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A composite droplet made of two miscible fluids in a narrow tube generally moves under the action of capillarity until complete
mixture is attained. This physical situation is analysed here on a combined theoretical and numerical analysis. The mathematical
framework consists of the two-phase flow phase-field equation set, an advection-diffusion chemical concentration equation, and
closure relationships relating the surface tensions to the chemical concentration. The numerical framework is composed of the
COMSOL Laminar two-phase flow phase-field method coupled with an advection-diffusion chemical concentration equation.
Through transient studies, we show that the penetrating length of the bidroplet system into the capillary tube is linear at early-time
regime and exponential at late-time regime.Through parametric studies, we show that the rate of penetration of the bidroplet system
into the capillary tube is proportional to a time-dependent exponential function. We also show that this speed obeys the Poiseuille
law at the early-time regime. A series of position, speed-versus-property graphs are included to support the analysis. Finally, the
overall results are contrasted with available experimental data, grouped together to settle a general mathematical description of the
phenomenon, and explained and concluded on this basis.

1. Introduction

When two physically distinct but miscible liquid droplets are
placed in a capillary tube, a key feature that is commonly
observed is the bulk motion of the composite droplet under
the action of capillarity until complete mixing is attained
[1]. In Figure 1 is given a freehand sketch of this scenario.
This is an example of motion due to (chemical) Marangoni
effect [2–4]. The motion of the bidroplet system is caused
by local variations of its advancing and receding surface
tensions that are in turn caused by differences in its chem-
ical compositions. Out of this simple scenario grew two
kinematical concepts, namely, the penetrating length and the
penetrating rate. When both concepts are grouped together,
we attain, by inference, slug self-propulsion mechanism—a
juxtaposition of two miscible liquid droplets. An important
facet of this driving mechanism is that it is simple and so
could be delicately adjusted to manipulate liquid droplets

in small-scale fluidic devices. Earlier scientists have studied
the phenomenon experimentally and have concluded that it
might be used as a means of self-propelling, transporting
microscale substances at a respectable penetrating length and
rate, respectively, of orders of centimeters, centimeters per
second [1, 5, 6].

Bouasse [7] inquired experimentally on capillarity and
interfacial phenomena. He found that a droplet predeposited
in a conic tube undergoes motion towards the narrow region
because of the Laplacian pressure difference induced on both
itsmenisci.Weislogel [8] investigated the dynamics of a liquid
droplet in a chemically asymmetric tube, by treating the tube
to be successively hydrophilic and hydrophobic. He found the
droplet tomove towards the hydrophilic side. Dos Santos and
Ondarçuhu [9] argued that a droplet containing a reactive
substance remained in its state of motion as long as such
reactive agent is operative—the dynamics of reactive wetting
on solid surfaces were discussed by De Gennes [10].

Hindawi Publishing Corporation
Advances in Mathematical Physics
Volume 2016, Article ID 1234642, 16 pages
http://dx.doi.org/10.1155/2016/1234642



2 Advances in Mathematical Physics

Slug self-propulsion in a capillary tube

Partially mixed Fully mixedUnmixed

At t = t∞At t = tiAt t = t0

Figure 1: Illustration of the slug self-propulsion phenomenon in a
capillary tube.

Historically, it may be that the first documented study
goes back to 1712, when Hauksbee [11] investigated the
behaviour of a drop of oil of oranges sandwiched in between
two nonparallel glass plates. In that paper, two points obvi-
ously follow in the light of this phenomenon. First, the fact
that the motion of the drop reversed when the slope of those
two plates was reversed led Hauksbee to believe that the
direction of motion is towards the narrow region. Secondly,
the fact that his experiment was reproducible in vacuum
further informed Hauksbee that such motion is solely due to
interfacial phenomenon.

Currently, existing (active) techniques of manipulat-
ing discrete droplets include electrowetting [12–17], dielec-
trophoresis [18], thermocapillary [19–22], surface acoustic
wave (SAW) [23, 24], and pressure-driven based-channel sys-
tems [25].Thanks to these sophisticated techniques, the fields
of nano- and microfluidics have seen over the past decade
considerable development.

Self-propulsion phenomena as well as coalescence phe-
nomena are found to have generated considerable inter-
est and many features have been correctly described
and explained as well. Some fundamental questions were
addressed by De Gennes [10, 26, 27] and Shanahan and
De Gennes [28]. Shanahan and De Gennes stressed that
the motion of the system is switched on mainly due to the
slight perturbation communicated to the system at the time
when the second droplet is brought into close contact to
the predeposited one. Furthermore, the authors pointed out
that for motion to occur the system must necessarily be
asymmetric and that such motion is maintained only insofar
that such character is observed in the system.

Recently, there has been a growing interest in exploiting
droplets self-propulsion phenomenon, thereby avoiding the
arduous fabrication procedures required [6, 29, 30]. For
instance, Karpitschka and Riegler [31] gave an account on
the coalescence of liquid droplets in two respective regimes,
namely, the fast coalescence or delayed coalescence. In the
paper of Karpitschka and Riegler, the authors pointed out
that the coalescence phenomenon is predominantly governed
by surface tension, regardless of whether it is fast or delayed
coalescence. For instance, when the difference 𝛿𝛾 in the
surface tensions of the working droplets is such that 𝛿𝛾 ≈3mN⋅m−1, delayed coalescence phenomenon is observed
from the bidroplet system and, for all other cases such that𝛿𝛾 < 3mN⋅m−1, fast coalescence phenomenon is observed.
In a subsequent paper, Karpitschka and Riegler [32] explore
the study of delayed droplets coalescence phenomenon on a
combined experimental and theoretical basis.

On the one hand, the self-propulsion of liquid droplets
has also been addressed by Sinz and Darhuber [6] and
Sellier et al. [29, 30]. In the works of Sellier et al., the
authors examined the self-propulsionmechanisms in uncon-
fined systems, that is, sessile droplets configuration. The
principles of manipulating discrete droplets using active
methods were considered by Darhuber, Valentino, Davis,
and Troian [33, 34]. In the paper of Sinz and Darhuber, the
authors addressed the self-propelling of surfactant droplets
in chemically confined systems. Therein, Sinz and Darhuber
argued that this passive driving mechanism might be used to
transport microscale substances.

Lunati and Or [35] undertook the problem of gravity-
driven slug dynamics in capillary tubes. The authors have
answered questions regarding the origin, strength, and effects
of the drag-forces developed at the contact lines. They also
studied the kinematics of the slug, contrasting the numerical
simulation results with the experiment results of Bico and
Quéré [36] on falling of viscous slugs in vertical capillary
tubes. Bico and Quéré deduced a set of scaling relationships
characterising the steady motion of the slug. On the experi-
mental side, the earliest laboratory experiments wherein the
subject matter based on purely confined systems has been
explored thoroughly were those of Bico and Quéré [1, 5].
These are the most important works in close connection with
the subject at hand. In these, more work was endeavoured
on the dynamics of trains of droplets in horizontal capillary
tubes in both wetting and drying conditions. For instance,
in the former paper of Bico and Quéré [5], which constitute
their preliminary ground-based experiments, they argued
mainly on the coating properties of trains of juxtaposed liquid
droplets in terms of geometrical and viscous effects—another
very interesting field of inquiries; they moreover drew
attention on their versatility towards integrated microfluidic
devices. For example, Bico and Quéré [1] have studied the
response of the system in more complex geometries and
displayed more features on a combined experimental and
theoretical basis.

Since then, only few scientists have begun to study the
subject on theoretical and numerical sides. Furthermore,
studies numerically based on the slug self-propulsion phe-
nomenon do not appear to have received much attention.
To sum up, it may be concluded that we found no scientist
has come to ponder on the self-propelling phenomenon in
confined systemquantitatively and to arrive at amore rational
conception of it.

We have studied carefully the dynamics of a two miscible
fluids in a capillary tube and, accordingly, found the law
describing the position (or penetrating length) of the slug
into the capillary tube is well described by the following
relationship: 𝑋𝑠(𝑡) ≈ 𝜂1{1 − exp(−𝜂2(𝑡 − 𝑡0))}, where 𝜂1,𝜂2 > 0 are property-dependent constants. Furthermore, it is
observed at the early-time that the slug velocity (or rate of
penetration), that is,𝑈𝑠 = 𝜕𝑡𝑋𝑠(𝑡), obeys a Poiseuille law:𝑈𝑠 ∝𝑅(𝛾1,0 − 𝛾2,0)/4𝜇𝑙𝑠. In this expression, 𝑅 designates the radius
of the capillary tube; 𝛾1,0, 𝛾2,0 > 0 are the surface tensions of
the miscible fluids; and 𝜇, 𝑙𝑠 > 0 are the dynamic viscosity
and length of the slug. We came to these laws numerically by
collecting data on the slug position as a function time and
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Figure 2: Illustration of a slug composed of twomiscible fluidsΩ1∪Ω2, both of which bounded partly by the capillary tube Γ𝑠 and by Γ𝑘
(with 𝑘 = 1, 2) by a still vapour phase Ω±V . The lengths 𝐿, 𝑙1, 𝑙2 > 0
denote the length of the capillary tube and droplets 1 and 2. Bold
arrow denotes the direction of its motion.

the maximum travelled distance. An inspection of the form
of the property 𝑈𝑠 (discussed hereinafter) evidences at once
that small and low viscous substances are speedier than large
and highly viscous ones.

In this paper, an account of the mathematical develop-
ment is given. The paper is organised as follows: Section 2 is
devoted to mathematical formulations and Section 3 to the
numerical implementation of the mathematical framework.
Results from numerical experiments and analysis are pre-
sented in Section 4: the motions of the slug with respect to
time and property constants are discussed in Sections 6 and 7,
respectively; the results are contrasted with the papers of Bico
and Quéré [1, 5]. In Section 8, a power-law model describing
the position of the slug with respect to time and the leading
property constants involved is established.The overall results
are finally argued in Section 9.

