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ABSTRACT. This paper concerns 4-dimensional (topological locally compact connect­
ed) Minkowski planes that admit a 1-dimensional automorphism group E. It is shown 
that such a plane is either classical or has a distinguished point that is fixed by the 
connected component of E and that the derived affine plane at this point is a 4-
dimensional translation plane with a 7-dimensional collineation group. 

A Minkowski plane M = (P,K,, {II+, II-}) consists of a set of points P, a set of 
at least two circles K, (considered as subsets of P) and two equivalence relations 
II+ and II- on P (parallelisms) such that three pairwise non-parallel points (that is, 
neither (+)-parallel nor (-)-parallel) can be joined by a unique circle, such that the 
circles which touch a fixed circle K at p E K partition P \ IPI (here IPI = IPI+ U IPl­
denotes the union of the two parallel classes of p ), such that each parallel class meets 
each circle in a unique point (parallel projection), such that each (+)-parallel class 
and each (-)-parallel class intersect in a unique point, and such that there is a circle 
that contains at least three points (compare [15]). A topological Minkowski plane is 
a Minkowski plane in which the point set P and the set of circles K, carry topologies 
such that the geometric operations of joining, touching, the parallel projections, 
intersecting parallel classes of different type, and intersecting circles are continu­
ous operations on their domains of definition (see [15]). A topological Minkowski 
plane is called (locally) compact, connected, or finite-dimensional if the point space 
has the respective topological property. For brevity, a locally compact connected 
finite-dimensional topological Minkowski plane will be called a finite-dimensional 
Minkowski plane. According to [9, 2.3] a finite-dimensional Minkowski plane can 
only be of dimension 2 or 4. In these cases the automorphism group of M is a 
Lie group with respect to the compact-open topology of dimension at most 6 and 
12, respectively, see [16]. The classical model of a 2- or 4-dimensional Minkowski 
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plane is obtained as the geometry of non-trivial plane sections of a ruled quadric in 
the real or complex projective 3-dimensional space respectively. In these cases the 
topologies on the point set and the set of circles are induced from the surround­
ing projective 3-space (the set of planes in the projective 3-space carries a natural 
topology which can be obtained by duality from the topology on the point set in 
the 3-space). 

Whereas there are many models of non-classical 2-dimensional Minkowski planes 
(see [15], [8], and [17]) no non-classical 4-dimensional Minkowski planes are known 
yet. Furthermore, it was shown in [19] that a 4-dimensional Minkowski plane that 
admits an 8-dimensional automorphism group must be classical. Here we investigate 
4-dimensional Minkowski planes that admit a 7-dimensional group of automorphism 
E. We prove the following 

Theorem. If a 4-dimensional Minkowski plane M = (P,K,{ll+,11-}) admits a 
closed connected 7-dimensional group of automorphisms E, then M is classical or 
E fixes precisely one point p E P and the derived plane at p is a 4-dimensional 
translation plane with a 7-dimensional collineation group. 

1. Notation and preliminaries 

We maintain the notation of [19]. In the remainder of this paper M = ( P, K, {II+ 
, II-}) always denotes a 4-dimensional Minkowski plane. The ( + )- and (-)-parallel 
class of a point x is denoted by lxl+ and !xi- respectively. Furthermore, let rr± 
be the collection of (±)-parallel classes. rr± endowed with the quotient topology 
becomes homeomorphic to the 2-sphere § 2• 

For every point p of M, there is an associated incidence structure, called the 
derived affine plane Ap = (Ap,Cp) at p, whose point set Ap consists of all points of 
M that are not parallel top and whose set of lines Cp consists of all restrictions to 
Ap of circles of M passing through p and of all parallel classes not passing through p. 
Indeed, M is a Minkowski plane if and only if all incidence structures Ap are affine 
planes. It can easily be seen that derived affine planes of the classical Minkowski 
plane are even topological locally compact connected affine planes. More generally, 
it was shown in [18] that this is true for each finite-dimensional Minkowski plane. 
Furthermore, the projective extension Pp of Ap can be made to a topological locally 
compact connected projective plane. 

