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ABSTRACT

Recently, interest has been shown in cognitive radio (CR) systems since they can op-

portunistically access unused spectrum bands thereby increasing usable communication

capacity. Spectrum sensing has been identified as a key function to ensure that CR can

detect spectrum holes. In a CR network, a fast and accurate spectrum sensing scheme is

important.

Spectrum sensing can be viewed as a signal detection problem. Most of the existing

spectrum sensing schemes are based on fixed sample size detectors which means that their

sensing time is preset and fixed. However, the work of Wald [27] showed that a detector

based on sequential detection requires less average sensing time than a fixed sample size

detector.

In this thesis, we have applied the method of sequential detection to reduce the average

sensing time. Simulation results have shown that, compared to the fixed sample size

energy detector, a sequential detector can reduce sensing time by up to 85% in the AWGN

channel for the same detection performance. In order to limit sensing time, especially

in a fading environment, a truncated sequential detector is developed. The simulation

results show that the truncated sequential detector requires less sensing time than the

sequential detector, but the performance degrades due to truncation. Finally, a cooperative

spectrum sensing scheme is used where each individual sensor uses a sequential detector.

The combining rule used at the fusion center is a selection combining rule. Simulation

results show that the proposed cooperative spectrum sensing scheme can reduce the sensing

time compared to the individual spectrum sensing scheme.
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Chapter 1

INTRODUCTION

1.1 GENERAL INTRODUCTION

A wireless communication system was first demonstrated in 1895 by G.Marconi. He dis-

covered that it was possible to send signals using electromagnetic waves. From that time,

new communication systems and services have been developed by researchers all around

the world.

Signals that carry speech and video are inherently analog. Thus, analog communica-

tion systems were developed at an early stage. For example, the amplitude modulation

(AM) wireless communication system was first used by American police in 1934 for public

safety. In 1939, frequency modulation (FM) was introduced by Edwin Armstrong [10]. It

offered more robust and higher quality transmission.

Although most current broadcasting systems convey information to drive analog ap-

plications, such as TV or radio, it is important to notice that with the advent of computers

and digital information, digital communication systems have been developed to improve

service quality. Owing to the application of source coding and channel error control coding,

digital communication systems are less subject to distortion and interference than analog

systems. Furthermore, digital communication systems are more reliable than analog sys-

tems and the cost of digital communication systems is less than that of analog systems [10].

For example, an emerging standard DRM (Digital Radio Mondiale) can offer long-range

robust audio transmissions as an alternative to low frequency AM transmissions [2].

It is not only audio broadcast service that have been revolutionized by digital technol-

ogy. GSM (Global System for Mobile Telephony) is a global digital standard for wireless

telephony [8]. It offers higher channel efficiency and security than previous analog technol-

ogy. Also, digital television (DTV) is slowly replacing analog transmissions. analog video
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signals of 6MHz bandwidth can now be compressed to 2Mbit/s streams which require

much less channel bandwidth.

It is easy to see that most wireless services of the future will be encoded in the digital

domain [10]. This will require digital baseband processing at both transmitter and receiver,

and as digital services generally consume less bandwidth than analog services, there are

likely to be many more digital services and standards to manage.

The rate of introduction of new services is increasing very quickly. Technical evolution

and increasing pressure to minimize service bandwidth has meant that many services have

a rapid degree of obsolescence. Future technologies should therefore conform to the idea

of reconfigurable equipment [16].

Software radio is a kind of reconfigurable equipment. It is a new class of radio ar-

chitecture which was developed in the 1990s [25]. The functions of software radio are

implemented by programs running on a processor. Based on the same hardware, differ-

ent transmitter and receiver algorithms are implemented in software. Software radio is a

technology which can take wireless equipment design away from fixed traditional imple-

mentations and introduce elements of reconfigurability.

There are three advantages of reconfigurable equipment [16]. The first is that the

reconfigurable equipment can be multi-functional. It means that a single terminal can

be used for operation with more than one transmission standard. The second is that the

reconfigurable equipment can evolve. As new standards emerge, software patches can be

sent to upgrade terminals. There is no need to alter any terminal hardware. The last is

that filtering and mixing can be performed in software. There is less significantly hardware

adjustment to be performed.

No matter what kind of wireless communication is employed, it requires spectrum to

operate, but there will be some interference if different systems simultaneously operate

in the same band. Thus, spectrum is a limited resource. Furthermore, it is currently

allocated exclusively to different systems by rules meaning other systems can not use this

spectrum at any time and location. However, this form of spectrum allocation leads to

the underuse of spectrum [1].

Dynamic spectrum access is a new approach to spectrum management. By using

dynamic spectrum access, secondary users (users with no right to use a certain bandwidth)

may detect and use the spectrum “holes” for transmission without interfering with primary
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users (users with a proprietary right to use a certain bandwidth). This results in a more

efficient use of spectrum resource. Cognitive radio (CR) can be viewed as a platform for

the realization of dynamic spectrum access [1].

CR was proposed by J.Mitola in 2000 [22]. A CR can be implemented on a hardware

radio platform and its radio parameters (e.g. frequency, power, modulation and band-

width) can be changed depending on the environment. CR will become commercially

feasible within the next 5 to 10 years [17] and it can improve the efficiency of spectrum

usage.

Some examples of on-going research on CR include the next generation (XG) program

[18], [47]. The IEEE 802.22 workshop on wireless regional area networks develops CR tech-

nology in the television bands [19]. This research on CR draws upon many communication

engineering areas such as signal detection, sensor networks, cooperative communications

and others.

In this thesis, we focus on detecting the presence or absence of a primary signal in a

noisy environment. This is also called spectrum sensing in a CR system. Actually, signal

detection theory has a wide range of applications including communications engineering.

Reference [20] is one of the papers which emphasizes the importance of signal detection in

communications while [21] provides a good survey of signal detection theory.

Individual sensing is the first step in spectrum sensing [47]. In an individual sensing

scheme, different kinds of detectors are proposed for various types of signal. For example,

matched filters may be used to detect the signal given suitable prior information. On

the other hand, energy detectors are often used to detect random signal or signals of

unknown form. Feature detectors can detect not only the presence of the signal but

also the modulation type. The important distinction between energy detection, feature

detection and matched filter is that energy detector is fully blind. For the future unlicensed

spectrum or “public park” spectrum, blind methods are the only option.

A cooperative sensing network is proposed in [47] to improve detection accuracy,

reduce sensing time and combat the so-called hidden terminal problem. A cooperative

sensing network determines spectrum occupancy through joint detection by several CRs,

as opposed to it being determined by an individual CR.

As noted in [47], the development of spectrum sensing technology introduces many

challenges. For example, how does one detect the primary signal in a low SNR environ-
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ment? How can we improve the probability of detection ? Furthermore, one of the main

requirements of CR networks is the detection of the primary signal in a very short time.

Hence, spectrum sensing algorithms need to be developed so that the sensing time needed

to detect the primary signal can be minimized with a given probability of missed detection.

The goal of this thesis is to develop and evaluate two individual detectors and a

cooperative scheme through both mathematical description and computer simulation. The

proposed detectors and the cooperative scheme both focus on how to reduce sensing time.

The fundamental theory is based on sequential testing which was proposed by Wald in

1947 [27].

The remainder of this chapter is organized as follows. First, it describes how the pro-

posed detection schemes will be performed in the time domain. Second, the representation

of signals in this thesis is described. Third, the wireless channel including its characteris-

tics and simulation method are illustrated. Finally, the scope and the contribution of the

thesis is summarized.

1.2 TIME DOMAIN DETECTION AND FREQUENCY DOMAIN DETECTION

In this thesis, all the single and cooperative detection schemes are performed in the time

domain. Following the work of [14], a bandpass filter is applied at the front end of each

CR. The CR only needs to measure the signal in this particular frequency band in the

time domain. The CR may transmit when there is no primary signal in this frequency

region.

Two questions may arise from the proposed schemes. Is this narrow band idle time

detection scheme reasonable? Why not apply wideband spectrum sensing? The answers

to these two questions are given below.

Idle time sensing schemes are a reasonable solution over a narrow band. For CR

systems which are based on the IEEE 802.22 protocol [5], the primary signal is a 6MHz

bandwidth DTV signal. Thus, in practice, the CR knows the bandwidth of the primary

signal and, therefore, can employ an appropriate bandpass filter at its front-end. It is only

required to detect whether this frequency region is used at a certain time.

A tough problem occurs when the bandwidth W to be sensed is large (wideband

spectrum sensing). Suppose we need to sense 1000 channels, each of 10 KHz (meaning,

W=10MHz). Continuous analog sensing is not feasible, since it needs as many as 1000
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analog filters. Thus, digital signal processing techniques have to be employed [15]. For

example, the entire band may be sampled at a high rate and a FFT used to obtain the

components of energy over a range of frequencies.

It is often impractical for a CR to sense all the channels simultaneously [1], [3] due to

hardware limitations and the energy cost of spectrum monitoring. For example, designing

a 1 GHz A/D converter with 12 bits resolution is infeasible owing to comparator ambiguity

and clock jitter impairments [4].

The authors of [3] proposed several optimal and suboptimal protocols to avoid wide-

band sensing and to maximize the overall network throughput. These protocols are based

on narrow band sensing and their main contribution is on deciding which single channel

is chosen for sensing at each time slot.

However, wideband spectrum sensing is not an impossible mission. A novel wideband

spectrum sensing technique is proposed in [63]. This technique jointly detects the signal

energy level over several frequency bands rather than only one band at a time.

Band of Interest
 Unknown activity
Unknown activity


Detection region


W


Figure 1.1 Sub-channel detection.

In summary, as shown in Fig. 1.1, the objective of spectrum sensing in this thesis is to

sense only one sub-channel and identify whether it is in use at a certain time. Wideband

frequency domain sensing is not considered.

1.3 SIGNAL REPRESENTATION

The proposed schemes will be implemented in the time domain to detect the presence of

primary signals. In this section, we develop representations of the primary signals in a

mathematical form to analyze the systems in the time domain. Thus, we summarize two

different signal representations that are to be used in this thesis.
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1.3.1 Complex Baseband Signal Representation

In this thesis, I assume that the channel is a wireless channel and the primary signal is a

bandpass signal which can be represented as

xc(t) = xA(t) cos(2πfct + xp(t)) (1.1)

where xA(t) is amplitude, xp(t) is phase and fc is the carrier frequency.

However, the carrier frequency fc is different for various wireless systems. For exam-

ple, fc of an AM radio system is in the range 530-1600KHz while fc of a VHF TV system is

in the range 178-216MHz [8]. Obviously, it is impractical to design various communication

strategies to different carrier frequencies. Furthermore, this carrier frequency does not

convey any information. Only the amplitude xA(t) and the phase xp(t) convey informa-

tion. Any quantity with two independent components can be represented by a complex

number and this provides a very useful technique for analyzing bandpass modulation.

After some trigonometric calculations, we have [7]

xc(t) = xA(t) cos(2πfct + xp(t))

= xI(t) cos(2πfct) − xQ(t) sin(2πfct) (1.2)

The carrier signal is usually a cosine term. The signal xI(t) in (1.2) is in-phase with

the carrier, and therefore, it is referred to as the in-phase component of the bandpass

signal. The sine term is 90 ◦ out-of-phase with the carrier term, and hence the signal xQ(t)

is referred to as the quadrature component of the bandpass signal. The transformation

between the two representations is given by

xA(t) =
√

xI(t)2 + xQ(t)2 xp(t) = tan−1[xQ(t)/xI(t)] (1.3)

and

xI(t) = xA(t) cos(xp(t)) xQ(t) = xA(t) sin(xp(t)) (1.4)

Thus, a single bandpass signal can be represented by two baseband signals. To make

the notation compact we can think of xz(t) as a complex signal defined as
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xz(t) = xI(t) + jxQ(t) (1.5)

The original bandpass signal can be obtained from the complex envelope by

xc(t) =
√

2ℜ[xz(t) exp(j2πfct)] (1.6)

This allows us to represent bandpass signals as complex baseband signals and hence sim-

ulate detection systems at baseband.

1.3.2 Vector Representation of Signals

In this thesis, most of the work is based on probability and random process theory which

are predicated on the concept of a finite sequence of random variables. However, primary

transmitters do not produce random variables at the input to the CR. In contrast, it

produces a continuous signal as a function of time at the input to the CR.

We use two approaches to achieve a random vector from a continuous function of time

in this thesis. The first one is orthogonal representation of the signal. Consider that a

signal xi(t) of duration T is from any set of M finite energy signals {xi(t)}. It can be

represented as below [7]:

xi(t) =

N∑

j

xij(t)φj(t),





0 ≤ t ≤ T

i = 1, 2, . . . M
(1.7)

where the xij(t) are defined by

xij(t) =

∫ T

0
xi(t)φj(t)dt





i = 1, 2, . . . M

j = 1, 2, . . . N
(1.8)

The functions φ1(t), φ2(t), . . . φN (t) are called orthonormal basis functions,which means

∫ T

0
φi(t)φj(t)dt = δij =





1 if i = j

0 if i 6= j
(1.9)

The vector representation of the signal over the duration of T seconds is then given

by
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xi = [xi1, xi1, . . . , xiN ], i = 1, 2, . . . ,M (1.10)

The second approach is sampling theory. It tell us if a signal x(t) has no frequency

higher than W , it can be reconstructed from a series of sample which are 1
2W

seconds

apart. It can be represented as

xi = [x(t0), x(t1), . . . , x(tN )] (1.11)

The time interval between tN and tN−1 is 1
2W

seconds. Thus over a duration of T

s we can obtain complete representation of the signal using 2WT samples. By applying

either of the above two approaches, we can represent the waveform signal x(t) in vector

form.

1.4 FADING CHANNEL

Selection of an adequate mathematical model to represent the physical channel is one of

the crucial things in the design of a communication system [95]. We must collect the

physical parameters of the channel and then formulate a model for it on which system

design can be based.

1.4.1 Physical Description of the Channel

In a real environment, there are often many reflectors such as buildings and trees between

the transmitter and receiver. In this situation, a signal can travel from transmitter to

receiver over several paths, and therefore, several distorted and delayed copies of signals

are received at the receiver. This phenomenon causes fluctuations in the received signal’s

amplitude and phase. In this way, the received signal is either amplified or attenuated.

This is known as multipath fading and can be modeled as in Fig. 1.2.