2. Mathematical Formulations

2.1. Preliminaries. First, some aspects, definitions, and nota-
tions are in order. Truly speaking, we examine here a three-
fluid flow problem, the properties of which are such that two
of which are miscible phases but immiscible with the third
one. In this context, their respective domains of definition are
written as

Ω−V ∪ Ω+V def= {(𝑟, 𝑧) : 0 ≤ 𝑟 ≤ 𝑅, (0 ≤ 𝑧 < 𝑧Γ2)
∪ (𝑧Γ1 < 𝑧 ≤ 𝐿)} ,

Ω1 ∪ Ω2 def= {(𝑟, 𝑧) : 0 ≤ 𝑟 ≤ 𝑅, 𝑧Γ2 ≤ 𝑧 ≤ 𝑧Γ1} ,
(1)

where r = (𝑟, 𝑧)𝑇 is a point of either the set Ω−V ∪ Ω+V orΩ1 ∪ Ω2. The scalar fields 𝑧Γ𝑖(𝑡) (with 𝑖 = 1, 2) are the
respective time-dependent positions of the (front and rear)
interfaces of the slug. Obviously, the sets Γ1 = Ω1 ∪ Ω+V andΓ2 = Ω1 ∪ Ω−V denote those time-dependent interfaces. These
physical domains, sets (1), are clearly illustrated in Figure 2.
The choice of Figure 2 is motivated by that of Figure 1. In
view of the foregoing definitions, it thus appears evident to
regard Ω1 ∪ Ω2 ⊂ R2 merely as a two-miscible-liquid region
and Ω±V = Ω−V ∪ Ω+V ⊂ R2 the (disjoint) union of its rear
and front vapour phase regions. In fact, with these underlying

definitions in mind, both phases can be related without loss
of generality as thus

vol (Ω−V ∪ Ω1 ∪ Ω2 ∪ Ω+V )
= vol (Ω1 ∪ Ω2) + vol (Ω−V ∪ Ω+V ) , (2)

where vol(⋅) denotes the volume of its arguments. Further-
more, we characterise by the scalar fields 𝜙12, 𝜙V ∈ [0, 1]
the functionals describing the volume fraction of fluids inΩ1 ∪Ω2 ⊂ R2 andΩ−V ∪Ω+V ⊂ R2, respectively. Consequently,
by virtue of the above postulation, (2), it results in

1 = vol (Ω1 ∪ Ω2)
vol (Ω−V ∪ Ω1 ∪ Ω2 ∪ Ω+V )
+ vol (Ω−V ∪ Ω+V )
vol (Ω−V ∪ Ω1 ∪ Ω2 ∪ Ω+V ) = 𝜙12 + 𝜙V,

(3)

where 𝜙12⌋Γ𝑖 ≃ 𝜙V⌋Γ𝑖 ≃ 1/2 (with 𝑖 = 1, 2). In regard to
these facts, the problem under consideration now reads
an Immiscible Two-Phase Flow problem. At this point, we
have made the essential geometrical features prominent and,
in what follows, a two-phase flow concentration-dependent
surface tension problem of a viscous liquid slug in a capillary
tube is undertaken.

2.2. Transport of Concentration by Diffusion and Convection.
Denote by the scalar field C(𝑙)(r, 𝑡) the chemical concen-
tration of a (highly) volatile substance filling the region Ω2
initially (note that the other substance filling the regionΩ1 is
taken to be lowly volatile). To establish the transport equation
for the chemical concentration functionC(𝑙)(r, 𝑡) inΩ1 ∪Ω2,
we reason in the following way.

Initially, postulate the concentration within the slug to be
such that

C
(𝑙) (r, 𝑡) = 𝑖 − 1 in Ω𝑖 × {𝑡 = 0} (𝑖 = 1, 2) ; (4)

and presuppose a normally imposed flux 𝜑𝑖 ≥ 0 on the
corresponding boundary Γ𝑖 (with 𝑖 = 1, 2, 𝑠) by its external
surroundings. Then, by virtue of these assertions, C(𝑙)(r, 𝑡)
is simply described by the equation of chemical species
transported by diffusion and convection (CD-model, say), as

𝜕𝑡C(𝑙) + div (C(𝑙)u) − div (𝐷21∇C(𝑙)) = 0
in ⋃
𝑖=1,2

Ω𝑖 × (0, 𝑇) ;
−n𝑖 ⋅ (C(𝑙)u − 𝐷21∇C(𝑙)) = 𝜑𝑖

on Γ𝑖 × (0, 𝑇) (𝑖 = 1, 2, 𝑠) ;
C
(𝑙) (r, 𝑡) = 𝑖 − 1
in Ω𝑖 × {0} (𝑖 = 1, 2) ;

(5)

for given 𝑇 > 0. In (5), the proportionality factor 𝐷21 >0 is the diffusivity of fluid 1 into 2; the vector field n𝑖(r, 𝑡)
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denotes the outward normal unit vector corresponding to
the boundary Γ𝑖 (with 𝑖 = 1, 2, 𝑠). It may be pointed out
in passing that this convection-diffusion model, that is, (5),
merits further attention, for it should also agree with the
subsequent changes in position of the slug. This point is
clarified in a later section.

2.3. Inclusion of Concentration-Dependent Surface Tension.
We now discuss proper forms of interfacial forces at the
boundaries Γ1, Γ2. Supposing a solution for the scalar field
C(𝑙)(r, 𝑡) is granted, we can then define 𝛾𝑖(C(𝑙)Γ𝑖 ) as the growth,𝑖 = 1 (resp., decay, 𝑖 = 2) of interfacial effects in terms of
C
(𝑙)
Γ𝑖

= C(𝑙)⌋Γ𝑖 at their respective boundaries Γ1, Γ2. In order
to deduce such proper forms for 𝛾𝑖(C(𝑙)Γ𝑖 ), we shall in the first
place consider the following facts: initially, the domains Ω1,Ω2 are characterised to be such thatC(𝑙) = 0 inΩ1 andC(𝑙) =1 in Ω2, and, finally, both are expected to be in equilibrium
(chemically), attaining the valueC(𝑙)∞ ∈ (0, 1), say; thence, the
correct conditions to be imposed upon C

(𝑙)
Γ𝑘
(r, 𝑡) (with 𝑖 = 1,2) simply write as

C
(𝑙)
Γ𝑖
= 𝑖 − 1 on Γ𝑖 × {𝑡 = 0} (𝑖 = 1, 2) ;

C
(𝑙)
Γ𝑖
= C
(𝑙)
∞ on ⋃

𝑖=1,2

Γ𝑖 × {𝑡 󳨀→ ∞} . (6)

Taking (6) into consideration along with an additional asser-
tion that the surface tensions evolve linearly, one arrives at

𝛾𝑖 (C(𝑙)Γ𝑖 ) = C(𝑙)∞ −C
(𝑙)
Γ𝑖

C
(𝑙)
∞ − (𝑖 − 1)𝛾𝑖,0 +

C
(𝑙)
Γ𝑖
− (𝑖 − 1)

C
(𝑙)
∞ − (𝑖 − 1)𝛾𝑖,∞

on Γ𝑖 × (0, 𝑇) (𝑖 = 1, 2) .
(7)

The linearity of 𝛾𝑖(C(𝑙)Γ𝑖 ) (with 𝑖 = 1, 2) on the scalar field
C(𝑙)(r, 𝑡) is heremotivated by the works of Carles andCazabat
[37, 38] on the spreading dynamics of Newtonian droplets.
Therein, Carles and Cazabat [37] found that the surface
tension of those mixed substances varied roughly linearly
with the chemical concentration of the mixture. Equation
(7) is physically reasonable, for C(𝑙) ∈ [0,C(𝑙)∞] in Ω1 and
C(𝑙) ∈ [C(𝑙)∞, 1] inΩ2. However, out of (7) grew one important
question which is somehow unclear.

Question 1. What are the magnitudes of C(𝑙)∞, 𝛾𝑖,∞ > 0 (with𝑖 = 1, 2)?
The answer of this question is found in the following line

of reasoning. First, it is evident that

lim
𝑙2→0

C
(𝑙)
∞ = 0,

lim
𝑙2→∞

C
(𝑙)
∞ = 1

for every 𝑙1 = Const., 𝑡 ∈ (0, 𝑇) ,
(8)

where the geometrical property 𝑙1 > 0 stands for the size ofΩ1
along the 𝑧-axis (see Figure 2). That is, the (chemical) equi-
librium state is somewhat dependent upon the geometrical
properties of the slug, as found in the paper of Bico andQuéré
[1].Thus, the expression which wouldmatch these conditions
is C(𝑙)∞ = 𝑙2/(𝑙1 + 𝑙2), since C(𝑙) = 𝑖 − 1 in Ω𝑖 (with 𝑖 = 1, 2) at
time 𝑡 = 0. Note that C(𝑙)∞ = 1/2 is also an admissible value
but only for a particular case so to speak when 𝑙1 = 𝑙2, for
it neglects the geometrical property of the slug, particularly,
when 𝑙2 → 0,∞.

In regard to these arguments, one then concludes that the
lesser the length 𝑙2 > 0 the higher the concentration C(𝑙)∞ ∈(0, 1). It now remains to settle proper forms for 𝛾𝑖,∞ > 0 (with𝑖 = 1, 2). First, we note that
lim
𝑡→∞

𝑙1𝛾1 + 𝑙2𝛾2𝑙1 + 𝑙2 = 𝑙1𝛾1,∞ + 𝑙2𝛾2,∞𝑙1 + 𝑙2 = 𝑙1𝛾1,0 + 𝑙2𝛾2,0𝑙1 + 𝑙2
on ⋃
𝑖=1,2

Γ𝑖;
𝛾2−𝑖,∞ ≡ 𝛾2−𝑖,0 when 𝑙1+𝑖 = 0 (𝑖 = 0, 1) .

(9)

Hence, these suggest to consider a barycentric-based model,
namely, of the form

𝛾𝑖,∞ = 𝑙1𝛾1,0 + 𝑙2𝛾2,0𝑙1 + 𝑙2 , on Γ𝑖 (𝑖 = 1, 2) , (10)

because 𝛾1,∞ = 𝛾2,∞ (equilibrium surface tension) when𝑡 → ∞. Clearly, there is no loss of generality in doing so,
for not only does (10) agree well but it is also a physically
acceptable expression. We are now well prepared to set forth
the governing equations; this is the purpose of the next
section.

