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Abstract. Knowledge of the connected vehicle (CV) penetration rate is crucial for realizing 
numerous beneficial applications during the prolonged transition period to full CV deploy-
ment. A recent study described a novel single-source data penetration rate estimator 
(SSDPRE) for estimating the CV penetration rate solely from CV data. However, despite 
the unbiasedness of the SSDPRE, it is only a point estimator. Consequently, given the typi-
cally nonlinear nature of transportation systems, model estimations or system optimiza-
tions conducted with the SSDPRE without considering its variability can generate biased 
models or suboptimal solutions. Thus, this study proposes a probabilistic penetration rate 
model for estimating the variability of the results generated by the SSDPRE. An essential 
input for this model is the constrained queue length distribution, which is the distribution 
of the number of stopping vehicles in a signal cycle. An exact probabilistic dissipation time 
model and a simplified constant dissipation time model are developed for estimating this 
distribution. In addition, to improve the estimation accuracy in real-world situations, the 
braking and start-up motions of vehicles are considered by constructing a constant time 
loss model for use in calibrating the dissipation time models. VISSIM simulation demon-
strates that the calibrated models accurately describe constrained queue length distributions 
and estimate the variability of the results generated by the SSDPRE. Furthermore, applications 
of the calibrated models to the next-generation simulation data set and a simple CV-based 
adaptive signal control scheme demonstrate the readiness of the models for use in real-world 
situations and the potential of the models to improve system optimizations.
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1. Introduction
The rapid development of communication technologies 
has expedited the evolution of the Internet of Things 
(IoT). Transportation systems are a part of the IoT and 
are therefore following the trend by increasingly adopt-
ing connected vehicle (CV) technology, which allows 
CVs to share travel information (e.g., timestamps, speeds, 
and locations) with nearby CVs and infrastructures. The 
huge volumes of CV data that are generated present 
numerous opportunities for improving the efficiency, 
safety, and resilience of transportation systems via vari-
ous applications. However, the range of practical diffi-
culties associated with accessing and processing CV 

data, such as budget constraints, privacy concerns, and 
corporate confidentiality, means that the transition to full 
CV deployment is likely to be prolonged, and that 100% 
CV deployment may never be achieved. Due to this cur-
rent absence of complete CV data, various beneficial 
applications of available CV data typically employ infer-
ences about traffic data.

The CV penetration rate is the CV–to–total traffic ratio 
within a spatiotemporal volume and is an essential input 
for traffic data inference and many other useful applica-
tions. For instance, the CV penetration rate is a necessary 
input for the location and speed algorithm developed 
by Feng et al. (2015), which infers arrival tables for the 
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controlled optimization of a phase algorithm (Sen and 
Head 1997) in CV-based adaptive signal optimization. By 
assuming that a CV penetration rate and queue length 
distribution are known, Comert and Cetin (2009, 2011) 
and Comert (2013) have derived various methods for 
cycle-by-cycle queue estimation at isolated junctions. Sim-
ilarly, under the assumption of a known CV penetration 
rate, Hao et al. (2014) established a Bayesian network- 
based model for estimating cycle-by-cycle queue length 
distributions. Based on shockwave theory, Argote et al. 
(2011) developed a method for queue length estimation 
and examined the minimum CV penetration rate required 
to ensure accuracy. CV penetration rates based on linear 
data projection (Wong and Wong 2015, 2016a, 2019; 
Wong, Wong, and Liu 2019) have also been applied to 
infer traffic flow for estimating macroscopic Bureau of 
Public Roads scenarios (Wong and Wong 2015, 2016a, 
2016c) and traffic density or accumulation in the macro-
scopic fundamental diagram (Geroliminis and Daganzo 
2008; Ambühl and Menendez 2016; Du, Rakha, and 
Gayah 2016; Wong and Wong 2019; Wong, Wong, and 
Liu et al. 2019, 2021). Other relevant applications include 
origin–destination estimations (Yang, Lu, and Hao 2017; 
Wang et al. 2020; Cao et al. 2021), travel time and speed 
estimations (Jenelius and Koutsopoulos 2013, 2015; Rah-
mani, Jenelius, and Koutsopoulos 2015; Tian et al. 2015; 
Mousa and Ishak 2017; Khan, Dey, and Chowdhury 2017; 
Iqbal, Hadi, and Xiao 2018; Lu et al. 2019), traffic incident 
impact evaluation (Wong and Wong 2016b), and time 
exposure estimation in road safety studies (Meng et al. 
2017b). The aforementioned studies have demonstrated 
that knowledge of the CV penetration rate is fundamentally 
important during the transition period to full CV deploy-
ment, and, hence, CV penetration rate estimation is a critical 
current research topic in the field of transportation.

