
On Coding for Orthogonal

Frequency Division Multiplexing

Systems

Alan Clark

Department of Electrical and Computer Engineering

A thesis presented for the degree of

Doctor of Philosophy

University of Canterbury

Christchurch, New Zealand

January 2006





The fundamental problem of communication is that of reproducing at one point

either exactly or approximately a message selected at another point.

Claude E. Shannon [1], 1948





Abstract

The main contribution of this thesis is the statistical analysis of orthogonal frequency di-

vision multiplexing (OFDM) systems operating over wireless channels that are both fre-

quency selective and Rayleigh fading. We first describe the instantaneous capacity of such

systems using a central limit theorem, as well as the asymptotic capacity of a power lim-

ited OFDM system as the number of subcarriers approaches infinity. We then analyse the

performance of uncoded OFDM systems by first developing bounds on the block error

rate. Next we show that the distribution of the number of symbol errors within each block

may be tightly approximated, and derive the distribution of an upper bound on the total

variation distance. Finally, the central result of this thesis proposes the use of lattices for

encoding OFDM systems. For this, we detail a particular method of using lattices to encode

OFDM systems, and derive the optimal maximum likelihood decoding metric. Generalised

Minimum Distance (GMD) decoding is then introduced as a lower complexity method of

decoding lattice encoded OFDM. We derive the optimal reliability metric for GMD decod-

ing of OFDM systems operating over frequency selective channels, and develop analytical

upper bounds on the error rate of lattice encoded OFDM systems employing GMD decod-

ing.
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Chapter 1

Introduction

Communications have always been fundamental to human existence. The 21st Century

will no doubt see wireless communications become ubiquitous, and the expectations of

wireless services increase. Today, more than one in three New Zealanders own a cellular

phone [2], and services such as high quality video and music, as well as high speed internet

are available to wireless mobile users throughout the country. Over time the data rates

of wireless systems must grow to support increasing consumer expectations of wireless

services, while the system error rate, the proportion of data that is incorrectly received,

must remain at an acceptable level.

Achieving high data rates at low error rates is a difficult task, since wireless transmission

of data is impeded by the physical properties of the atmosphere, the surrounding envi-

ronment and electromagnetic interference from other devices [3]. Furthermore, these im-

pairments are typically random in nature, although statistical descriptions are possible. A

method for reducing the error rate in a system is error control coding, entailing the transmis-

sion of some extra data used for verification of the required original data. However, the

penalty for coding is usually a reduction in data rate and an increase in system complexity.

One method for transmitting at high data rates is orthogonal frequency division multi-

plexing (OFDM) [4]. In this thesis we undertake mathematical analysis of the properties of

OFDM systems. Such analysis of a transmission method is critical to accurately predict its

behaviour, and thus allow for future improvements to the system. We investigate the error

performance of uncoded OFDM systems, then propose a coding method based on the rich

mathematical subject of lattices.
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2 Introduction

1.1 Problem Outline

Assume we have some communications system where the transmitter sends symbols over

a channel, and occupies a bandwidth of B (Hz). At the receiver we obtain the transmitted

symbols perturbed by additive white Gaussian noise [1], such that the ratio of received

symbol energy to noise power spectral density within the bandwidth B is γ. In 1948 Claude

Shannon theorised [1] that the capacity of a communications system is

C = B log2 (1 + γ) bits per second, (1.1)

where the capacity is the maximum rate at which information bits may be transmitted and

correctly estimated at the receiver. That is, the channel capacity defines the fundamental

maximum limit of the rate at which we may transmit symbols and receive them without

error, in the presence of additive white Gaussian noise. For over fifty years, it has been the

goal of coding theorists and communications engineers to design and construct systems

which operate at, or close to, this capacity. The development of coding theory during the

20th Century is summarised in [5].

Shannon’s theorem encapsulates four critical parameters of any communications system:

the bandwidth occupied, the ratio of transmitted power to noise (signal to noise ratio), the

data rate throughput and the error rate. A fifth parameter is the system complexity. We

ideally desire systems that achieve high data rates at low error rates, with low complexity,

small signal to noise ratio and small occupied bandwidth. However, communications en-

gineers are required to trade these parameters off against each other during system design.

For example, current digital video broadcasting systems [6] have high data rates, low error

rates, yet require large bandwidth and signal to noise ratio at moderate complexity. Sim-

ilarly, deep space satellite communications systems typically provide low signal to noise

ratio, yet have low data throughput. In order to design better systems, an accurate mathe-

matical model of system behaviour with respect to these parameters is therefore essential.

This thesis combines analysis of two concepts in communications: OFDM and error control

coding. OFDM is a useful transmission method that is resilient to some of the detrimental

effects of the wireless radio channel [4]. However, in order to achieve low error rates it is

still necessary to employ some form of error control coding in conjunction with OFDM. We

thus also consider OFDM systems using error control coding. Specifically, we propose a

method of using mathematical lattices [7] as an error control scheme for wireless OFDM

systems. We concern ourselves with OFDM systems designed to transmit high data rates.

Such systems typically occupy a large bandwidth, and their operation is computationally

expensive.

The two key goals of this thesis are to mathematically describe the capacity and error rate
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of OFDM systems and to investigate coding using lattices specifically adapted for wireless

OFDM systems, in order to achieve low error rates at high data rates, with low complexity.

Furthermore, we wish to complement the new coding method with a thorough analysis of

its error performance. In undertaking the mathematical analysis within this thesis we hope

to construct accurate models to describe the behaviour of OFDM systems, in an effort to

afford better system design and analysis of these systems.

1.2 Thesis Contributions

This thesis begins by outlining the key concepts behind a wireless communications system

in the following chapter, with emphasis on the effect of the wireless radio channel upon

transmitted signals. We then introduce error control coding in Chapter 3, specifically dis-

cussing linear block codes, soft decision decoding, generalised minimum distance decod-

ing, coded modulation and the concept of lattices. In Chapter 4 we detail the orthogonal

frequency division multiplexing technique and consider the effects of OFDM transmission

on the achievable channel capacity. The error performance of uncoded OFDM systems is

addressed in Chapter 5. Chapter 6 develops a powerful coding method using lattices, and

describes the use of this coding method with OFDM. We then propose generalised mini-

mum distance decoding as a low complexity approach to lattice decoding. Conclusions are

presented in Chapter 7.

The contributions considered original are found in Chapter 4, Chapter 5 and Chapter 6, and

are outlined as follows. In Chapter 4 we show that the instantaneous capacity of an OFDM

system with a large number of subcarriers is approximately Gaussian distributed for cer-

tain wireless channels. We also show that in the case of power limited, infinite bandwidth

systems no capacity loss is incurred by employing OFDM. In Chapter 5 we derive accurate

bounds on the block error rate for OFDM systems, as well as a model for approximating

the number of errors within a single OFDM block. We show that the number of symbol

errors within a block is Poisson binomial distributed, but accurately approximated with

the Poisson distribution. In Chapter 6 we prove requirements for optimal lattice decod-

ing of OFDM, and outline lattice properties that will give the best error performance. We

then analyse the error performance of generalised minimum decoding of lattice encoded

OFDM systems transmitting over wireless channels, including a derivation of the optimal

reliability metric for such systems.

The work described in this thesis was completed during the period from February 2002 to

November 2005. The following papers and reports stemming from this work have been

published or submitted for publication:

A. Clark and D.P. Taylor, ”Lattice Codes and Generalized Minimum Distance Decoding
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for OFDM Systems”, accepted for publication in IEEE Transactions on Communications,

January 2006.

A. Clark and D.P. Taylor, ”Lattice Codes and Generalized Minimum Distance Decoding

for OFDM Systems”, Univ. Canterbury Technical Report, Univ. Canterbury, New Zealand,

2005.

A. Clark, P.J. Smith and D.P. Taylor, ”Approximating the Probability Distribution of OFDM

Symbol Errors”, Univ. Canterbury Technical Report, Univ. Canterbury, New Zealand,

2005.

A. Clark, P.J. Smith and D.P. Taylor, ”Approximating the Probability Distribution of OFDM

Symbol Errors”, in Proc. IEEE WirelessCom 2005, Kaanapali, Hawaii, June 2005.

A. Clark, P.J. Smith and D.P. Taylor, ”Instantaneous Capacity of OFDM on Rayleigh Fading

Channels”, submitted to IEEE Transactions on Information Theory, November 2005.

A. Clark, P.J. Smith and D.P. Taylor, ”Simple Expressions for the Correlation between Fad-

ing Channel Error Rates”, in Proc. IEEE International Symposium on Information Theory,

Seattle, WA, July 2006.



Chapter 2

Communications System Overview

This chapter provides a brief introduction to wireless communications systems, a necessary

primer before discussion of error control coding and OFDM systems in following chapters.

A general overview of the physical layer of a typical wireless communications system is

given, and the roles of error control coding, modulation and demodulation are discussed.

System performance is severely limited by the wireless radio channel, and we thus give a

detailed outline of its underlying mechanisms, statistical descriptions and methods of sim-

ulating the channel response. Readers familiar with mobile communications and fading

channels may wish to omit this chapter. Further details of communications systems may

be found in [8–10], while [9, 11, 12] review the wireless radio channel.

2.1 System Outline

We represent a digital communications system as the following elements: an information

source, a transmitter, the communications channel, and a receiver. The transmitter consists

of a source encoder, an error control encoder and a digital modulator, while the receiver

consists of a digital demodulator, error control decoder and a source decoder. Figure 2.1

displays these basic elements. The information source output is a sequence of binary data,

such as a computer file or digitised audio or video. The source encoder compresses the

data to remove redundancy for more efficient transmission. We do not consider source

encoding and decoding in this thesis; details on these may be found in [13, 14]. The infor-

mation sequences are often corrupted during transmission, and the error control encoder

thus adds redundancy in a controlled fashion, so that error corrupted sequences may be

corrected at the receiver without retransmission. The joint operations of error control en-

coding and error control decoding are referred to as error control coding, channel coding or

simply coding. Chapter 3 provides an introduction to error control coding.

5



6 Communications System Overview

Information Source Source Encoder Error Control Encoder
Digital

Modulator

Channel Digital Demodulator Error Control Decoder Source Decoder

Transmitter

Receiver

Estimate of Original
Data

s(t)

r(t)

Figure 2.1 Mobile communications system overview

The digital modulator maps the data sequence from the error control encoder to analog

waveforms. The digital modulator switches (keys) the amplitude, frequency or phase of a

sinusoidal carrier in some manner representing the digital data. The most prevalent modu-

lation method used worldwide is the nonlinear Gaussian Minimum Shift Keying (GMSK)

method [8]. However, throughout this thesis we assume that either binary phase shift

keying (BPSK), pulse amplitude modulation (PAM) or quadrature amplitude modulation

(QAM) is used [8], which are highly prevalent linear modulation schemes. For a BPSK

system with carrier frequency fc and symbol period T = 1
fc

, signals s0(t) and s1(t) with

differing phases are used to transmit binary symbols 0 and 1 respectively, where

s1(t) =

√

2E0

T
cos(2πfct) s2(t) =

√

2E0

T
cos(2πfct + π) (2.1)

for 0 ≤ t ≤ T , and E0 is the transmitted energy per bit. For an M -ary modulation scheme

we map binary data to M possible signals, s1(t), s2(t), . . . , sM (t), such that each signal rep-

resents a unique sequence of log2(M) bits. For example, an M -ary PAM system transmits

a signal of differing amplitude for each sequence, namely

si(t) =

√

2E0

T
ai sin(2πfct) (2.2)

for 0 ≤ t ≤ T , i ∈ {1, . . . ,M} and ai ∈ {−M + 1,−M + 3, . . . ,−1, 1, . . . ,M − 3,M − 1},

assuming M is even. An M -ary square QAM modulator transmits two
√

M -ary PAM

carriers in quadrature, so that the signals are defined as

si(t) =

√

2E0

T
ai cos(2πfct) +

√

2E0

T
bi sin(2πfct) , (2.3)

for 0 ≤ t ≤ T , and ai, bi ∈
{

−
√

M + 1,−
√

M + 3, . . . ,−1, 1, . . . ,
√

M − 3,
√

M − 1
}

, as-

suming M and
√

M are even, positive integers. 2E0 is then the energy of the signals with
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the lowest amplitude, corresponding to (ai, bi) ∈ {(1, 1), (1,−1), (−1, 1), (−1,−1)}. The

average energy for an M -ary QAM system is, assuming a square constellation [8],

Eav =
2(M − 1)E0

3
. (2.4)

The signal constellation M is a representation of the transmitted signals s1(t), . . . , sM (t) as

vectors in Euclidean space, referred to as the signal space [9]. Each complex vector has

magnitude equal to the signal energy, and phase equal to the signal phase. For example,

BPSK and 16-QAM signal constellations are shown in Figure 2.2. For the BPSK constel-

lation, points s0 and s1 represent signals s0(t) and s1(t), which represent binary symbols

0 and 1, respectively. Each point in the 16-QAM constellation represents a distinct 4-bit

sequence. Generally, each point in an M -ary signal constellation is isomorphic to some

-√E0

+√E0

-3√E0 +3√E0-√E0

-3√E0

+√E0

+3√E0

S0 S1

(a) BPSK

-√E0

+√E0

-3√E0 +3√E0-√E0

-3√E0

+√E0

+3√E0

(b) 16-QAM

Figure 2.2 Signal space constellations

sequence of log2 M bits. We denote this mapping as m : {0, 1}log2 M → R
2. A vector

ci = {c1, c2, . . . , clog2 M} of log2 M binary bits, is thus isomorphic to a signal point m(ci). A

length n sequence of log2 M bit vectors {c1, c2, . . . , cn} is then isomorphic to the sequence

{m(c1),m(c2), . . . ,m(cn)} of n signal points. We thus map n log2 M bits to n complex sig-

nal points. In a slight abuse of notation we again use m to denote this n dimensional

mapping as

m : {0, 1}n log2 M → R
2n (2.5)

with the inverse mapping denoted m−1 : R
2n → {0, 1}n log2 M .

The transmitted signals we consider are bandpass signals, that is, they occupy some finite
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bandwidth B. The signals are transmitted at some carrier frequency fc, and therefore oc-

cupy frequencies from fc − B
2 to fc + B

2 . However, without loss of generality we represent

the transmitted signal by its complex baseband equivalent [8], that is, the signal s(t) oc-

cupying frequencies from 0 to B. We likewise represent the channel impulse response

(detailed in Section 2.2) by its complex baseband equivalent h(t, τ), so that the channel

is modelled as a time varying linear filter. Furthermore, interference encountered in trans-

mission and thermal noise from electronic components is modelled as a zero mean complex

Gaussian process, with constant power spectral density N0
2 for both the real and imaginary

components (dimensions). Assuming the noise is filtered such that it occupies an identi-

cal bandwidth to the transmitted signal, we may then denote the received noise process

as w(t), so that a sample w(t1) of w(t) at time t1 is a complex Gaussian random variable

with variance N0
2 per dimension [8]. Furthermore, we assume samples w(t1) and w(t2) are

independent, for all t1 and t2 such that t1 6= t2. The received signal is then

r(t) =

∫ +∞

−∞
h(t, τ)s(t − τ)dτ + w(t) = s(t) ⊗ h(t, τ) + w(t) (2.6)

where ⊗ denotes convolution between t and τ . In certain cases h(t, τ) may be represented

as a constant, which we assume, without loss of generality, to be unity. The received signal

is then perturbed by w(t) only, so that

r(t) = s(t) + w(t) (2.7)

and we refer to this as an additive white Gaussian noise (AWGN) channel. Assuming symbols

are transmitted at rate B so that the average symbol power is B Eav, the average signal to

noise ratio (SNR) of the bandlimited received signals is γ = Eav
N0

. Although the AWGN

channel is one of the simplest channel models, it generally does not fully describe the

wireless channel. For wireless channels, we examine the complicated nature of h(t, τ) in

the following section.

The digital demodulator maps the received analog waveform back to some set of data

points. The demodulator must first account for the effects of the channel, typically by

applying the inverse channel response h−1(t, τ), and then attempt to apply the inverse

mapping from a noise corrupted point in signal space to a sequence of bits, m−1 : R
2 →

{0, 1}log2 M . We assume the digital demodulator employs a matched filter or correlation re-

ceiver [8] to estimate the data sequence associated with the received waveform. The re-

ceived data sequence is then passed to the error control decoder, which attempts to correct

any erroneous data symbols using the redundancy added by the error control encoder. Fi-

nally, the corrected data is passed to the source decoder to reconstruct an estimate of the

original binary information.
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2.2 Wireless Radio Channels

This section outlines fundamental characterisations of the mobile radio channel, providing

a reference for the remainder of this thesis. The properties of the wireless radio channel

are determined by the environment surrounding the transmit and receive antennas. The

behaviour of the channel is thus typically random, and simple deterministic models are

not adequate. We introduce several statistical descriptions of the channel which accurately

model its behaviour, largely summarising the work of [12] and [11].

Channel characterisation may be split into two categories [10]. Models which characterise

mean received signal strength over large separation distances, hundreds or thousands of

metres, between transmitter and receiver are called large-scale path loss or shadowing. This

mean received signal strength varies very slowly, over the order of millions of received

symbols, for a given receiver velocity and symbol rate. We neglect the effects of shadowing

and assume that the mean received power is constant over a long period of time. That is,

we assume the shadowing effects are adequately compensated for using some transmit

power control, as in [15] or [16, Chp. 3].

Channel models which consider only the rapid changes in the received signal over small

distances or short time are called small scale fading, multipath fading or simply fading. In

this thesis we consider multipath fading only, since the systems we consider either transmit

over short time intervals, or have fixed separation distances. OFDM systems have been

proposed for future mobile technologies, and as such we must consider multipath fading.

Even fixed point to point OFDM systems may experience multipath fading, particularly

if no line of sight path is present. Fixed wireless systems are perturbed by changes in the

surrounding environment, such as the movement of people, cars, or flora. These effects

may also be modelled as multipath fading.

2.2.1 Multipath Fading Characteristics

Objects, such as buildings, people and trees, in the vicinity of a transmitter or receiver re-

flect, diffract and scatter radio signals. Multipath fading is caused by the interference from

several different versions of the transmitted signal arriving at the receiver at slightly differ-

ent times. This phenomenon is referred to as multipath propagation, and is illustrated in Fig-

ure 2.3. Receiver or transmitter movement changes the distribution of the amplitude, phase

and arrival times of the incoming signal versions, which may cause rapid fluctuations in

the amplitude and phase of the received signal. Note that even for a fixed transmitter and

receiver such rapid fluctuations may be caused by motion of surrounding objects [17]. For

the context of this thesis, we may assume that the transmitter and surrounding environ-

ment are fixed, and thus model multipath fading as due to receiver motion only. The most
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important effects of fading are rapid received signal strength changes over a small distance

or time interval, random frequency modulation due to Doppler effects and time dispersion

due to multipath delays. We outline statistical characterisations of these effects.

Figure 2.3 Multipath Fading Mechanism

In certain cases it is appropriate to model the received signal as being composed of a dense

continuum of delayed transmitted signal versions, referred to as diffuse multipath. How-

ever, unless noted we assume the received signal is the superposition of a finite number

P of versions of the transmitted signal s(t), referred to as discrete multipath. Since the path

that each version of the transmitted signal travels is distinct, each version has a distinct

arrival time, attenuation and phase. We denote the complex gain of the pth version as ap,

and the relative delay in arrival time between the first signal and pth signal as τp. We can

then write the bandpass representation of the received signal r(t) as

r(t) = Re







exp(j2πfct)

P
∑

p=1

ap exp(−j2πfcτp)s(t − τp)







(2.8)

where fc is the carrier frequency of the transmitted signal. The summation in (2.8) is the

complex envelope, denoted r̃(t), of the received signal, which is a function of the delay

times, path gains, carrier frequency and the transmitted signal s(t). The phenomenon of

several relatively delayed signal versions being received is known as time dispersion, and

creates intersymbol interference (ISI) between successive transmitted signals.

The path gains ap and delays τp may change at different locations, giving rise to rapid

spatial fluctuation in the complex envelope r̃(t). When there is receiver motion this may

be viewed as a temporal phenomenon since the receiver changes position over time. We

therefore refer to the mobile radio channel as being time varying, although the cause of

this is typically spatial variation.

Receiver motion causes a Doppler shift in the received signals. The fading channel there-
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fore induces a random frequency modulation and spectral broadening of the transmitted

signal. The Doppler shift is dependent on the relative velocity between the transmitter

and receiver. Spectral broadening of the transmitted signal due to receiver or environment

motion is known as Doppler spread.

We now consider the impact of the transmitted signal on the channel classification. Given

a transmitted signal s(t) with bandwidth B, carrier frequency fc, and maximum velocity

v, the channel may be classified as either static or fading and either narrowband or wideband,

as outlined below.

Static Channels

First consider the case when the receiver is stationary and the surrounding environment

changes negligibly, or equivalently when the carrier frequency is much less than the in-

verse of the longest path delay, in other words fc ≪ 1
τp

, for all p. The path delays τp and

amplitudes ap are then considered invariant. If the transmitted signal period T = 1
B is such

that T ≫ τp , for all p, then the received signal varies slowly and is largely unperturbed by

the arriving relatively delayed signals. We can then write s(t − τp) ≈ s(t), and thus write

(2.8) as

r(t) ≈ Re







s(t)
P
∑

p=1

exp(−j2πfcτp)







= h0s(t). (2.9)

The channel is therefore modelled as a time invariant constant h0. We refer to this channel

as a static narrowband or static flat channel, where static refers to the time invariance, and

flat or narrowband implies invariance of the channel gain with respect to frequency.

In the case where τp 6≪ 1
B , for some p ∈ {1, 2, . . . , P}, the delayed versions of the trans-

mitted signal have a significant effect on the received signal. In this case we write (2.8)

as

r(t) =

∫ +∞

−∞
h(τ)s(t − τ)dτ (2.10)

where the delay dependent channel gains are h(τ) =
∑P

p=1 hpδ(τ − τp) in which hp =

ap exp(j2πfcτp). If one or more delays τp is greater than the transmitted signal resolution

time T , the channel may have a severe distorting effect on the received signal,

r(t) ≈ Re







P
∑

p=1

exp(−j2πfcτp)s(t − τp)







=

P
∑

p=1

hps(t − τp) , (2.11)

that is, the channel now behaves like a time invariant linear filter, with impulse response

h(τ). We may find the channel frequency response H(f) by taking the Fourier transform of

h(τ). Conceptually, the transmitted signal is spread over time, and this type of channel is
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therefore known as a static, time dispersive channel. It is also referred to as a static dispersive,

static wideband or static frequency selective channel, since the channel response varies for

different frequency components of the transmitted signal.

Many of the systems we consider operate in time varying channels. However, many sys-

tems transmit data in short bursts during short time intervals. If the channel time variance

is negligible during these periods we refer to the channel as being quasi-static. In these

cases the assumption of a static channel model is valid.

Time Varying Channels

If the receiver moves at some nonzero velocity v, with respect to the transmitter, then the

path delays are time varying, and denoted τp(t). Consider first the case where the time

varying path delays are small in comparison to the signal bandwidth, that is τp(t) ≪ 1
B for

all p and t. The transmitted signal then varies slowly enough so that it is unaffected by the

received delayed signals, and s(t − τp(t)) ≈ s(t). We can then write (2.8) as

r(t) ≈ s(t)
P
∑

p=1

ap exp[−j2πτp(t)] = h(t)s(t) , (2.12)

where h(t) is the time-varying complex channel gain. We refer to this type of channel as

a flat, fading or time-selective channel, since there is no variation in the channel gain with

transmitted signal frequency. This is also referred to as a flat fading channel.

Consider next the case where the delay durations have a significant effect on the received

signal. That is, τp(t) 6≪ 1
B , for some p at time t. Then the transmitted signal is spread over

time, and we may write

r(t) =

∫ +∞

−∞
h(t, τ)s(t − τ)dτ , (2.13)

where h(t, τ) =
∑P

p=1 hp(t)δ(τ − τp) and hp(t) = ap(t) exp[−j2πτp(t)], that is, the channel

may be modelled as a linear filter, with time varying impulse response h(t, τ). This channel

is referred to equivalently as a wideband fading, frequency selective fading, time and frequency

selective or dispersive fading channel.

The wideband fading channel is the most general model, and it is readily seen that the time

invariant and flat channel models are special cases of this channel model. We consider only

wideband fading channels for the remainder of this chapter.

Since the path delays τp(t) are time variant, the phases of the arriving transmitted signal

versions also vary with time. It is typically assumed that the arrival angles ϑp of the re-

ceived signal plane waves at the receiver are constant, a valid assumption when the trans-
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mitter is far away from the receiver [11]. Then, the phase of the transmitted signal taking

the pth path may be written as 2πfcτp(t), relative to a signal with delay τp(t) = 0, and the

phase change may be written [11] as

θp(t2) − θp(t1) =
2πv(t2 − t1)

λc
cos ϑp. (2.14)

Differentiating (2.14) with respect to time, we obtain

∂θp

∂t
=

2πv

λc
cos ϑp = fd cos ϑp (2.15)

where fd , v
λc

= vfc

c is the maximum Doppler shift due to receiver motion, and c is the am-

bient speed of light. Thus, the frequency components of the pth version of the transmitted

signal are shifted by a maximum of fd, a phenomenon know as Doppler spreading which

manifests itself as a spectral broadening of the received signal.

2.2.2 Statistical Channel Description

It is almost impossible to deterministically describe the channel impulse response h(t, τ),

due to stochastic receiver motion and the typically large number of multipath components,

whose path gains and delays are themselves stochastic. However, several methods of char-

acterising the stochastic nature of the channel exist [10–12].

We may model the channel response h(t, τ) as a two dimensional stochastic process. We

assume that the number of paths P is large, and that the distribution of propagation delays

and amplitudes is random. By the central limit theorem, samples of the channel response

h(t, τ) follow a complex Gaussian distribution, with probability density function

fh(x) =
1

(2π)k det (Rx)
exp

(

−1

2
[x− x]† Rx

−1 [x− x]

)

(2.16)

where x = {x1, x2, . . . , xk} is a vector of k samples of the random process h(t, τ), x =

E [x] and the correlation matrix is Rx = 1
2E
[

(x− x)(x − x)†
]

, with † denoting the matrix

Hermitian transpose. This distribution is fully described by its mean

h(t, τ) = E [h(t, τ)] (2.17)

and the elements of Rx, defined by the autocorrelation function

Rh(t1, t2; τ1, τ2) = E

[(

h(t1, τ1) − h(t1, τ1)
)

.
(

h(t2, τ2) − h(t2, τ2)
)]

. (2.18)

It is typically assumed that h(t, τ) is time independent and Rh(t1, t2; τ1, τ2) is dependent

only on ∆t = t2 − t1 rather than t1 and t2, so that h(t, τ) is a second order stationary
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process [18]. This is known as the wide sense stationary assumption. When a line of sight

(LoS) path between the transmitter and receiver is present, this path will usually have far

greater magnitude |ap| than the other paths, and h(t, τ) is nonzero. However, in the non-

LoS case we may assume that h(t, τ) = 0. We now consider these cases individually.

Rayleigh Fading Channels

We typically model the non-LoS channel as being both wide sense stationary and exhibit-

ing uncorrelated scattering (WSSUS) [11, 12], that is, the response at delays τ1 and τ2 are

uncorrelated so that Rh(t1, t2, τ1, τ2) = 0 , for all τ1 6= τ2. In a slight abuse of notation we

retain Rh(·) as the WSSUS channel autocorrelation function at fixed delay τ1 = τ2, and time

separation ∆t = t2 − t1. We then write

Rh(t1, t2; τ1, τ2) ≡ Rh(∆t; τ1, τ2)δ(τ1 − τ2) ≡ Rh(∆t; τ1). (2.19)

Since the channel is a complex Gaussian process with h(t, τ) = 0, the channel envelope

|h(t, τ)| follows a Rayleigh distribution, with probability density function (PDF)

f|h(t,τ)|(x) =
x

σ2
h

exp

(

− x2

2σ2
h

)

for x ≥ 0 (2.20)

where σ2
h is the variance of the underlying Gaussian random variables. The channel gain

|h(t, τ)|2 then follows an exponential distribution, with PDF [19]

f|h(t,τ)|2(y) =
1

2σ2
h

exp

(

− y

2σ2
h

)

for y ≥ 0. (2.21)

We thus refer to such non-LoS, time varying channels as Rayleigh fading channels.

The average squared magnitude of the channel response as a function of delay τ is de-

scribed by the delay power profile σ2
h(τ), defined as the channel autocorrelation function at

∆t = 0, that is,

σ2
h(τ) = Rh(0, τ). (2.22)

The mean delay and rms delay spread are defined, respectively, as

τ =

∑P
p=1 τpσ

2
h(τp)

∑P
p=1 σ2

h(τp)
and τrms =

√

√

√

√

∑P
p=1 τ2

p σ2
h(τp)

∑P
p=1 σ2

h(τp)
− τ2. (2.23)

The range of τ over which σ2
h(τ) 6= 0 is referred to as the maximum delay spread τmax. If the

transmitted symbol period T ≫ τmax, then intersymbol interference is negligible, and the
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system is narrowband. At delay τ the channel autocorrelation can be written as

Rh(∆t, τ1) = σ2
h(τ)ρτ (∆t) (2.24)

where ρτ (∆t) is the time autocorrelation function, normalised so that ρτ (0) = 1. The sta-

tistical behaviour of the channel is uniquely described by the power delay profile and the

time autocorrelation functions, that is, in the τ and ∆t domains. By taking the Fourier

transform of h(t, τ) with respect to τ , we may also describe the channel in the time and

frequency domains. We then obtain

H(t, f) =

∫ +∞

−∞
h(t, τ) exp(−j2πfτ)dτ (2.25)

which is the time varying channel frequency response. Since the Fourier transform is a

linear operation the autocorrelation functions of H(t, f) will give an equivalent channel

description to the autocorrelation functions of h(t, τ) [18]. Taking the autocorrelation with

respect to time, we obtain the time-frequency correlation function

RH(∆t; f1, f2) = E [H(t, f1).H
∗(t + ∆t, f2)]

= E

[∫ +∞

−∞
h(t, τ) exp(−j2πf1τ)dτ.

∫ +∞

−∞
h(t + ∆t, τ) exp(−j2πf2τ)dτ

]

=

∫ +∞

−∞
Rh(∆t, τ) exp(−j2π∆fτ)dτ

≡ RH(∆t,∆f)

(2.26)

where ∆f = f2 − f1. Observe that under the WSSUS assumption, the channel autocorre-

lation is dependent only on the time and frequency separations, ∆t and ∆f , respectively.

Therefore, we may refer to the channel as being stationary in time and frequency. The

Fourier transform of the channel autocorrelation Rh(∆t, τ) with respect to ∆t yields the

channel scattering function

Sh(v, τ) =

∫ +∞

−∞
Rh(∆t, τ) exp(−j2πv∆t)d∆t (2.27)

which gives a measure of the channel gain as a function of the Doppler spread v. Fi-

nally, the Doppler cross-power spectral density or spaced-frequency Doppler spread spectrum is

the Fourier transform of the channel autocorrelation, defined as

SH(v,∆f) =

∫ +∞

−∞
RH(∆t,∆f) exp(−j2πv∆t)d∆t . (2.28)

This gives a measure of the channel frequency response correlation with respect to the
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Doppler spread v. A WSSUS Rayleigh fading channel is fully and equivalently described

by any of the autocorrelation functions SH(v,∆f), Sh(v, τ), RH(∆t,∆f) or Rh(∆t, τ).

We now consider some important channel parameters which give a partial description of

the channel. Firstly, the autocorrelation function of (2.26) at ∆t = 0 yields

RH(∆f) =

∫ +∞

−∞
Rh(τ) exp(−j2π∆fτ)dτ . (2.29)

The range of ∆f for which RH(∆f) is essentially non-zero is known as the channel coher-

ence bandwidth Bc. The channel response for transmitted signal components of frequency

separation greater than Bc is uncorrelated. It may be seen [12] that the the coherence band-

width is related to the maximum delay spread by Bc ≈ 1
τmax

. Averaging the scattering

function over all delays yields

Sh(v) =

∫ +∞

−∞
Sh(v, τ)dτ (2.30)

which is referred to as the channel Doppler power spectrum. The range of v over which this

is non-zero is referred to as the Doppler spread Bd of the channel, which characterises the

rate of channel variation, that is, the rate of fading. The channel Doppler spread is related

to the receiver velocity by Bd = 2fd = 2 v
λc

. Finally, the range of ∆t over which the channel

response RH(∆t,∆f) is essentially non-zero is referred to as the channel coherence time

Th. Intuitively, channel gains within a time interval less than Th will have some measurable

correlation, while channel gains at time separation ∆t > Th will appear uncorrelated. From

the Fourier transform relationship of the autocorrelation functions, the channel coherence

time and Doppler spread are related by Th ≈ 1
Bd

.