2.4. Two-Phase Flow Phase-Field Model. In Sections 2.2 and
2.3, we covered much ground on diffusive and interfacial
effects. The present section takes those effects into account
and models the slug self-propulsion mechanism using the
phase-field approach. In a sense, we have beforehand the
motion of a two-miscible-liquid system partly in contact
with an immiscible one, the vapour phase region. Therefore,
the starting point is naturally based on the classical Navier-
Stokes equations (NS-model, say) for incompressible flow
with interfacial forces coupled with the so-called Cahn-
Hilliard evolution equation (CH-model, say). In the absence
of gravitational field, those equations in vector invariant
forms read as follows:

𝜕𝑡 (𝜌u) + div (𝜌u ⊗ u) − div T (𝑝, u) −G∇𝜙 = 0

in ⋃
𝑖=1,2,V

Ω𝑖 × (0, 𝑇) ,
𝜕𝑡𝜙 + div (𝜙u) − div (𝜛∇G) = 0

in ⋃
𝑖=1,2,V

Ω𝑖 × (0, 𝑇) ,
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div u = 0
in ⋃
𝑖=1,2,V

Ω𝑖 × (0, 𝑇) ,
(11)

where the stress tensor T(𝑝, u), constructed with the pressure
and velocity fields 𝑝(r, 𝑡), u(r, 𝑡) reads as follows:
T (𝑝, u) = −𝑝I + 2𝜇S (u) ,

where S (u) = 12 {∇u + (∇u)𝑇} . (12)

It is understood that ΩV = Ω−V ∪ Ω+V (= Ω±V ). In (11) and (12),
the property constants𝜌, 𝜇 > 0 characterise themixed density
and dynamic viscosity of the slug; both are defined in terms
of the material properties of the two phases, and the smooth
(phase-field) function 𝜙12(r, 𝑡) ∈ [0, 1] is 𝛽 = 𝛽V+(𝛽2−𝛽V)𝜙12
(with 𝛽 = 𝜌, 𝜇). The functionG(𝜙) defines the so-called bulk
chemical potential as

G (𝜙) = − 𝜁𝜀2 {div (𝜀2∇𝜙) − (𝜙2 − 1) 𝜙} ,
where 𝜙 (r, 𝑡) ∈ [−1, 1] .

(13)

In (13), 𝜀 > 0 [m] is a capillary width that scales with the
thickness of the boundaries Γ1, Γ2; 𝜛 > 0 [m3⋅s⋅kg−1], the
mobility term which determines the time scale of the Cahn-
Hilliard diffusion; and 𝜁 > 0 [N], the mixing energy density.
For more details see, for instance, the papers of Yue et al. [39]
and Jacqmin [40] as well. We draw attention to the fact that𝜙12 ≃ (1 + 𝜙)/2, and, therefore
𝜙12 = min{max(1 + 𝜙2 , 0) , 1} ,

where 𝜙 (r, 𝑡) ∈ [−1, 1] .
(14)

In (14), min(⋅) and max(⋅) are operators which give the
minimum and maximum of their respective arguments.
Throughout the following discussion, the phase-field func-
tion 𝜙(r, 𝑡) ∈ [−1, 1] is used instead of 𝜙12(r, 𝑡) ∈ [0, 1]. It now
remains to supplement the appropriate boundary conditions
on Γ1, Γ2, Γ𝑠. At the inlet and outlet boundaries a zero pressure
is imposed; that is, the system containing the domainsΩ1,Ω2
is embedded in a still environmentΩV.Wetted wall boundary
conditions are imposed along Γ𝑠; the contact angles are such
that 𝜃1 ≡ 𝜃2 (≡ 𝜋/3 [rad]). The choice 𝜃𝑘 ≡ 𝜋/3 [rad] (with𝑘 = 1, 2) is justified from the fact that the advancing and
receding boundaries of themiscible bidroplet systemΩ1∪Ω2
are convex curves, following the works of Bico and Quéré
[1, 5]. More features based partly on the field 𝜙(r, 𝑡) ∈ [−1, 1]
are discussed in Section 3.

3. Numerical Implementation

This section furnishes the mathematical model so far dis-
cussed with numerical features to simulate the motion of the
slug. Figure 3 shows a simplified computational box model
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Figure 3: Sketch diagram of the computational box model used in
this study paralleled with the corresponding zero level set function𝜙V(𝑧, 𝑡) ∈ [0, 1] to delineate the regions of interest.

with the corresponding zero level set function 𝜙V(r, 𝑡) ∈ [0, 1]
delineating the regions of interest.

Recall that we are concerned with the motion of a slug
so in order to adapt the solution of C(𝑙)(r, 𝑡) with its motion
one should remap certain property variables attached toΩ1 ∪ Ω2 on a phase-field basis to track the evolution of
this function while following the region Ω1 ∪ Ω2. In other
words, this suggests to remap the scalar fields C(𝑙)(r, 𝑡), 𝜑𝑘
as follows: C(𝑙) 󳨃→ 𝜙C(𝑙) = C

(𝑙)
𝜙 , 𝜑𝑘 󳨃→ 𝜙𝜑𝑘 = 𝜑𝜙,𝑘

(with 𝑘 = 1, 2, 𝑠). Moreover, since 𝜙 ∈ [−1, 1], which is
equivalent to say that min𝜙 = −max𝜙 = 1, the remapping𝜙 󳨃→ (1 + 𝜙)/2 is first taken into account so as to obtain𝜙 ∈ [0, 1], as can be easily checked by substitution. Clearly,
from these remappings one observes that the convection-
diffusion equation vanishes only outside the regionΩ1 ∪ Ω2.
Consequently, these now result in a model which spans over⋃𝑖=1,2,V Ω𝑖, while retaining its characteristics only inΩ1 ∪Ω2.
Hence, invoking these mapping properties into (5) yields

𝜙𝜕𝑡C(𝑙) + div Ξ𝜙 = F𝜙 in ⋃
𝑖=1,2,V

Ω𝑖 × (0, 𝑇) ,
C
(𝑙)
𝜙 (r, 𝑡) = 𝑖 − 1

in Ω𝑖 × {𝑡 = 0} (𝑖 = 1, 2) ,
−n𝑖 ⋅ (C(𝑙)𝜙 u − 𝐷21∇C(𝑙)𝜙 ) = 𝜑𝜙,𝑖 = −n𝑖 ⋅ (C(𝑙)𝜙 u)

on Γ𝑖 × (0, 𝑇) (𝑖 = 1, 2, 𝑠) ,

(15)

where the fields Ξ𝜙(r, 𝑡),F𝜙(r, 𝑡) are for shortness defined by
Ξ𝜙 (r, 𝑡) = (u − 𝐷21∇)C(𝑙)𝜙 in ⋃

𝑖=1,2,V
Ω𝑖 × (0, 𝑇) ;

F𝜙 (r, 𝑡) = − (𝜕𝑡𝜙)C(𝑙) in ⋃
𝑖=1,2,V

Ω𝑖 × (0, 𝑇) . (16)

Following (15), the problem then becomes one of finding
the solution of a General Form PDE. Alternatively, one can
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formulate the convection-diffusion equation describing the
scalar fieldC(𝑙)(r, 𝑡) as follows:
𝜕𝑡C(𝑙) + div (𝜙uC(𝑙) − 𝐷21𝜙∇C(𝑙)) = R𝜙 (r, 𝑡)

in ⋃
𝑖=1,2,V

Ω𝑖 × (0, 𝑇) , (17)

where the reaction term R𝜙(r, 𝑡) appearing in the above
transport reads as

R𝜙 (r, 𝑡) = (1 − 𝜙) 𝜕𝑡C(𝑙) − (𝜕𝑡𝜙)C(𝑙)
in ⋃
𝑖=1,2,V

Ω𝑖 × (0, 𝑇) . (18)

This is the problemof finding the solution of aTransport PDE.
In COMSOL, the latter is called Transport of Dilute Species
Interface. Itmay be observed in passing the fact that whenever
r = (𝑟, 𝑧)𝑇 is a point of Ω1 ∪ Ω2, (1 − 𝜙) = 0 implies that𝜕𝑡𝜙 = 0 and C

(𝑙)
𝜙 = C(𝑙), thence the original convection-

diffusion equation. Contrarily, when r = (𝑟, 𝑧)𝑇 is not a point
of Ω1 ∪ Ω2, (1 − 𝜙) = 1 implies that 𝜕𝑡𝜙 = 0 and C

(𝑙)
𝜙 = 0,

thence the restriction of the property C(𝑙)(r, 𝑡) within the
domain Ω1 ∪ Ω2. These latter two statements confirm
very clearly the validity of the above underlying mapping
procedures.

Now, some techniques which have rendered efficient
aid towards implementing this model with COMSOL are
in order. Henceforth, we presume the following COMSOL
interfaces are activated: the phase-field and General Form
PDE interfaces, respectively: the former for the NS- and
CH-models and the latter for the CD-model. Decidedly, it is
observed that the conditions imposed onC(𝑙)(r, 𝑡) imply that

C
(𝑙)
𝜙 ⌋Γ2 ≳ C

(𝑙)
𝜙 ⌋Γ1 ≥ 0 ∀𝑡 ∈ (0, 𝑇) ; (19)

thence, it follows from (19), using the min(⋅) and max(⋅)
operators, that

C
(𝑙)
𝜙 ⌋Γ𝑘 ≡

{{{
maxC(𝑙)𝜙 (r, 𝑡) for 𝑡 ∈ (0, 𝑇) if 𝑘 = 2;
minC(𝑙)𝜙 (r, 𝑡) for 𝑡 ∈ (0, 𝑇) if 𝑘 = 1. (20)

With these features alongside, we first utilise the COMSOL
min(⋅) andmax(⋅) operators to construct the interfacial forces𝛾𝑖(C(𝑙)Γ𝑖 ) at their respective boundaries Γ1, Γ2. Then, these and
other fluid properties are entered into the fluid properties 𝑖
(with 𝑖 = 1, 2) features. Finally, Γ1, Γ2 are selected as initial
interfaces. In regard to the General Form PDE interface, (15),
its coefficients and flux components, namely, 𝜕𝜆Ξ(r, 𝑡) (with𝜆 = 𝑟, 𝑧), are entered into the appropriate default nodes, the
concentration in Ω2 is initialized to unity, and a zero flux
boundary condition is assumed from the surroundings. This
being so, several simulations were then run with an array
of data extracted from the papers of Bico and Quéré [1, 5].
Extracted data from those authors are tabulated in Table 1.
These simulations are discussed through several cases in the
following sections.

Table 1: The set of property constants used to run the numerical
experiments: data used for case studies 1 to 4.