Current methods for measuring CV penetration rates 
primarily rely on both CV data and loop detector data. 
The CV penetration rate for a link outfitted with a loop 
detector can be easily obtained by dividing the CV flow 
across the link over a certain period by the total traffic 
flow passing the detector over the same period. How-
ever, the high capital and maintenance cost of loop detec-
tors typically hinders their universal deployment. As 
there are also circumstances in which a detector may be 
out of service for a certain period, a simple but useful 
approach for estimating the CV penetration rates of links 
without detectors has been devised that models the CV 
penetration rates of links within a network as a probabil-
ity distribution (Wong and Wong 2015, 2016a, 2019; 
Wong, Wong, and Liu 2019). This probability distribution 
is approximated by the distribution of CV penetration 
rates sampled from the links in the target network that 
are outfitted with detectors. Due to the geographical 
proximity, the mean of this distribution can be taken as 
the expected CV penetration rate for links without de-
tectors. It follows that the variance of this distribution 

represents the spatial distribution. However, despite the 
simplicity of this approach, its underlying assumption of 
independent and identically distributed CV penetration 
rates within a network may not always hold, because of 
factors such as land-use heterogeneities. Meng et al. 
(2017a) therefore used data from Hong Kong to establish 
an empirical model for estimating a CV penetration rate 
that exploits land-use variables as inputs. However, the 
use of local data greatly limits its universal application.

To overcome the aforementioned deficiencies, research-
ers have devoted much effort to estimating CV penetra-
tion rates using only CV data. Comert (2016) assumed a 
Poisson-distributed arrival pattern for deriving several 
estimators for CV penetration rates, but this assumption 
limits their generalizability. More recently, Wong et al. 
(2019) devised the first analytical and nonparametric 
method—the single-source data penetration rate estima-
tor (SSDPRE)—which unbiasedly estimates the CV pene-
tration rate solely from CV data. The SSDPRE uses the 
information on stopping locations of CVs at a signalized 
intersection to deduce the number of non-CVs in front of 
the last CV. Then, the SSDPRE applies this partial queue 
information to subtly fuse two estimation mechanisms— 
(1) the direct estimation of the probability of the first 
stopping vehicle being a CV, and (2) estimation of the CV 
penetration rate of the partial queue—to afford an unbi-
ased estimation of the true CV penetration rate. Several 
novel methods for estimating CV penetration rates have 
been developed by Zhao et al. (2019a, 2019b, 2022); these 
adopt a maximum likelihood estimation approach to 
approximate and exploit the distribution of stopping posi-
tions of vehicles in queues. Although the aforementioned 
methods for CV penetration rate estimation are valuable, 
they are point estimators, which means that their direct 
application (i.e., without considering their uncertainties 
or fluctuations) to transportation systems for the estima-
tion of transport models or the optimization of systems 
can generate biased models or suboptimal solutions (Yin 
2008; Wong and Wong 2015, 2016a, 2019; Wong, Wong, 
and Liu 2019). As such, the variability of an estimator 
must be considered to enable unbiased models and opti-
mal solutions to be obtained. Nevertheless, methods for 
estimating such variability remain unexplored.

This paper fills the aforementioned research gap by 
deriving a generic probabilistic penetration rate (PPR) 
model for estimating the variability of the results pro-
vided by the SSDPRE. The essential input for the PPR 
model is the constrained queue length distribution, which 
is formed by the number of stopping vehicles in a cycle. A 
probabilistic dissipation time (PDT) model and a constant 
dissipation time (CDT) model are derived to model the 
constrained queue length distribution. The PDT model 
assumes a random arrival, such that the dissipation time 
is probabilistic, and uses the simple notion of time interval 
partitioning to subtly determine the exact constrained 
queue length distribution of a random arrival. In contrast, 
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for the purpose of deriving the average constrained queue 
length, the CDT model approximates the random arrivals 
by an average arrival pattern, such that the dissipation 
time is constant for a given average arrival rate. While gen-
erally keeping a high level of accuracy, this simplification 
significantly improves computation efficiency. Simulation 
studies based on the vertical queue assumption demon-
strate the excellent accuracy and efficiency of these models.

