
Using Learning Curves to Mine Student Models

Brent Martin and Antonija Mitrovic

Intelligent Computer Tutoring Group
Department of Computer Science and Software Engineering,

University of Canterbury
Private Bag 4800, Christchurch, New Zealand

{brent,tanja}@cosc.canterbury.ac.nz

Abstract. This paper presents an evaluation study that measures the effect of
modifying feedback generality in an Intelligent Tutoring System (ITS) based on
Student Models. A taxonomy of the tutor domain was used to group existing
knowledge elements into plausible, more general, concepts. Existing student
models were then used to measure the validity of these new concepts,
demonstrating that at least some of these concepts appear to be more effective
at capturing what the students learned than the original knowledge elements.
We then trialled an experimental ITS that gave feedback at a higher level. The
results suggest that it is feasible to use this approach to determine how
feedback might be fine-tuned to better suit student learning, and hence that
learning curves are a useful tool for mining student models.

1 Introduction

Analysing adaptive educational systems such as Intelligent Tutoring Systems (ITS)
is hard because the students’ interaction with the system is but one small facet of
their education experience. Pre- and post-test comparisons provide a rigorous
means of comparing two systems, but they require large numbers of students and a
sufficiently long learning period. The latter confounds the results unless it can be
guaranteed that the students do not undertake any relevant learning outside the
system being measured. Further, such experiments can only make comparisons at a
high level: when fine-tuning parts of an educational system (such as the domain
model), a large number of studies may need to be performed. In this research we
explored using a more objective measure of domain model performance, namely
learning curves, to see if we could predict what changes could be made at the level
of individual knowledge elements (concepts), or sets of concepts, to improve
student performance.

A key to good performance in an ITS is its ability to provide the most effective
feedback possible. Feedback in ITS’ is usually very specific. However, in some
domains there may be low-level generalisations that can be made where the
generalised concept is more likely what the student is learning. For example,
Koedinger and Mathan [2] suggest that for their Excel Tutor, one of the cognitive
tutors [1], the concept of relative versus fixed indexing is independent of the
direction the information is copied; this is a generalisation of two concepts, namely
horizontal versus vertical indexing. We hypothesised that this might be the case for

our tutor (SQL-Tutor), which contains of a set of rules (constraints) that represent
the concepts of the model. For example, an analysis of the feedback messages
found that often they are nearly the same for some groups of rules. Other rules may
differ only by the clause of the SQL query in which they occur (for example, the
WHERE and HAVING clauses of an SQL query have substantially similar rule
sets).

Some systems use Bayesian student models to represent students’ knowledge
at various levels (e.g. [10]) and so theoretically they can dynamically determine the
best level to provide feedback, but this is difficult and potentially error-prone:
building Bayesian belief networks requires the large task of specifying the prior
and conditional probabilities. We are interested in whether it is possible to infer a
set of high-level rules that generally represent concepts being learned while
avoiding the difficulty of building a belief network, by analysing past student
model data to determine significant subgroups of rules that represent such
concepts.

One method of analysing rules is to plot learning curves: if the objects being
measured relate to the actual concepts being learned, we expect to see a “power
law” between the number of times the object is relevant and the proportion of times
it is used incorrectly [8]. Learning curves can be plotted for all rules of a system to
measure its overall performance. In [2] Koedinger and Mathan used learning
curves to argue that differences in learning existed between a specific “six-rule”
and a more general “ four-rule” model of the Excel domain. Learning curves can
also be used to analyse groups of objects within a system, or to “mine” the student
models for further information. We used this latter approach to try to determine
which groups of domain rules appear to perform well when treated as a single rule.
To decide which rules to group, we used a (man-made) taxonomy of the learning
domain [3], and grouped rules according to each node of the taxonomy. This
enabled us to measure how well the rules, when combined into more general rules
of increasing generality, still exhibited power laws, and hence represented a
concept that the students were learning. We then used this information as the basis
for building a new version of the domain model where feedback was now given
when students violated one of a set of rules that describes the new concept, rather
than giving feedback specific to each individual rule. We then compared the
performance of this system with that of the original SQL-Tutor.

In the next section we describe the system we used in the study, and the two
different versions of it that utilise the two feedback strategies. In Section 3 we
present our hypotheses and discuss how we used the student models to predict the
performance of groups of rules. Section 4 presents the results, while the
conclusions are given in Section 5.

