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ESTIMATION OF FUTURE INSULIN
SENSITIVITY DISTRIBUTIONS

CROSS REFERENCE

This application claims the benefit of the filing date of
U.S. Provisional Patent Application Ser. No. 62/662,992,
filed Apr. 26, 2018, which is hereby incorporated by refer-
ence in its entirety.

FIELD

The present invention relates to a glycaemic control
device and methods for insulin sensitivity prediction and
control.

BACKGROUND

Insulin sensitivity (SI) is a main determinant of blood
glucose level in all humans and animals with metabolism. In
diabetes, insulin resistance and hyperglycemic hospital
patients, deranged blood glucose levels are treated with
insulin and/or nutrition and/or activity. Activity affects SI
levels and need for nutrition, and insulin and nutrition act in
balance to yield outcome glycemia. Controlling blood glu-
cose levels can be very difficult as SI can vary substantially,
particularly in hospitalized patients.

Insulin therapy for glycaemic control (GC) in critically ill
patients improves outcomes by reducing hyperglycaemia
and glycaemic variability, which are both associated with
increased morbidity and mortality. However, results have
proven difficult to repeat or achieve safely.

Critically ill patients in intensive care units (ICUs) often
experience abnormally elevated blood glucose concentra-
tions (hyperglycaemia), as a stress response to illness and
injury. Hyperglycaemia, glycaemic variability, and hypogly-
caemia are all independently associated with increased mor-
bidity and mortality. Glycaemic control using insulin
therapy has shown beneficial outcomes, reducing organ
failure and costs but with increased risk of hypoglycaemia
with tight control.

GC has been hard to achieve both safely and effectively.
Fixed or ad hoc protocols are still typically used in hospitals,
but fail to capture and fully account for patient variability
impacting performance and safety. This issue has led to the
emergence of more complex, model-based GC protocols.

STAR (Stochastic TARgeted) is a clinically-validated
model-based GC framework, capable of adapting treatment
to patient-specific insulin requirements while managing the
risk of hypoglycaemia.

The stochastic model currently used by STAR forecasts
future SI (SIn+1) distributions based on the identified cur-
rent SI value (SIn). A Markov process is used, where
outcome SIn+1 only depends on input SIn. This allows risk
based rather than target based dosing. However, STAR has
been found to be overly conservative and there is a need for
an approach using more data inputs with a noncomplex
model to more rapidly bring insulin/glucose levels into a
stable, safe level.

Thus, more optimal treatment could be provided if there
was a means to predict future distributions of SI as likeli-
hoods. From these distributions, explicit quantifiable risks
could be created to assess an individual’s health state and/or
adjust treatment. These predictions could be patient-specific
or more generally related to a cohort or similar or otherwise
grouped individuals.
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2
SUMMARY

In accordance with one aspect of the present invention,
there is provided a method for controlling the blood glucose
levels of a patient including the steps of:

a) measuring the blood glucose level of the patient;

b) determining the current insulin sensitivity of the
patient;

¢) estimating with a multi-dimensional model the adjust-
ment needed to obtain a blood glucose level between a
desired lower and upper confidence interval after adminis-
tration of the estimated adjustment to the patient;

d) administering the estimated adjustment to the patient;
and

e) repeating steps a) through d) until a desired state of
health is achieved.

In accordance with another aspect of the present disclo-
sure, there is provided a device for controlling the blood
glucose levels of a patient, including:

a processor programmed to forecast with a multi-dimen-
sional model based on the current insulin sensitivity and the
% change in insulin sensitivity from a prior insulin sensi-
tivity value, the adjustment needed to obtain a blood glucose
level between a desired lower and upper confidence interval
after administration of the estimated adjustment to the
patient;

a memory;

a data input; and

a display.

In accordance with another aspect of the present disclo-
sure, there is provided a device for controlling the blood
glucose levels of a patient, including: a processor pro-
grammed to forecast with a multi-dimensional model based
on the current SI and the % change in SI from a prior SI
value, the insulin/nutritional adjustment needed to obtain a
blood glucose level between upper and lower Cls (e.g., the
5% and 95% CI) after administration of the forecasted
insulin/nutritional adjustment to a patient; a memory; a data
input; and a display.