There are usually two types of fading effects in practice [8]: large-scale fading and

small scale fading. Large-scale fading represents the average signal power attenuation due

to obstacles and large scale reflection and refraction. Because the receiver is represented

as being “shadowed” by the obstacles, large-scale fading is also called shadowing.

Small-scale fading represents the changes in signal amplitude and phase caused by
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small changes in the separation between a receiver and transmitter. These small changes

are often on the order of only a half-wavelength of the signal.

primary


transmitter


CR


direct path


reflected


path


reflected


path


Figure 1.2 Physical model of multipath propagation.

1.4.2 Shadowing

Let us assume that a primary transmitter and a CR are employed with a distance d

between them. It is known that the average received signal power at the CR decreases

with distance d. It can be represented as a function of distance by using a path loss

exponent n [8]

PL(d) ∝ d

d0

n

(1.12)

Or in a dB formulation

PL(dB) = PL(d0) + 10n log10

(
d

d0

)
(1.13)

where n is the path loss exponent which depends on the specific propagation environment

and d0 is a reference distance. In typical wireless environments, n varies between 2 and 6.

However, a question arises from (1.13), namely, what is the situation if the surrounding

environmental clutter is different at two different locations which have the same primary

transmitter and CR separation? After significant measurement work, it can be found that
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at any value of d, the path loss PL(d) at a particular location is random and distributed

log-normally about the mean distance-dependent value. The log-normal means normal in

dB. Thus, we have [8]

PL(dB) = PL(d0) + 10n
d

d0
+ Xσ (1.14)

where the Xσ is a zero-mean Gaussian distributed variable (in dB) with a standard devi-

ation σ (also in dB). The standard deviation is a function of frequency and environment

and typical values range from 2dB (mostly line of sight), to 14dB (a heavily shadowed and

cluttered environment) [8].

The above definition, assumes that the ratio of transmit and receive power γ has a

log-normal distribution for this log-normal shadowing model. The ratio is given by

γ =
4.34√
2πσγ

exp

[
−(10 logγ

10 −µ)2

2σ2

]
(1.15)

where µ and σ are the mean and standard deviation of 10logγ
10 in dB, respectively. The

mean of γ in linear form is then [59]

µγ = exp

[
µ

4.34
+

σ2

2 × 4.342

]
(1.16)

1.4.3 Small-Scale Fading

From section 1.3.1, we have the bandpass transmitted signal as

x(t) = ℜ[s(t) exp(j2πfct)] (1.17)

Owing to the effect of multipath propagation, the received signal is usually the sum

of many delayed and distorted waves of the transmitted signal. The bandpass received

signal may then be written as

y(t) = ℜ
{

N∑

n=1

αn(t)s[t − τn(t)] exp[j(2π(fct + fd,n(t))(t − τn(t)))]

}
(1.18)

The subscript n indexes the nth wave. The attenuation and propagation delay associated

with the nth wave are represented by αn and τn, respectively.
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The fd,n(t) in (1.18) represents the Doppler shift of the nth wave due to motion. If

we assume the nth wave arrives at the receiver at an angle of θn(t) with respect to the

direction of movement, the motion introduces a Doppler shift which is given by

fd,n(t) = fm cos(θn(t)) (1.19)

where fm = v/λc, λc is the wavelength of the arriving wave and v is the speed of the

mobile receiver.

If we rearrange (1.18), the received baseband signal is then given by

r(t) = ℜ
{

N∑

n=1

αn(t)s[t − τn(t)] exp[−j2π(fc + fd,n(t))τn(t) − fd,n(t)t]

}
(1.20)

For simplicity, r(t) can be rewritten as

r(t) = ℜ
{

N∑

n=1

αn(t)s[t − τn(t)] exp[−jφn(t)]

}
(1.21)

where

φn(t) = 2π{(fc + fd,n(t))τn(t) − fd,n(t)t} (1.22)

From (1.21) we can see that the channel can be modelled as a time-variant linear filter

having the impulse response

c(τ, t) =
N∑

n=1

αn(t)δ[t − τn(t)] exp[−jφn(t)] (1.23)

There are two main criteria used to characterize small scale fading [8]. The first is

based on signal time-spreading. As we can see from the above equations, there are n

different received components for a single transmitted impulse. We use the time Tm to

represent the time between the first and last received component. This is known as the

multipath spread of the channel.

The relationship between maximum excess delay time Tm and symbol time Ts can be

used to represent two different fading categories, frequency-selective fading and flat fading.

A channel is frequency selective if Tm is longer than Ts. This situation happens when the
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received multipath components of a symbol lie beyond the symbol’s time duration and

this introduces intersymbol interference (ISI) distortion [8].

A channel is flat fading if Tm is shorter than Ts. In this situation, all the multipath

components of a symbol arrive within a symbol duration. The signal time spreading does

not lead to overlap between neighboring received symbols. Hence, there is no longer any

channel-induced ISI distortion.

The signal time-spreading criterion describes the time dispersive nature of the channel.

However, relative motion between the transmitter and receiver also leads to time variation

of the channel. This motion leads to the propagation paths changing, and therefore, the

signal’s amplitude and phase change at the receiver. Thus, we need another criterion

which is called the time variance criterion to describe the fading phenomenon [13].

By using this criterion, we usually use the coherence time T0 to measure the time

duration over which the channel response is essentially invariant. Fast fading is used to

describe the channel and is indicated by T0 < Ts. In this situation, the time interval over

which the channel is correlated is shorter than the time duration of a symbol. Therefore,

the fading character of the channel changes several times during one symbol period and it

leads to distortion of the baseband pulse shape, resulting in a loss of SNR [8].

A channel is said to be a slow fading channel if T0 is longer than Ts. The time duration

over which a channel is correlated is then longer than the time duration of a symbol.

Hence, the channel does not change during the time in which a symbol is transmitted.

The symbols will not be affected by the pulse distortion as described above.

Furthermore, the relationship between Doppler shift and coherence time is

T0 ≈ 1

fd
(1.24)

where fd or 1/T0 is often regarded as the fading rate of the channel. However, in practice,

T0 is defined more precisely as the time duration over which the channel response to a

signal has a correlation greater than 0.5. The relationship between T0 and fd is then [8]

T0 ≈ 9

16πfd
(1.25)

In practice, the fade rate of the channel is only meaningful if it is defined in relation

to the symbol duration Ts. Thus, we usually normalize the fade rate of the channel with
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respect to Ts or 1/Ts. It is a slow fading channel if fdTs ≪ 1. Otherwise, it is a fast fading

channel [9].

1.4.4 Simulating The Mobile Wireless Channel

The channel is modeled as a slowly varying flat fading channel in this thesis and the

simulation model used Jake’s model which is based on summing sinusoids [11].

In Jake’s model, we assume there are N discrete scatterers surrounding a CR as

illustrated in Fig. 1.3 with the nth scatterer at the angle

θn =
2πn

N
,n = 1, 2, . . . , N (1.26)

with respect to the direction of motion.

Furthermore, the N waves coming from the N scatterers are of equal strength, and

the nth wave experiences a Doppler shift of

fd,n(t) = fm cos(θn(t)) (1.27)

The impulse response of the time-variant multipath fading channel can be modeled

as [12]

c(t) =

[√
2

N1 + 1

N1∑

n=1

sin

(
πn

N1

)
cos(2πfd,n(t)) cos(θnt)

+
1√

N1 + 1
cos(2πfd,n(t)t)

]

+ j

√
2

N1

N1∑

n=1

sin

(
πn

N1

)
cos(2πfd,n(t)) cos(θnt) (1.28)

where N1 is

N1 =
1

2

(
N

2
− 1

)
(1.29)

For example, the transmitted signal is assumed to be a QPSK signal in the simulation

model. Fig. 1.4 illustrates the time variation of the power of the fading process simulated

using Jake’s model for fdTs = 6 × 10−4 over 10000 symbol periods.
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CR

direction of

motion

scatterer n

n
θ

Figure 1.3 Illustrating plane wave arrive.

In a mobile radio channel, the Rayleigh distribution is usually used to describe the

time varying nature of the received envelope of a flat fading signal [8]. The received signal

envelope r is distributed according to the Rayleigh distribution as [59]

p(r) =
r

σ2
exp

(
− r2

2σ2

)
(1.30)

where σ is the rms value of the received signal.

Furthermore, the received signal power r2 is then distributed according to an expo-

nential distribution which is given by

pr2(x) =
1

2σ2
exp

(
− x

2σ2

)
(1.31)
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Figure 1.4 Example of fading channel power response simulated using Jake’s model.

1.5 SCOPE OF THESIS

Based on my literature review, I found that researchers almost always pay much more

attention to how to achieve a higher performance for a spectrum sensing scheme than

how to minimize the sensing time. Nevertheless, it is also very important to minimize

the sensing time. Thus, a key objective of my research is to minimize the average sensing

time.

In the individual detection part of this thesis, the sequential detector is applied in

the AWGN channel and in a log-normal shadowing channel. Sequential detection is found

to need less sensing time on average than a block based energy detector for a similar

level of performance. However, the sensing time of a sequential detector is a random

number, and this implies that it sometimes needs an extremely long sensing time. We

therefore investigate a truncated sequential detector which always needs less sensing time

than an energy detector. However, the truncation also leads to some decrease in detection

performance. We evaluate the performance degradation of a truncated sequential detector

and demonstrate that in most situations it is modest.

In the cooperative sensing work in chapter 3, a selection rule is applied as the fusion

rule to decrease sensing time and to combat the hidden terminal problem. We determine
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how much the sensing time can further be reduced using a selection rule. We also investi-

gate how much the overall performance can be increased using a selection rule. From the

literature review of cooperative sensing schemes in chapter 2, we find that all the fusion

rules in existing schemes are combining rules rather than a selection rule.



Chapter 2

BACKGROUND

2.1 INTRODUCTION

In chapter 1, a general introduction to wireless communication systems is presented. In

this chapter, background information on CR, signal detection theory, individual sensing

and cooperative sensing will be provided. This chapter is organized as follows. In section

2.2.1, the problem of spectrum shortage is discussed. In section 2.2.2, three approaches to

solving this problem are presented. In this thesis, we primarily focus on CR which can be

viewed as the platform on which to deploy any one of these three approaches. Thus, an

overview of CR is presented in section 2.2.3. Since my work is focused on the spectrum

sensing step of CR, which is based on signal detection theory, four fundamental concepts

of signal detection theory are presented in sections 2.3. In section 2.4, three different types

of individual detectors for spectrum sensing are briefly introduced. However, individual

sensing is not reliable enough in practice, and as a result, people often use cooperative

sensing which is described in section 2.5.

2.2 COGNITIVE RADIO

2.2.1 Spectrum Scarcity

Researchers are continually designing more advanced transmission schemes. The motiva-

tion is to improve the capacity of a communication system. The Shannon capacity formula

is given by C = Blog2(1 + S
N

) bits/sec, where C is the ergodic capacity of a bandlimited

AWGN channel, B is the transmission bandwidth and S
N

is the average signal to noise

ratio of the channel. From this we can see that if there is more bandwidth available, then

the capacity of the system will indeed increase. Bandwidth can be viewed as one of the
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most important parameters of communications. Therefore, we may ask if there is more

bandwidth we can use?

Today, wireless communication is used in many applications [8], such as military

communications, TV broadcast, mobile phones, Bluetooth microphones, WiFi systems

and so on. Since spectrum resources are limited, almost all wireless systems are licensed

to use only a fixed assigned bandwidth. In other words, today’s wireless networks are each

based on a fixed spectrum assignment. Governments allocate different frequency bands

to different licence holders or services. For example, European governments assign the

frequency band 890 MHz-960 MHz to the GSM cellular radio system [8]. In this situation,

no one else can use this band at any time. But we can easily find that a specific frequency

band is not used all the time. Fig. 2.1 shows that the actual utilization in the 3-4GHz

band is 0.5% and drops to 0.3% in the 4-5GHz band [23], [24], [48]. It has also been found

that less than 14% of the radio spectrum is truly busy at any given time [23], [24], [48].

Thus, we may ask why don’t secondary users use licensed frequency bands when they are

not being used by the licensed or primary users?

Figure 2.1 A snapshot of the spectrum utilization up to 6GHz in an urban area [23].

2.2.2 Dynamic Spectrum Access

To solve the problem of spectrum scarcity and to increase the efficiency of its use, re-

searchers have proposed an intelligent approach to using the spectrum, known as dynamic

spectrum access. This idea was first presented at the first IEEE symposium on new fron-
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tiers in dynamic spectrum access networks [24]. Dynamic spectrum access approaches can

be considered in terms of three sub models as shown in Fig. 2.2.

Spectrum


scarcity


Dynamic spectrum


access


Dynamic


exclusive


model


Open sharing


model


Hierarchical


access


model


Spectrum


underlay


Spectrum


overlay


Solution


Figure 2.2 The dynamic spectrum access.

The first one is the so-called dynamic exclusive use model [24]. The aim of it is to

improve spectrum efficiency. This model still claims that spectrum is licensed for exclusive

use. The main idea is to introduce flexibility to improve spectrum efficiency. For example,

the licensees can sell and trade spectrum and choose the technology as they wish. In this

situation, the market will play a more important role in using the spectrum. Furthermore,

the regulatory agencies may allocate the spectrum to different services based on the usage

factor of different services.

The second model is the open sharing model, which is also known as spectrum com-

mons [24]. Here, a spectral region is common for all users. However, the commons is not

an unregulated free for all and protocols have been proposed to manage the“commons”.

Detailed information on this model can be found in [41], [52], [53], [54], [55], [56].

The third approach is the hierarchical access model. The basic idea of this model is to

allow the secondary user to use licensed spectrum only when its interference to the primary
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user is limited. There are two different approaches in this model: spectrum underlay and

spectrum overlay.

In the underlay approach, the average transmission power of the secondary user is

below the noise floor of the primary user. In this situation, the secondary user can transmit

all the time. It does not rely on the detection of white space in the spectrum. As Ultra

wideband radio (UWB) spreads the transmission power over a very wide frequency band,

it can be viewed as a suitable technology for this approach [24].

The second approach is spectrum overlay which is also called the opportunistic spec-

trum access [24]. In this approach, there is no restriction on the transmission power of

the secondary user. Instead, the secondary user needs to know when and where they may

transmit. Thus, a detection scheme to identify the white or vacant space in the spectrum

is needed. CR can be applied for this approach.

