
 1 

Modelling and System Identification of a 

Stiff Stay Wire Fence Machine 
 

 

C.E. Hann, D. Aitchison, D. Kirk and E. Brouwers 

 

 

Department of Mechanical Engineering, University of Canterbury,  

Christchurch, New Zealand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 2 

Abstract 

 

This paper investigates a severe gear backlash problem encountered in a stiff stay machine 

that is capable of producing a 26 line fence up to 2.6 metres in height at a speed of 80 

stays/minute. Related problems in the literature, typically concentrate on the effect of gear 

backlash on the ability to control a shaft. However, in this case, very good control of the 

reference speed of the shaft was maintained in spite of the gear backlash. The problem was 

that the commanded torques were excessively large and threatened to damage the gear box. 

This problem motivated a complete analysis of the systems dynamics including the 

development of a model to better understand the response and allow the identification of 

external loads on the system. It was found that the method of sensing the shaft position 

(resolvers) was a major factor as well as the upgrading of the motor which was over 

responding to disturbances in the shaft. The model was validated using several torque 

limiting experiments and gave accurate prediction of the machine’s major dynamics. The 

simulation tool developed provides the basis to predict the effect of different loads, wire 

types and/or motors on the machine for future designs minimizing the amount of 

experimentation on the machine. 
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1. Introduction and Motivation 

 

A stiff stay machine has been constructed that is capable of producing a twenty six line fence 

up to 2.6 metres in height at a speed of up to eighty stays per minute or one stay every 0.75 

seconds. The wire fence machine consists of line wire, stay wire and knot wire feed 

mechanisms. The line wire is pulled up vertically and the stay wire is pushed across 

horizontally. The knot wire is placed 45 degrees across the line and stay wire before being 

cut, followed by the formation of the knot. Figure 1 shows an overall picture of the machine.  

 

 

 

 

 

 

 

 

 

Figure 1 Picture of the stiff stay wire fence machine. The Front shaft is inside the casing 

denoted by an arrow. 

 

The front shaft that is modelled in this paper has cams that drive the knot tying and cutting 

tools, so that a load goes onto the shaft whenever the knot is formed which occurs 

periodically. The majority of the load is taken by this front shaft when this knot is tied. 

Hence the shaft must be precisely controlled to deliver a reference angular position which is 

a function of time. The shaft is driven via a gearbox by an AC synchronous motor that 

provides a torque dependent on reference position data of the shaft defined so that the 

machine tools come together at precisely the same point in each knot tying cycle. The 

control system software/hardware of the motor is provided by Siemens and allows tight 

control of the shaft position. 

 

There are many advanced feedback control systems that govern both the control of the front 

and back shafts, and provide safety mechanisms to avoid damage to the machine. The 

feedback shaft position data was initially provided by resolvers, and the control gains were 

obtained experimentally by trial and error on the machine. However, after upgrading the 

Front shaft 
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motor to 35 kW, a problem arose with the drive gearbox. Specifically, very high motor 

torques and rates of torque were being commanded by the control system which resulted in 

significant gear backlash when the machine was brought up to speed. The result was a noisy 

gearbox which if run for too long may have caused damage to the gearbox and motor. 

 

Gear backlash is a common problem in position control of machine tools resulting in the 

development of many sophisticated control strategies [1]. However, the emphasis is usually 

placed on improving position control rather than the physical effects of gear backlash itself 

[2, 3]. For the application presented in this paper, the backlash had very little effect on the 

position control of the shaft and thus the timing of the machine tools. Specifically, when the 

resolver was placed at the far end of the shaft, and used for feedback to control the motor, 

motor torques were on the order of 275Nm, while shaft position was controlled within 0.1 

degrees of the required position. On the other hand, when the resolver was shifted to the 

motor drive end of the front shaft for feedback control, the motor torques were 

approximately halved but with little change in the controlled shaft position. The major 

reason for the large motor torques in the case of feedback from the far end of the shaft, is 

likely due to torsional resonance, which would be expected to be a maximum at the furthest 

distance from the drive end of the front shaft.  

 

Hence, the backlash problem addressed in this paper is not focussed on it’s effect on the 

quality of position control, but the effect in the gearbox, which resulted in a loud audible 

noise and potential damage longer term. To reduce the noise, one thought was to come up 

with a mechanical solution. Gear dynamics have been well studied and characterized in the 

literature [4-6] and thus present one possible approach to understanding and correcting the 

gear backlash. For example gear reduction or helical shaped teeth are well known to reduce 

gear backlash [4].  

 

However, any mechanical solution to the problem like gear reduction, would be expensive 

and time consuming and thus it was not investigated. The preferred option was to pursue the 

idea that the motor was over responding to disturbances in the shaft and the various loads 

from the knot tying tools. Therefore, this backlash problem provided the initial motivation to 

fully characterize the major dynamics of the machine. Specifically, the goals were to 

understand the control mechanisms involved in the high motor torques and in the response of 
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the shaft to the various loads. To achieve these goals, a mathematical model was developed 

for the system. 