According to [9, 2.5] there is a characterization of the classical complex Minkows­
ki plane in terms of a single derivation. This is due to a remarkable result of T. 
Buchanan [5] which says that the only topological ovals in the Desarguesian pro­
jective complex plane are conics. 

1.1 Theorem. A 4-dimensional Minkowski plane is isomorphic to the classical 
complex Minkowski plane if and only if at least one derived affine plane is Desar­
guesian. 

The group r = Aut(M) of all continuous automorphisms of M carries the 
compact-open topology. r is a Lie group of dimension at most 12 in this topol-
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ogy; cf. [16]. This upper bound follows from the dimenaion formula (cf. [6]) 

dim .6. = dim .6.x + dim .6.( x) 

which relates the topological dimensions of the locally compact transformation 
group .6. operating on a manifold X, the stabilizer .6.x of a point x E X, and 
the orbit .6.( x) of this point and from the following 

1.2 Rigidity Lemma. Tbe stabilizer r x,y,z of tbree pairwise non-parallel points 
x, y, z is 0-dimensional. 

r has two distinguished closed normal subgroups 

T± = {1 E r1 x II± 1(x) for all x E P}. 

Obviously T+ n T- = {id}. Since an automorphism maps parallel points to parallel 
points, the connected component r 1 of the identity in r operates on rr±. The 
normal subgroups T± are just the kernels of this action. We denote the canonical 
projection onto the factor goup r /T± by 

The group 11"±(r1 ) operates effectively on rr± ~ § 2 • Since T+ and T- intersect 
trivially, T± "' ?l"=f(T±) can be identified with a normal subgroup of 11"=f(r1 ). We 
define T£ = L: n T± and E± = ?l"±(L:) for a closed connected subgroup L:. 

The classical Minkowski plane can be characterized by the size of these normal 
subgroups, see [19, 3.2]. 

1.3 Theorem. A 4-dimensional Minkowski plane is isomorphic to the classical 
complex Minkowski plane if and only if one of tbe normal subgroups T± is at least 
4-dimensional. 

The connected component .6. = (r P ) 1 of the stabilizer of a point p operates in 
the derived affine plane Ap at pas a group of collineations of Ap. The group .6. can 
even be considered as a group of collineations of Pp. There, .6. fixes the infinite line 
Lcx:i (with respect to Ap ); furthermore, .6. fixes the infinite points w+, w_ E Lcx:i of 
lines induced by ( + )- and (-)-parallel classes respectively. The Rigidity Lemma 1.2 
is an immediate consequence of this fact. 

2. Proof of the theorem 

In this section L: denotes a 7-dimensional closed connected subgroup of the au­
tomorphism group r = Aut(M) of a 4-dimensional Minkowski plane M. Thus 
dim L:± +dim T£ = 7. 



4 GUNTER F. STEINKE 

2.1 Proposition. E fixes at least one parallel class. If E acts fixed-point-free, then 
M is classical. 

Proof. Since there are no semi-simple Lie groups of dimension 7, the group E must 
fix a parallel class according to [19, 2.12]. Let lxl+ be such a fixed parallel class. 

Suppose that E acts transitively on !xi+· Then r:- acts transitively on rr- and we 
haver:- ~Tl by [19, 5.2] (as E+ is not transitive on rr+). Thus Tt ~ PSL(2, C) 
or Tt "' S0(3, JR). In the former case Tt is 6-dimensional and in the latter case 
Ti is 4-dimensional. Hence the Minkowski plane M is classical by Theorem 1.3. 

Suppose now that E neither acts transitively on !xi+ nor does it fix a point. 
Then E has an orbit B homeomorphic to the 1-sphere § 1 (see [7]). We further may 
assume that B = E(x) is the orbit of x. Let <I> denote the kernel of the action of 
Eon B. Thus E/<I> acts transitively and effectively on B ~ § 1• It follows from the 
classification of such groups (cf. [11, 3.18]) that dim E/<I> :=:; 3, i.e. dim <I> ~ 4. 
Let Kx be the set of circles passing through x and let K E Kx. Since <I> K fixes 
Kn IBI- pointwise, we obtain dim <I> j( = 0 by the Rigidity Lemma 1.2. This yields 
dim <I> :=:; 4, because Kx is 4-dimensional. Together with the previous inequality we 
find dim <I> = 4. In particular, the connected component W of the identity of <I> 
operates transitively on Kx as Kx is connected. 