Data used for case studies
𝑅 (𝑙1, 𝑙2) (𝜌1, 𝜌2) (𝜇1, 𝜇2) (𝛾1,0, 𝛾2,0)[mm] [mm] [g⋅cm−3] [kg⋅m−1⋅s−1] [mN⋅m−1]4 × 10−1 (15, 15) (1.1132, 0.95) (1.6, 1.7) × 10−2 (47.7, 20.3)

4. Results and Discussion

In this section we analyse the results of our simulations based
on the data given in Table 1. The data appearing in Table 1
are those extracted from the papers of Bico and Quéré [1, 5].
This made the need of a condensed notation imperative.
Define in compact form those property constants, namely,𝑅, 𝑙𝑠, 𝐷21, 𝜇 > 0, upon which the numerical experiments
were carried out as 𝜋 def= (𝑅, 𝑙𝑠, 𝐷21, 𝜇)𝑇, and henceforward
view the surface tension difference between both menisci as
a function of the set of parameters 𝜋 and of time 𝑡 > 0,
respectively; that is,

𝛾 (𝑡,𝜋) = 𝛾1 (𝑡,𝜋) − 𝛾2 (𝑡,𝜋)
for given 𝜋, 𝑡 ∈ (0, 𝑇) . (21)

Let the position and speed/velocity, that is, 𝑋𝑠(𝑡,𝜋) and𝑈𝑠(𝑡,𝜋), respectively, of the slug be functions of the forms

Ξ𝑠 = Ξ𝑠 (𝑡, 𝛾) for Ξ𝑠 = 𝑋𝑠, 𝑈𝑠; given 𝜋, 𝑡 ∈ (0, 𝑇) , (22)

so that the corresponding differentials with respect to time
write as

𝑑Ξ𝑠𝑑𝑡 (r, 𝑡) = (𝜕𝑡 + 𝜕𝑡𝛾 𝑑𝑑𝛾)Ξ𝑠 (r, 𝑡) = L𝛾 [Ξ𝑠] (r, 𝑡)
for Ξ𝑠 = 𝑋𝑠, 𝑈𝑠.

(23)

From now on, we can then characterise 𝜕𝑡Ξ𝑠 as the instanta-
neous rate of change but 𝑑Ξ𝑠/𝑑𝛾, the net change in the propertyΞ𝑠(𝑡, 𝛾) with respect to interfacial variation and 𝜕𝑡𝛾(𝑡,𝜋), the
net rate of change in interfacial forces with respect to time.
In particular, by L𝛾[Ξ𝑠](r, 𝑡) is meant the time derivative
of Ξ𝑠(𝑡, 𝛾) following the dynamics of 𝛾(𝑡,𝜋), where Ξ𝑠 =𝑋𝑠(𝑡,𝜋), 𝑈𝑠(𝑡,𝜋). We will come back to those terms in
later sections. In other words, these bring forward the key
factors that do have significant effects on the evolution of
the scalar fields 𝑋𝑠(𝑡,𝜋), 𝑈𝑠(𝑡,𝜋). Suppose the following
baseline properties are granted: 𝜋(0) = (𝑅(0), 𝑙(0)𝑠 , 𝐷(0)21 , 𝜇(0))𝑇,
and important questions related to those properties might
then be addressed. For instance, it would be fruitful to
extend theoretical understanding based on the following
inequalities:

𝛽 ≤ 𝛽(0),
𝛽 > 𝛽(0)

for 𝛽 = 𝑅, 𝑙𝑠, 𝐷21, 𝜇 > 0.
(24)
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Figure 4: Plots of the phase-field function 𝜙(r, 𝑡) along the axis of
the capillary tube at the sequence of times (𝑡𝑘)𝑘=1,2,3 = (5𝑘−1)𝑘=1,2,3
[s].

Henceforth, we primarily aim at answering two sets of
questions. In the first place, we aim to answer the following
questions.

Question 2 (given 𝜋(0)). What are the kinematics of the slug
in steady and unsteady regimes?

Question 3 (given 𝜋(0)). How does the slug evolve when 𝜋(0)

is perturbed to 𝜋(0) + 𝛿𝜋?
And, in the second place, we aim to answer the following

question.

Question 4 (given 𝜋(0) and (𝑡∞, 𝑋𝑠,∞), resp.). Are the posi-
tions of the slug predictable for all 𝑡 ∈ (𝑡0, 𝑡∞)?

In the above last question, the scalar field 𝑋𝑠,∞ > 0
denotes the position of the miscible fluids system after self-
propulsion and 𝑡∞ ≤ 𝑇 the corresponding time. Thus, by
the pairs of scalars (𝑡0, 𝑋𝑠,0), (𝑡∞, 𝑋𝑠,∞) are meant the ending
points of its path in the (𝑡, 𝑋𝑠)-plane. In the following sections
we shed lights on the above three questions by advancing a
series of graphical results and mechanical explanations.

5. The Phase-Field Function

The proposed methodological approach rests on the phase-
field technique. Knowing the subsequent positions of the
phase-field function 𝜙(r, 𝑡) when time evolves, one can take
advantage if it calculates the subsequent position of the slug.
Thus, the discussion commences by computing the scalar
field 𝜙(r, 𝑡). To do so, we use the set of property constants
tabulated in Table 1.

The time evolution of the phase function 𝜙(r, 𝑡) is illus-
trated at the sequence of times (𝑡𝑘)𝑘=1,2,3 = (5𝑘−1)𝑘=1,2,3 [s]
in Figure 4. We draw attention that 𝜙(r, 𝑡) is graphed by the
remapping 𝜙 󳨃→ (1 + 𝜙)/2 in order to have 𝜙 ∈ [0, 1] instead
of 𝜙 ∈ [−1, 1].
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Figure 5: Position of the slug as function of time, 𝑋𝑠(𝑡) ≈ 1.5𝑡 −0.15 [mm]. The radius of the capillary tube is 0.4 [mm], and the
successive lengths are 𝑙1 = 16 [mm] and 𝑙2 = 11 [mm]. Note that
the experimental result gives 𝑈𝑠 ≈ 1.55 [mm⋅s−1], and ours reads
as 𝑈𝑠 ≡ 𝜕𝑡𝑋𝑠 ≈ 1.50 [mm⋅s−1]. The numerical result (solid line) is
compared with that of Bico and Quéré [5] (dotted line).

6. Case 1: Motion of the Slug versus Time

The following two cases concern the rate of penetration
of the slug into the capillary tube in steady and unsteady
regimes. The steady case/regime refers to the case for which
the position-time graph of the slug is linear and the unsteady
case/regime to other cases.

6.1. Case 1.1: Steady Regime. Generally, on a Poiseuille flow
hypothesis together with the assertion that the slug is suffi-
ciently long, 𝑙𝑠 ≫ 1 say, its path results in an integral expres-
sion of the form

𝑋𝑠 (𝑡, 𝛾) = ∫ (𝛾1 − 𝛾2) 𝑅4 (𝜇1𝑙1 + 𝜇2𝑙2)𝑑𝑡 + Const.
for given 𝜋, 𝑡 ∈ (0, 𝑇) .

(25)

To settle (25), we have taken into account the following
statements [1]: the Poiseuille flow induced within the regionΩ1 ∪ Ω2 is of the form 𝑢𝑟 = 𝛿𝑝(𝑅2 − 𝑟2)/4𝜇𝑠𝑙𝑠, where the
Laplacian pressure exerted at Γ1 relative to that exerted at Γ2
reads as 𝛿𝑝 = 2(𝛾1 − 𝛾2)/𝑅. The velocity field 𝑢𝑟 is averaged
in Ω1 ∪ Ω2, and the resulting expression equated to 𝑑𝑋𝑠/𝑑𝑡,
yielding 𝑑𝑋𝑠/𝑑𝑡 = 𝑅(𝛾1 − 𝛾2)/4(𝜇1𝑙1 + 𝜇2𝑙2), since 𝜇𝑙𝑠 =𝜇1𝑙1 + 𝜇2𝑙2, thence the antiderivative of (25).

Consequently, it follows that there exists a functional𝜒(𝑡,𝜋) such that𝑋𝑠(𝑡, 𝛾) = ∫ 𝜒(𝑡,𝜋)𝑑𝑡 +Const. for given 𝜋 =(𝑅, 𝑙𝑠, 𝐷21, 𝜇)𝑇, 𝑡 > 0. Numerical simulation was carried out
for the steady case in the hope of establishing the character
of 𝜒(𝑡,𝜋). The early-time results confirm that 𝜒 = 𝜒(𝜋), and
the position of the slug obeys the following linear law at early-
time:

𝑋𝑠 (𝑡, 𝛾) ≈ 𝜒 (𝜋) ⋅ (𝑡 − 𝑡0) ,
𝜒 (𝜋) ≈ Const. for 𝑡 ∈ (𝑡0, 𝑡10) ⊂ (0, 𝑇) , (26)

where 𝑡10 = 10 [s], as can be easily seen in Figure 5. To graph
Figure 5, the COMSOL Cut Line data set is used to create a
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line parallel to the axis of the capillary tube, having its ending
points at (𝑟, 𝑧) = (𝑅/2, 0), (𝑅/2, 𝐿), where 𝐿 ≫ 𝑙𝑠 denotes
the length of the capillary tube along the 𝑧-axis. This allows
to track the subsequent positions occupied by the advancing
and receding boundaries, that is, Γ1, Γ2, since it will cut at
every instant of time 𝑡 ∈ (0, 𝑇) these boundaries at precisely
two and only two (boundary) points r = (𝑅/2, 𝑧Γ𝑘(𝑡))𝑇 ∈ Γ𝑘
(with 𝑘 = 1, 2). Setting𝑋𝑠 = 𝑧Γ1(𝑡), we then construct a time-
position sequence (𝑡𝑘, 𝑋𝑠(𝑡𝑘,𝜋))𝑘∈[0,10] = (𝑘,𝑋𝑠,𝑘)𝑘∈[0,10].
Representing these data points by circular markers (∘), the
corresponding approximation by solid line, and that of
Bico and Quéré [5] by dotted line, one obtains Figure 5.
Henceforth, whenever the study is carried out with respect
to time, it is to be understood that the plotting referred to in
the (𝑡, 𝑋𝑠)-plane is based on that approach, unless the study is
carried out parametrically, in which case we shall then draw
attention upon.

In the sequel, we will show through numerical experi-
ments that 𝜒(𝜋) ≈ 𝑅(𝛾1 − 𝛾2)/4(𝜇1𝑙1 + 𝜇2𝑙2). Thus, by (26)
it would appear that after some time 𝑡 > 𝑡0, the slug will
have travelled at a constant velocity 𝑈𝑠 ≡ 𝜒(𝜋) a distance𝑋𝑠(𝑡, 𝛾) ≈ 𝜒(𝜋) ⋅ (𝑡 − 𝑡0). Clearly, (26) appears to show
that 𝑋𝑠 → ∞ whenever 𝑡 → ∞, a situation which is
reasonable mathematically but unreasonable physically; this
is simply because the mathematical description using the
linear approximation 𝑋𝑠(𝑡, 𝛾) ≈ 𝜒(𝜋) ⋅ (𝑡 − 𝑡0) will at some
time 𝑡 > 0 (unsteady case) fail to give physical agreement. In
that case a nonlinear law (as will be shown in the sequel to
exist) should be sought.