 

A further motivation for this research was to create a modelling methodology that can be 

generalized to predict the effect of different loads, wire types and/or motors on the machine 

for future designs. Therefore, the mathematical modelling was focused on capturing the 

measured shaft position response and motor torque inputs to allow prediction of various 

control system strategies without requiring extensive experimentation on the machine. 

 

2. Methodology 

 

2.1 Modelling concept and comparisons to the literature 

 

The motor used to control the front shaft of the stiff stay machine is a 1FT6 synchronous 

motor [7]. The mathematical modelling of an AC synchronous motor is challenging, 

requiring many parameters and experiments to characterize the dynamics [8-10] including 

finite element analyses to fully describe the electromagnetic field behaviour [11]. However, 

the control system for converting a commanded current into a motor torque is based on well 

developed and validated Siemens software and the 1FT6 motor has very small torque ripple 

and almost constant torque characteristic [7]. Hence, it was decided to not model the AC 

motor. Instead, it was assumed that any commanded current is precisely delivered to the 

motor. 

 

The dynamics of the interactions between geared shafts are well known and many models of 

varying complexity exist in the literature (e.g. [12-14]). For the application presented in this 

paper, the most important variable to be predicted is the maximum deviation of the shaft 

position away from the reference shaft position. This deviation needs to be within certain 

bounds to ensure that the knot tying tools do not crash together and cause significant and 

expensive damage to the system. Therefore, the mathematical model only needs to predict 

the maximum shaft position deviation response to different input parameters within these 

predefined safety limits. In other words, the complex time varying shaft dynamics and 

interactions with the applied load that correspond to shaft position deviations within the 

limits are not required to be modelled.  
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Hence, the mathematical modelling methodology presented, is a minimal modelling 

approach where only the essential dynamics related to the practical engineering outcome are 

captured. The concept is to add further complexity as required to improve practical utility in 

the real system. The model and methods also need to be readily generalizable to other 

systems and parameters for example, different wire types, motors and knot tying procedures. 

 

Note that different wire types and knot tying procedures will exert different external loads on 

the front shaft. Load torque is typically measured by a torque transducer (e.g. [15]), but 

direct measurement of the external torque applied to the front shaft in the stiff stay machine 

would be difficult due to the machine set up. Hence in this paper the external load is 

assumed to be an unknown parameter which must be identified from experiments using a 

model of the machine. 

 

2.1 Control system and mathematical model 

 

The behaviour of the front shaft in the wire fence machine is primarily governed by the 

control system and the resulting commanded motor torques that alter the main shaft 

dynamics as a function of the applied load. The control system for the front shaft consists of 

two main control loops, a position loop and a speed loop. These two loops have a major 

impact on the dynamics, hence the mathematical model is derived carefully with detailed 

discussion to ensure the control system configuration implemented on the machine is 

accurately represented. 

 

The control system is designed to provide the appropriate motor torque to maintain a 

reference main shaft position that varies linearly as a function of time defined: 

 

0R v tθ =       (1) 

 

 where 0v is the velocity in degrees/second, and corresponds to 360 degrees or 1 knot cycle 

for a given time period. The maximum speed of the machine is 80 stays per minute which is 

equivalent to 0v =480 degrees. Figure 2 shows a typical motor torque input and the 

corresponding shaft position angles 0, 90,180 and 360θ =  degrees. The knot is tied between 
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90 and 180 degrees corresponding to 0.18t ≃  and 0.37t ≃  seconds, which is when the 

greatest loads are on the shaft. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although it is the main shaft that is to be controlled, it is the motor shaft that provides the 

required torque. The main shaft and motor shaft are connected by a gearbox with a gear ratio 

defined: 

 

gear ratio 26gk≡ =       (2) 

 

The mechanical dynamics of the main and motor shafts are well known and are described by 

the following differential equation: 

 

total motor ext

d
b

dt
J

ω
ω τ τ−+ =      (3) 

where totalJ (Nm s
2
/rad)  is the combined inertia and b (Nm s/rad) is the combined damping 

for the main and motor shafts respectively, ω  (rad/s) is the motor shaft angular velocity, 

Figure 2 The input motor torque and shaft position in degrees. The greatest 

loads are when the shaft position angle is between 90 and 180 degrees. 
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motorτ (Nm) is the input motor torque and extτ (Nm) is the external torque from the applied 

load due to the knot tying procedure. 

 

The reference speed Rω  (rad/s) of the motor shaft is a proportional control dependent on the 

position of the shaft and is defined:  

 

( )1
180

K RRω θ

π
θ= −       (4) 

1 1 gK K k= ×           (5) 

where 1K  (1/s) is a proportional control chosen experimentally. For example, if the 

measured shaft position θ  falls behind the reference position Rθ , that is, Rθθ < , the motor 

shaft needs to increase speed to catch up. This scenario is equivalent to an increase in the 

reference motor speed Rω . Similarly, if the shaft position gets in front of the reference 

position Rθ , Rθθ > , the motor shaft has to decrease speed. 