However, these models’ ignorance of real-world brak-
ing and start-up motions of vehicles constrains their per-
formance. Therefore, a constant time loss (CTL) model 
that incorporates real-world braking and start-up 
motions of vehicles is devised and applied to calibrate 
the models. A comprehensive VISSIM simulation study 
demonstrates that the calibrated models accurately rep-
resent the constrained queue length distribution and 
estimate the variability of the results afforded by the 
SSDPRE. The calibrated models’ suitability for real- 
world use is demonstrated by their application to a next- 
generation simulation (NGSIM) data set collected on 
Peachtree Street in Atlanta, Georgia, USA (Federal High-
way Administration 2006). A simple illustrative appli-
cation of CV-based adaptive signal control that also 
demonstrates the significant potential improvement in 
system optimization via the incorporation of CV pene-
tration rate variability is presented. Thus, this study con-
tributes to the transport field by providing the missing 
piece of the puzzle of uncertainty estimation, which 
must be performed when employing the SSDPRE. Con-
sequently, equipped with information on the variability 
of results generated by the SSDPRE, optimal solutions or 
unbiased models can be obtained for system optimiza-
tions or model estimations.

The remainder of this paper is organized as follows. 
Section 2 defines the problem statement. Section 3 derives 
the PPR model, and Section 4 details the PDT and CDT 
models. Section 5 introduces the CTL model and presents 
a comprehensive simulation study. Section 6 provides 
real-world validation of the model on an NGSIM data set 
and an illustrative application of CV-based adaptive sig-
nal control. Section 7 concludes the paper.

2. Problem Statement
Efficient, safe, and resilient transportation systems rely 
on system optimizations and models based on complete 
and accurate traffic information. Nevertheless, such in-
formation is typically unavailable. The emergence of CV 
technology advances further toward complete and accu-
rate traffic information. CVs are probe vehicles circulat-
ing with regular vehicles on road networks and provide 
detailed travel information. However, the prolonged 
transition period toward full CV deployment means that 
data projection or scaling is necessary to infer complete 
information from these data. The CV penetration rate is 
indispensable in bridging the gap between partial and 

complete information. One simple example is traffic flow 
estimation across a link. Given that the hourly CV flow 
across a link is 10 CVs/hour, if the CV penetration rate is 
known to be 10%, then the hourly total traffic flow can be 
easily estimated by dividing 10 CVs/hour by 10%, which 
gives 100 vehicles/hour (veh/h). Similarly, other appli-
cations using the CV penetration rate as essential in-
puts include the aforementioned arrival table estimation 
(Feng et al. 2015), queue length estimations (Comert and 
Cetin 2009, 2011), and time exposure estimation (Meng 
et al. 2017b). Despite the central role of CV penetration 
rates, existing methods only provide their point esti-
mators. The uncertainty of the CV penetration rate, gov-
erning the optimality of system optimizations and the 
biasedness of model estimations, remains unexplored. 
On the basis of the SSDPRE presented by Wong et al. 
(2019), the present study aims at deriving analytical mod-
els that quantify such uncertainty.

More specifically, consider Figure 1, which illustrates 
the trajectories of a set of vehicles, comprising CVs and 
non-CVs, traversing a signalized intersection. A con-
strained queue set, Ψ, is defined as the set of vehicles that 
have been stopped by the red signal, and is enclosed by a 
triangular spatiotemporal area formed by shockwaves. 
Figure 2 shows a snapshot of Ψ�taken at the end of the 
red signal. Vehicles that enter the triangular spatiotempo-
ral area after the end of the red signal are also counted as 
members of Ψ. The constrained queue length, |Ψ | , is 
defined as the number of stopping vehicles, N; here, N is 
6. CVs continuously broadcast their travel information in 
their basic safety messages, which include information 
such as their timestamps, locations, speeds, and head-
ings. Thus, the number of CVs, n, is known; here, n is 2. 
Define average effective vehicle length, Le, as the average 
distance between the rear end of a preceding stopping 
vehicle and the rear end of its following stopping vehicle. 
If all of the vehicles are identical in physical size, then 
each vehicle has the same effective vehicle length. For 
cases with multiple-vehicle classes, the average effective 
vehicle length can be easily updated using empirical 
data. Given the location of the stop bar, the number of 

Figure 1. (Color online) Vehicle Trajectories Traversing a 
Signalized Intersection 
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stopped vehicles in front of the last CV (including itself), 
Ñ , can be easily determined by dividing the distance 
from the stop bar to the rear end of the last CV, ds, by the 
effective vehicle length, Le. In Figure 2, Ñ is 4. Non-CVs 
behind the last CV are unobservable.