We choose y, z E B such that x, y, z are pairwise disjoint and we choose ai, bi E 

IYI- \ {y} for i = 1,2 with ai '#bi. Define b~ = lbil+ n lzl- so that x, ai, b~ are 
pairwise non-parallel. By the transitivity of W on Kx, there is an automorphism 
'!/> E W that maps the circle through x, al, bi onto the circle through x, a2, b~. Then 
'!/> maps ai to a2 and bl to b2. This shows that Wis 2-transitive on IYI- \ {y} ~ 
JR2; obviously, Wis effective on IYI- \ {y}. According to the classification of such 
groups (compare [21, pp. 222-223] and [22]), W is isomorphic and acts equivalently 
to L2(C) = C ><IC\ {O} = {z H az +bl a,b E C,a '# O}. Since <I> and Tt 
intersect trivially, we can identify <I> with a normal subgroup of r:+. Thus r:+ too 
operates transitively and effectively on rr+ \ !xi+ ~ JR2 and r:+ is isomorphic and 
acts equivalently to L2(C), SL(2, JR)~ JR2, or GL(2, JR)~ IR2 in its standard action 
on lR 2; cf. [21, pp. 222-223] and [22]. 

Let w lr+ x. Then <I>' = <I>lwl+ is a 2-dimensional normal subgroup of E' = Etvl+ 
and the latter stabilizer is isomorphic to C \ {O}, SL(2, JR), or GL+(2, JR). In the 
last two cases E' contains a subgroup 8 of codimension at most 1 that is isomorphic 
to SL(2, JR). Moreover, <I>' n e is a normal subgroup of e of dimension at least 1. 
However, 8 ~ SL(2, JR) is simple and thus 8 ~ <I>' contrary to dim <I>' = 2. Hence 
r:+ ~ W "' L2 ( C) and Tt is 3-dimensional. 

It follows from the Rigidity Lemma 1.2 that on one hand each non-trivial auto­
morphism r E Tt has at most two fixed points in !xi+· On the other hand, for every 
u E !xi+ there is a non-trivial r E Tt such that r fixes u (because dim Tt = 3). 
Since <I> and Tt intersect trivially, r commutes with <I> elementwise. Thus u is a 
universal fixed point of <I>. As u was arbitrary this shows that <I> = Ti. Hence M 
is classical by Theorem 1.3. D 
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2.2 Proposition. Assume that E fixes a point p. Then p is the unique fixed 
point of E, the derived affine plane Ap at p is a 4-dimensional translation plane 
(with translation line being the infinite line), and M is classical or Ap has a 7-
dimensional collineation group~ that fixes two points on the infinite line (i.e. the 
connected component of~ is induced by E ). 

Proof. Let p be a fixed point of E and assume that E has a second fixed point q. 
We choose a point r parallel to q but not parallel to p. Then the stabilizer Ep,r 
is at least 5-dimensional. This implies that the stabilizer Ep,r,s where s is a third 
point parallel to neither p nor r is at least !-dimensional contrary to the Rigidity 
Lemma 1.2. Hence p must be the only fixed point of E. 

Let P be the projective extension of the derived affine plane Ap at p. The group 
E induces a 7-dimensional group of collineations of P that fixes the infinite line L00 

and the two infinite points w+ and w_ of lines induced by parallel classes. Hence, 
according to [3, Satz 3], Pis a 4-dimensional translation plane with translation line 
being the infinite line L00 • 

Let '11 denote the connected component of the identity of the full collineation 
group of P. We assume that W is at least 8-dimensional and show that the classical 
Minkowski plane results. Let Kp be the set of all circles passing through the fixed 
point p. If E does not act transitively on Kp, then there is a circle K E Kp 
whose stabilizer EK is at least 4-dimensional and so the stabilizer EK,q of a point 
q E K \ {p} is at least 2-dimensional. This means for the projective plane P that 
there is a group of collineations of dimension at least two which fixes the affine point 
q and three lines passing through q (namely the lines induced by lql+, lql-, and K). 
According to [l, Lemma 6] the translation plane P is Desarguesian. Hence M is 
classical by Theorem 1.1. · 