 

To achieve the reference motor speed of Equation (4), a current is passed through the AC 

motor to produce the required torque via a proportional controller. The input current i (A) is 

defined: 

 

( )2i RK ω ω= −             (6) 

 

where 2K  (A s/rad) is the proportional gain found experimentally, ω  (rad/s) is the actual 

motor shaft speed and Rω is the reference motor shaft speed given in Equation (3). The input 

motor torque motorτ (Nm) in Equation (4), is proportional to the input current and is defined: 

 

( )motor 2T Ti K K RK ωτ ω= = −            (7) 

1.68 Nm/A torque constant
T

K = ≡      (8) 

 

The torque constant 
T

K in Equation (8) is taken from the configuration manual for a 1FT6 

synchronous motor. In practice the desired input current of Equation (5) is delivered by a 

PID control of the AC motor. However, as was discussed earlier, modelling of the AC motor 
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is not required as it can be assumed that the desired current given by Equation (5) is 

precisely delivered to the motor. 

 

The motor and main shaft dynamics of Equation (3) can be represented by the open loop 

transfer function: 

 

motor

net

( )

(

1
( )

)
G

s

s
s

Js b

ω

τ
= =

+
          (9) 

net motor ext
τ τ τ−=       (10) 

 

where netτ (Nm) is the torque due to the external load on the system. Using Equation (8), 

Equation (3) can be represented graphically as shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

Combining Equations (1)-(10) and utilizing the graphical terminology of Figure 3, an overall 

closed loop system model for the wire fence machine can be developed and is summarized in 

Figure 4. Note that the integrator 
0

t

∫ in Figure 4 refers to integrating the shaft velocityω  

which is then multiplied by 
180 1

·
g

kπ
to convert from the motor shaft position in radians to the 

main shaft position in degrees. The fedback ω  in the speed loop is obtained by 

differentiating the motor shaft position angle motorθ . The angle θ  is also directly fedback in 

the position loop as shown in Figure 4. In practice, the main shaft angle θ  and motor shaft 

angle motorθ are measured by separate resolvers or encoders. 

 

 

−  

+ 
motorτ  

ext
τ  

netτ   
motorG  ω  

Figure 3 Graphical representation of the motor and main shaft dynamics of 

Equation (3) 
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Alternatively, Figure 4 can be written as a system of differential equations defined: 

 

2 1 0 ext( )
180

t gJ v t
d

b K K k K
dt

ω π
ω θ ω τ+ = −

 
− − 

 
   (10a) 

180 1
·

g

d

dt k

θ
ω

π
=       (10b) 

 

where 
0

v is typically set at the maximum speed of 
0

48 /0v s=
� . 

2.2 Identifying load and system parameters – single line fence 

The proportional gains 1K and 2K in Equations (5) and (7) were worked out experimentally on 

the wire fence machine and are defined: 

 

1 258K =  (1/s),    
2

30K =  (A s/rad)     (11) 

 

Note that taking into account the torque constant
T

K in equations (7) and (8), the effective 

gain
2

50
T

K K =  Nm s/rad, which is the units implemented on the machine software. The 

unknown parameters in the system of Figure 4 are given by: 

 

unknown parameters ext{τ≡  (Nm), b  (Nm s/rad), J  (Nm s
2
/rad)}      (12) 

Fovea 
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Note that the inertia in the motor shaft is known from the configuration manual of the 1FT6 

synchronous motor, but the inertia in the main shaft is unknown. Therefore since J in 

Equation (12) is the combined inertia of the main and motor shafts, J is also unknown. The 

measured known parameters of Figure 4 are: 

 

known parameters 1 2 motor{ , , , , , , ,, }g tR k K K K Rθ ωθ τ ω≡ ,                  (13) 

 

Since Rθ is defined by the user, ω  is the differential of θ , and Rω is determined by Equation 

(4), the two independent output parameters in Equation (13) that can be used to identify the 

parameters of Equation (12) are: 

 

independent output parameters motor{ , }θ τ≡     (14) 

 

The initial data set investigated was a single run of the machine on the single line stiff stay 

fence, with a speed of 70 stays per minute, or 1 stay in ~0.86 seconds. The angle θ  in 

Equation (14) was measured by a resolver on the main shaft and the motor torque motorτ was 

also measured. The damping b in Equation (12) is estimated first by assuming that when 

{90 ,180 }θ ∉
� � , the external torque is 0. In otherwords, during this period of no load, the 

motor torque motorτ in Equation (3) is being applied only to overcome the damping in the 

combined main and motor shaft system. At steady state and with no load, there will be a 

constant torque motor 0τ τ= , and hence constant shaft velocity 0ω ω= . Setting 0
d

dt

ω
= and 

solving forω in Equation (3) yields: 

 

 0

0

b
τ

ω
=                      

0τ ≡ constant torque with no load,                   

0ω ≡ constant motor shaft velocity with no load                    (15) 

 

