for 0-cycles implies that the deg(L)-primary subgroup does cap-
ture the Brauer-Manin obstruction to 0-cycles of degree 1 for any ample globally generated
line bundle L. See §3 for more details.
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2. Preliminaries

2.1. Notation. For an integer n, we define Supp(n) to be the set of prime numbers dividing
n. For an abelian group G and integer d we use G[d] to denote the subgroup of elements
of order dividing d, G[d∞] for the subgroup of elements of order dividing a power of d and
G[d⊥] for the subgroup of elements order prime to d.

Throughout k denotes a number field, Ωk denotes the set of places of k, and Ak denotes
the adele ring of k. For any v ∈ Ωk, kv denotes the completion of k at v. We use K to denote
an arbitrary field of characteristic 0. We fix an algebraic closure K and write ΓK for the
absolute Galois group of K, with similar notation for k in place of K. For a commutative
algebraic group G over k, we use X(k,G) to denote the Tate-Shafarevich group of G, i.e.,
the group of torsors under G that are everywhere locally trivial.

Let X be a variety over K. We say that X is nice if it is smooth, projective, and geomet-
rically integral. We write X for the basechange of X to K. If X is defined over a number
field k and v ∈ Ωk, we write Xv for the basechange of X to kv.

When X is integral, we use k(X) to denote the function field of X . The Picard group of
X , denoted PicX , is the group of isomorphism classes of K-rational line bundles on X . In
the case that X is smooth, given a Weil divisor D ∈ DivX we denote the corresponding line
bundle by OX(D). The subgroup Pic0X ⊂ PicX consists of those elements that map to the
identity component of the Picard scheme. The Néron-Severi group of X , denoted NSX , is
the quotient PicX/Pic0X . The Brauer group of X , denoted BrX , is H2

et(X,Gm) and the
algebraic Brauer group of X is Br1X := ker(BrX → BrX). The structure morphism yields
a map BrK → BrX , whose image is the subgroup of constant algebras denoted Br0X .

2.2. Polarized varieties, degrees and periods. In this paper a nice polarized variety over
K is a pair (X,L) consisting of a niceK-varietyX and a globally generated ample line bundle
L ∈ PicX . We define the degree of a nice polarized variety, denoted by deg(X,L) or deg(L),
to be dim(X)! times the leading coefficient of the Hilbert polynomial, h(n) := χ(L⊗n).

Lemma 2.1. Suppose (X,L) is a nice polarized variety of degree d over K. Then there is a
K-rational 0-cycle of degree d on X.
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Proof. Since L is generated by global sections it determines a morphism φL : X → PN , for
some N . The intersection of φL(X) ⊂ PN with a general linear subvariety of codimension
equal to dim(X) is a 0-cycle a on φL(X) which pulls back to a 0-cycle of degree d on X . �

For a nice variety X over K and i ∈ Z we write Albi
X for degree i component of the

Albanese scheme parameterizing 0-cycles on X up to Albanese equivalence. Then Alb0
X is

an abelian variety and Albi
X is a K-torsor under Alb0

X . The (Albanese) period of X , denoted
per(X), is the order of Alb1

X in the Weil-Châtelet group H1(K,Alb0
X). Equivalently, the

period is the smallest positive integer P such that AlbP
X has a K-rational point. Any k-

rational 0-cycle of degree d determines a k-rational point on Albd
X . Thus Lemma 2.1 has the

following corollary.

Corollary 2.2. If (X,L) is a nice polarized variety of degree d over K, then the period of
X divides d.

2.3. Basic properties of BMd and BM⊥
d . The definitions of BMd and BM⊥

d yield the
following lemma, which we will use freely throughout the paper.

Lemma 2.3. Let X be a nice variety over a number field k, let d and e be a positive integers
such that d | e, and set d0 :=

∏
p∈Supp(d) p. Then

(1) X satisfies BMd (resp. BM⊥
d ) if and only if X satisfies BMd0 (resp. BM⊥

d0), and

(2) If X satisfies BMd (resp. BM⊥
d ), then X satisfies BMe (resp. BM⊥

e ).

In particular, if d′ is a positive integer with Supp(d) ⊂ Supp(d′) and X satisfies BMd (resp.
BM⊥

d ), then X satisfies BMd′ (resp. BM
⊥
d′).

Lemma 2.4. Let π : Y → X be a morphism of nice varieties over a number field k and let
d be a positive integer.

(1) If Y (Ak) 6= ∅ and Y satisfies BM⊥
d , then X satisfies BM⊥

d .
(2) If X(Ak)

Br = ∅ and X satisfies BMd, then Y satisfies BMd.

Proof. (1) Suppose that X(Ak) 6= ∅, but X(Ak)
Br

d⊥ = ∅. Then for any y ∈ Y (Ak) there
exists A ∈ (BrX)[d∞] such that 0 6= (π(y),A) = (y, π∗A). Hence Y (Ak)

Br
d⊥ = ∅

and it follows that Y is not BM⊥
d .

(2) Suppose that X is BMd and X(Ak)
Br = ∅. Then given y ∈ Y (Ak), we may find an

A ∈ (BrX)[d∞] such that 0 6= (π(y),A) = (y, π∗A), which shows that y /∈ Y (Ak)
Brd.
�

Lemma 2.5. Let σ : Y 99K X be a birational map of nice varieties over a number field k
and let d be a positive integer. Then

(1) X satisfies BMd if and only if Y satisfies BMd;
(2) X satisfies BM⊥

d if and only if Y satisfies BM⊥
d ;

(3) The map σ induces an isomorphism σ∗ : BrX
∼→ Br Y such that for any B ⊂ BrX,

Y (Ak)
σ∗(B) = ∅ if and only if Y (Ak)

B = ∅.
Proof. By the Lang-Nishimura Theorem [Nis55,Lan54], X(Ak) = ∅ ⇔ Y (Ak) = ∅. With this
in mind, the first two statements follow easily from the third. Any birational map between
smooth projective varieties over a field of characteristic 0 can be factored into a sequence
of blowups and blowdowns with smooth centers [AKMW02]. Hence, it suffices to prove (3)
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under the assumption that σ : Y → X is a birational morphism obtained by blowing up a
smooth center Z ⊂ X . Then σ∗ : BrX → Br Y is a isomorphism [Gro68].

For any field L/k it is clear that σ(Y (L)) contains (X \ Z)(L). Furthermore, since Z
is smooth, the exceptional divisor EZ is a projective bundle over Z, so σ(EZ(L)) = Z(L).
Therefore σ(Y (L)) = X(L). It follows that the map σ : Y (Ak) → X(Ak) is surjective, and
so (3) follows from functoriality of the Brauer-Manin pairing. �

Lemma 2.6. Let d be a positive integer and let X be a nice k-variety of dimension at least
2 with the following properties.

(1) X(Ak) 6= ∅;
(2) X(Ak)

Brd = ∅;
(3) BrX/Br0X has exponent d;
(4) degrees capture the Brauer-Manin obstruction on X; and
(5) X has a closed point P with deg(P ) relatively prime to d.

Let Y := BlPX. Then degrees do not capture the Brauer-Manin obstruction on Y .