These and other aspects of the present disclosure will
become apparent upon a review of the following detailed
description and the claims appended thereto.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the input values to calculate SI(t=2) in
accordance with the Example of the present invention;

FIG. 2 shows the calculation of SI(t=2) using the physi-
ological model in accordance with an embodiment of the
present invention;

FIG. 3 shows the forecasted SI at a future time at different
% delta SI values using stochastic model in accordance with
an embodiment of the present invention;

FIG. 4 shows the forecasted bands (90% CI) of SI at
various future times in accordance with an embodiment of
the present invention;

FIG. 5 shows the prediction of BG traces (5% and 95%
percentile) for different combination of insulin and nutrition
inputs in accordance with the Example of the present
invention;

FIG. 6 shows the input values to calculate SI(t=3) in
accordance with an embodiment of the present invention;

FIG. 7 shows the calculation of SI(t=3) using the physi-
ological model in accordance with an embodiment of the
present invention; and
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FIG. 8 shows BG in a desired range with inputs of insulin
and nutrition over t=0 to t=10) in accordance with the
Example of the present invention.

DETAILED DESCRIPTION

A method for controlling the blood glucose level of a
patient includes the steps of:

a) measuring a blood glucose level and determining an
insulin sensitivity of the patient;

b) measuring, subsequent to step a), the blood glucose
level and determining the current insulin sensitivity of the
patient;

¢) estimating with a multi-dimensional model, comprising
delta SI, the adjustment needed to obtain a blood glucose
level between a desired lower and upper confidence interval
after administration of the estimated adjustment to the
patient;

d) administering the estimated adjustment to the patient;
and

e) repeating steps b) through d) until a desired state of
health is achieved.

The multi-dimensional data base can be constructed
according to the following procedure. Accumulation of
relevant physiological data used or used to derive patient
specific physiological metrics (e.g., SI from glucose, insulin,
nutrition data; or pulse pressure variation from arterial
pressure waveforms; or HRV heart rate variability from
heart rate ECG data) calculated from data directly or via a
model from a plurality of patients. This data can be stored
for each patient over time and can then be processed or
organized in N-dimensional groups based on what sets of
inputs and resulting output(s) are desired.

Using measured data from a large multinational cohort, SI
values may be obtained from a model, such as auto regres-
sive or neural network. The model includes the relationships
of current SI, delta SI, and the adjustment level to future SI.
For any individual, a history or trajectory of SI values can
be collected prospectively or retrospectively. These trajec-
tories of values can be used to create relationships between
current or recent Sl(n), its changes and other relevant input
values to predict a future SI(n+dt), for example, where dt=30
minutes to 48 hours or more.

In an embodiment, the multi-dimensional model is based
upon clinical input data. Suitable input includes the follow-
ing: physiological measurements; severity of health condi-
tion scores based on measurements and/or diagnoses and/or
treatments; or anthropomorphic metrics, including sex, size,
weight, height, and the like; or any metric derived from one
or more thereof. Suitable input also includes the following:
current SI and prior SI or % delta SI; current and prior blood
glucose levels; current and prior HR, HRV or other metrics
accounting for activity or exercise; current diagnosis (in
hospital) or severity score (Apache 11, SAPS, TISS, SOFA or
similar diagnostic or severity score); predicted future inter-
ventions of insulin and/or nutrition and/or exercise or other
metrics accounting for activity or exercise; or any metric
derived from one or more thereof. These inputs allow more
personalized predictions of glucose levels and more aggres-
sive treatment with insulin and/or nutrition without safety
issues. The clinical input data can be derived from an
individual or group or sub-cohort of individuals, including
male groups, or female groups.

