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Abstract  

Sepsis is highly correlated with mortality and morbidity. Sepsis is a clinical 

condition demarcated as the existence of infection and systemic inflammatory 

response syndrome, SIRS. Confirmation of infection requires a blood culture test, 

which requires incubation, and thus results take at least 48 hours for a syndrome 

that requires early direct treatment. Since sepsis has a strong inflammatory 

component, it is hypothesized that metabolic markers affected by inflammation, 

such as insulin sensitivity, might provide a metric for more rapid, real-time 

diagnosis. This study uses clinical data from 30 sepsis patients (7624 hours in 

ICU) of whom 60% are male. Median age and median Apache II score are 63 

years and 19, respectively. Model-identified insulin sensitivity (SI) profiles were 

obtained for each patient, and insulin sensitivity and its hourly changes were 

correlated with modified hourly sepsis scores (SSH1). SI profiles and values were 

similar across the cohort. The sepsis score is highly variable and changes rapidly. 

The modified hourly sepsis score, SSH1, shows a better relation with insulin 

sensitivity due to less fluctuation in the SIRS element. Median SI and ΔSI of the 

cohort is 4.193e-4 and 4.253e-6 L/mU.min, respectively. P-values are 0.0392 

(SSH1 = 0, SSH1 = 2), 0.3337 (SSH1 = 0, SSH1 = 3), and 0.0581 (SSH1 = 1, SSH1 = 2), 

respectively. CDF of SI indicates that insulin sensitivity is more significant when 

comparing hourly sepsis score at a very distinguish level.  
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Introduction 

Sepsis is an increasingly common condition and a leading source of mortality and 

morbidity in Intensive Care Unit (ICU). The mortality rates of more than 50% 

have not improved in the past 30 years, despite intense research advances in 

treatment. Additionally, sepsis is common cause of death particularly in non-

coronary ICU [1] and highly associated with mortality in critically ill patients [2-

4]. 

 

Infection and systemic inflammatory responses (SIRS) are the main elements of 

sepsis. Infection is produced by the invasion of tissue or fluid by pathogenic 

microorganisms [5]. In contrast, SIRS is related with a response of the immune 

system to infection, which is highly related to organ dysfunction and organ 

failure [5,6], which also occur frequently with and without sepsis. However,  in 

many cases, infection is suspected without being able to be microbiologically 

confirmed for several reasons, creating so-called "culture negative" sepsis [7] 

and further complicating diagnosis.  

 

Sepsis has been classified into several stages, including sepsis, severe sepsis, 

septic shock, and refractory septic shock. Despite the definition of sepsis and its 

classification, these terms do not precisely characterize the patient’s stage and 

condition, and may be confounded by other issues. More specifically, sepsis, at all 

levels, is a syndrome or collection of conditions. Grouped together as "sepsis" 

they categorize patients with a significantly increased risk of death. Hence, 

unfortunately perhaps, sepsis is as much of a patient category as it is a specific 

physiological condition. This issue makes sepsis diagnosis quite difficult. 



 

According to Rivers and colleagues [8], early goal-directed treatment (EGDT) 

provide better outcome by reducing mortality from 46.5% to 30.5% of sepsis 

cases. Clinical studies on septic shock by Rivers et al. [8] observed lower 

mortality rates in patients assigned to EGDT (42.3%) compared to standard 

therapy (56.8%). Even if they survive, sepsis usually reduces quality life [9-12], 

especially if not specifically treated. However, some studies [13-15] unable to 

repeat the results of Rivers et al. [8], indicating that early treatment is highly 

subject to patient conditions but still necessary in sepsis. 

 

Nevertheless, diagnosing sepsis in critical care has many challenges. The long 

process of obtaining blood culture results can delay care and the resulting lack of 

knowledge makes optimizing antibiotic or other treatments difficult. However, 

blood culture results are still the most accepted gold standard to clinically 

diagnose infection. Therefore, the inability to guarantee accurate, early diagnosis 

affects treatment selection, patient condition, and thus outcomes. What needed is 

a rapid test or a readily available parameter that can provide insight for 

clinicians to determine appropriate treatment and medications.  

