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ABSTRACT4

The paper proposes a composite frame element for the simulation of the inelastic response5

of structural members made up of two or more components with different materials, such as6

reinforced concrete, steel-concrete composite members, prestressed members, and members7

with FRP reinforcement. The element accounts for the relative slip at the interface between8

the components. Nonlinear geometry effects are accounted for through the co-rotational9

formulation which permits the response simulation of composite frame elements under large10

displacements. The element formulation enhances the standard Hu-Washizu variational prin-11

ciple with fields describing the bond-slip behavior between components. Three alternatives12

for the mixed formulation of the element are derived in this paper which focuses on the-13

ory and implementation: mixed-displacement, mixed-force, and mixed-mixed. The paper14

presents the benefits and shortcomings of the formulation alternatives for modeling the pull-15

out failure of reinforcing bars and the fixed-end rotation of reinforced concrete members,16

and discusses the numerical ramifications of each alternative. A companion paper discusses17

the convergence performance of the different mixed formulations and validates the proposed18

element through correlation studies with available experimental results.19
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INTRODUCTION22

In structural members made up of two or more components with different materials, such23

as reinforced concrete and steel-concrete composite members, as well as members with FRP24

reinforcement, the bond between components is important in maintaining the composite25

action for strength and stiffness. The relative slip between components under service and26

ultimate load conditions affects the element deformation and energy dissipation capacity of27

the structural member and may contribute to its failure under large inelastic deformation28

reversals. Studies on the anchorage behavior of reinforcing bars by Eligehausen et al. (1983)29

and Filippou et al. (1983) found that fixed-end rotations due to reinforcing bar pull-out may30

contribute up to 50% of the tip displacement of a reinforced concrete cantilever column.31

The modeling of this effect is, therefore, important in the evaluation of the local and global32

response of structures under earthquake excitations.33

One of the earliest reinforced concrete beam models with bond-slip under large inelastic34

deformation reversals was proposed by Filippou and Issa (1988), who subdivided a beam35

element into different subelements. The model was used later in several validation studies by36

Filippou et al. (1999). To account for the added flexibility due to bond-slip, Saatcioglu et al.37

(1992) and Rubiano-Benavides (1998) inserted nonlinear rotational springs at the beam ends.38

Monti and Spacone (2000) incorporated the bond-slip interaction into a fiber beam element39

by combining the formulation of anchored bars by Monti et al. (1997) with the beam model by40

Spacone et al. (1996). Subsequent studies included the bond-slip effect in frame elements with41

three alternative formulations: a displacement formulation (e.g. Dall’Asta and Zona, 2002,42

Sun and Bursi, 2005, Lin and Zhang, 2013), a force formulation (e.g. Salari et al., 1998, Salari43

and Spacone, 2001a;b), and a mixed formulation (e.g. Ayoub, 1999, Ayoub and Filippou,44

2000, Limkatanyu and Spacone, 2002, Dall’Asta and Zona, 2004, Sun and Bursi, 2005, Ayoub,45

2006). The mixed formulations use independent interpolation functions for the displacement46

and stress or for the displacement, the stress, and the strain field. Spacone and El-Tawil47

(2004) reviewed the state of the art of these three modeling approaches and concluded that48
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the force and mixed formulations were superior to the displacement formulation in terms of49

accuracy and numerical robustness.50

Most formulations to date interpolate the displacement or the force field, or both fields for51

each component of the structural member separately. The bond-slip field is then derived from52

the difference of the component displacement fields. While this approach is straightforward,53

it suffers from the following shortcomings:54

1. The axial nodal displacements of each component are global degrees of freedom, so55

the transformation from the local to the global reference frame requires a special56

constraint matrix for the transverse displacements and rotations. Such a transforma-57

tion is inconvenient but feasible under linear geometry. It is, however, difficult under58

nonlinear geometry involving large translations and rotations at the nodes.59

2. The section force fields are interpolated separately for each component, so the exact60

interpolation of the total section force field for the entire element is not guaranteed.61

Without this exact interpolation, the force and mixed formulation may loose some of62

their advantage over the displacement formulation regarding accuracy and numerical63

robustness.64

To address these shortcomings, this study proposes a new composite element. The ele-65

ment formulation is based on an extension of the Hu-Washizu variational principle and uses66

the exact interpolation of the total section forces of the composite element. The proposed ap-67

proach treats the composite element as a single element and includes the bond-slip behavior68

at the interface between components at each section of the element. Consequently, the de-69

grees of freedom for the relative slip between element components can be easily transformed70

between the local and the global reference frame without a constraint or special transforma-71

tion matrix. Because of this advantage, this approach was adopted in some recent studies72

(e.g. Tort and Hajjar, 2010, Hjiaj et al., 2012), but only the formulations in this paper and73

in a previous study by the authors (e.g. Lee, 2008, Lee and Filippou, 2010) highlight the74
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advantage of the exact interpolation of the total section forces for the composite element.75