In practice 0τ and 0ω in Equation (15) can be estimated by the average of the measured motor 

torque and shaft velocity during the periods where }180,90{ ��

∉θR . 
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The aim of the model of Figure 4, is to predict the maximum deviation of the shaft position 

θ  for various control strategies and changes in parameters. Therefore, a precise knowledge 

of the waveform shape ofθ is not required, and hence a detailed model of extτ is not 

necessary. Given the relatively limited data available from this particular experiment, a 

simple model of extτ is defined: 

 

( ) ( ), ( 90) [ ,180 ]
ext motor

t t R t
θ

τ ατ= ∈
� �            

0,=  otherwise              (16) 

whereα is an unknown parameter to be identified. The optimization of extτ and J of Equation 

(12) is then reduced to the identification of J andα . Define: 

 

     { }1, , nθ θ… ≡ n measured main shaft positions         

     { }motor,1 motor,, ,
n

τ τ… ≡ n measured motor torques       

     { }1, , nω ω… ≡ motor shaft velocities from differentiation of 
i

θ                       

 
T

t
n

∆ = ≡ sampling period of θ and motorτ , T = period of machine             (17) 

The parameters 0τ and 0ω that determine b in Equation (13) are thus determined: 

 

0τ = mean { }motor, | {90 ,180 }
i i

τ θ ∉
� �      (18) 

0ω = mean { }| {90 ,180 }
i i

ω θ ∉
� �      (19) 

 

For a givenα from Equation (16), b from Equations (15), (18) and (19), and J, the model of 

Figure 4 can be readily solved numerically in Simulink or Matlab. Define: 

 

{ }1
ˆ ˆ, ,

n
θ θ… ≡ simulated outputs ofθ from Figure 4      

{ }motor,1 motor,
ˆ ˆ, ,

n
τ τ… ≡ simulated outputs of motorτ from Figure 4     

sampling period t≡ ∆ from Equation (17)                         (20) 
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Define: 

( )

2

motor, motor,

{1, , } {1, , } 1

motor,
{1, , }

{1, , }{1, , }

ˆ(ˆmax max

, )
maxmax min

)

(

n
i i

i i
i n i n i

i
i ni i

i ni n

n
F J

τ τ
θ θ

α
τθ θ

∈ … ∈ … =

∈ …
∈ …∈ …

∑
=

∆ − ∆

−
−

+       (21) 

where: 

                                       
ˆ

ˆ ˆ
i i

i
R

θ
θ θ∆ = − ,

i ii
R

θ
θ θ∆ = −                                                            (22) 

The parameters of Equation (22) are defined for convenience in plotting, since the angles of 

θ̂  and θ  are not constrained to lie in [0, 360 � ], and thus gradually increase over time. The 

angles and torques are non-dimensionalized to ensure approximately equal weighting 

between the two measurements. The optimum set of parametersα and J are defined such that 

the objective function of Equation (21). This problem can be readily solved in Matlab using 

standard non-linear regression. The overall procedure is summarized in Figure 5. 

 

 

 

 

 

 

 

 

 

 

  

  

 

  

  
Figure 5 Algorithm for determining the unknown parameters b, J and extτ  

Input measured parameters θ , ω  

and motorτ from Equation (17) 

Compute the damping b from 

Equations (15), (18) and (19) 

For a givenα and J set up a function for numerically solving Figure 

4 to determine the output parameters θ̂ and motorτ̂ in Equation (20) 

Determine theα and J that minimize the objective function 

,( )F Jα of Equations (21) 

Output the approximated load extτ from Equation (16), 

andθ̂ and motorτ̂ from Equation (20) for a final comparison 

with the measuredθ and motorτ from Equation (17) 
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2.3 Identifying load and system parameters – dual line fence 

 

A dual line fence creates a slightly greater load than a single line fence on the main and 

motor shafts, but the model of Figure 4 is equally valid in this case. Several torque limiting 

experiments were applied on the machine. Specifically, the maximum input motor torque 

was changed incrementally from no limit, 130, 110, 100 and 80 Nm respectively. 

Furthermore, for the case of 80 Nm, the minimum input torque was set to -30 Nm followed 

by 0 Nm, which gave a total of 6 separate runs on the machine. The number of stays per 

minute was set at the maximum allowable of 80, which is equivalent to 1 stay every 0.75 

seconds. 

 

 

The 6 experiments give significant data to validate the model of Figure 4 and to allow a 

characterization on what motor torque requirements are needed to adequately control the 

main shaft. In addition, the more severe torque limiting values of 110 Nm and below 

effectively bypass the control system during the periods of high load. Therefore, the effect of 

the load on the shaft is separated from the control system, simplifying the identification of 

the load and improving accuracy in the model. Comparisons with the case of no torque limit, 

can be made to better understand the effectiveness of the control system and any potential 

interaction with the load. A systematic method for identifying different time varying loads 

on the machine which would change for different wire types may lead to design 

improvements in the future. 