In summary, dynamic spectrum access is one of the solutions to the spectrum scarcity

problem. There are three basic models for dynamic spectrum access. In this thesis, we

primarily focus on the spectrum overlay approach of the hierarchical access model. This

approach is an important application of CR which was first proposed by Mitola [22] in

2001. Thus, an overview of CR will be provided in the next section.

2.2.3 Software-Defined Radio and Cognitive Radio

CR is based on software defined radio (SDR) [25], [49], [50], [51], [16]. Thus we begin by

introducing SDR. It is a relatively new class of radio architecture, which was first developed

in the 1990’s. A SDR is often described as: “a radio that includes a transmitter in which

the operating parameters of frequency range, modulation type or maximum output power,

or the circumstance under which the transmitter operates in accordance with commission

rules, can be altered by making a change in software without any changes to the hardware

components that affect the radio frequency emissions” [25]. Similar and complementary

software is used to define the receiver in an SDR. Fig. 2.3 shows a generic SDR receiver

architecture. The amplified signal from an antenna is fed directly into a high speed analog-

digital convert (ADC). As the converted signal is merely binary data, digital components

and techniques can be used to process it. Indeed, most implementations are based on

digital signal processing (DSP). A DSP platform can be dynamically reconfigured, leading

to a generic hardware platform, which can be made to transmit and receive a wide variety
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of signals just by reprogramming it.
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Figure 2.3 Generic software radio receiver architecture.

CR is recognized as an advanced form of SDR with the additional ability to sense

its surrounding environment, track potential spectrum changes, and then adapt or react

to its findings. We want to apply CR using the hierarchical access model of dynamic

spectrum access to identify the white space in the spectrum. There are three steps needed

to achieve this objective. These are often represented as a cognition cycle. The steps of

the cognition cycle are spectrum sensing, spectrum analysis, and spectrum decision [22].

The relationship among these three steps is shown in Fig. 2.4.

1. In the spectrum sensing step, a CR monitors the spectral bands under consideration,

obtains their information and detects spectral holes.

2. In the spectrum analysis step, the characteristics of the spectrum holes that are

detected through step 1 are estimated and analyzed.

3. In the spectrum decision step, a CR determines the parameters of transmission such

as data rate, transmission mode, and bandwidth available for transmission based on

the estimated and analyzed results of step 2. The appropriate spectral band is then

chosen according to the user requirements and the radio reconfigured as necessary.

After an operational spectral band is determined by the cognition cycle, communica-

tions can be performed using this spectral band. However, the radio environment changes

dynamically in both time and space, thus the CR should continue monitoring to detect

changes in the surrounding radio environment and the possible emergence of the primary

or licensed user of the band.
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Figure 2.4 Cognition cycle.

2.3 FUNDAMENTALS OF DETECTION THEORY

In this thesis, the work is primarily focused on the spectrum sensing step which is based

on signal detection theory. Thus, the basic concepts of signal detection theory are summa-

rized in this section. The work contained in the following chapters will then utilize these

concepts.

2.3.1 Probability Density Function

Probability density functions (PDFs) are used frequently in this thesis, so we briefly

introduce them in this section.

In practice, signals are usually corrupted by additive noise. Noise is a phenomenon

produced by the superposition of many randomly occurring events and it is not possible to

specify its instantaneous amplitude at a given time. We can only determine the probability
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that it will exceed a given value or lie within a specified range.

Suppose that x is a random variable which is used to represent the instant amplitude

of noise at a certain time. We want to know the probability of x falling within the range

of amplitudes between v1 and v2. We then have

P [v1 ≤ x ≤ v2] =

∫ v2

v1

pX(x)dx (2.1)

where pX(x) is the PDF of the noise signal. It describes the density of probability at each

point in the sample space. The probability of a random variable falling within a given set

is given by the integral of its density over the specified interval. In this thesis, the noise is

modelled as white gaussian noise having the PDF

pX(x) =
1√

2πσn

exp
−(x − µn)2

2σ2
n

(2.2)

where µn is the mean and σn is the standard deviation.

2.3.2 Hypothesis Testing

Signal detection is often modeled as hypothesis testing [26], [36], [57]. The simplest case

occurs when there are only two hypothesis concerning the received signal:

1. Signal not present

2. Signal present

We often denote the hypothesis “signal not present” by H0, and the hypothesis “signal

present” by H1. H0 is often called the null hypothesis while H1 is often called the alternate

hypothesis.

We observe the N samples x1 . . . xN , and our objective is to decide which hypothesis

is true on the basis of this observation. The choice of N is based on system requirements

[26]. In other words, we need to determine whether the sample vector X belongs to the

distribution p(X|H0) or the distribution p(X|H1). p(X|Hi) is the joint conditional PDF

of xN under hypothesis Hi. For independent xn, we have

p(X|Hi) =
N−1∏

n=1

p(xn|Hi) i = 0, 1 (2.3)
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We need a test procedure for making one of two decisions “accept H1” or “reject H1”.

This test procedure is called a decision rule.

Before we determine the optimum decision rule, we first denote two kinds of errors.

If we reject H0 when it is true, we have an error of the first kind. If we accept H0 when

H1 is true, we have an error of the second kind. We can define the probability of error of

the first kind as [36]

α =

∫

X:L(X)>γ

p(X|H0)dX (2.4)

where L(X) is known as a likelihood ratio.

The probability of error of the first kind is also denoted as the probability of false

alarm (PFA). The probability of error of the second kind is defined as

β =

∫

X:L(X)<γ

p(X|H1)dX (2.5)

where γ is the threshold to distinguish two hypotheses. The probability of error of the

second kind is also denoted as probability of missed detection (PM ).

2.3.3 Fixed Sample-Size Test

Ideally, we should choose a decision rule that minimizes both kinds of errors. However, for

a given sample size or number of observations, we can not make both α and β arbitrarily

small.

In practice, the Neyman-Pearson theorem [26] is used to find the optimum decision

rule. This theorem is defined as: To minimize β for a given α, decide H1 if

L(X) =
p(X|H1)

p(X|H0)
> γ (2.6)

where the threshold γ is found from

α = Pr(L(X) > γ|H0) =

∫

X:L(X)>γ

p(X|H0)dX (2.7)

where X = (x1, x2, ..., xN ) is the vector of observations or samples.
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2.3.4 Sequential Test

An important feature of the Neyman-Pearson theorem is that the sample size N is fixed.

Based on predetermined values of α and N , we choose the threshold that minimizes β.

Thus, systems employing the Neyman-Pearson theorem are often called fixed sample-size

systems. In a fixed sample-size system, the most important consideration is how small can

we make β based on the predetermined α and N .

However,there is an alternative approach called a sequential test [27]. The approach

in this case is to fix α and β, and then to choose a test that can achieve these values with

the minimum number of data samples N . In a sequential test system, the most important

aspect is how many samples N we need to achieve the predetermined α and β.

The procedure of a sequential test is shown below: First, we set fixed values, α = α0

and β = β0. Second, a single sample x1 is observed. Third, one of three different decisions

is made based on this sample. The three possible decisions are shown below:

1. Hypothesis H1 is accepted.

2. Hypothesis H1 is rejected.

3. We can not make a decision based on this sample and we need to take more data.

If decision 1 or 2 is made, the test stops. If decision 3 is made, a second sample x2 is

acquired. Based on the combined observation (x1, x2) one of the three decisions needs to

be made. If decision 1 or 2 is made, the test stops. If decision 3 is made, a third sample

x3 is acquired. This sequence is repeated until the test stops.

Although the number of samples required is a random variable and it is occasionally

extremely large before termination of the test, the optimum sequential test needs many

fewer samples on average than a traditional fixed sample-size test to achieve the same α

and β. Generally speaking, it only needs 10-60 percent on average as many samples as a

fixed sample-size test [27], [36], [58].

2.4 INDIVIDUAL DETECTORS

In this section, we will briefly describe three individual detectors which may be applied in

a CR system for spectrum sensing. Here, we define an individual detector to be one at a

single site.
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The aim of spectrum sensing is to detect whether there is a primary signal present in

a specific frequency band [47]. A CR has to detect a weak signal due to a primary user

in a noisy environment through local observation. There are only two different possible

states of a given frequency band: occupied by a primary user or not. We use H0 to denote

the case of no primary signal in a given spectrum band (not occupied) and H1 can be used

to specify the presence of a primary signal (occupied).

2.4.1 Matched Filter

We begin our study of optimal detection approaches by considering the problem of detect-

ing a known deterministic signal in AWGN channel [26]. Here we consider a complex base

band equivalent discrete time signal model in noise. In a sampled form detector tests the

following two hypotheses

H0 : R[n] = W [n]

H1 : R[n] = S[n] + W [n] (2.8)

where S[n] is a known signal, W [n] is white Gaussian noise, n = 1 . . . N , and R[n] is

the received signal at the secondary user. N is the number of samples in the observation

interval. It is chosen based on system requirements, such as the performance to be achieved

or the maximum allowable sensing time.

By using the Neyman-Pearson criterion, we finally obtain the test statistic V as

(details can be found in [26])

V =
N−1∑

n=1

R[n]S∗[n] (2.9)

where ∗ represents the complex conjugate.

The test statistic V is then compared with the threshold γm to form the decision

V > γm Decide signal present

V < γm Decide signal not present (2.10)
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The threshold γm of the matched filter can be found in [26].

The matched filter is the optimal detector for known S[n]. A matched filter is identical

to a correlator [26], and thus many authors also call this optimal detector a correlator or

replica-correlator in some papers. The matched filter requires the primary signal and its

sampled values to be completely known a priori to the receiver. Otherwise, if a priori

information is not very accurate, then the matched filter performance is very poor.

2.4.2 Energy Detector

We now discuss the optimal detection approaches for detecting a random signal in AWGN.

The detector again tests the two hypotheses in sampled form as,

H0 : R[n] = W [n]

H1 : R[n] = S[n] + W [n] (2.11)

where n = 1 . . . N and N is the observation interval or number of samples. S[n] is the

unknown transmitted signal. R[n] is the received signal at the secondary user. By using

the Neyman-Pearson theorem again, we decide H1 if

V =

N−1∑

n=1

|R[n]|2 > γ (2.12)

This detector thus computes the energy in the received signal and compares it to a

threshold γ. Hence, it is known as an energy detector. The derivation of γ will be shown

in the next chapter to require knowledge of AWGN variance.

Energy detection can be performed in either the time domain or the frequency domain.

To measure the signal in a particular frequency band in the time domain, a bandpass filter

is applied to the signal and the power of the output signal samples is measured. To measure

the signal power in the frequency domain, the signal is fast Fourier transformed and the

signal energy is measured in all frequency bins in the target frequency region.

Most researchers investigate energy detection in the time domain. However, a pre-

filter matched to the bandwidth to be searched is used. In practice, this is quite inflexible,

especially in the case of narrowband signals and sine waves. Thus, some researchers [37],
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[38], [39], [40] apply energy detection in the frequency domain by using the FFT instead

of a pre-filter.

Performance of an energy detector is very poor in a noise uncertain environment [2].

Noise in most communications systems is an aggregation of various independent sources

including not only thermal noise at the receiver, but also interference due to nearby unin-

tended emissions. By using the central limit theorem (CLT), it is often assumed the noise

at a receiver is Gaussian. However the actual noise process is only approximately Gaussian

[31]. This is called noise uncertainty. We know that the receiver tries to estimate the noise

variance by taking a large number of samples. But, there will be some residual uncertainty

in this estimation. Owing to this noise uncertainty, there exists a SNR threshold at the

receiver, which we can call SNRwall. If the received SNR at the receiver is smaller than

SNRwall, then accurate detection is impossible [31].

Energy detection makes a decision using only one parameter of the received signal –

energy. It can make a decision quickly with high accuracy when the received SNR is high

enough. In contrast, it makes errors if the received SNR is low, because it does not know

whether the received energy is noise or signal energy.

2.4.3 Feature Detector

In this situation, we need more parameters to distinguish the two hypotheses. Various

forms of feature detector are proposed in the frequency domain for this purpose. The

idea of such alternative detectors can be found in [28], [29], [30]. The modulated signals

are then considered as cyclostationary since their mean and autocorrelation exhibit peri-

odicity. These features are detected by analyzing a spectral correlation function (SCF).

The noise is a wide-sense stationary signal without correlation, while the modulated sig-

nals are cyclostationary with spectral correlation. Thus, the spectral correlation function

can differentiate the noise energy from the modulated signal energy. For this reason, the

cyclostationary feature detector can perform better than the energy detector in a noise

uncertainty environment. Furthermore, it can also show us the type of modulated signal.

However, a cyclostationary feature detector is quite limited at low SNR, has higher com-

putational complexity and requires long observation times. This reduces the throughput

of a CR system.
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2.4.4 Summary of Individual Detector

In summary, a matched filter can be applied only when the signal waveform of the primary

user’s signal is known. Energy detection can be easily applied but performs relatively

poorly when using a short sensing time. A feature detector can provide good performance

given sufficiently long sensing time.

The above three detectors are the most popular detectors in practice. There are also

various other detectors proposed. For example, the author of [32] proposed an energy-

feature based detector. The energy detector is used to determine the presence of signal

energy in the band of interest, and is followed by feature detection to determine if indeed

the signal energy is due to the presence of a primary user when the received SNR is low.

Kim et. al. [42] use a hidden markov model (HMM) to classify the signal features due

to its robust pattern matching capability. The results show that this scheme can detect

and classify signals over a range of low SNRs. Wild et. al. [43] detect the primary

signals based on detecting local oscillator leakage power. By using this method, we can

not only detect the presence of primary signals but also can find their locations. Tian

et. al. [44] proposed a wavelet based approach for wideband spectrum sensing in a CR

system. Pandhripande et. al. [45] applied energy detection in a multiple-antenna system

and analyzed the detection performance. Neihart et. al. [46] proposed a parallel multi-

resolution spectrum sensing approach in a multiple-antenna system. It is found that this

method requires less sensing time than in the case of the single antenna systems.

Severally other detectors have been proposed in an attempt to provide better perfor-

mance than the three popular detectors described above. The alternatives improve various

aspects, such as detecting the primary signal in a low SNR region, improving overall de-

tection performance, reducing sensing time or scanning a larger bandwidth. Our goal is

to reduce average sensing time.

2.5 COOPERATIVE DETECTION

The above detectors are non-cooperative which means a CR detects transmitted primary

signals purely by local observation. However, such an approach does not deal with the

problem of “hidden terminals” [33] which arises when the CR is shadowed or in multipath

fading. Fig. 2.5 illustrates one of the CRs being shadowed by a tree which obstructs the

signal path between the primary transmitter and CR. In this situation, a CR may not
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reliably detect the primary transmitter and may try to use the channel when there is still

a primary signal present.