 

Several studies have shown that model-based SI (insulin sensitivity) can be used 

as an indicator for severity of illness, as this metabolic marker is reflective of the 

inflammatory state in these patients. In particular, Blakemore et al. [16] have 

shown that insulin sensitivity of a patient decreased as the patient condition 

worsens. Moreover, it has been previously documented that SI decreases with 

worsening condition and increases with improvement in patient condition [17-



20], even though its more common use is in model-based treatment of 

hyperglycemia [20]. This important information can be used to correlate 

between a patient condition and other complications, which are highly 

associated with hyperglycemia. 

  

In this study, the relationship between model-based insulin sensitivity and a 

clinically accepted parameter, sepsis score is investigated. More specifically, a 

clinically validated model-based SI [21-25] and its hourly evolution have been 

compared and examined to determine the relationship between sepsis score and 

another modified sepsis score that can be used for hourly intervention. If there is 

a clear relation between insulin sensitivity and sepsis score, SI can therefore 

become a marker to evaluate sepsis progression in real-time.    

 

  



Materials and Methods 

i. Glucose-Insulin System Model 

 

𝐺̇ = −𝜌𝐺𝐺 − 𝑆𝐼𝐺
𝑄

1+𝛼𝐺𝑄 
+

𝑃(𝑡)+𝐸𝐺𝑃𝑚𝑎𝑥 − 𝐶𝑁𝑆

𝑉𝐺(𝑡)
   (1) 

 
 𝑄̇ =  −𝑘𝑄 + 𝑘𝐼   (2) 

 

𝐼̇ = −
𝑛𝐼

1+𝛼𝐼𝐼
 +  

𝜇𝑒𝑥 (𝑡)

𝑉𝐼
+  𝑒−𝑘𝐼𝜇𝑒𝑥(𝑡)𝐼𝐵      (3) 

 
 

The system model used in this analysis is listed in Equations (1) to (3), where G 

is the total plasma glucose, Q is the effect of infused insulin, and I represent 

plasma insulin. The term pG and aG captures patient endogenous glucose removal 

and insulin-mediated glucose removal saturation parameter, respectively. P 

represents the glucose appearance rate in plasma from carbohydrate content. 

EGPmax represents the production of maximum endogenous glucose while CNS 

represents central nervous system (CNS) glucose uptake. 

 

Insulin sensitivity, SI represents patient-specific insulin-mediated glucose 

removal, which also indicates evolving patient condition [19,26,27]. Endogenous 

insulin secretions are IB and kI while intravenous insulin administration is uex 

[28].  Transport rates and saturation constants are n, k, aG, aI, and volumes are VG, 

and VI that have been validated through several studies [29,30]. 

 

Using the glucose-insulin system model, patient-specific glycemic response can 

be generated for time-varying SI, and hour-to-hour variation as patient condition 

evolves. The patient-specific profile can be obtained by fitting the model to 



retrospective clinical data for blood glucose measurements, insulin and 

carbohydrate administration input data from the protocols. The resulting insulin 

sensitivity profile has been validated in correlation to gold standard euglycemic 

clamp and intravenous glucose tolerance test data [25,31], as well as in silico 

virtual trials [27,29,32,33]. 

 

ii. Sepsis Score 

In this study, a well-known sepsis score is calculated following the criteria 

prepared by the American College of Chest Physicians - Society of Critical Care 

Medicine (ACCP-SCCM) [5]. This sepsis score was initially created in 2001 during 

the International Sepsis Definitions Conference. In general, this sepsis score is 

calculated based on two commonly used criteria, which are SIRS and Sepsis-

related Organ Failure (SOFA) [6].  

 

Table 1 shows the sepsis score criteria. Details of the criteria for determining the 

SIRS and organ failure (OF) scores can be found in Suhaimi et al [28]. Like other 

scores, this scoring is widely used to represent the complexity level of the 

syndrome consistently, for evaluation and standardized description. The 

advantages include a consistent means of allowing clinicians to assess patient 

condition to guide care [28]. It is normally calculated daily, and uses a hierarchy 

of criteria defined in Table 1 based on an average of 24 hours of treatment and 

response to care. 