Proof. Clearly X does not satisfy BMd′ for any d
′ prime to d. By birational invariance, the

same is true of Y . It thus suffices to exhibit a globally generated ample line bundle on Y
of degree prime to d. Let L ∈ Pic(Y ) be the pullback of an ample line bundle on X and
let E denote the line bundle corresponding to the exceptional divisor. For some integer n,
L⊗n⊗E−1 is ample and has degree prime to d. An appropriate multiple of this is very ample,
hence globally generated, and has degree prime to d. �

Example 2.7. An example of a variety satisfying the conditions of the lemma with d = 2 and
deg(P ) = 3 is the del Pezzo surface of degree 2 given by the equation w2 = 34(x4 + y4 + z4)
[Cor07, Remark 4.3]. The blowup of X at a suitable degree 3 point gives a rational elliptic
surface for which degrees do not capture the Brauer-Manin obstruction. In particular, the
property “degrees capture the Brauer-Manin obstruction” is not a birational invariant of
smooth projective varieties.

3. The analog for 0-cycles

Let X be a nice variety over a number field k. The group of 0-cycles on X is the free
abelian group on the closed points of X . Two 0-cycles are directly rationally equivalent if
their difference is the divisor of a function f ∈ k(C)×, for some nice curve C ⊂ X . The Chow
group of 0-cycles is denoted CH0X ; it is the group of 0-cycles modulo rational equivalence,
which is the equivalence relation generated by direct rational equivalence. For a place v ∈ Ω
one defines the modified Chow group

CH′
0Xv =

{
CH0Xv if v is finite;

coker
(
Nkv/kv

: CH0Xv → CH0Xv

)
if v is infinite.

Since X is proper there is a well defined degree map CH0X → Z. We denote by CH
(i)
0 X

the preimage of i ∈ Z. For an infinite place v, the degree of an element in CH′
0Xv is well

defined modulo 2.
7



There is a Brauer-Manin pairing
∏

v CH0Xv ×BrX → Q/Z which, by global reciprocity,
induces a complex,

CH0X →
∏

v

CH′
0Xv → Hom(BrX/Br0X,Q/Z) .

In particular, if there are no classes of degree 1 in the kernel of the map on the right, then
there is no global 0-cycle of degree 1. In this case, we say that there is a Brauer-Manin
obstruction to the existence of 0-cycles of degree 1.

Conjecture (E) states that the sequence

(3.1) lim←−
n

(CH0X)/n→ lim←−
n

∏

v

(CH′
0Xv)/n→ Hom(BrX/Br0X,Q/Z)

is exact. This conjecture has its origins in work of Colliot-Thélène and Sansuc [CTS81],
Kato and Saito [KS86] and Colliot-Thélène [CT95]. It has been stated in this form by van
Hamel [vH03] and Wittenberg [Wit12].

Conjecture (E) implies that there is a global 0-cycle of degree 1 if and only if there is no
Brauer-Manin obstruction to such (see, e.g., [Wit12, Rem. 1.1(iii)]). For a nice polarized
variety (X,L), Conjecture (E) also implies that this obstruction is captured by the deg(L)-
primary part of the Brauer group.

Proposition 3.1. Let (X,L) be a nice polarized variety of degree d over k and assume that
Conjecture (E) holds for X. Then there exists a k-rational 0-cycle of degree 1 on X if and

only if there exists (zv) ∈
∏

v CH
(1)
0 Xv that is orthogonal to (BrX)[d∞].

Proof. Set Qd :=
∏

Qp and Zd :=
∏

Zp, where in both cases the product ranges over the
primes dividing d. Exactness of (3.1) implies the exactness of its d-adic part,

lim←−
m

(CH0X)/dm → lim←−
m

∏

v

(CH′
0Xv)/d

m → Hom((BrX/Br0X)[d∞],Qd/Zd) .

If (zv) ∈
∏

v CH
(1)
0 Xv is orthogonal to (BrX)[d∞], then by exactness we can find, for every

m ≥ 1, some zm ∈ CH0X such that for every v, zm ≡ zv (mod dmCH′
0Xv). In particular,

the degree of zm is prime to d, so there is a global 0-cycle of degree prime to d on X . On
the other hand, there is a 0-cycle of degree d on X by Lemma 2.1, so there must also be a
0-cycle of degree 1 on X . �

Unconditionally we can show that the deg(L)-primary part of the Brauer group cap-
tures the Brauer-Manin obstruction to the existence of a global 0-cycle of degree 1 when
BrX/Br0X has finite exponent.

Proposition 3.2. Let (X,L) be a nice polarized variety of degree d. Assume that BrX/Br0X
has finite exponent. Then there is no Brauer-Manin obstruction to the existence of a 0-cycle

of degree 1 if and only if there exists (zv) ∈
∏

v CH
(1)
0 Xv that is orthogonal to (BrX)[d∞].

Proof. If there is no Brauer-Manin obstruction to the existence of a 0-cycles of degree 1,

then by definition there exists a (zv) ∈
∏

v CH
(1)
0 Xv that is orthogonal to BrX and hence

to (BrX)[d∞]. Conversely, suppose there exists (zv) ∈
∏

v CH
(1)
0 Xv that is orthogonal to

(BrX)[d∞] and let m ∈ Z be the maximal divisor of the exponent of BrX/Br0X that is
coprime to d. Since the pairing is bilinear and m(BrX/Br0X) is d-primary, we have that
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(mzv) is orthogonal to BrX . Furthermore, by Lemma 2.1, there is a k-rational 0-cycle of
degree d on X ; let (z) ∈∏v CH0Xv be its image. By global reciprocity every integral linear
combination of (z) and (mzv) is orthogonal to BrX . Since m is relatively prime to d, some
integral linear combination of (z) and (mzv) has degree 1, as desired. �

4. Torsors under abelian varieties

In this section we prove the following theorem.

Theorem 4.1. Let k be a number field, let Y be a smooth projective variety over k that is
birational to a k-torsor V under an abelian variety, and let P be a positive integer that is
divisible by the period of V . For any subgroup B ⊂ Br Y the following implication holds:

Y (Ak)
B = ∅ =⇒ Y (Ak)

B[P∞] = ∅ .
Remark 4.2. Theorem 4.1 is strongest when P = per(V ). However, determining per(V ) is
likely more difficult than determining if Y (Ak)

B[P∞] 6= ∅, so the theorem will often be used
for an integer P that is only known to bound the period.

Proof of Theorem 1.2. This follows immediately from Theorem 4.1 and Lemma 2.1. �

Corollary 4.3. Every k-torsor V of period P under an abelian variety satisfies BMP and
BM⊥

P .

Proof. We apply the theorem with B = BrX and B = (BrX) [P⊥]. �

Remark 4.4. When X(k, A) is finite (i.e., conjecturally always) one can deduce that tor-
sors of period P under A satisfy BMP using the well known result of Manin relating the
Brauer-Manin and Cassels-Tate pairings. A generalization of Manin’s result by Harari and
Szamuely [HS08] can be used to prove that torsors under semiabelian varieties satisfy BMP ,
conditional on finiteness of Tate-Shafarevich groups (see Proposition 4.9).

Corollary 4.5. Suppose X is a nice k-variety such that Alb1
X(Ak)

Br = ∅. Then degrees
capture the Brauer-Manin obstruction to rational points on X.