Given the channel parameters Bd, Th, τrms and τmax, and signal parameters B, T and fc, we

may more informally classify the channel. We refer to the channel as fast fading if T > Th

and B < Bd, and in this case the channel response changes significantly during the symbol

period of the transmitted signal. Conversely, if T ≪ Th and B ≫ Bd then the channel

is slow fading and the channel response will be approximately constant during the symbol

period of the transmitted signal. Note that static and quasi-static channels are special cases

of slow fading channels, when the coherence time Th is very large. The channel coherence

bandwidth and delay spread determine whether a channel may be considered narrowband

or wideband. If B > Bc and T < τrms then a channel is wideband, or frequency selective.

Conversely, a channel is narrowband, or flat, if B ≪ Bc and T ≫ τrms.
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Rician Fading Channels

When there is a LoS or dominant path between the transmitter and receiver, the channel

response is modelled as a Gaussian process h(t, τ) with non-zero mean. We model the LoS

path as having constant amplitude a0 and time varying phase τ0(t) and we may then sep-

arate the channel response into the LoS and non-LoS components. We express the channel

impulse response as

h(t, τ) = a0 exp(−j2πfcτ0(t)) + hs(t, τ) (2.31)

where hs(t, τ) is the channel response due to the reflected, diffused and scattered paths. We

define a0 so that hs(t, τ) is a zero mean, wide sense stationary Gaussian process. Assum-

ing uncorrelated scattering, hs(t, τ) then follows the Rayleigh fading channel response, as

previously described.

We consider only coherent systems [8], so that the receiver obtains phase lock on the dom-

inant path. The time varying phase τ0(t) may then be set to zero and we may model the

phase locked channel response as

hPL(t, τ) = a0 + hs(t, τ). (2.32)

The channel envelope |hPL(t, τ)| follows a Rician distribution [20],

f|hPL(t,τ)|(x) =
x

σ2
h

exp

(

− x2

2σ2
h

− KR

)

I0

(

x
√

2KR

σh

)

(2.33)

where σ2
h is the variance of the underlying Gaussian random variables, I0(·) is the zeroth

order modified Bessel function of the first kind [21] and KR is the Rice factor, defined as

KR =
a2

0

2σ2
h

. (2.34)

The Rice factor is the ratio of the received power in the LoS component to the received

power in the scattering component. The channel gain |hPL(t, τ)|2 follows a non-central chi

squared distribution, with PDF [19]

f|hPL(t,τ)|2(y) =
1

2σ2
h

exp

(

−y + a2
0

2σ2
h

)

I0

(
√

a2
0y

σ4
h

)

. (2.35)

We thus refer to this model as a Rician fading channel. Note that the Rayleigh fading channel

is a special case of the Rician channel, with KR = a0 = 0.

Channel parameters vary significantly depending on the environment [22], so we give

some examples of the typical magnitude of some channel parameters. For tropospheric
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super high frequency (SHF) scattering channels the delay spread usually ranges from 0.1µs

to 0.2µs [23] with Doppler spread from 0.1Hz to 10Hz. However for ionospheric high fre-

quency (HF) channels the delay spread ranges from 100µs to 5ms with Doppler spread

usually 0.01Hz to 2Hz. For terrestrial multipath channels operating at about fc = 900MHz

the delay spread can be up to 20µs in an open rural environment, and in the order of

100ns to 10µs in a dense urban environment, with maximum Doppler spread approxi-

mately fD = 50Hz for receiver speed of 60km/h. Surveys of the delay spread and other

characteristics of such channels include [24–26], [27, pp. 55–66] and [28, Chp. 7].

Jakes’ Model

The channel model we most often use is the ubiquitous Jakes’ model [11] (actually first

proposed by Clarke1 [29]), which specifies a non-LoS, narrowband Rayleigh fading chan-

nel. Furthermore, this model describes the correlation between the channel response of

two narrowband fading channels occupying different frequencies, which we will later use

to model the correlation between OFDM subchannels. Isotropic scattering is assumed and

the channel autocorrelation function is found to be

Rh(∆t, τ) = σ2
h(τ)J0 (2πfd|∆t|) (2.36)

where J0(·) is the zeroth order Bessel function of the first kind [21]. The Jakes’ model

normalised exponential power delay profile is

σ2
h(τ) =

1

τrms
exp

(

− τ

τrms

)

(2.37)

with arbitrary rms delay τrms. Taking the Fourier transform of (2.36), the normalised

Doppler spectrum is then

SH(v) =







1

π
√

f2
d−v2

for |v| ≤ fd

0 for |v| > fd

(2.38)

which yields the well-known ‘U’-shape shown in Figure 2.4. (Here we have arbitrarily

chosen fc and v so that the maximum Doppler shift is 50Hz.)

The channel gains H(t1, f1) and H(t2, f2), at times t1 and t2 and frequencies f1 and f2

respectively, can be written as samples of the complex Gaussian process H(t, f),

H(t1, f1) = X1 + jY1 ,

H(t2, f2) = X2 + jY2 ,
(2.39)

1In keeping with popular terminology we refer to the model as the Jakes’ model. It is unclear why this
model is oft credited to Jakes, it may perhaps be due to greater availability of [11] over [29]
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Figure 2.4 Jakes’ model Doppler spectrum for a channel with fd = 50Hz.

where X1, Y1, X2 and Y2 are identically distributed Gaussian random variables. With no

LoS path E [X1] = E [X2] = E [Y1] = E [Y2] = 0, and without loss of generality we may set

E
[

X2
1

]

= E
[

X2
2

]

= E
[

Y 2
1

]

= E
[

Y 2
2

]

= 1
2 . The following correlation properties are then

readily shown [11]:

E [X1Y1] = E [X2Y2] = 0

E [X1X2] = E [Y1Y2] =
1

2
· J0 (2πfd∆t)

1 + (2π∆fτrms)2

E [X1Y2] = − E [X2Y1] = −1

2
· (2π∆fτrms) J0 (2πfd∆t)

1 + (2π∆fτrms)2
.

(2.40)

It may be seen that {X1, Y1} and {X2, Y2} form a circular pair [30] and the channel envelopes

|H(t1, f1)| and |H(t2, f2)| are marginally Rayleigh distributed, with

E [|H(t, f)|] =
1√
2

E
[

|H(t, f)|2
]

= 1, for all t, f (2.41)

and correlation coefficient

ρ =
J2
0(2πfd∆t)

1 + (2πτrms∆f)2
. (2.42)

The joint distribution of the channel envelope at time t1 = t2 and frequencies f1 and f2 is
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then [30]

f|H1||H2|(x, y) =
xy

σ4 (1 − ̺)
exp

(

− x2 + y2

2σ2[1 − ̺]

)

I0

( √
̺xy

σ2[1 − ̺]

)

(2.43)

where σ2 = 1
2 and ̺ = 1

1+(2πτrms∆f)2
. The channel gains |H(t1, f1)|2 and |H(t2, f2)|2 have a

marginal exponential distribution, with

E
[

|H(t, f)|2
]

= 1 var
[

|H(t, f)|2
]

= 1, for all t, f (2.44)

and the same correlation coefficient

ρ =
J2
0(2πfd∆t)

1 + (2πτrms∆f)2
. (2.45)

The bivariate exponential distribution is then [30]

f|H1|2|H2|2(x, y) =
1

σ4 (1 − ρ2)
exp

(

− x + y

2σ2[1 − ρ2]

)

I0

(

ρ.
√

xy

σ2[1 − ρ2]

)

. (2.46)

In Figure 2.5 we display the time varying frequency response H(t, f) of a wideband, Ray-

leigh fading channel defined by the Jakes’ model. The transmitted signal has carrier fre-

quency fc = 5.1GHz and bandwidth B = 20MHz. We assume rms delay spread of 50ns

and a receiver velocity of 100km/h.

Other Channel Models

Several other statistical descriptions of the channel model exist. In particular the Nakagami-

m [31] and Weibull [32] distributions have been proposed to represent the amplitude of the

narrowband fading channel. There is no underlying physical justification for applying

these distributions, although empirical data supports their use [33]. Note that the Rayleigh

PDF is a special case of both distributions. Furthermore, [34] models the envelope with

a generalised gamma distribution. Despite these other models, we persist with the more

widely accepted Rayleigh and Rician models.

2.2.3 Simulating the Wireless Channel

Throughout this thesis we verify analytical results with simulated results. A simulation

model of the wireless channel is thus essential. Our method of simulating the wireless

channel follows that outlined by [23] and [35]. From (2.13) we observe that the channel

behaves like a linear time variant filter, so we may simulate the channel using a tapped

delay line (TDL) filter [23]. Since the channel maximum delay spread τmax represents the

range over which the channel response is essentially non-zero, we may model the channel

as a finite impulse response (FIR) filter with maximum delay τmax.
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Figure 2.5 Baseband channel gain 20 log
10

(|H(t, f)|) for a Jakes’ model, wideband Rayleigh fading
channel, with exponential power delay profile and parameters fc = 5.1GHz, B = 20MHz, τrms =
50ns and v = 100km/h.

The transmitted signal and channel fading processes are generally bandlimited, so we may

sample the received signal at rate Ts, with no loss of information provided the Nyquist

criterion is satisfied, that is at time intervals Ts ≥ 2
Br

, where Br is the bandwidth of the

received signal. We may write the transmitted symbol as [23]

s(t) =
+∞
∑

ℓ=−∞
sℓ sinc

(

t − ℓTs

Ts

)

(2.47)

where sℓ = s(ℓTs) is the ℓth sample of s(t). We may also sample the channel response at

time intervals Ts, to obtain the ℓth sample at delay mTs as

cℓ,m =

∫ +∞

−∞
h(ℓTs, τ) sinc

(

mTs − τ

Ts

)

dτ . (2.48)
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Then following (2.13) we may write the ℓth sample of the received signal as

rℓ =

∫ +∞

−∞
h(ℓTs, τ)s(ℓTs − τ)dτ

=

+∞
∑

m=−∞
sℓ−m

∫ +∞

−∞
h(ℓTs, τ) sinc

(

mTs − τ

Ts

)

dτ

=
+∞
∑

m=−∞
hℓ,msℓ−m.

(2.49)

Since the channel response is negligible for delays greater than τmax, we can approximate

(2.49) as

rℓ ≈
M
∑

m=0

hℓ,msℓ−m (2.50)

where M = ⌈ τmax
Ts

⌉. Thus, for the ℓth time sample, the channel response may be approxi-

mated as a FIR tapped delay line filter, with uncorrelated tap weights hℓ,m. The tap gains

hℓ,m are samples of a stationary random process with Gaussian probability density func-

tions and power spectral density functions equal to the channel Doppler power spectral

density [23]. The mean squared gain of a filter tap at delay ℓTs is the channel power de-

lay profile at ℓTs. The simplest method of generating each tap gain is by filtering a white

Gaussian noise process, with some FIR filter with transfer function so that the desired

Doppler power spectral density is obtained. For example, to obtain the required Jakes’

model Doppler power spectral density (2.38) we require a filter with normalised frequency

response [23, 36]

Hd(f) =















1

4

r
1−
�

f
fd

�2
for |f | < fd

0 otherwise,

(2.51)

and corresponding impulse response

hd(t) =







4
√

πfd /Γ
(

5
4

)

for t = 0

t−
1
4 J 1

4
(2πfdt) otherwise,

(2.52)

where Γ(·) is the gamma function and J 1
4
(·) is the one-fourth order Bessel function of the

first kind [36, 37].

2.3 Summary

We have presented a brief overview of the physical layer of a wireless communications

system, with discussion of the concepts of digital modulation and wireless radio channels.

Key assumptions have been established, such as the use of QAM or BPSK and a coherent
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receiver. A detailed outline of the multipath fading mechanism is provided, as well as

statistical descriptions of multipath fading channels. The difficulties of accurately demod-

ulating signals transmitted through multipath channels motivate the discussion of OFDM

in Chapter 4.
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Chapter 3

Error Control Coding

This chapter introduces error control coding. We limit our discussion to block codes and

their derivatives. A general overview of block coding is first given, followed by a discus-

sion of hard and soft decision decoding. We then review signal space codes and lattices,

which naturally leads to a discussion of trellis coding. References [5, 38, 39] provide a fur-

ther introduction to error control coding.

3.1 Introduction

The goal of error control coding is to minimise the number of bit errors in the received data.

At the transmitter the channel encoder adds redundant data according to some rule, and

the channel decoder exploits this redundancy to decide whether any bits are in error. The

addition of redundancy implies either reduced data throughput, or increased system band-

width, as well as additional system complexity. These constraints are design trade-offs in

the choice of error control coding scheme to achieve some acceptable error performance.

Error correcting codes are traditionally separated into block codes and convolutional codes.

Convolutional encoders accept some arbitrary length stream of data symbols, and output a

stream of encoded symbols at a higher rate. Block encoders accept a fixed length vector of k

data symbols, and a longer length vector of n encoded symbols is output. Many deployed

OFDM systems employ convolutional encoders [6, 40, 41]. However, we consider block

codes only, since they form the basis for lattice coding.

We later introduce lattices, a necessary preliminary to coset coding and lattice coding. Lat-

tice coding is a technique that combines modulation and coding, and allows powerful

error correction. Recent results [42–44] have shown that lattice coding techniques may be

applied to approach the AWGN channel capacity. Furthermore, lattice coding for fading

25
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channels has also been shown to achieve high coding gains [45].

3.2 Binary Linear Block Codes

An (n, k, d) binary linear block encoder [38] accepts information in k-bit message blocks,

denoted m = {m0,m1, . . . ,mi, . . . ,mk−1} where mi ∈ {0, 1}. The encoder adds n − k

redundant bits to each block, and outputs an encoded block of n bits. We refer to the

output block as a codeword, denoted c = {c0, c1, . . . , ci, . . . , cn−1}, where ci ∈ {0, 1}. Each

sequence of input bits produces a distinct codeword. The ratio r = k
n is called the code

rate, which gives a measure of the redundancy added. The set of all distinct codewords is

referred to as the code, and denoted C . It is readily shown that |C| = 2k. A code is linear if

the modulo-two sum of any two codewords ca, cb ∈ C, produces another codeword. That

is, ca + cb ∈ C.

Any binary linear block code may be defined by a generator matrix G, a k × n binary

matrix, which may be used to produce codewords by left multiplication,

c = mG. (3.1)

A generator matrix of a code is necessarily a binary matrix with full row rank. When

a binary linear block code is employed, the channel encoder multiplies each block of k

message bits by the generator matrix, as in (3.1). A parity check matrix H of a code is defined

as the (n − k) × n matrix such that

HGT = 0(n−k),k (3.2)

where 0(n−k),k is the (n − k) × k all zero matrix.

The Hamming distance dH (ca, cb) between two codewords ca and cb is defined as the num-

ber of elements in which ca and cb differ. We define the minimum code distance dC of a code

C as the minimum Hamming distance between any two codewords, that is

dC , min {dH (ca, cb) : ca, cb ∈ C, ca 6= cb} . (3.3)

We may generally describe a block code as an (n, k, d) code, with length n, k input bits and

Hamming distance d.

Generally, linear codes accept k q-ary symbols as input, and output n q-ary, such that the

symbols are elements of the order q Galois field [38, 46] Fq, and each codeword is then

an element of the Cartesian product Fn
q . Linear codes are thus linear subspaces of Fn

q ,

and form commutative groups [46]. Linear codes are thus often referred to as group codes.
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Note that binary codes may be described in this fashion, since F2 = 0, 1. The code rate is

r = 1
n log2 q bits/symbol. The code distance d is again the minimum Hamming distance

between any two codewords, and generally the larger the Hamming distance, the more

errors a code can correct.

The error correcting code problem is: given n and d, find the (n, k, d) group code with the

maximal number of codewords qk. This will then maximise the rate of a code with length

n and fixed error correcting capability d. In general, this problem this problem is un-

solved, however a large number of good constructions have been found, and many bounds

are known [38]. There are many families of known good binary, and non-binary, linear

block codes, each with different error correcting properties, including Hamming codes [47],

Reed-Solomon codes [48], Bose-Chaudhuri-Hocquenghem (BCH) [49–51] and Reed-Muller

(RM) [52, 53] codes.

Broadly speaking, the attractiveness of block codes is the ability to construct codes with

large distance d that can correct many errors, and which have decoding complexity of

polynomial order in d. As such, block codes have been, and continue to be, used in many

wireless applications.

3.3 Hard and Soft Decision Decoding

Assuming an M -ary transmission scheme with signal constellation M, each signal point

represents log2 M binary bits. To transmit a length n binary codeword the transmitter

then selects a sequence of ⌈ n
log2 M ⌉ waveforms of period T to represent each set of n bits.

The receiver obtains ⌈ n
log2 M ⌉ signal points which represent the noise corrupted transmitted

points. The demodulator then produces an output corresponding to the received signals.

Depending on the demodulator design, the output, for each of the n waveforms, may be

a real number or a discrete value. In the case of hard decision decoding the demodulator

directly estimates the transmitted bit sequence then outputs n binary bits. These bits are

then passed to an algebraic decoder whose output is an estimate of the k transmitted in-

formation bits. In the case of soft decision decoding the demodulator outputs real numbers,

or binary words of length greater than n, which are then passed to some decoder to esti-

mate the k information bits. The additional demodulator output information during soft

decision decoding typically provides a measure of the reliability of the demodulator esti-

mates, and affords improved decoder performance. We now outline decoding procedures

for hard and soft decision decoding.

As an example, consider a BPSK constellation (M = 2), where S0 is equivalent to bit 0, and

S1 is equivalent to bit 1. We may receive point y, as shown in Figure 3.1. A maximum a

posteriori (MAP) [8] demodulator hard decision would be to output bit 1, since the received
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point is closest to the constellation point S1.

-√E0

+√E0

-3√E0 +3√E0-√E0

-3√E0

+√E0

+3√E0

S1S0

y

d

Figure 3.1 Transmitted BPSK constellation and received point y

If we transmit all n bits of a codeword, a hard decision demodulator outputs a length n

binary codeword estimate r = {r0, r1, . . . , rn−1}. Since r is possibly error corrupted, we

may write

r = c + e, (3.4)

where e is a length n binary vector, known as the error vector: if ei = 1, then the ith element

of r is in error, and conversely if ei = 0 then the ith element of r is correct. The syndrome of

r is a vector identifying each correctable error pattern, and is calculated as

s = rHT = (e + c)HT = eHT + cHT = eHT , (3.5)

since cHT = 0 for all codewords. Therefore r is a codeword if and only if s = 0. We may

identify the errors, e from s. However, it is possible that r contains errors and s = 0, since,

if e is equal to some nonzero codeword, so that c + e ∈ C, then

s = (c + e)HT = cHT + ceH
T = 0. (3.6)

This decoding method is called syndrome decoding. We note that many other hard decision
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decoding methods exist. For example, the Reed-Muller codes are best decoded using ma-

jority logic decoding [38]. It may be shown [39] that hard decision decoding is guaranteed

to correct t errors in r, up to half the minimum Hamming distance of the code, that is,

provided 2t < dC , or equivalently t ≤ dC−1
2 .

Soft decision decoding offers significant benefits over hard decision decoding. Intuitively,

information is discarded by the demodulator when hard decisions are made, while soft

decision decoding retains and exploits some or all of this information. The simplest type

of soft decision decoder uses erasures to indicate certain bits in a codeword which may

contain errors. For example, for a system receiving BPSK signal points, as in Figure 3.1,

we may decide received points close to S0 or S1 are output as 0 or 1 respectively, and

received points near the decision boundary are unreliable and thus labelled as erasures.

For example, received points where d > 0.8
√

E0 could be labelled erasures. Given a binary

demodulator output r where t bits are in error and s bits are erased, we may correctly

decode r provided 2t + s < dC [38]. We now outline a simple binary erasure decoding

algorithm.

Given a received word r, we place zeros in all the erased positions, and decode normally,

labelling the resulting codeword c0. We then place ones in all erased positions of r, and

decode normally, labelling the resulting codeword c1. The decoder output is then ci ,

i ∈ {0, 1}, such that dH (ci, r) is minimised. Analysis of this algorithm is straightfor-

ward [38]. Note that this decoding algorithm requires twice the complexity of simple hard

decision decoding, as we perform two hard decision decoding operations. The coding gain

of this approach is dependent on the choice of erasures. However, soft decision decoding

algorithms can generally achieve about 3dB of coding gain over hard decision decoding

algorithms, with appropriate demodulator and decoder design [39].

Non-binary erasure decoding algorithms also exist, such as the Berlekamp-Massey [54,55]

algorithm. In particular Bose-Chaudhuri-Hocquenghem and Reed-Solomon codes permit

very efficient erasure decoding.

3.3.1 Generalised Minimum Distance Decoding

Generalised minimum distance decoding (GMD) is a soft decision decoding algorithm first

introduced in [56]. We transmit codewords from an (n, k, d) linear block code C by map-

ping the codeword to a sequence m(u) of signal points in Euclidean space. The demodula-

tor outputs a hard decision word u = {u1, u2, . . . , ui, . . . , un} and a vector of corresponding

reliability values α = {α1, α2, . . . , αi, . . . , αn}, where 0 ≤ αi ≤ 1 and αi ∈ R. Here αi = 0

indicates the hard decision ui is unreliable while αi = 1 indicates high reliability.

We define the trial enumerator set K as K = {0, 2, . . . , d − 3, d − 2} if d is odd, or K =
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{1, 3, . . . , d − 3, d − 1} if d is even. Thus |K| = ⌊d+1
2 ⌋. The GMD decoder then performs |K|

erasure decoding trials, for all s ∈ K, where in each trial the s least reliable positions in u

are erased. The trial with s erasures will then produce a candidate codeword, labelled ĉs,

if and only if the number of errors t = dH (u, ĉs) satisfies 2t + s < d. Otherwise, a decoding

failure is declared and no candidate codeword is produced. A set of candidate codewords

L(r) = {ĉs : s ∈ K} is thus obtained, such that |L(r)| ≤ |K|. We refer to this stage as the

algebraic decoding phase.

Following the algebraic decoding phase, the decoder selects the codeword with the small-

est generalised distance δ(c,u) from u. The generalised distance is defined [56] by

δ2(c,u) = δ2(c1, u1) + δ2(c2, u2) + · · · + δ2(cn, un) (3.7)

where

δ(ci, ui) =







1 − αi for ci = ui

1 + αi for ci 6= ui.
(3.8)

The candidate codeword closest, in generalised minimum distance, to u is then selected as

the decoder output. It is shown in [56] that GMD decoding will decode to the codeword

c ∈ C, when δ(c,u) < d.

We now outline the calculation of a reliability metric αi, i = 0, 1, . . . , N − 1, for Gaussian

channels, from [57]. Given a received signal space point ri the demodulator finds the clos-

est and second closest constellation points labelled si and s′i respectively. The hard decision

boundary between si and s′i is their perpendicular bisector. The projection of ri − si in the

direction of s′i − si is denoted di, and the reliability is the scaled distance of ri from the

decision boundary. Thus,

αi ,



















0 for di > 1

1 − di for 0 ≤ di ≤ 1

1 for di < 0

and di ,
〈ri − si, s

′
i − si〉

‖s′i − si‖
(3.9)

where 〈 , 〉 is the standard inner product 1. Figure 3.2 shows the geometry of αi, di, ri,

si and s′i. The hard decision codeword is the inverse mapping u = m−1(s) of the vector of

closest points s = {s1, s2, . . . , sn}. A received point ri therefore has unity reliability if it is

equal to a signal constellation point si. Conversely, ri is assigned zero reliability if it lies on

the decision boundary between two signal constellation points.

It is shown in [57] that GMD decoding using this metric achieves bounded distance decod-

ing. Specifically, if the received point r produces some hard decision point s equivalent to

1Note that [57, p. 1998] labels this quantity dj , and there is a typographical error in the definition.
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Figure 3.2 GMD AWGN channel reliability calculation

u, then GMD decoding is guaranteed to produce c, provided z = m(c) satisfies ‖r−z‖ < d.

Therefore, GMD decoding has performance close to that of maximum likelihood decoding

at moderate to high signal to noise ratio.

3.4 Lattices

We now summarise the basic theory of lattices, necessary for later discussion of lattice codes.

Lattices have been studied by mathematicians for many decades, particularly the densest

sphere packing problem: ‘what is the densest way of packing equal radius N dimensional

spheres together? [7]’ Reference [7] provides a thorough introduction to lattices and sphere

packings, and describes the state of the art.

Informally, a lattice is a regular array of points in Euclidean N -space. More formally, an N

dimensional lattice Λ is defined as

Λ , {x : x = i1b1 + i2b2 + · · · + iNbN} (3.10)

where b1, . . . ,bN are N linearly independent vectors in R
N and i1, . . . , iN are integers.

A lattice may then be thought of as a vector space2, where the coefficients {ik} must be

integers. From (3.10) we observe that a lattice forms a discrete additive subgroup of R
N . A

simple example is the two dimensional integer lattice Z
2 with basis vectors b1 = {0, 1} and

2Strictly speaking a Z-free module [46]
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b2 = {1, 0}. Another simple example is the two dimensional diagonal lattice D2 with basis

vectors b1 = {1, 0} and b2 = {1
2 , 1

2

√
3}. These examples are illustrated in Figure 3.3.

r

b1

b2

(a) Integer lattice, Z
2.

r

b2

b1

(b) Diagonal lattice, D2.

Figure 3.3 Two dimensional lattices Z
2 and D2: illustration of sphere packings, basis vectors b1,b2

and fundamental parallelotopes (shaded).

Each lattice point x may be considered the centre of an N dimensional sphere with radius

r as large as possible such that the spheres are non-overlapping. This is illustrated for the

lattices D2 and Z
2 in Figure 3.3. An N dimensional sphere packing [7] is then described by

the centres of all non-overlapping N -spheres of radius r. While a lattice defines a sphere-

packing, the converse is not necessarily true, since a sphere packing need not contain the

origin x = 0, and thus may not be a subgroup of R
N .

From (3.10) the vectors b1, . . . ,bN are called a basis for the lattice. The region defined by

{r1b1 + r2b2 + · · · + rNbN : 0 ≤ r1, r2, . . . , rN < 1} , (3.11)

is the lattice fundamental region or fundamental parallelotope. Figure 3.3 shows the fundamen-

tal region for Z
2 and D2. A lattice generator matrix GΛ is a matrix whose rows form a set of

basis vectors. For example, GΛ =
[

bT
1 ,bT

2 . . .bT
N

]T
. The lattice can then be defined as

Λ = {x : x = [i1, i2, . . . , iN ]GΛ ; i1, . . . , iN ∈ Z}. (3.12)

It follows that the volume V (Λ) of the fundamental region of a lattice is

V (Λ) =
√

det
[

GΛGT
Λ

]

(3.13)
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which is independent of the choice of generator matrix. The density ∆ (Λ) of a lattice is the

proportion of space occupied by the spheres, or equivalently the ratio of the volume of one

sphere to the volume of the fundamental region, where the volume of an N dimensional

sphere of radius r is [7]

Vn(r) =
2Nπ

N−1
2

(

N−1
2

)

!

N !
rN . (3.14)

The aforementioned examples have densities ∆
(

Z
2
)

= π
4 ≈ 0.7854 and ∆ (D2) = π√

12
≈

0.9069: in Figure 3.3 observe that the spheres in D2 appear more closely packed than in

Z
2. The lattice centre density δ (Λ) is the density normalised by the unit N -sphere volume,

namely δ (Λ) = ∆(Λ)
Vn(1) .

The minimum distance of a lattice (or sphere packing) dmin (Λ) is the smallest distance be-

tween two lattice points (or sphere centres), and is equal to twice the sphere packing radius

2r. The kissing number τ(Λ) is the number of sphere centres at minimum distance from any

other sphere centre. This gives the number of spheres that ‘touch’ or ‘kiss’ any one sphere.

Observe from Figure 3.3, that τ(Z2) = 4 and τ(D2) = 6. Finally, the coding gain γ(Λ) of an N

dimensional lattice is a measure of minimum distance relative to the fundamental volume

per two dimensions, and may be written [58] as

γ(Λ) =
dmin (Λ)

V (Λ)
2
N

. (3.15)

Furthermore, it is readily seen [7] that the centre density is related to the coding gain by

γ(Λ) = 4 [δ (Λ)]
2
N . (3.16)

A key problem in lattice theory is identifying the densest lattice or sphere packing in N

dimensions. For N = 1, 2 or 3 this is trivial. For N ≥ 4 this is a nontrivial problem.

However, the densest possible lattices are known for dimensions one through eight, al-

though the densest possible sphere packings are known in dimensions one to three only.

However, the coding gain of any N dimensional sphere packing is bounded by the Rogers

bound [59, 60], expressed in [61] as

log2 (γ(Λ)) ≤ N

2
log2

(

N

4eπ

)

+
3

2
log2(N) − log2

( e

π

)

+
5.25

N + 2.5
(3.17)

with the last term being approximate, although the exact expression is given in [59]. For

N ≥ 42 a stronger bound was found by Kabatiansky and Levenshtein [62], which may be

approximated as
1

N
log2 (∆(Λ)) ≤ −0.5990. (3.18)

While the densest possible lattices are known in dimensions one through eight, Minkowski’s
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N Name Symbol Centre Density Bound ((3.17), (3.18)) Ref.

1 Integer Z 0.5 0.5 [7]

2 Diagonal D2
1

2
√

3
≈ 0.28868 0.28868 [7]

3 Diagonal D3
1

4
√

2
≈ 0.17678 0.1847 [7, 64]

4 Schläfli D4
1
8

= 0.125 0.13127 [7]

8 Gosset E8
1
16

= 0.0625 0.06326 [65]

12 Coxeter-Todd K12
1
27

≈ 0.03704 0.06559 [66]

24 Leech Λ24 1 1.2741 [61]

32 Quebbemann Q32
315

224 ≈ 1.359 45.886 [67]

32 Barnes-Wall BW32 1 45.886 [68]

48 Nebe P48n
324

224 ≈ 16834.1 39512 [69]

64 Barnes-Wall BW64 216 ≈ 6.5536 × 104 2.3663 × 109 [68]

64 Nebe N e64 3
16 ≈ 4.3047 × 10

7
2.3663 × 10

9 [69]

128 Barnes-Wall BW128 264 ≈ 1.8447 × 1019 5.0368 × 1035 [68]

128 Elkies MW128 2
97.40 ≈ 2.0908 × 10

29
5.0368 × 10

35 [7]

Table 3.1 Densest known and Barnes-Wall lattices in selected dimensions N ≤ 128, and
Minkowski’s existence theorem bound [7]

non-constructive proof [63] states that there exist N dimensional lattices such that

∆ (Λ) ≥ ζ(N)

2N−1
(3.19)

where ζ(N) =
∑∞

k=1 k−N is the Riemann zeta-function [37]. For high dimensions, no lat-

tices have been found that satisfy (3.19). Table 3.4 outlines the densest known sphere pack-

ings, and the upper bound on the density given by (3.17) and (3.18) for various dimensions.

Any sublattice Λ′ of a lattice Λ is defined as a subset of the elements of Λ, such that Λ′ is

a subgroup of Λ and itself a lattice. Then, by elementary group theory [46], Λ′ induces a

factor group or partition Λ/Λ′ of Λ into equivalence classes, modulo Λ′. The order of the

partition is the number |Λ/Λ′| of such equivalence classes. Each equivalence class is a coset

of Λ′, that is a translate Λ′ + t of Λ′, for some t ∈ Λ. We refer to t as the coset representative

and the set of all coset representatives for the partition is labelled [Λ/Λ′]. It follows that

Λ = Λ′ + [Λ/Λ′] is called the coset decomposition of Λ. For example, we can partition the

lattice Z
2 into the sublattice of even integer only coordinates 2Z

2 and its cosets. The coset

representatives may be defined as [Z2/2Z
2] = {(0, 0), (0, 1), (1, 0), (1, 1)}. This partition is

illustrated in Figure 3.4.

A partition chain Λ/Λ′/Λ′′/ . . . is a sequence of lattices such that each is a sublattice of the

former. For example, Z
2/2Z

2/4Z
2/ . . . is an infinite partition chain. A partition chain de-
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t = (0,0) t = (1,0) t = (0,1) t = (1,1)

Figure 3.4 Cosets of the lattice partition Z
2/2Z

2.

fines a coset decomposition chain, that is

Λ =Λ′ +
[

Λ/Λ′]

=Λ′′ +
[

Λ′/Λ′′]+
[

Λ/Λ′] et cetera,
(3.20)

so that each element of Λ may be expressed as an element of the final sublattice in the

partition chain, plus a coset representative of each partition chain coset.