 

 



Table 1.  Sepsis score criteria 

 

 

Score Infection  SIRS > 2 OF ≥ 1 
Fluid 

resuscitation 
Inotrope  

High 
dose 

inotrope 
Normal 0       

Sepsis 1 ✓ ✓     

Severe 
sepsis 

2 
✓ ✓ ✓ ✓   

Septic 
shock 

3 
✓ ✓ ✓ ✓ ✓  

Refractory 
septic 
shock 

4 

✓ ✓ ✓ ✓ ✓ ✓ 

 

  

iii. Hourly Scoring Systems (SSh and SSH1) 

To obtain a useful score that can be used by a clinician to guide diagnosis and 

treatment in clinical real-time, defined here as hourly or more frequent for 

sepsis, the current sepsis score needs to be modified. Figure 1 shows the 

classification for calculating SSh, as an hourly scoring system that represent 

sepsis condition. SSh is determined by calculating the summation of individual 

component scores used to calculate the current sepsis score. In contrast, the 

original sepsis score is determined by following the hierarchy in Table 1. 

 

In Figure 1, each element of A to D has a value of 1 if they are true. For example, 

at time t, if a patient had SIRS ≥ 2 and had an infection, the score for A will 

become 1. If the patient had SIRS ≥ 2 but was free from infection, the score for A 

is 0. Next, if the patient had mild or more severe organ dysfunction or failure, 

defined by SOFA ≥ 1 for at least one SOFA score component, at time t, B become 

1. Otherwise, it is 0. The same method is applied to the criteria C, and D, for fluid 

resuscitation and inotrope usage, respectively. Finally, the SSh value is calculated 



by summing the values of A, B, C and D, as presented in Equation 4. Therefore, 

the range of SSh is 0 to a maximum value of 4. 

 

Importantly, there is no hierarchy involved, which means that if a patient has all 

the criteria B, C and D, but no SIRS ≥ 2 due to treatment, then they still have a 

positive score for sepsis. This case would not hold in the original hierarchical 

definition in Table 1. The difference is that calculated daily, one needs only to 

have these criteria met daily and the hierarchy is useful. However, hourly 

assessment of a variable patient does not work well with this hierarchy. 

 

 (4) 

 
 

 

Figure 1.  Components for determining an hourly sepsis score, SSh 

 

Finally, a further modified sepsis score SSH1 is introduced. This score is 

calculated like SSh in Figure 1. However, it eliminates part of criteria A regarding 

SSh = A+B+C+D



SIRS score, since almost all ICU patients meet this condition for many hours of 

their stay. Hence, it may not add resolution to include this score. 

 

iv. Sepsis Score Analyses  

Overall, there are thus two modified sepsis scores to consider, SSh and SSH1. 

These are compared to each other, the original unmodified sepsis score, and to 

insulin sensitivity profiles, level and hourly change in insulin sensitivity. The goal 

is to determine whether model-based insulin sensitivity profiles can stipulate a 

valuable additional biomarker or metric to help identify and diagnose sepsis, and 

at what level of sepsis this outcome might be possible. 

 

v. Patient Data and Retrospective Cohort 

A collection of clinical data was obtained from the ICU of Christchurch Hospital, 

New Zealand. There were a total of 30 patients that had sepsis during their stay 

and were selected in this study. They were identified by having positive blood 

culture results and also by a judgment of experienced senior intensive care 

clinicians.  The SIRS score was calculated for every hour for all of the patients.  In 

addition, all other data was collected for each patient and the metabolic 

treatment data, including insulin and nutrition given and resulting blood glucose 

measurements, as well as their timing, were collected and used to identify hourly 

patient specific SI profile for each patient. Approval by the Upper South Regional 

Ethics Committee of New Zealand has been obtained for this study and use of the 

data. The retrospective cohort information including the mortality status is 

shown in Table 2. 

 



Table 2.  Retrospective cohort information 

No Medical Subgroup Age Apache II 
score 

Sex Mortality 

1 Pneumonia 71 25 M  
2 Pneumonia 30 10 F  
3 ARDS 63 11 M  
4 Respiratory failure 76 17 M Y 
5 Type 1 DM 46 29 M Y 
6 Type 2 DM 78 19 F  
7 COPD 54 17 M  
8 CAP 88 24 M Y 
9 Sepsis 64 19 F  