Proof. Let P denote the Albanese period of X . By Theorem 4.1, there is a P -primary
Brauer-Manin obstruction to the existence of rational points on Alb1

X . This pulls back to
give a P -primary Brauer-Manin obstruction to the existence of rational points on X . We
conclude by noting that P | deg(L) for any globally generated ample line bundle L ∈ PicX
by Lemma 2.1. �

For a nice variety X over K we define the subgroup Br1/2X ⊂ BrX as follows. Let S de-

note the image of the map H1(K,Pic0X)→ H1(K,PicX) induced by the inclusion Pic0X ⊂
PicX and let Br1/2X denote the preimage of S under the map Br1X → H1(K,PicX) that
is given by the Hochschild-Serre spectral sequence.

Lemma 4.6. Let V be a K-torsor under an abelian variety A over K. Let m and d be
relatively prime integers such that m is relatively prime to the period of V . If Br1/2 V has
finite index in BrV , then there exists an étale morphism ρ : V → V such that the induced
map,

ρ∗ :
Br V

Br0 V
−→ Br V

Br0 V
,

9



annihilates the m-torsion subgroup and is the identity on the d-torsion subgroup. Moreover,
one may choose ρ so that it agrees, geometrically, with [mr] : A→ A for some integer r.

Proof. Since V is a torsor under A, there is an isomorphism ψ : V → A of varieties over K,
such that the torsor structure of V is given by a · v = ψ−1(a + ψ(v)), for a ∈ A(K) and
v ∈ V (K). Moreover, ψ induces group isomorphisms Pic0A ≃ Pic0 V , NSA ≃ NSV , and
BrA ≃ BrV .

Let P be the period of V and let n be a power of m such that n ≡ 1 mod Pd. Then
nV = V in H1(K,A), so by [Sko01, Prop. 3.3.5] V can be made into an n-covering of itself.
This means that there is an étale morphism π : V → V such that ψ ◦ π = [n] ◦ ψ where
[n] denotes multiplication by n on A. We will show that an iterate of π has the desired
properties.

Since [n] induces multiplication by n on Pic0A, the morphism π induces multiplication by n
on Pic0 V . Indeed, π∗ = ψ∗[n]∗(ψ−1)∗ = ψ∗n(ψ−1)∗ = nψ∗(ψ−1)∗ = n, where the penultimate
equality follows since ψ∗ is a homomorphism. Similarly, π induces multiplication by n2 on
NSV , since [n] induces multiplication by n2 on NSA. Thus we have a commutative diagram
with exact rows

H1(K,Pic0 V )
i

//

n
��

H1(K,PicV )
j

//

π∗

��

H1(k,NSV )

n2

��

H1(K,Pic0 V )
i

// H1(K,PicV )
j

// H1(k,NSV )

We claim that (π2)∗ annihilates the n-torsion of H1(K,PicV ). Since Br1 V/Br0 V embeds
into H1(K,PicV ), this would imply that (π2)∗ annihilates the n-torsion in Br1 V/Br0 V .
Let us prove the claim. For any x ∈ H1(K,PicV )[n], we have that j(π∗(x)) = n2j(x) =
j(n2x) = 0, so π∗(x) = i(y) for some y ∈ H1(K,Pic0 V ) such that ny ∈ ker(i). Then
(π2)∗(x) = π∗(i(y)) = i(ny) = 0, as desired.

Multiplication by n on A induces multiplication by n2 on BrA (see [Ber72, Middle of page
182]). Thus π∗ acts as multiplication by n2 on Br V , and we have a commutative diagram
with exact rows,

0 // Br1 V/Br0 V
i′

//

π∗

��

BrV/Br0 V
j′

//

π∗

��

Br V/Br1 V

n2

��

0 // Br1 V/Br0 V
i′

// BrV/Br0 V
j′

// Br V/Br1 V

The n-torsion in Br1 V/Br0 V is killed by (π2)∗ and i′ is injective, so a similar diagram chase
as above shows that (π3)∗ kills the n-torsion, and hence the m-torsion, in Br V/Br0 V .

It thus suffices to show that some power of (π3)∗ is the identity map on the d-torsion
subgroup of Br V/Br0 V . By definition, the image of the composition (Br1/2 V → Br1 V →
H1(K,PicV )) is contained in H1(K,Pic0 V ), so π∗ acts as multiplication by n on Br1/2 V/Br0 V .
In particular, since n ≡ 1 mod d, π∗ acts as the identity on the d-torsion subgroup of
Br1/2 V/Br0 V . Additionally, since the degree of π3 is relatively prime to d, the induced
map (π3)∗ : (Br V )[d∞] → (BrV )[d∞] is injective (see [ISZ11, Prop. 1.1]). Together this
shows that (π3)∗ is injective on (Br V/Br1/2 V )[d]. Since (Br V/Br1/2 V )[d] is finite, some
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power σ = π3s of π3 acts as the identity on it. Thus, for every A ∈ Br V such that dA ∈ Br0 V
there is some A′ ∈ Br1/2 V such that

σ∗(A) = A+A′ and dA′ ∈ Br0 V.

Again σ∗ is the identity on (Br1/2 V/Br0 V )[d], so by induction we get (σd)∗(A) ≡ A+dA′ ≡
A (mod Br0 V ). Therefore ρ = σd has the desired properties. �

Lemma 4.7. Let k be a number field. If V is a k-torsor under an abelian variety, then
Br1/2 V has finite index in BrV .

Proof. We have a filtration

Br1/2 V ⊂ Br1 V ⊂ BrV .

The second inclusion has finite index by [SZ08, Theorem 1.1]. Now we consider the first
inclusion. By the definition of Br1/2 V , the quotient Br1 V/Br1/2 V injects into the cokernel

of the map H1(k,Pic0 V ) → H1(k,PicV ). Then by the long exact sequence in cohomology
associated to the short exact sequence

0→ Pic0 V → PicV → NSV → 0,

the cokernel in question injects into H1(k,NSV ). The result now follows since NSV is finitely
generated and torsion-free. �

Lemma 4.8. Let X be a smooth proper variety over a number field k and let B ⊂ BrX be

a subgroup. If X(Ak)
B = ∅, then there is a finite subgroup B̃ ⊂ B such that X(Ak)

B̃ = ∅

Proof. By hypothesis X(Ak) is compact. The lemma follows from the observation that

X(Ak)
B =

⋂

A∈B

X(Ak)
A .

is an intersection of closed subsets of X(Ak). If the intersection of these subsets is empty,
then there is some finite collection of subsets whose intersection is empty. Since BrX is
torsion and a finitely generated torsion abelian group is finite, this completes the proof. �

Proof of Theorem 4.1. In light of Lemma 2.5, we may assume that Y = V .
If V (Ak)

B = ∅, then, by Lemma 4.8, there is a finite subgroup B′ ⊂ B with V (Ak)
B′

= ∅.
Since V (Ak)

B[P∞] ⊂ V (Ak)
B′[P∞], the desired implication holds if

V (Ak)
B′

= ∅ =⇒ V (Ak)
B′[P∞] = ∅ ,

for all finite subgroups B′ ⊂ B. Thus, it suffices to prove the theorem when B is finite.
Let d be the exponent of B[P∞] and letm := exponent(B)/d so thatm and d are relatively

prime. Since we are working over a number field, Lemma 4.7 allows us to apply Lemma 4.6.
Let ρ : V → V be the morphism given by Lemma 4.6; then the functoriality of the Brauer-
Manin pairing and global reciprocity give that

V (Ak)
B ⊃ ρ(V (Ak)

ρ∗(B)) = ρ(V (Ak)
ρ∗(B[P∞])) = ρ(V (Ak)

B[P∞]) .