Tree


CR
 Primary transmitter


1


2


3


4


CR in shadowing


Figure 2.5 Hidden terminal problem in cognitive radio system.

An approach to combatting this problem and increasing the spectral estimation re-

liability is cooperative spectrum sensing. In cooperative spectrum sensing, the spectrum

occupancy is determined by the joint work of several CRs, as opposed to it being deter-

mined by an individual CR.

There are typically two parts of a cooperative sensing network; namely the individual

sensors and the fusion center. Individual sensors can be any of the detectors which are

presented in section 2.4. Each sensor collects information on the primary signal if it is

present, such as energy, log-likelihood ratio and it can even make a local decision based

on this information. It sends this information or local decision to the other sensors and

ultimately to the central processor which is known as the fusion center. The fusion center

makes a final decision based on the received information or local decisions.

In this section, a short literature review of existing cooperative sensing schemes is

presented, and then two different kinds of cooperative detection structure are introduced.



2.5 COOPERATIVE DETECTION 31

2.5.1 Literature Review of Existing Cooperative Sensing Schemes

Some basic ideas of distributed detection which are quite useful for cooperative spectrum

sensing are reviewed in [88], [89]. The fundamentals of cooperative spectrum sensing in

CR can be found in [78]. Based on our literature review of cooperative sensing in CR

system, we have found that researchers generally want to achieve three different objectives

by using cooperative sensing as detailed below.

Most researchers focus on how to achieve good detection performance. Their proposed

cooperative schemes are often fixed sensing time schemes and their aim is to achieve high

performance during this fixed sensing time. Plenty of schemes are applied to achieve this

aim. The most popular one is to use weighting [63], [64], [65], [74], [75] which may relate

to local SNR, distance between primary and secondary user, local PD and so on. All of

these weights represent in some sense the reliability of each local decision. At the fusion

center, the weighted local decisions are combined. In this way, the reliable local decisions

contribute more to the final decision and, therefore, better performance can be achieved.

In addition, there are also several different schemes to achieve high performance,

such as a double threshold energy detector [66], [67], hierarchy rules in the fusion center

[68], adaptive rules in the fusion center [86], a linear quadratic rule in the fusion center

[83], cluster networks [69], setting a more accurate threshold at the fusion center [73]

and increasing sensing time to achieve a higher performance [79]. Some researchers even

separate the spectrum sensing task from the secondary users. They use sensing devices to

detect primary users and propose a handshake technique between a sensing device and a

secondary user [70]. Furthermore, the writers of [84], [85] calculate the optimal number of

individual sensors in a cooperative network for the best detection performance.

The second objective of cooperative spectrum sensing is to transmit local decisions

to the fusion center using a small bandwidth. This problem is crucial in a soft decision

scheme [87]. Thus, how to efficiently quantize the soft information is a hot research area

[76], [77]. Furthermore, censoring schemes are also popular [61], [62]. In order to minimize

the probability of error, sensors are assumed to censor their observations and only transmit

the local likelihood ratio values which do not fall in a certain interval.

The last objective is to reduce sensing time. There are two approaches to minimize

sensing time. The first approach is called the “change detection” algorithm [71]. This

algorithm refers to the detection of abrupt changes in the distribution of observed signals as
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quickly as possible. The detector based on this algorithm is called an event based detector

[72]. This detector does not sense the level of energy. It only senses surges in energy

level. If there is a surge, they will announce that a primary user has entered the system.

Simulation results show that this approach can reduce the sensing time significantly.

The second approach is sequential testing. Some researchers apply the sequential test

at an individual sensor only and a traditional combining scheme at a fusion center [81]

while others apply a sequential test both at the individual sensors and at the fusion center

[80], [82].

2.5.2 Structure of Cooperative Networks

Based on the structures of a cooperative sensor network [34], we can divide the cooperative

sensor networks into two categories. The first is a serial structure, which is illustrated in

Fig. 2.6.

Each sensor makes a decision based on its own observation and the decision from a

previous sensor in a serial structure. In this situation, the accuracy of the final decision is

significantly higher than those of the individual sensors [34].

However, there are two drawbacks to the serial network. Firstly, delay accumulates

since each sensor has to wait for results from the previous sensor. Thus, it tends to need

a long sensing time. Secondly, the performance degrades if the link in the serial stage is

broken at one of the intermediate stages. In other words, the reliability of serial structure

is relatively low.

The second structure is a parallel structure, as illustrated in Fig. 2.7. In this structure,

we assume there are K detectors and the observations at each detector are denoted by

yi, i = 1, . . . ,K. Then, the decision rule can be written as

ui = +1 if H0 is declared

ui = −1 if H1 is declared (2.13)

Each detector uses a decision rule gi(yi) to make the decision ui, i = 1, . . . ,K, given

by (2.13). The individual decision rule gi(yi) can be any of various rules based on system

requirements, including the Neyman-Pearson rule, sequential testing rule and so on. Data
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Figure 2.6 Serial structure of cooperative network.

fusion rules at the data fusion center are often implemented as “k out of K” [35] logical

fusions. This means that if k or more detectors decide H1, then the global decision is H1,

which is

u = 1 if u1 + u2 + . . . + uK > 2k − K

u = −1 otherwise (2.14)

Logical functions such as AND, OR, are special cases of the “k out of K ”rule.
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Figure 2.7 Parallel structure of cooperative network.
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In the parallel structure, all the individual sensors transmit their local decision to the

fusion center simultaneously. They do not wait for other sensors. Under this circumstance,

the sensing time is less than that of the serial structure. Furthermore, the parallel structure

is more reliable than the serial structure because it is not very sensitive to the problem of

broken links. Thus, a parallel structure is employed in the remainder of this thesis.

2.6 SUMMARY

This chapter first provided an overview of spectrum scarcity and dynamic spectrum access.

Due to the problem of spectrum scarcity, researchers have proposed an intelligent approach

to manage the spectrum, known as dynamic spectrum access. By applying this intelligent

approach, we can use the spectrum more efficiently. There are three sub models of dynamic

spectrum access. CR can be viewed as the platform of one of these sub model, namely

the hierarchical access model. Some detailed information concerning SDR and CR was

provided. We also noted that our research is mainly focused on the spectrum sensing step

of CR.

Since spectrum sensing is normally modeled as a signal detection problem, some use-

ful mathematic fundamentals of signal detection theory, such as: PDF, Neyman-Pearson

theorem and sequential testing theory were introduced. However, apart from the sequen-

tial case, the above detectors are all fixed sample-size detectors which means their sensing

times are preset and fixed. In the next chapter, a detector with a flexible sensing time based

on Wald’s sequential test theory is described in detail. The main purpose of applying this

detector is to reduce average sensing time, while retaining good detection performance.

Cooperative sensing was introduced in the last part of this chapter. Cooperative

sensing schemes aim both to achieve better performance and to reduce the sensing time.
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SPECTRUM SENSING BASED ON SEQUENTIAL TESTING

3.1 INTRODUCTION

The design of spectrum sensing schemes has recently attracted significant research atten-

tion. Spectrum sensing is used to detect a primary signal or signals in the presence of

noise over a broad bandwidth. Several detectors that can be applied for spectrum sensing

are reviewed in chapter 2. All of them are fixed sample size detectors which means that

the sensing time or number of observation per test is preset and fixed [47].

If the constraint of fixed sample size is not required, it is possible to construct new

hypotheses tests which on average need a smaller number of samples to achieve the same

PD and PFA. These include the sequential test proposed by A.Wald [27]. However, the

sequential test has the disadvantage that the sample size required to terminate a certain

test is a random variable. Thus, the sequential test sometimes requires an extremely large

number of samples before making a decision. In a cognitive radio system, extremely long

sensing time can’t be tolerated [90]. It is then reasonable to interrupt the procedure before

the test reaches a natural termination resulting in a truncated sequential test, albeit with

some loss of detection performance.

In order to combat the “hidden terminal” problem and to increase the spectral es-

timation reliability, cooperative spectrum sensing is often applied in practice. In the

cooperative spectrum sensing approach, spectrum occupancy is determined by the joint

work of several CRs, as opposed to being determined by an individual CR.

In this chapter, a truncated sequential detector is developed for individual sensing.

The sensing time is a random variable, which on average is less than that for the fixed

sample detector for the same performance. In addition, cooperative spectrum sensing

schemes which are used to improve system performance are reviewed and a new selection
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combining rule based on sequential testing is proposed for reducing sensing time.

We begin by considering a block energy detector in a Rayleigh fading channel. This

will be used as a reference system. A block diagram of an energy detection system is

shown in Fig. 3.1.

This chapter is organized as follows. We will first introduce the structure of the

selected primary transmitter in section 2 and then the energy detector in section 3. The

proposed truncated sequential detector will be described in section 4. In the section 5, we

will describe the proposed cooperative scheme.
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Figure 3.1 Block diagram of an energy detection scheme.

3.2 PRIMARY TRANSMITTER

The modulation type of the primary transmitter can be various. For example, in [87], the

author assumed the primary signal is OFDM modulated while the author of [92] assumed

the primary signal is BPSK modulated. In my thesis, all the detectors are based on

energy detection. In this situation, the actual modulation type is not crucial. Because the

detector only detects the presence of a primary signal by measuring the received signal

energy and does not need to detect the modulation type. Thus, we choose quadrature

phase-shift keying (QPSK) modulation for convenience.
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We assume the primary transmitter has the scheme shown in Fig. 3.2. The input

information source is converted to binary digits (bits). The bits are then grouped to form

digital message symbols. Each symbol mn can be viewed as a member of a finite alphabet

set containing M members. Pulse shaping is the process which transforms message symbols

to waveforms. We assume the primary user transmits a QPSK signal. In this situation,

two baseband waveforms sI(t) and sQ(t) transmit in parallel. They can be represented by

sI(t) =
N∑

n=0

sn
I v(t − nTs) (3.1)

sQ(t) =

N∑

n=0

sn
Qv(t − nTs) (3.2)

where sn
I and sn

Q are message symbols, v(t) is the basic pulse and Ts is the symbol time.
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Figure 3.2 Block diagram of primary transmitter.

For a wireless application, the baseband signal modulates an RF carrier to form a

bandpass signal. The bandpass waveform of a QPSK signal can be represented as

sk(t) = sI(t) cos(wct) + sQ(t) sin(wct) (3.3)

where wc is the carrier frequency. It has the energy per symbol given by [7]

Es =

∫ Ts

0
s2
k(t)dt k = 1, . . . ,M. (3.4)
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Based on the group of symbols sI(t) and sQ(t), the phase of the carrier takes one of

four equally spaced values, namely π/4, 3π/4, 5π/4 and 7π/4. The resulting QPSK signal

can also be defined as [7]

sk(t) =

√
2Es

Ts
cos

[
2πfct + (2k − 1)

π

4

]
, 0 ≤ t ≤ Ts, k = 1, 2, 3, 4 (3.5)

or equivalently

sk(t) =

√
2Es

Ts
cos

[
(2k − 1)

π

4

]
cos(2πfct) −

√
2Es

Ts
sin

[
(2k − 1)

π

4

]
sin(2πfct) (3.6)

Using the basis functions

φ1(t) =

√
2

Ts
cos(2πfct) (3.7)

φ2(t) =

√
2

Ts
sin(2πfct) (3.8)

the QPSK signal can be expressed as a set of four signals

s1(t) =

√
Es

2
φ1(t) +

√
Es

2
φ2(t) (3.9)

s2(t) = −
√

Es

2
φ1(t) +

√
Es

2
φ2(t) (3.10)

s3(t) = −
√

Es

2
φ1(t) −

√
Es

2
φ2(t) (3.11)

s4(t) =

√
Es

2
φ1(t) −

√
Es

2
φ2(t) (3.12)

which are often represented in a signal constellation diagram as shown in Fig. 3.3.

3.3 PROBLEM FORMULATION

A CR attempts to classify the given channel as either occupied by a primary signal or va-

cant. This is a binary testing hypothesis problem. The two hypotheses may be summarized

as
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H0 r[n] = w[n] Channel vacant

H1 r[n] = hs[n] + w[n] Channel occupied (3.13)

where the primary user’s signal, the noise, channel gain and the received signal are denoted

by s[n], w[n], h and r[n], respectively.
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Figure 3.3 Constellation diagram of QPSK.

The detector can make only two decisions, namely,

1. D0 the channel is vacant

2. D1 the channel is occupied

As discussed in chapter 2, there are two types of errors when a CR makes a decision.

When the channel is vacant the CR can declare that the channel is occupied. This is called

a false alarm. The probability of this event is referred to as the probability of false alarm,

PFA, and is defined as
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PFA = P (D1|H0) (3.14)

A false alarm is called an error of the first kind [36].

When the channel is occupied the CR can declare that the channel is vacant. This is

missed detection. The probability of this event is referred to as the probability of missed

detection, PMD, and is defined as

PMD = P (D0|H1) (3.15)

A missed detection is called an error of the second kind [36].

The relationship between PMD and probability of correct detection PD is given by

PD = 1 − PMD (3.16)

The errors PMD and PFA are often used to define the system requirements of practical

detection systems [90]. Our objective is to develop a detector which can satisfy the system

requirements with small sensing time and low computing complexity.

3.4 ENERGY DETECTOR

The energy detector measures the energy of a signal within a certain time and compares

it with a threshold. It can be used for any signal type and requires almost no information

about the primary signal. Energy detection is often modeled as a hypothesis testing

problem and its performance is then evaluated by the probabilities of correct detection

and false alarm (PD, PFA).

In this section, we will first analyze the detection problem mathematically, and then

evaluate the choice of detection threshold.

3.4.1 Statistical Analysis

As shown in Fig. 3.4, a bandpass filter of bandwidth W is first employed to limit the noise

power. The signal power is confined inside a priori known bandwidth W . The energy

detector only looks for the presence of a primary signal within the bandwidth W , and the

activity outside of this band is unknown.
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Figure 3.4 Narrowband detection.

A block diagram of an energy detector is shown in Fig. 3.5. The output of the

bandpass filter first passes through a squaring device, and is then integrated over a fixed

sensing time T to measure the energy of the received signal waveform. The integrator

output is compared with a threshold to make a decision between the two hypotheses.