2 SQL-Tutor

The goal of this project is to investigate whether we can predict the effectiveness of
different levels of feedback by observing how well the underlying group of rules
appears to measure a single concept being learned. We performed an experiment in
the context of SQL-Tutor, an intelligent tutoring system that teaches the SQL
database language to university-level students. For a detailed discussion of the

system, see [4, 5]; here we present only some of its features. SQL-Tutor consists of
an interface, a pedagogical module—which determines the timing and content of
pedagogical actions—and a student modeller, which analyses student answers. The
system contains definitions of several databases and a set of problems and their
ideal solutions. To check the correctness of the student’s solution, SQL-Tutor
compares it to an example of a correct solution using domain knowledge
represented in the form of more than 650 constraints. It uses Constraint-Based
Modeling (CBM) [9] for both domain and student models. Fig. 1 shows a screen
shot of SQL-Tutor. Like all constraint-based ITS, feedback is attached directly to
the rules, or “constraints” , which make up the domain model. An example of a
constraint is:

(147
"You have used some names in the WHERE clause that are not
from this database."

; relevance condition
 (match SS WHERE (?* (^name ?n) ?*))

; satisfaction condition
 (or (test SS (^valid-table (?n ?t))

(test SS (^attribute-p (?n ?a ?t))))

; Relevant clause
"WHERE")

Fig. 1. A screen shot of SQL-Tutor

Constraints are used to critique the students’ solutions by checking that the

concept they represent is being correctly applied. The relevance condition first tests
whether or not this concept is relevant to the problem and current solution attempt.
If so, the satisfaction condition is checked to ascertain whether or not the student
has applied this concept correctly. If the satisfaction condition is met, no action is
taken; if it fails, the feedback message is presented to the student. In this case the
relevance condition checks whether the student has used one or more names in the
WHERE clause; if so, the satisfaction condition tests that each name found is a
valid table or attribute name. The student model consists of the set of constraints,
along with information about whether or not it has been successfully applied, for
each attempt where it is relevant. Thus the student model is a trace of the
performance of each individual constraint over time. Constraints may be grouped
together, giving the average performance of the constraint set as a whole over time,
for which a learning curve can then be plotted. Fig. 2 shows the learning curve for
the control group of this study, for all students and all constraints. This is achieved
by considering every constraint, for every student, and calculating the proportion
of constraint/student instances for which the constraint was violated for the first
problem in which it was relevant, giving the first data point. This process is then
repeated for the second problem each constraint was used for, and so on. The curve
in Fig. 2 shows an excellent power law fit (R2 = 0.978). Note that learning curves
tend to deteriorate as n becomes large, because the number of participating
constraints reduces.

The experimental version of SQL-Tutor was identical to the control, except
feedback was no longer directly supplied by the constraints. Instead, a lookup table
was provided that contained definitions of 63 high-level constraints being tested,
where each was a tuple of the form (new constraint num, <constraints>, feedback),
where <constraints> is a list of the constraints this new generalised constraint
represents. The generalised constraint set is described in the next section.

Learning curve for control

y = 0.0786x-0.7831

R2 = 0.9781

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 2 3 4 5 6 7 8 9 10

Problem

E
rr

o
r

Fig. 2. Example learning curve for the control group

3 Experiment Design

We hypothesized that some groupings of constraints would represent the concepts
the student was learning better than the (highly specialised) constraints themselves.
We then further hypothesised that for such a grouping, learning might be more
effective if students were given feedback about the general concept, rather than
more specialised feedback about the specific context in which the concept
appeared (represented by the original constraint). To evaluate the first hypothesis,
we analysed data from a previous study of SQL-Tutor on a similar population,
namely second year students from a database course at the University of
Canterbury, New Zealand. To decide which constraints to group together, we used
a taxonomy of the SQL-Tutor domain model that we had previously defined [3].
This taxonomy is very fine-grained, consisting of 530 nodes to cover the 650
constraints, although many nodes only cover a single constraint. The deepest path
in the tree is eight nodes, with most paths being five or six nodes deep. Fig. 3
shows the subtree for the concept “Correct tables present” . Whilst developing such
a hierarchy is a non-trivial task, in practice this can actually aid construction of the
domain model [6, 7].