In particular, if V (Ak)
B is empty, then so must be V (Ak)

B[P∞]. �
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4.1. A conditional extension to semiabelian varieties.

Proposition 4.9. Let k be a number field and let V be a k-torsor under a semiabelian
variety G with abelian quotient A. Assume that X(k, A) is finite. Then V satisfies BMd for
any integer d that is a multiple of the period of V .

Proof. It is known that the obstruction coming from the group

B(V ) := ker

(
Br1 V →

⊕

v

Br1 Vv/Br0 Vv

)

is the only obstruction to rational points on V [HS08, Theorem 1.1]. The extreme cases where
G is an abelian variety or a torus are due to Manin [Man71, Théorème 6] and Sansuc [San81,
Corollaire 8.7], respectively. The proof of this fact is as follows. There is a homomorphism
ι : X(k,G∗) → B(X) (where G∗ denotes the 1-motive dual to G) and a bilinear pairing of
torsion abelian groups 〈 , 〉CT : X(k,G)×X(k,G∗)→ Q/Z. This is related to the Brauer-
Manin pairing via ι in the sense that for any β ∈ X(k,G∗) and (Pv) ∈ V (Ak), one has
〈[V ], β〉CT = ((Pv), ι(β)). The assumption that X(k, A) is finite implies that the pairing
〈 , 〉CT is nondegenerate. In particular, if V (k) ⊂ V (Ak)

Br = ∅, then there is some A ∈ B

such that V (Ak)
A = ∅. It follows from bilinearity that, if there is such an obstruction, it will

already come from the per(V )∞-torsion elements in B(X). �

4.2. Unboundedness of the exponent. One might ask if we can restrict consideration to
even smaller subgroups of BrV , for instance if there is an integer d that can be determined
a priori such that the d-torsion (rather than the d-primary torsion) captures the Brauer-
Manin obstruction. The following proposition shows that this is not possible for torsors
under abelian varieties, at least if Tate-Shafarevich groups of elliptic curves are finite.

Proposition 4.10. Suppose that Tate-Shafarevich groups of elliptic curves over number
fields are finite. For any integers P and n there exists, over a number field k, a torsor V
under an elliptic curve with per(V ) = P , V (Ak)

(Br V )[Pn] 6= ∅, and V (Ak)
(Br V )[Pn+1] = ∅.

The following lemma will be helpful in the proof.

Lemma 4.11. For any integer N there exists an elliptic curve E over a number field k such
that X(k, E) has an element of order N .

Remark 4.12. It would be very interesting to know if the curve E can be taken to be defined
over Q. To the best of our knowledge, this is unknown for P a sufficiently large prime and
for P an arbitrary power of any single prime. It follows from the lemma that this does
hold for abelian varieties over Q, since restriction of scalars gives an element of order N in
X(Q,Resk/Q(E)).

Proof. Recall that the index of a variety X over a field is the gcd of the degrees of the
closed points on X . By work of Clark and Sharif [CS10] we can find a torsor V under an
elliptic curve E/k of period N and index N2. Moreover, the proof of loc. cit. shows that
we can find such V with V (kv) = ∅ for exactly two primes v of k, both of which are finite,
prime to N and such that E has good reduction. Let L/k be any degree N extension of k
which is totally ramified at both of these primes. By a result of Lang and Tate [LT58] we
have that V (Lw) 6= ∅ for w a place lying over either of these totally ramified primes, and
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hence VL ∈X(L,EL). On the other hand, the index of VL can drop at most by a factor of
N = [L : k]. Since VL is locally trivial its period and index are equal. Therefore we have
N ≤ Index(VL) = Period(VL) ≤ Period(V ) = N , so VL has order N in X(L,EL). �

Proof of Proposition 4.10. By the lemma above, we can find an elliptic curve E such that
X(k, E) contains an element of order P n+1. Since X(k, E) is finite, we can find W ∈
X(k, E) such that V := P nW is not divisible by P n+1 in X(k, E). Then a theorem

of Manin [Man71] shows that V (Ak)
(Br V )[Pn+1] = ∅. On the other hand, π : W → V is

a P n-covering and, by descent theory, the adelic points in π(W (Ak)) are orthogonal to
(Br1 V )[P n] = (Br V )[P n] (here we have used the fact that V is a curve and applied Tsen’s
Theorem). �

5. Quotients of torsors under abelian varieties

Theorem 5.1. Let k be a number field. Let Y be a smooth projective variety that is k-
birational to a k-torsor V under an abelian variety. Let d be a positive integer such that
Supp(per(V )) ⊂ Supp(d) and let π : Y → X be a finite flat cover. Assume that we are in
one of the following cases:

(1) d = 2, π is a ramified double cover, and (BrX/Br0X)[2∞] is finite, or
(2) π is a torsor under an abelian k-group of exponent dividing d.

Then X satisfies BMd.

Remark 5.2. In fact, a stronger result holds. There is a subgroup B ⊂ (BrX)[d] such that
if X(Ak)

B 6= ∅, then X is also BM⊥
d . If we are in Case (1), then this subgroup B is finite,

depends only on the Galois action on the geometric irreducible components of the branch
locus of π, and is generically trivial.

The idea is that the subgroup B controls whether there is a twist of Y over X that is
everywhere locally soluble. If there is such a twist, then we may apply Lemma 2.4(1) and
Theorem 4.1 to conclude that X inherits BM⊥

d from the covering.

For the proof, we need a slight generalization of a result of Skorobogatov and Swinnerton-
Dyer [SSD05, Theorem 3 and Lemma 6].

Proposition 5.3. Let π : Y → X be a ramified double cover over k and assume that
(BrX/Br0X) [2∞] is finite. Then

X(Ak)
Br2 6= ∅ ⇐⇒

⋃

a∈k×/k×2

πa
(
Y a(Ak)

(πa)∗(BrX[2∞])
)
6= ∅,

where πa : Y a → X denotes quadratic twist of Y → X by a.

Proof. The backwards direction follows from the functoriality of the Brauer group. Thus we
consider the forwards direction. This proof follows ideas from [SSD05, Section 5]. We repeat
the details here for the reader’s convenience.

Let f ∈ k(X)× be such that k(Y ) = k(X)(
√
f). We define a finite dimensional k-algebra

L :=
⊕

D∈X(1)

vD(f) odd

(
k ∩ k(D)

)
.
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Note that L is independent of the choice of f , since the class of f in k(X)×/k(X)×2 is
unique. Let α1, . . . , αn ∈ (BrX)[2∞] be representatives for the finitely many classes in
(BrX/Br0X)[2∞]. Let S be a finite set of places such that for all v /∈ S, for all Pv ∈ X(kv),
and for all 1 ≤ i ≤ n, αi(Pv) = 0 ∈ Br kv. (It is well known that finding such a finite set S
is possible, see, e.g., [Sko01, Section 5.2].) After possibly enlarging S we may assume that S
contains all archimedean places and all places that are ramified in a subfield of L. We may
also assume that Y a(kv) 6= ∅ for all v /∈ S and all a ∈ k×/k×2 with v(a) even [Sko01, Prop.
5.3.2].