The signal detection problem is based on the theory of random processing. In order to

analyze it, we need to transform the received signal waveform into a sequence of random

variables. By using the Nyquist sampling theory, we can express each sample of the

received signal in the form

ri = r

(
i

2W

)
i = 1, 2, . . . ,+∞ (3.17)

where W is the bandwidth of the signal. Roughly speaking, the bandwidth of a digital

signal is 1/Ts Hz, where Ts is the symbol duration of the signal [60]. For example, if

we transmit a digital signal at a rate of 1 megasymbol/s we will have a bandwidth of

approximately 1MHz.
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Figure 3.5 Block diagram of an energy detector.

We define the energy per symbol as Es, but we also need to define the energy per

sample, since the samples are summed to form a test statistic. We first define the power

of the signal s(t) as the energy per symbol Es divided by the symbol duration Ts, which

can be represented as

Ps = Es/Ts = EsR (3.18)

where R is the symbol rate of the system.

Suppose the transmitted signal is observed over a time duration of T seconds. Then

the energy per sample is

PsT

2WT
=

Ps

2W
(3.19)

If we use N0 to represent the two-sided noise power density, the noise power is 2WN0

and its energy over the T -second interval is 2N0WT . Then the energy per sample of noise

signal at the pre-filter output is

2N0WT

2WT
=

2N0W

2W
= N0 (3.20)

In a sensing duration of T seconds, there will be 2WT samples. If there is only a

noise signal n(t) present, we can express the energy of the received signal during sensing

time T as

V =

∫ T

0
n2(t)dt =

1

2W

2TW∑

i=1

n2
i (3.21)

where
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ni = n

(
i

2W

)
(3.22)

is a Gaussian random variable with zero mean and variance

σ2
i = 2WN0 (3.23)

However, recalling the definition of the chi-square distribution, we know that the

chi-squared PDF arises as the PDF of x where [26]

x =

N∑

i=1

x2
i if xi ∼ N(0, 1) (3.24)

and the xi are independent and identically distributed. In the following discussion, we will

use the chi-squared PDF to describe the noise signal samples. From (3.24) we find that

the variance of ni must be normalized to 1. Thus, we normalize the random variable ni as

bi =
ni√

2WN0
(3.25)

Moreover, we use V
′

which is monotonic with V to represent the test statistic as

V
′

=
1

N0
V =

1

N0

∫ T

0
n2(t)dt (3.26)

If there is only noise present we finally have

V
′

=
1

N0

∫ T

0
n2(t)dt =

1

2WN0

2TW∑

i=1

n2
i =

2TW∑

i=1

b2
i (3.27)

which can be written in the simple form

V
′

=

2TW∑

i=1

b2
i (3.28)

We need to investigate the distribution of the test statistic V
′

. Under H0, V
′

can be

viewed as the sum of the squares of N standard Gaussian variants with zero mean and

unit variance. Therefore, V
′

is said to have a chi-square distribution with N degrees of

freedom. N equals approximately 2TW which represents the number of samples within

each observation period.
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The simulation model in this thesis is based on a complex baseband model. By using

this model, we can focus on the slowly varying parts of the signal and make the treatment

independent of the carrier frequency. From (3.3) and (3.6) we know that the received

complex baseband signal at a CR, assuming a signal present, is

s̃(t) = sI(t) + jsQ(t) (3.29)

where

sI(t) =

√
2Es

Ts
cos

[
(2k − 1)

π

4

]
k = 0, 1, 2, 3 (3.30)

and

sQ(t) =

√
2Es

Ts
sin

[
(2k − 1)

π

4

]
k = 0, 1, 2, 3 (3.31)

In this thesis we design sensing schemes to detect the presence of a signal based on

energy. Thus, there is no need to distinguish which symbol in the alphabet is transmitted.

QPSK is a nominally constant energy modulation, meaning the energy of the waveform

si(t) for all signals of symbol duration Ts are the same. No matter the value of i, the

energy of the complex baseband signal s̃(t) in a symbol duration Ts is

Ebase = 2 ×
{√

Es

Ts

}2

× Ts = 2Es (3.32)

From this we also know that the relationship of energy in the same duration, Ts, of

transmitted signal s(t) and complex baseband signal s̃(t) is

Es =
Ebase

2
(3.33)

In this situation, we can also express the energy of the transmitted primary signal

under H1 in the observation interval (0,T) as

∫ T

0
s2(t)dt =

1

2

∫ T

0
|s̃(t)|2dt =

1

2W

2TW∑

i=1

α2
i (3.34)

where αi is
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αi = ±
√

Es

Ts
(3.35)

The energy of I and Q channel signals in a given time T is the same.

After the normalization as in (3.25), we obtain the test statistic as

V
′

=
1

N0
V =

1

N0

∫ T

0
s2(t)dt =

2TW∑

i=1

β2
i (3.36)

where

βi =
αi√

2WN0
(3.37)

The energy of the received signal r(t) in the interval (0,T) is

V =

∫ T

0
r2(t)dt =

1

2W

2TW∑

i=1

(αi + bi)
2 (3.38)

and the test statistic V
′

is then given by the normalized value

V
′

=
1

N0

∫ T

0
r2(t)dt =

2TW∑

i=1

(βi + bi)
2 (3.39)

where βi is the normalized primary signal energy and bi is the normalized noise signal.

We note that the noncentral chi-squared PDF with N degrees of freedom and non-

centrality parameter γ =
∑N

i=1 µ2
i arises as the PDF of x where we have the random

variable

x =
N∑

i=1

x2
i if xi ∼ N(µi, 1) (3.40)

Therefore, when signal is present, V
′

can be seen to have a noncentral chi-square

distribution with N degrees of freedom and a non-centrality parameter γ. From (3.39),

we find that the non-central parameter is given by

γ =

2TW∑

i=1

β2
i =

1

N0

∫ T

0
s2(t)dt =

ET

N0
(3.41)

where ET is used to represent the signal energy in the sensing interval of duration T . The
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non-central parameter γ is defined as the received SNR.

Finally, we may represent the test statistic being drawn from a chi square distribution

as

V
′

=





χ2
N H0

χ2
N (γ) H1

(3.42)

where N = 2TW is the number of degrees of freedom. χ2
N represents the chi-square distri-

bution with N degrees of freedom. χ2
N (γ) represents the noncentral chi-square distribution

with N degrees of freedom and noncentrality γ. The first arises when there is no signal

present and the second when a signal is present.

3.4.2 Threshold Derivation

In practice, PFA as defined in (3.14) only depends on the noise variance and N , thus the

threshold can be set regardless of the primary user signal level and the effect of fading

or shadowing. We will select the threshold to obtain a fixed PFA and then calculate the

resulting probability of detection PD.

Other researchers often approximate the PDF of V
′

using a Gaussian distribution if

N is sufficiently large (N > 250) [14]. The threshold λ in a closed form is then given by

[14]

λ = σ2
n(Q−1(PFA)

√
2N + N) (3.43)

However, N usually is much smaller than 250 and, therefore this assumption can’t be

satisfied. We need then to derive the threshold in an alternative way.

The PDF of V
′

[26] under the two hypotheses is

H0 : fV
′ (x|H0) =

1

2
N
2 Γ(N

2 )
x

N
2
−1 exp

(
−1

2
x

)
(3.44)

H1 : fV
′ (x|H1) =

1

2

(
x

γ

)N−2

4

exp

(
−1

2
(x + γ)IN

2
−1(

√
γx)

)
(3.45)

where Γ(x) is the gamma function, I(x) is a modified Bessel function of the first kind and

x is the sample of the received signal.

We may then find the probability of false alarm PFA as
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PFA = Qχ2

N
(λ) =

∫ ∞

λ

fV
′ (x|H0)dx (3.46)

The function Qχ2

N
(λ) can be found from the following equations [26]

Qχ2

N
(λ) =





2Q(λ) if N = 1

2Q(λ) +
exp(− 1

2
λ)

√
π

∑N−1

2

k=1
(k−1)!(2λ)k− 1

2

(2k−1)! if N > 1 and N odd

exp(−1
2λ)

∑N
2
−1

k=0
(λ
2
)k

k! if N is even

(3.47)

We can evaluate the threshold λ using (3.46) and (3.47) for a specified PFA and N .

Note that Q(x) is the Gaussian Q function

Q(x) =
1

2πσ2

∫ ∞

x

exp
−x2

2σ2 dx (3.48)

3.5 ENERGY DETECTOR IN FADING CHANNELS

In this section, we investigate the performance degradation of an energy detector in both

a Rayleigh fading channel and a log-normal shadowing channel.

We first set the threshold to meet the specified PFA. PFA is considered for the case

of no signal transmission and as such is independent of SNR. The threshold in a fading

environment is initially assumed to be the same as in an AWGN channel.

Then, we apply the threshold to the data when the signal is present and compute

the average probability of correct detection PD. We use average probability of correct

detection PD to evaluate system performance because the level of the received signal is no

longer a fixed value in a fading environment. It is a random variable. Thus, the PD for

each individual experiment is quite different and we need to have a sufficient number of

experiments and take the mean value of the PD to estimate PD. It can also be represented

as

PD =

∫

x

PD(γ, λ)fγ(x)dx (3.49)

where fγ(x) is the PDF of the SNR under fading.

The performance of an energy detector in a fading channel in this thesis is based on
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measurement. We apply the Rayleigh fading channel and log-normal channel models in

the simulation and then evaluate the overall PD. From section 3.4, we know that the

performance is related to the received SNR which is often given by (3.41) in the AWGN

channel. However, in a fading environment, we must use the average SNR to evaluate the

performance. The simulation results will be shown in chapter 4.

3.6 SEQUENTIAL DETECTOR

As we indicated in chapter 2, there are primarily two purposes for proposing a new detector.

The first one is to achieve better performance (higher PD) and the second one is to reduce

the sensing time. We also know that a CR must detect the presence of a primary signal

in the following two situations [94].

The first is that of sounding the channel before data transmission to decide whether

the channel is available. The sensing time should be minimized because while the CR is

sensing it can not transmit anything. A long sensing time leads to a decrease in system

throughput.

The second is that of sensing the channel periodically during data transmission to

identify whether the primary signal is returning. In this situation, the sensing time should

also be minimized because the CR must detect the returning primary user rapidly and

then abandon the channel. Otherwise, it will interfere with the primary user.

From the above, we see that a relatively short sensing time is needed in both situations.

Thus, the proposed sequential detector in this thesis is primarily aimed at reducing sensing

time.

The detector proposed here is based on the sequential probability ratio test of Wald

[27]. It can reduce the average sensing time significantly. In a fixed block energy detection

system, one of two possible decisions is made after a fixed number of samples N . However,

in a sequential system, the number of samples needed to make a decision is no longer a

fixed value. It is a random variable because a sequential detector stops testing whenever

the received sample provides sufficient information to accept or reject a hypothesis at a

given performance level.
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3.6.1 Sequential Testing and Threshold Derivation

Following the work of [27], let us suppose rn is a sample at time n and Rn = [r1, r2 . . . rn]T

is the vector of samples up to time n. The likelihood ratio for the nth sample is given by

Λ(rn) =
p(rn|H1)

p(rn|H0)
(3.50)

and for Rn may be written as

Λ(Rn) =
p(Rn|H1)

p(Rn|H0)

=

n∏

k=1

p(rk|H1)

p(rk|H0)

=
p(rn|H1)

p(rn|H0)

n−1∏

k=1

p(rk|H1)

p(rk|H0)

= Λ(rn)Λ(Rn−1) (3.51)

if we assume each sample is independent.

The sequential test is defined as follows: On the basis of each sample, the likelihood

ratio Λ(Rn) is computed and compared with two thresholds A and B. If Λ(Rn) > A,

hypothesis H1 is accepted, and the test is terminated. If Λ(Rn) < B, hypothesis H0 is

accepted, and the test is terminated. If B < Λ(Rn) < A, neither hypothesis is acceptable;

an additional sample is taken and the procedure repeats.

We now need to specify the values of the thresholds A and B. Suppose we perform a

sequential test, and after observing the nth sample, we compute the likelihood ratio

Λ(Rn) =
p(Rn|H1)

p(Rn|H0)
= A (3.52)

where A is the threshold which leads us to the decision “accept H1”. We then have

p(Rn|H1) = Ap(Rn|H0) (3.53)

This equation is equivalent to

∫

Γ1

p(Rn|H1)dRn = A

∫

Γ1

p(Rn|H0)dRn (3.54)



50 CHAPTER 3 SPECTRUM SENSING BASED ON SEQUENTIAL TESTING

where both integrations are over a region Γ1 consisting of all values or samples that lead

to the acceptance of H1. We also know that

∫

Γ1

p(Rn|H1)dRn = PD (3.55)

∫

Γ1

p(Rn|H0)dRn = PFA (3.56)

Finally, we have

A = PD/PFA (3.57)

We use an analogous method to find the value of B and we conclude that the termi-

nation of the sequential test with the acceptance of hypothesis H0 leads to

p(Rn|H1) = Bp(Rn|H0) (3.58)

The above equation is equivalent to

∫

Γ0

p(Rn|H1)dRn = B

∫

Γ0

p(Rn|H0)dRn (3.59)

where both integrations are over region Γ0 consisting of all values or samples that lead to

the acceptance of H0. We also know that

∫

Γ0

p(Rn|H1)dRn = PM (3.60)

∫

Γ0

p(Rn|H0)dRn = 1 − PFA (3.61)

Finally, we have from (3.59) that

B = PM/(1 − PFA) (3.62)

From above derivation, we find that the thresholds A and B are related to PM and

PFA. In the sequential test, thresholds A and B are preset values determined before testing

begins. This also means that the PM and PFA are also preset values.
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3.6.2 Average Number of Samples

Since A, B and Λ(Rn) are nonnegative quantities, a convenient monotonic function for this

application is the logarithm. For convenience in the following, we first define the following

variables

L(rn) = log Λ(rn) = log
p(rn|H1)

p(rn|H0)
(3.63)

L(Rn) = log Λ(Rn) = log
p(r1, . . . , rn|H1)

p(r1, . . . , rn|H0)
(3.64)

where L(rn) represents the log likelihood ratio of the nth samples while L(Rn) represents

the joint log likelihood ratio of n samples.

The average number of samples required is often used to evaluate the performance of a

sequential detector because the required number of samples is a random variable. Let the

random variable n represent the number of samples required to terminate the sequential

test. This implies that at the (n − 1)th stage, log B < L(Rn−1) < log A; but at the nth

stage, either L(Rn) ≤ log B or L(Rn) ≥ log A.