Based on different options for enforcing the displacement-strain compatibility condition76

in the bond-slip field (Lagrange relaxation), the paper presents three alternatives for the77

mixed formulation of the composite element: a mixed-displacement formulation with com-78

patibility enforced in the strong form, a mixed-force formulation with equilibrium enforced79

in the strong form, and a mixed-mixed formulation with compatibility and equilibrium en-80

forced in the weak form. The interpolation of the bond-slip field uses piecewise polynomials.81

These formulations are evaluated relative to response accuracy, numerical convergence and82

numerical robustness. The correlation studies with available experimental results confirm83

the validity of the proposed approach.84

This paper presents the theoretical framework and the implementation of the proposed85

formulations with a discussion of the benefits and shortcomings of each formulation. The86

evaluation of their numerical performance and the validation studies are presented in the87

companion paper. Further details of the proposed element can be found in the doctoral88

thesis by Lee (2008).89

The beam-column elements with the proposed formulations have been implemented in90

the Matlab R© toolbox FEDEASLab (http://fedeaslab.berkeley.edu) that allows nonlin-91

ear structural simulations under static and transient loading (Filippou and Constantinides,92

2004), and will soon be implemented in OpenSees (http://opensees.berkeley.edu) by93

Mckenna (1997).94

ELEMENT FORMULATION95

A new composite frame element which accounts for the bond-slip behavior at the interface96

between its constituent components is presented in the following. The element can be used for97

the simulation of the inelastic response of reinforced concrete members, prestressed concrete98

and timber members with straight tendons, steel-concrete composite members, concrete-filled99

steel tube members, and FRP-strengthened members. The element formulation is based on100

the three-field Hu-Washizu variational principle, as described in Taylor et al. (2003), Saritas101
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(2006), Lee (2008), and Lee and Filippou (2009). The standard Hu-Washizu variational102

principle is enhanced with additional fields to account for the bond-slip behavior at the103

interface between the components of the frame element.104

The following general derivation assumes that the composite frame element is made105

up of two components with different material. The extension to an element with more106

components is straightforward, as will be briefly addressed after the element formulation.107

The presentation is limited to plane frame elements, but the extension to 3d frame elements108

without coupling of torsional effects is possible with an appropriate extension of the element109

variables and the section stress resultants.110

To simplify the element formulation the following assumptions about the geometry and111

the deformation of the composite frame element are made:112

1. the frame element is prismatic;113

2. plane sections of each component remain plane and normal to the beam axis after114

deformation; and115

3. there is no relative transverse displacement normal to the reference element between116

components.117

The proposed formulation is thus limited to frame elements with Euler-Bernoulli kinematics118

for each component, and with relative displacement between components only in the direction119

parallel to the reference axis.120

Element Displacements and Forces121

The nodal forces p and displacements u of a frame element with perfect bond between

components are shown in Fig. 1(a). In the presence of relative slip between components,

additional degrees of freedom (DOFs) arise at the element ends, one at each end for each ad-

ditional component. These additional slip DOFs describe the relative displacement between

the components at the element ends and are denoted with ubI and ubJ for nodes I and J ,

respectively (Fig. 1(b)). The element forces at the slip DOFs are denoted with pbI and pbJ ,
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in correspondence with ubI and ubJ , respectively. These additional displacements and forces

are grouped in vectors ubn and pbn, as follows:

ubn =

[
ubI ubJ

]T
, pbn =

[
pbI pbJ

]T
(1)

In Fig. 1(b) the white circles at the element nodes indicate additional DOFs, not additional122

nodes. These DOFs do not require a geometric description, because they are associated with123

the element nodes. Fig. 1(b) shows the relative DOFs in the deformed state following a124

relative translation of ubn .125

Each slip value in ubn is a relative DOF between the two components at the node,126

and its direction is a local property. At the initial state, the direction of each slip DOF is127

tangent to the y-coordinate profile of the interface between the two components. When the128

element node rotates with deformation, the direction of the slip DOF follows the rotation129

and remains in the direction of the node tangent (Fig. 1(b)), even for a non-prismatic frame130

element. Because of displacement compatibility at the common node of two elements, the131

direction of ubn is the same after deformation. This obviates the need for a transformation132

matrix for the slip DOFs from the local to the global reference system, and the slip DOF133

increments during the iterative solution of the global equilibrium equations are determined134

in the local reference system. This holds true even under nonlinear geometry as long as135

the co-rotational formulation is used for large displacement analysis, making the proposed136

frame element with slip DOFs easy to implement in a general purpose finite element analysis137

program for large displacement analysis, a feature that distinguishes this element from earlier138

proposals of composite frame elements.139

Section Kinematics140

Figure 2 shows the general cross-section of the structural member with two components

and the general displacement profile u in the x-direction. In the following presentation, the

variables referring to components 1 and 2 are denoted with subscripts 1 and 2, respectively.
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As shown, the interface between the two components need not be planar. In agreement with

the assumption of Euler-Bernoulli kinematics, the displacement field of the section with

perfect bond can be written in terms of the axial displacement ua at the reference axis and

the derivative of the lateral displacement uy as

u(x, y) = ua(x)− y u′y(x) = auus(x) + aθ(y) u′s(x) (2)