Let (Pv) ∈ X(Ak)
Br2 . For v ∈ S, let Qv ∈ X(kv) be such that av := f(Qv) ∈ k×v and be

sufficiently close to Pv so that αi(Pv) = αi(Qv) for all i. For v /∈ S, set av := 1. Let c ∈ k×
be such that k(

√
c) is a subfield of L. Then by [SSD05, Theorem 3], the quaternion algebra

A = (c, f)2 lies in (BrX)[2]. Using the aforementioned properties of S and the definition of
Pv and av, we then conclude

∑

v∈Ωk

invv((c, av)) =
∑

v∈S

invv((c, av)) =
∑

v∈S

invv(A(Pv)) =
∑

v∈Ωk

invv(A(Pv)) = 0.

Hence, by [SSD05, Lemma 6(ii)], there exists an a ∈ k× with a/av ∈ k×2
v such that Y a(Ak) 6=

∅. Since a/av ∈ k×2
v for all v ∈ S we may further assume that there exists an (Rv) ∈ Y a(Ak)

such that πa(Rv) = Qv for all v ∈ S. We then have
∑

v

invv(((π
a)∗(αi))(Rv)) =

∑

v

invv(αi(π
a(Rv))) =

∑

v∈S

invv(αi(Qv)) =
∑

v∈S

invv(αi(Pv))

=
∑

v

invv(αi(Pv)) = 0,

so (Rv) ∈ Y a(Ak)
(πa)∗(BrX[2∞]). �

Proof of Theorem 5.1. If π is ramified, let G = Z/2; otherwise let G be the finite k-group
such that π is a torsor under G. For each τ ∈ H1(k,G), let πτ : Y τ → X denote the twisted
cover, and define Bτ := (πτ )∗(BrX).

Assume that X(Ak)
Brd 6= ∅. By [ISZ11, Prop. 1.1], (πτ )∗((BrX)[d∞]) = Bτ [d∞]. There-

fore, Proposition 5.3 and descent theory show in cases (1) and (2) respectively, that there
exists a τ ∈ H1(k,G) such that Y τ (Ak)

Bτ [d∞] 6= ∅. Applying Theorem 4.1 with B = Bτ we
conclude that Y τ (Ak)

Bτ

is nonempty. By the functoriality of the Brauer-Manin pairing, we
have that X(Ak)

Br 6= ∅. �

5.1. Bielliptic Surfaces. We say that a nice variety X over K is a bielliptic surface if X is
a minimal algebraic surface of Kodaira dimension 0 and irregularity 1.

5.1.1. Geometry of bielliptic surfaces. If X is a bielliptic surface over K then it is well
known that X is isomorphic to (A × B)/G where A and B are elliptic curves and G is a
finite group acting faithfully on A and B such that A/G is an elliptic curve and B/G ≃ P1

(see, e.g., [Bea96, Chap. VI and VIII]). Furthermore, by the Bagnera-de Franchis classifi-
cation [Bea96, List VI.20], the pair of γ := |G| and n := exponent(G) must be one of the
following:

(γ, n) ∈ {(2, 2), (4, 2), (4, 4), (8, 4), (3, 3), (9, 3), (6, 6)} .
In all cases n is the order of the canonical sheaf in PicX .
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For A,B,G as above, the universal property of the Albanese variety and [Bea96, Ex
IX.7(1)] imply that the natural k-morphism Ψ: X → Alb1

X geometrically agrees with the
projection map (A× B)/G→ A/G.

Lemma 5.4. Let A and B be elliptic curves over K and let G be a finite group acting
faithfully on A and B such that A/G is an elliptic curve and B/G ≃ P1. Set X := (A×B)/G
and let π denote the projection map X → B/G. If L ∈ PicX is such that L ∼alg π

∗(OP1(m))
for some positive integer m and H0(X,L) 6= 0, then L ≃ π∗(OP1(m)).

Proof. Since L ∼alg π
∗(OP1(m)) and Pic0X ≃ A/G ≃ Pic0A/G, there exists a line bundle L′ ∈

Pic0(A/G) such that L ≃ π∗(OP1(m)) ⊗ π∗
2(L′), where π2 is the projection X → A/G. By

assumption H0(X,L) 6= 0, so H0(P1, π∗L) 6= 0, which, by the projection formula, implies that
H0(P1, π∗π

∗
2L′), and hence H0(A/G,L′), are nonzero. We complete the proof by observing

that H0(A/G,L′) 6= 0 if and only if L′ ≃ OA/G. �

Proposition 5.5. Let X be a bielliptic surface over K. Then there exists a genus 0 curve
C and a K-morphism Φ: X → C that is geometrically isomorphic to the projection map
(A× B)/G→ B/G.

Proof. By the geometric classification, there exist smooth elliptic curves A and B over K
such that X ≃ (A × B)/G. By abuse of notation, we will also use A and B to refer to
the algebraic equivalence class of a smooth fiber of the projection maps X → B/G and
X → A/G, respectively.

Since X has an ample divisor, the sum of the Galois conjugates of this divisor is a K-
rational ample divisorD. Then by [Ser90, Lemma 1.3 and Table 2], [D] ≡ αA+βB ∈ NumX
for some positive α, β ∈ 1

n
Z. Since the natural map X → Alb1

X is K-rational, taking the

fiber above a closed point yields a K-rational divisor F representing mB ∈ NumX for some
m > 0. By taking a suitable integral combination of D and F , we obtain a K-rational
divisor D′ that is algebraically equivalent to m′A for some positive integer m′. Hence,
m′A ∈ (NSX)Gal(K/K).

Applying Lemma 5.4 to the Galois conjugates of OX(m
′A) we see that OX(m

′A) ∈
(PicX)ΓK . By the Hochschild-Serre spectral sequence the cokernel of PicX → (PicX)ΓK in-
jects into BrK, which is torsion. Therefore some multiple of A is represented by a K-rational
divisor D0.

Since A is the class of the pull back of OB/G(1) under the projection map (A× B)/G→
B/G), it follows that φ|D0| is geometrically isomorphic to the projection map (A×B)/G→
B/G composed with an r-uple embedding. Thus, the image of φ|D0| is a K-rational genus 0
curve C and φ|D0| is the desired map. �

5.1.2. Proof of Theorem 1.4.

Lemma 5.6. Let X be a bielliptic surface of period d over a number field k. Then X satisfies
BMnd where n denotes the order of the canonical sheaf in PicX.

Proof. Since the canonical sheaf is n-torsion and is defined over k, there exists a µn-torsor
π : V → X that is defined over k; by [BS03, Proposition 1] V is a torsor under an abelian sur-
face. Since π has degree n and X has period d, the period of V must satisfy Supp(per(V )) ⊂
Supp(nd). Indeed, for any i ∈ Z, the degree n map V → X induces a map Albi

X → Albni
V .
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Since Albd
X(k) 6= ∅ we must have Albnd

V (k) 6= ∅. Then Case (2) of Theorem 5.1 shows that
X satisfies BMnd. �

We now state and prove our main result on bielliptic surfaces. Theorem 1.4 follows imme-
diately.

Theorem 5.7. Let (X,L) be a nice polarized bielliptic surface over a number field k. If the
canonical sheaf of X has order 3 or 6, assume that Alb1

X is not a nontrivial divisible element
of X(k,Alb0

X). Then X satisfies BMdeg(L)

Remark 5.8. If the canonical sheaf of X has order 3 or 6, then it follows from the Bagnera-de
Franchis classification that the elliptic curve Alb0

X has j-invariant 0.