According to an embodiment, all possible sets of input
data are contemplated. These sets are grouped into a set of
vertices in that n-space, the number is known as well as the
total number of possible input data sets within the database.
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Equally with kernel density, this grouping is done math-
ematically using a statistical distribution. Thus, the likeli-
hood of any input data set is calculated from the nearby sets
of input parameters that are similar. From this calculation,
the likelihood of occurrence can be calculated.

According to an embodiment of a method to assess or
alarm for potential input errors in SI, the clinical data used
to evaluate SI, and/or other input data when an input has
(clinically or otherwise selected) very low probability of
occurrence (below any set threshold) and thus lies in a
region of low or no existing data. Such errors arise from a
range of either data input errors or failures in care, including
errors in clinical data, data input errors, failed pump, false
measurement, or failure to eat a meal, glucose or any other
sensor error or any other incorrect input due to error or
misuse.

According to an embodiment, as an example, the model at
any given point could be adjusted to within a specified
range, e.g., a target of 4.5 mmole/L. The target can be set as
10 to 90% or 5 to 95% probability and also a lower limit of
the next point to be below 3. The model shows the risk for
a certain amount of insulin and nutrition. An example can be
seen in FIG. 3 where the prediction shows what could
happen with various insulin and nutrition inputs.

Certain identified levels of blood glucose can correspond
to what is light, mild, moderate or severe hypoglycemia. The
model would then give results of what is the risk of landing
in the mild to severe range. In general a clinician would pick
input that is predicted to avoid hypoglycemia. In practical
use in ICU this model has reduced hypoglycemia to a very
low level compared to ICU not using the model.

A primary and exemplar embodiment relates to a multi-
dimensional model developed on the ability to predict more
accurate future SI distributions, using both current SI and its
percentage change from the prior value. In an embodiment,
S1 is obtained from 70,000 hours of clinical data to create a
multi-dimensional stochastic model.

An embodiment of a multi-dimensional model character-
ises patient specific metabolic variability and patient specific
response to insulin, allowing more optimal insulin dosing to
increase performance and safety. This method expands the
prior 2D stochastic approach by adding the most recent
change in SI, as an input parameter for forward prediction
of outcome SI,,;. The multi-dimensional model of the
present invention predicts future SI, ., based on current SI,
and the percentage change in SI from SI,,_, to SI,.

The ICING (Intensive Control Insulin-Nutrition-Glucose)
physiological model describing glucose-insulin dynamics is
defined as:

, t P(t) + EGP—-CNS 1
G=—pG.G(t)—SI-G(t)l+3(§_)Q([) ® Ve o
; l ox (G (2
I:nK-I(t)—nL#II)_I([)—n,(l(t)—Q(t))+qu[)+(1—xL)uT(I) @
o Q) (3)
Q—”I(“U‘Q(U)‘”CW

Where G(t) is the blood glucose level (mmol/L), I(t) is the
plasma insulin concentration (mU/L), Q(t) is the interstitial
insulin concentration (mU/L), P(t) is the glucose appearance
in plasma from enteral and parenteral dextrose intake
(mmol/min), and SI is insulin sensitivity (L/mU/min).
Model-based insulin sensitivity (SI) is patient-specific
and time varying, characterizing patient-specific glycaemic
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system response to glucose and insulin administration. SI is
identified hourly from clinical BG, and insulin and nutrition
input data, using an integral-based fitting method.

The model-based glycaemic controller is a clinically
validated model which identifies current patient-specific
insulin sensitivity using metabolic data, and forecasts likely
blood glucose (BG) outcomes for a given insulin and
nutritional adjustment by assessing inter- and intra-patient
variability. However, the model’s predictions and the patient
outcome may differ, and the difference is a random variable.
This is not surprising, as the typical use of the data is to
administer insulin and nutrition so as to affect the expected
result, so it is likely that the actual result will stray from the
expected value. Clearly to have an expected result there
needs to be evidence, in terms of past clinical results, to base
the expected effects. The variability is and has been captured
as a multi-dimensional probability distribution gathered
from a large population of patient data. The distribution of
past data can be applied as a stochastic model of affects from
the administration of insulin and nutrition. The distribution
of past data can be used to determine the expected result, but
additionally, the distribution of results from an administra-
tion of insulin and nutrition are established. Using the
distribution it is possible to predict the range of likely future
variation of SI over the following hours (e.g., 1 to 3) after
an insulin and nutritional adjustment. This can be used to the
positively affect patient safety, as adverse responses can be
greatly reduced.