We finally assume that E operates transitively on Kp. Thus E operates transi­
tively on L00 \ {w+,w-} in P. According to [1, Lemma 5] the translation plane P 
is Desarguesian or W fixes L00 • If dim W 2::: 9, then P is Desarguesian according to 
[12] and [13]. So let us assume that dim W = 8 and that L 00 is fixed under W. In 
this case E is a subgroup of W of codimension 1. Thus w+ and w_ have orbits of 
dimension at most 1. Because Eis transitive on L 00 \ {w+,w-} each such point has 
a 2-dimensional orbit. This implies that w+ and w_ are fixed by W. Therefore P is 
Desarguesian by [14, §1]. In both cases M is classical by Theorem 1.1. 

If Wis 7-dimensional, then W = E and '11 fixes w+ and w_, D 

2.3 Remark. If M is not classical, then the normal subgroups T± are at most 
3-dimensional and T = T+ x T- is at most 6-dimensional by Theorem 1.3. We 
shall see below that in the situation of Proposition 2.2 the respective groups of a 
non-classical Minkowski plane attain those upper bounds. 

2.4. 4-dimensional translation planes with a 7-dimensional collineation group that 
fixes two ponts on the translation line were classified in [2]. Those planes fall into 
four different families and each family in turn can be parametrized by at most three 
continuous or discrete parameters. To begin with, a 4-dimensional translation plane 
can be represented in the following form : affine points are the points of JR 4 and lines 
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are of the form {(c, w)I w E JR 2
} for c E JR 2 or of the form {(z, Bz+t)I z E JR 2 } where 

t E JR 2 and B is a 2 x 2 matrix. The subspaces corresponding to these matrices 
B together with the vertical subspace S = {(O, w )I w E JR 2} form a collection B of 
2-dimensional subspaces of JR4 that partition JR4 except 0 (spread). One can always 
assume that W = {( z, 0) I z E JR 2} belongs to B. Each map ( z, w) H ( r z +a, rw + b) 
for a, b E JR 2 and r E JR \ { 0} is a collineation of this plane and the full collineation 
group is the semi-direct product of the translation group (the above maps with 
r = 1) and the stabilizer of (0, 0). 

In the following we list the connected component .6. of the stabilizer of (0, 0) 
and the partition B for each of the four families of translation planes as given in 
[2, Satz 1-4]. As noted in [4, pp. 189-191] one must have p = 0 in the first two 
families in order to obtain topological planes. Furthermore, in the last two families 
one can assume c = 0 up to isomorphism. (An isomorphism can be chosen of 

the form x H ( 

1 
1 .i. . .i.) for suitable 1/J; this matrix centralizes the 

COS 'r Sln 'r 

- sin 1/J cos 1/J 
corresponding group .6., so that both planes have the same group of collineations 
.6..) The two fixed points on the infinite line £ 00 are the infinite points of the 
vertical line S and of the horizontal line W respectively. Thus all matrices in 

.6. have block structure ( ~ ~ ) with some 2 x 2 matrices A, B. For brevity, we 

denote such a matrix built from A and B by DA,B· Given a 2 x 2 matrix M 
representing a 2-dimensional subspace in B, we use the notation M 0

A,B = BMA- 1 

and MA = {M0
1 o E .6.}. Moreover, we represent the 2-dimensional subspaces 

i:- W, S in B by their describing matrices. The four families then are: 

(1) 
( 

r cos</> -r sin</> 
.6.w = { r sin</> r cos</> 

rs ) I r > o, s > o, o s <P < 211" }, 

rsw 

(
1 o)Aw 

Bw,c = {W, S} u c 1 ' 

where 0 < w < 1 and 0 Sc S ~~' 