In such a scenario, the penetration rate exhibits a spa-
tiotemporal pattern, both CVs and non-CVs are suffi-
ciently well mixed during any time period at any link, 
and N > 0. Accordingly, Wong et al. (2019) constructed 
a novel, simple, analytical, and—most importantly— 
unbiased SSDPRE to estimate the CV penetration rate 
solely from CV data. Let i and m denote the ith con-
strained queue and the total number of constrained 
queues, respectively. Thus, for ∀i ∈ [1, m], the SSDPRE 
is defined as follows (Equation (1)):

SSDPRE �
Pm

i�1p̃i
m

, (1) 

where

p̃i � S(ni, Ñi) �

ni� 1
Ñi� 1

if ni > 1 and Ñi > 1

1 if ni � 1 and Ñi � 1
0 if ni � 1 and Ñi > 1
0 if ni � 0 and Ñi � 0:

8
>>>><

>>>>:

(2) 

It follows that p̃i, ∀i ∈ [1, m] form a distribution with a 
mean that is the result generated by the SSDPRE. How-
ever, although the SSDPRE is an unbiased estimator of 
the underlying true CV penetration rate p, it is a point 
estimator. Therefore, given that transportation systems 
are typically nonlinear, SSDPRE-based system optimiza-
tions or model estimations that do not consider this esti-
mator’s variability could afford suboptimal solutions and 
biased models. Accordingly, as the variance of the distri-
bution of p̃i, Var(p̃i), remains unexplored, the objective of 
this study is to develop an analytical method for estimat-
ing the uncertainty of results generated by the SSDPRE.

3. Uncertainty Estimation for the SSDPRE
This section introduces the PPR model for estimating the 
uncertainty of the results generated by the SSDPRE. In 
reality, both N and n are random variables. For the sake 

of clarity, the proof of the PPR model is divided into three 
subsections. Section 3.1 considers the simplest cases, in 
which N and n are constant. Section 3.2 relaxes the con-
straint of a constant n, by considering cases with a con-
stant N and a varying n. Section 3.3 also relaxes the 
constraint of a constant N, by considering cases with a 
varying N and n.

3.1. Constant N and n
For any given set of constant N and n, p̃i is solely depen-
dent on the stopping location of the last CV. Thus, its 
uncertainty depends on the number of permutations of 
the stopping vehicles for each possible stopping location 
of the last CV. Proposition 1 states the solutions for E(p̃)
and Var(p̃) under the condition of constant N and n.

Proposition 1. Given that Ψ≠ Ø with a constant N and 
n, where N > 0 and NPnP0, E(p̃) and Var(p̃) are given 
as follows:

E(p̃) �
n
N if nP1

0 if n � 0,

8
<

:
(3a) 

Var(p̃) � V1(n, N)

�

PN�n+1
i�1

n�1
N�i

N� i� 1

n� 2

 !

N

n

 ! �
n2

N2 if n > 1

n2� 2n+N
N2 if n � 1

0 if n � 0:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

(3b) 

Proof. A detailed proof is presented in Online Appen-
dix A.

To validate and demonstrate the superiority of Prop-
osition 1, a series of comprehensive simulation experi-
ments based on the vertical queue assumption were 
conducted and are presented in Online Appendix D. 
Various combinations of fixed N and n (i.e., different p) 
were considered. For example, with N � 30 and n � 15 
(i.e., p � 0:5), all of the possible permutations were enu-
merated and the corresponding p̃ were evaluated using 
the SSDPRE. The mean and variance of p̃ were 0.5 and 
0.00061, respectively. In a machine with an Intel Core 
i7-10700 CPU, the computation costs for the full enu-
meration and evaluation of the mean and variance of p̃ 
were 944seconds (s) and 944s, respectively. In contrast, 
when Proposition 1 was used, identical results were 
obtained with a negligible computation cost.