Proof. Let n denote the order of the canonical sheaf of X . We will show that one of the four
possibilities always occurs:

(1) X is not locally solvable;
(2) There is a k-rational point on X ;
(3) There is a Brauer-Manin obstruction to rational points on Alb1

X ; or
(4) Every globally generated ample line bundle L on X has Supp(n) ⊂ Supp(deg(L)).

In the first two cases BMd holds trivially for every d. In the third case, the theorem follows
from Corollary 4.5. In the fourth case we have Supp(n deg(L)) = Supp(deg(L)), so we can
apply Lemma 5.6 to conclude that BMdeg(L) holds.

By the adjunction formula, the Néron-Severi lattice is even, so when n ∈ {2, 4} we are in
case (4) above. By the Bagnera-de Franchis classification we may therefore assume (γ, n) is
one of (6, 6), (3, 3) or (9, 3). Furthermore we can assume X is locally soluble. Then Alb1

X

represents an element in X(k,Alb0
X). If this class is nontrivial, then Manin’s theorem (cf.

the proof of Proposition 4.9) shows that Alb1
X(Ak)

Br = ∅ and we are in case (3) above.
Since X is locally solvable Proposition 5.5 gives a k-morphism Φ: X → P1. Since P1 and

Alb1
X have k-points, we obtain k-rational fibers A,B ∈ Div(X) above k-points of P1 and

Alb1
X , respectively. All fibers of Ψ are smooth genus one curves geometrically isomorphic to

B, while the general fiber of Φ is geometrically isomorphic to A, but there are 3 multiple
fibers with (at least) one having multiplicity n [Ser90, Table 2]. Let A0 ∈ Div(X) denote
the reduced component of a multiple fiber with multiplicity n. By [Ser90, Theorem 1.4], the
classes of A0 and n

γ
B give a Z-basis for Num(X) and the intersection pairing is given by

B2 = A2 = 0 and A ·B = γ. The ample subset of PicX maps to the set of positive integral
linear combinations of A0 and n

γ
B in Num(X).

Let eA and eB be the smallest positive integers such that the classes of eAA0 and eB
(
γ
n
B
)

in NS(X) are represented by k-rational divisors on X . Since nA0 = A in PicX we have
eA | n. Moreover, eA = 1 when (γ, n) = (6, 6), because in this case Φ has a unique fiber of

multiplicity 6, which must lie over a k-rational point. Similarly, γ
n

(
n
γ
B
)
= B, so eB | γ

n
.

Therefore both eA and eB must divide 3. It follows that when eAeB > 1 every k-rational
ample divisor on X has degree divisible by 6 and we are in case (2) above. Therefore we are
reduced to considering the case eA = eB = 1, in which case we will complete the proof by
showing that X(k) 6= ∅.

First we claim that when eA = 1 the class of A0 in NS(X) is represented by an effective
k-rational divisor. In the case n = 6, we have seen that A0 ∈ Div(X). In the case n = 3,
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let F1 = A0, F2, F3 denote the reduced components of the multiple fibers of Φ. The class of
the canonical sheaf on X is represented by 2F1 + 2F2 + 2F3 − 2A [Ser96, Thm. 4.1]. Since
the canonical sheaf is not trivial, the Fi cannot all be linearly equivalent. The assumption
that eA = 1 implies that F1 = A0 is linearly equivalent to each of its Galois conjugates. The
Galois action must permute the Fi, but it cannot act transitively, so some Fi must be fixed
by Galois. This Fi is an effective k-rational divisor representing the class of A0. Relabeling
if necessary, we may therefore assume that A0 is an effective k-rational divisor.

When γ = n, n
γ
B = B is a effective k-rational divisor intersecting A0 transversally and

A0 ·B = 1, so A0 ∩B consists of a k-rational point. When γ 6= n we have (γ, n) = (9, 3). In
this case, D = A0 +

5
3
B is very ample [Ser90, Theorem 2.2]. By Bertini’s theorem [Har77,

Lemma V.1.2] the complete linear system |D| contains a curve C ∈ Div(X) intersecting A0

transversally. This gives a k-rational 0-cycle of degree 5 on A0. On the other hand, the
restriction of Ψ to A0 gives a degree 3 étale map A0 → Alb1

X . As Alb
1
X(k) 6= ∅, this gives a

k-rational 0-cycle of degree 3 on A0. Then A0 is a genus one curve with a k-rational 0-cycle
of degree 1, so it (and hence X) must have a k-point. �

5.2. Kummer varieties. Let A be an abelian variety over K. Any K-torsor T under A[2]
gives rise to a 2-covering ρ : V → A, where V is the quotient of A ×K T by the diagonal
action of A[2] and ρ is the projection onto the first factor. Then T = ρ−1(0A) and V has
the structure of a K-torsor under A. The class of T maps to the class of V under the
map H1(K,A[2]) → H1(K,A) induced by the inclusion of group schemes A[2] →֒ A and, in
particular, the period of V divides 2.

Let σ : Ṽ → V be the blow up of V at T ⊂ V . The involution [−1] : A → A fixes A[2]

and induces involutions ι on V and ι̃ on Ṽ whose fixed point sets are T and the exceptional

divisor, respectively. The quotient Ṽ /ι̃ is geometrically isomorphic to the Kummer variety

Kum(A), so in particular is smooth. We call Kum(V ) := Ṽ /ι̃ the Kummer variety associated
to V (or T ).

Theorem 5.9. Let V be a k-torsor under an abelian variety of period 2 and let X = KumV
be the Kummer variety associated to V . Then X satisfies BM2.

Proof. By definition every Kummer variety admits a double cover by a smooth projec-
tive variety birational to a torsor of period dividing 2 under an abelian variety. Moreover
(BrX/Br0X)[2∞] is finite by [SZ, Corollary 2.8]. So the theorem follows from case (1) of
Theorem 5.1. �

The following lemma allows us to deduce the corollary that degrees capture the Brauer-
Manin obstruction on Kummer varieties.

Lemma 5.10. If (X,L) is a nice polarized Kummer variety over K of dimension g, then
the degree of X is divisible by 2g−1.

Proof. The statement is trivially true (and optimal!) for g = 1, so assume g ≥ 2. Fur-
thermore we may assume that K is algebraically closed and that X is the Kummer variety
associated to the trivial torsor A. We claim that any ample line bundle L ∈ Pic(X) pulls

back along the quotient map π̃ : Ã → X to a line bundle isomorphic to M⊗2 for some
M∈ Pic(Ã). From this it follows that

2 deg(L) = deg(π̃) deg(L) = deg(π̃∗L) = deg(M⊗2) = 2g deg(M)
17



and thus deg(L) ≡ 0 mod 2g−1.
We now prove the claim. Let X0 = A/ιA be the singular Kummer variety of A and let π

denote the quotient map A → X0. Then X is the blow up of X0 at π(A[2]). Since π(A[2])
has codimension g ≥ 2, we have canonical isomorphisms Pic(X) ≃ Z[A[2]] ⊕ Pic(X0) and
Pic(Ã) ≃ Z[A[2]]⊕Pic(A). Moreover, π̃∗ induces multiplication by 2 on the first factor. Since
any ample line bundle on X must restrict to an ample line bundle on X0, it suffices to know
that π∗ : Pic(X0) → Pic(A) sends every ample line bundle into 2 Pic(A). This follows from
the fact that the pullback of any line bundle on X0 is totally symmetric [Mum66, Proposition
1 on page 305] and the fact that any totally symmetric ample line bundle on an abelian variety
is of the formM⊗2 by [Mum66, Corollary 4 on page 315] and [Mum70, §23, Theorem 3]. �

6. Conic bundle surfaces

A conic bundle surface is a nice, minimal surface X together with a dominant morphism
π : X → C to a nice curve C such that the generic fiber is a smooth curve of genus 0.