We ignore the excess over the boundary log A and log B [27], if any, and the ran-

dom variable L(Rn) can then take one of two values log A or log B and the four possible

combinations of terminations and hypothesis are

L(Rn) =





PFA log A when H0 is true

PD log A when H1 is true

(1 − PFA) log B when H0 is true

PM log B when H1 is true

We can find the conditional expectation of the random variable L(Rn) as

L(Rn) =





PFA log A + (1 − PFA) log B when H0 is true

PD log A + PM log B when H1 is true
(3.65)

We also know that

L(rn) = log

[
p(rn|H1)

p(rn|H0)

]
(3.66)
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Suppose that N samples r1, . . . , rN are taken and that N is set large enough that n

never exceeds N which means that the test always terminates before the Nth observation.

We then have

N∑

n=1

L(rn) = (L(r1) + L(r2) + . . . + L(rn)) + (L(rn+1) + . . . + L(rN ))

= L(Rn) + (L(rn+1) + L(rn+2) + . . . + L(rN )) (3.67)

The N samples r1, . . . , rN can be viewed as samples of a random variable r. If we

take the expectation of both sides of (3.67) with respect to r, we obtain

NL(rn) = L(Rn) + (N − n)L(rn) = L(Rn) + (N − n̄)L(rn) (3.68)

By simplifying (3.68), the average number of samples n̄ required is then given by

n̄ = L(Rn)/L(rn) (3.69)

If we use n̄(Hi) to represent the expectation of n given that hypothesis Hi is true

and use L(Hi) to represent the expectation of L(rn) given that hypothesis Hi is true, we

finally have under the two hypotheses

n̄(H0) =
PFA log A + (1 − PFA) log B

L(H0)
(3.70)

n̄(H1) =
PD log A + PM log B

L(H1)
(3.71)

We also need to work out the term L(H0) and L(H1) in (3.70) and (3.71). If we assume

that there is no signal present, the term L(H0) is then obtained by

N∑

n=1

L(rn) = NL(H0) (3.72)

and

L(H0) =

∑N
n=1 L(rn)

N
(3.73)
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It means that we add up the log likelihood ratio of N samples and then divide by N to

obtain L(H0). The term L(H1) can be obtained in the same way if we assume that there

is a signal.

Bandpass

filter ∫
−

T

Tn

dt
T

)1(

1
∑
n

n
rL )(

n
r)(tr

Square

device

If

>Log A

OR

<Log B

True

0H 1H

Make the

decision

False

Figure 3.6 Block diagram of sequential detector.

The conditional average percentage saving of the sequential test compared to the fixed

number sample system is given by

PSi = (1 − n̄(Hi)

Nfss
) × 100% i = 0, 1 (3.74)

where Nfss represents the number of required samples for a fixed sample size detection

system at the same performance level.

3.6.3 Structure of Proposed Sequential Detector

The overall structure of the proposed sequential detector is shown in Fig. 3.6. It is an

energy based sequential detector. The first and second blocks in Fig. 3.6 are the same

as the previous block-based energy detector shown in Fig. 3.5. The following integrator

generates a sample rn every T seconds. Then we calculate likelihood ratios based on rn.
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From (3.42) we know that the PDF of the samples Rn is a chi-square distribution when

there is no signal. The PDF of the samples Rn is a noncentral chi-square distribution when

there is a signal present. This can be summarized as

H0 : Rn ∼ χ2
N

H1 : Rn ∼ χ2
N (γ) (3.75)

The PDFs of the chi-square and noncentral chi-square distribution as defined in (3.44)

and (3.45), are complicated. Thus, calculating the likelihood ratio using them is difficult.

In order to reduce system computing complexity, we first need to simplify (3.44)and (3.45).

From [26] we know that (3.44) can be significantly simplified when the number of degrees

of freedom N is 2, as this implies that

N = 2TW = 2 =⇒ T =
1

W
(3.76)

Thus, we choose 1
W

as the sampling interval and the log likelihood ratio of the nth

sample rn is then given by

L(rn) = log
p(rn|H1)

p(rn|H0)

= log
1
2 exp(− rn+γ

2 )I0(
√

γrn)
1
2 exp(− rn

2 )

= log
(
exp

(
−γ

2

)
I0(

√
γrn)

)
(3.77)

where I0 is the zero order modified Bessel function of the first kind and γ is the received

SNR under H1.

For the independent sample rn, L(rn) is then compared with the two thresholds, log A

and log B, to make a decision. If it can not make a decision, a new sample rn+1 is taken

and the value of L(rn) + L(rn+1) is compared with the two thresholds. This procedure

repeats until a decision can be made.

However, in order to achieve further simplification, we know that a zero-th order

modified Bessel function of first kind can be approximately replaced by an exponential
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function when the term
√

γrn is large [93]. Then (3.77) may be rewritten as

L(rn) ∼= log
1
2 exp(− rn+γ

2 ) exp(
√

γrn)
1
2 exp(− rn

2 )

∼= log
(
exp

(
−γ

2
+

√
γrn

))
(3.78)

If we assume that the sequential test terminates at the Nth stage, then the log like-

lihood ratio is

log Λ(Rn) = log
(
exp

(
−γ

2

)
exp(

√
γr1)

)
+ log

(
exp

(
−γ

2

)
exp(

√
γr2)

)

+ . . . + log
(
exp

(
−γ

2

)
exp(

√
γrN )

)
(3.79)

After some simplification, we then have

log Λ(Rn) =
(
−γ

2

)
N +

√
γr1 +

√
γr2 + . . . +

√
γrN (3.80)

If we compare the equation with the two thresholds log A and log B, we have

√
γr1 +

√
γr2 + . . . +

√
γrN > log A + (−γ

2
)N accept H1 (3.81)

√
γr1 +

√
γr2 + . . . +

√
γrN < log B + (−γ

2
)N accept H0 (3.82)

We finally obtain a simple form of (3.77) as

N∑

n=1

yn ≥ log A + γ
2N

√
γ

accept H1 (3.83)

N∑

n=1

yn ≤ log B + γ
2N

√
γ

accept H0 (3.84)

else take one more sample

where yn =
√

rn.

The simulation results for the proposed sequential detector are shown in chapter 4.
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From the simulation results we will see that the proposed sequential detector requires less

average sensing time than the traditional energy detector for the same performance.

3.6.4 Truncated Sequential Test

The sequential test leads to the average number of samples per test being smaller than

that required by the fixed sample system for the same level of performance [36]. However,

an individual test may require an extremely large number of samples before termination.

We want the sensing time of the proposed detector to always be shorter than that of

the block energy detector for a given pair of PD and PFA. Furthermore, the primary

user signal must be sensed periodically within some predetermined time interval. This

interval is determined by the primary user system QoS tolerances. For example, each

DTV channel must be sensed every 2 seconds [90] which means that the CR must make

a decision within 2 seconds. Thus, it is sometimes necessary to interrupt the procedure

before the test reaches a natural termination. This resulting of test is known as a truncated

sequential test.

The procedure for a truncated sequential test is quite similar to that of the sequential

test. We first carry out the sequential test until either hypotheses H1 or H0 is accepted, or

the preset stage Ns is reached. The test terminates even when neither of the hypotheses

has been accepted at the Nsth stage.

A simple rule for the acceptance or rejection of hypotheses Hi at the preset stage Ns

is [27]

if

Ns∑

n=1

L(rn) ≤ 0 accept H0 (3.85)

if

Ns∑

n=1

L(rn) > 0 accept H1 (3.86)

which means that the new threshold is 0 if we take the logarithm of the sample rn. It is

not related to the threshold A and B anymore.

We substitute (3.78) into (3.85) and then we have
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if

Ns∑

n=1

log
(
exp

(
−γ

2
+

√
γrn

))
≤ 0 we accept H0 (3.87)

if

Ns∑

n=1

log
(
exp

(
−γ

2
+

√
γrn

))
> 0 we accept H1 (3.88)

Finally, we have

Ns∑

n=1

yn ≥ Ns
√

γ

2
accept H0 (3.89)

Ns∑

n=1

yn >
Ns

√
γ

2
accept H1 (3.90)

where yn =
√

rn.

This truncated procedure guarantees that the required number of samples will never

exceed Ns. However, the resulting PMD and PFA of the truncated sequential test is greater

than for the standard sequential test. The degradation of performance will be evaluated

in the next chapter using simulation.

3.7 COOPERATIVE SENSING

The above proposed detector is for individual sensing which means the CR detects the

transmitted primary signals using only local observations. However, a CR may not detect

the primary transmitter owing to the effect of shadowing which is often called the “hidden

terminal” problem [47].

An approach to combatting this problem and increasing the spectral estimation re-

liability is cooperative spectrum sensing. In cooperative spectrum sensing, the spectrum

occupancy is detected by the joint work of several CRs, as opposed to being determined

by an individual CR.

3.7.1 Motivation for Proposed Cooperative Sensing Scheme

Based on the literature review in chapter 2, we can summarize the objective of cooperative

sensing as “achieving high performance within a short sensing time”. However, there is
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always a tradeoff between performance and sensing time. Although some schemes can

achieve high performance with a relatively small sensing time, the computational com-

plexity of these schemes is high.

The proposed scheme in this thesis is mainly focused on how to reduce sensing time

for a given level of performance. Sensing time should be minimized because the CR system

can’t communicate during this time. In addition to reducing sensing time, we also consider

performance and system complexity. In summary, the objective of the scheme is to achieve

reasonable performance quickly using a simple system structure.

In a wireless communication system, the channel conditions are often determined by

multipath fading and shadowing. These effects all lead to some degradation of detector

performance which leads to long sensing times and poor performance. Fortunately, these

effects differ at different locations and times. Thus, it is reasonable to assume that not all

CRs are in the worst channel conditions simultaneously. We can then take advantage of

this assumption.

3.7.2 Selection Combining Rule

Previous researchers [63], [66] [68], [86], [73], [79] often assume that the individual sensing

results are combined at a fusion center from each sensor simultaneously because a fixed

sample system is applied. Then the fusion center makes the final decision based on these

results. However, if sequential testing is applied at each individual sensor, the sensing time

of each individual sensor is a random variable. Individual decisions will then be received

at a fusion center at different times.

In order to model the hidden terminal problem in the preset system, only shadowing

is considered. Fig. 3.7 illustrates a cooperative scheme using the sequential test and

selection combining rule in a shadowing environment. We first assume that the noise

power at each sensor is the same. The received signal energy is different for various

sensors due to shadowing and, therefore, the sensing time of each individual sensor would

also be different. We also assume that the sensing time of sensor 1 in Fig. 3.7 is the

shortest and it transmits its individual decision to the fusion center immediately .

The fusion center does not wait for all the individual results to be collected. It starts

testing when the first individual result (sensor 1’s decision) is received, and then makes a

final decision based on it. Thus, the required sensing time is shorter than the traditional
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one which waits for all the individual results. The flowchart of the proposed cooperative

scheme is shown in Fig. 3.8.

Tree


1


2


3


4


Primary transmitter
CR


House


Figure 3.7 Cooperative sensing in shadowing environment.

We can also express this scheme in a mathematical way. The path between transmitter

and receiver is often characterized by rapid Rayleigh fluctuations about a slowly varying

mean signal strength so that the received signal is given by [91]

r(t) = l(t)f(t)s(t) + n(t) (3.91)

where s(t) is the transmitted signal, f(t) is the signal fluctuation due to Rayleigh fading,

l(t) is caused by the shadowing and n(t) is noise.

In order to model the “hidden terminal” problem, we ignore the effect of Rayleigh

fading and then we obtain

r(t) = l(t)s(t) + n(t) (3.92)

where l(t) is characterized by a log-normal distribution. We can denote the received signal

of each of k sensors at time i as

ri,k = li,ksi,k + nk (3.93)

It is also assumed that the noise power nk at each sensor is the same. However,

the received signal power is different for various sensors due to the shadowing li,k. In
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Figure 3.8 Flowchart of the proposed cooperative sensing scheme.
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this situation, the sensing time tk of each individual sensor is also different. The fusion

center makes the final decision based on the first incoming individual sensing result and

the overall sensing time is represented as

toverall = min{tk} (3.94)

In conclusion, in order to make the final decision quickly, we ignore the individual

results from the sensors which have a relatively long sensing time.

3.7.2.1 Soft Versus Hard Decision Combining

There are two different kinds of combining approaches in a cooperative scheme. The first

kind is called soft decision combining. By using this combining approach, each individual

sensor forwards some parameters to the fusion center directly. These parameters can be

received signal energy, likelihood ratio and so on. The fusion center makes the final decision

based on these parameters. The individual sensor does not make any local decision. It

only collects parameters and forwards them to the fusion center.

The second one is called hard decision combining. By using this combining approach,

each individual sensor makes its own decision and forwards it to the fusion center. The

fusion center makes a final decision based on these local decisions. However, the overall

performance of hard decision is often worse than that of soft decision combining [63]. For a

given PFA, the overall PD can be improved up to 40% if soft decision combining is applied.

Hard decision combining is applied in my scheme. Let us use uk to represent the

individual decision of the kth sensor as

uk = +1 if H1 is declared

uk = −1 if H0 is declared (3.95)

which means that the kth individual sensor sends a “1” to the fusion center when H1 is

declared,“-1” when H0 is declared. The fusion center makes the final decision based on

one of the k individual results according to selection combining rules.

There are two reasons for applying hard decision combining. The first is that the hard

decision combining rule is a low complexity rule which is easy to implement. The second
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reason is that forwarding parameters requires more bandwidth than only forwarding local

decisions. Forwarding parameters may overload the entire network.

3.7.2.2 Comparison of the New Scheme and Traditional Scheme

The traditional scheme can be viewed as a democratic scheme. Each sensor transmits its

decision to the fusion center and the fusion center makes a final decision based on these

results. The “AND”, “OR” or majority rule is applied in the fusion center.

In contrast, the new scheme is a dictatorial scheme. The fusion center makes a final

decision based only on the result from the quickest individual sensor. It ignores the results

from the remaining sensors and, therefore, the overall sensing time can be minimized.

The performance of this selection combining rule is based on measurement and it will

be presented in the next chapter. From that, we can find out the cost of the new selection

combining rule.

3.8 SUMMARY

This chapter has provided detailed information on the proposed detectors and cooperative

sensing schemes based on it. It argues that the proposed sequential and truncated sequen-

tial detectors can save sensing time compared to an energy detector. Based on research on

existing cooperative sensing in CR systems, we developed a cooperative scheme to reduce

sensing time with simple computational complexity. Simulation results for the proposed

detectors and cooperative sensing scheme will be presented in the next chapter.