With a prime denoting differentiation with respect to x, au and aθ are displacement inter-

polation matrices and us are the section displacements whereby

au =

[
1 0

]
, aθ =

[
0 −y

]
, us =

[
ua uy

]T
(3)

In the presence of relative slip ub of component 2 with respect to component 1, the displace-

ment field of the section becomes (Figure 2)

u(x, y) = au us(x) + aθ(y) u′s(x) + ab ub(x) (4)

where ab takes on the value 0 and 1 for components 1 and 2, respectively.141

The strain field εu for this displacement field is

εu(x, y) = auu′s(x) + aθ(y)u′′s(x) + abu
′
b(x) (5)

Eq. (5) shows that the strain difference of the two components is the derivative of the relative

slip ub. This difference defines the slip strain εb, which depends on x only and is given by

εb(x) = u′b(x) (6)

In the following the material strain in component 1 is denoted with ε and the material strain142

in component 2 is expressed as the sum of ε and εb.143
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Variational Principle144

For a frame element with uniaxial material response and volume Ω = A×[0, L], the functional

for the standard Hu-Washizu variational principle is (Lee and Filippou, 2009)

Π [(us,u), σ, ε] =

∫
Ω

W (ε) dΩ−
∫ L

0

uT
s w̄ dx− uTp +

∫
Ω

σ(εu(us)− ε) dΩ (7)

The function W is the energy density function which permits the determination of the145

material stress σ according to σ̂(ε) = ∂W/∂ε. The element loading w̄ consists of a uniformly146

distributed axial load w̄x and a uniformly distributed transverse load w̄y.147

In the presence of partial bond between the two components, the functional Π can be

enhanced with an additional functional Πb that describes the bond interaction at the interface

of the two components with contact area Ab = pb × [0, L], where pb is the perimeter of

component 2 in contact with component 1. The functional Πb is given by

Πb [(ub,ubn), σ2, εb] =

∫
Ab

Wb(ub) dA− ubn
T p̄bn +

∫
Ω2

σ2(u′b − εb) dΩ (8)

where Wb is the energy density function which permits the determination of the bond stress148

σb according to σ̂b(ub) = ∂Wb/∂ub. The last term in Eq. (8) is the Lagrange multiplier149

enforcing strain compatibility in component 2, where Ω2 is the volume of component 2.150

With the inclusion of partial bond, the energy density function W in Π also depends on εb,151

so that W (ε, εb).152

Interpolation Functions153

If the strain εb in W is held fixed, the functional Π involves only three independent fields:

the displacements (us,u), the material stress σ and the material strain ε. These can be

interpolated from the nodal displacements u, the basic element forces q and element loads
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w̄, and the section deformations e according to

us(x) = aus(x)u (9a)

σ(x, y) = bs(y)s(x), s(x) = b(x)q + s̄w(x), s̄w(x) = bw(x)w̄ (9b)

ε(x, y) = as(y)e(x) (9c)

where aus, bs, b, bw and as are interpolation matrices. The basic element forces q for the154

plane frame element are the axial force q1 and the two end moments q2 and q3. The section155

deformations e consist of the axial strain εa at the element axis and the curvature κ. The156

section forces s consist of the axial force N and the bending moment M .157

The interpolation functions b and bw are

b(x) =

1 0 0

0 x/L− 1 x/L

 , bw(x) =

L− x 0

0 x(x− L)/2

 (10)

Because these interpolation functions satisfy the differential equilibrium equations of the

plane frame element in the undeformed configuration

N ′(x) + w̄x = 0, M ′′(x)− w̄y = 0 (11)

the interpolation functions aus are not necessary in the element formulation in a reference

system without rigid body modes (Taylor et al., 2003, Saritas, 2006, Lee and Filippou, 2009).

The interpolation functions as that satisfy the section kinematics are given by

as(y) =

[
1 −y

]
(12)

The interpolation functions bs are given by

bs(y) = as(y)

(∫
A

as(y)Tas(y) dA

)−1

=

[
1/A −y/I

]
(13)
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where I is the second moment of area. The inverse in Eq. (13) is well-defined because the

columns of as are independent of each other over the cross-section A. The interpolation

functions bs are selected to satisfy the following relation (Lee and Filippou, 2009):

∫
A

as(y)Tbs(y) dA = I (14)

where I is the identity matrix.158

The substitution of the above interpolation functions with integration by parts and some

simplifications transforms the functional Π to

Π(u,q, e, εb) =

∫ L

0

Ws(e, εb) dx−
∫ L

0

s̄Twe dx− uT (p̄w + p̄)