 

The method for identifying the system parameters of Equation (12) is similar to the 

algorithm of Figure 5, but the wealth of data available means a more accurate model of the 

load can be considered. Let 1 10
ˆ ˆ, ,t t… be 10 time points spaced around the period of maximum 

load, which is approximated using the measured motor torque. The specific points are 

chosen based on satisfactorily capturing the motor torque response with no torque limit, with 

a piecewise linear approximation. Thus an estimate of the resolution needed to represent the 

time varying behaviour of the load is obtained. Outside this maximum load period, the 

external torque is assumed to be 0, to minimize the number of parameters in the resulting 

optimization. The model for the external torque is defined: 

Fovea 
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1
ext 1

1

1 10

( )
ˆ ˆ ˆ( ), [ , ], 1, ,9

ˆ ˆ )

ˆ ˆ0

(

, [ , ]

i i
i i i i

i i

t t t t t i
t t

t t t

τ τ
τ τ +

+

+

−
= + − ∈ = …

−

= ∉

          (23) 

 

An example profile is shown in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are 10 unknown parameters 1 10, ,τ τ… in Equation (23) which combined with the 

parameters J and b gives 12 values to be optimized: 

 

unknown parameters 1 10{ , , , , }b Jτ τ≡ …     (24) 

 

The measured data for identifying the parameters in Equation (24) consists of up to 6 data 

sets. Superscripts (1),…,(6) are used to denote each of the datasets: 

 

(1) ≡ no torque limits         

(2) ≡ 130 upper torque limit        

(3) ≡ 110 upper torque limit        

time (seconds) 
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(Nm) 
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Figure 6 An example profile of the external torque in Equation (23)  

time (seconds) 
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(4) ≡ 100 upper torque limit        

(5) ≡ 80 upper torque limit, -30 lower torque limit      

(6) ≡ 80 upper torque limit, 0 lower torque limit         (25) 

 

The measured data is defined: 

 

        { }( ) ( )

1 , ,i i

n
θ θ… ≡ n measured main shaft positions for data set (i)  

{ }( ) ( )

motor,1 motor,, ,i i

m
τ τ… ≡ m measured motor torques for data set (i) during maximum load 

             { }( ) ( )

1 , ,i i

n
ω ω… ≡ motor shaft velocities from differentiation of 

i
θ                          

                 sampling period t≡ ∆ from Equation (17)                      

{1, ,6}i ∈ …         (26) 

 

Similar to Equation (20), the simulated data outputs from the model of Figure 4, that are 

compared with the measured data in Equation (26), are defined: 

 

{ }( ) ( )

1
ˆ ˆ, ,i i

n
θ θ… ≡ simulated outputs ofθ from Figure 4, for data set (i)   

{ }( ) ( )

motor,1 motor,
ˆ ˆ, ,i i

n
τ τ… ≡ simulated outputs of motorτ from Figure 4, for data set (i)  

 sampling period t≡ ∆ from Equation (17),  {1, ,6}i ∈ …                             (27) 

 

Note that to obtain the simulated data in Equation (27), the model of Figure 4 is simulated 

numerically in Matlab for each torque limiting scenario in Equation (25). 

 

Mathematically, upper and lower bounds UB and LB of the motor torque are implemented 

by redefining Equation (10): 

 

motor ext
ˆbJ

d

dt

ω
ω τ τ−+ =          

                                 { }{ }motor motormax minˆ U B, ,B Lτ τ=       

   motor 2 1(480 )
180

t gK k KK t
π

τ θ ω
 

−= 


− 


     (28) 

 

An objective function is defined in a similar way to Equation (21): 
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11 0( ,..., , )F Jτ τ =
( ) 2 ( ) 2

{1,..., } {1,..., }{1,..., } {1,...,

6
( ) ( )

1 }

1
(max max ) ( min mˆ inˆ )

12

jj j

i n i ni n i

j

i i i i
j n

θ θ θ θ
∈ ∈∈ ∈=

− +∑ −  (29) 

 

However, no motor torque data is used in this case since there is sufficient position data 

available from the 6 experiments. In addition, the resulting modified motor torque can then 

be compared to the measured motor torque to provide further model validation.  

The optimal 1 10, ,τ τ… and J are defined such that F in Equation (29) is minimized. Once 

1 10, ,τ τ… are known the external load is given by Equation (23). The overall algorithm is 

summarized in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7 Algorithm for determining the unknown parameters b, J and extτ  

Input measured parameters θ , 

ω  and motorτ from Equation (26) 

Compute the damping b from 

Equations (15), (18) and (19) for 

the no torque limiting data set 

(1) in Equation (24) 

For a given set of parameters 1 10, ,τ τ… in Equation (23) and inertia J, 

set up a function for numerically solving the model of Figure 4 to 

determine the output parameters θ̂ and motorτ̂ in Equation (27) 

Determine the parameters parameters 1 10, ,τ τ… and J that 

minimize the objective function F of Equation (29) 

Output the approximated load extτ of Equation (23) and 

θ̂ and motorτ̂ of Equation (27) for a final comparison with 

the measuredθ and motorτ from Equation (26) 
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3. Results and Discussion 

 

3.1 Single line fence 

 

The initial data analysed was one run, with no torque limit at a speed of 70 stays per minute, 

or with 4200 =v  degrees /s in Equation (1). A resolver was used to measure the main shaft 

position. The algorithm of Figure 5 is applied to identify the external load extτ  using the 

approximate model of Equation (16), and the damping and inertia J from Equation (12).  