-r sin</> 
r cos</> 

8; = {W, S) U 0 ~ )"', 
where d ~ ~' 
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l::..p,q = { 
( 

aeP 8 cos s aeP 8 sins 
-aePs sins aeP 8 cos s 

Bp,q,d = {W, S} U 0 ~ )""', 
aeqt cost aeqt sin t) I 

-aeqt sin t aeqt cost 

where -1 < d < O, p = q;::: 23, or 

d > O, d =/:- 1, q > O, p = ~+~ q, k a positive integer, 
(d2 - 1)2 + (q + p)2 d(d - 1)2 

- (q - p)2 d(d + 1)2 so, 

a> 0, } 
s,t E ~ ' 

l::..m,n = { -a sin m</> a cos m</> 
( 

a cos m</> a sin m</> 

b cos n</> bsin n</>) I 
a, b > O, } 

0 s </> < 271" ' 
-bsin n</> b cos n</> 

Brn,n,d = {W, S} U ( ~ ~) ,;m,•, 

where m, n are integers, 0 < m s n, such that 

{ 
m = n = 1, -1 < d < 0, or 

1;: S d S ::i, d =/:- 1, n = m + 1 or n = m + 2, and m odd. 

In all four cases I::.. is 3-dimensional and abelian. Moreover, if such a translation 
plane occurs as the derived affine plane of a Minkowski plane, we may assume 
that two points (x,y,u,v),(x',y',u',v') E ~4 are(+)- or (-)-parallel if and only if 
x = x', y = y' or u = u', v = v' respectively and that the point of derivation has 
the coordinates ( oo, oo ). 

T± comprises all translations in (±)-direction and thus T± is at least 2-dimen­
sional. From the list above one further sees that r = 1, </> = 0 in families ( 1) 
and (2), a = 1, s = 0 in family (3), and a = 1, </> = 0 in family ( 4) yields an 
additional 1-dimensional subgroup of T+. Similarly, r = 1, s = 1 in family (1), 
r = 1, t = 0 in family (2), a= 1, t = 0 in family (3), and b = 1, </> = 0 in family ( 4) 
yields an additional 1-dimensional subgroup of T-. Thus T± is 3-dimensional and 
T = T+ x T- is 6-dimensional. 

Using this classification of 4-dimensional translation planes and coherence prop­
erties of 4-dimensional Minkowski planes it is, in thoery, possible to determine all 
4-dimensional Minkowski plane with a 7-dimensional automorphism group, but it is 
difficult to verify the axioms of a Minkowski plane for the resulting incidence struc­
tures. The verification of the continuity of the geometric operations is facilitated 
by [20]; for Minkowski planes in standard representation it suffices to prove that 
joining is continuous. 

Circles with a 1-dimensional compact subgroup in its stabilizer can only occur 
in one particular situation. 

2.5 Proposition. Assume that M is non-classical and that there is a circle K 
not passing through the unique fi.xed point p of Lj such that its stabilizer LjK in Lj 

contains a 1-dimensional compact subgroup. Then this subgroup fi.xes each circle 
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through Kn IPI+ and Kn IPI-· Every stabilizer of a circle not passing through 
p contains a 1-dimensional compact subgroup. Moreover, the derived affine plane 
Ap at p is one of the planes described in [2, Satz 4] (i.e. family ( 4) above) with 
parameters c = 0 and m = n = 1. In particular, this is true, if EK is 2-dimensional. 

If no such circle exists, then E operates transitively on the set of circles not 
passing through p and the connected component of each stabilizer of a circle is 
isomorphic to IR. 

Proof. Let p be the unique fixed point of the 7-dimensional group of automorphisms 
E. We use the description of the derived affine plane A at pas given in 2.4. 

Let K be a circle not passing through p. The stabilizer EI< of K fixes the points 
P+ =Kn IPI+ and P- =Kn IPI- and also q = IP+I- n IP-I+· By the Rigidity 
Lemma 1.2 we have dim EI<,z ~dim EP+,p-,z = 0 for each point z EK\ {p+,P-}. 
Thus dim EK ~ 2, because K is 2-dimensional. Since the pencil of circles through 
P+ and P- is 2-dimensional and as dim EP+,P- =dim Eq = 3, the stabilizer EK is 
at least 1-dimensional. Furthermore, EK n T± ={id}. 