+ qT

(
au−

∫ L

0

bTe dx

) (15)

where p̄w are the element nodal forces arising from w̄ and given by

p̄w =

[
w̄xL w̄yL/2 0 0 w̄yL/2 0

]T
(16)

and a is the rigid body mode transformation matrix given by

a =


−1 0 0 1 0 0

0 1/L 1 0 −1/L 0

0 1/L 0 0 −1/L 1

 (17)

The energy Ws is the section energy density function defined as

Ws(e, εb) =

∫
A

W (ase, εb) dA (18)

which permits the determination of the section forces s from ŝ(e, εb) = ∂Ws/∂e as well as159

the determination of the axial force of component 2 from N̂2(e, εb) = ∂Ws/∂εb.160
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The functional Πb also has three independent fields: the displacements ub and ubn, the

material stress σ2 of component 2, and the slip strain εb. Depending on the way the relation

between ub and εb is established three alternative expressions are possible for Πb. Each

alternative leads to a different formulation for the frame element, as will be discussed in the

next section. The functional Πb is first rewritten as follows:

Πb((ub,ubn), σ2, εb) =

∫ L

0

Wsb(ub) dx− ubn
T p̄bn +

∫
Ω2

σ2(u′b − εb) dΩ (19)

where Wsb(ub) =
∫
pb
Wb(ub) ds is the energy density function that permits the determination161

of bond force Nb from N̂b(ub) = ∂Wsb/∂ub.162

New Variational Formulations163

The variation of Π with respect to u, q and e under a fixed value εb leads to three governing

equations for a 2d Euler-Bernoulli beam element (Lee and Filippou, 2009):

Rp(q) = aTq− p̄− p̄w = 0 (20a)

Rv(u, e) = au−
Np∑
l=1

bT
l el wl = 0 (20b)

Rsl(q, el, εb) = ŝl(el, εb)wl − (blq + s̄wl)wl = 0 (for each section l) (20c)

The first equation in Eq. (20) is transformed to the global reference system with the coro-164

tational formulation (Felippa and Haugen, 2005, Le Corvec, 2012) before assembly of the165

resisting force vector for the structural model. The other two equations in Eq. (20) are local166

and can be condensed out during the state determination process of the frame element, as167

discussed in Lee and Filippou (2009).168

The additional governing equations resulting from Πb are derived next. Because εb is an169

independent variable for both functionals Π and Πb, the first variation of these functionals170

with respect to εb results in the coupling of the two sets of governing equations. The governing171

equations arising from Πb depend on the relation between ub and εb. Three formulations for172
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the bond-slip field of the composite element are possible: mixed-displacement (MD), mixed-173

mixed (MM), and mixed-force (MF) formulations. The first word “mixed” refers to the174

Hu-Washizu variational principle that furnishes the framework for the formulation. The175

second word refers to the option of interpolating the relative slip ub (displacement), or the176

axial force of the second component N2 (force), or the option of interpolating both fields177

(mixed).178

Mixed-Displacement (MD) Formulation179

In the mixed-displacement (MD) formulation, the slip strain εb is point-wise equal to the

first derivative of the relative slip ub. Under this condition the third term of Πb, serving

as Lagrange multiplier, vanishes. The derivative of ub thus replaces the argument εb of Ws.

With the assumption of a generalized slip ub and an interpolation matrix ab along the x-axis

for ub, the fields of ub and εb can be expressed as

ub(x) = ab(x)ub, εb(x) = abx(x)ub (21)

where the interpolation matrix abx is the derivative of ab with respect to x. The nodal

slip values ubn correspond to the values of the ub field at the end sections of the composite

element given by

ubn = abnub (22)

where

abn =

ab(0)

ab(L)

 (23)

With these interpolation functions the functional Πb becomes

Πb(ub) =

∫ L

0

Wsb(abub) dx− ub
T (abn

T p̄bn) (24)
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after the substitution of Eq. (21). The first variation of Eqs. (15) and (24) with respect to

ub gives the following governing equation

Rb(ub, e) = N̂a + N̂b − abn
T p̄bn = 0 (25)

where

N̂a =

∫ L

0

abx
T N̂2 dx, N̂b =

∫ L

0

ab
T N̂b dx (26)

Eqs. (20) and (25) form the governing equations of the mixed-displacement (MD) formula-180

tion.181

Mixed-Mixed (MM) Formulation182

In the mixed-mixed (MM) formulation, the Lagrange term is retained as the penalty form

of strain-displacement compatibility along the element. The presence of the penalty term

requires the interpolation of the material stress field σ2 in addition to the relative slip field

ub. It is assumed that the axial force field N2 of component 2 can be expressed in terms of

the generalized forces qb such that

N2(x) = bb(x)qb (27)

where bb is the corresponding force interpolation matrix. The material stress σ2 is the

average of force N2 over the cross-sectional area A2 of component 2:

σ2(x, y) =
N2(x)

A2

=
1

A2

bb(x)qb (28)