Chapter 4

SIMULATION RESULTS

4.1 INTRODUCTION

In this chapter, computer simulation results for the detectors and cooperative scheme pro-

posed in chapter 3 are presented. There are two main purposes of this chapter. The first

one is to investigate how much the sensing time can be reduced using the proposed detec-

tors and the cooperative scheme. The second purpose is to investigate the performance

(PD) of the proposed detectors and the cooperative scheme. The simulation environment is

introduced in the first section. Then the simulation results for the proposed detectors are

presented. Finally, simulation results for the proposed cooperative scheme are presented.

The fixed sample size energy detector is simulated as a reference system.

4.2 SIMULATION ENVIRONMENT

4.2.1 AWGN Channel

The primary signal is assumed here to be a QPSK signal. QPSK is used throughout as an

example signalling format so as to consider energy detection of signals having a non-zero

bandwidth. Almost any other format could equally well be used. In the AWGN channel,

the primary signal is only perturbed at the detector by AWGN. We often use the notation

Es/N0 to define the ratio of primary signal energy to noise energy [59], [7], [60], [8]. The

energy per symbol Es and the noise power spectral density N0 are defined as

Es =
Ps

R
(4.1)

N0 =
Pn

R
(4.2)



64 CHAPTER 4 SIMULATION RESULTS

where Ps is the signal power per symbol, R is the symbol rate and Pn is the average noise

power.

If we divide (4.1) by (4.2), we have

Es/N0 =
Ps

R
· R

Pn

=
Ps

Pn
(4.3)

and Pn can be written as

Pn =
Ps

Es/N0
(4.4)

When Es/N0 is in dB, (4.4) can be rewritten as

Pn = Ps ·
1

10
Es/N0

10

(4.5)

Since the Gaussian noise is equally distributed in the in-phase and quadrature-phase

channels, we finally define the average noise power per dimension as

attn =

√
1

2
Pn (4.6)

However, as discussed in chapter 3, we also need to define the energy per sample

because the proposed detector observes samples not symbols.

Suppose the sensing time is T , then the energy per sample, assuming Nyquist rate

sampling, is

PsT

2WT
=

Ps

2W
(4.7)

The noise power is Pn and its energy in the T seconds interval is PnT . Then the

energy per sample of the noise signal is

PnT

2WT
=

Pn

2W
(4.8)

If we divide (4.7) by (4.8), we have
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Ps
2W
Pn
2W

=
Ps

Pn
(4.9)

which is exactly the same as (4.3).

4.2.2 Fading Channel

When we consider the fading channel, the received signal’s amplitude is attenuated by a

fading factor α. After passing through a fading channel, the signal is also perturbed by

AWGN. Therefore, we define the instantaneous signal to noise ratio per symbol as [59] [8]

γ =
α2Es

N0
(4.10)

The average SNR per symbol is then

γ̄ =
α2Es

N0
(4.11)

where α2 is the mean-squared value of α.

There are two different kinds of fading channel considered in this thesis. The first

is a non-selective Rayleigh fading channel. In this situation, the fade factor assumed is

constant over one symbol period, but may change from symbol to symbol.

The second is a log-normal shadowing channel with a standard deviation of 6dB. The

standard deviation of a log-normal shadowing channel is typically between 2dB and 14dB

[8].

4.3 SIMULATION PARAMETERS

There are two important system parameters considered in this chapter. The first is the

average number of samples n̄ required to make a decision. The sensing time of a sequential

detector is often evaluated by n̄ [27], [36]. The average number of samples required is given

by

n̄ =
sum(number of required samples in each simulation loop)

number of simulation loops
(4.12)
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In each simulation loop, the primary transmitter transmits a certain number of sam-

ples. The number of transmitted samples must be larger than the number of samples

to make a decision, otherwise the detector does not have enough samples to make a de-

cision. The number of transmitted samples in each simulation loop does not affect the

performance of the detector. The decision interval affects the performance of the detector.

The second parameter is the average percentage saving (PS) of a sequential detector

compared to the block based energy detector [36]. The PS can be represented as

PS =

(
1 − n̄

Nfss

)
× 100% (4.13)

where Nfss represents the required number of samples for the block based energy detector

to achieve a given performance level.

4.4 INDIVIDUAL SENSING PERFORMANCE

4.4.1 Energy Detection in Fading Channels

In this subsection, we present the performance of an energy detector in a Rayleigh fading

channel and in a log-normal shadowing channel with different average received SNR and

decision interval. We consider a primary transmitter using QPSK modulation. The block

based energy detector compares the received signal energy over the decision interval with

the threshold, and then makes a decision. It was explained in chapter 3 that the threshold

of an energy detector in a Rayleigh fading channel is the same as in an AWGN channel.

After normalization as presented in chapter 3, we find that the threshold is related to the

preset PFA and decision interval [14].

A Rayleigh fading channel can be modeled using Jake’s model which is discussed in

chapter 1. We are interested in describing the performance of a detector by its comple-

mentary receiving operating curves (complementary ROC curves) which plot PM versus

PFA for different values of the parameters of interest [26].

We assume that the primary transmitter transmits 100 samples in each simulation

loop for the block based case. 100 samples is an arbitrary choice which is larger than the

decision interval. The size of the decision interval is set to 10 samples in Fig. 4.1. In this

figure, the energy detector takes the first 10 samples and then makes a decision in each
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simulation loop. Once a decision is made, a simulation loop ends and the next simulation

loop starts.

Fig. 4.1 illustrates the complementary ROC curves for a Rayleigh fading channel for

different average received SNR with a constant decision interval. In practice, PFA and

the decision interval are used to set the threshold. For a given average received SNR and

decision interval, our purpose is to evaluate the achievable value of PM . In Fig. 4.1, we

see that PM decreases as PFA increases. This is because the value of PFA affects the

threshold. A larger PFA results in a smaller threshold and, therefore, a relatively small

PM can be achieved. One can also notice that for a given PFA, the PM decreases as the

average received SNR increases. The reason is that a primary signal with a larger average

received SNR leads to a smaller PM if the threshold is fixed.

Fig. 4.2 and Fig. 4.3 illustrate the complementary ROC curves for a Rayleigh fading

channel for different average received SNRs with two different sizes of decision interval.

The decision intervals of Fig. 4.2 and Fig. 4.3 are 6 samples and 20 samples, respectively.
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Figure 4.1 Complementary ROC curves for a Rayleigh channel at different average SNR (10 samples
per block).

Figs. 4.4, 4.5 and 4.6 illustrate the complementary ROC curves for a log-normal

shadowing channel with a standard deviation of 6dB for different average received SNR
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and decision interval. The size of the decision intervals in Figs. 4.4, 4.5 and 4.6 are 6, 10

and 20 samples, respectively. From these three figures, we see that PM decreases as PFA

increases and we also notice that for a given PFA, PM decreases as the average received

SNR increases.
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Figure 4.2 Complementary ROC curves for a Rayleigh channel at different average SNR (6 samples per
block).

Fig. 4.7 shows the performance of an energy detector over a log-normal shadowing

channel for different values of the standard deviation of shadowing. The size of decision

interval in Fig. 4.7 is 10 samples and the average received SNR is 10dB. From Fig. 4.7 we

can see that PM increases as the standard deviation (std) of the shadowing increases.

4.4.2 Sequential Detection

In this subsection, we investigate the performance of the proposed sequential detector in

terms of the average number of samples required and distribution of the number of required

samples. We still consider a primary transmitter using QPSK modulation. The structure

of the sequential detector has been presented in chapter 3.

The number of samples required for the sequential detector to make a decision is a

random variable and it may take extremely large values. Thus, we initially assume the
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Figure 4.3 Complementary ROC curves for a Rayleigh channel at different average SNR (20 samples
per block).
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Figure 4.4 Complementary ROC curves for a log-normal shadowing channel at different average SNR
(6 samples per block).
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Figure 4.5 Complementary ROC curves for a log-normal shadowing channel at different average SNR
(10 samples per block).
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Figure 4.6 Complementary ROC curves for a log-normal shadowing channel at different average SNR
(20 samples per block).
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Figure 4.7 Complementary ROC curves for log-normal shadowing channel with different standard de-
viation values of the shadowing at a received SNR of 10dB (10 samples per block).

primary transmitter transmits 500 samples in each simulation loop for the sequential based

case. In each simulation loop, the sequential detector starts at the first received sample

and terminates when it makes a decision. The number of samples required is the number

needed for the sequential detector to reach a decision.

Fig. 4.8 shows the distribution of the number of samples required for the sequential

detector when there is a primary signal in the AWGN channel. The x label represents

the number of samples required in a given simulation loop. The y label represents the

frequency of a certain number of required samples in 1000 simulation loops. For example,

in Fig. 4.8, the sequential detector only needs 5 samples to make a correct decision for

120 times out of 1000 simulation loops. Furthermore, we only plot simulation loops which

make a correct decision.

The preset PD is 0.99 in Fig. 4.8. We only plot the simulation loops which make the

correct decision and find that the decisions of 989 simulation loops are correct. It means

that PD is 0.989 which is very close to the preset 0.99. Furthermore, the average number

of samples required per decision in this figure is 8.12.

Fig. 4.9 shows the distribution of the number of required samples for the proposed
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Figure 4.8 Histogram of the required number of samples for a AWGN channel at a received SNR of 5dB
(PD = 0.99 and PF A = 0.01).
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Figure 4.9 Histogram of the required number of samples for a AWGN channel (no signal present, PF A =
0.01).
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Figure 4.10 Histogram of the required number of samples for a AWGN channel at a received SNR of
0dB (PD = 0.99 and PF A = 0.01).

sequential detector in the AWGN channel when there is no primary signal present. The

preset PFA is 0.01. We still only plot the simulation loops which make correct decisions

and find that 992 simulation loops make the correct decision. It means that PFA is 0.008

which is very close to the preset 0.01. The average number of required samples in this

figure is 9.97.

The purpose of plotting Fig. 4.9 is to demonstrate that our proposed sequential

detector can achieve both the preset value of PD and PFA. It implies that the proposed

sequential detector works well. In the following sections, we will not plot the distribution

of the number of samples required when there is no primary signal. The reason is that we

can’t determine the effect of shadowing and received SNR if there is no primary signal.

This can occur only when the primary signal is present.

Fig. 4.10 and Fig. 4.11 show the distribution of the number of required samples for

the proposed sequential detector for different received SNRs in the AWGN channel. The

preset PD is 0.99 and PFA is 0.01. The decisions of 989 simulation loops are right in

Fig. 4.10 and 988 are correct in Fig. 4.11. Figs. 4.8, 4.10 and 4.11 confirm that there is

no improvement in the number of correct decisions when the received SNR is increased.
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However, the average number of required samples for Fig. 4.10 and Fig. 4.11 are 50.28

and 2.04 which means that the average number of required samples is sharply reduced

when the received SNR is increased. In conclusion, we can say that a larger SNR leads to

making the decision more quickly on average.

At this stage, we want to know what affects PD and PFA for the sequential detector.

Fig. 4.12 and Fig. 4.13 give us the answer. Fig. 4.12 and Fig. 4.13 show the distribution of

the number of samples required across different preset PD and PFA in the AWGN channel.

The preset PD and PFA in Fig. 4.12 are 0.90 and 0.01, respectively. The preset values of

PD and PFA in Fig. 4.13 are 0.80 and 0.01, respectively. The decisions of 901 simulation

loops are correct in Fig. 4.12 and 802 simulation loops are correct in Fig. 4.13 . The

average received SNR for these two figures are the same and set to 5dB.
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Figure 4.11 Histogram of the required number of samples for a AWGN channel at a received SNR of
10dB (PD = 0.99 and PF A = 0.01).

Furthermore, the average number of samples required per decision for Fig. 4.12 and

Fig. 4.13 are 7.85 and 6.18, respectively. These two figures prove that if we increase the

preset value of PD, the average number of samples required also increases.

Fig. 4.14 compares the average number of samples required per decision of the pro-

posed sequential detector with the block based energy detector for the same performance
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Figure 4.12 Histogram of the required number of samples for a AWGN channel using preset PD = 0.9
and PF A = 0.01 (received SNR=5dB).
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Figure 4.13 Histogram of the required number of samples for a AWGN channel using preset PD = 0.8
and PF A = 0.01 (received SNR=5dB).
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Figure 4.14 Average number of required samples for sequential detector and block based energy detector
for a AWGN channel at different received SNR using PD = 0.99 and PF A = 0.01.
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Figure 4.15 Average percentage saving (PS) of sequential detector compared to the block based energy
detector for a AWGN channel.
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in the AWGN channel. The preset value of PD and PFA of the sequential detector are

0.99 and 0.01, respectively. The number of required samples for the block based energy

detector to achieve the same performance is also plotted at different SNR. From Fig. 4.14

we find that the sequential detector saves 45% − 85% of the number of required samples

compared to the block based energy detector for the same performance. It means that on

average, the sequential detector will detect the primary signal more quickly at the same

level of detection accuracy.

Fig. 4.15 demonstrates the average percentage saving (PS) of a sequential detector

compared to the block based energy detector. From Fig. 4.15 we can see that the aver-

age number of samples required using a sequential detector for different received SNR is

significantly lower. For example, when the received SNR is 0dB, we can save 48% of the

number of required samples by using a sequential detector. Furthermore, we also find that

the PS increases gradually from lower SNR to higher SNR.

4.4.3 Truncated Sequential Detector

As we discussed in chapter 3, the number of required samples for each decision should be

minimized. Furthermore, the number of samples required for the sequential detector to

make a decision is a random variable and it may take extremely large values. Thus we also

need to determine or specify the maximum number of required samples in each decision.

For the above two purposes, we investigate the truncated sequential detector in terms of

the distribution of number of required samples and the degradation of performance due

to truncation. By its definition, the average number of required samples for a truncated

sequential detector will be lower than for the sequential detector. We also investigate how

much the average number of required samples is reduced using the truncated sequential

detector.

The decision rule at the truncation point was presented in chapter 3. The truncation

point is the number of required samples for a block based energy detector to achieve the

same performance. In this situation, the truncated sequential detector always requires

fewer samples than the block based energy detector.