3.4.1 Elementary Constructions

We introduce two elementary methods of constructing lattices from binary linear block

codes. We then present the special case of the Barnes-Wall lattice construction. There are

strong connections between the error control coding problem (Section 3.2) and lattice con-

structions, since the error control coding problem is the problem of packing as many points

as possible into the Galois field Fn
q , with minimum Hamming distance d between any two

points. This is equivalent to packing the most number of spheres of radius d into Fn
q . Fur-

ther discussion of the connections between error control coding and sphere packing are

contained in [7, 42].

Construction A [7] is a method of constructing an n dimensional sphere packing from an

(n, k, d) binary linear block code C. We may define a lattice ΛC as all n dimensional integer
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vectors x that are equivalent, modulo 2, to a codeword c ∈ C. That is,

ΛC , {x ≡ c (mod 2) : c ∈ C} . (3.21)

This construction may be generalised [57] as follows. Given an ℓ dimensional lattice Λ and

sublattice Λ′ ⊆ Λ, we assume there exists some group G isomorphic to Λ/Λ′. Any c ∈ G is

therefore equivalent to some coset representative t ∈ [Λ/Λ′] by some mapping ξ : c → t.

Therefore, each Λ′ + ξ(c) specifies a coset of Λ′ and there exists some inverse mapping

ξ−1 : t → c from the elements of the coset Λ′ + c to the label u. Generalised Construction A

then defines a lattice from an (n, k, d) group code C ⊂ Gn, as

ΛC ,
⋃

c∈C
ξ(c) (3.22)

with

ξ(c) =
(

Λ′)n + {ξ(c1), ξ(c2), . . . , ξ(cN )} . (3.23)

ΛC is then an ℓ × n dimensional lattice, with [7]

V (ΛC) =
V (Λ′)n

|C|
dmin (ΛC) ≥min

{

dmin

(

Λ′) , dC .dmin (Λ)
}

(3.24)

where dC is the minimum Hamming distance of the code C. If Λ = Z and Λ′ = 2Z, then any

binary linear code is isomorphic to Λ/Λ′. Then, letting ξ(0) = 0 and ξ(1) = 1, generalised

construction A reduces to construction A. Note that generalised construction A may be

used to define lattices from non-binary codes, as in [57].

Generalised Construction C is a multilevel extension of generalised construction A. 3 Con-

sider a partition chain of ℓ dimensional lattices Λm/Λm−1/ . . . /Λ0, where each partition

Λk/Λk−1 is isomorphic to a group Gk, for k = 1, 2, . . . ,m. We denote each label group to

coset mapping as ξk : Gk → [Λk/Λk−1], with inverse ξ−1
k : [Λk/Λk−1] → Gk. Now consider

some sequence of length n codes C1, C2,. . ., Cm, over G1, G2,. . .,Gm respectively. We can then

define a generalised construction C lattice as

ΛC1,...,m ,
⋃

c(1)∈C1,...,c(m)∈Cm

{

(Λ0)
n + ξ1

(

c(1)
)

+ . . . + ξm

(

c(m)
)}

(3.25)

where ξk

(

c(k)
)

=
{

ξk

(

c
(k)
1

)

, ξk

(

c
(k)
2

)

, . . . , ξk

(

c
(k)
n

)}

and (Λ0)
n is the n-fold Cartesian

product of Λ0. It is then readily shown [7] that ΛC1,...,m is an ℓ × n dimensional sphere

3 [57] generalises this construction further, calling it Multilevel Construction A, but in keeping with [7] we
use Generalised Construction C
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packing, with

V
(

ΛC1,...,m

)

=
V (Λm)n
∏m

k=1 |Ck|
,

dmin

(

ΛC1,...,m

)

= min {dmin (Λm) , dCmdmin (Λm−1) , . . . , dC1dmin (Λ0)} .

(3.26)

Although many dense lattices are known for high dimensions (n ≥ 32) throughout this

thesis we use the Barnes-Wall family of lattices [68], or similar sphere packings, as an ex-

ample, since they are readily constructed from the binary linear Reed-Muller codes. We

construct the n dimensional Barnes-Wall lattice, for n = 2a, a ∈ Z, a ≥ 2, denoted BWn,

using the codes C0, C1, . . . , Cm, where m = ⌊a
2⌋ and Ck is the length n, (2k)th order Reed-

Muller code [38]. We use the partition chain Z/2Z/ . . . /2m
Z. The mappings from Ck to

[Λk/Λk−1] are defined as

ξk

(

c(k)
)

=
{

ξi

(

c
(k)
1

)

, ξi

(

c
(k)
2

)

, . . . , ξk

(

c(k)
n

)}

(3.27)

where

ξk

(

c
(k)
i

)

= 2kci. (3.28)

The n dimensional Barnes-Wall lattice is then given by

BWn ,
⋃

c(0)∈C0,...,c(m−1)∈Cm−1

{

(2m
Z)n + ξ0

(

c(0)
)

+ . . . + ξm−1

(

c(m−1)
)}

. (3.29)

The Barnes-Wall lattices have kissing number [7]

τ(BWn) = (2 + 2) × (2 + 22) × . . . × (2 + 2m) ≈ 4.768 × 2
m(m+1)

2 (3.30)

and centre density

δ (BWn) = 2−
5n
4 n

n
4 (3.31)

and are among the densest known lattices in dimensions n ≥ 16.

3.5 Coded Modulation

Coset coding combines coding and modulation so that bandwidth efficient signals are trans-

mitted with reduced error rate. Coded modulation largely stems from the work of Unger-

boek [70], while [71, 72] provide a thorough examination of the subject. A coset coder has

three basic elements: a binary encoder which accepts uncoded data and outputs a larger

number of coded bits, a method of using these to select a coset of the signal constellation,

and a scheme for choosing an individual signal point from the selected subset with the

uncoded bits. We assume a block encoder is used, although many schemes employ convo-
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lutional encoding, as described in [58]. The basic elements of coset coding are outlined by

Figure 3.5.

Binary Encoder
C

Coset Selection
Λ/Λ’

Signal Point
Selection

n bits

r bits

k bits

coset of Λ’

(2  possible
selections)

n

signal point
(2 possible selections)n+r

Figure 3.5 Basic elements of coset coding: coset selection and signal point selection.

Note that subsets of a generalised construction A lattice can be formulated as a coset code,

since each codeword selects a coset in the signal constellation Λ′, and any remaining un-

coded bits select a distinct point from this lattice coset. Likewise, subsets of generalised

construction C lattices can be formulated as coset codes. We refer to coset coding schemes

that are equivalent to selecting a point in a lattice as lattice coding.

Strictly speaking, transmitting a point from a lattice dictates that our signal constellation

is the lattice Λ. However, we typically transmit some translation Λ + t of Λ, so that 0 6∈
Λ + t, where t is some n dimensional vector, so that our signal constellation has no DC

component. Furthermore, any signal constellation must be finite, so we select some finite

subset Mf ⊂ Λ + t as our transmitted signal constellation. The choice of finite subset

determines the shape gain of the lattice code [73]. The total coding gain of the lattice code

is determined by the product of the shape gain and the lattice coding gain [71]. However,

for large constellations, that is |Mf | ≫ 1, the total coding gain is largely determined by the

lattice properties [71]. Thus, for simplicity we assume the signal constellation is the set of

points within an n dimensional cube so that the shape gain is unity. A detailed discussion

of the effects of signal constellation choice upon shape gain, implementation complexity,

and compatibility with existing systems is contained in [74].

As an example of a lattice code, consider transmission of points in the 16 dimensional

Barnes-Wall lattice BW16. The construction C representation of BW16 is

BW16 =
⋃

c(1)∈RM(0,4),c(2)∈RM(2,4)

{

(4Z)16 + 2c(1) + c(0)
}

(3.32)

where RM(0, 4) and RM(2, 4) are the length 16 Reed-Muller codes of order 0 and 2 respec-
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tively. The operation of the BW16 lattice encoder may be described by Figure 3.6. Note

that RM(4, 4) is the trivial code which adds no redundancy, and simply outputs the un-

coded input bits. The output of the RM(0, 4) and RM(2, 4) encoders select cosets in the

lattices partitions Z/2Z and 2Z/4Z respectively, so that a distinct coset of 4Z is chosen.

The uncoded bits then select a point from this coset. The selected point is then from the

subset of BW16 whose points lie within the 16 dimensional cube with opposite vertices at

{0, 0, . . . , 0} and {7, 7, . . . , 7}. If we set the translation vector t = {−3.5,−3.5, . . . ,−3.5},

the signal constellation is symmetric about the origin, and the DC component is removed.

RM(0,4) Encoder

RM(2,4) Encoder

RM(4,4) Encoder
(no encoding)

Coset: 2 +Z c
16 (1)

Point in :
4 + 2 +

BW16

c c c
(3) (2) (1)

Select Coset in
2Z/ Z

Select Coset in
2 /4Z Z

Select Point
in 4Z

16

Coset: 2 +Z c
16 (1)+ 2c

(2)

1 bit

16 bits

11 bits

c
(1)

c
(2)

c
(3) Map to eight

64-QAM Symbols

Figure 3.6 Lattice coding using the 16 dimensional Barnes-Wall lattice BW16.

We may then map each point x = {x1, x2, . . . , x8} ∈ BW16 to an 8-PAM constellation. For

example, we may use the mapping m(xi) = 2
√

E0(xi − 3.5) so that each coordinate of x is

mapped to the 8-PAM constellation

M8−PAM =
{

−7
√

E0,−5
√

E0,−3
√

E0,−
√

E0,
√

E0, 3
√

E0, 5
√

E0, 7
√

E0

}

. (3.33)

Furthermore, we may transmit two 8-PAM constellations in quadrature as a 64-QAM con-

stellation, so that pairs of coordinates in x are transmitted. Therefore, we may represent

our point in BW16 with eight transmitted 64-QAM symbols.

Note that we may view this as multilevel coding, a powerful method of coding analysed

by [75–78]. This is illustrated in Figure 3.6. Generally, any coset coding equivalent to

selection from a finite subset of a construction C lattice may be viewed as multilevel coding.

We concern ourselves only with this type of coset coding for the remainder of the thesis. A

thorough and more general analysis of coset coding is found in [71] and [72].

At the receiver we are presented with the apparently difficult task of estimating the trans-

mitted point x from a large constellation Mf . However, multilevel codes are elegantly de-

coded using multistage decoding [75,76]. For our example, given some noise corrupted re-
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ceived word r ∈ R
n, we first find the closest point in the coset 2Z

16 +ξ0

(

c(0)
)

= 2Z
16 +c(0),

and label this x̂(0). We label the binary vector isomorphic to this point as u(0) = ξ−1
0 (x̂(0)) =

x̂(0). We can then decode u(0) to obtain an estimate ĉ(0) of the codeword c(0). In the next

stage, we estimate c(1) by finding the closest point to r−ĉ(0) in 4Z
16+ξ1

(

c(1)
)

= 4Z
16+2c(1),

which we label x̂1. From this we obtain û(1) = ξ−1
1 (x̂(1)) = 1

2 x̂
(1), and we decode this to

obtain an estimate ĉ(1) of c(1). Finally, to estimate the uncoded bits, we find the closest

point to r − ĉ(0) − 2ĉ(1) in 4Z
16, and estimate the uncoded bits as c(2) = ξ−1

2

(

x̂(2)
)

. This

method is readily generalised to decode any construction C lattice code [57]. We have thus

estimated the transmitted bits in stages, with each stage corresponding to estimation of a

specific coset of each partition in the lattice partition chain.

In the above example, at the mth level, for m ∈ {0, 1, 2}, we estimate the codeword associ-

ated with each hard decision. We have implied the use of algebraic hard decision decoding,

although, this does not achieve the best error performance. We may also use maximum

likelihood sequence estimation of each codeword given r. However, the computational

complexity of maximum likelihood decoding increases exponentially with code length n,

and thus lattice dimension. We may also employ GMD decoding at each stage to achieve

near maximum likelihood performance with only polynomial complexity in n. GMD de-

coding of Euclidean space codes is summarised in sections 3.3.1 and 6.3.1, and described

in detail in [57] and [79].

3.6 Summary

We have introduced error control coding and lattices, including the concept of lattice cod-

ing, an attractive method of exploiting the properties of dense lattices. We may transmit

points from complicated lattices using simple multilevel constructions, then decode using

simple multistage techniques. Near maximum likelihood decoding performance can be

obtained by applying soft decision coding at each stage, specifically GMD decoding. We

can thus achieve high coding gains with low computational complexity. GMD decoding of

wireless OFDM systems employing lattice codes is a major topic of the work in this thesis.



Chapter 4

Orthogonal Frequency Division

Multiplexing

In this chapter we summarise the important aspects of orthogonal frequency division mul-

tiplexing (OFDM), a method for transmitting high data rates via parallel streams. We begin

with a discussion of the motivation for using OFDM, outline the transmitter and receiver

structures, and then conclude with the limitations and requirements of OFDM systems.

This chapter introduces concepts and notation that will be used throughout the remainder

of the thesis. We then show that the distribution of the capacity of an OFDM system with a

large number of subcarriers, transmitting over a frequency selective, Rayleigh fading chan-

nel, is approximately Gaussian distributed. Furthermore, we prove a theorem, which states

that as the number of subcarriers, and system bandwidth, approaches infinity, the asymp-

totic capacity is the same as that for an infinite bandwidth narrowband system. These

capacity results are original work. A comprehensive treatment of OFDM systems is found

in [4, 80].

4.1 Motivation

To transmit high data rates we must either increase the size of the transmitted symbol

constellation, or decrease the duration of each transmitted symbol. In the unavoidable

presence of noise, the error rate will increase if the constellation size is increased, unless the

transmitted power is also increased. Battery powered mobile systems or systems operating

near people should not transmit high power, and therefore high data rate systems typically

employ a short symbol duration, and thus a large transmission bandwidth. The increase

in system capacity as bandwidth or power is increased is elegantly shown by Shannon’s

capacity theorem, stated in Equation 1.1.

41
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As outlined in Chapter 2, systems that employ a large transmission bandwidth are affected

by channel frequency selectivity. Traditional single carrier systems transmitting over fre-

quency selective channels are perturbed by intersymbol interference (ISI) which severely

limits the transmission rate, unless difficult and complicated equalisation techniques are

employed [4].

Parallel data stream systems split the data into N lower rate streams that are simultane-

ously transmitted, then recombined at the receiver into a single high rate stream. Classical

parallel systems divide the total bandwidth into N subchannels that do not overlap in fre-

quency, onto which each parallel data stream is modulated. The advantage of the parallel

approach is that each data stream occupies a small bandwidth, referred to as a subchan-

nel. Thus, the symbol duration within each subchannel is large compared to the maximal

delay spread of the channel, the subchannels are essentially flat, and intersymbol interfer-

ence is readily mitigated. Nonoverlapping subchannel systems require stringent filtering

to prevent subchannel overlap. A simpler method with more efficient use of bandwidth

is to allow the subchannels to overlap in frequency, with an orthogonality constraint such

that the subchannels do not interfere and may be separated. This may be obtained very

efficiently using Fourier transforms, for which fast algorithms exist [81]. This is the OFDM

technique, which is described in the following sections.

Overlapping subchannel systems were first proposed in the mid 1960s [82, 83]. However

the technique we refer to as OFDM was first completely described, in 1971, by [84]. The

attractiveness of OFDM for transmission over both flat fading and frequency selective fad-

ing channels was outlined in [85]. The most ubiquitous use of OFDM technology to date

is not wireless, but for asymmetric digital subscriber line (ADSL) high speed internet [86].

However, OFDM has grown rapidly in popularity in the 1990s, and has been incorporated

in several wireless networking [40, 87] and broadcasting [6, 41] standards. Furthermore,

OFDM has been proposed as a transmission method for ultrawideband technology [88] as

well as a possible fourth generation cellular technology [89].

4.2 Transmitter Structure

The OFDM signal is the superposition of N subcarriers spaced ∆fHz apart. We can write

the kth, k = 1, 2, . . . , N , subcarrier signal as

g̃k(t) =







exp (j2πk∆ft) for 0 ≤ t < Ts

0 otherwise,
(4.1)

where Ts = 1
∆f is the duration of the modulated symbols on each subcarrier. The total

system bandwidth B is divided into N narrowband subchannels, each occupied by a sub-
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carrier with symbol duration N times longer than that of a single carrier system employing

the same bandwidth. We may then write B = N
Ts

= N∆f .

To each subcarrier symbol we add a guard interval Tg. If Tg is larger than the channel

maximal delay spread τmax no ISI occurs, since all the delayed signal versions arrive at

the receiver before the next signal. Each subcarrier signal duration is then T = Ts + Tg.

Typically we extend each subcarrier signal by Tg , referred to as a cyclic prefix 1, such that

the kth subcarrier signal during the nth time interval is

gk(t) =







exp (j2πk∆ft) for 0 ≤ t < Ts + Tg

0 otherwise.
(4.2)

Note that there exist other methods of adding a guard interval. For example, it is shown

in [90] that it is possible to estimate the channel impulse response, and then mitigate ISI,

even with transmission of no signal during the guard interval. However, in the remainder

of this thesis we assume a cyclic prefix is used during the guard interval. Note that no new

information is transmitted in the guard interval. Thus we typically select N so that Ts is

large compared to Tg, and the proportion of symbol duration used in the guard interval is

then small.

We modulate the kth subcarrier during the nth time interval with data symbol Sn,k ∈ R
2,

from some signal constellation such as BPSK, QPSK or QAM. We then superimpose all N

subcarriers to form the nth OFDM block, denoted

sn(t) =







1√
N

∑N
k=1 Sn,k gk(t − nT ) for (n − 1)T ≤ t < nT

0 otherwise.
(4.3)

Then, applying a rectangular window to each OFDM block, we obtain the OFDM signal

for all time intervals as

s(t) =
1√
N

∞
∑

n=0

N
∑

k=1

Sn,k gk(t − nT ). (4.4)

The Fourier transform of the signal during the nth time interval is then

Sn(f) =
1√
N

N
∑

k=1

Sn,kGk(f) (4.5)

where each subcarrier has spectrum

Gk(f) = T sinc (πT [f − k∆f ] ) . (4.6)

1Strictly (4.2) describes a cyclic postfix, while a cyclic prefix would define gk(t) to be nonzero between
−Tg ≤ t < Ts. However, these are equivalent.
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Thus, the subcarrier spectra are sinc pulses, which overlap but are mutually orthogonal,

as illustrated in Figure 4.1. Note that sampling sn(t) at rate k∆f yields the same result as

sampling gk(t−nT ) at rate k∆f . Thus, the subcarriers are mutually orthogonal, since with

correct sampling we may reconstruct each subcarrier signal so that it is unaffected by the

other N − 1 overlapping subcarriers.
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Figure 4.1 Baseband subcarrier frequency spectra for an OFDM system with N = 8 and ∆f =
1MHz.

We sample the signal sn(t) at rate B and label the samples as sn,i for i = 1, 2, . . . , N . These

may be written as

sn,i =
1√
N

N
∑

k=1

Sn,k exp

(

jπik

N

)

(4.7)

which is an inverse discrete Fourier transform (IDFT) operation. We thus efficiently gen-

erate sn(t) by performing an IDFT of the subcarrier symbols Sn,k, for k = 1, 2, . . . , N , to

obtain samples sn,i which are then digital to analog converted to obtain sn(t). This is illus-

trated later in Figure 4.2.
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4.3 Receiver Structure

Assuming that the transmitted OFDM symbol has guard interval longer than the maxi-

mum multipath delay, and that the channel is time invariant during each OFDM block, the

received signal rn(t) for the nth time interval is a channel perturbed version of the trans-

mitted signal. Specifically,

rn(t) = hn(t) ⊗ sn(t) + wn(t) (4.8)

where hn(t) is the channel impulse response, and wn(t) is a complex additive white Gaus-

sian noise process with power spectral density N0
2 per dimension. The orthogonal subcar-

rier signals are obtained by a correlation technique [4] which may be implemented as a

discrete Fourier transform (DFT) of N samples rn,i, at rate B, of the received signal rn(t).

That is, we obtain

Rn,k =
1√
N

N
∑

i=1

rn,i exp

(

−j2πik

N

)

(4.9)

where Rn,k ∈ R
2 is a channel and noise perturbed version of Sn,k. If the channel is approx-

imately constant during each OFDM block, that is the channel coherence time is much

greater than T , and the guard interval is sufficient that ISI is negligible, then we may

write [84]

Rn,k = Hn,kSn,k + Wn,k. (4.10)

In this case each subcarrier is multiplied by a complex subchannel gain Hn,k and each

received symbol is further perturbed by complex additive white Gaussian noise modelled

by Wn,k. It may be shown [80] that Wn,k is independent for all n and k, and has variance
N0
2 per dimension.

We refer to the set of all N symbols transmitted during the nth time interval as the nth

transmitted OFDM block, denoted

Sn = {Sn,1, Sn,2, . . . , Sn,N} . (4.11)

Similarly the nth received OFDM block is denoted

Rn = {Rn,1, Rn,2, . . . , Rn,N} = Sn ⊙ Hn + Wn (4.12)

where Hn = {Hn,1,Hn,2, . . . ,Hn,N} is the set of nth time interval subchannel gains , Wn =

{Wn,1,Wn,2, . . . ,Wn,N} is the set of nth time interval noise process samples, and Sn⊙Hn ,

{Sn,1Hn,1, Sn,2Hn,2, . . . , Sn,NHn,N}.

The elegance of OFDM is captured in (4.10), since each transmitted subcarrier symbol is

not affected by ISI. Each modulation symbol is only multiplied by the subchannel gain,

and corrupted by additive white Gaussian noise (AWGN). The components of an OFDM
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transmitter and receiver are summarised in Figure 4.2.

N point IDFT Add Guard Interval
Digital to Analog

Conversion

Transmitter

s (t)n

ModulatorSerial to
Parallel

Sn,1

Sn,N

Sn,1

..
.

..
.Data

N point DFT
Sampling and

Analog to Digital
Conversion

Remove Guard Interval

Receiver

DemodulatorParallel
to Serial

Rn,1

Rn,2

Rn,N

..
.

..
.Data

Wideband Channel

sn,i

r (t)n

rn,i

Figure 4.2 OFDM Transmitter and Receiver Structure

4.4 OFDM Channel Model

Following [80, Chp. 2] each subchannel response Hn,k may be modelled as the channel

response H(fk, t) at the subchannel centre frequency fk, assuming a slow fading channel.

This is intuitively satisfying, since the spectrum of each subcarrier is a sinc pulse, as in

(4.6), centred at fk with rapidly decaying side lobes, as illustrated in Figure 4.1.

Assuming a Jakes’ model Rayleigh fading channel (Section 2.2.2), we may then express the

response of subchannels k1, k2 ∈ {1, . . . , N} during time intervals n1, n2 ∈ Z as complex

Gaussian random variables. That is, from (2.39),

Hn1,k1 = Xn1,k1 + jYn1,k1

Hn2,k2 = Xn2,k2 + jYn2,k2

(4.13)

where Xn1,k1 , Yn1,k1 , Xn2,k2 and Yn2,k2 are real Gaussian random variables with zero mean.

Without loss of generality we may assume

E
[

X2
n1,k1

]

= E
[

Y 2
n1,k1

]

= E
[

X2
n2,k2

]

= E
[

Y 2
n2,k2

]

=
1

2
. (4.14)
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Furthermore the subchannel gains have cross correlations (Chapter 2):

E [Xn1,k1Yn1,k1 ] = E [Xn2,k2Yn2,k2] = 0

E [Xn1,k1Xn2,k2 ] = E [Yn1,k1Yn2,k2] =
1

2

J0 (2πfd∆nT )

1 + (2πτrms∆f∆k)2

E [Xn1,k1Yn2,k2 ] = −E [Yn1,k1Xn2,k2] = −1

2

(2π∆f∆kτrms) J0 (2πfd∆nT )

1 + (2πτrms∆f∆k)2

(4.15)

where ∆k = |k1−k2| and ∆n = |n1−n2|. From (4.15) we observe that the cross correlations

E [Xn1,k1Yn2,k2] and E [Yn1,k1Xn2,k2 ] decrease as 1
∆k , referred to [91] as strong correlation or

long range dependence. This strong correlation prevents the application of classical central

limit theorems [92, 93] to functions of the Gaussian distributed subchannel gains.

Note that the channel response magnitudes |Hn,k| and channel gains |Hn,k|2 have marginal

Rayleigh and exponential distributions respectively, as outlined in Section 2.2.2. Further-

more, the joint subchannel gain distribution for subchannels k1, k2, k1 6= k2, during the

same time interval n, is, from (2.46),

f|H1|2|H2|2(x, y) =
1

σ4 (1 − ρ)
exp

(

− x + y

2σ2[1 − ρ]

)

I0

( √
ρ.
√

xy

σ2[1 − ρ]

)

. (4.16)

In this case σ2 = 1
2 is the variance of the underlying Gaussian random variables, and the

correlation coefficient ρ between |Hn,k1|2 and |Hn,k2|2 is

ρ =
1

1 + (2πτrms∆f∆k)2
(4.17)

from (2.45) with ∆t = 0 since we consider subchannel gains within the same OFDM block.

4.5 Requirements and Limitations

Although OFDM is an elegant method of combating the effects of channel frequency se-

lectivity, there are several limitations and stringent requirements for the correct operation

of OFDM systems. For completeness we discuss the more important requirements and

limitations. However, throughout the remainder of this thesis we assume that these re-

quirements are met.

4.5.1 Synchronisation

In Section 4.3 we imply receiver time synchronisation. Time synchronisation requires

identification of the beginning of each OFDM block and guard interval. This is typi-

cally obtained by first transmitting some known sequence of training blocks, as proposed

in [94–97]. Since the OFDM technique employs symbols of duration N times longer than
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an equal bandwidth single carrier system, there is less sensitivity to timing offset. How-

ever, note that less timing offset is shown to improve carrier frequency offset estimation

and also improve channel estimation [96, 98]. A more detailed discussion of the effects of

timing jitter is found in [80].

We have also implied perfect receiver frequency synchronisation. The receiver DFT opera-

tion correlates the received signal with the subcarrier pulse function gk(t) for k = 1, . . . , N ,

(4.2). That is, the received signal is correlated with sinusoids with frequency fk = k∆f ,

k = 1, . . . , N . However, in the presence of frequency offset foff in the receiver, the received

signal is correlated with sinusoids of frequency fk + foff . This violates the orthogonality of

subcarriers, and causes intercarrier interference (ICI) over all subcarriers. This is analysed

in [80]. The resulting interference power PICI affecting the ℓth subcarrier is the sum of the

interference from all other subcarriers, and may be written as [99]

PICI =

N
∑

k=1,k 6=ℓ

sinc2

(

π

[

k − ℓ − foff

∆f

])

. (4.18)

It may be observed, from (4.18), that a frequency offset foff = 0.2∆f causes interference ap-

proximately −10dB below the signal power. This significantly reduces the effective signal

to noise ratio of each subcarrier and increases the bit error rate. Frequency synchronisation

in OFDM systems is therefore critical for correct performance, particularly in systems with

small ∆f .

Doppler spreading due to receiver motion causes a frequency shift in the received signal.

Thus, Doppler effects may be modelled as a frequency offset [100]. This remains a key

problem in the use of OFDM in high speed mobile applications and can introduce an un-

acceptable error floor [100].

Frequency offset must be corrected before performing the receiver DFT. Typically, pilot

symbols are used to estimate the frequency offset, as in [99,101–103]. Reference [104] gives

an overview of existing frequency offset correction algorithms.

An alternative approach to synchronisation exploits the cyclic prefix. Estimation of the tim-

ing and frequency offset can be derived from the intrinsic redundancy of the samples that

constitute the cyclic prefix [105–108]. Conceptually, samples of the subcarrier signal g̃k(t)

are correlated with samples from the guard interval to provide an accurate estimate of the

start of each signal. These methods remove the necessity, or reduce the required number,

of pilot symbols. However, cyclic prefix based frequency offset estimation typically has

worse performance then pilot based schemes, since the cyclic prefix is typically shorter in

duration than a pilot symbol, and the estimate is then based on a sample with lower SNR.
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4.5.2 Channel Estimation

At the receiver we obtain symbols Rn,k, as in (4.10). Thus, we multiply by the normalised

conjugate subchannel response
Hn,k

|Hn,k|2 to obtain

R′
n,k =

Hn,k

|Hn,k|2
Rn,k = Sn,k +

Hn,k

|Hn,k|2
Wn,k = Sn,k + W ′

n,k (4.19)

where W ′
n,k is a complex zero mean Gaussian random variable with variance 1

|Hn,k|2
N0
2 per

dimension. We therefore require knowledge of each subchannel gain. Channel estimation

may be performed in static or quasi-static channels by transmitting a pilot sequence prior

to data transmission, as in [86]. In faster fading channels, estimation techniques typically

require devoting a number of subcarriers within each block to transmitting a pilot symbol.

Note, from (4.17), that the gains of neighbouring subchannels are highly correlated, and

thus readily estimated using dedicated pilot subcarriers, as in [40, 85, 109].

In the absence of channel state information differential modulation techniques may be

used. Conventional differential modulation techniques [110] may be applied to succes-

sive subcarrier signals, or the subcarrier symbols may be encoded differentially between

adjacent subcarriers within a single OFDM block [111]. Such schemes attract a throughput

sacrifice, although pilot symbols are not required and the receiver structure may then be

simplified.

4.5.3 Peak to Average Power Ratio

Each OFDM block sn(t) is the sum of N subcarrier signals modulated by independent and

identically distributed symbols Sn,k. The amplitude of sn(t) is therefore a random variable.

For large N the central limit theorem dictates that |sn(t)| follows a Gaussian distribution.

Thus OFDM signals usually have large peak to average power ratio (PAPR). Specifically,

the PAPR is

Ppk/av ,
max0≤t<T |sn(t)|2

Pav
(4.20)

where the average power Pav = E
[

|sn(t)|2
]

. The cumulative probability density function

(CDF) of Ppk/av is approximately [112]

FPpk/av
(x) =

(

1 − e−x
)N

. (4.21)

Although a more accurate approximation of FPpk/av
(x) is derived in [112], (4.21) captures

one of the major drawbacks with OFDM systems: the PAPR is typically very large. Thus,

power amplifiers that remain linear over a large dynamic range are necessary. In the ab-

sence of such amplifiers, the signal is clipped and distorted, causing both out of band
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emissions and symbol errors at the receiver [80]. The reduction of OFDM PAPR is the sub-

ject of a large body of work. Generally, PAPR reduction techniques fall into two categories:

restriction of the subcarrier symbols Sn,k to eliminate the combinations which produce

large amplitudes, as in [113–115]; and filtering or pre-distorting the OFDM signal before

amplification to reduce the amplitude peaks, as in [116–118]. A general summary of these

techniques is contained in [4].

4.5.4 Further Considerations

There exist many other requirements for reliable operation of OFDM systems. These in-

clude suppression of narrowband interference from other systems, methods for which are

outlined in [119]; the effects and mitigation of phase noise in the receiver [80, 120]; and

methods [121–123] of windowing the signal sn(t) so that out of band emissions, due to the

sinc pulse side lobes (4.6), are suppressed. A summary of the important considerations is

given in [124]. Most key considerations are also addressed by the standards [40, 87, 88].

4.6 OFDM Capacity

In this section we consider the capacity of OFDM systems operating over frequency selec-

tive Rayleigh fading channels. Recent work concerning the capacity of systems operating

over frequency selective channels includes [125–127], while [128] gives an encyclopedic

overview of the subject. However, we restrict our capacity analysis to OFDM systems,

and concern ourselves with the distribution of instantaneous capacity, that is, the capacity

during transmission of each OFDM block.

Similar analysis of OFDM capacity is found in [129], where transmission over twisted pair

cables perturbed by crosstalk and thermal noise is analysed. [129] considers OFDM sys-

tems with fixed bandwidth, and derives the asymptotic capacity as the subcarrier separa-

tion decreases. In contrast, we consider the capacity of power limited OFDM systems with

very large finite bandwidth, and derive the asymptotic capacity of systems with infinite

bandwidth. This is motivated by recent proposals [88] for the of OFDM in ultrawideband

systems. An overview of recent capacity results for power limited systems transmitting

over a large bandwidth is given in [130].