In the following the SI levels are indexed based upon the
administration of insulin and nutrition. SI is determined by
solving a differential equation that utilizes parameters
obtained from clinical data. One standard method of solving
the differential equation is the so-called integral based
method, a forward differencing scheme, though other
approaches are available. Hence SI; is the initial insulin
sensitivity value and SI, is the n administration. Inputs to
the methods utilize the current value (SI,) and its percentage
change from prior intervention (%ASI,). This range is used
to compute the optimal insulin and nutritional adjustment
resulting in BG outcomes that best overlap a targeted band
(e.g., 4.4 to 6.6 mmol/L.) while minimizing risks of hypo-
glycaemic events, ensuring a maximum 5% risk of predicted
BG outcomes below a lower limit (e.g., 4.4 mmol/L)). An
administration where the overlap is at least 90% is consid-
ered clinically safe.

An embodiment of a step-by-step approach is detailed
below: A current model-based SI,, parameter is identified for
the patient using available clinical data (e.g., insulin rates,
nutrition rates, and current blood glucose level (BG,)).
Optionally, determine the prior percentage change in SI in
accordance with the formula

St,—Si,_,
Sl

% ASI, = 100x

when the prior SI parameter, SI,_|, is available. It is under-
stood that the change can be ascertained once an adminis-
tration has occurred and clinical measurements have been
attained.

Calculate, utilizing the stochastic model, the 90% CI of
likely variation of SI, represented as (S],,,,), over each of the
next 1, 2, and 3 hours based on SI, and % ASI,. A
consideration is given to the fact that a patient’s response to
an insulin administration might cause the BG to become too
high or too low and put a patient into a high risk situation.
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An insulin administration where this event is less than 10%
likely is considered as safe. This is done by taking marginal
distributions where the insulin administration is held con-
stant and identifying where to overlap of the distribution and
the region of safe BG levels are attained. Integrating the
distribution in the safe region provides a confidence level of
patient safety for a given dose. Finding a dose which meets
these considerations is a solution to balancing the moving
the patient to a desired BG level and maintaining a confi-
dence the patient will not encounter undesirable affects.

The disclosure will be further illustrated with reference to
the following specific examples. It is understood that these
examples are given by way of illustration and are not meant
to limit the disclosure or the claims to follow.

Example—Case Study

A patient has been under STAR for a couple hours
because of hyperglycaemia.

Nutrition, insulin, previous BG levels and previous iden-
tified SI levels have been recorded and are thus known. It is
now 2 hours after the beginning of STAR (t=2), and it is time
to calculate the new treatment.

Step 1 (SI Identification):

A new measure of BG is taken: BG(t=2)=8.223 mmol/L.

Nutrition rate (6.7 g/hr) and insulin rate (6 U/hr) over the
last period are known.

Only current SI is unknown at this point but can be
determined using integral based methods as it is the only
unknown parameter.

Solving the system of equations from the physiological
model for SI over the last hour as shown in FIG. 1 gives:

SI(t=2)=3.5951e-4 L/mU/min.

Step 2 (SI Previous Variability):

This new SI value (see FIG. 2) already gives an idea of the
previous patient-specific metabolic variability (over the last
two hours). Another metric can be used to describe this
variability:

St = SI_

% ASI, = 100x

n—1

It represents the hour-to-hour percentage SI variability
(the % change from the previous to current SI value).

SI(t=1)=3.9745¢—4
SI(t=2)=3.5951¢e—4

%ASI(1=2)=—9.55%

SI decreased of 9.55% from its previous value (the patient
is quite stable, but slightly more resistant to insulin than the
previous hour).