The above statements suggest that there exists a scalar𝑋∗𝑠 ∈ (0,∞), characterising the distance at which the slug
stops, such that lim𝑡→∞𝑋𝑠(𝑡, 𝛾) → 𝑋∗𝑠 , since we know from
the nature of the problem that the difference in interfacial
forces, which was initially very high, that is, 𝛾1,0−𝛾2,0 (≡ 𝛾(0)),
owing to the initial conditionsC(𝑙)(r, 𝑡 = 0) = 𝑖−1 inΩ𝑖 (with𝑖 = 1, 2), will have decreased to a vanishingly small value
when the equilibrium ofC(𝑙)(r, 𝑡) has been established.Thus,
this demonstrates the existence of a temporal (𝜋-dependant)
property 𝑡∞ ∈ (0, 𝑇) such that mechanical equilibrium is
attained via interfacial effects; namely,
𝛾1 (𝑡,𝜋) ≈ 𝛾2 (𝑡,𝜋) ,

whenever 𝑡 ≳ 𝑡∞ ∈ (0, 𝑇) ; 𝜋 given. (27)

Clearly, there is no loss of generality in assigning, for instance,
this particular case to an initially prescribed set, say 𝛽 ≡ 𝛽(0),
where 𝛽 = 𝑅, 𝑙𝑠, 𝐷21, 𝜇. Based on the said facts, we ran the
numerical simulation with a large final time 𝑇 = 100 [s] to
demonstrate that (27) is satisfied.

Surprisingly, we observed with a slug bearing the charac-
teristics 𝑙𝑠 = 30 [mm], 𝜇𝑘 ≈ 17 [mPa⋅s] (with 𝑘 = 1, 2), and𝐷21 ≈ 10−9 [m2⋅s]—the diffusion constant for alcohol fluid 1
in water fluid 2 [41, 42]—that
𝛾 (𝑡∞,𝜋) ≲ 5%

of min (𝛾1,0, 𝛾2,0) for given 𝜋, 𝑡∞ ≳ 100 [s] . (28)

The graphical evolution of the surface tension function 𝛾(𝑡,𝜋)
with respect to time 𝑡 ∈ [𝑡0, 𝑡∞) is shown in Figure 6. When
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Figure 7: The time evolution of the surface tensions 𝛾𝑖(𝑡;𝜋) (𝑖 = 1,2).

the surface tensions 𝛾𝑖(𝑡;𝜋) (𝑖 = 1, 2) are plotted on the
same (𝑡, 𝛾)-plane, one obtains Figure 7, where curved arrows
appearing in that plane denote the direction of convergence
of these functions with respect to time.

A very interesting feature is observed from Figure 7. We
have 𝛾1(𝑡;𝜋) ≈ 𝛾2(𝑡;𝜋) ≈ 3.2 × 10−2 [N⋅m−1] at time 𝑡 ≈100 [s]. Substituting the values tabulated in Table 1 into the
barycentric-model equation (10) for the pairs of scalar fields(𝑙1, 𝑙2), (𝛾1,0, 𝛾2,0), one arrives at 𝛾𝑖,∞ ≈ 3.3 × 10−2 [N⋅m−1]
(with 𝑖 = 1, 2), thereby validating the form of (10).

Out of the graphical results displayed in Figures 6 and
7, it would appear that (26) does not hold in both the early-
and late-time regimes, more precisely, in the steady (or early-
time) regime as well as in the unsteady (or late-time) regime.
The next section discusses the dynamics of the slug in the
unsteady regime.

6.2. Case 1.2: Unsteady Regime. When the period over which
the numerical experiments were extended to [𝑡0, ≲ 150) [s],
the subsequent positions of the slug graphed exponentially, as
can be easily shown in Figure 8. Hence, the path of the slug
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could fairly well be described by an exponential-type equation
of the form

𝑋𝑠 (𝑡,𝜋) ≈ 𝜂1 {1 − exp (−𝜂2 (𝑡 − 𝑡0))} ,
for given 𝜋, 𝑡 ∈ (0, 𝑇) . (29)

In (29), the fields 𝜂1, 𝜂2 > 0 are 𝜋-dependent scalars; that is,𝜂1 = 𝜂1(𝜋) and 𝜂2 = 𝜂2(𝜋). Furthermore, since the slugmoves
steadily only for a short period of time [0, 𝑡10) (roughly, 𝑡10 ≈
10 [s]), consequently, there does necessarily exist𝑋𝑠,∞,𝑈𝑠 > 0
such that, for given 𝜋 = (𝑅, 𝑙𝑠, 𝐷21, 𝜇)𝑇,

lim
𝑡→𝑡∞

𝑋𝑠 (𝑡,𝜋) 󳨀→ 𝑋𝑠,∞,
lim
𝑡→𝑡10

𝜕𝑡𝑋𝑠 (𝑡,𝜋) 󳨀→ 𝑈𝑠,
lim
𝑡→𝑡∞

𝜕𝑡𝑋𝑠 (𝑡,𝜋) 󳨀→ 0,
(30)

where 0 ≤ 𝑡0 < 𝑡10 < 𝑡∞ ≤ 𝑇. Here, it is to be understood that𝑋𝑠,∞ > 0 is the place at which the slug stops whereas 𝑈𝑠 > 0
simply characterises its steady regime. Also, 𝑡0, 𝑡10, 𝑡∞ ≥ 0
stand, respectively, for the initial time 𝑡0 = 0 [s], the time𝑡10 = 10 [s], and the time 𝑡∞ ≤ 𝑇 [s] at which the slug stops.
But 𝑇 > 0 designates the period over which the numerical
experiments are carried out. With these characteristics at
hand, the path of the slug then writes as

𝑋𝑠 (𝑡,𝜋) ≈ 𝑋𝑠,∞ {1 − exp(− 𝑈𝑠𝑋𝑠,∞ (𝑡 − 𝑡0))}

≡ 𝑈𝑠 (𝑡 − 𝑡0) − ∞∑
𝑘=2

𝑈𝑘𝑠𝑋𝑘−1𝑠,∞𝑘! (𝑡0 − 𝑡)𝑘
≡ 𝑋𝑠,0 (𝑡,𝜋) + 𝑥𝑠 (𝑡,𝜋)

for given 𝜋, 𝑡 ∈ (0, 𝑇) .

(31)

From this, one concludes that the position𝑋𝑠(𝑡,𝜋) of the slug
is merely a superposition arising from two contributions: the
steady and unsteady regimes; the former is characterised by𝑋𝑠,0(𝑡,𝜋) and the latter by 𝑥𝑠(𝑡,𝜋), respectively. Following
Figure 5, it is obvious that the equality 𝑋𝑠,0 = 𝑋𝑠(𝑡,𝜋) holds

Table 2: Numerical values for (𝜂1, 𝜂2), data for (29).
Results of case study 1.2

(𝜂1, 𝜂2) 𝑙𝑠 = 30 [mm] 𝑙𝑠 = 60 [mm]𝜂1 [mm] 50.0542 49.8052𝜂2 [s−1] 0.0306 0.0129𝑈𝑠 ≈ 𝜂1 ⋅ 𝜂2 [mm⋅s−1] 1.5312 0.6425

only for 𝑡 ∈ [𝑡0, 10) [s]. Thus, for early times, the position of
the slug can be approximated as

𝑋𝑠 (𝑡,𝜋) ≈ 𝑈𝑠 (𝑡 − 𝑡0)
for given 𝜋, 𝑡 ∈ (0, 𝑡10) ⊂ (0, 𝑇) , (32)

which is precisely the same expression in the steady case,𝑈𝑠 >0 being put for 𝜂1 ⋅ 𝜂2 > 0. It now remains to demonstrate that𝑈𝑠 (≈ 𝜂1 ⋅ 𝜂2) coincides with the result of Bico and Quéré [5].
For two typical slugs of lengths 𝑙𝑠 = 30, 60 [mm], respec-

tively, we combined (29) with numerical data in the least-
squares sense. We found (𝜂1, 𝜂2) ≈ (50.0542, 0.0306) for 𝑙𝑠 =30 [mm] and (𝜂1, 𝜂2) ≈ (49.8052, 0.0129) for 𝑙𝑠 = 60 [mm].
Thence, with the former, we deduce 𝑈𝑠 ≈ 1.5312 [mm⋅s −1]
and with the latter𝑈𝑠 ≈ 0.6425 [mm⋅s−1]. All these quantities
are arranged carefully in Table 2. Figure 8 is intended to
exhibit these features graphically using (31).

No doubt, it is no exaggeration to say that our model,
verified numerically in those two cases, namely, for 𝑙𝑠 =30, 60 [mm], as depicted in Figure 8, may be extended to
analyse the movement of small volumes of viscous liquids in
capillary tubes of square, rectangular cross sections and so
forth. Hence, given the set (𝑋𝑠,∞, 𝑈𝑠), that pair of scalar fields
designating the point at which the slug stops for an initially
given speed, one can predict a priori the position as well as
the rate of penetration of the slug into the capillary tube.
Further, if the focus is on rapidmotion, one should evidently
consider a small slug, instead of a big one. Contrarily, if
the primary goal is to achieve large penetrating length, one
might endeavour to take a large slug; the trueness of these
two statements is reflected in Figure 8.The following sections
enable further physical relationships to be grasped.

7. Case 2: Motion of the Slug versus
Geometrical and Physical Properties

The position of the slug is such that 𝑋𝑠 = 𝑋𝑠(𝑡,𝜋). So far, we
studied this position function with respect to time, keeping
the elements of the parameter vector 𝜋 = (𝑅, 𝑙𝑠, 𝐷21, 𝜇)𝑇
fixed at those values which are tabulated in Table 1. Here it
is that this function is studied parametrically. We agree that
parametric studies are best undertaken when the property
in question is time-invariant. We have, on the one hand,
lim𝑡→𝑡∞𝑋𝑠(𝑡,𝜋) → 𝑋𝑠,∞ = Const. and lim𝑡→𝑡10𝜕𝑡𝑋𝑠(𝑡,𝜋) →𝑈𝑠 = Const.; see (30). And, on the other hand, the slug moves
according to Poiseuille flow only in the early-time regime. As
a consequence, it seems, therefore, legitimate to carry out the
parametric studies in the early-time regime, which are what
we proposed to consider hereinafter.
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Figure 9: Plots of the sequence of points (𝑅(𝑘), 𝑈(𝑘)𝑠 )5𝑘=1. The linear
expression describing the solid line is 𝑈𝑠 ≈ 2.4𝑅 − 0.08. The
properties of the slug are 𝑙1 = 16 [mm], 𝑙2 = 16.5 [mm], and 𝜇𝑘 = 17
[mPa⋅s] (with 𝑘 = 1, 2). Other properties used are those given in
Table 1.