From Section 1.1, Shannon’s theorem [1] states that a narrowband system occupying a

bandwidth ∆f and perturbed by additive white Gaussian noise such that the signal to

noise ratio within the bandwidth is γ, can transmit at a maximum rate of

C =
∆f

ln 2
ln (1 + γ) bits/s (4.22)
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so that each bit may be estimated without error. Consider an OFDM system transmitting N

subcarriers spaced ∆fHz apart, over a frequency selective slow fading Rayleigh channel,

where the receiver has perfect synchronisation in time and frequency and perfect channel

state information. Furthermore, assume that the total average transmitted energy over

all subcarriers is EN , so that each subcarrier transmits symbols at rate ∆f , with average

energy E0 = EN
N . Then, given bandlimited noise with power spectral density of N0 per

dimension across the transmission bandwidth, the received signal to noise ratio on the

kth subchannel during the nth block is γn,k = |Hn,k|2 γ0

N , where γ0 = E0
N0

. Without loss

of generality we may ignore any loss in capacity due to the guard interval, and write the

instantaneous kth subchannel capacity as

Cn,k =
∆f

ln 2
ln (1 + γn,k) =

∆f

ln 2
ln
(

1 + γ0|Hn,k|2
)

. (4.23)

Note that, for any subcarrier k, Cn,k is a random variable in time since the subchannel gain

|Hn,k|2 is time varying. The pdf of Cn,k, since |Hn,k|2 follows an exponential distribution

with unity mean, is then

fCn,k
(x) =

ln 2

γ0∆f
exp

(

x ln 2

∆f

)

exp

(

1

γ0
− 1

γ0
exp

[

x ln 2

∆f

])

(4.24)

so that, using Appendix A.1, we may write the mean capacity as

E [Cn,k] =

∫ ∞

0

∆f

ln 2
ln (1 + γ0y) exp(−y)dy = −∆f

ln 2
exp

(

1

γ0

)

Ei

(

− 1

γ0

)

(4.25)

where Ei(.) is the exponential integral function [37]. This expression is also obtained in

[127, 131]. We define the instantaneous total capacity of the OFDM system as

Cn =

N
∑

k=1

Cn,k (4.26)

which is also a random variable in time.

In the remainder of this section we show that, for large N , in a frequency selective Rayleigh

fading channel the distribution of Cn is approximated by a Gaussian random variable. Fur-

thermore, we derive the mean and variance of this distribution. This key result allows

OFDM system designers to construct confidence intervals on the achievable system ca-

pacity, and clearly identifies the statistical behaviour of system capacity. We also prove a

theorem which states that, in the limit as N → ∞, the normalised capacity of an OFDM sys-

tem converges, in probability, to a constant equal to the wideband channel capacity [130].

Therefore no loss in capacity is incurred by using OFDM to transmit over wideband chan-

nels.
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The derivation of these two results relies on a central limit theorem, introduced in Section

4.6.2. However, use of this theorem first necessitates the definition of the subchannel ca-

pacity as a function of each subchannel gain, and the introduction of the Hermite rank of

this function, in Section 4.6.1. We then apply the central limit theorem in Section 4.6.3 to

show that, for large N , the distribution of Cn is approximated by a Gaussian distribution,

whose mean and variance may be found using the subchannel capacity correlation expres-

sions also in this section. We prove the asymptotic total capacity in Section 4.6.4. Finally,

we verify our analysis with system simulations shown in Section 4.6.5.

4.6.1 Hermite Rank of Capacity Function

Each subchannel gain may be expressed as a complex Gaussian random variable, Hn,k =

Xn,k + jYn,k, as in (4.13). In the Rayleigh fading channel Xn,k and Yn,k are zero mean, and

without loss of generality we may set E

[

X2
n,k

]

= E

[

Y 2
n,k

]

= 1
2 . We may then express the

subchannel capacity as a function c(·) of Gaussian random variables. Specifically,

Cn,k , c (Xn,k, Yn,k) =
∆f

ln 2
ln
(

1 +
[

X2
n,k + Y 2

n,k

]

γ0

)

. (4.27)

The Hermite rank [132] of a function is the index of the first nonzero coefficient in its Her-

mite polynomial [133] expansion. We require the Hermite rank of c(·) in order to apply a

central limit theorem introduced later. The Hermite rank ϕ(f) ≥ 0 of a measurable func-

tion f : X → R for the zero mean Gaussian vector X = {X1, . . . ,Xd} ∈ R
d, where f has

finite second moment, is defined [132] as

ϕ(f) = inf

{

τ : ∃lj with
d
∑

j=1

lj = τ and E



(f(X) − E [f(X)])

d
∏

j=1

Hlj(X1))



 6= 0

}

(4.28)

where Hlj is the (lj)
th order Hermite polynomial [133]. Equivalently [134], given a polyno-

mial P we may write

ϕ(f) , inf

{

ϕ(f) : ∃ P of degree ϕ(f), with E

[

(

f(X)−E [f(X)]
)

·P
(

X1, . . . ,Xd

)

]

6= 0

}

.

(4.29)

We show that the Hermite rank ϕ(c) of c(X1,X2) is at least two by showing that it is neither

zero nor unity. Consider first a zero order polynomial P0(X1,X2) = α0. Then

E [(c(X1,X2) − E [c(X1,X2)])P0(X1,X2)] = α0E [c(X1,X2)] − α0E [c(X1,X2)] = 0 (4.30)

for all α0, and thus ϕ(c) 6= 0. Now consider a first order polynomial, P1(X1,X2) = α2X1 +
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α1X2 + α0. With a little manipulation we may then write

E [(c(X1,X2) − E [c(X1,X2)])P1(X1,X2)]

= α2
∆f

ln 2
E
[

X1 ln
(

1 + γ0

[

X2
1 + X2

2

])]

+ α1
∆f

ln 2
E
[

X2 ln
(

1 + γ0

[

X2
1 + X2

2

])]

.
(4.31)

Assuming X1 and X2 each have variance σ2, we may write

E
[

X1 ln
(

1 + γ0

[

X2
1 + X2

2

])]

= E
[

X2 ln
(

1 + γ0

[

X2
1 + X2

2

])]

=
1√

2πσ2

∫ ∞

−∞
X2 ln

(

1 + γ0

[

X2
1 + X2

2

])

exp

(

−X2
2

2σ2

)

∂X2

= 0

(4.32)

since the integrand is the product of an odd function and two even functions in X2. Thus

ϕ(c) 6= 1, and it follows that ϕ(c) ≥ 2.

4.6.2 The Arcones-de Naranjo Central Limit Theorem

We now present a central limit theorem, proved by Arcones [134] and de Naranjo [135], for

nonlinear functions of strongly correlated vectors of Gaussian random variables. We shall

apply this theorem to the capacity function (4.23). The theorem may be stated as

Theorem 4.1. Let {Xj}∞j=1 be a stationary mean-zero sequence of Gaussian vectors in R
d. Set

Xj = (X
(1)
j , . . . ,X

(d)
j ). Let f be a function on R

d with Hermite rank ϕ(f) such that 1 ≤ ϕ(f) <

∞. Define

r(p,q)(k) = E

[

X(p)
m X

(q)
m+k

]

(4.33)

for k ∈ Z, where m is any number large enough that m ≥ 1 and m + k ≥ 1. Suppose that

∞
∑

k=−∞

∣

∣

∣
r(p,q)(k)

∣

∣

∣

ϕ(f)
< ∞ (4.34)

for all 1 ≤ p ≤ d and 1 ≤ q ≤ d. Then as n → ∞,

1√
n

n
∑

j=1

(f(Xj) − E [f(Xj)])
D−→ N (0, σ2) (4.35)

where ‘
D−→’ denotes ‘convergence in distribution’ [91], and

σ2 = E

[

(

f(X1) − E [f(X1)]
)2
]

+ 2
∞
∑

k=1

E
[(

f(X1) − E [f(X1)]
)(

f(X1+k) − E [f(X1+k)]
)]

.

(4.36)
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4.6.3 Total Capacity Distribution

The total capacity Cn (4.26) is the sum of nonlinear functions (4.23) of correlated Gaussian

random variables. In order to apply the theorem to the capacity function c(·) requirement

(4.34) must be satisfied. This will occur if the sums of the cross-correlations and correla-

tions, of the underlying subchannel gain Gaussian random variables raised to the power

of the function Hermite rank, are convergent. Substituting the correlation expressions in

(4.15), with ∆n = 0, we may write

∞
∑

∆k=−∞

∣

∣

∣
E [Xn,kYn,k+∆k]

∣

∣

∣

ϕ(c)
=

∞
∑

∆k=−∞

∣

∣

∣
E [Yn,kXn,k+∆k]

∣

∣

∣

ϕ(c)
=

∞
∑

∆k=−∞

∣

∣

∣

1

2

(2π∆f∆kτrms)

1 + (2π∆f∆k)2

∣

∣

∣

ϕ(c)

(4.37)

which is convergent [136] since ϕ(c) ≥ 2. Similarly,

∞
∑

∆k=−∞

∣

∣

∣
E [Xn,kXn,k+∆k]

∣

∣

∣

ϕ(c)
=

∞
∑

∆k=−∞

∣

∣

∣
E [Yn,kYn,k+∆k]

∣

∣

∣

ϕ(c)
=

∞
∑

∆k=−∞

∣

∣

∣

1

2

1

1 + (2π∆f∆k)2

∣

∣

∣

ϕ(c)

(4.38)

is also convergent.

Thus, requirement (4.34) of the theorem is satisfied, and we may write

1√
N

N
∑

k=1

{c (Xn,k, Yn,k) − E [c (Xn,k, Yn,k)]} D−→ N
(

0,Ω2
c

)

(4.39)

where

Ω2
c = E

[

(c (Xn,1, Yn,1) − E [c (Xn,1, Yn,1)])
2
]

+ 2
∞
∑

∆k=1

E

[

( c (Xn,1, Yn,1) − E [c (Xn,1, Yn,1)] )

× ( c (Xn,1+∆k, Yn,1+∆k) − E [c (Xn,1+∆k, Yn,1+∆k)])

]

= var [c (Xn,1, Yn,1)] + 2
∞
∑

∆k=1

cov [c (Xn,1, Yn,1) c (Xn,1+∆k, Yn,1+∆k)] .

(4.40)

with the above variance and covariance terms readily calculable using the expression for

E [Cn,k] in (4.25), and the expression for E [Cn,k1Cn,k2] later derived in (4.48). The conver-

gence in distribution described in (4.39) clearly motivates the following approximation.

For large finite N , the distribution of the instantaneous capacity Cn, may be approximated

by that of a Gaussian random variable with mean NE [Cn,k] and variance NΩ2
c . Note that

since capacity is nonnegative, the Gaussian approximation to the distribution of Cn is in-

valid at Cn < 0. However, for sufficiently large SNR and N, the probability Pr (C < 0)

vanishes, and the deviation from the Gaussian approximation is small, as demonstrated in
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Section 4.6.5.

We can then use this result to approximate the distribution of the instantaneous capacity

for systems with very large bandwidth, such as ultrawideband systems [88], and fixed to-

tal average transmitted energy EN . The average SNR per subcarrier is γ0 = EN
NN0

, and we

may substitute this into (4.25) and (4.48) to obtain NE [Cn,k] and NΩ2
c respectively. Simu-

lation results, in Section 4.6.5, show this to be a good approximation to the distribution of

the instantaneous capacity for a very large bandwidth, power limited OFDM system. We

would expect this approximation to be tighter for larger N , and this is demonstrated by

the simulations.

We now derive a series representation of the correlation between the capacity of any two

subchannels. This result allows simple calculation of the covariance between subchannel

capacities, and thus Ω2
c .

Subchannel Capacity Correlation

The mean squared capacity E

[

C2
n,k

]

may be expressed as

E
[

C2
n,k

]

=

(

∆f

ln 2

)2 ∫ ∞

0
[ln (1 + γ0y)]2 exp(−y)dy (4.41)

which is readily numerically evaluated. We may write the correlation between the capacity

of subchannels k1 and k2 in time interval n as

E [Cn,k1Cn,k2] =

(

∆f

ln 2

)2 ∫ ∞

0

∫ ∞

0
ln (1 + γ0x) ln (1 + γ0y) f|H1|2,|H2|2(x, y) dxdy (4.42)

where f|H1|2,|H2|2(x, y) is the joint pdf of two correlated exponential random variables,

|Hn,k1|2 and |Hn,k2|2. We assume, without loss of generality, that E
[

|Hn,k|2
]

= 1, for all

n, k. Then, we may rewrite (4.16) as

f|H1|2,|H2|2(x, y) = κ exp (−αx − αy) I0 (θ
√

xy) (4.43)

where

α = κ =
1

1 − ρ2
θ =

ρ

1 − ρ2
(4.44)
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and ρ is the correlation coefficient defined in (4.17). Substituting (4.43) into (4.42) we obtain

E [Cn,k1Cn,k2]

= κ

∫ ∞

0

∫ ∞

0

(

∆f

ln 2

)2

ln (1 + γ0x) ln (1 + γ0y) exp (−α(x + y)) I0 (θ
√

xy) dx dy

= κ

(

∆f

ln 2

)2 ∞
∑

i=0

θ2i

4i(i!)2

[
∫ ∞

0
xi ln (1 + γ0x) exp (−αx) dx

]2

(4.45)

using the series expansion for I0(·) in Appendix A.12. Consider the integral in the above

expression. We substitute u = 1 + γ0x and use the binomial expansion of (u − 1)i, in

Appendix A.15, so that after some manipulation we may write

∫ ∞

0
xi ln (1 + γ0x) e−αx dx =

1

γi+1
0

exp

(

α

γ0

) i
∑

r=0

(

i

r

)

(−1)i−r

∫ ∞

1
ln(u)ur exp

(

−αu

γ0

)

du.

(4.46)

We then integrate by parts and use Appendix A.8 to write

∫ ∞

1
ln(u)ur exp

(

−α u

γ0

)

du

=

∫ ∞

1
exp

(

−α u

γ0

)

[

γ0 ur−1

α
+

r
∑

k=1

r(r − 1)(r − 2) . . . (r − k + 1)
(γ0

α

)k+1
ur−k−1

]

du

=
(γ0

α

)r+1
[

Γ
(

r, αγ−1
0

)

+

r
∑

k=1

r!

(r − k)!
Γ
(

r − k, αγ−1
0

)

]

(4.47)

where Γ(·, ·) is the incomplete Gamma function [21]. We may substitute (4.47) and (4.46)

into (4.45) to then write

E [Cn,k1Cn,k2] = κ

(

∆f

ln 2

)2

exp

(

α

γ0

) ∞
∑

i=0

θ2i

4i i!

{

i
∑

r=0

1

(i − r)!

(−γ0)
r−i

αr+1

×
[

1

r!
Γ
(

r, αγ−1
0

)

+

r
∑

k=1

Γ
(

r − k, αγ−1
0

)

(r − k)!

]}2 (4.48)

for k1 6= k2. This series representation is rapidly convergent, and may be used to numeri-

cally calculate the variance of the instantaneous capacity distribution.

4.6.4 Asymptotic Total Capacity

We now consider the case of a power limited OFDM system with fixed ∆f , and we let the

number of subcarriers N approach infinity, so that the bandwidth also approaches infinity.
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For such power limited systems EN is fixed, so that E0 = EN
N → 0, as N → ∞. We then

prove a new theorem, which states that the limiting capacity C∞ = limN→∞ Cn of such

systems approaches a constant.

Theorem 4.1 is not applicable in this scenario, since the function c(·) now becomes a func-

tion of N , in addition to Xn,k and Yn,k. Hence we proceed in an alternative manner, and

find C∞ by first proving that the arithmetic average subchannel gain converges, in proba-

bility, to the mean gain of a single subchannel. This is outlined in the following lemma.

Lemma 4.2. Assuming E
[

|Hn,k|2
]

= 1, the distribution of the arithmetic average subchannel gain

converges to a degenerate distribution, as N → ∞, such that

1

N

N
∑

k=1

|Hn,k|2 P−→ 1 (4.49)

where ‘
P−→’ denotes ‘convergence in probability’.

Proof. Let Ω2
H(N) = var

[

1
N

∑N
k=1 |Hn,k|2

]

. Then, Ω2
H(N) can be expanded as

Ω2
H(N) =

1

N2

{

N
∑

k=1

var
[

|Hn,k|2
]

+
N−1
∑

r=1

2(N − r)cov
[

|Hn,1|2, |Hn,1+r|2
]

}

≤ 1

N
var
[

|Hn,k|2
]

+
2

N

N−1
∑

r=1

cov
[

|Hn,1|2, |Hn,1+r|2
]

.

(4.50)

From (4.17), the covariance between |Hn,1|2 and |Hn,1+r|2 vanishes as r → ∞ with or-

der r−2. Hence, the right hand side of (4.50) converges to zero as N → ∞, and we have

Ω2
H(N) → 0 as N → ∞. Since E

[

1
N

∑N
k=1 |Hn,k|2

]

= 1 for all N , and var
[

1
N

∑N
k=1 |Hn,k|2

]

→
0, it follows that

1

N

N
∑

k=1

|Hn,k|2 ms−→ 1 (4.51)

where ‘
ms−→’ denotes mean square convergence. This mean square convergence then im-

plies 1
N

∑N
k=1 |Hn,k|2 P−→ 1, as required.

We may use this lemma to write the following theorem on the asymptotic capacity C∞ of

a power limited OFDM system, with E0 = EN
N .

Theorem 4.3. As N approaches infinity the capacity of an infinite bandwidth, power limited
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OFDM system converges, in probability, to the constant

C∞ =
∆fEN

N0 ln 2
E
[

|Hn,k|2
]

. (4.52)

That is, the limiting capacity is dependent only on the SNR, subchannel separation and mean chan-

nel gain. Since we have set E
[

|Hn,k|2
]

= 1, we may then write

C∞ =
∆fEN

N0 ln 2
. (4.53)

Proof. When E0 = EN
N , we may write the instantaneous capacity as

Cn =

N
∑

k=1

∆f

ln 2
ln

(

1 +
EN

NN0
|Hn,k|2

)

. (4.54)

From [37] we may write

z − z2

1 + z
≤ ln(1 + z) ≤ z (4.55)

for z > −1. Then, using (4.54) and (4.55) we may write

∆f

ln 2

N
∑

k=1











EN

NN0
|Hn,k|2 −

(

EN
NN0

|Hn,k|2
)2

1 + EN
NN0

|Hn,k|2











≤ Cn ≤ ∆f

ln 2

N
∑

k=1

EN

NN0
|Hn,k|2 . (4.56)

We now show that the above lower and upper bound converge in probability to the same

limit. Consider the lower bound, which we may write as

∆f

ln 2

N
∑

k=1

EN

NN0
|Hn,k|2 −

∆f

ln 2

N
∑

k=1

(

EN
NN0

|Hn,k|2
)2

1 + EN
NN0

|Hn,k|2
. (4.57)

The second term in (4.57) satisfies

∆f

ln 2

N
∑

k=1

(

EN
NN0

|Hn,k|2
)2

1 + EN
NN0

|Hn,k|2
≤ ∆f

ln 2

E2
N

N2
0

N
∑

k=1

|Hn,k|4
N2

. (4.58)

The random variables |Hn,k|2, k = 1, . . . , N , are marginally exponentially distributed, and

thus nonnegative with finite second moments. Hence, as N → ∞, we may write

E

[

1

N2

N
∑

k=1

|Hn,k|4
]

→ 0 (4.59)
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and

var

[

1

N2

N
∑

k=1

|Hn,k|4
]

=
1

N4
var

[

N
∑

k=1

|Hn,k|4
]

≤ 1

N4
N2var

[

|Hn,k|4
]

→ 0.

(4.60)

The properties in (4.59) and (4.60) imply that 1
N2

∑N
k=1 |Hn,k|4 ms−→ 0, so that we may then

write

1

N2

N
∑

k=1

|Hn,k|4 P−→ 0. (4.61)

Thus, the right hand side of (4.58) converges in mean square to zero as N → ∞, so that the

expression in (4.57) converges in mean square to the first term only, as N → ∞. Therefore,

both the upper and lower bounds in (4.56) converge to the same limit. From Lemma 1, we

also have 1
N

∑N
k=1 |Hn,k|2 P−→ 1, and we substitute this into (4.56) to write

Cn
P−→ C∞ =

∆f

ln 2

EN

N0
E
[

|Hn,k|2
]

. (4.62)

Note that we may normalise the limit C∞ by ∆f to obtain the limiting spectral efficiency

[8, 126], defined as the capacity per unit bandwidth. We have thus verified that OFDM

systems can achieve the fading wideband channel capacity derived by [126]. Moreover,

C∞ is equal to the capacity of an unlimited bandwidth system transmitting over a flat

Rayleigh fading channel [131], or the infinite bandwidth AWGN system [137].

4.6.5 Simulations

We simulate the normalised capacity Cn
∆f of two example systems, and compare the ob-

served instantaneous capacity distributions with the analytical approximating distribu-

tions. System A is a 1024 subcarrier system and system B is a 32768 subcarrier system.

Both systems have subcarrier separation ∆f = 0.3125MHz, SNR EN
N0

= 30dB, and thus

occupy bandwidths of 320MHz and 10.24GHz respectively. We assume an exponential

power delay profile with root mean squared (rms) delay spread of 50 ns, and a receiver

velocity of 100 km/h for all systems.

In Figure 4.3 we plot the analytical approximating distributions and simulated instanta-

neous capacity distributions for the fading channel response during transmission of 500,000

blocks. Observe that we obtain a reasonable analytical approximation for system A, and a
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Figure 4.3 Simulated (bars) and theoretical (solid line) distributions of instantaneous capacity,
normalised by ∆f , for 1024 subcarrier system (larger variance) and 32768 subcarrier systems
(smaller variance). Both systems have ∆f = 0.3125MHz and SNR EN

N0
= 30dB.

tight approximation for system B, which has more subcarriers. Furthermore, observe that

the variance of the capacity of system B is much smaller than that of system A, consistent

with the limiting result of Theorem ??.

4.7 Summary

In this chapter we have introduced the OFDM technique. OFDM is an elegant technique

for combatting channel frequency selectivity. We have outlined the basics of OFDM trans-

mission and reception, including the use of the Fourier transform to efficiently generate

the OFDM signal and extract the subcarrier symbols in the receiver. Mathematical models

of the OFDM subchannels and their correlation structure have been given. We have briefly

surveyed some of the limitations of OFDM.

We have shown that the distribution of the capacity of an OFDM system transmitting a

large number of subcarriers over a Rayleigh fading channel is approximately Gaussian.

Furthermore, we have derived readily calculable expressions for the mean and variance

of this distribution for arbitrary SNR and channel parameters. We have also proved that,
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as N → ∞, the capacity of an OFDM system approaches the capacity of an infinite band-

width single carrier narrowband system, which is also equal to the capacity of an infinite

bandwidth AWGN channel system. This proves that as N → ∞, there is no capacity loss

incurred by using OFDM to combat the frequency selective nature of the wireless channel.

Throughout the remainder of this thesis we consider OFDM systems with perfect channel

knowledge, time synchronisation and frequency synchronisation at the receiver. The ef-

fects of amplifier nonlinearities and narrowband interference are not considered. Further-

more, we assume sufficient guard interval such that ISI is negligible, and, unless noted,

transmission over a frequency selective, slow fading, Rayleigh channel described by the

Jake’s model. These are broad assumptions, and as such our analysis pertains to ‘ideal’

OFDM systems only. That is, the analysis represents a best case scenario.
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Chapter 5

OFDM Performance Analysis

This chapter describes analysis of the error performance of uncoded OFDM systems. We

first derive bounds on OFDM block error rates. These bounds demonstrate the error per-

formance of uncoded OFDM over a wide range of signal to noise ratios, and thus afford

better selection of error control coding methods to reduce block errors. We then extend our

analysis to consider multiple symbol errors within each block. We analyse the distribution

of the number of OFDM symbol errors within each block. Once again this analysis affords

better selection of error control coding, since the probability of decoding failure of any code

applied across subcarrier symbols within a single block is determined by the probability

distribution of the number of received symbol errors within each block.

These two results are somewhat independent. Therefore, this chapter is organised so that

each section is generally independent, necessitating some slight repetition.

5.1 OFDM Block Error Rate

For the nth OFDM block the receiver obtains noise corrupted symbols Rn,k, for k = 1, . . . , N .

From each of these symbols the receiver generates estimates Ŝn,1, . . . , Ŝn,N of the transmit-

ted symbols Sn,1, . . . , Sn,N , respectively. If we employ a non-binary error correction code

whose codeword symbols are entire OFDM blocks, Sn = {Sn,1, Sn,2, . . . , Sn,N}, analysis of

code performance requires the probability of an OFDM block being in error, that is, the

probability that the vector of receiver symbol estimates Ŝn = {Ŝn,1, Ŝn,2, . . . , Ŝn,N} is not

equal to the vector of transmitted symbols Sn = {Sn,1, Sn,2, . . . , Sn,N}. Utility of the block

error rate also lies in the analysis of space-time OFDM systems, such as [138, 139], where

the space-time code symbols are entire OFDM blocks. Furthermore, the block error rate

may be used to obtain readily calculable bounds on the bit error rate of an uncoded OFDM

system with any number of subcarriers.
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Assuming transmission of BPSK symbols of energy E0 and coherent reception, we denote

the event that symbol Sn,k is incorrectly received as En,k. The probability of this event,

assuming maximum likelihood (ML) estimation and perfect channel knowledge at the re-

ceiver, is [9]

Pn,k = Pr (En,k) =
1

2
erfc

(√
γn,k

)

(5.1)

where erfc(·) is the complimentary Gaussian error function, and γn,k = |Hn,k|2 E0
N0

. The

event of the nth block being in error is the probability of one or more of the estimates

Ŝn,1, . . . , Ŝn,N being incorrect, which we denote Bn. Applying the principle of inclusion

and exclusion [140] we may write

Pr (Bn) = Pr

(

N
⋃

k=1

En,k

)

=
N
∑

k=1

Pr (En,k) −
N
∑

k2>k1
k1,k2=1

Pr (En,k1 ∩ En,k2) +
N
∑

k3>k2>k1
k1,k2,k3=1

Pr (En,k1 ∩ En,k2 ∩ En,k3)

− · · · + · · · .

(5.2)

Then, averaging over successive OFDM blocks, the mean block error rate may be written

as

E [Pr (Bn)] =

N
∑

k=1

E [Pr (En,k)] −
N
∑

k2>k1
k1,k2=1

E [Pr (En,k1 ∩ En,k2)]

+

N
∑

k3>k2>k1
k1,k2,k3=1

E [Pr (En,k1 ∩ En,k2 ∩ En,k3)] − · · · + · · · .

(5.3)

Accurate calculation of the block error rate consequently requires a large number of terms.

However, by including only the first or second terms in (5.3) we may write the following

bounds on the mean block error rate:

E [Pr (Bn)] ≤ min

{

N
∑

k=1

E [Pr (En,k)] , 1

}

E [Pr (Bn)] ≥ max

{

N
∑

k=1

E [Pr (En,k)] −
N
∑

k2>k1
k1,k2=1

E [Pr (En,k1 ∩ En,k2)] , 0

}

.

(5.4)

The upper bound in (5.4) is often used to approximate the mean block error rate, and is
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referred to as a union bound approximation. Thus,

E [Pr (Bn)] =
N
∑

k=1

E [Pr (En,k)] + ǫ ≈
N
∑

k=1

E [Pr (En,k)] (5.5)

where, from (5.4),

ǫ ≤
N
∑

k2>k1
k1,k2=1

E [Pr (En,k1 ∩ En,k2)] . (5.6)

We can thus find an upper bound on the mean error rate by calculating the mean subcarrier

error rate E [Pr (En,k)]. The union bound approximation is often used at moderate to high

SNR, without quantification of the SNR range or the approximation. We now calculate a

lower bound and bound the error ǫ in the union bound approximation by calculating the

correlation between error probabilities for any two subcarriers k1, k2 ∈ {1, . . . , N}, as in

(5.6). We outline these calculations for the Rician channel and Rayleigh channels in the

following subsections.

For the Rician fading channel we obtain a tight upper bound on the correlation between

the mean probability of error on any two subchannels transmitting BPSK symbols. For the

Rayleigh fading channel we obtain an exact series representation for this correlation. These

simple expressions for the error probability correlation are derived for arbitrary correlation

coefficient between the channel gains. The expressions are therefore useful in analysis of

other multichannel schemes, such as multiple antenna systems, or Markov modelling of

the channel error process as in [141–143].

5.1.1 Rician Channels

Assuming transmission over a Rician fading channel, each OFDM subchannel gain |Hn,k|2
is identically marginally distributed, with average squared magnitude

E

[

|Hn,k|2
]

= |H0|2, for all n, k. (5.7)

Thus, the mean probability of symbol error for each subchannel is

E [Pr (En,k)] = E [Pn,k] = P0 =

∫ ∞

0
erfc

(

√

x
E0

N0

)

f|Hn,k|2(x)dx, for all n, k (5.8)

where f|Hn,k|2(x) is the probability density function (PDF) of the channel gain for Rician

distributed |Hn,k|. Recall from (2.35) that we may write this as

f|Hn,k|2(x) =
(KR + 1)

γ0
exp

(

−(KR + 1)x

γ0
− KR

)

I0

(

2
√

KR

√

(KR + 1)x

γ0

)

(5.9)
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where KR is the Rice factor, γ0 = |H0|2γ0 and γ0 = E0
N0

is the mean SNR for all subchan-

nels. Substituting (5.9) into (5.8) and using the alternative representation [144] of the erfc(·)
function (Appendix A.10) we may write

P0 =
2

π
exp (−KR)

∫ ∞

0

∫ π
2

0
exp

(

− 2x

2 sin2 θ

)

(KR + 1)

γ0
exp

(

−(KR + 1)x

γ0

)

× I0

(

2
√

KR

√

(KR + 1)x

γ0

)

dθdx.

(5.10)

Then, recognising that I0(x) = J0(jx), for x ∈ R, and applying the result from Appendix

A.5 to simplify the integral over x, we may write

P0 =
2

π

[KR + 1] sin2 θ

γ0 + [KR + 1] sin2 θ

∫ π
2

0
exp

( −KRγ0

γ0 + [KR + 1] sin2 θ

)

dθ (5.11)

a readily calculable expression. Note that this result is also found in [145].

Consider any two subchannels with indices k1, k2 ∈ {1, . . . , N}. Since there is independent

AWGN on each subcarrier, and the receiver has knowledge of the subchannel gains, the

events of incorrectly estimating the symbol transmitted on each subchannel are indepen-

dent, but not necessarily identically distributed. We may then write

Pr (En,k1 ∩ En,k2) =
1

4
erfc

(√
γn,k2

)

erfc
(√

γn,k2

)

= Pn,k1Pn,k2 . (5.12)

Then, averaging in time across the channel response, we obtain

E [Pr (En,k1 ∩ En,k2)] = E [Pn,k1Pn,k2 ]

=
1

4

∫ ∞

0

∫ ∞

0
erfc

(

x

√

E0

N0

)

erfc

(

y

√

E0

N0

)

f|H1|,|H2|(x, y) dxdy
(5.13)

where f|H1|,|H2|(x, y) is the joint PDF of two correlated Rician random variables. In our case

each Rician random variable is identically marginally distributed, and recall from (2.39)

that we may write

Hn,k1 = a0 + Xn,k1 + jYn,k1 and Hn,k2 = a0 + Xn,k1 + jYn,k2 (5.14)

where Xn,k1 , Yn,k1, Xn,k2 and Yn,k2 are zero mean Gaussian random variables with variance

σ2, and a0 represents the line of sight path amplitude, as in (2.32). The correlation between

the random variables is given in (2.40). From [146] we may write the required joint PDF as
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1

f|H1|,|H2|(x, y) =
xy

σ4 (1 − ρ2)
exp

(

− 1

2(1 − ρ2)

[

x + y

σ4
+

(

2σ2 − 2ρ

σ4

)

a2
0

])

×
∞
∑

i=0

εi Ii

(

xyρ

σ2(1 − ρ2)

)

Ii

(

a0x(1 − ρ)

σ2(1 − ρ2)

)

Ii

(

a0y(1 − ρ)

σ2(1 − ρ2)

) (5.15)

where ρ is the coefficient of correlation between |Hn,k1| and |Hn,k2|, and εi is the Neumann

factor [37], defined by

εi =







1, for i = 0

2, for i > 0.
(5.16)

A closed form expression for (5.13) thus appears impossible to attain.