We grouped constraints according to each node in the taxonomy, and rebuilt
the student models as though these were real constraints that the system had been
tracking. For example, if a node N1 in the taxonomy covers constraints 1 and 2,
and the student has applied constraint 1 incorrectly, then 2 incorrectly, then 1
incorrectly again, then 2 correctly, the original model would be:

(1 FAIL FAIL)
(2 FAIL SUCCEED)

while the entry for the new constraint is:

(N1 FAIL FAIL FAIL SUCCEED)

Note that several constraints from N1 might be applied for the same problem.

In this case we calculated the proportion of such constraints that were violated. We

Fig. 3. Example subtree from the SQL –Tutor domain taxonomy

Tables Present

All present None missing All referenced

FROM WHERE FROM WHERE

Nesting in
Ideal solution

No nesting in
Ideal solution

Nesting in
Ideal solution

No nesting in
Ideal solution

performed this operation for all non-trivial nodes in the hierarchy (i.e. those
covering more than one constraint) and plotted learning curves for each of the
resulting 304 generalised constraints. We then compared each curve to a curve
obtained by averaging the results for the participating constraints, based on their
individual models. Note that these curves were for the first four problems only: the
volume of data in each case is low, so the curves deteriorate relatively quickly after
that. Overall the results showed that the more general the grouping is, the worse the
learning curve (either a poorer fit or a lower slope), which is what we might
expect. However, there were eight cases for which the generalised constraint had
superior power law fit and slope compared to the average for the individual
constraints, and thus appeared to better represent the concept being learned, and a
further eight that were comparable. From this result we tentatively concluded that
some of our constraints may be at a lower level than the concept that is actually
being learned, because it appears that there is “crossover” between constraints in a
group. In the example above, this means that exposure to constraint 1 appears to
lead to some learning of constraint 2, and vice versa. This supports our first
hypothesis.

We then tested our second hypothesis: that providing feedback at the more
general level would improve learning for those high-level constraints that exhibited
superior learning curves. Based on the original analysis we produced a set of 63
new constraints that were one or two levels up the taxonomy from the individual
constraints. This new constraint set covered 468 of the original 650 constraints,
with membership of each generalised constraint varying between 2 and 32, and an
average of 7 members (SD=6). For each new constraint, we produced a tuple that
described its membership, and included the feedback message that would be
substituted in the experimental system for that of the original constraint. An
example of such an entry is:

(N5 "Check that you are using the right operators in
numeric comparisons." (462 463 426 46 461 427 444
517 445 518 446 519 447 520 404 521 405 522))

This generalised constraint covers all individual constraints that perform some

kind of check for the presence of a particular numeric operator. Students for the
experimental group thus received this feedback, while the control group were
presented with the more specific feedback from each original constraint concerning
the particular operator.

To evaluate this second hypothesis we performed an experiment with the
students enrolled in an introductory database course at the University of
Canterbury. Participation in the experiment was voluntary. Prior to the study,
students attended six lectures on SQL and had two laboratories on the Oracle
RDBMS. SQL-Tutor was demonstrated to students in a lecture on September 20,
2004. The experiment was performed in scheduled laboratories during the same
week. The experiment required the students to sit a pre-test, which was
administered online the first time students accessed SQL-Tutor. The pre-test
consisted of four multi-choice questions, which required the student to identify
correct definitions of concepts in the domain, or to specify whether a given SQL
statement is appropriate for the given context.

The students were randomly allocated to one of the two versions of the system.
The course involved a test on SQL on October 14, 2004, which provided additional
motivation for students to practise with SQL-Tutor. A post-test was administered at
the conclusion of a two-hour session with the tutor, and consisted of four questions
of similar nature and complexity as the questions in the pre-test. The maximum
mark for the pre/post tests was 4.

4 Results

Of the 124 students enrolled in the course, 100 students logged on to SQL-Tutor at
least once. However, some students looked at the system only briefly. We therefore
excluded the logs of students who did not attempt any problems. The logs of the
remaining 78 students (41 in the control, and 37 in the experimental group) were
then analysed. The mean score for the pre-test for all students was 2.17 out of 4
(sd=1.01). The students were randomly allocated to one of the two versions of the
system. A t-test showed no significant differences between the pre-test scores for
the two groups (mean=2.10 and 2.24 for the control and experimental groups
respectively, standard deviation for both=1.01, p=0.53).