The optimized parameters are defined: 

 

Optimized parameters { 0.0045, 0.015, 0.85}b J α≡ = = =                                (30) 

 

Substituting 0.85α =  into Equation (16) gives a maximum external load of 115 Nm. The 

model outputs are then compared to the measured position error and motor torque as shown 

in Figure 8. 

 

Overall, the modelled responses capture the main dynamics of the system including an 

accurate match to the steady state position error without load. The maximum position error is 

~0.06 �  which corresponds to 3.1% of the offset position error of 1.92 degrees and is 

relatively small. The overall behaviour of the modelled motor torque closely represents the 

measured motor torque as shown in Figure 8 (b). 
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Figure 8 (a) Measured versus modeled position error. (b) Measured versus modeled  

motor torque 
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Note that reducing the proportional gain K 2 = 30 in Equation (11) to 14 A s/rad yields a 

more accurate match to the position error with minimal change in motor torque as shown in 

Figure 9. 

 

Figure 9 suggests that the speed loop control system of the machine is not performing as it 

should. This result may be due to interactions with torsional effects in the shaft and/or errors 

in the fedback position from the resolver. Torsional effects are known to occur in the shaft 

from vibrational tests performed at the two ends of the shaft. The vibration at the far end has 

displacement approximately twice that of the motor end. Furthermore, the commanded 

torques when the resolver is placed at the end of the shaft are 2-3 times greater than when the 

resolver is placed at the motor end. Thus, there are significant differences in the 

accelerations and displacements at both ends of the shaft. In addition to these effects, errors 

in a resolver are known to occur during high loads or accelerations which are present in this 

system, and resolvers are less accurate than encoders [16, 17]. 

 

To investigate the effect of increased error in the position measurement, noise is added to θ  

in the model of Figure 4 and a time delay is also considered. Figure 10(a) gives the position 

error from the model, and Figure 10(b) plots the net torque netτ  in Equation (10), which 

determines the net movement of the motor shaft. No noise or time delay is present in θ  for 

this case of Figure 10. 

(a) 

Figure 9 (a) Position error match with K 2 = 14 in Equation (11) (b) motor torque 

match with K 2 = 14 

 

(b) 
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To represent noise, a median filter is applied to the measured position error of Figure 8 This 

median filter is then subtracted from the positional error to create the noise. Two orders of 8 

and 10 are chosen for the medfilter to mimic an increasing amount of noise, Time delays of 

0.0005 and 0.0001 seconds are also chosen. Figures 11 and 12 show the effect of increasing 

levels of noise on the position. 
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Figure 11 Position and net torque with noise created by a median filter of order 8 and 

time delay of 0.0005 seconds 
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Figure 10 Modelled Position error and net torque with no noise  
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The controlled position for the shaft is not significantly affected by the noise as shown in 

Figures 11(a) and 12(a). However, the noise has a major effect on the net torque with an 

increase in the peak net torque from 50 Nm to 150 Nm. The large increase and sensitivity of 

the net torque to errors in position suggest that inaccuracies in the resolver may be the reason 

for the loud audible noise heard in the gear box. Later experiments have showed that 

replacing the resolver by an encoder reduces this audible noise to as acceptable level 

confirming the trends observed in Figures 10-12. 
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3.2 Dual Line Fence 

 

The final data set analysed was 6 torque limiting experiments detailed in Equation (25). 

Again, a resolver was the means to measure the main shaft position. The machine was run at 

the maximum speed of 80 stays per minute, or equivalently 4800 =v  degrees/s in Equation 

(1). The method of Figure 7 is applied to identify the external load parameters 101 ,...,ττ in 

Equation (23), the inertia J and damping b in Equation (23). All the measured data of 

Equation (26) from the 6 experiments in Equation (25) is used. The optimized parameters are 

defined: 
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Figure 12 Position and net torque with noise created by a median filter of order 10 and 

time delay of 0.0001 seconds. 
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Optimized parameters 
1 2 3 4

{ 0.02, 0.03, 44.9, 147.7, 102.7, 9.2b J τ τ τ τ≡ = = = = = = −       

5 6 7 8 9 10
34.8, 41.0, 57.1, 37.9, 61.0, 5.0}τ τ τ τ τ τ= = = = − = = −  (31) 

 

and the identified external load 
ext

τ  in Equation (23) is plotted in Figure 13.  