Let 𝜇𝑠 > 0 designate the dynamic viscosity of the slug
(mixture of the two miscible liquid droplets). On a barycen-
tric-based basis we may then consider 𝜇 ⋅ 𝑙𝑠 = 𝜇1𝑙1 + 𝜇2𝑙2,
in which case the velocity 𝑈𝑠(𝑡,𝜋) of the slug, following (29),
writes as

𝑈𝑠 (𝑡,𝜋) ≈ 𝑅 (𝛾1 − 𝛾2)4 (𝜇1𝑙1 + 𝜇2𝑙2) ≈
𝑅 (𝛾1 − 𝛾2)4𝜇𝑙𝑠
for given 𝜋, 𝑡 ∈ (0, 𝑇) .

(33)

We understand that (33) is the derivative of (25) with respect
to 𝑡 ∈ (0, 𝑇); that is, 𝜕𝑡𝑋𝑠 = 𝑈𝑠(𝑡,𝜋). If (33) holds true, so
are the following proportionalities: 𝑈𝑠(𝑡,𝜋) ∝ 𝑅, 𝜇−1, and𝑙−1𝑠 > 0. These are what we are going to show through a series
of numerical experiments in the following sections.

7.1. Case 2.1: Motion of the Slug versus the Radius of the
Capillary Tube. In this section the motion of the slug is
studied in a series of capillary tubes having the following
radii:𝑅(𝑘) = (2𝑘)×10−1 [mm] (with 𝑘 ∈ [1, 5]).The properties
of the slug are unaltered. We aim at establishing an algebraic
expression relating the velocity 𝑈𝑠 of the slug to the radius𝑅 of the capillary tube. For every 𝑘 ∈ [1, 5], a numerical
experiment is carried out and the velocity𝑈(𝑘)𝑠 > 0 of the slug
is calculated. When, for each 𝑘 ∈ [1, 5], the ratio 𝑈(𝑘)𝑠 /𝑅(𝑘) is
analysed, it was found that

𝑈(𝑘)𝑠𝑅(𝑘) ≈ 2.4 × 10−2 ± 5% [s−1] ∀𝑘 ∈ [1, 5] , (34)

from which we conclude that 𝑈𝑠 ∝ 𝑅. The corresponding
pairs of values (𝑅(𝑘), 𝑈(𝑘)𝑠 )5𝑘=1 are plotted on a (𝑅, 𝑈𝑠)-plane;
see Figure 9. Consequently, the dependence of the functional𝜒(𝜋)finally restricted to (𝑙𝑠, 𝐷21, 𝜇) ≡ Consts evolves linearly
with respect to the radius 𝑅 of the capillary tube according to
the following linear relationship:

𝜒 (𝜋) ≈ 󵄨󵄨󵄨󵄨𝐾𝑅󵄨󵄨󵄨󵄨 𝑅 + 𝐾𝑅,0, where 𝐾𝑅, 𝐾𝑅,0 = Consts. (35)

It is understood that the scalar fields𝐾𝑅,𝐾𝑅,0 are partially 𝜋-
dependant constants (see the character of (33) to understand

Table 3: Comparison of 𝑋𝑠(𝑡,𝜋) = 𝜒(𝜋) ⋅ (𝑡 − 𝑡0) in the early-time
regime.

Results of case study 2.2
𝑙𝑠 𝑋𝑠 (𝑡) 𝑈𝑠 ≡ 𝜒 (𝜋) Bico and Quéré [5][mm] [mm] [mm⋅s−1] [mm⋅s−1]30 1.7𝑡 − 0.29 1.7 1.640 1.1𝑡 + 0.76 1.1 1.050 0.89𝑡 + 0.76 0.89 0.860 0.77𝑡 + 0.82 0.77 0.770 0.69𝑡 − 0.82 0.69 0.6580 0.57𝑡 + 0.88 0.57 0.690 0.53𝑡 − 0.79 0.53 0.5100 0.48𝑡 + 0.8 0.48 0.4
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Figure 10: Position of the slug restricted to 𝑙𝑠 = 30, 50, 70, 90 [mm]
(with 𝑙𝑘 = 𝑙𝑠/2, 𝑘 = 1, 2) as function of time (and of the property 𝜋):𝑋𝑠(𝑡,𝜋). The radius of the capillary tube is 0.4 [mm].

this point). In other words, an increase in 𝑅 by 𝛿𝑅 > 0 results
in a linear increase in 𝑈𝑠 > 0, conversely, which manifests
the nature of the size of the capillary tube. The next section
examines the influence of the geometrical property 𝑙𝑠 > 0 on
the kinematics of the slug.

7.2. Case 2.2: Motion of the Slug versus Its Length. We herein
explore the effect of the geometrical property 𝑙𝑠 > 0 (size
of the slug) on the slug motion. We ran for the sequence𝑙𝑠 = 30, 40, . . . , 100 [mm] (with 𝑙𝑘 = 𝑙𝑠/2, 𝑘 = 1, 2)
several numerical experiments, keeping 𝑅,𝐷21, 𝜇 ≡ Consts.
The accompanying table (Table 3) compares the typical
parameters for the slug self-propulsion and its laboratory
analogs extracted from the paper of Bico and Quéré [5].

Figure 10 gives some graphical illustrations on this basis.
On a careful perusal of Table 3 and Figure 10, respectively,
one concludes that the agreement between simulations and
experiments is good. As a result, the present study puts
forward an important point: an increase in 𝑙𝑠 > 0 (by 𝛿𝑙𝑠 = 10
[mm], say) weakens the surface tension difference, that is,𝛾(𝑡,𝜋). Hence, one concludes that a slug of length 𝑙𝑠 moves
faster than the one whose length slightly differs, for instance,
by 𝛿𝑙𝑠 > 0. Furthermore, perusing Figure 10, we conclude
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Figure 11: Slug velocity versus its length 𝑙𝑠 [mm], log𝑈𝑠 ≈−1.0061 log 𝑙𝑠 + 3.8724. The radius of the capillary tube is 0.4 [mm],
and the successive lengths are 𝑙1 = 16 [mm] and 𝑙2 = 16.5 [mm].
The numerical result (solid line) is compared with that of Bico and
Quéré [5] (dotted line). Note that from the graphical result of Bico
and Quéré [5] we deduce log𝑈𝑠 ≈ −0.97297 log 𝑙𝑠 + 3.652.
Table 4: Numerical and experimental magnitudes of the speeds𝑈𝑠⌋num, 𝑈𝑠⌋exp > 0, respectively, of the slug versus the size 𝑙𝑠 > 0
of the slug.

Results of case study 2.2
𝑙𝑠 [mm] 30 40 50 60 70 80 90 100𝑈𝑠⌋num [mm⋅s−1] 1.7 1.1 0.89 0.77 0.69 0.57 0.53 0.48𝑈𝑠⌋exp [mm⋅s−1] 1.5 1.0 0.8 0.7 0.65 0.6 0.5 0.4

that the dependence of the functional 𝜒(𝜋) restricted to(𝑅,𝐷21, 𝜇) = Consts on 𝑙𝑠 > 0 evolves on a log-log scale
according to

log𝜒 (𝜋) ≈ − 󵄨󵄨󵄨󵄨󵄨𝐾𝑙𝑠 󵄨󵄨󵄨󵄨󵄨 log 𝑙𝑠 + 𝐾𝑙𝑠,0,
where 𝐾𝑙𝑠 , 𝐾𝑙𝑠,0 = Consts. (36)

As pointed out so far, it is understood that the scalar fields𝐾𝑙𝑠 , 𝐾𝑙𝑠 ,0 are partially 𝜋-dependant constants. From Figures
10 and 11, it may be remarked in passing that

𝜕𝑡𝑋𝑠⌋𝑙𝑠=30 ≥ 𝜕𝑡𝑋𝑠⌋𝑙𝑠≥30 for given 𝜋, 𝑡 ∈ (0, 𝑇) . (37)

Converting every log-log size-speed (log 𝑙𝑠, log𝑈𝑠) pair into
the usual (𝑙𝑠, 𝑈𝑠) pair and, further, letting 𝑈𝑠⌋num, 𝑈𝑠⌋exp >0 be the corresponding numerical, experimental values, the
tabulation of all these property constants yields Table 4.

7.3. Case 2.3:Motion of the Slug versusDiffusivity. This section
discusses the effects of diffusivity constant𝐷21 > 0. A way of
interpreting the latter may be understood on the following
basis. At leading order, we deduced from the constitutive
equation of C(𝑙)(r, 𝑡) the following scaling (diffusion length):𝑙(𝑡) ≈ √𝐷21𝑡, which gave insight of how far the concentration
has propagated inside the slug in time 𝑡 > 0 for a given
diffusivity constant𝐷21 > 0. In Figure 12 is graphed on a log-
log scale the speed 𝑈𝑠 > 0 of the slug versus the diffusivity
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Figure 12: Slug velocity versus diffusivity 𝐷21 [m2⋅s−1] in logarith-
mic scale; solid line is represented by log𝑈𝑠 ≈ −0.023522 log𝐷21 +0.20714. The radius of the capillary tube is 0.4 [mm], and the
successive lengths are 𝑙1 = 16 [mm] and 𝑙2 = 16.5 [mm].

Table 5: Numerical magnitudes of the speed 𝑈𝑠⌋num > 0 of the slug
versus the diffusivity𝐷21 > 0 of the slug.

Results of case study 2.3
𝐷21 [m2⋅s−1] 10−6 10−7 10−8 10−9𝑈𝑠⌋num [mm⋅s−1] 1.7 1.8 1.9 2.0

constant 𝐷21 > 0. When every log-log diffusivity-speed(log𝐷21, log𝑈𝑠) pair is converted into the usual (𝐷21, 𝑈𝑠) pair
and, further, 𝑈𝑠 = 𝑈𝑠⌋num > 0 to stress that the dependence
of the speed of the slug on the diffusivity has not been studied
numerically, the tabulation of these property constants yields
Table 5.