Step 3 (Identification Future SI Variability):

Now STAR knows the past/current patient-specific state,
it will determine how likely it will change in the future.
Thus, it will use the stochastic model (constructed on
population data) with the identified current SI and % ASI as
inputs, to predict the 90% CI range of likely future SI(t=3)
value. In other words, a range within which we are confident
at 90% that the future SI(t=3) will fall in, based on the
previous patient-specific SI evolution.

Given % ASI(t=2)=-9.55% and SI(t=2)=3.5951e—4, the
resulting 90% CI range for predicted SI(t=3) is:

[2.4390e-4,5.4042¢-4]
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This step can also be done to predict likely future SI in 2
or 3 hours:

90% CI range for SI(t=4): [2.4380e-4,5.6128e-4]

90% CI range for SI(1=5): [2.4548e-4,5.8596e-4]

Generally wider bands represent longer prediction times
(more likely to have higher variability over longer periods of
time).

Step 4 (Treatment Computation):

Based on this assessment of likely evolution of patient
variability (future SI variability/evolution), STAR will use
the physiological/mathematical model again, but slightly
differently.

This time, knowing SI range (SI is not unknown any-
more), we want to determine what intervention (insulin and
nutrition) to give to the patient so the resulting predicted BG
range (because this is based on predicted values of SI) is
within the clinically specified safe target range. Thus:

SI is known (5% and 95 percentiles of future SI)

Nutrition and Insulin rates are now variables

BG is now the only unknown of the equations, which can
be determined solving the sets of equations.

Note: There exists a discrete number of insulin/nutrition
combination due to clinical settings constraints (i.e., Insulin
rate can range from 0 to 9 U/hr with 0.5 U/hr increment steps
with maximum 2 U/hr increment, nutrition can vary from 30
to 100% of the total original goal feed with 5% increment
steps and maximum of 30% change).

STAR will thus loop through all the possible insulin/
nutrition combinations and find the optimal solution: adjust-
ing the 5 percentile of predicted BG to 4.4 mmol/L while
maximizing overlapping with the target band. This ensures
a maximum risk of 5% of hypoglycaemia. STAR always aim
to maximize nutrition.

FIG. 5 shows prediction of BG traces (5” and 95%
percentiles given the 95” and 5 SI percentiles values) for
different combination of insulin and nutrition inputs. The
green line (no insulin and full nutrition) results in higher
predicted BG, whereas the blue line (higher insulin and
lower nutrition rates) results in lower predicted BG values.
The blue option represented here is the one calculated by
STAR (within the possible insulin/nutrition combinations
according to ICU specifications).

This can be done for the 2 and 3 hours prediction.

Step 5 (Treatment selection):

Now that STAR calculated the best treatment it will
suggest the determined combination to the nurse. STAR can
offer 2 and/or 3 hourly treatments if and only if an existing
solution met the safety criteria (and if not restricted by other
constraints).

Nurses are thus able to choose between the 1-3 hourly
treatment (if available), that seems best to match their
clinical judgement.

In this case study, only the 1-hour treatment is possible
(because current BG is outside the target range). The only
suggested option by STAR thus corresponds to: 8 U/h of
insulin (increase of 2 U/h) 4.1 g/h of nutrition (decrease of
30% of max cal. Intake) The new measured BG(1=3) is
within the predicted band by STAR.

The new corresponding identified SI(t=3) value is within
the predicted SI range.

Simulation Overview: The full simulation results are
shown in FIG. 8, with the corresponding BG prediction
range for each treatment selected.

As shown in top panel of FIG. 8, at t=3, the 3-hour
treatment was selected, and ended up slightly lower than
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predicted and very close to the lower limit of the safe target
band. This explains the following 0 U/h of insulin and 100%
nutrition input treatment suggestion. The predicted BG (blue
line) will never be lower than the black dashed line unless
treatment-independent (0 U/hr and full nutrition target).