We may obtain a tight upper bound to E [Pn,k1Pn,k2 ] by first recognising [9] that

Pn,k ≤ exp (−γn,k) (5.17)

which is an asymptotically tight bound as γn,k → ∞. We then write the subchannel gains

as

Hn,k1 = a0 + U1 + jV1

Hn,k2 = a0 + Ũ2 + jṼ2

(5.18)

with

Ũ2 = ρU1 +
√

1 − ρ2U2, and Ṽ2 = ρV1 +
√

1 − ρ2V2 (5.19)

where U1, U2, V1 and V2 are iid Gaussian random variables with mean zero and (without

loss of generality) variance 1
2 . We denote the PDFs of these random variables as fU1(x),

fU2(x), fV1(x) and fV2(x) respectively. We may then write the sum of the squared magni-

tude of the channel responses as

|Hn,k1|2 + |Hn,k2|2

=
(

U1 + a0

)2
+ V 2

1 +
(

Ũ2 + a0

)2
+ Ṽ 2

2

=

{

U2
1 + ρ2U2

1 +
(

1 − ρ2
)

U2
2 + 2ρ

√

1 − ρ2U1U2 + 2a0U1 + 2ρa0U1 + 2a0

√

1 − ρ2U2 + a2
0

}

+

{

V 2
1 + ρ2V 2

1 +
(

1 − ρ2
)

V 2
2

}

= q (U1, U2, a0) + q (V1, V2, 0)

(5.20)

1The commonly used expression for f|H1|,|H2|(x, y), found in [19] and [147], is incorrect, as recently noted
in [146]. We have previously used the incorrect expressions, in [148], however, this has no effect on the main
result. Thanks go to Prof. Norman C. Beaulieu, Queens University, Canada, for pointing out this error.
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where the quadratic q : R
3 → R is defined as

q(x, y, z) = (x + z)2 +
(

ρx +
√

1 − ρ2y + z
)2

. (5.21)

Using this definition, we may then write an upper bound on the error probability correla-

tion as

E [Pn,k1Pn,k2] ≤ 1

4
E [exp (−γn,k1) exp (−γn,k2)]

=
1

4
E

[

exp
(

−γ0 |Hn,k1|2
)

exp
(

−γ0 |Hn,k2|2
)]

=
1

4
E [exp (−γ0q (U1, U2, a0)) exp (−γ0q (V1, V2, 0))] .

(5.22)

Since U1, U2, V1 and V2 are iid random variables, we may write the upper bound in (5.22)

as

E [Pn,k1Pn,k2] ≤ 1

4
E [exp (−γ0q (U1, U2, a0))] E [exp (−γ0q (V1, V2, 0))] =

1

4
g1(a0)g1(0)

(5.23)

where the function g1 : R → R is defined as

g1(z) , E [exp (γ0q (U1, U2, α))]

=

∫ +∞

−∞

∫ +∞

−∞
exp (γ0q (x, y, z)) fU1(x)fU2(y) dxdy

=
1

π

∫ +∞

−∞
exp

(

γ0

[

(1 − ρ2)y2 + 2
√

1 − ρ2zy + 2z2
]

− y2
)

g2(y, z) dy.

(5.24)

We have thus implicity defined

g2(y, z) =

∫ +∞

−∞
exp

(

γ0

[

(1 + ρ2)x2 + 2(1 + ρ)zx + 2ρ
√

1 − ρ2yx
]

− x2
)

dx

=

∫ +∞

−∞
exp

(

−C1x
2 − xg3(z)

)

dx

(5.25)

where C1 = 1 − γ0(1 + ρ2) and g3(z) = − 2γ0

(

[1 + ρ]z + ρ
√

1 − ρ2y
)

. Completing the

square and rearranging the integrand as a Gaussian PDF we may then write

g2(y, z) = exp

(

g2
3(z)

4A

)
∫ +∞

−∞
exp

(

−C1

[

x +
g3(z)

2C1

]2
)

dx

=

√

π

C1
exp

(

g2
3(z)

4C1

)
∫ +∞

−∞

1
√

2π(2C1)−1
exp

(

− 1

2(2C1)−1

[

x − −g3(z)

2C1

]2
)

dx

=

√

π

C1
exp

(

[g4(z) + C2y]2
)

(5.26)
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where

(g4(z) + C2y)2 =
g3

2(z)

4C1
=

[

γ0

(

[1 + ρ]z + ρ
√

1 − ρ2y
)]2

1 − γ0(1 + ρ2)
(5.27)

such that g4(z) = 1√
C1

γ0(1+ρ)z, and C2 = 1√
C1

γ0ρ
√

1 − ρ2. Substituting this into (5.26) we

may simplify (5.24) to

g1(z) =
1

π

√

π

C1

∫ +∞

−∞
exp

(

γ0

[

(1 − ρ2)y2 + 2
√

1 − ρ2zy + 2z2
]

− y2
)

× exp
(

[g4(z) + C2y]2
)

dy

=
1

π

√

π

C1

∫ +∞

−∞
exp

(

−C3y
2 − g5(z)y − g6(z)

)

dy

(5.28)

requiring that C3 = γ0(1 − ρ2) + C2
2 , g5(z) = 2γ0

√

1 − ρ2z + 2C2g4(z), and g6(z) = 2γ0z +

g2
4(z). Once again manipulating the integrand so that it is in the form of a Gaussian PDF,

we may write

g1(z) =
1

π

√

π

C1
exp(−g6(z))

∫ +∞

−∞
exp

(

−C3

[

y − g5(z)

2C3

]2

+
g2
5(z)

4C3

)

dy

=
1

π

√

π

C1

√

π

C3
exp

(

g2
5(z)

4C3
− g6(z)

)∫ +∞

−∞
exp

(

− 1
√

2π(2C3)−1

[

y − g5(z)

2C3

]2
)

dy

=
1√

C1C3
exp

(

g2
5(z)

4C3
− g6(z)

)

.

(5.29)

Finally, substituting (5.29) into (5.23) we may write the desired upper bound on the corre-

lation between subcarrier error probabilities as

E [Pn,k1Pn,k2] ≤ 1

4
g1(a)g1(0)

=
1

4σ4

1

C1C3
exp

(

g2
5(a)

4C3
− g6(a)

)

exp

(

g2
5(0)

4C3
− g6(0)

)

=
1

4σ4

1

C1C3
exp

(

g2
5(a)

4C3
− g6(a)

)

(5.30)

since it may be observed that g5(0) = g6(0) = 0. This readily calculable expression may

be substituted into (5.4) to calculate a lower bound on the block error rate of an OFDM

system transmitting over a Rician channel; or into (5.6) to upper bound the error in using

the union bound approximation to the block error rate.
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5.1.2 Rayleigh Fading Channels

For the special case of the Rayleigh fading channel a more exact calculation of the corre-

lation E [Pn,k1Pn,k2] is possible. Each subchannel gain |Hn,k|2 is marginally exponentially

distributed and we let E
[

|Hn,k|2
]

= 1. The mean probability of error for each subchannel

is then

E [Pn,k] , P0

=

∫ ∞

0
erfc

(

√

x
E0

N0

)

exp (−x) dx

=
1

2

(

1 −
√

γ0

1 + γ0

)

, for all n, k

(5.31)

from [9]. Equation (5.31) may be used to calculate the union bound approximation to the

OFDM block error rate. To calculate the lower bound and approximation error we require

the correlation between subcarrier error probabilities, which may be written as

E [Pn,k1Pn,k2] =
1

4

∫ ∞

0

∫ ∞

0
erfc (

√
γ0x) erfc (

√
γ0y) f|H1|2,|H2|2(x, y) dx dy

=
1

4

∫ ∞

0

∫ ∞

0

1

(1 − ρ2)
erfc (

√
γ0x) erfc (

√
γ0y)

exp

(

− x + y

1 − ρ2

)

I0

(

2ρ
√

xy

1 − ρ2

)

dx dy, for k1 6= k2

(5.32)

where we have substituted the bivariate exponential PDF in equation (2.46). Consider the

integral

g7(y) ,

∫ ∞

0
erfc (

√
γ0x) exp

(

− x

1 − ρ2

)

I0

(

2ρ
√

xy

1 − ρ2

)

dx

=

∞
∑

i=0

∫ ∞

0
erfc (

√
γ0x) exp

(

− x

1 − ρ2

)

1

(i!)2

[

ρ2xy

(1 − ρ2)2

]i

dx

(5.33)

using a series expansion for Bessel functions (Appendix A.12). A general term of this sum-

mation contains the integral

g8(i) ,

∫ ∞

0
erfc (

√
γ0x) exp

(

− x

1 − ρ2

)

xi dx

= 2(i!)(1 − ρ2)i+1

∫ ∞

0

1

2
erfc (

√
γ0x)

xi

(i!)(1 − ρ2)i+1
exp

(

− x

1 − ρ2

)

dx

= 2(i!)(1 − ρ2)i+1

[

1

2

(

1 −
√

γ0(1 − ρ2)

2 + γ0(1 − ρ2)

)]i+1

×
i
∑

n=0

(

i + n

n

)

[

1

2

(

1 +

√

γ0(1 − ρ2)

2 + γ0(1 − ρ2)

)]n

(5.34)
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using the closed form expression in [9, (14.4-17)]. We substitute g8(i) into (5.33) to obtain

g7(y) =

∞
∑

i=0

2(ρ2y)i

i!(1 − ρ2)i−1

[

1

2

(

1 −
√

γ0(1 − ρ2)

2 + γ0(1 − ρ2)

)]i+1

×
i
∑

n=0

(

i + n

n

)

[

1

2

(

1 +

√

γ0(1 − ρ2)

2 + γ0(1 − ρ2)

)]n (5.35)

After substituting this into (5.32), and further use of (5.34), we may write the required

correlation expression as

E [Pn,k1Pn,k2] =
1

4

∞
∑

i=0

1

(i!)2
ρ2i

(1 − ρ2)2i+1
[g8(i)]

2 . (5.36)

This expression allows simple numerical calculation of E [Pn,k1Pn,k2], since it may be shown

to be rapidly convergent for ρ 6= 1.
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Figure 5.1 Analytical bounds (solid lines) and simulated (crosses) OFDM block error rate for KR =
0 (black), 2 (red), 5 (magenta) and 10 (blue).

5.1.3 Simulations

We use the expressions (5.8), (5.31), (5.36) and (5.30) to calculate upper and lower bounds

on the block error rate for a 48 subcarrier OFDM system. We assume the system occupies a

total bandwidth of 8MHz and transmits over a channel with exponential power delay pro-

file, and rms delay spread of 15ns. This delay spread is consistent with an indoor wireless
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environment [23,149], in which an IEEE802.11a [40] system would operate. Although these

systems occupy a bandwidth of 16MHz for 48 subcarriers, we present a system with 8MHz

bandwidth as this increases correlation between subchannels, and thus the error in the

union bound approximation. We consider a Rayleigh fading channel, as well as channels

with Rice factors of 2, 5, and 10. The block error rates of this OFDM system are simulated

and plotted with the analytical bounds in Figure 5.1.

Observe from Figure 5.1 that the analytical bounds are consistent with the simulation re-

sults. The upper bounds are tight at moderate to high SNR, while the lower bound are

accurate only at high SNR. However, the utility of the lower bounds is also in identifying

the SNR ranges over which the upper bound may be used as an accurate approximation

to the block error rate. That is, when the approximation error ǫ is small. Calculation of

the higher order terms in (5.3) would afford tighter bounds than (5.4). However, analytical

expressions for the higher order terms appear intractable.

5.2 Distribution of OFDM Symbol Errors

For OFDM systems employing a large number of subcarriers and transmitting over fre-

quency selective channels, we may employ a length N block code, so that each block Sn

of transmitted symbols is a codeword. The code redundancy is then contained within the

subcarrier symbols of a single OFDM block. For example, consider an OFDM system with

a large number of subcarriers, transmitting over a slowly fading channel and occupying

a large bandwidth. In this case there will be large frequency diversity, and low time di-

versity, so that coding within an OFDM block may be more effective than over several

blocks. Decoding delay is then less than that caused by error control systems that spread

redundancy across consecutive OFDM blocks. It is also conceivable that we may wish

to concatenate coding within a block, and across several blocks to exploit both time and

frequency diversity.

Analysis of the performance of these codes requires the distribution of the number of sym-

bol errors b within each OFDM block. That is, the probability that b ∈ {0, 1, 2, . . . , N} of

the estimated symbols Ŝn,1, Ŝn,2, . . . , Ŝn,N are in error. Since the channel response is time

varying, b is then a random variable. Throughout this section we assume that the receiver

has perfect knowledge of all the subchannel gains, and thus the probability of error on

each subchannel. Furthermore, we assume the channel is described using the Jakes’ model

(Section 2.2.2).

In this section we show a method of estimating the PDF fb(x) of b. We then outline a

measure of the error in our approximation. For the time varying channel this error is a

random variable, and we wish to derive its stationary distribution [18]. That is, the long
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term distribution of the error, ignoring any short term transient effects, such that we may

disregard the effects of correlation in time. In the following sections we derive distributions

for lower and upper bounds on the approximation error.

5.2.1 Poisson Approximation

Since we have knowledge of all subchannel gains, and the AWGN on each subcarrier is in-

dependent [80], the events En,k of estimating symbols Sn,k incorrectly are independent for

all n and k, with known respective probabilities Pn,k. The probability of exactly b subcar-

rier symbols in the nth block being incorrectly estimated is then the probability of exactly

b of the events En,1, . . . , En,N occurring. This is equivalent to the sum of N independent

Bernoulli random variables [150], with probabilities Pn,k, for k = 1, ..., N . The probability

mass function of b for the nth block is then

Ln(b) =
∑

∀Ie

{

Pn,e1Pn,e2 . . . Pn,eb
× (1 − Pn,c1) (1 − Pn,c2) . . .

(

1 − Pn,cN−b

)}

(5.37)

where Ie = {e1, e2, . . . , eb} is a set of b subcarrier indices, such that Ie ⊆ {1, . . . , N} and

|Ie| = b; and Ic = {c1, c2, . . . , cN−b} is the set of remaining indices not in Ie. Thus, Ie∩Ic =

{}, Ie∪Ic = {1, . . . , N} and |Ic| = N −b. The distribution Ln(b) is referred to as the Poisson

binomial distribution or generalised binomial distribution. Note that the binomial distribution

is a special case of this distribution, when Pn,1 = Pn,2 = . . . = Pn,N , which arises in the

case of a flat fading channel.

There are
(N

b

)

unique sets Ie, so that calculation of the probability mass function Ln(b)

requires the sum of
(N

b

)

products for b = 0, 1, . . . , N . For N ≥ 30 the calculation of so many

terms is not practical with current technology. However, the Poisson binomial distribution

is well approximated by the Poisson distribution [151–155] with PDF

Pn(b) =
λb

ne−λn

b!
, where λn =

N
∑

k=1

Pn,k. (5.38)

An example of this approximation for transmission of a single block from a 1024 subcarrier

OFDM system is shown in Figure 5.2. We obtain the simulation results in Figure 5.2 by

fixing the channel response and simulating transmission of 5000 OFDM blocks, with aver-

age SNR of 10dB per subcarrier, to give an approximation to the Poisson binomial PDF of

the number of errors for this channel response. The channel response was generated using

the Jakes’ channel model (Section 2.2.2), with exponential power delay profile and rms de-

lay of 15ns. We assume BPSK transmission on each subcarrier, with perfect knowledge of

subchannel gains at the receiver.
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A measure of the error in the approximation is the total variation distance, defined as

d {Ln(b),Pn(b)} =
1

2

N
∑

x=0

|Ln(x) − Pn(x)| . (5.39)

Note that the Poisson binomial distribution probability mass function is readily calculated

for small or large b, for example b ∈ {0, 1, 2, N − 2, N − 1, N}, so that
(N

b

)

is small. A

residual variation distance measure may then be calculated by excluding these terms from

the calculation in (5.39). For example, we could readily calculate

d̃ {Ln(b),Pn(b)} ,
1

2

N−1
∑

x=1

|Ln(x) − Pn(x)|

= d {Ln(b),Pn(b)} − 1

2
(Ln(0) − Pn(0)) − 1

2
(Ln(N) − Pn(N))

(5.40)

since Ln(0) and Ln(N) are readily calculable.

It is proven in [151] that the total variation distance between the Poisson binomial and
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Poisson distributions is bounded by

d {Ln(b),Pn(b)} ≤ Un =
1 − exp (−λn)

λn

N
∑

k=1

P 2
n,k

d {Ln(.),Pn(.)} ≥ Ln =
1

32
min

{

1

λn
, 1

} N
∑

k=1

P 2
n,k.

(5.41)

Note that these bounds are random variables, since the channel error probabilities, and

consequently the distributions Ln(b) and Pn(b), are time varying.

In the following subsections we derive approximations to the distributions of the bounds

Ln and Un for large finite N . We first show that the arithmetic average probability of error,

and probability of error squared are both Gaussian distributed in the limit as N → ∞. This

is achieved by applying the Arcones-de Naranjo central limit theorem [134, 135], stated in

Section 4.6.2, which necessitates first describing the Hermite rank of the arithmetic average

probability of error and probability of error squared. We then show that Un and Ln are

approximated by the ratio of two correlated Gaussian random variables, for which we

derive an explicit PDF. We finally simulate an OFDM system and compare our simulation

results with the derived distributions.

5.2.2 Hermite Rank of Error Functions

Recall, from Section 4.4 that we may decompose each complex subchannel response Hn,k

into real zero mean Gaussian random variables Xn,k and Yn,k. Assuming BPSK transmis-

sion on each subchannel with average energy E0, the probability of subcarrier symbol error

is given in (5.1), and may be expressed as a nonlinear function e : R
2 → R of the subchannel

gain underlying Gaussian random variables. Namely,

Pn,k =
1

2
erfc (|Hn,k|

√
γ0) =

1

2
erfc

(√
γ0

√

X2
n,k + Y 2

n,k

)

, e (Xn,k, Yn,k) . (5.42)

In order to apply the Arcones-de Naranjo central limit theorem, we now prove that the

Hermite rank ϕ(e) of the function e (·) is at least two, using the methodology of Section

4.6.1. Consider first a zero order polynomial P0(X1,X2) = α0 of two zero mean iid Gaus-

sian random variables X1 and X2. We may then write

E [(e (X1,X2) − E [e (X1,X2)])P0(X1,X2)] = E [e (X1,X2)] α0 − E [e (X1,X2)] α0 = 0

(5.43)

for all α0 ∈ R. Thus ϕ(e) 6= 0. Now consider a first order polynomial P1(X1,X2) =

α2X2 + α1X1 + α0. We may then write

E [(e (X1,X2) − E [e (X1,X2)])P1(X1,X2)] = (α2 + α1)E [X1e (X1,X2)] (5.44)
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since X1 and X2 are zero mean and iid. Furthermore, substituting the Gaussian PDF and

an alternative representation of the error function [144] we may write

E [X1e (X1,X2)] =
1

2

∫ +∞

−∞

∫ +∞

−∞
erfc

(√
γ0

√

x2
1 + x2

2

)

exp

(

−x2
1

2

)

exp

(

−x2
2

2

)

dx1dx2

=
1

π

∫ π
2

0

∫ +∞

−∞

{∫ +∞

−∞
x1 exp

(

−2γ0x
2
1

sin2 θ

)

exp

(

−x2
1

2

)

dx1

}

× exp

(

−2γ0x
2
2

sin2 θ

)

exp

(

−x2
2

2

)

dx2dθ

= 0

(5.45)

since the integrand in x1 is the product of two even functions and an odd function. Substi-

tuting (5.45) into (5.44) we may write

E [(e (X1,X2) − E [e (X1,X2)])P1(X1,X2)] = 0 (5.46)

and therefore the Hermite rank ϕ(e) 6= 1, so that ϕ(e) ≥ 2.

We similarly define the squared probability of error as a function, esq : R
2 → R, of the

underlying Gaussian random variables of the subchannel response,

P 2
n,k =

1

4
[erfc (|Hn,k|

√
γ0)]

2 =
1

4

[

erfc
(√

γ0

√

X2
n,k + Y 2

n,k

)]2

, esq (Xn,k, Yn,k) . (5.47)

Using the same methodology as above, it is readily shown that the Hermite rank ϕ(esq)

is greater than or equal to two. The condition requiring multiplication by the zero order

polynomial follows from (5.43). For the case of a first order polynomial we find, as in (5.44),

that

E [(esq (X1,X2) − E [esq (X1,X2)])P1(X1,X2)] = (α2 + α1)E [X1esq (X1,X2)] . (5.48)

Using the Gaussian PDF and the erfc(·) function representation of [144] we write

E [X1esq (X1,X2)]

=
1

4

∫ +∞

−∞

∫ +∞

−∞

[

erfc

(√
γ0

√

x2
1 + x2

2

)]2

exp

(

−x2
1

2

)

exp

(

−x2
2

2

)

dx1dx2

=
1

π2

∫ π
2

0

∫ π
2

0

∫ +∞

−∞
exp

(

− 2γ0x
2
2

sin2 θ1

)

exp

(

− 2γ0x
2
2

sin2 θ2

)

exp

(

−x2
2

2

)

×
{
∫ +∞

−∞
x1 exp

(

− 2γ0x
2
1

sin2 θ1

)

exp

(

− 2γ0x
2
1

sin2 θ2

)

exp

(

−x2
1

2

)

dx1

}

dx2dθ1dθ2

= 0

(5.49)
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since the integrand in {·} is the product of three even functions in x1 and an odd function.

It follows that ϕ(esq) 6= 1, and therefore ϕ(esq) ≥ 2.

5.2.3 Distribution of the Average Error and Average Squared Error

Given that the Hermite rank of the probability of error function satisfies ϕ(e) ≥ 2 we may

write

∞
∑

∆k=−∞
|E [Xn,1Xn,1+∆k]|ϕ(e) < ∞,

∞
∑

∆k=−∞
|E [Yn,1Yn,1+∆k]|ϕ(e) < ∞

∞
∑

∆k=−∞
|E [Xn,1Yn,1+∆k]|ϕ(e) < ∞,

∞
∑

∆k=−∞
|E [Yn,1Xn,1+∆k]|ϕ(e) < ∞

(5.50)

since the above correlation terms approach zero with order 1
∆k or 1

∆k2 , as shown in (4.15).

We may then apply Theorem 4.1 to write

1√
N

N
∑

k=1

{e (Xn,k, Yn,k) − E [e (Xn,k, Yn,k)]} =
1√
N

N
∑

k=1

{Pn,k − E [Pn,k]} D−→ N (0,ΩP )

(5.51)

in the limit as N → ∞, where

ΩP = var [Pn,k] + 2
N
∑

k=2

cov [Pn,1Pn,k] . (5.52)

This limiting distribution motivates the following statement. For large finite N the distri-

bution of the arithmetic average probability of error Pn,av = 1
N

∑N
k=1 Pn,k = λn

N is approxi-

mated by the Gaussian distribution

N
(

P0,
1

N
ΩP

)

(5.53)

where P0 is the mean error probability, defined in (5.31). Note that Pn,av is the sample mean

of N correlated random variables Pn,1, Pn,2, . . . , Pn,N . The variance Pn,av of is

var [Pn,av] = var [Pn,k] + 2
N
∑

k=2

cov [Pn,1Pn,k] . (5.54)

Readily calculable expressions for the variance and covariance terms in (5.52) may be found

from Section 5.1.2. Therefore, the sample mean Pn,av is approximately Gaussian distributed

for large N , with known mean and variance.

We similarly apply Theorem 4.1 to the squared probability of error function. Since ϕ(esq) ≥
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2, the requisite series are convergent. That is,

∞
∑

∆k=−∞
|E [Xn,1Xn,1+∆k]|ϕ(esq) < ∞,

∞
∑

∆k=−∞
|E [Yn,1Yn,1+∆k]|ϕ(esq) < ∞

∞
∑

∆k=−∞
|E [Xn,1Yn,1+∆k]|ϕ(esq) < ∞,

∞
∑

∆k=−∞
|E [Yn,1Xn,1+∆k]|ϕ(esq) < ∞.

(5.55)

We may then apply the Arcones-de Naranjo central limit theorem to the subchannel gain

Gaussian random variables and the squared error probability function, to write

1√
N

N
∑

k=1

{esq (Xn,k, Yn,k) − E [esq (Xn,k, Yn,k)]} =
1√
N

N
∑

k=1

{

P 2
n,k − E

[

P 2
n,k

]} D−→ N (0,ΩP 2)

(5.56)

in the limit as N → ∞, where

ΩP 2 = var
[

P 2
n,k

]

+ 2

N
∑

k=2

cov
[

P 2
n,1P

2
n,k

]

. (5.57)

This limiting distribution then motivates the following approximation. For large, finite N

the distribution of the arithmetic average squared probability of error P 2
n,av = 1

N

∑N
k=1 P 2

n,k

is approximated by the Gaussian distribution

N
(

P 2
0 ,

1

N
ΩP 2

)

(5.58)

where the mean of the squared probability of error P 2
0 = E

[

P 2
n,k

]

is given by (5.59). The

variance and covariance terms in (5.57) are readily calculated using the following expres-

sions.

Mean and Variance of the Squared Error Probability

Given BPSK transmission and unity mean Rayleigh fading subchannels, the mean of the

probability of error squared is

P 2
0 =

1

4

∫ ∞

0
[erfc (

√
γ0x)]2 f|Hn,k|2(x) dx

=
1

4

∫ ∞

0
[erfc (

√
γ0x)]2 exp(−x) dx

=
1

4
−

arctan

(

√

γ−1
0 + 1

)

π
√

γ−1
0 + 1

(5.59)

as shown in [145, App. 5A].
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Using the Jakes’ channel model, the correlation between the squared probability of error

on any two distinct subchannels is

E
[

P 2
n,k1

P 2
n,k2

]

=
1

4

∫ ∞

0

∫ ∞

0
[erfc (

√
γ0x)]2 [erfc (

√
γ0y)]2 f|Hn,k1

|2,|Hn,k2
|2(x, y) dxdy

=
1

1 − ρ2

∫ ∞

0

∫ ∞

0
[erfc (

√
γ0x)]2 [erfc (

√
γ0y)]2 exp

(

− x + y

1 − ρ2

)

I0

(

2ρ
√

xy

1 − ρ2

)

dxdy

=
1

1 − ρ2

∫ ∞

0
g9(y) [erfc (

√
γ0y)]2 exp

(

− y

1 − ρ2

)

dy, for k1 6= k2

(5.60)

where we have substituted the PDF from (2.46), with σ2 = 1
2 . Furthermore, we have

g9(y) ,

∫ ∞

0
[erfc (

√
γ0x)]2 I0

(

2ρ
√

xy

1 − ρ2

)

exp

(

− x

1 − ρ2

)

dx

=

∞
∑

i=0

∫ ∞

0
[erfc (

√
γ0x)]2 exp

(

− x

1 − ρ2

)

1

(i!)2

(

ρ2xy

[1 − ρ2]2

)i

dx.

(5.61)

using a series expansions for Bessel functions (Appendix A.12). The ith term in the sum-

mation of (5.61) may be rearranged to express the integral as

Di =
1

i!

∫ ∞

0
[erfc (

√
γ0x)]2 exp

(

− x

1 − ρ2

)

xi dx

=
1

i!

∫ ∞

0

4

π2

∫ π
2

0

∫ π
2

0
exp

(

−x[sin2 θ1 + sin2 θ2]

sin2 θ1 sin2 θ2

)

exp

(

− x

1 − ρ2

)

xi dθ1dθ2dx

=
4

π2

∫ π
2

0

∫ π
2

0

(

sin2 θ1 + sin2 θ2

sin2 θ1 sin2 θ2
+

1

1 − ρ2

)−i−1

dθ1dθ2

(5.62)

after applying an integral representation in Appendix A.6. This is readily evaluated nu-

merically. We may then write (5.61) as

g9(y) =
∞
∑

i=0

1

i!

(

ρ2y

[1 − ρ2]2

)i

Di (5.63)

and substituting this into (5.60) we obtain

E
[

P 2
n,k1

P 2
n,k2

]

=
1

1 − ρ2

∞
∑

i=0

1

i!

(

ρ2

[1 − ρ2]2

)i

Di

∫ ∞

0
yi [erfc (

√
γ0y)]2 exp

(

− y

1 − ρ2

)

dy

=
1

1 − ρ2

∞
∑

i=0

(

ρ2

[1 − ρ2]2

)i

D2
i , for k1 6= k2

(5.64)

which is a numerically calculable, since it may be show that the series converges rapidly.
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For the special case of k1 = k2 we require

E
[

P 4
n,k

]

=
1

16

∫ ∞

0
[erfc (

√
γ0x)]4 exp(−x2)dx. (5.65)

Substituting u =
√

γ0x and integrating by parts we may write

E
[

P 4
n,k

]

=
1

16
[erfc(0)]4 − 1

2
√

π

∫ ∞

0
[erfc(u)]3 exp

(

−u2[1 + γ0]

γ0

)

du

=
1

16
− 2

π2
√

π

∫ π
2

0

∫ π
2

0

∫ ∞

0
erfc(u)

× exp

(

−−u2
[

sin2 θ1 +
(

sin2 θ1 + γ0 + γ0 sin2 θ1

)

sin2 θ2

]

γ0 sin2 θ1 sin2 θ2

)

dθ1dθ2du

=
1

16
− 2

π3

∫ π
2

0

∫ π
2

0

arctan

(

√

sin2 θ1+(sin2 θ1+γ0+γ0 sin2 θ1) sin2 θ2

γ0 sin2 θ1 sin2 θ2

)

√

sin2 θ1+(sin2 θ1+γ0+γ0 sin2 θ1) sin2 θ2

γ0 sin2 θ1 sin2 θ2

dθ1dθ2

(5.66)

where we have applied an integral representation from Appendix A.7. We have therefore

obtained a finite range integral expression for the fourth moment of the subcarrier proba-

bility of error. This expression may then be numerically evaluated.

5.2.4 Accuracy of Poisson Approximation

In the limit as N → ∞ we may write the bounds (5.41) on the total variation distance as

lim
N→∞

{Ln} = lim
N→∞

{

1

32
min

{

1

λn
, 1

} N
∑

k=1

P 2
n,k

}

=

∑N
k=1 P 2

n,k

32λn
=

P 2
n,av

32Pn,av

lim
N→∞

{Un} = lim
N→∞

{

1 − exp (−λn)

λn

N
∑

k=1

P 2
n,k

}

=

∑N
k=1 P 2

n,k

λn
=

P 2
n,av

Pn,av
.

(5.67)

For large, finite N we may then approximate Ln and Un as the respective limits in (5.67).

The upper and lower bounds then have the limiting distribution of the ratio of the Gaussian

random variables, P 2
n,av and Pn,av. However, these random variables are correlated. This

distribution of the ratio of two correlated Gaussian random variables may be found from

the distribution of the ratio of two independent Gaussian random variables, as shown in

Appendix B. Using this result we may then approximate the distribution of Un, for large

N , as

fU(x) =
a1 exp

(

−1
2

[

a2
2 + a2

3

])

π
[

a2
1 + (x − a2

4

]

[

1 +

√

π

2
h(x) erf

(

h(x)√
2

)

exp

(

[h(x)]2

2

)]

(5.68)
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where

a1 =
√

1 − ρ(Pav , P 2
av)

√

ΩP 2

ΩP

a2 =
1

√

1 − ρ(Pav , P 2
av)





E
[

P 2
n,av

]

√

1
N ΩP 2

− ρ(Pav , P
2
av)E [Pn,av ]

√

1
N ΩP





a3 =
E [Pn,av ]
√

1
N ΩP

a4 = ρ(Pav , P
2
av)

√

ΩP 2

ΩP

h(x) =
a1a3 + a2(x − a4)
√

a2
1 + (x − a4)2

(5.69)

and ρ(Pav , P
2
av) is the coefficient of correlation between Pn,av and P 2

n,av. The limiting dis-

tribution of Ln has a similar form to (5.68). The correlation coefficient ρ(Pav , P
2
av) is readily

calculated using the following result.

Correlation between Pn,av and P 2
n,av

We may calculate the correlation coefficient ρ(Pav , P
2
av) given the correlation

E
[

P 2
n,k1

Pn,k2

]

=
1

8

∫ ∞

0

∫ ∞

0
[erfc (

√
γ0x)]2 erfc (

√
γ0y) f|H1|2|H2|2(x, y) dxdy. (5.70)

Note that this may be expressed as

E
[

P 2
n,k1

Pn,k2

]

=
1

2[1 − ρ2]

∫ ∞

0
[erfc (

√
γ0y)]2 exp

(

− y

1 − ρ2

)

g7(y)dy (5.71)

where g7(y) is defined in (5.33). Furthermore, substituting (5.34), (5.35) and (5.62) we obtain

the readily calculable expression

E
[

P 2
n,k1

Pn,k2

]

=

∞
∑

i=0

1

2i!

ρ2i

(1 − ρ2)2i+1

[

1 − ρ2

2 − ρ2

]− i+1
2

Di g8(i). (5.72)

For the special case where k1 = k2 we may write

E
[

P 3
n,k

]

=

1

8

∫ ∞

0
[erfc (

√
γ0x)]3 f|Hn,k|2(x) dx

=
1

8
− 3

2π
√

π

∫ π
2

0

∫ ∞

0
exp

(−u2[γ0 + γ0 sin2 θ + sin2 θ]

γ0 sin2 θ

)

erfc(u) dudθ

=
1

8
− 3

2π2

∫ π
2

0
arctan





√

γ0 + γ0 sin2 θ + sin2 θ

γ0 sin2 θ





[

γ0 + γ0 sin2 θ + sin2 θ

γ0 sin2 θ

]− 1
2

dθ

(5.73)
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where we have substituted u =
√

γ0x, integrated by parts and applied the result in Ap-

pendix A.7.