10 Gastrectomy 49 12 M  
11 Pneumonia 56 18 M  
12 Sepsis 67 16 F  
13 COPD 55 13 M  
14 Pneumonia 78 15 M  
15 Sepsis 59 29 M  
16 Septic shock 49 19 F  
17 Septic shock 55 17 F  
18 Pneumonia 60 18 F  
19 Otitis 43 18 F  
20 Pneumonia 64 15 M Y 
21 CAP 61 17 F  
22 CAP 74 22 M  
23 Multiple trauma 63 19 F  
24 CAP 52 23 F  
25 Pneumonia 64 20 M Y 
26 CAP 75 23 M  
27 Pneumonia 75 21 M  
28 Pneumonia 70 27 F  
29 GBS 43 8 M  
30 CAP 80 24 M  

 
a. ARDS - Acute Respiratory Distress Syndrome  
b. COPD - Chronic Obstructive Pulmonary Disease 
c. CAP - Community Acquired Pneumonia 
d. GBS - Guillain-Barré Syndrome 
 
 

Table 3 summarizes the demographic and baseline criteria of the sepsis cohort, 

where male and female patients are 18 and 12, respectively. The median age of 

the cohort is 63 years whereas median [IQR] Apache II score is 19 [16-23]. Total 



hours in ICU for the sepsis cohort is 7624 hours, and median length of stay (LOS) 

is 10.5 days. 

 

Table 3.  Demographic and baseline criteria of the sepsis cohort. Median [IQR] is 

used where appropriate. 

 
Demographic 

 

 Number of patients 30 
 Percentage of male 60% 
 Age 63 [54 – 74] 
 Apache II score 19 [16 – 23] 
 Total hours in ICU 7624 
 Length of stay (days) 10.5 [6 – 15] 
 
Baseline criteria 

 

 Temperature (°C) 36.6 [36.0 – 37.6] 
 Heart rate (beats/min) 97 [87 – 110] 
 Mean arterial pressure (mmHg) 73 [67 – 83] 
 White cell count (per Liter) 11.6 [7.9 – 20.4] 
 Partial pressure of carbon dioxide (mmHg) 47.5 [39.0 – 58.0] 
 Partial pressure of oxygen (mmHg) 90 [72 – 113] 
 

 

  



Results and Discussion 

i. Insulin sensitivity profile of the sepsis cohort 

Identified insulin sensitivity profiles, SI (t), for all 30 patients provide an hour-to-

hour trajectory for each patient, before, during and after sepsis.  Figure 2 

illustrates the per-patient cumulative distribution functions (CDFs) of SI for all 

30 patients, where the shaded area indicates the 5th to 95th percentile patients 

and the dotted line represents the median patient, with the 25th and 75th 

percentile patients also shown. It is clear that there is significant inter-patient 

and intra-patient variability in SI. Figure 2 also presents similar data in a box plot 

for each patient.   

 

Table 4 presents the SI results, hourly change in insulin sensitivity (ΔSI) and 

percentage of changes in insulin sensitivity (%ΔSI) across patients and cohort. 

Maximum SI values are highly variable across patients. The highest SI value in the 

cohort is 9.2734e-3 L/mU.min, in Patient 24. Median SI and median ΔSI of the 

cohort is 0.4193e-3 and 0.004253e-3 L/mU.min, respectively, where the latter 

value very near to 0 indicates that the median hour-to-hour change is no change 

in insulin sensitivity, matching prior reports [27]. This value also indicates that a 

sepsis patient, or post-sepsis patient, is equally likely to have a rise or fall in 

insulin sensitivity hour-to-hour, with no bias in direction of the change, although 

there is significant inter-patient variability seen in Table 3 when examining 

individual patient results. 

 

 

 



 

 

Figure 2.  Top: Per-patient insulin sensitivity CDFs for all 30 patients, shown as 

median, IQR and 5th – 95th percentile patients. Bottom: the same data shown 

per-patient as a box-plot 

 

 

  



Table 4.  Median insulin sensitivity, minimum and maximum insulin sensitivity, 

and median changes in insulin sensitivity among 30 patients in the sepsis cohort 

No Median SI 

(10-4 ) 

Minimum SI 

(10-4 ) 

Maximum SI 

(10-4 ) 

Median ΔSI 

(10-6) 

Median ΔSI  

(%) 