3.2. Constant N and Varying n
Assuming that all of the CVs and non-CVs are suffi-
ciently well mixed within a link, each vehicle shares the 

Figure 2. Snapshot of the Constrained Queue 
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same probability of p being a CV and of 1� p being a 
non-CV. Consequently, a binomial distribution, B(N, p), 
can be used to model n. For any given N, the variability 
of p̃i is dependent on (i) the variation of n, and (ii) the 
number of permutations of the stopping vehicles for each 
possible stopping location of the last CV. Proposition 2
presents E(p̃) and Var(p̃) under the condition of a con-
stant N and a varying n.

Proposition 2. Given that Ψ≠ ∅ with a constant N and a 
varying n ~ B(N, p), where N > 0 and NPnP0, E(p̃) and 
Var(p̃) are given as follows:

E(p̃) �
�N

0

�

p0(1� p)N0+
XN

i�1

XN�i+1

j�1

�N� j
i� 1

�

�N
i

�

�N
i

�

pi(1� p)N�iS(i, N� j+ 1) � p, (4a) 

Var(p̃) � V2(N, p)

�

XN

i�2
pi(1� p)N�i V1(i, N) + i

N

� �2
" #�N

i

�

�p2 + p(1� p)N�1 if N > 1
p(1� p) if N � 1: (4b)

8
>>>><

>>>>:

Proof. A detailed proof is presented in Online Appendix E.
Similarly, to validate Proposition 2, a series of com-

prehensive simulation experiments based on the verti-
cal queue assumption were conducted, as shown in 
Online Appendix H. Various combinations of fixed N 
and varying n ~ B(N, p)were considered. For example, 
with N � 30 and n ~ B(10, 0:5), all of the possible n 
were enumerated. Then, for each n, both N and n 
were fixed, and the problem was reduced to the con-
ditions stated in Proposition 1. Thus, all of the permu-
tations could be enumerated, and the corresponding p̃ 
were evaluated using the SSDPRE. The mean and var-
iance of p̃ were 0.5 and 0.00895, respectively. The com-
putation costs for the enumeration and evaluation of 
the mean and variance of p̃ were 11,161 s and 11,617 s, 
respectively. In contrast, when Proposition 2 was 
used, identical results were obtained in a fraction of a 
second: the computation costs for the mean and vari-
ance of p̃ were 0 s and 0.002 s, respectively.

3.3. Varying N and n
Here, n follows B(N, p), as described in Proposition 2, 
whereas N follows any counting distribution. As such, 
the variability of p̃i is dependent on (i) the variation of N, 
(ii) the variation of n, and (iii) the number of permuta-
tions of the stopping vehicles for each possible stopping 
location of the last CV. Proposition 3 completes the PPR 
model and presents E(p̃) and Var(p̃) under the condition 
of varying N and n.

Proposition 3. Considering any Ψ�with N following any 
counting distribution, such that P(N � i) � πi, ∀i � 0, 
1, 2, : : : , k, and a varying n ~ B(N, p), where NPnP0, 

E(p̃) and Var(p̃) are given as follows:
E(p̃) � lim

k→+∞

π0p+
Xk

i�1

Xi

j�1

Xi�j+1

m�1
πi

� i�m
j� 1

�

� i
j

�

� i
j

�

pj(1� p)i�jS(i, N� j+ 1)

0

B
B
B
@

1

C
C
C
A

2

6
6
6
4

3

7
7
7
5

� p,

(5a) 

Var(p̃) � lim
k→+∞

�
Xk

i�1
πiV2(i, p)

�

: (5b) 

3.3.1. Proof of Proposition 3. In a constrained queue 
set, Ψ, with a varying N following any counting distribu-
tion and a varying n following B(N, p), both N and n can 
vary from sample to sample. As such, the permutations 
of the constrained queues can be arranged into three 
levels. The first level contains all of the permutations 
grouped in terms of N. The possible outcomes N and the 
corresponding probabilities, πi, ∀i � 0, 1, 2, : : : , k, are 
determined by an observed, assumed, or derived count-
ing distribution. However, the S(·) function in the 
SSDPRE is not defined for empty queues, where N � 0. 
In such a case, the absence of information means that p̃ 
can be directly replaced by p. Aside from this N � 0 case, 
under each N, all of the permutations are arranged into 
subgroups in terms of n in the second level, and Proposi-
tion 2 can be applied to evaluate E(p̃) and Var(p̃). For 
instance, when N � 1, the corresponding probability, π1, 
can be obtained based on the counting distribution. In 
the second level, n can either be 0 or 1 with the probabil-

ity of 1
0

� �

p0(1� p)1 or 1
1

� �

p1(1� p)0, respectively. In 

the third level, p̃ for each permutation group of any fixed 
pair of N and n and the probability of observing a permuta-
tion from each group are obtained. When N � 1 and n � 0, 
p̃ is given by S(0, 1), and the corresponding probability is 
1. Similarly, when N � 1 and n � 1, p̃ is given by S(1, 1)
and the corresponding probability is also 1. Table 1 enu-
merates all of the possible permutations in the three levels. 