Discussion of main results. Estimating changes in insulin
sensitivity underpins the ability of STAR to respond in a
patient-specific manner to potential future changes in patient
glycaemic control requirements, resulting in safe and effec-
tive control strategies. If the distributions of forecast likely
SI changes are narrower, then control can be further
improved, with tighter control in more stable patients, and
better avoidance of hypo-glycaemia in patients that exhibit
high glycaemic variability.

The current invention is more patient-specific, and better
predicts likely BG outcomes as compared to the prior model.
These results translate into more aggressive insulin dosing
where patients are more stable and SI outcomes are more
certain, and less aggressive, lower insulin doses in patients
who are more variable. Greater patient-specificity also
reduces risk for more variable patients. The current inven-
tion leads to tighter and less variable control with greater
safety from hypo-glycaemia, and thus improved outcomes.

Although various embodiments have been depicted and
described in detail herein, it will be apparent to those skilled
in the relevant art that various modifications, additions,
substitutions, and the like can be made without departing
from the spirit of the disclosure and these are therefore
considered to be within the scope of the disclosure as defined
in the claims which follow.

What is claimed is:

1. A method for controlling the blood glucose level of a
patient comprising the steps of:

a) measuring a blood glucose level and determining an

insulin sensitivity of the patient;

b) measuring, subsequent to step a), the blood glucose
level and determining the current insulin sensitivity of
the patient;

¢) estimating with a multi-dimensional model, comprising
delta SI, an adjustment needed to obtain a blood
glucose level between a desired lower and upper con-
fidence interval after administration of the adjustment
to the patient;

d) administering the adjustment to the patient; and

e) repeating steps b) through d) until a desired state of
health is achieved.

2. The method of claim 1, wherein the multi-dimensional
model comprises clinical input data comprising current SI,
prior SI, % delta SI, current blood glucose level and prior
blood glucose level.

3. The method of claim 2, wherein the clinical input data
is from an individual or group or sub-cohort of individuals.

4. The method of claim 2, wherein the multi-dimensional
model provides a risk assessment based upon a given insulin
or nutrition input.

5. The method of claim 4, wherein the assessment is of
light, mild, moderate or severe hypoglycemia defined by
specific blood glucose levels.

6. The method of claim 2, wherein a likelihood is assessed
of'any set of input data occurring given the number of points
grouped within the same set of input data and the total
number of input data point groups in the entire set of
associations.

7. The method of claim 2, wherein the multi-dimensional
model is used to assess for potential input errors in SI, the
clinical data used to evaluate SI, and/or other input data
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when an input has very low probability of occurrence and
thus lies in a region of low or no existing data.

8. The method of claim 1, wherein the adjustment com-
prises insulin administration, nutrition, exercise, or combi-
nations thereof.

9. The method of claim 1, wherein the desired lower and
upper confidence interval comprises 5% and 95% or 10%
and 90%, respectively.

10. The method of claim 1, wherein the multi-dimensional
model is based on the determined current insulin sensitivity
and a % change in insulin sensitivity from a prior insulin
sensitivity value, and the adjustment comprises an insulin/
nutritional adjustment needed to obtain a blood glucose level
between a desired lower and upper confidence interval after
administration of the estimated insulin/nutritional adjust-
ment to the patient.

11. A device for controlling the blood glucose levels of a
patient, comprising:
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a processor programmed to forecast with a multi-dimen-
sional model based on a current insulin sensitivity and
a % change in insulin sensitivity from a prior insulin
sensitivity value, an adjustment needed to obtain a
blood glucose level between a desired lower and upper
confidence interval after administration of the adjust-
ment to the patient;

a memory;

a data input; and

a display.

12. The device of claim 11, wherein the processor is
programmed to forecast with a multi-dimensional model
based on the current insulin sensitivity and the % change in
insulin sensitivity from a prior insulin sensitivity value, an
insulin/nutritional adjustment needed to obtain a blood glu-
cose level between the 5% and 95% confidence interval after
administration of the insulin/nutritional adjustment to a
patient.