1 4.527 0.001 32.155 3.711 1.084 
2 4.433 1.540 6.897 -7.010 -1.261 
3 12.827 0.625 31.657 4.068 0.471 
4 1.657 0.001 4.870 5.307 3.349 
5 4.702 0.325 7.906 -1.072 -1.021 
6 4.927 1.900 19.234 2.825 0.562 
7 8.011 1.410 24.177 -1.676 -0.255 
8 3.674 0.114 16.201 6.680 1.531 
9 3.439 0.001 23.290 4.637 1.255 

10 4.026 0.001 19.655 5.655 1.597 
11 5.017 1.282 58.959 7.949 1.819 
12 3.223 0.001 17.804 7.216 1.967 
13 8.588 1.917 42.527 0.072 0.012 
14 4.379 1.062 35.339 -0.020 -0.004 
15 4.077 0.846 13.840 9.327 2.705 
16 4.176 1.623 25.738 1.969 0.573 
17 3.119 0.670 9.691 7.596 3.226 
18 4.101 1.589 66.076 0.097 0.003 
19 1.786 0.001 4.169 2.862 1.118 
20 1.171 0.001 5.768 6.515 4.243 
21 3.337 0.001 9.867 20.923 4.554 
22 3.400 1.089 10.220 8.619 2.053 
23 9.070 0.230 32.530 48.204 5.682 
24 3.920 0.001 92.734 17.926 7.999 
25 4.119 1.182 15.956 3.845 0.972 
26 5.093 0.830 25.005 2.852 0.883 
27 3.173 2.241 5.589 -20.532 -6.079 
28 4.103 0.263 74.211 7.589 0.845 
29 3.667 0.217 23.730 2.151 0.460 
30 2.653 0.001 21.980 3.381 1.132 

Cohort 4.193 0.001 92.734 4.253 1.114 
 

 

Figure 3 shows the 5th - 95th percentile, IQR (75% and 25%) and median (50%) 

for the hour-to-hour stochastic model created from the 30 patients based on the 

models developed by Lin et al. [27,34]. The variation distributions are plotted as 



SI (n+1) against SIn on the y-axis and the x-axis, respectively. The distribution 

indicates the hour-to-hour patient metabolic variability in SI. 

 

Figure 3.  Hourly insulin sensitivity distribution of the sepsis cohort 

 

ii. Unmodified sepsis score analysis 

Figure 4 shows the hourly distribution of sepsis score for the whole length of 

stay for two patients randomly selected from the sepsis cohort. In Figure 4, the 

score of Patient 22 changes effectively instantly, with a difference of two levels of 

sepsis score, as seen at minutes 1620 to 2160. Additionally, it can be observed 

that the sepsis score is highly variable between a score of 0 and 1 for most of the 

stay of Patient 24. These plots suggest that sepsis scores calculated daily do not 

capture the true state of sepsis, SIRS and infection in hourly measurement, which 

cannot change to two or even three stages at this fast. Instead, it shows how the 

hierarchical, unmodified sepsis score cannot be used hourly without the 

proposed modifications in Figure 1. 



Figure 4.  Hourly plot of the unmodified sepsis score for Patients 22 (top) 
and 24 (bottom) 

 

iii. Hourly sepsis score (SSh) of the sepsis cohort 

Figure 5 illustrates SSh for all 30 patients during their whole stay in ICU. Overall, 

there were a total of 7624 hours of treatment where patients had SSh = 2 for the 

most hours (43%). There were 25.9%, 9.8% and 2.6% of hours where patients 

had SSh scores of 1, 3 and 4, respectively. The remaining 18.7% of the total hours 

are where patients had SSh = 0. 



 

  Figure 5.  Cumulative hours of SSh for 30 patients in the sepsis cohort 
during their stay in ICU 
 

 

Figure 6 shows the hourly distribution of the modified sepsis score, SSh, and 

insulin sensitivity for the entire stay of the Patient 3 and Patient 24. The right 

panel of y-axes represents SSh and left panel of y-axes represents the insulin 

sensitivity value. Patient 3 had a higher score with a fluctuating score during the 

second half of the stay as compared to the original, unmodified sepsis score in 

Figure 4. In Figure 6, the SSh of Patient 24 is also highly variable, unlike the plot 

of the original sepsis score. 