Fig. 4 plots the learning curves for the control and experimental groups. Note
that the unit measured for both groups is the original constraints, because this
ensures there are no differences in the unit being measured, which might alter the
curves and prevent their being directly compared. Only those constraints that
belong to one or more generalised constraints were included.

The curves in Fig. 4 are comparable over the range of ten problems, and give
similar power curves, with the experimental group being slightly worse (control
slope = -0.86, R2 = .94; experiment slope = -0.57, R2 = 0.93). However, the
experimental group appears to fare better between the first and second problem for
which each rule has been relevant, indicating that they have learned more from the
first time they receive feedback for a constraint. In fact, the experimental curve
appears to follow a smooth power law up to n=4, then abruptly plateaus. We

Experiment versus Control

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1 2 3 4 5 6 7 8 9 10

Problem

E
rr

o
r

Control

Experiment

Fig. 4. Learning curves for the two groups

measured this early learning effect by adjusting the Y asymptote for each group to
give the best power law fit over the first four problems, giving a Y asymptote of
0.0 for the control group and 0.02 for the experimental group.

Having made this adjustment, the exponential slope for this portion of the
graph was –0.75 for the control group (R2 = 0.9686) and –1.17 for the experiment
group (R2=0.9915), suggesting that the experimental group learned faster for the
first few problems for which each rule was applied, but then failed to learn any
more (from each individual feedback message) for several more problems. In
contrast, the control group learned more steadily, without this plateau effect. Note
that this graph does not indicate how this feedback is spread over the student
session: for example, the first four times a particular rule was relevant might span
the 1st, 12th, 30th and 35th problems attempted. However, this is still a weak result.

Although the generalised constraints used were loosely based on the results of
the initial analysis, they also contained generalisations that appeared feasible, but
for which we had no evidence that they would necessarily be superior to their
individual counterparts. The experimental system might therefore contain a
mixture of good and bad generalisations. We measured this by plotting, for the
control group, individual learning curves for the generalised constraints and
comparing them to the average performance of the member constraints, the same
as was performed for the a priori analysis. The cut-off point for these graphs was
at n=4, because the volume of data is low and so the curves rapidly degenerate, and
because the analysis already performed suggested that differences were only likely
to appear early in the constraint histories. Of the 63 generalised constraints, six
appeared to clearly be superior to the individual constraints, a further three
appeared to be equivalent, and eight appeared to be significantly worse. There was
insufficient data about the remaining 46 to draw conclusions. We then plotted
curves for two subsets of the constraints: those that were members of the
generalised constraints classified as better, same or ‘no data’ (labelled
“acceptable”), and those classed as worse or ‘no data’ (labelled “poor”). Fig. 5
shows the curves for these two groups.

For the “acceptable” generalised constraints, the experimental group appears

"Acceptable" generalised
constraints

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 2 3 4 5 6 7 8 9 10

Problem

E
rr

o
r

Control
Experiment

"poor" generalised
constraints

0

0.01

0.02

0.03
0.04

0.05

0.06

0.07

0.08

1 2 3 4 5 6 7 8 9 10

Problem

E
rr

o
r

Control
Experiment

Fig. 5. Power curves based on predictions of goodness

to perform considerably better for the first three problems, but then plateaus; for
the “poor” generalised constraints the experimental group performs better for the
first two problems only. In other words, for the “acceptable” generalisations the
feedback is more helpful than the standard feedback during the solving of the first
two problems in which it is encountered (and so students do better on the second
and third one) but is less helpful after that; for the “poor” group this is true for the
first problem only. We tested the significance of this result by computing the error
reduction between n=1 and n=3 for each student and comparing the means.

The experimental group had a mean error reduction of 0.058 (SD=0.027),
compared to 0.035 (SD=0.030) for the control group. The difference was
significant at p=0.01. In contrast, there was no significant difference in the means
of error reduction for the “poor” group (experimental mean=0.050 (SD=0.035),
control mean=0.041 (SD=0.028), p>0.3). This result again suggests that the
individual learning curves do indeed predict to some extent whether generalised
feedback at this level will be effective.