                                                        

 

 

 

 

 

 

 

 

 

 

 

 

The parameters of Equation (3) and 1Κ and 2Κ  from Equation (11) are used to simulate the 

model of Figure 4 using the torque limit defined in Equation 3. The results are given in 

Figures 14-16 which show a good match to the position data, validating the model and 

methods. The motor torque data was not used to identify the parameters in Equation (31) but 

the overall motor torque response and trends are accurately captured further validating the 

approach. Specifically, the offset is accurately captured and there are good matches to both 

the maximum and minimum position errors. For example, the lower dip in Figure 16 for the 

data set with UB = 80 Nm and LB = 0 Nm is correctly predicted. Furthermore, in the model 

response the time spent at the maximum input motor torque increases as the upper bound 

(UB) is decreased. This behaviour matches a similar trend in the measured motor torque 

responses. Finally, the trend and magnitudes of the maximum position error as a fraction of 

the various torque limiting the scenarios is accurately represented by the model. This 

dynamic is the most important, as the maximum position error determines the safety in the 

machine, and this information can be used to ensure the machine tools are not damaged 

when various loads or controlled scenarios are applied. 
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Figure 13 Identified external load of Equation (22) 
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         Figure 14 Modelled versus measure position error and motor torque for data sets 

(1) and (2) of Equation (25). The measured data is denoted by dashed lines and  

the modelled data is denoted by solid lines 
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Figure 15 Modelled versus measure position error and motor torque, for data sets (3) 

and (4) of Equation (25). The measured data is denoted by dashed lines and the 

modelled data is denoted by solid lines. 
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The differences between the modelled and measured maximum/minimum position errors in 

Figures 14-16 as defined in Equation (29) are shown in Table1. The parameters θ̂∆  and θ∆  

are defined in Equation (22). 

 

 

 

 

 

 

 

 

 

 

 

 

Data Set max θ∆ - max θ̂∆  min θ∆ - min θ̂∆  

(1) 0.074 -0.001 

(2) 0.074 0.004 

(3) 0.038 0.006 

(4) 0.018 0.005 

(5) 0.015 0.007 

(6) 0.009 0.049 

Figure 16: Modelled versus measure position error and motor torque for data sets (5) 

and (6) of Equation (25). The measured data is denoted by dashed lines and the 

modelled data is denoted by solid lines.  
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Table 1: Model response position error differences for main shaft using all data sets 

(1)–(6) in Equation (25) 
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Note that the error in data sets (1) and (2) of Figure 14 can be significantly reduced by 

decreasing the proportional gain 2Κ  in Equation (6) to 8 A s/rad. The result after this 

reduction of 2Κ  is given in Figure 17, which shows a better match to the measured position 

error than Figure 14, with a minimal change in the motor torque. The result of Figure 17 was 

also found in the single line fence case of Figure 9 and further suggests a deficiency in speed 

control loop of Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Also note that with no torque limit, the position error response is significantly more noisy 

during the period of maximum load, than with the torque limited responses of Figures 15-16. 

Figure 18 shows a close up of the no torque limit and three torque limited responses to show 

this effect in more detail. Figure 18 suggests there is an interaction between the control 

system and the main shaft that is not present in the torque limited responses. In the torque 

responses of Figures 15-16, there is a trend towards a constant torque during the maximum 

load, and thus effectively no control. In otherwords, it’s the control system which is causing 

the extra noise in the no torque response of Figure 18, not the external load. This over 

response of torque from the control command and its effect on the position error provides 

more evidence of the deficiency in the speed control loop. 
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Figure 17: Reducing the proportional gain  2Κ  from 30 A s/rad in  

Equation (6) to 8 s/rad 
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This deficiency is likely due to some interaction between the commanded motor torque and 

the main shaft, for example torsional resonance effects from twisting in the shaft. This effect 

has been observed from the comparison of measured position at both ends of the shaft and 

the commanded motor torques.  

 

A possible reason for the improved matches to the data in Figure 17 is that the twisting and 

other unknown effects are essentially lumped into the parameter 2Κ . Hence even though 2Κ  

is physically set much higher in the actual machine, the net effect is a lower 2Κ  and less 

than optimal speed control loop. This result further shows the power of using this minimal 

modelling approach as various parameters can be tuned to capture non linear and complex 

effects relatively simply and with minimal computations. 

 

As a final validation of the 6 data sets of Equation (25) a 6 fold validation is performed. That 

is, 5 of the data sets are used to predict a sixth data set for 6 combinations. The results of the 

model response are given in Table 2 where (1) refers to using the data sets {2,…,6} to 

predict the data set(1), (2) refers to using the data sets {1,3,…,6} to predict the dataset (2) 
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Figure 18: A close up of the position error responses during the load period. As 

the upper torque limit is reduced the response becomes more smooth. 
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and similarly for (3),…,(6). The errors in Table 2 are similar to Table 1 further validating the 

approach. The largest error is 0.096 in data set (6), but the position error dip in Figure 16 is  

correctly predicted and in percentage terms the error is < 5% of the offset position error 

(1.85 degrees) and is thus relatively small. 