The forces qb are local element variables so that no inter-element continuity at the nodes is

required and these variables can be condensed out at the element level without introducing

additional global degrees-of-freedom. Upon substitution of the above interpolation function
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for σ2 and the interpolation function for ub in Eq. (21), the functional Πb in Eq. (19) becomes:

Πb(ub,qb, εb) =

∫ L

0

Wsb(abub) dx− ub
Tabn

T p̄bn + qb
T

(
abmub −

∫ L

0

bb
T εb dx

)
(29)

where

abm =

∫
Ω2

1

A2

bb
Tabx dΩ =

∫ L

0

bb
Tabx dx (30)

As discussed by Ayoub and Filippou (1999; 2000), the stability of this formulation requires

that the number of unknowns nq in qb and the number of unknowns nu in ub satisfy the

following condition:

nq ≥ nu − 1 (31)

Under this condition a linear polynomial is required for the force field N2, if a quadratic183

polynomial is selected for the relative slip field ub.184

The functional Πb in Eq. (29) is similar to the functional Π in Eq. (15), except that the

internal energy of Πb depends on ub, whereas the internal energy of Π depends on ε and εb.

It is, therefore, natural to combine these functionals into a single expression. To do this, the

two sets of variables are stacked on top of each other to form new vectors, which are defined

below with some abuse of notation

u ⇐

 u

ub

 , q⇐

 q

qb

 , e⇐

e

εb

 (32a)

a ⇐

a 0

0 abm

 , ab ⇐
[
0 ab

]
, b⇐

b 0

0 bb

 , as ⇐
[
as ab

]
(32b)

p̄ ⇐

 p̄

abn
T p̄bn

 , p̄w ⇐

p̄w

0

 , s̄w ⇐

s̄w

0

 (32c)
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The functional for the mixed-mixed (MM) formulation then becomes

Πm(u,q, e) =

∫ L

0

Wsm(e) dx+

∫ L

0

Wsb(abu) dx−
∫ L

0

s̄Twe dx− uT (p̄w + p̄)

+ qT

(
au−

∫ L

0

bTe dx

) (33)

The energy density function Wsm is equivalent to Ws in Eq. (18) except that the argument

εb in Ws is grouped into the argument e in Wsm. Hence, the section forces ŝ from Wsm have

three components: the first two components are the axial force N̂ and bending moment M̂

of the element, as for the standard formulation, whereas the third component is the axial

force N̂2 of component 2. The element forces from the energy density function Wsb are

p̂b(u) =

∫ L

0

∂Wsb

∂u
dx =

 0

N̂b(ub)

 (34)

The functional Πm in Eq. (33) has exactly the same form as the functional in Eq. (15),

except that Πm contains an additional internal energy term that depends on the displace-

ment field. The first variation of Πm gives the following governing equations for the MM

formulation:

Rp(u,q) = aTq + p̂b(u)− p̄− p̄w = 0 (35a)

Rv(u, e) = au−
Np∑
l=1

bT
l el wl = 0 (35b)

Rsl(q, el) = ŝl(el)wl − (blq + s̄wl)wl = 0 (for each section l) (35c)

The governing equations in Eq. (35) have the same form as the original three governing185

equations, except that the first equation now includes the resisting forces p̂b at the interface186

of the element components that depend on the displacement field u.187
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Mixed-Force (MF) Formulation188

In the mixed-force (MF) formulation the Lagrange multiplier term in Eq. (19) is modified

by interpolating the material stress σ2 according to Eq. (28) such that

∫
Ω2

σ2(u′b − εb) dΩ = qb
T

∫ L

0

bb
T (u′b − εb) dx (36)

After integration by parts Eq. (36) becomes

∫
Ω2

σ2(u′b − εb) dΩ = qb
T

(
abfubn −

∫ L

0

(bb
T εb + bbx

Tub) dx

)
(37)

where bbx is the derivative of bb with respect to x, and

abf =

[
−bb

T (0) bb
T (L)

]
(38)

Substituting Eq. (37) into Eq. (19) results in the following functional Πb

Πb((ub,ubn), σ2, εb) =

∫ L

0

Wsb(ub) dx− ubn
T p̄bn

+ qb
T

(
abfubn −

∫ L

0

(bb
T εb + bbx

Tub) dx

) (39)

In this functional the variables ub and ubn are independent of each other because they are189

defined at different points of the frame element axis. The variable ub is defined in the element190

interior, while ubn denotes the slip value at the end sections of the element. Inter-element191

continuity is imposed on ubn, but not on ub, which is, therefore, a local element variable192

that can be condensed out during the state determination.193

The functional Πb in Eq. (39) is similar to the functional Π in Eq. (15). As is the case

for the MM formulation, these two functionals can be combined by stacking the independent

variables of Π on top of the independent variables of Πb. With an abuse of notation, the
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new vectors are listed below without section variables:

u⇐

 u

ubn

 , q⇐

 q

qb

 (40a)

a⇐

a 0

0 abf

 (40b)

p̄⇐

 p̄

p̄bn

 , p̄w ⇐

p̄w

0

 (40c)