5 Conclusions

In this experiment we explored whether learning curves could be used to analyse
past student model data for predicting the behaviour of feedback that is based on
generalised domain concepts. We analysed an existing set of student models by
plotting learning curves for various groups of constraints (based on a taxonomy of
the domain) and showed that some of these groupings appeared to perform better
as a generalised concept than the underlying constraints. Such generalisations
tended to be moderate, with very general concepts exhibiting poor performance.
We then hypothesised that feedback applied at the level of these general concepts
would be more effective than more specific feedback from the highly specific
constraints currently in the domain model. We developed a feedback set that
mapped to a set of moderately general concepts, and found that for some of these
learning performance did appear to improve, although only for the first two or
three problems, after which learning performance deteriorated. For other
generalisations, performance was better only for the very first problem, and worse
afterwards. We also showed that we could predict to some extent which
generalised constraints would produce better performance by analysing their
apparent performance in the control group.

There are several tentative conclusions we can infer from these results. First,
generalised feedback (when the generalisation is valid) appears to be more
effective in the early stages of learning a new concept, but then becomes worse.
This suggests a dynamic approach may work best. A conservative approach might
be to use generalised feedback only for the first problem (for a given concept), and
then revert to more specialised feedback. Alternatively, we might measure the
performance of each generalisation: when it appears to be losing its effectiveness,
the system could switch to specific feedback. However, the small amount of data
available makes this a difficult task. More general feedback may also increase the
generality of what is learned, thus leading to better knowledge transfer for different
types of problems.

Despite the small amount of data and poor quality of the curves, the learning
curves for individual generalised concepts did appear to be predictive. This
suggests a system might be able to tailor feedback on-the-fly if it considers all of
the student models when making decisions, rather than individual models. This
holds promise for increased adaptability in Intelligent Tutoring Systems, and may
allow a system to quickly tailor its feedback responses to the current student
population. However, the data volume may be too small to individually tailor
feedback in this way, so other measures may need to be employed.

Students’ models contain a wealth of information about their behaviour when
using an adaptive system. Learning curves are one way of measuring learning
performance, and they can be applied at various levels to whole student
populations or individual students, and to groups of rules versus entire domain
models. The results of this study suggest that learning curves are a useful tool for
mining student models for further insight.

References

1. Anderson, J.R., Corbett, A.T., Koedinger, K.R., Pelletier, R.: Cognitive Tutors:
Lessons Learned. Journal of the Learning Sciences 4(2) (1995) 167-207

2. Koedinger, K.R., Mathan, S.: Distinguishing qualitatively different kinds of learning
using log files and learning curves. ITS 2004 Log Analysis Workshop Maceio, Brazil
(2004) 39-46

3. Martin, B.: Constraint-Based Modelling: Representing Student Knowledge. New
Zealand Journal of Computing 7(2) (1999) 30-38

4. Mitrovic, A.: An Intelligent SQL Tutor on the Web. Artificial Intelligence in Education
13(2-4) (2003) 173-197

5. Mitrovic, A., Martin, B., Mayo, M.: Using evaluation to shape ITS design: Results and
experiences with SQL-Tutor. User Modelling and User Adapted Interaction 12(2-3)
(2002) 243-279

6. Mitrovic, A., Suraweera, P., Martin, B.: The role of domain ontology in knowledge
acquisition for ITS. Seventh international conference on Intelligent Tutoring Systems,
Maceio, Brazil (2004) 207-216

7. Mizoguchi, R., Bourdeau, J.: Using Ontological Engineering to Overcome Common
AI-ED Problems. International Journal of Artificial Intelligence in Education 11 (2000)
107-121

8. Newell, A., Rosenbloom, P.S.: Mechanisms of skill acquisition and the law of practice.
Cognitive skills and their acquisition, J.R. Anderson, Editor. Lawrence Erlbaum
Associates, Hillsdale, NJ (1981) 1-56

9. Ohlsson, S.: Constraint-Based Student Modeling. Student Modeling: The Key to
Individualized Knowledge-Based Instruction, J. Greer and G. McCalla, Editors,
Springer-Verlag, New York (1994) 167-189

10. Zapata-Rivera, J.D., Greer, J.E.: Interacting with Inspectable Bayesian Student Models.
Artificial Intelligence in Education 14(2) (2004) 127-163