Theorem 6.1. Let π : X → C be a conic bundle surface. Assume either

(1) g(C) = 0, so X is geometrically rational, or
(2) g(C) = 1, π is a smooth morphism, and X(k,Alb0

C) is finite.

Then degrees capture the Brauer-Manin obstruction on X.

In the case that g(C) = 0, it is well-known that BrX/Br0X is 2-torsion, so X trivially
satisfies BM2. Then the result follows from the following lemma.

Lemma 6.2. Let π : X → C be a conic bundle surface over K without a section. Then the
degree of any globally generated ample line bundle in PicX is divisible by 4i, where i is the
odd part of the index of C.

Proof. Since π has no section, the class of the generic fiber in Brk(C) has order 2. Then,
since π : X → C is minimal, any line bundle in L ∈ PicX is algebraically equivalent (over
k) to OX(2aS + b ind(Y )F ), where a, b,∈ Z, S is a geometric section of π (which exists by
Tsen’s theorem) and F is the class of a fiber over a K-point of C. Thus, we have

deg(L) = deg(LK) = 4a2S2 + 4ab ind(C).

Further, since there is a double cover C ′ → C such that the conic bundle π′ : X ×C C
′ → C ′

has a section, S2 is equal to the degree of the wedge power of a rank 2 vector bundle on
X ×C C

′[Bea96, p. 30 and Prop. III.18]. Since any degree n point on C yields a degree
n or 2n point on C ′, the index of C and C ′ can differ only by a factor of 2. Therefore,
S2 ∈ ind(C ′)Z ⊂ iZ and so deg(L) = 4a2S2 + 4ab ind(Y ) ≡ 0 (mod 4i). �

Part (2) of Theorem 6.1 follows from a more general result about smooth fibrations of
Severi-Brauer varieties, which will be proved in §6.1.

If π : X → C is a conic bundle surface over a positive genus base with singular fibers,
then degrees do not necessarily capture the Brauer-Manin obstruction. We construct a
counterexample in §6.2.
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6.1. Severi-Brauer bundles. A nice variety X/K is a Severi-Brauer bundle if there is a
smooth morphism π : X → Y to a nice variety Y whose generic fiber is a positive dimensional
Severi-Brauer variety.

Proposition 6.3. Let π : X → Y be a Severi-Brauer bundle over a nice k-variety Y . Let
A ∈ Br Y denote the class of the generic fiber of π and let d be the order of A. Suppose that

(1) X(k,Alb0
Y )[d

∞] is finite,
(2) Y (k) 6= ∅,
(3) The canonical map Y (k)→ Alb1

Y (k)/dAlb
0
Y (k) is surjective, and

(4) For every prime v, the evaluation map Av : CH
(0)
0 (Yv) → Br kv factors through

Alb0
Y (kv).

Then X(A)Brd 6= ∅ ⇒ X(k) 6= ∅. In particular, X satisfies BMd.

Remark 6.4. Hypotheses (3) and (4) of the proposition are satisfied if

• Y is an abelian variety;
• Y is a curve such that #Y (k) = #Alb0

Y (k); or
• Y is a curve such that Y (k) 6= ∅ and Alb0

Y (k) is finite of order prime to d.

This is a slight generalization of a result in [CTPS16, Proposition 6.5] which proves that the
Brauer-Manin obstruction is the only one on X under the assumption that Y is an elliptic
curve with X(k, Y ) finite.

Proof of Theorem 6.1(2). If C(k) = ∅, then the assumption on X(k,Alb0
C) implies by

Manin’s theorem that C(Ak)
Br = ∅. Since C ≃ Alb1

X , we may apply Corollary 4.5 to
conclude that degrees capture the Brauer-Manin obstruction on X .

Assume that C(k) 6= ∅. If π has a section, then X(k) 6= ∅ so we trivially see that degrees
capture the Brauer-Manin obstruction. Hence, we assume that π has no section, which is
equivalent to assuming that the Brauer class of the generic fiber of π has order 2. Since
Proposition 6.3 and Remark 6.4 together show that X satisfies BM2, we apply Lemma 6.2
to complete the proof. �

Proof of Proposition 6.3. To ease notation set A = Alb0
Y . Choose P0 ∈ Y (k) and use this

to define a k-morphism ι : Y → A sending P to the class of the 0-cycle P − P0. Suppose
that X(Ak)

Brd 6= ∅. Fix a point (Qv) ∈ X(Ak)
Brd and let (Pv) := (π(Qv)). Then (ι(Pv)) ∈

A(Ak)
Brd by functoriality. Since ι(Pv) is orthogonal to (BrA)[d∞] it follows from descent

theory (e.g., [Sko01, Thm. 6.1.2]) that, for every n, ι(Pv) lifts to an adelic point on some
dn-covering of A. (For the definition of an N -covering see [Sko01, Def. 3.3.1].) Because
X(k, A)[d∞] is finite, there is some n such that every dn-covering of A which lifts to a
locally soluble dn+1-covering of A is of the form x 7→ dnx + Q for some Q ∈ A(k). In
particular, there is some Q ∈ A(k) such that (ι(Pv) − Q) ∈ dA(Ak). By assumption (3)
there is some P ∈ Y (k) such that (ι(Pv) − ι(P )) ∈ dA(Ak). Now by assumption (4) and
the fact that dA = 0 it follows that, for every prime v, A(P ) ⊗ kv = A(Pv). Note that
A(Pv) = 0 ∈ Br kv since the fiber XPv

has a kv-point. Thus, A(P )⊗ kv = 0 for every v. We
conclude that the Severi-Brauer variety XP must be everywhere locally soluble and thus, by
the Albert-Brauer-Hasse-Noether theorem, that XP (k) 6= ∅. �

6.2. A counterexample.
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Theorem 6.5. There exists a conic bundle surface π : X → E over an elliptic curve, such
that X has an ample globally generated line bundle of degree 12 and X does not satisfy BM6.
In particular, degrees do not capture the Brauer-Manin obstruction.

Proof. Let E/Q be an elliptic curve with a Q-rational cyclic subgroup Z of order 5 such
that Gal(Q(Z)/Q) = Z/4 and with X(Q, E) finite, e.g., the curve with LMFDB label
11.a1[LMFDB, Elliptic Curve 11.a2]. Then Z = O ∪ P , where P is a degree 4 closed point.
Let p1 and p2 be two primes that are congruent to 1 modulo 8 and that split completely in
k(P ). Finally choose a prime q 6= pi that is 1 modulo 8 and that is a nonsquare modulo p1
and modulo p2.