5.2.5 Simulations and Discussion

We consider a 1024 subcarrier OFDM system transmitting over a Rayleigh fading channel

with an exponential power delay profile and maximum excess delay of 50ns. We assume

the system occupies a 320MHz bandwidth with carrier frequency 5.1GHz and receiver ve-

locity of 15m/s. Due to the large number of subcarriers, calculation of the exact probability

of b errors for 3 ≤ b ≤ 1022 is infeasible.
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Figure 5.3 Simulated (bars) and analytical (line) distributions of total variation distance and upper
Bound.

We consider transmission over 5000 consecutive simulated fading channel realisations. For

each channel realisation we simulate transmission of 107 blocks, and thus estimate the

Poisson binomial distribution of errors for that channel realisation. We then calculate the

total variation distance between the estimated distribution and the Poisson approximation,

as well as the upper bound on total variation distance (5.41) for each realisation.

We display the distribution of the total variation distance between the simulated distri-

bution of errors and the Poisson approximation, for all 5000 realisations, in Figure 5.3(a).

In Figure 5.3(b) we plot the derived approximating distribution (5.68) of the upper bound

on the total variation distance and the simulated distribution of this upper bound. It is ob-

served that the PDF of (5.68) is a good approximation to the density of the simulated upper

bound on total variation distance. Similar results are readily obtained for the lower bound.

The analytical distribution of the upper bound on total variation distance is skewed to the

left of the simulated distribution, as shown in Figure 5.3(b). This skew suggests that the

analytical model gives a slightly weaker upper bound to the total variation distance. Thus,

the analysis gives a slightly more conservative upper bound on the distribution of the time
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varying error incurred when we estimate the distribution of the number of symbol errors

in an OFDM block with the Poisson distribution. For systems with larger N it is observed

that the approximation appears tighter.

Note that this analysis may be readily extended to the case of QAM transmission, since the

error probability for QAM transmission may be written as a linear combination of erfc(·)
functions. For brevity, this is not described here, however the methodology is the same

as detailed for the BPSK case. Using the same methods we may show that the Hermite

rank of the probability of error for QAM transmission is greater than or equal to two.

For QAM, readily calculable expressions for the probability of error correlation are not as

forthcoming, however numerical integration may be used.

5.3 Summary

We have presented two analytical results concerning wireless OFDM systems. We have

first examined the block error rate of uncoded OFDM systems, an important measure for

analysing coding over successive OFDM blocks. We have derived a lower bound on the

probability of OFDM block error for both Rician channels and Rayleigh channels with arbi-

trary parameters. Our analysis includes a readily calculable expression for the correlation

between the probability of error on two correlated channels. These correlations are useful

in several other applications, including the evaluation of MIMO performance with corre-

lated subchannels, or Markov modelling of receiver error processes [141, 142].

We have then examined the distribution of symbol errors within an OFDM block. We have

observed that this follows the Poisson binomial distribution, which is well approximated

by the Poisson distribution. For OFDM systems transmitting over Rayleigh fading chan-

nels we have derived the distribution of upper and lower bounds on the total variation

distance between the true distribution and Poisson approximation. This analysis includes

the derivation of useful correlation expressions for the error and squared error probabilities

on correlated Rayleigh fading channels.

These two results are useful in the analysis of code design for OFDM systems transmitting

over frequency selective, fading channels. OFDM systems with a smaller number of sub-

carriers may employ codes such that each codeword symbol is an OFDM block. The error

performance of these codes is then dependent on the block error rate. The tight bounds

on the block error rate will allow judicious choice of code, so that a given rate of decoding

error may be satisfied. Larger OFDM systems may employ coding within each block, such

that each subcarrier symbol is a codeword symbol. The error performance of the code is

then determined by the distribution of the number of erroneously demodulated OFDM

symbols within each block. We have shown that this distribution is well approximated
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by the Poisson distribution, and we may simplify analysis by using this approximation.

Should one wish to bound the error in the approximation we have derived the distribu-

tion of an upper bound on the total variation distance between the true Poisson binomial

distribution and the Poisson distribution approximation. We use this approximation in the

following chapter, where we analyse the performance of a coded OFDM system with a

large number of subcarriers.



Chapter 6

Lattice Coding for OFDM Systems

Lattice coding of OFDM systems is considered in this chapter. The analysis herein is origi-

nal. OFDM data is encoded so that each block represents a lattice point, thereby exploiting

the high coding gain of lattices. We first outline the encoding procedure and give some

examples, then discuss the problem of decoding the lattice points. Specifically, we detail

the optimal decoding metric, as well as the optimal lattice properties for transmission over

frequency selective channels. We then propose the use of multistage GMD decoding, and

provide a comprehensive analysis of lattice encoded, GMD decoded OFDM systems. As a

case study we consider transmission of points from the 128 dimensional Barnes-Wall lat-

tice, over a 64 subcarrier OFDM system, and show that high coding gains are possible with

relatively low decoding complexity.

6.1 Lattice Encoding

OFDM systems are well suited to lattice codes. Given an N
2 subcarrier OFDM system trans-

mitting two dimensional subcarrier points, the OFDM block may be elegantly represented

as a single point x in N dimensional Euclidean space. Lattice coding of the OFDM block

simply requires restriction of x such that it is an element of some N dimensional lattice Λ,

or an equivalent sphere packing. Since OFDM systems typically employ a large number

(48 or more) of subcarriers we consider high dimensional lattices (N ≥ 48), with large cod-

ing gain. We outline a simple method for restricting the OFDM block to be points from a

lattice, or more strictly speaking, a sphere packing.

Since lattices have infinite cardinality we must choose some finite cardinality subset Λf ⊂ Λ

from which we map a signal constellation. Furthermore, as outlined in Section 3.5 we

require some mapping m : Λf → MN from the lattice subset to some subset MN = M
N
2
2

85
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of the N
2 -fold Cartesian product of the two dimensional subcarrier constellations M2. We

denote the mapping of the entire lattice by M = m(Λ), which typically does not form a

lattice since we remove the zero point 0 = {0, 0, . . . , 0}. However, provided the mapping

may be expressed as

m(x) = aTx + t∀x ∈ Λ (6.1)

where a is a scalar, T is an orthogonal N × N matrix and t = {b, b, . . . , b} is a length N

vector containing a single scalar b; the sphere packing M = m(Λ) then retains the packing

density and coding gain of Λ [7].

As in previous chapters, we denote the kth subcarrier symbol transmitted during the nth

block as Sn,k. Sn,k is from the constellation M2, which we restrict to be a square M2-ary

QAM constellation with minimum energy 2E0. Assuming (without loss of generality) that

Λ has unit minimum distance dmin(Λ) = 1, this is equivalent to defining the lattice subset

to be

Λf , {x = {x1, x2, . . . , xN} ∈ Λ : 0 ≤ xi ≤ M} (6.2)

and using the mapping

m(x) = 2
√

E0x +
{

(M − 1)
√

E0, . . . , (M − 1)
√

E0

}

, for all x ∈ Λf . (6.3)

We are thus employing a cubic constellation [74], since all points x are contained within an

N dimensional cube of side length M . Although this mapping affords no shaping gain [74]

and does not reduce the peak to average power ratio, it ensures compatibility with existing

high data rate OFDM systems [40, 87] which use QAM constellations. Each pair of lattice

dimensions are mapped to a QAM constellation, or equivalently each lattice dimension is

mapped to an M -ary PAM constellation, denoted

M1 =
{

−(M−1)
√

E0,−(M−3)
√

E0, . . . ,−
√

E0,
√

E0, . . . , (M−3)
√

E0, (M−1)
√

E0

}

.

(6.4)

Each OFDM block Sn = {Sn,1, . . . , Sn, N
2
} is then a point from an N dimensional sphere

packing MN = MN/2
2 = MN

1 ⊂ R
N . Note that a single OFDM block comprises N

2 orthog-

onal M2-ary QAM points, equivalent to N M -ary PAM points.

As an example, consider a 64 subcarrier OFDM system transmitting 256-QAM points from

a lattice code based on a 128 dimensional construction C lattice, P128. Specifically,

P128 ,
⋃

c(1)∈RM(1,7),c(2)∈RM(3,7),c(3)∈RM(5,7)

{

8Z
128 + 4c(3) + 2c(2) + c(1)

}

(6.5)

where RM(1, 7) , RM(3, 7) and RM(5, 7) are the first, third and fifth order, length 128

Reed-Muller codes respectively. These are (128, 8, 64), (128, 64, 16) and (128, 120, 4) linear



6.2 Decoding 87

block codes respectively. P128 has 9.03dB coding gain [7, Chap. 5.6]. We refer to P128 as

the 128 dimensional Barnes-Wall lattice, since P128 has the same coding gain and kissing

number as this lattice, although it is not strictly equivalent [7]. Since we are employing

256-QAM constellations, we require M = 16 and restrict the signal constellation to points

mapped from the subset of P128 within the 128 dimensional cube with opposite vertices at

{0, . . . , 0} and {15, . . . , 15}. Thus, the finite lattice subset may be expressed as

Λf =
⋃

c(4)∈RM(7,7),c(3)∈RM(5,7),c(2)∈RM(3,7),c(1)∈RM(1,7)

{

8c(4) + 4c(3) + 2c(2) + c(1)
}

(6.6)

where RM(7, 7) is the trivial (128, 128, 1) Reed-Muller code, so that 8c(4) ∈ 8Z
128.

In order to choose a point x ∈ Λf we may input blocks of 128, 120, 64 and 8 uncoded data

bits to encoders for the codes RM(7, 7), RM(5, 7), RM(3, 7) and RM(1, 7), respectively,

thus obtaining the four length 128 codewords c(4), c(3), c(2) and c(1) respectively. Note,

however, that RM(7, 7) simply outputs the uncoded bits. This lattice code then has rate
128+120+64+8

4×128 = 0.625. Each coordinate is then mapped to a 16-PAM constellation via

m(x) = 2
√

E0x−
{

15
√

E0, . . . , 15
√

E0

}

(6.7)

so that m(x) is an element of the 64-fold Cartesian product of a squared 256-QAM constel-

lation within minimum energy 2E0 and average energy Eav = 170E0.

6.2 Decoding

At the receiver we obtain some channel perturbed and noise corrupted version of the trans-

mitted lattice point. We must then estimate the transmitted lattice point. In the following

subsection we extend the work of [156] and [157] to derive the optimal metric for max-

imum likelihood decoding of lattice encoded OFDM transmission over Rayleigh fading

frequency selective channels. We show that this is the Euclidean distance between the

received point and the mapped lattice points. In Section 6.2.2 we discuss the criteria for

choosing good lattices for lattice encoded OFDM, and show that maximising the lattice

product distance is critical for reducing the error rate.

6.2.1 Optimal Decoding Metric for OFDM

We employ an N
2 subcarrier OFDM system and transmit a block Sn = {Sn,1, Sn,2, . . . , Sn,N}

= m(x), mapped from a lattice point x ∈ Λ, so that Sn is a point in an N dimensional sphere

packing. Assuming sufficient guard interval and synchronisation so that intersymbol in-

terference is negligible and subcarrier orthogonality is preserved, at the receiver we obtain

a channel perturbed and AWGN corrupted signal point. We may write the transmitted
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block as the diagonal N
2 by N

2 complex matrix

Sn =























Sn,1 0 0 . . . 0

0 Sn,2 0 . . . 0

0 0 Sn,3 . . . 0
...

...
...

. . .
...

0 0 0 . . . Sn,N/2























. (6.8)

Note that, for the remainder of Section 6.2.1 we retain the symbol Sn to denote the above

matrix of transmitted symbols, although this was previously used to denote the vector

of transmitted symbols. Permitting a similar discrepancy, we may also define diagonal

complex matrices comprising each subchannel gain and additive white Gaussian noise

component as

Hn =























Hn,1 0 0 . . . 0

0 Hn,2 0 . . . 0

0 0 Hn,3 . . . 0
...

...
...

. . .
...

0 0 0 . . . Hn, N
2























, Wn =























Wn,1 0 0 . . . 0

0 Wn,2 0 . . . 0

0 0 Wn,3 . . . 0
...

...
...

. . .
...

0 0 0 . . . Wn, N
2























(6.9)

respectively. Each Wn,k, for k = 1, . . . , N
2 , is an independent mean zero complex Gaussian

random variable with one dimensional variance N0
2 . Each Hn,k, for k = 1, . . . , N

2 , is a

complex Gaussian random variable, which we assume has one dimensional variance 1
2 .

Furthermore, letting † denote the matrix Hermitian transpose, we may write the correlation

matrices

ΘWW =
1

2
E

[

WnW
†
n

]

=























N0 0 0 . . . 0

0 N0 0 . . . 0

0 0 N0 . . . 0
...

...
...

. . .
...

0 0 0 . . . N0























= N0IN
2

(6.10)

ΘHH =
1

2
E
[

(Hn,1, . . . , Hn,N )†(Hn,1, . . . , Hn,N )
]

=























ρ(0) ρ(1) ρ(2) . . . ρ
(

N
2

)

ρ(1) ρ(0) ρ(1) . . . ρ
(

N
2

)

ρ(2) ρ(1) ρ(0) . . . ρ
(

N
2

)

...
...

...
. . .

...

ρ
(

N
2

)

ρ
(

N
2
− 1
)

ρ
(

N
2
− 2
)

. . . ρ(0)























(6.11)
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where IN
2

is the N
2 by N

2 identity matrix, and the correlation ρ(∆k) between subchannel

gains is given by (4.17). We may then write the received symbols, in matrix form, as

Rn =























Rn,1 0 0 . . . 0

0 Rn,2 0 . . . 0

0 0 Rn,3 . . . 0
...

...
...

. . .
...

0 0 0 . . . Rn, N
2























= SnHn + Wn. (6.12)

Assuming perfect knowledge of the subchannel gains at the receiver, a maximum likeli-

hood (ML) detector [9] generates an estimate Ŝn of the transmitted block by choosing

Ŝn = argmax
Sn

{Pr (Sn|Rn,Hn) } = argmax
Sn

{Pr (Rn,Hn|Sn) } . (6.13)

To determine the maximum likelihood decoding criterion we then require the joint con-

ditional probability density function Pr (Rn,Hn|Sn). This is equivalent to calculating the

probability density function (PDF) of the vector

Ψn =
[

Rn,1, Rn,2, . . . , Rn, N
2
,Hn,1,Hn,2, . . . ,Hn, N

2

]T
(6.14)

conditioned on Sn. Note that Hn,k, and Rn,k given Sn,k, are zero mean complex Gaussian

random variables, for k = 1, . . . , N
2 , so that Ψn has a multivariate Gaussian probability

distribution function. We may write this as

fΨn (Ψn|Sn) =
exp

(

−1
2Ψ

†
nΘ

−1
ΨΨ|Sn

Ψn

)

(2π)N det
[

ΘΨΨ|Sn

] (6.15)

where ΘΨΨ|Sn
is the correlation matrix of Ψn. This correlation matrix is defined as

ΘΨΨ|Sn
=

1

2
E

[

ΨnΨ
†
n

]

=





ΘRR ΘRH

ΘHR ΘHH



 (6.16)

where

ΘRR =
1

2
E

[

RnR
†
n

]

=
1

2
E

[

(SnHn + Wn) (SnHn + Wn)†
]

= SnΘHHS†
n + N0IN

2

ΘRH =
1

2
E

[

ΨnH
†
n

]

=
1

2
E

[

(SnHn + Wn)H†
n

]

= SnΘHH

ΘHR =
1

2
E

[

HnΨ
†
n

]

=
1

2
E

[

Hn (SnHn + Wn)†
]

= ΘHHS†
n

(6.17)

since E

[

WnH
†
n

]

= E

[

HnW
†
n

]

= 0.
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Substituting (6.15) into (6.13) and recognising that the ln(·) function is monotonic increas-

ing, with some manipulation we may then write the ML decoder output as

Ŝn = argmax
Sn







exp
(

−1
2Ψ

†
nΘ

−1
ΨΨ|Sn

Ψn

)

(2π)N det
[

ΘΨΨ|Sn

]







= argmax
Sn







ln





exp
(

−1
2Ψ

†
nΘ

−1
ΨΨ|Sn

Ψn

)

(2π)N det
[

ΘΨΨ|Sn

]











= argmin
Sn

{

1

2
Ψ†

nΘ
−1
ΨΨ|Sn

Ψn + ln
(

det[ΘΨΨ|Sn
]
)

+ N ln 2π

}

= argmin
Sn

{Md (Sn)}

(6.18)

where the ML decoding metric is

Md (Sn) = Ψ†
nΘ

−1
ΨΨ|Sn

Ψn + 2 ln
(

det
[

ΘΨΨ|Sn

])

. (6.19)

We may further simplify this decoding metric by substituting (6.17) into (6.16) and apply-

ing an identity for the inverse of a partitioned matrix from [158, p. 41]1, yielding

Θ−1
ΨΨ|Sn

=





1
N0

IN
2

− 1
N0

Sn

− 1
N0

S
†
n Θ−1

HH + 1
N0

S
†
nSn



 . (6.20)

With some manipulation we may then write the first term of Md (Sn) as

Ψ†
nΘ

−1
ΨΨ|Sn

Ψn =
[

S
†
n H

†
n

]





1
N0

IN
2

− 1
N0

Sn

− 1
N0

S
†
n Θ−1

HH + 1
N0

S
†
nSn









Sn

Hn





=
1

N0
(Rn − SnHn) (Rn − SnHn)† + HnΘ

−1
HHH†

n

= HnΘ
−1
HHH†

n +
1

N0

N
2
∑

k=1

|Rn,k − Sn,kHn,k|2 .

(6.21)

1Note that there is a typographical error in [158, p.41]. The equation A−1 =

"
X XQS−1

−S−1RX W

#
should

instead read A−1 =

"
X −XQS−1

−S−1RX W

#
.
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Furthermore, the second term in Md (Sn) may be written as

2 ln
(

det
[

ΘΨΨ|Sn

])

= 2 ln



det





SnΘHHS
†
n + N0IN

2
SnΘHH

ΘHHS
†
n ΘHH









= 2 ln



det





Sn IN
2

IN
2

0



 det





ΘHH 0

0 N0IN
2



det





S
†
n IN

2

IN
2

0









= 2 ln

(

N
N
2

0 det [ΘHH ]

)

.

(6.22)

Finally, substituting (6.21) and (6.22) into (6.19), and removing the terms independent of

Sn we may write an equivalent ML decoding metric as

M̃d (Sn) =

N
2
∑

k=0

|Rn,k − Sn,kHn,k|2 . (6.23)

Therefore, a maximum likelihood decoder should select the point Sn such that the Eu-

clidean distance between the received point Rn and the channel perturbed point HnSn

is minimised. Note that this is an intuitive result, and is analogous to the derivation of

the maximum likelihood sequence detector [9]. Using this result we may then show the

important lattice properties for minimising the receiver lattice point error rate, as follows.

6.2.2 Optimal Lattices for Wideband OFDM

In an additive white Gaussian noise or flat fading environment it is well known that lat-

tices with the highest possible density, or coding gain, provide the lowest error rates for

moderate to high SNR [7,58]. However, for lattice encoded OFDM systems operating over

frequency selective channels, we show that at high SNR the lowest error performance is

provided by maximising the product distance of the lattice, which we define. This is anal-

ogous to similar results [45] for lattices transmitted with single carrier systems over fading

channels.

Consider the maximum likelihood decoder described in Section 6.2.1. Assuming that dur-

ing the nth time interval we transmit some point S(1) from the N dimensional sphere pack-

ing MN , then the decoder will incorrectly select the point S(2) 6= S(1) if

M̃d

(

S(2)

)

< M̃d

(

S(1)

)

; (6.24)

or equivalently, from (6.19),

Ψ†
nΘ

−1
ΨΨ|S(1)

Ψn + 2 ln
(

det
[

ΘΨΨ|S(1)

])

< Ψ†
nΘ

−1
ΨΨ|S(2)

Ψn + 2 ln
(

det
[

ΘΨΨ|S(2)

])

. (6.25)
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We may then write the probability of the event that the decoder outputs S(2) when S(1) is

transmitted as

Pr
(

S(1) → S(2)

)

= Pr
(

Ψ†
nΘ

−1
ΨΨ|S(1)

Ψn + 2 ln
(

det
[

ΘΨΨ|S(1)

])

< Ψ†
nΘ

−1
ΨΨ|S(2)

Ψn + 2 ln
(

det
[

ΘΨΨ|S(2)

]))

= Pr



Ψ†
n

[

Θ−1
ΨΨ|S(2)

− Θ−1
ΨΨ|S(1)

]

Ψn < 2 ln





det
[

ΘΨΨ|S(1)

]

det
[

ΘΨΨ|S(2)

]









= Pr (Ω < ω)

(6.26)

where

Ω = Ψ†
n

[

Θ−1
ΨΨ|S(2)

− Θ−1
ΨΨ|S(1)

]

Ψn

= Ψ†
n

{





1
N0

IN
2

− 1
N0

S(1)

− 1
N0

S
†
(1)

Θ−1
HH + 1

N0
S
†
(1)

S(1)



−





1
N0

IN
2

− 1
N0

S(2)

− 1
N0

S
†
(2)

Θ−1
HH + 1

N0
S
†
(2)

S(2)





}

Ψn

= Ψ†
n





0 1
N0

(

S(2) − S(1)

)

− 1
N0

(

S
†
(1) − S

†
(2)

)

1
N0

(

S
†
(1)S(1) − S

†
(2)S(2)

)



Ψn

ω = 2 ln





det
[

ΘΨΨ|S(1)

]

det
[

ΘΨΨ|S(2)

]



 = 2 ln





N
N
2

0 det [ΘHH ]

N
N
2

0 det [ΘHH ]



 = 0

(6.27)

from (6.20) and (6.22).

We denote the PDF of Ω, implicitly conditioned on S(1) and S(2), as fΩ(x). Since ΘHH

is a real symmetric matrix, then
(

S(1)ΘHHS
†
(1) + N0IN

2

)

and
(

S(2)ΘHHS
†
(2) + N0IN

2

)

are

similarly real and symmetric. Moreover, from (6.16) and (6.17) observe that ΘΨΨ|S(1)
and

ΘΨΨ|S(2)
are Hermitian matrices, and consequently

[

Θ−1
ΨΨ|S(2)

− Θ−1
ΨΨ|S(1)

]

is Hermitian.

Since Ψn is a zero mean vector of complex Gaussian random variables, we may then use a

result from [159] to write the two sided Laplace transform [160] characteristic function of

Ω as

φΩ(s) ,

∫ ∞

−∞
fΩ(x) exp(−sx) dx

=
1

det
[

IN
2
− 2sΘΨΨ|S(1)

(

Θ−1
ΨΨ|S(2)

− Θ−1
ΨΨ|S(1)

)]

=
1

det
[

IN
2
− 2sΘΨΨ|S(1)

Θ−1
ΨΨ|S(2)

+ 2sIN
2

] .

(6.28)

The poles of the characteristic function are then given by the nonsingular eigenvalues of
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ΘΨΨ|S(1)

(

Θ−1
ΨΨ|S(2)

− Θ−1
ΨΨ|S(1)

)

.

We may then find the required pairwise error probability by taking the inverse two sided

Laplace transform of (6.28) and integrating. Thus,

Pr
(

S(1) → S(2)

)

= Pr (Ω < 0) =

∫ 0

−∞

[

1

2πj

∮

Br
φΩ(s) exp(sx)ds

]

dx (6.29)

where the integral in [·] above is the Bromwich contour integral [161], extending over s =

σ − jR to s = σ + jR, as R approaches infinity.

Since each element of Ψn is an independent Gaussian random variable, we may express Ω

as a sum of random variables. That is,

Ω = Ω(1) + Ω(2) + . . . + Ω(N), where

Ω(k) = Ψk

N
∑

i=1

{

Θ−1
ΨΨ|S(1)

(k, i) −Θ−1
ΨΨ|S(2)

(k, i)
}

Ψ†
k for k = 1, . . . , N

(6.30)

where Θ−1
ΨΨ|S(1)

(k, i) is the element on the kth row, ith column of Θ−1
ΨΨ|S(1)

. Each Ω(k) is then

the sum of exponential random variables, and manipulating the result in [9, Appendix 4B]

we may write the two sided Laplace transform characteristic functions as

φΩ(k)(s) =
pk,1 pk,2

(s − pk,1) (s − pk,2)
(6.31)

with poles

pk,1, pk,2 =
1

1
N0

d2
k ±

√

(

1
N0

d2
k

)2
− 1

N0
d2

k

for dk 6= 0 (6.32)

where d2
k is the squared Euclidean distance between S(1),k and S(2),k ; that is

d2
k =

∣

∣S(1),k − S(2),k

∣

∣

2
. (6.33)

In the case where the kth elements, S(1),k and S(2),k, of the codewords are equal, the cor-

responding kth columns of Θ−1
ΨΨ|S(1)

− Θ−1
ΨΨ|S(2)

will be zero. In this case Ω(k) = 0, and

the characteristic function is φΩ(k)(s) = 1. We define the set of indices where S(1) and S(2)

differ as

L =

{

k : S(1),k 6= S(2),k : 1 ≤ k ≤ N

2

}

. (6.34)

so that we may write (6.28) as the product of characteristic functions

φΩ(s) =
∏

k∈L

φΩ(k)(s) =
∏

k∈L

pk,1 pk,2

(s − pk,1) (s − pk,2)
. (6.35)
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From (6.28), observe that the non-zero eigenvalues of ΘΨΨ|S(1)

(

Θ−1
ΨΨ|S(2)

− Θ−1
ΨΨ|S(1)

)

cor-

respond to the k, k+ N
2 rows of ΘΨΨ|S(1)

(

Θ−1
ΨΨ|S(2)

− Θ−1
ΨΨ|S(1)

)

where k ∈ L. The non-zero

eigenvalues are then equivalent to the eigenvalues of Θ̃ΨΨ|S(1)
Θ̃

−1
, where Θ̃ΨΨ|S(1)

consists

of the k, k + N
2 rows and columns of ΘΨΨ|S(1)

, where k ∈ L, and similarly, Θ̃
−1

consists of

all k, k + N
2 rows and columns of

(

Θ−1
ΨΨ|S(2)

− Θ−1
ΨΨ|S(1)

)

, such that k ∈ L. Both Θ̃ΨΨ|S(1)

and Θ̃
−1

are then 2|L| × 2|L| matrices. We may thus write

φΩ(s) =
1

det
[

IN − 2sΘ̃ΨΨ|S(1)
Θ̃

−1
] . (6.36)

The poles of φΩ(s) are then given by the 2|L| eigenvalues, denoted λk,1, λk,2 for k ∈ |L|, of

Θ̃ΨΨ|S(1)
Θ̃

−1
. Specifically,

pk,1 = − 1

2λk,1
, pk,2 = − 1

2λk,2
. (6.37)

We could find the eigenvalues of Θ̃ΨΨ|S(1)
Θ̃

−1
and perform the integration of (6.29) to

calculate the pairwise error probability. However, following [156] we recognise that the

integral of the inverse Laplace transform, in (6.29), may be written as

Pr
(

S(1) → S(2)

)

=

∫ 0

−∞

[

1

2πj

∮

Br
φΩ(s)ds

]

dx = −
∑

∀pr

Residue

{

1

s
φΩ(s)

}

(6.38)

where pr denotes the right half plane poles of 1
sφΩ(s). Note, from (6.32) that the poles

{pk,1 : k ∈ L} of φΩ(s) lie in the right half plane, and the poles {pk2 : k ∈ L} lie in the

left half plane. Furthermore, 1
sφΩ(s) has an additional pole at s = 0, whose residue is

∏

k∈L pk,1pk,2. Then, using the formula for the residue of a pole [162] we may write (6.38)

as

Pr
(

S(1) → S(2)

)

= −
(

∏

k∈L

pk,1pk,2

)

∑

k∈L

lim
s→pk,1











1

s

∏

i∈L
i6=k

1

(s − pi,1) (s − pi,2)











. (6.39)

Consider the product of poles term
∏

k∈L pk,1pk,2 in this expression; we may relate this to

the eigenvalues λk,1, λk,2 as

∏

k∈L

pk,1pk,2 =
∏

k∈L

1

4λk,1λk,2
=

1

4|L| det
[

Θ̃ΨΨ|S(1)
Θ̃

−1
] . (6.40)

It follows from (6.22) that we may write det
[

Θ̃ΨΨ|S(1)

]

= N
|L|
0 det [ΘHH ], and in Appendix
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C we show that det
[

Θ̃
−1
]

= (−1)|L|

N
2|L|
0

∏

k∈L d2
k. We may then write

∏

k∈L

pk,1pk,2 =
1

(−4)|L|N−|L|
0 det [ΘHH ]

∏

k∈L d2
k

. (6.41)

We then consider the behaviour of the poles at high SNR, that is as
d2

k
N0

→ ∞, for k ∈ L.

Observe from (6.32) that pk,1 → 0 and pk,2 → 1
2 , so that we may write

lim
d2
k

N0
→∞

∑

k∈L

lim
s→pk,1











1

s

∏

i∈L
i6=k

1

(s − pk,1)(s − pk,2)











=
∑

k∈L

lim
s→pk,1

1

s|L|+1
(

s − 1
2

)|L|

= lim
s→ 1

2

1

(|L| − 1)!

d|L|−1

ds|L|−1

{

(

s − 1
2

)|L|

s|L|+1
(

s − 1
2

)|L|

}

= lim
s→− 1

2

1

(|L| − 1)!

(−1)|L| (2|L| − 1)!

|L|!
1

s2|L|

=
(2|L| − 1)!(−4)|L|

(|L| − 1)!|L|!
(6.42)

using the formula [162] for the residue of an nth order pole. Using [163] we recognise that

(2|L| − 1)!

(|L| − 1)!|L|! <
4|L|

2
√

π
(

|L| + 1
4

)

< 4|L| (6.43)

so that substituting (6.42) into (6.39) we may bound the pairwise error probability as

Pr
(

S(1) → S(2)

)

≤ 1

det [ΘHH ]

(2|L| − 1)!

|L|! (|L| − 1)!

∏

i∈L

N0

d2
i

≤ 1

det [ΘHH ]

∏

i∈L

4N0

d2
i

(6.44)

for det [ΘHH ] > 0.

The pairwise error probability in (6.44) is worst for the two points S(1),S(2) ∈ Λ where
∏

i∈L
4N0

d2
i

is greatest. We therefore recognise that for lattice coded OFDM transmission

over fading and frequency selective channels, the pairwise error probability decreases pro-

portionally to the minimum squared product distance of the lattice Λ, which we define

as

d2
p (Λ) , min

∀x,y∈Λ

∏

k∈L

|xk − yk|2 , where L , {k : xk 6= yk} . (6.45)

Furthermore, we also define the product kissing number τp(x) as the number of lattice

points at minimum product distance dp (Λ) from x ∈ Λ, and the lattice Hamming dis-
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tance dH(x,y) as the number of elements of x and y that differ. If the product kiss-

ing number is equal for all x ∈ Λ, as in the lattice constructions of interest [7], we de-

note this τp(Λ). We similarly denote the minimum Hamming distance of the lattice as

dH(Λ) = minx,y∈Λ dH(x,y). Consider then an OFDM system transmitting points from

some lattice Λ mapped to the sphere packing MN , over a frequency selective Rayleigh

fading channel. We may then union bound the probability that a maximum likelihood de-

tector, with perfect channel state information, erroneously estimates the transmitted point

as

Pe ≤ τp (Mn)
1

det [ΘHH ]
(4N0)

dH (MN ) 1

d2
p (MN )

. (6.46)

Moreover, since the sphere packing product distance is lower bounded by the sphere pack-

ing minimum distance raised to the power of its Hamming distance, that is, dp (MN ) ≤
[dmin (MN )]dH(MN ), we may write

Pe ≤ τp (MN )
1

det [ΘHH ]

[

4N0

d2
min(MN )

]dH(MN )

. (6.47)

Note that, since d2
min (MN ) is proportional to the transmitted energy per symbol, or equiv-

alently per data bit,
d2

min(MN )
N0

gives a measures of the SNR.

Equations (6.46) and (6.47) thus describe the key parameters affecting the error rate of

lattice coded OFDM. The error rate is inversely proportional to the product kissing num-

ber multiplied by the signal to noise ratio raised to the power of the minimum Hamming

distance. Therefore, for lattice coded OFDM transmission over fading, frequency selec-

tive channels we should select constellations that maximise these quantities; in contrast to

maximising the lattice centre density for transmission over AWGN channels. Although we

do not describe methods of constructing such lattices, this is the subject of a large body of

work including [45, 164, 165].