 

 

 

 

 

 

3.2.1 Experimental Implementation of torque limits 

 

Overall, the measured and model responses of Figures 14-16 show that significantly less 

motor torque than the given measured motor torque in Figure 14 is required to adequately 

control the shaft position. In particular, only a change of 0.8 degrees is observed in Figure 

16, with an upper torque limit of 80 Nm as compared to the no torque limit in Figure 14. 

This change is well within the machine tolerances required for safety. Therefore, the 

maximum torque delivered by the motor could be made a lot less to minimize power 

consumption, and potentially, the motor could be downsized. However, note that in the 

machine, it was found that the 80 Nm upper torque limit, was not sufficient to bring the main 

shaft up to speed. 

 

Specifically, shortly after starting the machine, it immediately stopped due to the shaft 

position being too far away from the required reference position of Equation (1). This effect 

can also be observed in the model response. Figure 19 plots the model responses of the 

position error during the first revolution, for no applied torque limit versus the torque limit 

of UB= 80 Nm and LB=-30 Nm. 

Fitted Data Predicted Data max θ∆ - max θ̂∆  min θ∆ - min θ̂∆  

{2,3,4,5,6} (1) 0.075 -0.001 

{1,3,4,5,6} (2) 0.082 0.004 

{1,2,4,5,6} (3) 0.037 0.005 

{1,2,3,5,6} (4) 0.013 0.018 

{1,2,3,4,6} (5) 0.007 0.006 

{1,2,3,4,5} (6) 0.001 0.096 

Table 2: Model response position error differences for main shaft using 5 data sets to 

predict a 6
th

 dataset in Equation (25) 
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In the first case, there is a natural torque limit of UB=316 Nm and LB=-316 Nm due to the 

physical constraints on the IFT6 synchronous motor as detailed in the configurational 

manual. 

 

The no torque limited response in Figure 19 shows a very fast convergence to steady state 

after ~ 0.06 seconds. The maximum error is 5 degrees but occurs only briefly and is within 

machine tolerances. The 80 Nm torque limited response has a position error still rising at 

0.06s which peaks at 20 degrees after ~0.1s. This shows that the simulated main shaft 

position is falling dramatically behind the reference position, well outside machine 

tolerances. Even if the machine manages to get past the 20 � point, there is a swing in the 

negative direction of 46 � to -26 �  which would cause the machine tools to bang together, 

causing damage. 

 

Therefore, in practise the machine needs to be run several times with a no torque limit to 

reach steady state, before a torque limit can be applied. This agreement between experiment 

and simulation further validates the model and approach and gives confidence in the 

accuracy of this simulation tool. 
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Figure 19: Reducing the proportional gain  2Κ  from 30 A s/rad in  

Equation (6) to 8 A s/rad 



 29 

4. Conclusion  

 

The front main shaft and motor shaft control systems of a production machine were 

investigated for a single and dual line fence. Two different speeds and 6 combinations of 

motor torque were used. For the single line fence, several noise scenarios including time 

delay were considered to represent possible inaccuracies in the resolver for measuring 

position. The extra noise had a major effect on the net torque showing high sensitivity to 

position errors. 

 

These results emphasise the importance of accurate position measurements, which could be 

achieved by for example an encoder. An encoder is known to be significantly more accurate 

than a resolver and is not sensitive to high accelerations which are present in this system. 

This behaviour has been seen experimentally with several experiments. An initial experiment 

involved the encoder on the end of the shaft (data not shown), which experiences greatly 

amplified effects of the torsional resonances. The resulting large accelerations would affect 

the accuracy of the feedback unit more than compared to placing it on the motor side which 

has lower accelerations. 

 

Shifting the feedback from the far end of the shaft to the drive motor side greatly reduced the 

audible noise in the gearbox but not to an acceptable level. However, changing the integrated 

motor resolver to an encoder significantly reduced the audible noise, this time to an 

acceptable level. This trend for a smoother motor response as the accuracy in the position 

increases was observed in Figures 10-13 and provides another validation of the modelling 

approach in this paper. 

 

The torque limiting experiments showed that significantly smaller motors were required to 

adequately control the main shaft position than are currently used on the machine. In 

particular, halving the maximum torque from ~150 Nm to 80 Nm had less than 0.6 degrees 

changes in the position error. Smoother position responses were also observed during the 

period of maximum load as compared to the case of no torque limit. This observation 

demonstrates that the control system is certainly over responding and interacting with the 

shaft. 
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The torque limiting responses also allowed an accurate identification of the external load on 

the machine. This method of torque limiting decouples the control system from the load, as 

during the main part of the load the applied torque is close to constant. The end result is an 

accurate method for identifying time varying loads on the machine. Future work could use 

this technique to correlate to different wire types and thus link wire types to engine 

requirements, which may help machine designs in the future. 

 

Importantly, the mathematical model was rigorously validated and provides a means for 

testing many control scenarios without extensive time consuming testing and trial and error 

on the machine. The model and methods could be readily generalised to any other 

machine/control system of this type.  
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