

Using otolith microstructure to reconstruct marine development in the New Zealand whitebait *Galaxias maculatus*

Eimear Egan

Mike Hickford
John Quinn
David Schiel

Galaxias maculatus (Inanga) ecology

- One of five migratory galaxiids
- Lowland coastal rivers
- Widespread distribution
 - Environmental & biophysical gradients

Gregarious spawning

Amphidromy

The Fishery

- Cultural
- Recreational
- Commercial

The challenges

- Complicated life cycle
 - Population dynamics not understood
 - Conventional techniques are inappropriate (tagging, genetic studies)
 - Impedes conservation and management

- "The whitebait fishery has always been a hit and miss *ad-hoc* affair" McDowall 1991
 - Atypical fishery
 - No quotas, licences
 - Management or mismanagement?
- Anecdotal evidence of population decline
 - Data poor fishery

Otoliths, biological recorders

- Ear stones
- Biological diary

Daily growth rate (µmd⁻¹)

Age

Microchemistry (fish movement)

Diet $(\delta^{13}C)$

Thermal history (δ^{18} O)

Daily resolution

Key questions

- 1. Are the larval traits of *G.maculatus* populations homogenous throughout New Zealand?
- 2. Can the marine development stage of G.maculatus be reconstructed using otoliths?

Methods

Otoliths extracted, cleaned and polished

 Photographed 63x, oil immersion, automatic measurements

400µm

- Counts pelagic larval duration
- Increment width growth per day
- 3 regions, 3 sites in each
- Fortnightly sampling (Sept to Nov)

Sites

- Oceanographic boundaries
 - Dispersal potential limited
 - Regional retention?
- Environmental history
 - Temperature and food
 - Growth rates
 - Metabolism
 - Stage duration

Size at recruitment

- Spatial • Bay of Plenty fish average 46 mm
 - Buller & Canterbury similar (53-54 mm)
 - Spatial pattern is consistent
- Temporal → Bay of Plenty & Canterbury smaller
 - Little difference in **Buller** cohorts

Pelagic larval duration

- Latitudinal
- Generally longer PLD = larger size at recruitment
 - BOP stronger relationship

Hatch dates are different

- Latitudinal variation in hatch dates
- Results consistent with gonad histological studies for Buller and Canterbury (Hill et al. 2013)

Population-specific growth differs

- Spatial variation
 - Bay of Plenty highest growth rates (max 2.7μm)
 - Buller and Canterbury similar growth rates up to 71 days
 - Canterbury lowest growth rates

Population-specific growth differs

- Buller = 111-120 days

- Canterbury = 41-50 days

Metamorphosis? Habitat shift?

Summary

- Larval characteristics are not homogenous
- Spatial and temporal variation
 - 1. Growth rates
 - 2. Size at recruitment
 - 3. Hatch dates
 - 4. Pelagic larval duration
- What does this mean?
 - Genetic differences?
 - Environmental history different?

Future research

- Otolith microstructure has limitations
 - Don't know dispersal history
 - But populations are different
- 1. Otolith morphometrics as a complimentary tool to discriminate populations (see poster)
- 2. Reconstruct environmental history using δ^{18} O as a proxy for thermal history and δ^{13} C food sources
 - Are environmental variables responsible for the differences in growth rates or are there some other intrinsic factors?

Acknowledgements

Research

- Ministry of Business, Innovation and Employment (C01X1002)
- National Institute of Water and Atmosphere

Fieldwork

University of Waikato Coastal Marine team

Laboratory work

Jan McKenzie for assistance with microscopy