The section variables are combined separately for the two sections of the model: the first

section, subsequently called fiber section, refers to the cross section of the element that is

discretized into fibers so that its response results from the integration of the uniaxial material

response. This cross section is the aggregation of the component sections. With an abuse of

notation the section variables and interpolation matrices are

e⇐

e

εb

 , as ⇐
[
as ab

]
, b⇐

b 0

0 bb

 , s̄w ⇐

s̄w

0

 (41)

The second section, subsequently called interface section, refers to section variables at the

interface between the element components. The force resultants of the interface section arise

from bond stresses. With an abuse of notation these section variables and interpolation

matrices are

e⇐ ub, b⇐
[
0 bbx

]
, s̄w ⇐ 0 (42)

With the new set of variables and the two sets of section force resultants, the functional for
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the MF formulation becomes

Πf (u,q, e) =

∫ L

0

Wsf (e) dx−
∫ L

0

s̄Twe dx− uT (p̄w + p̄)

+ qT

(
au−

∫ L

0

bTe dx

) (43)

where Wsf is the section energy density function defined as

Wsf (e) =

 Wsm(e) for the fiber section

Wsb(e) for the interface section
(44)

Wsm is the same energy density function as in the MM formulation. The functional Wsf194

permits the determination of the section forces ŝ from e with ŝ(e) = ∂Wsf/∂e. The section195

forces for the fiber section consist of the axial force N̂ , the bending moment M̂ , and the axial196

force N̂2, as defined for the MM formulation. The forces for the interface section consist of197

the bond force N̂b at the interface of the composite frame element components.198

Eq. (43) shows that the functional for the MF formulation has the same expression as199

the original functional Π in Eq. (7). The expressions of the governing equations are the same200

as Eq. (20), except that εb is grouped into e in Eq. (20c).201

In the MF formulation the generalized bond forces qb are local without requiring inter-202

element continuity. Nonetheless, C0 continuity results for qb through node equilibrium,203

because the slip values ubn are only defined at the element nodes.204

Remark 1 The proposed formulations can be used for modeling the anchorage zone of205

a reinforcing bar by removing the concrete component. In such case, these formulations206

are identical with the displacement, mixed and force formulations proposed by Ayoub and207

Filippou (1999). �208

Remark 2 The proposed formulations can be extended to an element with multiple com-209

ponents that slip relative to component 1 only, without bond-slip interaction among them.210
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Each component slipping relative to component 1 gives rise to a pair of ubn and pbn at the211

end nodes, one set of ub, εb and σ values for describing the slip, strain and stress fields, re-212

spectively, and, hence, one functional Πb in Eq. (19). Since there is no bond-slip interaction213

among these components, their variables are uncoupled and interact only with the variables214

of component 1. Consequently, the governing equations for MD, MM and MF formulations215

remain the same (see Eqs. (20), (25) and (35)), except that each component has its own216

generalized slip ub and force qb with interpolation functions ab and bb, respectively. For217

the MM and MF formulations, the variables of each component are also stacked on top of218

each other according to Eqs. (32), (40), (41) and (42) without coupling of the interpolation219

functions for these components. �220

Interpolation Functions221

Except for homogeneous frame elements with linear elastic materials, it is not possible to use222

simple exponentials or polynomials for the distribution of ub and N2 along the element. For223

representing inhomogeneous inelastic response within the element with sufficient accuracy,224

this study makes use of piecewise polynomials as interpolation functions for ub and N2 with-225

out dividing the element into sub-elements. This option balances the accuracy requirements226

for ub and N2 with the efficiency requirement of interpolating the section forces N and M227

with the smallest number of parameters, i.e. the use of constant and linear interpolation228

functions for N and M , respectively. For the mixed-displacement formulation, piecewise229

quadratic polynomials are used for the interpolation of ub. For the mixed-force formulation,230

piecewise quadratic polynomials are used for the interpolation of N2. Finally, for the mixed-231

mixed formulation, quadratic splines and linear splines are used for the interpolation of ub232

and N2, respectively. Fig. 3 illustrates these interpolation functions over a four segment233

portion of the composite beam. In the following, the term segment refers to the interval234

within the composite element with a well-defined polynomial.235

For an optimum balance of efficiency and accuracy, linear and quadratic splines were also236

considered as the interpolation functions for the mixed-displacement and the mixed-force237

19



formulations, and discontinuous piecewise linear and piecewise quadratic polynomials were238

considered for the mixed-mixed formulation, but their evaluation falls outside the scope of239

this paper. Details of this evaluation are available in the Ph.D. thesis of Lee (2008).240

COMPARISON OF FORMULATIONS241

The following discussion addresses the advantages and limitations of the three proposed242

alternatives of the mixed formulation for modeling the bond-slip effect of composite frames,243

and in particular, the bond-slip of reinforcing bars in reinforced-concrete members.244