As a result, incrementing the diffusivity constant𝐷21 > 0
by 𝛿𝐷21 > 0 yields
𝛾 (𝑡,𝜋)⌋𝐷21+𝛿𝐷21 < 𝛾 (𝑡,𝜋)⌋𝐷21

for given 𝜋, 𝑡 ∈ (0, 𝑇) . (38)

On the whole, augmenting 𝐷21 > 0 therefore compels the
propulsion force, which is proportional to the surface tension
difference 𝛾(𝑡,𝜋), to decrease in magnitude. As a conse-
quence, the transport coefficient𝐷21 > 0 therefore does have
bearing on the motion of the slug.

In other words, augmenting the magnitude of the diffu-
sivity constant 𝐷21 > 0 results in not only diminishing the
magnitude of the slug velocity 𝑈𝑠 > 0, but also causing the
propulsion force to vanish/die earlier. As shown in Figure 12,
one clearly sees that the 𝜋-dependent functional 𝜒(𝜋) now
restricted to (𝑅, 𝑙𝑠, 𝜇) = Consts evolves logarithmically with
the diffusion constant𝐷21 > 0 according to the following log-
log relationship:

log𝜒 (𝜋) ≈ − 󵄨󵄨󵄨󵄨󵄨𝐾𝐷21 󵄨󵄨󵄨󵄨󵄨 log𝐷21 + 𝐾𝐷21 ,0
where 𝐾𝐷21 , 𝐾𝐷21 ,0 = Consts. (39)

As pointed out so far, it is understood that the scalar fields𝐾𝐷21 , 𝐾𝐷21 ,0 are partially 𝜋-dependant constants. This is an
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Figure 13: Slug velocity versus viscosity 𝜇2 [mPa⋅s] in logarithmic
scale; numerical result, approximated by log𝑈𝑠 ≈ −0.63452 log 𝜇2 +2.6509, is graphed in solid line; experimental result extracted from
earlier work approximated by log𝑈𝑠 ≈ −0.57214 log 𝜇2 + 2.39 is in
dotted line. The radius of the capillary tube is 0.51 [mm], and the
successive lengths are 𝑙1 = 16 [mm] and 𝑙2 = 16.5 [mm]; also, the
viscosity 𝜇1 = 17 [mPa⋅s] is kept constant.

important feature which has not been considered in any of
the two papers of Bico and Quéré [1, 5]. It may be remarked
further that (39) tends to prove that the logarithmof the speed
of the slug log𝑈𝑠 (since 𝜒(𝜋) ≡ 𝑈𝑠) is proportional to the
logarithm of the diffusivity constant log𝐷21. Moreover, since𝑙(𝑡) ≈ √𝐷21𝑡 (that diffusion length which provides a measure
of how far the chemical concentration has propagated into
the slug in the 𝑧-direction by diffusion in time 𝑡 > 0), the
existence of a reference time 𝜏ref > 0 can be assumed such
that

Ord (log𝑈𝑠) ∼ Ord(log(𝑑𝑙𝑑𝑡))
∼ log(𝐷21𝜏ref ) + Const.,

(40)

fromwhich the shape of (39) at once comes to light. Physically
speaking, if the diffusion constant 𝐷21 > 0 is to furnish us
with a means of strengthening the self-propulsion mecha-
nism, it is evident that it should be low in magnitude. Hence,
this establishes a relation between the diffusion constant𝐷21 > 0 and the speed 𝑈𝑠 > 0 of the slug. The next section
considers the speed 𝑈𝑠 > 0 of the slug versus the viscosity
constant 𝜇 > 0.
7.4. Case 2.4:Motion of Slug versus Viscosity. Thenature of the
movement of the slug with the character of the viscous force
is here considered by establishing a relationship relating the
speed 𝑈𝑠 > 0 of the slug to the viscosity constant 𝜇 > 0. To
effect this purpose we ran several simulations, changing the
magnitude of the property 𝜇 > 0 at each run while restricting
other property constants to those values appearing in Table 1.
Further, at each run the pair of scalar fields (𝜇, 𝜒(𝜋)) is noted.
In Figures 13 and 14 are plotted the pairs of scalar fields(𝜇𝑖, 𝜒(𝜋))𝑖=1,2 on a log-log scale. As one can see from Figures
13 and 14, the dependence of the functional 𝜒(𝜋) finally
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Figure 14: Slug velocity versus viscosity 𝜇1 [mPa⋅s] in logarithmic
scale; numerical result, approximated by log𝑈𝑠 ≈ −0.42437 log 𝜇1 −2.0723, is graphed in solid line. The radius of the capillary tube is0.51 [mm], and the successive lengths are 𝑙1 = 16 [mm] and 𝑙2 = 16.5
[mm]; also, the viscosity 𝜇2 = 17 [mPa⋅s] is kept constant.

restricted to (𝑅, 𝑙𝑠, 𝐷21) ≡ Consts on 𝜇𝑖 > 0 (with 𝑖 = 1,2) evolves on a log-log scale according to

log𝜒 (𝜋) ≈ − 󵄨󵄨󵄨󵄨󵄨𝐾𝜇󵄨󵄨󵄨󵄨󵄨 log 𝜇 + 𝐾𝜇,0
where 𝐾𝜇, 𝐾𝜇,0 = Consts. (41)

As pointed out so far, it is understood that the scalar fields𝐾𝜇, 𝐾𝜇,0 are partially 𝜋-dependant constants. Moreover,
because this expression of 𝑈𝑠 > 0 in terms of 𝐷21 > 0
is algebraically similar to that established in the foregoing
section, our thoughts are thereby led to regard a decrease in𝜇 > 0 resulting in an exponential increase in 𝑈𝑠 > 0, which
manifests the nature of viscous effect.

To the informed reader the law 𝑈𝑠 ∝ 𝜇−1 is obvious
whenever the Poiseuille law is pronounced in the mathe-
matical development but, to the uninformed reader, the law𝑈𝑠 ∝ 𝜇−1/2 is unobvious. Thus, before advancing further, it
might be interesting to justify this point.

Since, in the earlier section (see Section 7.2), we showed
that 𝑈𝑠 ∝ 𝑙−1𝑠 and, from Poiseuille flow, we have 𝑈𝑠 ∝ 𝜇−1, it
is plain that

𝑈𝑠 ∝ 1𝜇𝛼1 ⋅ 𝜇1−𝛼2 (if 𝜇 = 𝜇1, 𝜇1 = 𝜇2; 𝛼 ∈ (0, 1))
∝ 1𝜇𝛼1 (if 𝜇2 = Const.; 𝛼 ∈ (0, 1))
∝ 1𝜇1−𝛼2 (if 𝜇1 = Const.; 𝛼 ∈ (0, 1)) .

(42)

Equation (42) states that the dependence of the slug speed on
the dynamic viscosity 𝜇𝑖 > 0 of the 𝑖-fluid (with 𝑖 = 1, 2) is
such that 𝑈𝑠 ∝ 𝜇−𝛽𝑖 for some real 𝛽 ∈ (0, 1). Moreover, it
also states that if such dependence is known for one fluid, the
other can be deduced, since whenever 𝑈𝑠 ∝ 𝜇−𝛽1 necessarily
𝑈𝑠 ∝ 𝜇1−𝛽2 . Otherwise the condition 𝑈𝑠 ∝ 𝜇−1 will be
violated. Taking advantage of the properties of logarithms
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to convert the second and third lines of (42) into linear
relationships, one obtains

log𝑈𝑠 = 𝜅𝑖 ⋅ log 𝜇𝑖 + Const.
∀𝑖 ∈ {1, 2} , where ∑

𝑖=1,2

𝜅𝑖 = 1. (43)

Through numerical experiments, we deduced (𝜅1, 𝜅2) =(−0.42437, −0.63452). Since ∑𝑖=1,2 𝜅𝑖 = 1.05889, it follows
that ∑𝑖=1,2 𝜅𝑖 ≈ 1, hence satisfying (43) and, therefore, (42).
We have thus justified the results appearing in Figures 13 and
14.

Having studied the motion of the slug under variations
of the property vector 𝜋 = (𝑅, 𝑙𝑠, 𝐷21, 𝜇)𝑇, we propose in
the next section an algebraic expression, characteristics of the
nature of the movement of the slug, on this ground.

8. Power-Law Slug Dynamics

In the foregoing sections, we examined the response of the
slug subjected to the property constant 𝜋. We also illustrated
through case by case studies the effects of the latter on the
movement of the slug. This section aims at proposing a
power-law model, which might well be termed the Law of
Movement of the Slug. If we recall attention to the foregoing
sections as regards the nature of the functional 𝜒(𝜋) with
respect to the property 𝜋, we shall see that the speed 𝑈𝑠 > 0
of the slug is related to the elements of the property vector
𝜋 = (𝑅, 𝑙𝑠, 𝐷21, 𝜇)𝑇 as
𝑈𝑠

≈
{{{{{{{{{{{{{{{

󵄨󵄨󵄨󵄨𝐾𝑅󵄨󵄨󵄨󵄨 𝑅 + 𝐾𝑅,0, 𝐾𝑅, 𝐾𝑅,0 = Consts; see (35) ;
− 󵄨󵄨󵄨󵄨󵄨𝐾𝑙𝑠 󵄨󵄨󵄨󵄨󵄨 log 𝑙𝑠 + 𝐾𝑙𝑠,0, 𝐾𝑙𝑠 , 𝐾𝑙𝑠,0 = Consts; see (36) ;
− 󵄨󵄨󵄨󵄨󵄨𝐾𝐷21 󵄨󵄨󵄨󵄨󵄨 log𝐷21 + 𝐾𝐷21 ,0 𝐾𝐷21 , 𝐾𝐷21 ,0 = Consts; see (39) ;
− 󵄨󵄨󵄨󵄨󵄨𝐾𝜇󵄨󵄨󵄨󵄨󵄨 log𝜇 + 𝐾𝜇,0 𝐾𝜇, 𝐾𝜇,0 = Consts; see (41) .