From (6.46) note that for a fixed lattice constellation, the error probability is inversely pro-

portional to the determinant of the correlation matrix. For a Jakes’ model Rayleigh fading

channel with exponential power delay profile we may write

det [ΘHH ]

=det























1 1
1+[4πτrms∆f ]2

1
1+[6πτrms∆f ]2

. . . 1
1+[Nπτrms∆f ]2

1
1+[4πτrms∆f ]2

1 1
1+[6πτrms∆f ]2

. . . 1
1+[(N−2)πτrms∆f ]2

1
1+[4πτrms∆f ]2

1
1+[6πτrms∆f ]2

1 . . . 1
1+[(N−4)πτrms∆f ]2

...
...

...
. . .

...

1
1+[(N−2)πτrms∆f ]2

1
1+[(N−4)πτrms∆f ]2

1
1+[(N−6)πτrms∆f ]2

. . . 1























.

(6.48)
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Therefore, the error rate is a function of τrms∆f , the product of the channel rms delay

spread and the subcarrier separation. It is readily observed that as τrms∆f increases,
1

det[ΘHH ] decreases, so that for fixed τrms lower error rates are achievable using greater

system bandwidth. This result is expected, since increasing either τrms or ∆f increases the

frequency diversity of the system [9].

6.3 High Dimensional Lattice Decoding

Maximum likelihood decoding of points from lattice constellations requires calculation of

the Euclidean distance from the received point to all constellation points. For high dimen-

sional lattices the large constellation size renders this approach infeasible. For example,

the 64 OFDM subcarrier system transmitting 256-QAM points mapped from a subset of

P128, as described in Section 6.1, has a constellation size of |Mn| = 2128+120+64+8 ≈ 1096.

Generally, maximum likelihood decoding of lattices requires exponentially increasing com-

plexity as the lattice dimension increases [38]. A low complexity alternative to maximum

likelihood decoding of multilevel lattice constructions is to multistage decode the lattice,

employing algebraic decoding of the codes associated with each level. However, algebraic

hard decision decoding of codes is suboptimal, and induces a 3dB reduction in the coding

gain at low error rates [38], with respect to the maximum likelihood approach.

To avoid much of this loss we employ generalised minimum distance (GMD) decoding

of the codes associated with each lattice partition, as proposed and thoroughly discussed

in [57] and further analysed in [79]. Although GMD decoding is suboptimal, it is shown to

give effectively the same error rate as maximum likelihood decoding at high SNR. How-

ever, GMD decoding requires complexity that increases only polynomially with the lattice

dimension, as discussed in Section 6.3.3.

We consider GMD decoding of OFDM systems encoded using high dimensional lattices,

and transmitting over frequency selective channels. We first outline the technique and

derive, using the methods in [56], the optimal reliability metric for transmission of QAM

subcarrier constellations. In the remainder of this chapter we then extend the analysis

of [79] to the fading and frequency selective channel. We obtain an approximation, that

in most cases of interest is an upper bound, to the decoding error rate. We illustrate our

analysis by comparing simulated decoding of the 256-QAM, 64 subcarrier OFDM system

encoded with P128, to analytical results.

6.3.1 GMD Decoding

Given the lattice encoded N
2 subcarrier OFDM system outlined in Section 6.1, we consider

transmission of subcarrier symbols Sn over a frequency selective channel, with complex
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Gaussian distributed subchannel responses denoted by Hn =
{

Hn,1,Hn,2, . . . ,Hn,N/2

}

.

We may equivalently write the N
2 M2-ary QAM points as N M -ary PAM points, denoted

sn = {sn,1, sn,2, . . . , sn,N} ∈ M1 (6.49)

so that the QAM symbol Sn,k comprises PAM symbols sn,2k−1 and sn,2k transmitted in

quadrature, for k = 1, . . . , N
2 . Each of the N elements of the mapped lattice point sn ≡

Sn = m(x), x ∈ Λf , are from an M -ary PAM constellation, which without loss of generality

we assume has separation 2
√

E0 between points, as in Figure 6.1.

At the receiver, following multiplication by the inverse subchannel gains we obtain N
2 noise

corrupted QAM points, denoted

R′
n =

{

R′
n,1, R

′
n,2, . . . , R

′
n, N

2

}

= Sn + W′
n (6.50)

where W′
n =

{

W ′
n,1,W

′
n,2, . . . ,W

′
n, N

2

}

is a vector of independent zero mean Gaussian ran-

dom variables, with E

[

W ′
n,k

]

= 1
|Hn,k|2

N0
2 (1 + j), for k = 1, . . . , N

2 . This is equivalent to

reception of N noise corrupted PAM points, denoted

r′n = {r′n,1, r
′
n,2, . . . , r

′
n,N} = sn + w′

n (6.51)

where w′
n = {w′

n,1, . . . , w
′
n,N} is a vector of independent zero mean Gaussian random vari-

ables with E

[

w
′2
n,k

]

= 1
|hn,k|2

N0
2 , and hn,k = Hn,⌈k

2
⌉ is the subchannel gain associated with

the kth PAM point, for k = 1, . . . , N . Note that we hereafter consider transmission of a

single OFDM block, and thus omit the time index n. Readers should note that channel

estimation errors will inevitably add further noise terms to (6.51). Depending on channel

conditions and estimation method, these may be modelled as Gaussian random variables,

and thus incorporated in w′
n. Since channel estimation methods are beyond the scope of

this thesis, note that the following analysis is then restricted to cases where the perturba-

tion of the received signal may be modelled as additive white Gaussian noise with arbitrary

variance, as in (6.51).

A code Cℓ is associated with the ℓth level of an m level lattice construction, as outlined

in Section 3.4 and Section 3.5. Any point x ∈ Λ may then be expressed as a set of coset

representatives, c1, c2, . . . , cm, associated with a partition chain of the lattice, where cℓ is a

codeword from the code Cℓ. Then, after the inverse mapping m−1 : MN → Λf , defined

from (6.7), we may write the received point as

r̃ = x + w̃ = 2mcm+1 + 2m−1cm + · · · + 2c2 + c1 + w̃ (6.52)
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where x ∈ Λf , cm+1 is a codeword from the trivial (N,N, 1) repetition code, and w̃ =

{w̃n,1, . . . , w̃n,N} is a vector of independent zero mean Gaussian random variables, with

E
[

w̃2
k

]

= 1
4E0

N0
2|hk|2 . We may then estimate the transmitted lattice point x, by successively

finding estimates ĉ1, ĉ2, . . . , ĉm for the codewords c1, c2, . . . , cm, respectively, as discussed

in Section 3.5. We apply GMD decoding to estimate the codeword at each stage. We outline

this method below, although a more thorough description may be found in [57].

Assuming stages 1, . . . , ℓ − 1 have been estimated, yielding ĉ1, . . . , ĉℓ−1, the component of

the received vector r corresponding to remaining stages is r̃ℓ = r− ĉ1−2ĉ2−· · ·−2ℓ−2ĉℓ−1.

For each element r̃ℓ,k, for k = 1, . . . , N , of r̃ℓ = {r̃ℓ,1, . . . , r̃ℓ,N} the GMD decoder first

produces a hard decision uℓ,k as to the most likely transmitted codeword symbol cℓ,k, given

r̃ℓ,k, and a metric 0 ≤ αℓ,k ≤ 1 that gives a measure of the reliability of this hard decision.

Larger values of αℓ,k represent a greater probability of the hard decision being correct, with

smaller values representing lesser probability of correct hard decision. The decoder then

performs a series of erasures decoding trials, as outlined in Section 3.3.1.

We now consider decoding of the first stage only, since the decoding procedure for the

latter stages is identical, and thus omit the subscript ℓ that denotes stage. Finding the hard

decision estimate u = {u1, . . . , uN} of the transmitted codeword c = {c1, . . . , cN} ∈ C,

is equivalent to finding the closest points y = {y1, . . . , yN} ∈ Λf to each of the received

points r̃ = {r̃1, . . . , r̃N}. This is equivalent to finding each of the closest points ŝk ∈ M1 to

each of the noise corrupted M-ary PAM points r′k, for k = 1, . . . , N . Given a closest point

ŝk ∈ M1, we may readily find the point yk = m−1(sk), and then uk = rem(yk, 2), namely,

the remainder following division of yk by 2. Each point ŝk ∈ M1 is readily found using a

correlation receiver [8] for each PAM constellation.

Note that, following multiplication by the inverse subchannel gains, each PAM constella-

tion is perturbed by independently, but non-identically, distributed noise, since the noise

variances E

[

w′
k
2
]

may be distinct for all k. Following [56] we now show that the optimum

(such that the probability of decoding error is minimised) reliability metric for each hard

decision is the log likelihood ratio for each hard decision.

s(0) s(1) s(2)
s(M-1)s(M-2)s(M-3)

r’ksk sk
^ ^’

w’k

2 E√ 0

Figure 6.1 Received noise corrupted M-ary PAM point r′k and associated hard decision ŝk.
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6.3.2 Optimal Reliability Metric

We denote the event that the hard decision uk is correct as Gk, and the event that uk is

incorrect as Fk. We require a metric for the reliability of the hard decision. In Section 3.3.1

we defined a reliability metric αk for AWGN systems. We now derive the optimal relia-

bility metric for GMD decoding of OFDM systems transmitting over frequency selective

channels. We retain the symbol αk to denote this metric, although the definition will differ

from that of Section 3.3.1.

Given the reliability metric 0 ≤ αk ≤ 1 associated with uk we may write the conditional

probability of Gk occurring as Pr (Gk|αk = x). Similarly the conditional probability of Fk

occurring is denoted Pr (Fk|αk). Then, consider the random variable χk, which we define

as

χk ,







1 − αk given αk and Gk

1 + αk given αk and Fk.
(6.53)

The expected value of χk is then

E [χk] =
∑

∀αk

{

(1 − αk)Pr (Gk|αk) + (1 + αk)Pr (Fk|αk)
}

Pr (αk) (6.54)

where we have taken the expectation over all possible values of αk, and we imply that αk

takes a discrete value. In the case where the reliability is continuous valued the summation

is readily replaced with integration over the appropriate PDF. The moment generating

function (MGF) of χk is then

gk(t) = E [exp (tχk)]

=
∑

∀αk

{

exp [t(1 − αk)] Pr (Gk|αk) + exp [t(1 + αk)] Pr (Fk|αk)
}

Pr (αk)

=
∑

∀αk

{

exp [t(1 − αk)] Pr (Gk, αk) + exp [t(1 + αk)] Pr (Fk, αk)
}

(6.55)

where Pr (αk) is the probability of observing the reliability metric value αk. The semi-

invariant MGF is defined as

µk(t) , ln [gk(t)] . (6.56)

Following [56] it is readily shown that GMD decoding is guaranteed to decode to the code-

word c ∈ C, if the generalised distance δ (u, c) between u and c satisfies

δ (u, c) < dC (6.57)
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where dC is the minimum Hamming distance of the code, and we recall, from (3.7), that

δ2(c,u) = δ2(c1, u1) + δ2(c2, u2) + · · · + δ2(cn, un) (6.58)

with

δ(ck , uk) =







1 − αk for ck = uk

1 + αk for ck 6= uk.
(6.59)

It is readily seen that given reliability values αk, for k = 1, . . . , N , we may write

N
∑

k=1

χk = δ(c,u) (6.60)

so that the probability Pe,GMD of GMD decoding error may be bounded by

Pe,GMD ≤ Pr

(

N
∑

k=1

χk < dC

)

. (6.61)

We may then apply the Chernoff bound [9, Ch.1.1.5] to write

Pr

(

N
∑

k=1

χk < dC

)

≤ exp(−tdC)E

[

exp

(

t

N
∑

k=1

χk

)]

= exp(−tdC)
∑

∀αk

exp

(

t

N
∑

k=1

χk

)

Pr (αk)

= exp(−tdC)
∑

∀αk

N
∏

k=1

{

Pr (Gk, αk) exp(t[1 − αk]) + Pr (Fk, αk) exp(t[1 + αk])
}

= exp

(

−tdC +

N
∑

k=1

µk(t)

)

(6.62)

for any value of t ∈ R. We may find the optimum reliability values αk by minimising the

probability of GMD decoding error, with respect to αk and then with respect to t. That is,

we wish to find

argmin
α1,...,αN , t

{

Pr

(

N
∑

k=1

χk < dC

)}

= argmax
α1,...,αN , t

{

tdC −
N
∑

k=1

µk(t)

}

. (6.63)
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We first minimise
∑N

k=1 µk(s) with respect to {α1, α2, . . . , αN}, so that

∂

∂α1

∂

∂α2
. . .

∂

∂αN

{

N
∑

k=1

µk(t)

}

= 0. (6.64)

Recognising that each µk(t) is independent of αj , for all j 6= k, we may write (6.64) as

N
∑

k=1

∂

∂αk
µk(t) =

N
∑

k=1

1

gk(t)

∂

∂αk
gk(t) = 0. (6.65)

A solution of this equation occurs at ∂
∂αk

gk(t) = 0, for k = 1, . . . , N . Thus, from (6.55), we

may write

Pr (Gk|αk) exp(t[1 − αk]) = Pr (Fk|αk) exp(t[1 + αk]). (6.66)

Taking the logarithm and rearranging we may then write

αk =



















0 for Lk ≤ 0

Lk
2t for 0 < Lk < 1

1 for Lk ≥ 1

(6.67)

where we define

Lk , log

{

Pr (Gk|αk)

Pr (Fk|αk)

}

(6.68)

for all k = 1, . . . , N . Note that αk is limited so that 0 ≤ αk ≤ 1, as required by definition

[56]. The optimum reliability metric is thus the logarithm of the likelihood ratio of the

probability of correct hard decision to the probability of incorrect hard decision, given the

reliability value, the well known log likelihood ratio, Lk.

In the case of interest a point sk ∈ M1 is transmitted from an M-ary PAM constellation.

From (6.51) we obtain a noise corrupted M -ary PAM point r′k = sk + w′
k, for k = 1, . . . , N ,

as illustrated in Figure 6.1. We denote the closest point to sk as ŝk, and the second closest

point as ŝ′k. Assuming we receive point rk, that is assigned reliability value αk, we may

then neglect the effect of constellation end points to approximate the probability of a correct

hard decision as

Pr (Gk|αk) = Pr (Gk|rk) ≈
1

√

π 1
|hk|2 N0

exp

(

−|hk|2 |ŝk − rk|2
N0

)

(6.69)

since w′
k is a zero mean Gaussian random variable with variance N0

2|hk|2 . Similarly we may



6.3 High Dimensional Lattice Decoding 103

write the probability of an incorrect decision, given rk, being made as

Pr (Fk|αk) = Pr (Fk|rk)

≈
L
∑

k=1
sk 6=ŝk

Pr (sk transmitted, ŝk hard decision)

=
L
∑

k=1
sk 6=ŝk

1
√

π 1
|hk|2 N0

exp

(

−|hk|2 |sk − rk|2
N0

)

.

(6.70)

We may then write the likelihood ratio as

Pr (Gk|αk)

Pr (Fk|αk)
=

exp
(

− |hk|2|ŝk−rk|2
N0

)

∑L
k=1

sk 6=ŝk

exp
(

− |hk|2|sk−rk|2
N0

) . (6.71)

In the case where the SNR E0
N0

is large, we may approximate the probability of incorrect

hard decision as the probability that point sk = ŝ′k is transmitted and hard decision ŝk

is made. This results in the well known max-log-MAP approximation to the log-MAP

metric [166]. We may then write

Pr (Fk|rk) ≈ Pr
(

sk = ŝ′k transmitted, ŝk hard decision
)

=
|hk|√
πN0

exp

(

−|hk|2 |ŝ′k − rk|2
N0

)

(6.72)

so that the log likelihood ratio may be approximated as

ln

(

Pr (Gk|αk)

Pr (Fk|αk)

)

=
|hk|2
N0

[

∣

∣ŝ′k − rk

∣

∣

2 − |ŝk − rk|2
]

=
|hk|2
N0

[

(

2
√

E0 − |ŝk − rk|
)2

− |ŝk − rk|2
]

=
4|hk|2E0

N0

[

1 − |ŝk − rk|√
E0

]

(6.73)

The value of Lk is thus approximated by the normalised distance of the received point rk to

the decision boundary between ŝk and ŝ′k, weighted by |hk|2E0

N0
, the received SNR for each
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subchannel. From (6.67) and (6.55) the MGF of χk at the optimal t value is

gopt,k(t) = exp(0)Pr (Gk,Lk ≥ 2t) + exp(2t)Pr (Fk,L ≥ 2t)

+ exp

(

t

[

1 − Lk

2t

])

Pr (Gk, 0 ≤ Lk ≤ 2t)

+ exp

(

t

[

1 +
Lk

2t

])

Pr (Fk, 0 ≤ Lk ≤ 2t)

+ exp(t) Pr (Gk,Lk < 0) + exp(t) Pr (Fk,Lk < 0)

= erf





√

|hk|2E0

N0

[

4|hk|2E0

N0
− 2t

]



+ exp(2t)erfc





√

|hk|2E0

N0

[

N0

2|hk|2E0
t + 1

]





+ exp

(

t

[

1 − Lk

2t

])



 erf





√

|hk|2E0

N0



− erf





√

|hk|2E0

N0

[

1 − N0

2|hk|2E0
t

]









+ exp

(

t

[

1 +
Lk

2t

])



 erfc





√

|hk|2E0

N0



− erf





√

|hk|2E0

N0

[

1 +
N0

2|hk|2E0
t

]









(6.74)

where we have recognised that Pr (Fk,Lk < 0) = Pr (Gk,Lk < 0) = 0, and manipulated

the probability expressions in Appendix D. We then require the value of t such that the

right hand side of (6.63) is maximised. From (6.63) we take the derivative with respect to t,

and find that the requisite value, denoted topt, occurs at

∂

∂t

N
∑

k=1

µopt,k(t) =

N
∑

k=1

∂
∂tgopt,k(t)

gopt,k(t)
= dC (6.75)

where µopt,k(t) = ln [gopt,k(t)]. Given the subchannel gains h̃2
k , for k = 1, . . . , N , and the

signal to noise measure E0
N0

, the optimal value topt may be numerically calculated using

(6.74) and (6.75). Given the value topt, substituting (6.73) into (6.67) we may write the

optimal GMD decoding metric as

αk ,



















0 for |ŝk − rk| ≥
√

E0

1
2topt

4|hk|2E0

N0

[

1 − |ŝk−rk|√
E0

]

for
[

1 − N0
2|hk|2E0

topt

]√
E0 < |ŝk − rk| <

√
E0

1 for |ŝk − rk| ≤
[

1 − N0

2|hk|2E0
topt

]√
E0.

(6.76)

6.3.3 GMD Decoding Complexity

GMD decoding incurs only polynomially increasing complexity as N increases, and is in-

deed not significantly greater than normal algebraic decoding of a linear block code. In

order to bound the number of real operations we consider the maximum number of real
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operations required at each decoding step of a single stage of GMD decoding a (N,K,D)

linear block code. We assume that this is one stage of decoding a construction C lattice.

To generate the hard decision vector u, we require N decodings of the coset Z/2Z, which

requires N real rounding operations [57]. The reliability values α require a further N oper-

ations to generate, since they are the subtraction of the rounded vector u from the received

vector. We then find the D − 1 least reliable positions in u, requiring no more than

N − (D − 1) +

N
∑

k=N−(D−1)+2

log2 k (6.77)

real operations [167]. As outlined in Section 3.3.1, a series of |K| algebraic decoding trials

are then conducted. Both [168] and [169] show that, for use of codes that may be decoded

with the Berlekamp-Massey algorithm [54], only a single pass of this algorithm is required

to generate all candidate codewords. For the Barnes-Wall lattices of interest, the constituent

codes are (r,m) Reed-Muller codes, which may be hard decision decoded [170] [171] with

no more than N min{r,m−r} real operations. Errors and erasures decoding requires twice

the complexity [38], so that no more than |K|N min{r,m − r} real operations are required.

Finally, we require selection of the candidate codeword with the smallest generalised dis-

tance from the received vector. In [57, lemma 5.1] it is shown that this requires at most

t(t + 1)

2
+ E(D − E) − 1 (6.78)

real operations, where t = ⌊D−1
2 ⌋ and E = ⌊D+1

4 ⌋. The total complexity of decoding a point

thus increases polynomially in N , as opposed to exponentially for maximum likelihood

decoding.

We consider decoding of the P128 sphere packing, constructed from the codes RM(1, 7),

RM(3, 7) and RM(5, 7), which are (128, 8, 64), (128, 64, 16) and (128, 120, 4) linear block

codes, respectively. Thus, decoding of the first stage requires no more than 256 real opera-

tions for generation of u and α, 474 operations for sorting, 2 × 4 × 128 operations for alge-

braic decoding and 1263 operations for codeword selection, yielding a total of 3017 real op-

erations. Similarly the second stage requires no more than 256+210+2××384+75 = 6685

operations, and the third stage 256 + 139 + 2 × 2 × 256 + 3 = 1422 operations. The final

(uncoded) stage requires generation of a hard decision only, and thus requires 128 opera-

tions. Therefore, no more than 3017+6685+1422+128 ≈ 11500 real operations are needed

to GMD decode a single point transmitted from the P128 sphere packing. In comparison,

decoding of four uncoded stages would require 4 × 128 = 512 real rounding operations.

However, as demonstrated in Section 6.4.2 this additional complexity yields excellent cod-

ing gains.
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6.4 GMD Decoding Performance Analysis

We now extend the analysis of [79] to lattice points transmitted using OFDM, over a fre-

quency selective channel. We obtain an approximation to the error rate of multistage GMD

decoding of multilevel construction lattice points, which is an upper bound for the cases

of interest. We refer to this as an approximate upper bound. Given an m level construction

C lattice we calculate the probability of lattice symbol decoding error. A symbol error oc-

curs if the estimated lattice point x̂ ∈ Λ is not equal to the transmitted lattice point x ∈ Λ,

or equivalently if the estimated OFDM block Ŝn is not equal to the transmitted block Sn

mapped from the lattice Λ. We denote this error event as EΛ, and denote the events of

correct and incorrect decoding at the ℓth stage as Ec
ℓ and Eℓ respectively. We may then write

EΛ =
m
⋃

ℓ=1

Eℓ. (6.79)

We denote the probability that the ℓth stage is incorrectly decoded, given that the stages

1, 2, . . . , ℓ − 1 are correctly decoded, as Pr
(

Eℓ|Ec
ℓ−1, Ec

ℓ−2, . . . , Ec
1

)

. We may then use the

principle of inclusion and exclusion [140] to write

Pr (EΛ) =

m
⋃

ℓ=1

Pr (Eℓ) ≤
m
∑

ℓ=1

Pr
(

Eℓ|Ec
ℓ−1, Ec

ℓ−2, . . . , E1

)

(6.80)

with this upper bound being an approximation when the conditional probability of error

for each stage is small. In the next subsection we outline a method for approximating the

probability of decoding error for a single stage, conditional on all previous stages being

correctly decoded. We may then use this result to obtain the probability of lattice decoding

error.

6.4.1 Single Stage Performance

We extend the methodology of [79] to the case where each lattice coordinate is perturbed by

independent non-identically distributed noise. Since we are concerned with a single stage

only, for clarity we omit the subscript ℓ denoting decoding stage. We consider decoding

of a single stage only, assuming all previous stages are previously decoded. Furthermore,

we assume this stage is constructed with codeword c from code C, which is mapped to

an M-ary PAM constellation, as described, for example, in (6.1) and (6.2). The minimum

Hamming distance of C is denoted dC .

As before, the receiver front end produces a vector of hard decisions u = {u1, u2, . . . , uN}
and corresponding reliability values α = {α1, α2, . . . , αN}. We denote the event that

there are b hard decision errors as Eb, for 0 ≤ b ≤ N and b ∈ Z. Furthermore, we let
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IF = {f1, f2, . . . , fb} ⊆ {1, 2, . . . , N} denote the set of indices of u corresponding to incor-

rect hard decisions. That is, uk is incorrect if k ∈ IF . We let IG = {g1, g2, . . . , gN−b} ⊆
{1, 2, . . . , N} be the complimentary set corresponding to the correct hard decisions uk, k ∈
IG. As before, the event that hard decision uk is either correct or incorrect is denoted Fk or

Gk respectively.

The probability of correct hard decision is

Pr (Gk) =
1

M
+

M − 1

M
erf

(

√

E0

N0

)

(6.81)

the well known [8] probability of maximum likelihood decoding for an M-ary PAM signal.

Similarly,

Pr (Fk) =
M − 1

M
erfc

(

√

E0

N0

)

. (6.82)

Since the probability of error differs for each hard decision, the probability of exactly b hard

decision errors is

Pr (Eb) =
∑

∀IF ,IG

Pr (GF1) Pr (GF2) . . . Pr (GFb
) Pr (FG1) Pr (FG2) . . . Pr

(

FGN−b

)

(6.83)

where the summation is over all
(N

b

)

distinct pairs of IF and IG. The probability mass

function of (6.83) is recognised to be a Poisson binomial distribution. We may readily

approximate this distribution with the Poisson distribution, as outlined in Section 5.2, so

that

Pr (Eb) ≈
λbe−b

b!
, with λ =

N
∑

k=1

Pr (Fk) . (6.84)

For the special case of a flat fading or AWGN channel the error probability is equal for all

subcarrier symbols, so that we may write

Pr (Eb) =

(

N

b

)

[Pr (G1)]
b [Pr (F1)]

N−b . (6.85)

We may write the reliability measures corresponding to erroneous hard decisions as the

set {αf1 , αf2 , . . . , αfb
}. We rank these in nondecreasing order to obtain β1 ≤ β2 ≤ · · · ≤ βb,

the ordered set of reliability values associated with incorrect hard decisions. We simi-

larly denote the ordered set of reliability values associated with correct hard decisions as

γ1, . . . , γN−b, so that γ1 ≤ γ2 ≤ · · · ≤ γN−b.

Recall, from Section 3.3.1, that the GMD decoding procedure is to first generate a set of

K candidate codewords, which we refer to as the algebraic decoding phase. The candidate
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codeword ĉ with the smallest generalised minimum distance δ(ĉ,u) (Section 3.3.1) is then

chosen as the decoder output, which we refer to as the Euclidean space selection phase. The

algebraic decoding phase is successful if the transmitted codeword is a member of the set

of candidate codewords, and we denote this event S . As shown in [79], if the transmit-

ted codeword is in the list of candidate codewords, the probability of not choosing this

codeword is very small so that the probability of decoding stage ℓ incorrectly may be ap-

proximated by Pr (S), for each stage.

The event of a successful algebraic decoding phase given that b hard decision errors exist is

denoted Sb, so that we may write S = S0 ∪ S1 ∪ . . . ∪ SN . We let S denote the algebraic de-

coding phase failure complimentary event, namely, when the transmitted codeword does

not appear in the list of candidates. If the number of errors is less than half the minimum

Hamming distance of the block code, that is b ≤ t , ⌊dC−1
2 ⌋, then algebraic decoding is

guaranteed to be successful. Furthermore, if the number of errors exceeds the code’s mini-

mum Hamming distance then algebraic decoding will fail; that is, b ≥ dC − 1. We may then

write Pr (Sb) = 1, for b = 1, 2, . . . , ⌊dC−1
2 ⌋ and Pr (Sb) = 0, for b = dC − 1, dC , . . . , N . The

probability of algebraic decoding phase error is then

Pr (F) = 1 − Pr (S)

= 1 − [Pr (S1) + Pr (S2) + · · · + Pr (SN )]

= 1 − [Pr (E1) + Pr (E2) + · · · + Pr (Et) + Pr (St+1) + Pr (St+2) + · · · + Pr (SdC−1)]

(6.86)

The probability of b errors occurring is readily approximated, using (6.84). We now calcu-

late lower bounds on Pr (Sn), for b = t + 1, t + 2, . . . , dC − 1, and thus upper bound the

probability of GMD decoding failure.

The algebraic decoding phase requires |K| errors and erasures decoding trials, with each

trial requiring ν erasures be made, for all ν ∈ K. Letting the event Sb,ν ⊂ Sb denote produc-

tion of the correct codeword when k erasures are made, we may write Sb = ∪ν∈K {Sb,ν}. It

may then be shown [79] that a tight lower bound is given by

Pr (Sb) ≥ max
ν∈K

{Pr (Sb,ν)} (6.87)

since the events Sb,1,Sb,2, . . . ,Sb,|K| are highly correlated.

We let Uτ,ν be the event that τ or more hard decision errors are erased when ν erasures

are made, requiring that τ ≥ k and b ≥ τ . Note that, if τ or more errors are erased, this

requires βτ < γν−τ+1; that is, the τ th smallest reliability associated with a hard decision

error must be less than the (ν − τ + 1)th smallest reliability associated with a correct hard

decision, so that at most only (ν − τ) correct hard decisions are erased. The probability
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of Uτ,ν occurring, given that there are b hard decision errors, is then the probability that

βτ > γν−τ+1. This is readily calculated given the PDF of βτ , denoted fβτ (x), and the

PDF and cumulative probability density function (CDF) of γν−τ+1, denoted fγν−τ+1(x) and

Fγν−τ+1(x) respectively. Given these probability functions, described below, we may write

Pr (Uτ,ν |Eb) =

∫ ∞

0
fβτ (x)

∫ ∞

x
fγν−τ+1(y) dydx =

∫ ∞

0
fβτ (x)

[

1 − Fγν−τ+1(x)
]

dx. (6.88)

Presuming τ hard decision errors are erased, leaving b−τ unerased errors, then a necessary

and sufficient condition for production of a correct codeword is ν +2(b−τ) < dC , since any

block code can correct up to p errors and q erasures, provided 2p + q < dC . This condition

may be equivalently written as τ > b − ν−dC
2 ≥ b − ⌊dC−ν−1

2 ⌋, which corresponds to the

event Uτ,ν . We may thus write

Pr (Sb,ν) = Pr (Uτ,k, Eb) = Pr (Eb) Pr (Uτ,k|Eb) = Pr (Eb)

∫ ∞

0
fβτ (x)

[

1 − Fγν−τ+1(x)
]

dx

(6.89)

where τ = b − ⌊dC−ν−1
2 ⌋. We can therefore upper bound the probability of GMD algebraic

decoding phase failure by first calculating Pr (Sb,ν), for all ν ∈ K, and thus obtain a lower

bound to Pr (Sb), as in (6.87). With the lower bounds on Pr (Sb), for b = t+1, t+2, . . . , dC−1,

we then calculate an upper bound on the probability of GMD decoding error, Pr (F), as

in (6.86). The order statistics distribution functions required for the calculation of (6.89)

are given below, as well as tight bounds and approximations to these functions. We may

then obtain an approximation to the probability of GMD decoding error for each stage

ℓ = 1, . . . ,m, assuming all previous stages are correctly decoded. In most cases this ap-

proximation is an upper bound. With this conditional probability of decoding failure for

each stage we may use (6.80) to obtain an approximate upper bound to the probability of

error when decoding a multilevel lattice transmitted over a frequency selective channel,

using multistage GMD decoding.

Reliability Order Statistics

For a frequency selective channel the PDFs of the reliability order statistics are signifi-

cantly more difficult to describe and evaluate than for the AWGN case described in [79].

Recall that the reliability statistics associated with incorrect hard decisions are denoted

αf1 , αf2 , . . . , αfb
, while those associated with correct hard decisions are αg1, αg2 , . . . , αgN−b

.

The order statistics associated with incorrect hard decisions are β1 ≤ β2 ≤ . . . ≤ βb, while

those associated with correct hard decisions are γ1 ≤ γ2 ≤ · · · ≤ γN−b.

The variance N0

2|hk|2 of the Gaussian noise component w′
k perturbing each received symbol

may be different for all k ∈ {1, . . . , N}. Each αfk
, for fk ∈ If , is then independent but non-

identically distributed, with PDF fαfk
(x) and CDF Fαfk

(x). These functions are calculated
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in the following subsection. Given the indices of incorrect hard decisions If , we then use a

result from [172] to write the PDF of the ith smallest αfk
given that b hard decisions errors

are made, that is the PDF of βi, as

fβi
(x|If ) =

1

(i − 1)!(N − i)!
Per



































Fαf1
(x) Fαf2

(x) · · · FαfN
(x)

...
...

. . .
...

Fαf1
(x) Fαf2

(x) · · · FαfN
(x)

fαf1
(x) fαf2

(x) · · · fαfN
(x)

1 − Fαf1
(x) 1 − Fαf2

(x) · · · 1 − FαfN
(x)

...
...

. . .
...