 



 

 

Figure 6.  Hourly plot of SSh and SI for Patient 3 (top) and Patient 24 
(bottom) 

 

 

Figure 7 represents the cumulative data points of A, B, C and D when SSh = 1. 

There was 1976 measurement of SSh = 1 during the stay for all 30 patients in the 

cohort. A has the highest frequency followed by B, D and C. In Figure 7, criteria A 

dominates the total measurement of SSh at score 1 with a 56% (1086) of total 

measurements, reflecting the influence of SIRS score and how it is endemic to 

almost all ICU patients even without sepsis. Criteria B recorded the second 



greatest with a total of 690 measurements, followed by D and C with 104 and 96, 

respectively.  

 

Figure 7.  Comparison of score A, B, C and D components for SSh 

 

iv. Modified hourly sepsis score (SSH1) 

SSh in Figure 6 can still be unstable for the hourly assessment of sepsis condition 

due to high fluctuation seen in the per-patient plots, due primarily to the 

influence of SIRS score, which adds extra effective noise. SSH1 provides a more 

comprehensive and stable score with maximum and minimum values of 3 and 0, 

respectively. Figure 8 shows the hourly distribution of insulin sensitivity, SI, 

changes in insulin sensitivity (ΔSI), percentage of changes in insulin sensitivity 

(%ΔSI) and SSh1 for Patient 3 and Patient 24.  

 



       

 

Figure 8.  Hourly plot of SI, ΔSI, %ΔSI and SSH1 for Patient 3 (top) and Patient 
24 (bottom) 

 

It is clear in Figure 8 that there is a stronger correlation between insulin 

sensitivity and the modified hour sepsis score, SSH1. In general as sepsis declines 

patient-specific insulin sensitivity tends to rise and become more variable as 

condition improves. Thus, rising insulin sensitivity and increasing variability 

(SI) would be hypothesized to be markers of improving condition from sepsis, 

and vice versa for its diagnosis. 



 

Figure 9 presents the receiver operating characteristic (ROC) plot. X-axis in 

Figure 9 represents (1-specificity) while y-axis represents sensitivity. Plotted 

lines lay in a sequence according to the SSH1 value. As expected, higher SSH1 

values (SSH1 ≥ 3), for greater levels of sepsis, yield the best possible prediction 

using insulin sensitivity level alone, and the plots show a similar trend for all 

categories of SSH1. There is a small gap between SSH1 ≥ 1 and SSH1 ≥ 2, and a large 

gap has been observed between SSH1 ≥ 3 to the rest indicating it is more 

diagnostic for severe sepsis.  

 

Figure 9.  Receiver operating characteristic (ROC) plot showing the 
sensitivity and specificity relation of SSH1 and insulin sensitivity 
 

 

Figure 10 shows the CDFs of SI on the SSH1 score basis. SSH1 = 0 has the highest SI 

distribution followed by patients with SSH1 = 1, SSH1 = 2 and SSH1 = 3. However, 

the SI distribution for SSH1 = 0, 1 and 2 are almost overlaid. SI reduces as the 



patient condition worsens, as hypothesized. However, the discrimination, while 

significant (p<0.05), is not large and there is significant overlap that affects 

diagnostic value as seen in Figure 9 for these two levels. The p-values computed 

using Mann-Whitney test are shown in Figure 10. P-values are 0.6742 (SSH1 = 0, 

SSH1 = 1), 0.0392 (SSH1 = 0, SSH1 = 2), 0.3337 (SSH1 = 0, SSH1 = 3), 0.0581 (SSH1 = 1, 

SSH1 = 2), 0.4059 (SSH1 = 1, SSH1 = 3), and 0.8379 (SSH1 = 2, SSH1 = 3), respectively. 

The clearer difference when SSH1 = 3, the most severe septic state, shows more 

diagnostic potential and also reflects the ROC curve in Figure 9. 

  

 

Figure 10.  Cumulative distribution functions of insulin sensitivity grouped 
by SSh1.  
 
 
Insulin sensitivity profile provides important information on the metabolic 

status of any particular patient. In this study, insulin sensitivity distributions are 

very similar among the sepsis patients in the cohort as seen in Figure 3. Most of 

the patients in the cohort had a similar SI distribution.  