(44)

On the other hand, from the above graphical results it
is observed that the quantities |𝐾𝑅|, |𝐾𝑙𝑠 |, |𝐾, and |𝐾𝜇|,
respectively, roughly interrelate themselves as follows:

Ord (󵄨󵄨󵄨󵄨𝐾𝑅󵄨󵄨󵄨󵄨) ∼ Ord (󵄨󵄨󵄨󵄨󵄨𝐾𝑙𝑠 󵄨󵄨󵄨󵄨󵄨) ∼ Ord (2 󵄨󵄨󵄨󵄨󵄨𝐾𝜇󵄨󵄨󵄨󵄨󵄨)
∼ Ord (50 󵄨󵄨󵄨󵄨󵄨𝐾𝐷21 󵄨󵄨󵄨󵄨󵄨) (∼ 1) . (45)

If we pause ourselves for a moment and ponder on the above
relationship, we would obviously conclude that the relative
effect arising from the diffusion constant 𝐷21 > 0 is little.
Thence, paralleling (31) with that which one would deduce
at leading order in a fully developed slug flow in a circular
pipe of the same radius 𝑅 together with the neglect of log𝐷21
yields

𝑈𝑠 ∼ 𝜉(𝑅 (𝛾1,0 − 𝛾2,0)4𝜇𝑙𝑠 )|𝛼| ,

𝑈eff ∼ 𝜉(𝑅 (𝛾1,0 − 𝛾2,0)4𝜇𝑙𝑠 )|𝛼|−1 ,
(46)

where 𝛼 = 𝐾𝑙𝑠 ∼ 𝐾𝜇 > 0 and 𝜉 > 0. Writing the speed 𝑈𝑠 > 0
of the slug as such puts forward the term of the concept of
a Poiseuille flow. In these, the scalar fields 𝜉 > 0, |𝛼| define
the slug dynamics consistency and slug behaviour indices (with|𝛼| ≈ 1.0); the scalar field 𝑈eff > 0 is an effective slug velocity.
To deduce the scalar field 𝜉 > 0 on this basis one may then
proceed through practical experimentation.

In the paper of Lunati andOr [35], the authorsmentioned
that the slug velocity, for the case of a gravity-driven flow
in a capillary tube, is lower (without any precise order of
magnitude) than deduced in a Poiseuille flow. Here, the result
points to a contrary conclusion, for using the data given in
Table 1 one demonstrates that the speed 𝑈𝑠 > 0 of the slug
is greater by an 𝜖-order 𝜖 ∼ 10−2, roughly. Such discrepancy
might be due to the neglect of dissipative effects occurring at
the wedges of the slug.

To this end, it seems therefore plausible to assume the
following general description:

𝑋𝑠 (𝑡,𝜋)
≈ 𝑋𝑠,∞(1 − exp{−𝜉 (𝑡 − 𝑡0)𝑋𝑠,∞ (𝑅 (𝛾1,0 − 𝛾2,0)4𝜇𝑙𝑠 )|𝛼|}) . (47)

We agree here that the property 𝜋 includes all property
constants appearing on the right-hand of (47), as can be
easily understood.There is an immediate consequence which
follows from (47). Setting 𝜆 = 𝑅(𝛾1,0 − 𝛾2,0)/4𝜇𝑙𝑠, one
concludes that 𝜕𝑡𝑋𝑠 ∝ 𝜆 in the early-time (linear) regime,
whereas 𝜕𝑡𝑋𝑠 ∝ exp(−𝜆) in the late-time (nonlinear) regime.
Since a Poiseuille flow is one such that its flow fields satisfy‖u‖ ∝ 𝜆, it follows that the slug flow obeys Poiseuille flow
only in the early-time regime.

To round off the present discussion, we point out that,
with 𝜉(𝑙𝑠 = 30 [mm]) ≈ 22.3633 and 𝜉(𝑙𝑠 = 60 [mm]) ≈13.2664 along with the numerical data given in Tables 2 and
3, plotting of (47) coincides with those given (in solid lines)
in Figure 15, for comparing (29) with (47) gives

𝜉 (𝜋) ≈ 𝜂1𝜂2 (𝑅 (𝛾1,0 − 𝛾2,0)4𝜇𝑙𝑠 )1−|𝛼| ≈ 1
for given 𝜋, since |𝛼| ≈ 1.

(48)

Finally, combining (23) with (47) and (48), one arrives at

𝜕𝑡𝑋𝑠 ≈ 𝑈𝑠 (1 − 𝑋𝑠𝑋𝑠,∞) ≤ 𝑈𝑠,
𝑑𝑋𝑠𝑑𝛾 ≈ 𝑈eff (1 − 𝑋𝑠𝑋𝑠,∞) ≤ 𝑈eff .

(49)

Hence, it would appear that (49) hold for every fixed instant
of time 𝑡 > 0, provided that 𝜕𝑡𝛾 ≈ Const.Hence, if we let the
scalar field𝑈𝑝 > 0 be the Poiseuille velocity field, one deduces
𝜕𝑡𝑋𝑠 ≈ 𝑅 (𝛾1,0 − 𝛾2,0)4𝜇𝑙𝑠

𝑑𝑋𝑠𝑑𝛾 ≈ 𝑈𝑝 𝑑𝑋𝑠𝑑𝛾
when 𝜕𝑡𝛾 ≈ Const.,

(50)
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Figure 15: Results with (47) and numerical data. Equation (47) is
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Figure 16: Illustration of the flow contours at the sequence of times(𝑡𝑘)𝑘∈[1,5] = (5𝑘/2)𝑘∈[0,4] [s].

since𝑈𝑝 ≈ 𝑈𝑠 ⋅𝑈−1eff . As pointed out before, it then follows that
Ord(𝑑𝑋𝑠/𝑑𝛾) ∼ 𝜖−2.

In Figure 16 are displayed the flow contours generated by
the movement of the slug into its capillary tube for 𝑡 = 5𝑘/2,
where 𝑘 ∈ [1, 4], the time evolution of the advancing interface
in the early-time regime.The regionΩ𝑠 = Ω1 ∪Ω2 designates
the domain partially filled with the miscible fluid; the regionΩ+V designates that occupied by the vapour phase fluid.

In Figure 17 are displayed the distribution of the fraction
volume of fluids 𝜙12(r, 𝑡)within the regionsΩ1∪Ω2 andΩ−V ∪Ω+V , the time evolution of the advancing interface in the early-
time regime, for the sequence of time 𝑡𝑘 = 2𝑘, where 𝑘 ∈[0, 5]. This completes the discussion of this part.

9. Conclusion

Hitherto, it is believed insofar as we are knowledgeable that
this is the first time that such a study has been undertaken.
Moreover, perusing our results, one admittedly concludes
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Figure 17: Evolution of the fraction volume of fluid to illustrate the
front interface Γ1 of the slug at the sequence of times (𝑡𝑘)𝑘∈[1,5] =(2𝑘)𝑘∈[0,5] [s].

that ours are very similar to the observations reported by Bico
and Quéré [1, 5].

On the whole, we have observed the following points.

(i) Amathematicalmodel is developed and implemented
in COMSOL Multiphysics.

(ii) Two regimes were identified: the early-time (linear)
and late-time (nonlinear) regimes. In the early-time
regime, the speed of the slug is proportional to the
Poiseuille flow, whereas in the late-time regime it is
proportional to the exponential of the Poiseuille flow.

(iii) Exploring the linear regime parametrically, the
dependence of the speed of the slug on its size 𝑙𝑠,
diffusivity𝐷21 and dynamic viscosity𝜇 constants, and
the radius𝑅 of the capillary tube is found to be power-
law functions. Moreover, the speed is found to be
insensitive to𝐷21.These parametric studies show that
the size and properties of the slug do have bearing on
its motion.

(iv) For an initially chosen set of physical properties, the
position of the slug evolves exponentially with respect
to time according to (47).

Of the above statements, the second one confirms the
conclusion reached by Piroird et al. [43] in one of their papers,
namely, that on a long time scale two regimes were observed;
and the third one confirms that found in another paper of
Piroird et al. [44], namely, that by varying the geometrical
properties associated with the droplet and its capillary tube,
the nature of the flow changes.

Additionally, it should be stressed that it is not necessary
to argue or even to enumerate in the context of practical
applications, for we believe that the above mathematical
development is sufficient to prove its usefulness in practical
applications. However, it should be borne in mind that,
without the numerical data 𝜉, |𝛼|, and 𝑋𝑠,∞, the proposed
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model is insufficient to allow one to predict the position of
the slug at some time 𝑡0 ≥ 0 thereafter. Nonetheless, it does
indicate that in this range it is not possible to describe the
dynamics of the slug without knowing, for instance, at what
time, 𝑡∞ > 0 say, the slug must reach its destination, 𝑋𝑠,∞ > 0
say. Such is the conclusion to which we are led.

Taking into account the foregoing discussions, it may be
declared that our model, namely, (47), can do good service
in the selection of microfluidic (or more precisely capillary)
devices. To conclude, it may be said that the outcome of
the present part results in the establishment of the following
proposition.

Proposition 1. Given (𝜅1, 𝜅2), there is a pair of 𝜋-dependent
property constants. By a proper choice of the property 𝜋 =(𝜋1, . . . , 𝜋𝑑) ∈ R𝑑, the path of a self-propelling slug in a
capillary tube obeys the following law:

𝑋 (𝜋; 𝑡) = 𝜅1 {1 − exp (−𝜅2𝑡)}
𝑤𝑖𝑡ℎ 𝜅𝑖 = 𝑓𝑖 (𝜋) , 𝑓𝑜𝑟 𝑖 = 1 2. (51)

We name (51) the Prototype Slug Self-Propulsion Model
Equation because it gave agreement to both time and physical
properties of the slug.
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[5] J. Bico and D. Quéré, “Liquid trains in a tube,” Europhysics
Letters, vol. 51, no. 5, pp. 546–550, 2000.

[6] D. K. N. Sinz and A. A. Darhuber, “Self-propelling surfactant
droplets in chemically-confined microfluidics—Cargo trans-
port, drop-splitting and trajectory control,” Lab on a Chip—
Miniaturisation for Chemistry and Biology, vol. 12, no. 4, pp.
705–707, 2012.

[7] H. Bouasse, Capillarit, Phnomnes Superficiel, Delagrave, Paris,
France, 1924.

[8] M.M.Weislogel, “Steady spontaneous capillary flow in partially
coated tubes,” AIChE Journal, vol. 43, no. 3, pp. 645–654, 1997.

[9] F. D. Dos Santos and T. Ondarçuhu, “Free-running droplets,”
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Matter, vol. 7, no. 16, pp. 7498–7503, 2011.

[44] K. Piroird, C. Clanet, and D. Queźreź, “Capillary extraction,”
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