A reinforced concrete cantilever column is used for this purpose. The column corre-245

sponds to the specimen by Bousias et al. (1995), but is used here without reference to the246

experimental results with the correlation studies deferred to the companion paper.247

The column is 1490 mm long with a 250 × 250 mm square cross-section, as shown in248

Fig. 4, It has eight reinforcing bars (rebars) of 16 mm bar diameter uniformly distributed249

around the perimeter and anchored in a concrete block with an anchorage length of 30 bar250

diameters.251

This specimen is selected because of the presence of 8 rebars in the cross section, which252

the proposed model can monitor independently, a feature not available in earlier models. The253

determination of the crack opening at the base of the column and the corresponding fixed-end254

rotation constitute important aspects of the evaluation of the formulation alternatives.255

The column is subjected to an incremental horizontal translation at its tip to a maximum256

lateral drift ratio of 6% under a constant axial compressive force of 300 kN.257

The compressive strength of concrete f ′c is 30.75 MPa. The model uses Mander’s model258

(Mander et al., 1988) for the concrete stress-strain relation with no tensile resistance and a259

confinement factor of K=1.25 based on the reinforcement details. The analysis assumes that260

the entire cross section is confined, since this has little bearing on the discussion about the261

merits of the formulation alternatives. The model uses the general Menegotto-Pinto (GMP)262

model (Menegotto and Pinto, 1973) modified by Filippou et al. (1983) for the reinforcing263

steel with yield strength fy of 460 MPa, Young’s modulus Es of 210 GPa, and hardening ratio264
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of 1.4%. The model uses a trilinear bond-slip relation defined by the value-pairs of (0.25 mm,265

7.9 MPa), (1 mm, 13.5 MPa) and (3 mm, 13.6 MPa), following recommendations for typical266

conditions in the literature (Eligehausen et al., 1983). The trilinear model is similar to the267

Hysteretic model in OpenSees (http://opensees.berkeley.edu). The bond-slip relation268

does not have a softening branch, since the softening behavior has no bearing on the present269

discussion.270

The model uses one composite element for the reinforced-concrete column. Since the271

column is subjected to uniaxial bending with axial force, the rebars are grouped in layers272

according to their y-distance from the reference axis, and one component is used each group273

in the column element. A separate anchored bar element is used for each rebar group in the274

foundation. The column cross-section is subdivided into 60 layers and midpoint integration275

is used for the evaluation of the stress resultants. The boundary conditions of the model276

restrain the horizontal translation and the rotation at the column base. At the column277

tip the horizontal translation is controlled with the specified displacement history, and the278

vertical translation and rotation are free. The slip DOFs of the column element are assumed279

to be free at the column tip and are connected to the anchored bars at the column base.280

The stress of the anchored bars is set to zero at the anchorage end.281

The monotonic response for the column measured by Bousias et al. (1995) does not show282

softening for the range of inelastic deformations of the numerical study. Nonetheless, it is283

important to select the segment number of the composite frame element under consideration284

of response objectivity. Consequently, two segments with three integration points are used285

to ensure that the response evaluation is exact for a linear elastic frame element without286

element loads. For the bond-slip field in the MF formulation, only two integration points are287

necessary. Moreover, the segment lengths within the composite frame element are selected in288

the ratio of 1 to 2, with the shortest segment closest to the column base so as to capture the289

rapid increase of local strains at this location. A similar segment length distribution is used290

for the anchored bar elements in the foundation. A general solution for objective response291
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will be explored in the future following earlier studies for reinforced concrete frame elements292

without bond-slip (Coleman and Spacone, 2001, Scott and Fenves, 2006).293

The top figures of Fig. 5 show the steel strain distribution, while the bottom figures294

show the relative slip of the reinforcement along the column and along the anchorage length295

of the rebars at the maximum drift ratio of 6%. The numerical results for the MD and296

MM formulation are shown in the figures on the left hand side, and the results for the MF297

formulation on the right hand side of Fig. 5. The results lead to the following observations:298

Both MD and MM formulations require C0 continuity of the slip field ub which needs299

to be continuous across elements but need not have a continuous derivative. The MF for-300

mulation, on the other hand, does not impose a continuity requirement on the relative slip301

field ub. Consequently, the MF formulation is much more suitable than the MD or MM302

formulation for modeling the discrete crack that arises between beam and column elements303

or between column and foundation elements as a result of bond-slip. This crack is in fact304

the manifestation of the discontinuous nature of relative slip across the common node of two305

elements and has been observed in many tests of RC columns with pull-out of the reinforc-306

ing bars from the foundation. By imposing relative slip continuity at the crack the MD and307

MM formulation underestimate the bar pull-out value but also lead to discrepancies for the308

relative slip distribution in the element that pulls out.309

All formulations do not enforce inter-element continuity for the axial force of component310