Let <I> be the connected component of L:I<. We may assume that q is the point 
(0, O, O, 0) E IR4; thus <I> is a subgroup of one of the groups D. listed in 2.4. From the 
identifications made above it follows that D. n T+ and D. n T- consists of all those 
matrices SA,B E D. with A= I, the 2 x 2 identity matrix, and B =I respectively. 

Suppose that EK contains a 1-dimensional compact subgroup, that is, the con­
nected component E> of this subgroup is isomorphic to S0(2, IR). Then e- rv E> ~ 
S0(2, JR) can be identified with a subgroup of {Bl SA,B E D.}. This excludes the 
families (1) and (2). In order to find E> for the families (3) and ( 4) note that the 
simply connected covering group of D. is IR 3 and that a 1-dimensional subgroup of 
!R3 can be represented as a line through the origin. E> is then found by projecting 
onto D. where the parameters of the line have to be chosen such that this image 
becomes compact. In this way it is easy to see that for the family (3) the subgroup 
E> must be 

( 

cos ij </> sin ij </> 
e = { - sin ij<f> cos ij<f> 

cosp</> 
- sinp</J 

. -,1,)l</>EIR} smp'+' 
cos p</J 

where we write p and ij for the parameter p and q of the plane to distinguish them 
form the points p and q as defined above. In order that this group is compact one 
must have p = 0 or p = ij > 0. In the former case however, E> is contained in T­
contrary to EK n T- ={id}. We now assume that p = ij. Let 

S={ -eP 8 sins 

( 

eP~ COSS efis sins 
eP8 COSS 

-t -t ) I s t E IR} 
eq_ cost e~ sint ' 

-eqt sin t eqt cost 

i.e. S = D. n (T+ x T-); then Sn E> ={id} and we can identify E> with a subgroup 
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of A/ S '.:::'. JR - a contradiction. In family ( 4) the subgroup e must be 

( 

cos m</> sin me/> 
e = { -sin me/> cosm¢ 

cos nc/> 
- sinnc/> 

. "') I o < </> < 271" }. sm n'f' -

cosnc/> 

If 1 ~ m < n, then </> = 2
; < 27r; for this cf> one finds that the corresponding 

automorphism is in EK n T- = {id}. Thus cos me/> = 1 and sin m</> = 0 and 1;: must 
be an integer contrary to 0 < ';: < 1. This shows that m = n = 1 in family ( 4). 

8 also operates on the set of circles through P+ and P-. Extending this set by 
lql and IPI one obtains a larger set which is homeomorphic to § 2 by the coherence 
axioms in a 4-dimensional Minkowski plane (for the definition of coherence see [15, 
2.1)). Furthermore, the action of e extends to § 2 where e '.:::'. S0(2, JR) possesses at 
least three fixed elements (namely lql, IPI, and K). Hence, the group e must act 
trivially on § 2 according to [10, VI.6.7.1]. This proves that each stabilizer of a circle 
not passing through p contains a 1-dimensional compact subgroup because, by the 
transitivity of E on affine points, such a stabilizer is conjugate to a stabilizer of a 
circle passing through P+ and P- . 

We now suppose that dim EK= 2; thus <Pis 2-dimensional too. Since dim <Pz ~ 
dim EP+,p-,z = 0 for each point z EK\ {P+,P-} and because <Pis connected, we 
deduce that <P acts transitively and effectively on K \ {P+, P-}. As <P ~ A is abelian, 
<.l> and K\ {P+, P-} are homeomorphic. But a 2-dimensional abelian connected group 
is isomorphic to JR2

, JR x S0(2, JR) or S0(2, JR) x S0(2, JR). In the first and third case 
however, <.l> cannot be homeomorphic to K\ {p+,P-} ~JR xS0(2,JR). This implies 
that <.l>,....., JR x S0(2, JR). Hence <.l> contains a 1-dimensional compact subgroup. 

If no stabilizer contains a 1-dimensional compact subgroup, dim EL = 1 for 
all circles L E JC \ JCp not passing through p. Hence, each such circle has a 6-
dimensional orbit. As the set of all these circles is connected and 6-dimensional, E 
operates transitively on JC\ JCp. The connected component of EL must obviously 
be isomorphic to JR. D 
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