Figs. 4.16, 4.17 and 4.18 show the distribution of the number of samples used by

a truncated sequential detector for different received SNR in the AWGN channel. We

still only plot the correct decisions. The preset values PD and PFA are 0.99 and 0.01,
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respectively. The truncation point is 97 in Fig. 4.16, meaning simulation loops are forced

to make a decision after 97 samples. This is why we find the rightmost bar in Fig. 4.16 is

relatively large. Clearly at this low value of SNR, a significant number of decisions require

97 or more samples to make a decision. The truncation points in Figs. 4.17 and 4.18 are

29 and 14, respectively.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Required number of samples

N
um

be
r 

of
 ti

m
es

Figure 4.16 Histogram of the required number of samples for the truncated sequential detector for a
AWGN channel at a received SNR of 0dB (truncation point=97, preset PD = 0.99 and preset PF A = 0.01).

The average number of required samples in Figs. 4.16, 4.17 and 4.18 are 46.89, 8.02

and 2.01, respectively. We find that the average number of required samples of a truncated

sequential detector is smaller than for the sequential detector as the maximum number

of samples is bounded. However, we also find that the reduction in average number of

required samples is small when the received SNR is relatively large. This phenomenon is

shown in Fig. 4.19.

From chapter 3, we know that the performance of the truncated sequential detector

is worse than the sequential detector due to truncation. Based on the truncation points

given above, the achieved PD is shown in Fig. 4.20 for various received SNR. This figure

demonstrates the degradation of PD with respect to the preset PD. The preset PD is 0.99

in Fig. 4.20 which is the design value for a sequential detector.
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Figure 4.17 Histogram of the required number of samples for the truncated sequential detector for a
AWGN channel at a received SNR of 5dB (truncation point=29, preset PD = 0.99 and preset PF A = 0.01).
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Figure 4.18 Histogram of the required number of samples for the truncated sequential detector for a
AWGN channel at a received SNR of 10dB (truncation point=14, preset PD = 0.99 and preset PF A = 0.01).
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Figure 4.19 Average number of required samples for the truncated sequential detector for a AWGN
channel at different received SNR.
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Figure 4.20 Performance degradation of truncated sequential detector compared to sequential detector
for a AWGN channel at different received SNR.
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4.4.4 Truncated Sequential Detector in Shadowing Channel

In this section, we apply a truncated sequential detector in the log-normal shadowing

channel with standard deviation of 6dB. In each simulation loop, we extend the number

of transmitted samples to 2000 samples. From Fig. 4.21 we can see that in a shadowing

environment a larger number of samples should be taken before any truncation of the

process.

Figs. 4.22, 4.23 and 4.24 show the distribution of the number of required samples for

the truncated sequential detector in the log-normal shadowing channel. The preset value

of the PD equals 0.99 and PFA equals 0.01. The average received SNR of Figs. 4.22, 4.23

and 4.24 are 5dB, 10dB and 15dB, respectively. The truncation point is set as the number

of samples required for a block based energy detector to achieve the same performance as

a sequential detector. The truncation point of Figs. 4.22, 4.23 and 4.24 are 99, 28 and

16, respectively. The average number of required samples in Figs. 4.22, 4.23 and 4.24 are

44.26, 11.17 and 4.31, respectively. Fig. 4.25 shows that the average number of samples

required is reduced if the average received SNR is increased. Moreover, at moderate to

high SNR, the degradation is small.
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Figure 4.21 Histogram of the required number of samples for the sequential detector for a log-normal
shadowing channel at a received SNR of 5dB (σdB = 6dB, preset PD = 0.99 and preset PF A = 0.01).
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Figure 4.22 Histogram of the required number of samples for the truncated sequential detector for a log-
normal shadowing channel at a received SNR of 5dB (σdB = 6dB, truncation point=99, preset PD = 0.99,
preset PF A = 0.01).
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Figure 4.23 Histogram of the required number of samples for the truncated sequential detector for a log-
normal shadowing channel at a received SNR of 10dB (σdB = 6dB, truncation point=28, preset PD = 0.99,
preset PF A = 0.01).
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Figure 4.24 Histogram of the required number of samples for the truncated sequential detector for a log-
normal shadowing channel at a received SNR of 15dB (σdB = 6dB, truncation point=16, preset PD = 0.99,
preset PF A = 0.01).
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Figure 4.25 Average number of required samples reduction for the truncated sequential detector for a
log-normal shadowing channel at different received SNR (σdB = 6dB).
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Figure 4.26 Performance degradation for the truncated sequential detector for a log-normal shadowing
channel at different received SNR (σdB = 6dB).

Now, we need to determine the performance degradation of a truncated sequential

detector compared to a sequential detector in the shadowing channel. It is illustrated in

Fig. 4.26. The preset value of PD and PFA are 0.99 and 0.01 in this figure. It is shown

that the preset PD can not be reached if we apply a truncated sequential detector. We

also find that the truncated sequential detector loses 10% of its performance at an average

SNR of 5dB while it loses 2% of its performance at an average SNR of 15dB. Thus, we

can say that the achieved PD gradually increases from lower SNR to higher SNR.

4.5 COOPERATIVE SENSING PERFORMANCE

In this subsection, we present simulation results of the selection combining rule in the

cooperative scheme. We still consider a primary transmitter using QPSK modulation. We

still assume the primary transmitter transmits 500 samples in each simulation loop for the

cooperative case. Each individual sensor employs a sequential detector. The fusion center

applies the selection combining rule which is proposed in chapter 3. In order to model the

“hidden terminal” problem, the channel is assumed to be a log-normal shadowing channel

with a standard derivation of 6dB.
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On employing the selection combining rule described in chapter 3, Figs. 4.27, 4.28,

4.29 and 4.30 demonstrate the distribution of the selected number of required samples at

the fusion center for different numbers of individual sensors. The x label represents the

selected number of required samples at the fusion center in a given simulation loop. The

y label represents the frequency of a certain selected number of samples required in 1000

simulation loops. The average received SNR, preset PD and PFA are the same for each

individual sensor. The average received SNR is 5dB. The preset PD and PFA are 0.8 and

0.01. The number of individual sensors Nsensor in Figs. 4.27, 4.28, 4.29 and 4.30 are 2, 4,

6 and 8, respectively.
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Figure 4.27 Histogram of the required number of samples at the fusion center with Nsensor = 2 for a
log-normal shadowing channel (σdB = 6dB, SNR=5dB, preset PD = 0.8 and preset PF A = 0.01).

The average number of required samples in Figs. 4.27, 4.28, 4.29 and 4.30 are 9.27,

3.11, 1.92 and 1.53, respectively. Fig. 4.31 plots these four values together and implies

that the average number of samples per decision required at the fusion center to make the

final decision decreases as the number of individual sensors increases. It implies that as

the number of individual sensor increases, the fusion center makes the final decision more

quickly. Furthermore, the truncated sequential detector is not used in the cooperative

scheme. The fusion center chooses the first coming individual result. Thus, from Fig.
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4.31, we find that the average number of required samples at the fusion center can be

reduced to a very small value when the number of individual sensor is increased. There

is no need to truncate at the individual sensor, thus avoiding performance loss due to

truncation.
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Figure 4.28 Histogram of the required number of samples at the fusion center with Nsensor = 4 for a
log-normal shadowing channel (σdB = 6dB, SNR=5dB, preset PD = 0.8 and preset PF A = 0.01).

Fig. 4.32 shows the performance of the selection combining rule as the number of

sensors increases. The average received SNR, preset PD and PFA are the same for each

individual sensor. The average received SNR is 5dB. The preset PD and PFA are 0.8 and

0.01 at the individual sensors. From Fig. 4.32 we can see that the overall performance of

cooperative sensing is better than that of the individual sensing. The overall performance

increases as the number of sensors increases.
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Figure 4.29 Histogram of the required number of samples at the fusion center with Nsensor = 6 for a
log-normal shadowing channel (σdB = 6dB, SNR=5dB, preset PD = 0.8 and preset PF A = 0.01).
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Figure 4.30 Histogram of the required number of samples at the fusion center with Nsensor = 8 for a
log-normal shadowing channel (σdB = 6dB, SNR=5dB, preset PD = 0.8 and preset PF A = 0.01).



88 CHAPTER 4 SIMULATION RESULTS

2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

10

Number of sensors

A
ve

ra
ge

 n
um

be
r 

of
 r

eq
ui

re
d 

sa
m

pl
es

Figure 4.31 Average number of samples required per decision as a function of the number of sensors for
a log-normal shadowing channel (σdB = 6dB, received SNR=5dB).
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4.6 SUMMARY

In this chapter, computer simulation results for both the proposed individual detectors

and a cooperative selection combining rule are presented. First, we investigate the perfor-

mance of a block based energy detector in a Rayleigh fading channel and in a log-normal

shadowing channel for different time-bandwidth products and average received SNR. Sec-

ondly, the distribution of the number of samples required for the sequential detector with

different received SNR, preset PFA and PD values are presented. From this we can see

that the sequential detector requires fewer samples than the energy detector on average

for the same performance. Thirdly, a truncated sequential detector is applied to limit the

number of required samples and to avoid allowing an extremely large number of required

samples in any decision interval. An extremely large number of required samples is rare

in the AWGN channel [27] [36], but is more common in a fading environment. We also

demonstrate the performance degradation due to truncation. Fourthly, we find that the

average number of required samples can be further reduced by applying a selection com-

bining rule in a cooperative network. Furthermore, the overall detection performance can

also be increased by using a selection combining rule.





Chapter 5

CONCLUSION AND FUTURE WORK

5.1 CONCLUSION

In this thesis, we mainly focus on how to reduce sensing time in a CR system by using

sequential detection. Both individual detectors and a cooperative scheme are proposed for

this purpose.

At the beginning of this thesis, we define a representation of the primary signal con-

sidered. We then discuss wireless channels, focusing on the Rayleigh fading channel which

is used to model small scale fading and the log-normal shadowing channel, which is used

to model large scale fading. They are both used in the following analysis and simulation.

In chapter 2, we first discuss the problem of spectrum scarcity. In order to solve

this problem, researchers have proposed a new way to manage spectrum called dynamic

spectrum access. Since CR can be viewed as a platform for the realization of dynamic

spectrum access, background information on SDR and CR systems was presented. CR is

a kind of SDR with several additional abilities. The function of CR is often modelled as

a cognition cycle. Our work is the first step of a cognition cycle which is called spectrum

sensing. Spectrum sensing is to detect the presence of a primary signal in a noisy environ-

ment. It can be viewed as a signal detection problem. For this reason, some fundamentals

of signal detection theory are then introduced.

Three popular detectors: matched filter, energy detector and feature detector are also

briefly discussed in chapter 2. However, they are all fixed sample-size systems. Their

sensing time is fixed and preset. In this case, our interest is to find the PD we can achieve

during the prescribed sensing time.

In the last part of chapter 2, cooperative spectrum sensing is briefly discussed. The

purpose of cooperative sensing is to improve detection accuracy, reduce sensing time and
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combat the hidden terminal problem. A background literature review of various coop-

erative sensing schemes was also presented. From the literature review, we find that

researchers are more likely to work on how to increase the performance by various cooper-

ative schemes. However, we believe that reducing sensing time is also very important for

a CR system and, therefore, focused our research direction on reducing the sensing time.

In chapter 3, fundamental theory and various components of the sequential detector

are presented. By using sequential testing, the sensing time is not fixed anymore. PD and

PFA are set before testing. The sequential detector makes a decision whenever it receives

a new sample. It needs less sensing time than an energy detector on average. In order

to further reduce the sensing time, especially in a shadowing environment, a truncated

sequential detector is then introduced. The performance degradation due to truncation is

also investigated.

Finally, the selection combining rule at the fusion center is proposed for cooperative

sensing. Sensing times of each individual detector are different in a shadowing channel,

and therefore, we choose the first decision to arrive as the final decision. By the application

of such a selection combining rule, the sensing time can be further reduced.

In chapter 4, we first investigate the performance of an energy detector in Rayleigh

fading and shadowing channels for different average received SNR and time-bandwidth

product. Secondly, we apply the sequential detector in the AWGN channel and compare

it with the energy detector. It is shown that the sequential detector needs less average

sensing time than an energy detector for the same performance. The sensing time can

be reduced up to 85%. We also find that the average number of required samples for a

sequential detector decreases as the received SNR increases. Furthermore, the performance

is based on the preset value of PD and PFA.

Thirdly, we apply a truncated sequential detector in the AWGN channel and find

that it can further reduce the sensing time. The effect of truncation on sensing time is not

significant when the SNR is large. Then, we apply the sequential detector in the shadowing

channel and find that the sensing time may sometimes be extremely long. Thus, we must

truncate the sensing time to a reasonable range. The average number of required samples

after truncation under different received SNR is then shown. From that we can see that

the average number of required samples gradually decreases from lower SNR to higher

SNR. The performance degradation due to truncation in the two channel models are also
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investigated. We find that the performance of a truncated sequential detector is worse

than the sequential detector, but its performance improves as SNR increases.

Fourthly, cooperative sensing using the selection combining rule is applied to further

reduce the sensing time in a shadowing channel. From that we can see that the sensing

time can be further reduced as the number of individual sensors increases. The overall

performance can also be improved as the number of individual sensors increases.

5.2 FUTURE WORK

There are four points that might be useful for further research.

The sequential and truncated sequential detector are only investigated in a log-normal

shadowing channel. We also need to investigate the performance of them in the Rayleigh

fading channel and in a channel combining log-normal shadowing and Rayleigh fading.

An adaptive sensing time scheme is needed. CR can potentially sense its surroundings

environment and change the parameters for itself. The truncation point is preset by the

designer in this thesis. In the next step, the selection may be based on the surrounding

environment, maximal tolerance sensing time and required performance. By using the new

selection rule, the truncation point is not picked by the designer, it is picked by the CR

to optimize performance in a certain environment.

A new fusion rule is needed at the fusion center. The proposed selection combining

rule is a hard-decision rule. It requires less bandwidth for the control channel, but the

performance of it may be relatively low. The performance of soft decision rules are often

better than the hard decision rules. In the next step, a soft decision rule may be needed

at the fusion center. Each individual sensor would still perform sequential testing and

send the likelihood ratio to the fusion center. The fusion center would then perform a

sequential test using the first results to arrive. The overall performance may be improved

by using this method.

A bandpass filter is employed at the front end of all the detectors in this thesis. The

detector can only know the presence of a primary signal over the bandwidth W of the

bandpass filter. A wideband spectrum sensing scheme may be proposed which can make

W very wide or use some form of FFT to identify the spectrum holes in a larger bandwidth.

As CR can be viewed as a “smart” radio, all the previous work might be extended to
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an adaptive approach, in this case, CR can optimize the performance in different environ-

ments.
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