2, but only the MF formulation establishes force continuity at the element nodes through311

node equilibrium. In the example of the reinforcing bar pull-out for a cantilever RC column,312

the equilibrium requires that the reinforcing steel stress be continuous across the column-313

foundation interface. Both MD and MM formulations fail to capture this continuity correctly.314

By contrast, the MF formulation, which accommodates the continuity of the steel force at the315

column base, produces better results for the stress in the reinforcing steel, as the correlation316

studies of the companion paper demonstrate.317

In conclusion, the MF formulation is the best formulation for simulating pull-out of the318
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reinforcement of one element from its anchorage in another element since it represents the319

discontinuous slip across the common node.320

ESTIMATION OF FIXED-END ROTATION321

One important advantage of the discontinuous slip across elements in the MF formulation322

is its ability to estimate tbe concrete crack width at the tension side of a cross-section.323

With the slip ub equal to the difference between the steel displacement us and the concrete324

displacement uc, i.e. ub = us− uc, and assuming no rupture in steel reinforcement, the jump325

in ub equals the jump in uc but with opposite sign: [[ub]] = −[[uc]], where the jump operator326

[[·]] is defined as [[·]] = (·)(x+)− (·)(x−).327

From the values of [[ub]] for all rebars in an RC cross-section, a crack opening profile can328

be computed, as shown in Fig. 6 for the preceding numerical analysis results for some drift329

ratio values ranging from 0% to 6%. The crack profiles in Fig. 6 show that the top concrete330

fiber (at the tension side) begins to crack when the drift ratio is approximately 1%, and the331

crack grows rapidly when the drift ratio reaches 4%.332

Concrete cracking at member ends results in an additional fixed-end rotation. This fixed-333

end rotation can be estimated from the crack opening profile by fitting a straight line in the334

form of a crack plane to the slip profile and determining the rotation of this plane relative335

to the undeformed section. Fig. 6 shows these fitted crack planes for the crack opening336

profiles of the preceding numerical analysis. With the estimated fixed-end rotation, the337

relationship between the base moment and the fixed-end rotation at the column base can338

also be established, as shown in Fig. 6. The moment-rotation relationships in Fig. 6 show339

that the RC column starts to lose strength when the fixed-end rotation approaches 0.005340

rad.341

CONCLUSIONS342

This paper proposes a composite frame element for the simulation of the inelastic re-343

sponse of structural members made up of two or more components with different materials344
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accounting for the relative slip at the interface between components. Application examples345

include reinforced concrete members with bond-slip of reinforcing steel, steel-concrete com-346

posite members with slip at the interface, members with FRP reinforcement, and prestressed347

concrete and timber members with partially bonded straight tendons.348

The proposed frame element introduces one additional degree of freedom at each node349

to represent the relative slip of a component relative to the reference component. These350

slip DOFs rotate with the tangent at the element node so that the slip DOF increments351

during the iterative solution of the global equilibrium equations can be solved in the local352

reference system. This holds true even under nonlinear geometry as long as the co-rotational353

formulation is used for large displacement analysis, making the proposed frame element with354

slip DOFs easy to implement in a general purpose finite element analysis program for large355

displacement analysis, a feature that distinguishes this element from earlier proposals.356

The study presents three alternative mixed formulations for the composite frame element357

by enhancing the standard Hu-Washizu variational principle with additional fields for the358

bond-slip at the interface between components. These formulations are a mixed-displacement359

(MD), a mixed-force (MF), and a mixed-mixed (MM) formulation. The MD formulation360

interpolates the slip distribution between components, the MF formulation interpolates the361

force distribution of components that slip relative to the reference component, and the MM362

formulation interpolates both slip and force distributions.363

To balance interpolation accuracy for the relative slip and the axial force distribution for364

a component that slips relative to the reference component with interpolation efficiency for365

the total section forces N and M of the element with the smallest number of parameters,366

piecewise polynomials for the interpolation of the force and slip distributions at the interface367

between components are used in the study.368

All three formulation alternatives ensure the exact interpolation of the total section force369

fields for the composite frame element, a feature that distinguishes this element from earlier370

proposals.371
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Both MD and MM formulations enforce slip continuity but relax the force continuity,372

while the MF formulation enforces force continuity but relaxes the slip continuity at the373

common node of two elements.374

Large cracks that form between structural members as a result of relative slip of con-375

stituent components require that the slip across the crack at a common node of two elements376

be discontinuous, while the stress field be continuous. Because the MF formulation captures377

both phenomena, whereas the MD and MM formulations do not, it is the most suitable for378

representing the pull-out of reinforcing steel from an anchoring element and determining379

the resulting fixed-end rotation at the interface between adjacent elements, as demonstrated380

with the example of a reinforced-concrete cantilever column.381

The numerical convergence behavior and the accuracy of the proposed formulations in382

simulating the global and local response of a steel-concrete composite specimen, and two383

reinforced-concrete cantilever column specimens with pull-out from the foundation are pre-384

sented in the companion paper.385
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