 



The dynamic change in SI from hour-to-hour also provides information on 

metabolic dynamics and insulin resistance in this cohort. Importantly, the 

variability of SI over the next hour is highly relying on its current value. 

Therefore, the stochastic model in Figure 3 represents the SI transition from one 

hour to the next and changes in variability may be indicative of changes in 

patient condition, creating a further potential biomarker. Moreover, SI and 

change in SI offer a further diagnostic value particularly at certain thresholds.    

 

Overall, from the whole length of stay for this sepsis cohort, the standard sepsis 

scores are fluctuating. Generally, the sepsis and infection condition of a patient 

would not change this fast. By definition, sepsis exists by the presence of SIRS 

and infection. However, the frequent change in Figure 4 suggests a failure of the 

score hierarchy typically used on a daily basis that takes the average or worst 

case of over the day.  This result may not be surprising since SIRS symptoms are 

treated, such as high temperature, thus negating the entire hierarchy if the SIRS 

criteria is not met. Hence, the SIRS score was used and excluded in the modified 

SSh and SSH1 scores, respectively analyzed here, which are calculated hourly and 

thus do not use the hierarchical scoring method used daily.  

 

From the plots in Figure 6, it can be concluded that SSh makes an improvement 

but not all non-physiological fluctuation is eliminated. Since SSh is calculated 

based on each component in determining the original sepsis score without a 

hierarchy, the score can be due to any set of criteria. It is thus more 

representative of true condition, but biased by the fluctuations in SIRS scores, 

which are endemic to all ICU patients and not just in sepsis. In particular, the 



high frequency of criteria A in Figure 7 showed that SIRS is a leading 

contributing factor in developing the SSh score, with more than 50% of the total 

score. These results thus justified the choice to also consider a sepsis score 

without SIRS criteria, SSh1, for analysis versus insulin sensitivity and its hour-to-

hour evolution. 

 

Overall, Figure 8 implies that SSH1 decreases with increases in insulin sensitivity, 

given that SI is above a certain threshold. However, patients might have different 

patient-specific thresholds or baseline values to indicate changes in their 

metabolic condition. Similarly, changes in SI may also vary between patients. 

Some patients may have a huge change in SI when shifting metabolic condition, 

while others may experience much smaller changes for the same event.  

 

Nevertheless, ΔSI and % ΔSI do not show a significant correlation to the SSH1 and 

thus may not add much as a biomarker. Equally, these results show that SI is an 

effective marker, but that patient-specific thresholds would be needed to make 

automated diagnosis possible without additional, external data. In particular, the 

relation of insulin sensitivity, SI to SSH1 may suggest SI as a significant marker in 

determining severe sepsis levels in critical illness.  

 

Hence, the ability to delivery very early diagnosis is unclear, but the negative 

predictive value of this marker alone is significant. Positive prediction of lower 

sepsis scores will require more information. These results are mainly due to the 

fact that SI lags condition, resulting in SI values that do not match SSH1 score 



when sepsis state is changing. The result is a loss of diagnostic power largely due 

to the hourly nature of assessment and this lag. 

 

 

  



Conclusions 

Identification of an inflammatory response to infection at an early stage would 

enhance the understanding and knowledge of cellular and immunology aspects 

that may cause sepsis, as well as aid decisions to give aggressive care to reduce 

mortality and morbidity. Currently, early detection and treatment is very 

challenging due to the lack of physiological information accessible in real-time 

that is relevant to infection, organ failure and sepsis. This study shows that 

model-based metabolic information on insulin sensitivity, SI, can be highly 

related to SSH1, a specifically modified hourly sepsis scoring system indicating 

sepsis degree. Importantly, it shows that SI decreases with worsening condition 

and increases with improvement in patient condition, which is similar to some 

previous studies [16,17,19,20]. However, information on SI is insufficient to 

determine the exact sepsis condition of a patient particularly at moderate sepsis 

levels (e.g., SSH1 = 1), which are important for early diagnosis as the condition 

develops. Hence, the main contributions of this work are to develop a modified 

clinical sepsis score that can be effectively used hourly for real-time diagnosis 

and monitoring (SSH1) and to show that the impact of sepsis on metabolic 

markers, like SI, is clear, providing an avenue for further study and development 

of easily automated, model-based markers for diagnosis of sepsis. 
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