We will use this chosen data to construct a conic bundle X over E with the required
properties. Let E be the rank 3 vector bundle OE ⊕ OE ⊕ OE(2O). Since 4O ∼ P , there
exists a section s2 ∈ H0(E,OE(2O)

⊗2) such that div(s2) = P and such that s2(O) = −p1p2.
Let s0 := 1 and s1 := −q thought of as sections of H0(E,O⊗2

E ). Then we define π : X → E to
be the conic bundle given by the vanishing of the section s := s0 + s1 + s2 ∈ H0(E, Sym2 E)
inside P(E); this conic bundle is smooth by [Poo09, Lemma 3.1].

Since s is invertible on E − P , the morphism π is smooth away from P . Because P is a
single closed point, it follows that π∗ : BrE → BrX is surjective (see [CTPS16, Proposition
2.2(i)]). Hence, X(AQ)

Br6 6= ∅ if and only if π(X(AQ)) ∩ E(AQ)
Br6 6= ∅.

Since the pi split completely in k(P ), the connected components of P ⊗ kpi are points in
E(Qpi). Consider an adelic point (Pv) ∈ E(AQ) with Pv = O for all v 6= p1, p2 and Pv a
connected component of P⊗kv for v = p1, p2. Then (Pv) is 5-torsion and, since 5 is relatively
prime to 6, the point (Pv) is 6-divisible in E(AQ). Since X(Q, E) is finite, descent theory
implies that (Pv) ∈ E(AQ)

Br6 (cf. the proof of Proposition 6.3).
Since pi splits completely in k(P ), each connected component of XP ⊗Qpi is a pair of lines

intersecting at a unique point, which must be defined overQpi . In particular, Ppi ∈ π(X(Qpi))
for i = 1, 2. Further, by construction, the fiber above O is given by

XO : w2
0 − qw2

1 = p1p2w
2
2.

By the choice of p1, p2 and q, XO(Qv) 6= ∅ exactly when v 6= p1, p2. Hence, (Pv) ∈ π(X(AQ))
and so X(AQ)

Br6 6= ∅.
To prove that X does not satisfy BM6, it remains to show that X(AQ)

Br = ∅, which, by
the same argument as above, is equivalent to showing that π(X(AQ)) ∩E(AQ)

Br = ∅. Since
X(k, E) is finite, E(AQ)

Br =
∏

p<∞{O}×CO, where CO ⊂ E(R) is the connected component

of O. However, since s2(P ) = 0 and q /∈ F×2
pi

for i = 1, 2, XO(Qp1) = XO(Qp2) = ∅, so
X(AQ)

Br = ∅.
Now we will show that X has a globally generated k-rational ample line bundle of degree

12. Consider the morphism f : X → P3 × P1 that is the composition of the following maps

X →֒ P(OE ⊕OE ⊕OE(2∞))→ P(O⊕4
E ) ≃ P3 ×E (id,x)−→ P3 × P1,

where the second map (from left to right) is induced by a surjection O⊕2
E → OE(2O) and

the morphism g that is the composition of f with the Segre embedding P3×P1 →֒ P7. Note
that f , and therefore g, is 2-to-1 onto its image, so L := g∗OP7(1) is a globally generated
ample line bundle on X .

The image of f is the complete intersection of a (2, 0) hypersurface, which comes from the
quadric relation s, and a (1, 1) hypersurface, which comes from the kernel of O⊕2

E → OE(2O).
20
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Since a quadric surface in P3 is geometrically isomorphic to P1 × P1, the image of g is
geometrically isomorphic to a hyperplane intersected with the image Y of P1×P1×P1 →֒ P7.
Since the Hilbert polynomial of Y is (1 + x)3, the degree of Y , and hence the degree of
image g, is 3! = 6. Therefore, deg(L) = 12 and so degrees do not capture the Brauer-Manin
obstruction to rational points on X . �

Appendix A. Proof of Theorem 1.9, By Alexei N. Skorobogatov

The following statement equivalent to Theorem 1.9 is a common generalisation of [SZ,
Thm. 3.3] of Skorobogatov and Zarhin and Theorem 1.7 of Creutz and Viray.

Let Br(X)odd be the subgroup of Br(X) formed by the elements of odd order.

Theorem A.1. Let A be an abelian variety of dimension > 1 over a number field k. Let X
be the Kummer variety attached to a 2-covering of A. If B is a subgroup of Br(X) such that
X(Ak)

B 6= ∅, then X(Ak)
B+Br(X)odd 6= ∅.

Proof. By [SZ, Corollary 2.8] the group Br(X)/Br0(X) is finite. Hence we can assume
wihout loss of generality that B is finite. Replacing B by its 2-primary torsion subgroup
we can assume that B ⊂ Br(X)[2∞]. There exists an odd integer n such that Br(X)[n] and
Br(X)odd have the same image in Br(X).

By the definition of a Kummer variety [SZ, Def. 2.1] there exists a double cover π : Y ′ →
X , where σ : Y ′ → Y is the blowing-up of a 2-covering f : Y → A of A in f−1(0), such
that the branch locus of π is the exceptional divisor of σ. Since n is odd and Y is a torsor
for A of period dividing 2, we have a well defined morphism [n] : Y → Y compatible with
multiplication by n on A.

Let (Pv) ∈ X(Ak). For each v there is a class αv ∈ H1(kv, µ2) = k∗v/k
∗2
v such that Pv

lifts to a kv-point on the quadratic twist Y ′
αv
, which is a variety defined over kv. By weak

approximation we can assume that αv comes from k∗/k∗2 and hence Y ′
αv

is actually defined
over k. Let παv

: Y ′
αv
→ X be the natural double cover.

Let D = π∗
αv
(B) be the image of B in Br(Yαv

). We need the following corollary of
Lemma 4.6.

Lemma A.2. There exists a positive integer s such that [ns]∗ : Br(Yαv
)→ Br(Yαv

) restricted
to D is the identity map on D.

Proof. By Lemma 4.6 for d = 2 there is a positive integer a such that [na] induces the identity
on the quotient of D by D ∩ Br0(Yαv

). Hence for each A ∈ D there is an A0 ∈ Br0(Yαv
)

such that [na]∗A = A + A0. Let b be the product of orders of A0, where A ranges over all
elements of D. Then s = ab satisfies the conclusion of the lemma. �

Now assume that (Pv) ∈ X(Ak)
B. For each place v of k choose Rv ∈ Yαv

(kv) such that
παv

(Rv) = Pv. In the proof of [SZ, Thm. 3.3] instead of Mv = [n]Rv put Mv = [ns]Rv,
where s is as in Lemma A.2. This definition has all the properties needed for the proof of
[SZ, Thm. 3.3] with the additional property

(A.1) A(Mv) = ([ns]∗A)(Rv) = A(Rv)

for each A ∈ π∗
αv
(B). We now proceed exactly as in the proof of [SZ, Thm. 3.3]. By a small

deformation we can assume that Mv avoids the exceptional divisor of Y ′
αv
→ Yαv

. Then Mv

lifts to a unique point M ′
v ∈ Y ′

αv
(kv). Let Qv = παv

(M ′
v) ∈ X(kv). By (A.1) for each B ∈ B
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we have B(Qv) = B(Pv), hence (Qv) ∈ X(Ak)
B. The proof of [SZ, Thm. 3.3] shows that

(Qv) ∈ X(Ak)
Br(X)odd . Thus (Qv) ∈ X(Ak)

B+Br(X)odd .
�
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