1 − Fαf1
(x) 1 − Fαf2

(x) · · · 1 − Fαf(N)
(x)

















































(i − 1) rows















(b − i) rows,

(6.90)

where Per[A] denotes the permanent [173] of the matrix A. Similarly, the PDF fγi (x|Ig) of

the ith smallest reliability associated with a correct hard decision, given Ig, is equal to

1

(i − 1)!(N − b − i)!
Per
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(x) Fαg2

(x) · · · Fαg(N−b)
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. . .
...
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(x) · · · Fαg(N−b)
(x)
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(x) fαg2
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1 − Fαg1
(x) 1 − Fαg2
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...
...

. . .
...
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(x) 1 − Fαg2

(x) · · · 1 − Fαg(N−b)
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(N − b − i) rows,

(6.91)

where fαgk
(x) and Fαgk

(x) are the PDF and CDF of a reliability value associated with a

correct hard decision, where gk ∈ Ig. These functions are calculated in the following sub-

section.

Note that typically IF and IG are unknown, so that the PDFs of βi and γi, given that b hard

decision errors occur, are

fβi
(x) =

∑

∀IF

Pr (IG|Eb) fβi
(x|IF ) fγi(x) =

∑

∀IG

Pr (IG| Eb) fγi (x| IG) (6.92)

where the above summations are over all
(N

b

)

distinct IF and IG. We may lower bound the

PDFs by considering the first few terms only of these summations. However, it is found

that in most cases of interest a sufficiently accurate approximation results from considering

the most likely sets IF and IG, namely taking IF as the set corresponding to the b hard

decisions with the largest probability of error, and IG to be the set corresponding to the

N − b hard decisions with the smallest probability of error. Thus,

fβi
(x) ≈ argmax

Pr(IF )
{fβi

(x| IF )} , and fγi(x) ≈ argmax
Pr(IG)

{fγi (x| IG)} . (6.93)
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Note that these approximations may be tightened, at obvious computational expense, by

also considering the next most likely sets IF and IG.

While the order statistic PDFs in (6.90) and (6.91) are elegant expressions, they are difficult

to compute, since calculation of the permanent of an N × N matrix requires on the order

of N2N calculations. For large matrices, say N > 30, obtaining the exact value of the per-

manent is not feasible using current technology. Note that there exist various methods of

approximating the permanent of a matrix, with tighter approximations obtained at greater

computational expense. Recent approaches include that of [174] and [175], while [176]

provides a review of some classical approaches.

Since we use the permanent expressions in the calculation of a lower bound, (6.87), we

now bound the permanent of the matrices in (6.90) and (6.91). We exploit the fact that the

matrices have nonnegative entries to apply the matrix permanent bounds of [177]2. Specif-

ically, given an N × N nonnegative matrix A we denote the ith row, jth column element as

aij , and the N -tuple of ith row elements as A(i) = {ai1, ai2,, . . . , aiN}. Furthermore, we let

A′
(i) = {a′i1, a′i2, . . . , a′iN} denote the elements of A(i) rearranged in non-decreasing order, so

that a′i1 ≤ a′i2 ≤ · · · ≤ a′iN . Similarly, A(i)∗ = {ai1∗, ai2∗, . . . , aiN∗} is the N -tuple represent-

ing the elements of A(i) arranged in non-increasing order, so that ai1∗ ≥ ai2∗ ≥ · · · ≥ aiN∗.

From [177] we may then write

Per[A] ≥
n
∏

i=1

i
∑

t=1

a′it + (A1,Σ − n a′11)
n
∏

j=2

j−1
∑

s=1

a′js ,

Per[A] ≤
n
∏

i=1

i
∑

t=1

a∗it + (A1,Σ − n a∗11)
n
∏

j=2

j−1
∑

s=1

a′js ,

(6.94)

where A1,Σ is the sum of elements of A(1).

We may readily apply the bounds of (6.94) to the permanent expressions in (6.90) and

(6.91) to obtain lower and upper bounds on the PDFs of fβi
(x) and fγi(x) respectively.

Consequently, we obtain a lower bound on Pr (Sb,ν) from (6.89), a lower bound on Pr (Sb)

from (6.87) and then the desired upper bound on Pr (F), from (6.86).

For the special case of the AWGN channel, obtaining fβi
(x) and fγi(x) is straightforward.

All sets IF are equally likely to occur, as are all sets IG. All βk, for k ∈ IF , statistics are iid,

with CDF denoted Fβ(x) and PDF fβ(x). Similarly, all γk, for k ∈ IG, statistics are iid with

CDF denoted Fγ(x) and PDF fγ(x). Then, using a basic result of order statistics [178], we

2Also in the more accessible text [173]
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may write

fβi
(x) =

b!

(i − 1)!(b − i)!
[Fβ(x)]i−1 [1 − Fβ(x)]b−i fβ(x), for i ∈ {1, 2, . . . , b};

fγi(x) =
(N − b)!

(i − 1)!(N − b − i)!
[Fγ(x)]i−1 [1 − Fγ(x)]N−b−i fγ(x), for i ∈ {1, 2, . . . , N − b}.

(6.95)

Note that (6.90) and (6.91) reduce to (6.95) when all channel gains |hk|2 are equal.

Reliability Probability Functions

We require the CDFs and PDFs of αfk
, a reliability value associated with an incorrect hard

decision, and αgk
, a reliability value associated with a correct hard decisions. At the re-

ceiver front end we have equalised symbols r′k = sk + w′
k, where sk is a point from an

M-ary PAM constellation with separation 2
√

E0 between points, and w′
k is a zero mean

Gaussian random variable with variance denoted E

[

w′
k
2
]

= σ2
k = 1

|hk|2
N0
2 . The reliability

values αk are defined in (6.76).

We first consider the case when the hard decision is known to be correct. We label the

points in the M-ary PAM constellation as s(0), s(1), . . . , s(M), as shown in Figure 6.1. The

PDF fαgk
(x) is then the weighted sum of PDFs conditional on each s(i), for i = 0, . . . ,M−1,

being transmitted. That is,

fαgk
(x) =

M
∑

i=0

Pr
(

s(i) sent
)

fαgk

(

x| s(i) sent
)

=
1

M

M
∑

i=0

fαgk

(

x| s(i) sent
)

(6.96)

assuming equiprobable transmission of constellation points. Then, substituting the expres-

sions (E.4) and (E.10) from Appendix E, we may write the PDF of a reliability value αgk
,
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for E0

t0σ2
k

> 1, as

fαgk

(

x,
E0

t0σ
2
k

> 1

)

=
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M ·
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 r
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(6.97)

In the case when E0

t0σ2
k
≤ 1, we may substitute (E.11) and (E.5) into (6.96) to write

fαgk

(

x,
E0

t0σ2
k

≤ 1

)

=







































2
M

erfc

 r
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!
1+erf
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 r
E0
2σ2

k

!


exp
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k

E0
x
]2
)

for 0 < x ≤ E0

t0σ2
k

.

(6.98)

The CDF of αgk
is obtained by integrating (6.97) and (6.98). First note that

∫ A

0

2t0σk√
E0

√
2π

exp

(

− E0

2σ2
k

[

1 − t0σ
2
k

E0
x

]2
)

dx = erf

(√

E0

t0σ
2
k

)

−erf

(√

E0

t0σ
2
k

[

1 − t0σ
2
k

E0
A

]

)

.

(6.99)
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We may then write the CDF for E0

t0σ2
k

> 1 as

Fαgk

(

x| E0

t0σ
2
k

> 1

)

=
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(6.100)

Similarly, after integration of (6.98) we may write the CDF, for E0

t0σ2
k
≤ 1, as

Fαgk

(

x| E0

t0σ2
k

≤ 1

)

=
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(6.101)

We may similarly obtain the PDF of a reliability value αfk
associated with an incorrect hard

decision, by assuming that the transmitted point sk was the second closest point ŝ′k to the
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received point rk. For the case when E0

t0σ2
k

> 1 we may use (E.16) to write

fαfk

(

x|Ik,
E0

t0σ
2
k

> 1

)

≈ fαfk

(

x|sk = ŝ′k,
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)
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(6.102)

Similarly, in the case when E0

t0σ2
k
≤ 1 we may use (E.16) to write

fαfk

(

x|Ik,
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t0σ2
k

≤ 1

)

≈ fαfk

(
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(6.103)

The CDF of αfk
is obtained by integrating the above PDF expressions. Note that

∫ x
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(6.104)
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For E0

t0σ2
k

> 1 we may then integrate (6.102), and use (6.104) to write

Fαfk
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(6.105)

In the case when E0

t0σ2
k
≤ 1 we integrate (6.103) to write
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(6.106)

Although the above PDF and CDF expressions are verbose, they are readily calculable. We

may substitute these expressions into (6.91) or (6.90) to obtain the PDF of the sth largest

value of αgk
or αfk

, as required for calculation of the probability of single stage GMD

decoding error.

6.4.2 Simulations

We use the methods outlined in the previous sections to calculate analytical approxima-

tions to the probability of GMD decoding error rates with simulated error rates. We con-

sider a 64 subcarrier OFDM system occupying 30MHz total bandwidth, with each sub-

carrier transmitting a 256-QAM constellation. Each OFDM Block is mapped from a point
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in the 128 dimensional sphere packing P128, described in Section 6.1. At the receiver we

perform GMD decoding at each stage to obtain an estimate of the transmitted lattice point.
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Figure 6.2 Channel Gains for Channels A, B and C

We consider the OFDM block error rate, equivalent to the lattice point error rate, for the

AWGN channel and three randomly generated frequency selective channels. In all cases

we assume perfect channel state information and synchronisation. The channel frequency

responses are shown in Figure 6.2. Channels A and B are Rayleigh fading channels, with

an exponential power delay profile and mean excess delay of 50ns. Channel C is a Rician

channel with similar diffuse component statistics and a 10dB Rice factor.

The simulated error rates and the analytical upper bound approximation for the AWGN

channel and channel A are shown in Figure 6.3. We also plot the block error rate for an

uncoded 64 subcarrier OFDM system transmitting information bits at the same rate, with

each subcarrier employing a 32-QAM cross constellation [110]. Similar results for channels

B and C are displayed in Figure 6.4.

We also plot the performance of the same OFDM system encoded with the (511, 313) BCH

code [38], one of the most powerful known block codes of similar rate and length to our sys-

tem. The decoding complexity for this code is equivalent to a single pass of the Berlekamp-
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Figure 6.3 Analytical and simulated error rates for P128 encoded, GMD decoded, OFDM system
transmitting over an AWGN channel and channel A

Massey algorithm [38]. Note that the P128 lattice encoded system exhibits superior perfor-

mance over the AWGN channel, and channels B and C, at the cost of the complexity in-

crease discussed in Section 6.3.3. However, performance of the P128 encoded system over

channel A is poorer, due to the large fade in the channel response (Figure 6.2). The poorer

performance of the P128 lattice on channel A is due to the poor lattice minimum product

distance of P128, despite its excellent minimum distance, as discussed in Section 6.2. The

construction of lattices which provide far superior coding gains for channels with high fre-

quency selectivity is beyond the scope of this thesis, however relevant results are found

in [45] and [164].

We observe that the analysis provides good upper bounds, with accuracy within 1dB,

0.5dB, 2dB and 0.5dB, at an error rate of 10−5, for the AWGN channel and channels A, B,

and C, respectively. Note that we have used the derived analytical expressions to approx-

imate upper bounds for very small error rates; error rates of 10−8 have been analytically

calculated, although accurate simulation of the system at these error rates would require

large computational expense.

The simulations and analysis both demonstrate the large coding gains provided by lattice

encoding the OFDM symbol block for certain channels. For example, we estimate coding

gain at an error rate of 10−6 to be approximately 1dB, 4.5dB, 1.2dB and 4dB for transmission
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Figure 6.4 Analytical and simulated error rates for P128 encoded, GMD decoded OFDM system
transmitting over channels B and C

over the AWGN channel, and channels A, B and C, respectively. Such large gains are due

to the properties of the 128 dimensional sphere packing P128. This comes at the cost of a

decoding complexity of no more than 11, 500 real operations to decode each received lattice

point, as compared to 512 operations for an uncoded system, as discussed in Section 6.3.3.

6.5 Summary

In this chapter we have proposed lattice encoding for wireless OFDM systems. Systems

encoded with high dimensional lattices exhibit excellent coding gains, although maximum

likelihood decoding is computationally infeasible. However, we have illustrated a practical

decoding method for such systems, and outlined a method for analysis of its performance.

We have first considered encoding OFDM with lattices, and illustrated a simple mapping

using the example of a Barnes-Wall lattice. The maximum likelihood decoding metric is

derived, and shown to be the Euclidean distance from the equalised received point to the

estimated point. We have then shown that the pairwise error probability of lattice en-

coded OFDM is proportional to the product distance of the underlying lattice, for systems

operating over frequency selective channels. For a given lattice constellation and OFDM

subchannel separation ∆f , the pairwise error performance is dependent on the channel
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rms excess delay τrms.

Maximum likelihood decoding of OFDM encoded with high dimensional lattices is not

feasible due to the high computational expense. We have thus proposed generalised min-

imum distance (GMD) decoding as a low computational expense alternative. We have

derived the optimal decoding metric for GMD lattice decoding, for OFDM systems operat-

ing over frequency selective channels. Then, using this metric we have derived probability

functions for the reliability statistics and ordered reliability statistics. Using these probabil-

ity functions we have been able to analytically approximate an upper bound on the error

rate of GMD decoding high dimensional lattices.

Throughout this chapter we have illustrated the analysis with the example of a system

encoded using the 128 dimensional Barnes-Wall lattice. We have demonstrated the large

coding gains achievable using high dimensional lattices to encode OFDM systems, a con-

sequence of the coding gains of the underlying lattices.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis has undertaken analysis of the error performance of large wireless OFDM sys-

tems, that is, systems with a large number of subcarriers. We have firstly analysed the

capacity and error rate performance of uncoded OFDM systems, and then proposed lattice

coding as an error control method for large OFDM systems.

The capacity analysis of OFDM systems showed that, for large OFDM systems transmit-

ting over frequency selective Rayleigh fading channels, the instantaneous capacity follows

a fully describable Gaussian distribution. Furthermore, in the limit as the number of sub-

carriers, and system bandwidth, approaches infinity, we have shown that the capacity of

such a large OFDM system approaches the capacity of a single carrier system occupying a

flat fading channel with infinite bandwidth, or equivalently an infinite bandwidth, fading,

frequency selective channel. We then analysed the error performance by first showing that

the distribution of the number of symbol errors within an OFDM block is Poisson Bino-

mial distributed, and may be approximated with the Poisson distribution. Furthermore,

an upper bound on the approximation error was derived for Rayleigh fading channels.

We then produced lower and upper bounds on the OFDM block error rate, for both Ri-

cian and Rayleigh fading channels. Calculation of the block error rate bounds necessitated

derivation of simple expressions for the correlation between error rates on correlated nar-

rowband Rayleigh or Rician fading channels. The uncoded OFDM analysis is applicable

to a wide range of systems, since few restrictions are placed upon the system bandwidth,

power or channel parameters. This analysis is useful in the design of error control methods

for specific systems, since knowledge of the error performance of the system is critical for

judicious choice of an error control coding scheme.
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The second part of this thesis considered lattices for encoding large OFDM systems. This

approach shows that very large coding gains may be achieved, since we exploited the high

density of high dimensional lattices. We have shown a simple method for lattice encoding

OFDM systems, and proved that the maximum likelihood decoding metric is the Euclidean

distance. We then identified the optimal lattice property, for reduction of the pairwise error

probability of lattice encoded OFDM transmitting over frequency selective channels, to be

the product distance. However, we noted that maximum likelihood decoding of OFDM

systems is computationally infeasible for the large constellations typically associated with

high dimensional lattices. We thus proposed generalised minimum distance (GMD) de-

coding as a method for decoding such systems, and derived the optimal GMD decoding

reliability metric for the frequency selective channel. A method for analysing the error

performance of multistage GMD decoding of lattice encoded OFDM was then presented,

requiring derivation of probability functions of reliability statistics and ordered reliability

statistics. We illustrated our analysis with an example high data rate system, and showed

that good error rate upper bounds are readily constructed. The simulated examples show

that very high coding gains are available using high dimensional lattices.

7.2 Suggested Future Work

OFDM systems still command much research interest and, as processing power becomes

less expensive, we can expect more complicated OFDM systems with greater expectations

placed on these systems. The research presented in this thesis may be extended in many

ways to cover further aspects of large OFDM systems. Some suggested topics for future

research are listed below.

Although modern OFDM systems typically operate in slowly fading channels with reason-

ably good channel state information available, an obvious suggestion for future work is to

remove the assumption of perfect channel state information. The capacity calculations of

chapter four and error rate analysis of chapter five may be non-trivially extended to de-

scribe a receiver with imperfect subchannel gain estimates. We may similarly extend the

analysis of chapter six to construct lattice coding systems more robust to imperfect sub-

channel gain estimates. However, the code error rate analysis may present an intractable

problem, since such analysis is already difficult and requires some approximations.

We may similarly extend the analysis to OFDM systems with imperfect frequency and

timing synchronisation. In this case subcarrier orthogonality is not preserved, and one

would expect capacity to decrease and error rates to increase. However, analysis of these

effects upon the capacity, distribution of the number of symbol errors, and block error

rate has thus far proved difficult. Similarly, design of lattice codes to combat inter carrier

interference could be undertaken.
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Future work on high dimensional lattice codes could involve construction of lattices with

high product distance. Although some of this is addressed by [164] and [45], the problem

remains open, with the problem of constructing lattices with high product distance closely

related to that of constructing high density lattices. This is in itself a vast research topic in

mathematics, as documented by [7].

Note, from equation (6.46), that the union bound on the pairwise probability of lattice en-

coded OFDM error is derived as the lattice product distance divided by the determinant of

the subchannel correlation matrix. From equation (6.48) note that this correlation matrix is

Toeplitz. We require the determinant of this matrix, equal to the product of its eigenvalues.

As such, we may be able to use the results presented in Gray’s classic paper [179] on the

limiting eigenvalues of Toeplitz matrices to draw conclusions on the limiting performance

of lattice encoded OFDM operating over frequency selective channels, as the number of

subcarrier approaches infinity. However, one would also require less available limiting

results, or bounds, concerning the product distances of sphere packings as the dimension

approaches infinity.

Although we have considered GMD decoding as a low complexity method for decoding

high dimensional lattices, other soft decision decoding methods are applicable, including

list based decoding [180]. Further work could consider the error performance of these

alternative decoding methods for lattice encoded wireless OFDM.

Finally, it is possible that the error performance of multistage GMD decoding method

may be improved by passing reliability information between the decoding stages. Such

a method for improving multistage decoding is proposed in [181] and [182].
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Appendix A

Pertinent Mathematical Expressions

This appendix lists mathematical expressions used throughout the thesis. Each expression

may be found in [37] or [21]. The following notation is used: Jv(·) is the vth order Bessel

function of the first kind, Iv(·) is the vth order modified Bessel function of the first kind,

Ei(·) is the exponential integral function, Γ(·) is the Gamma (factorial) function, Γ(·, ·) is

the incomplete Gamma function, and Q(·) is the Gaussian Q-function.

A.1 Alternative Integral Representations

∫ ∞

1
exp(−µx) ln x = − 1

µ
Ei(−µ), for Re[µ] > 0 (A.1)

∫ ∞

0
exp(−x2) [ln x]2 dx =

√
π

8

[

(ξ + 2 ln 2)2 +
π2

2

]

(A.2)

∫ ∞

0
exp(−µx) [ln x]2 = − 1

µ

[

π2

6
+ (ξ + ln µ)2

]

, for Re[µ] > 0 (A.3)

∫

xn exp(ax)dx = exp(ax)

(

xn

a
+

n
∑

k=1

(−1)k
n(n − 1) · · · (n − k + 1)

ak+1
xn−k

)

(A.4)

∫ ∞

0
exp(−αx)J0

(

β
√

x
)

=
1

α
exp

(

−β2

4α

)

(A.5)
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∫ ∞

0
xn exp(−µx)dx = n!µ−n−1 for Re[µ] > 0 (A.6)

∫ ∞

0
erfc (x) exp

(

−µ2x2
)

dx =
arctan(µ)√

πµ
for Re[µ] > 0 (A.7)

∫ ∞

u
xv−1 exp(−µx)dx = µ−vΓ(v, µu) for Re[µ] > 0, u > 0. (A.8)

A.2 The Error Function

erfc(x) = 1 − erf(x) = 2Q(
√

2x) ,
2√
π

∫ ∞

x
exp

(

−t2
)

dt (A.9)

erfc(x) =
2

π

∫ π
2

0
exp

(

− x2

sin2 θ

)

dθ (A.10)

A.3 Series Expansions

Iv(x) =
(x

2

)2
∞
∑

k=0

(

1
4x2
)k

k!Γ(v + k + 1)
. (A.11)

I0(x) =
(x

2

)2
∞
∑

k=0

(

1
4x2
)k

(k!)2
. (A.12)

Jv(x) =
(x

2

)2
∞
∑

k=0

(

−1
4x2
)k

k!Γ(v + k + 1)
(A.13)

J0(x) =
(x

2

)2
∞
∑

k=0

(

−1
4x2
)k

(k!)2
(A.14)

(a + x)n =

n
∑

k=0

(

n

k

)

xkan−k. (A.15)



Appendix B

Ratio of Gaussian Random Variables

Consider two Gaussian random variables X and Y with means µX , µY and variances σ2
X ,

σ2
Y , respectively. Furthermore let ρ be the coefficient of correlation between X and Y . We

wish to find the distribution of the ratio W = X
Y . We show that W ′ = a+U

b+V , where U and

V are standard Gaussian random variables and a and b are nonnegative constants, has the

same distribution as c + dW , where c and d are constants.

Let X̃ and Ỹ be standard Gaussian random variables, with correlation coefficient ρ. We

may write

X

Y
=

µX + σXX̃

µY + σY Ỹ
(B.1)

and

X̃ = ρỸ +
√

1 − ρ2Z (B.2)

where Z is a standard Gaussian random variable, independent of both X̃ and Ỹ . We can

then write

X

Y
=

µX + σXρỸ + σX

√

1 − ρ2Z

µY + σY Ỹ

=
σXρ

σY
+

µX − σXσ−1
Y ρµY + σX

√

1 − ρ2Z

µY + σY Ỹ

=
σXρ

σY
+

σX

√

1 − ρ2

σY
×

Z + 1

σX

√
1−ρ2

[

µX − σXσ−1
Y ρµY

]

Ỹ + σ−1
Y µY

= c + d
Z + a

Ỹ + b

(B.3)

127



128 Ratio of Gaussian Random Variables

where

c =
ρσX

σY
, d =

σX

√

1 − ρ2

σY
, a =

σY µX − ρσXµY

σXσY

√

1 − ρ2
, b =

µY

σY
. (B.4)

Thus, we may express the distribution of the ratio of correlated Gaussian random variables

X and Y as the scaled and shifted ratio of the two independent standard Gaussian random

variables Z and Ỹ . From [183] the ratio W ′ of two shifted independent standard Gaussian

random variables, has PDF

fW ′(t) =
exp

(

−a2+b2

2

)

π(1 + t1)

[

1 +
q

n(q)

∫ q

0
n(y) dy

]

(B.5)

where n(x) is the standard normal PDF and q = b+at√
1+t2

.



Appendix C

Inverse Correlation Matrix

Determinant

We require the determinant of the matrix Θ̃
−1

, defined as the 2|L| × 2|L| matrix consisting

of all k, k + N
2 rows and k, k + N

2 columns, such that k ∈ L, of
(

Θ−1
ΨΨ\S(1)

− Θ−1
ΨΨ\S(2)

)

,

where L =
{

k : S(1),k 6= S(2),k, 1 ≤ k ≤ N
2

}

. Recall, from (6.27), that

Θ−1
ΨΨ\S(1)

− Θ−1
ΨΨ\S(2)

=





0 1
N0

(

S(1) − S(2)

)

− 1
N0

(

S
†
(1)

− S
†
(2)

)

1
N0

(

S
†
(1)

S(1) − S
†
(2)

S(2)

)



 . (C.1)

We may then write

Θ̃
−1

=





0 1
N0

(

S̃(1) − S̃(2)

)

1
N0

(

S̃
†
(1) − S̃

†
(2)

)

1
N0

(

S̃
†
(1)S̃(1) − S̃

†
(2)S̃(2)

)



 (C.2)

where S̃(1) and S̃(2) are diagonal matrices, whose elements are the kth, k ∈ L, elements of

the diagonal matrices S(1) and S(2) respectively.
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The determinant of Θ̃
−1

is then

det
[

Θ̃
−1
]

= det

[

1

N0

(

S̃(1) − S̃(2)

)

]

det

[

− 1

N0

(

S̃
†
(1) − S̃

†
(2)

)

]

=
(−1)|L|

N
2|L|
0

det
[

S̃(1) − S̃(2)

]

det
[

S̃
†
(1) − S̃

†
(2)

]

=
(−1)|L|

N
2|L|
0

|L|
∏

k=1

{

S̃(1),k − S̃(2),k

}

|L|
∏

k=1

{

S̃†
(1),k − S̃†

(2),k

}

=
(−1)|L|

N
2|L|
0

∏

k∈L

∣

∣S(1),k − S(2),k

∣

∣

2
.

(C.3)



Appendix D

GMD Reliability Probability

Expressions

We presume reception of a point r′k = sk + w′
k from an M-ary PAM constellation perturbed

by additive white Gaussian noise w′
k with variance N0

2|hk|2 . We make a hard decision ŝk as to

the transmitted point, and denote the event that this hard decision is correct as Gk, and the

event that it is incorrect as Fk. Given the log likelihood ratio Lk = Pr(Gk,rk)
Pr(Fk,rk) , some relevant

probability expressions are calculated.

We first calculate the probability of correct reception given that L ≥ x for some x > 0, x ∈
R. We recognise that the event of correct decision implies that the noise component mag-

nitude |w′
k| = |ŝk − r′k|, so that we may write

Pr (Gk,Lk ≥ x) = Pr

(

Gk,
4|hk|2E0

N0

[

1 − |ŝk − r′k|√
E0

]

≥ x

)

= Pr

(

|w′
k| ≤

4|hk|2E0

N0

√

E0 −
√

E0x

)

= erf





√

|hk|2E0

N0

[

4|hk|2E0

N0
− x

]



 .

(D.1)
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Similarly, we may write

Pr (Gk, 0 ≤ Lk ≤ x) = Pr

(

Gk, 0 ≤ 4|hk|2E0

N0

[

1 − |ŝk − r′k|√
E0

]

≤ x

)

= Pr

(

√

E0

[

1 − N0

4|hk|2E0
x

]

≤ |w′
k| ≤

√

E0

)

= erf





√

|hk|2E0

N0



− erf





√

|hk|2E0

N0

[

1 − N0

4|hk|2E0
x

]



 .

(D.2)

For the event Fk, we may approximate the required probabilities by assuming that the

point ŝ′k is transmitted, the second closest point to r′k, and point ŝk is the hard decision.

The noise component then satisfies |w′
k| = 2

√
E0 − |ŝk − r′k|, and we may write

Pr (Fk,Lk ≥ x) = Pr

(

Fk,
4|hk|2E0

N0

[

1 − |ŝk − r′k|√
E0

]

≥ x

)

≈ Pr

(

Fk,
4|hk|2E0

N0

[ |w′
k|√
E0

− 1

]

≥ x

)

= erfc





√

|hk|2E0

N0

[

N0

4|hk|2E0
x + 1

]



 .

(D.3)

Similarly, we may write

Pr (Fk, 0 ≤ L ≤ x) = Pr

(

Fk, 0 ≤ 4|hk|2E0

N0

[

1 − |ŝk − r′k|√
E0

]

≤ x

)

≈ Pr

(

0 ≤ 4|hk|2E0

N0

[ |w′
k|√
E0

− 1

]

≤ x

)

= erfc





√

|hk|2E0

N0



− erfc

(

√

E0

N0

[

1 +
N0

4|hk|2E0
x

]

)

.

(D.4)

We finally recognise that the log likelihood ratio is, by definition, nonnegative, so that

Pr (Gk,L < 0) = Pr (Fk,L < 0) = 0. (D.5)



Appendix E

GMD Reliability PDFs

E.1 Correct Hard Decision Reliability

We presume the hard decision is correct, that is, the hard decision ŝk is equal to the trans-

mitted M-ary PAM point sk. We denote this event as Gk. The points in the M-ary PAM

constellation are labelled s(0), s(1), . . . , s(M), as shown in Figure 6.1. From (6.76) we may

write this reliability as

αk ,



































0 for |ŝk − r′k| ≥
√

E0

E0

t0σ2
k

(

1 − |ŝk−r′k|√
E0

)

for
√

E0

(

1 − t0σ2
k

E0

)

< |ŝk − r′k| <
√

E0

E0

t0σ2
k

for |ŝk − r′k| ≤
√

E0

(

1 − t0σ2
k

E0

)

and E0

t0σ2
k
≤ 1

1 for |ŝk − r′k| ≤
√

E0

(

1 − t0σ2
k

E0

)

and E0

t0σ2
k

> 1.

(E.1)

For transmission of s(i), with i = 1, . . . ,M − 2, a correct hard decision is made if the noise

element w′
k has magnitude |w′

k| = |ŝk − r′k| <
√

E0. That is, w′
k has the PDF of a two sided

truncated Gaussian random variable, so that the magnitude |ŝk − r′k| = |w′
k| has PDF

f|ŝk−r′k|
(

x|Gk, s(i) sent
)

=











2

erf

�q
E0
2σ2

� 1√
2πσ

exp
(

− x2

2σ2

)

for 0 ≤ x
√

E0

0 otherwise.

(E.2)
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We may then integrate this PDF to give the following probabilities

Pr
(

∣

∣ŝk − r′k
∣

∣ >
√

E0

)

= 0

Pr

(

∣

∣ŝk − r′k
∣

∣ ≤
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1 − t0σ
2
k
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√

E0

)
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erf

 r
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2
k
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E0 <
∣
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∣
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1 for E0

t0σ2
k
≤ 1

.

(E.3)

Then, with the above probability expressions and the definition of αk from (E.1), we use

the transformation of random variables technique [184] to obtain the conditional PDFs that

follow. Firstly, in the case when E0

t0σ2
k

> 1,

fαk

(

x
∣

∣Gk, sk = s(i) : i ∈ {1, . . . ,M − 1}, E0

t0σ
2
k

> 1

)

=
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· 1√
2π
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− E0

2σ2
k

[

1 − t0σ2
k

E0
x
]2
)

for 0 < x ≤ 1

0 otherwise;

(E.4)

and in the case when E0

t0σ2
k
≤ 1 we may write

fαk

(

x
∣

∣Gk, sk = s(i) : i ∈ {1, . . . ,M − 1}, E0

t0σ2
k

≤ 1
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=
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1 − t0σ2
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E0
x
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for 0 ≤ x ≤ E0

t0σ2
k

0 otherwise.

(E.5)

We next consider the case when a constellation end point is transmitted, sk = s(0). Correct

transmission then implies w′
k <

√
E0, so that w′

k has the PDF of a one sided truncated
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Gaussian random variable,

fw′
k

(

x
∣

∣sk = s(0), Gk

)

=
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0 otherwise.

(E.6)

The magnitude |ŝk − r′k| = |w′
k| then has PDF

f|ŝk−r′k|
(

x
∣

∣sk = s(0), Gk
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=
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E0

0 otherwise.

(E.7)

We may then integrate this PDF to calculate the following probabilities
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(E.8)

and
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(E.9)

Then, with the above probability expressions and the definition of αk from (E.1), we use

the transformation of random variables technique [184] to write the following conditional
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PDFs. Firstly, in the case when E0
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k
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(E.10)

and in the case when E0

t0σ2
k
≤ 1 we may write
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It is readily shown that the reliability αk, conditional on constellation point sk = sM−1

being transmitted and correctly received, follows the same distribution as in (E.10) and

(E.11).

E.2 Incorrect Hard Decision Reliability

We now presume that some point sk is transmitted, and the hard decision is incorrect.

Thus, ŝk 6= sk, an event denoted by Fk. The value αk is again defined by (E.1). If the

hard decision is incorrect, we may approximate the PDF of αk by assuming that the actual

transmitted point is the second closest point to the hard decision, so that sk = ŝ′k. Since

|ŝk − ŝ′k| = 2
√

E0, we may then write
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where w′
k is the Gaussian distributed noise. Under the assumption that sk = ŝ′k, the noise

has magnitude
√

E0 < |w′
k| < 3

√
E0, with PDF
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We then write the PDF of |ŝk − r′k| as
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We may then integrate this PDF to obtain the following probability expressions
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Then, with the above probability expressions and the definition of αk from (E.1), we use

the transformation of random variables technique to write the following conditional PDFs.

Firstly, in the case when E0
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In the case when E0
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≤ 1 we may write
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