(1) Proof of mean:
E(p̃)

� lim
k→+∞

π0p +
Xk

i�1

�

πi

� i
0

�

p0(1� p)i · 1 · S(0, i)

(

+
Xi

j�1

Xi�j+1

m�1
πi

� i�m
j� 1

�

pj(1� p)i�jS(i, j�m + 1)
�
9
=

;
:

(6) 

As 
Pi

j�1
Pi�j+1

m�1
i�m
j� 1

� �

pj(1� p)i�jS(i, j�m+ 1) is exactly 

Jia, Wong, and Wong: Uncertainty Estimation of CV Penetration Rate 
Transportation Science, Articles in Advance, pp. 1–17, © 2023 The Author(s) 5 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
5.

23
8.

10
9.

23
2]

 o
n 

26
 J

ul
y 

20
23

, a
t 0

4:
01

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



equivalent to Equation (E1) in Online Appendix E, which 
is proven to be equal to p, Equation (6) can be rewritten as 
follows:

E(p̃) � lim
k→+∞

π0p+
Xk

i�1
πip

 !

� p lim
k→+∞

Xk

i�0
πi � p: (7) 

(2) Proof of variance:

Var(p̃) � [p� E(p̃)]2π0 + lim
k→+∞

Xk

i�1
πi

� i
0

�

p0(1� p)i
�

·1 · [0� E(p̃)]2 +
Xi

j�1

Xi�j+1

m�1
πi

� i�m
j� 1

�

pj(1� p)i�j

[S(j, i�m + 1)� E(p̃)]2
�

: (8) 

As 
� i

0

�

p0(1� p)i · 1 · [0�E(p̃)]2 +
Pi

j�1
Pi�j+1

m�1

� i�m
j� 1

�

pj 

(1� p)i�j
[S(j, i�m+ 1)�E(p̃)]2 � V2(i, p)

according to Equations (E3)–(E7) in Online Appendix E, 
we have

V(p̃) � lim
k→+∞

�
Xk

i�1
πiV2(i, p)

�

: (9) 

Q.E.D.

3.3.2. Vertical Queue Experiments. The application of 
Proposition 3 requires an observed or assumed constrained 

queue length distribution. To enable validation of Pro-
position 3, N is assumed to follow a Poisson distribution, 
Pois(λ), where λ�is the average constrained queue length. 
The following corollaries are obtained.

Corollary 1. Given that N ~ Pois(λ) and n ~ B(N, p), E(p̃)
and Var(p̃) are given as follows:

E(p̃) � lim
k→+∞

"

e�λp+
Xk

i�1

Xi

j�1

Xi�j+1

m�1

λie�λ

i!

� i�m
j� 1

�

pj(1� p)i�jS(i, N� j+ 1)
#

� p (10a) 

Var(p̃) � lim
k→+∞

Xk

i�1

λie�λ

i! V2(i, p)

" #

: (10b) 

Proof. By replacing the counting distribution in Prop-
osition 3 with a Pois(λ), the proof is completed.

Corollary 2. Given that N ~ Pois(λ) and n ~ B(N, p), the 
joint probability distribution of n and Ñ is given as follows:

P(n � i, Ñ � j) �

π0 +
Xk

z�1
πz(1� p)z, i � 0, j � 0

Xk

z�j
πz

�
j� 1
i� 1

�

pi(1� p)z�i,

∀i, j � 1, 2, : : : , k, jPi

,

8
>>>>>><

>>>>>>:

(11) 

where πi � P(N � i), ∀i � 0, 1, 2, : : : , k.

Table 1. Enumeration of All of the Possible Permutations Under Varying N and n

First level: N Second level: n Third level: lCV

N Probability n Probability p̃ Probability

0 π0 0 1 p 1

1 π1 0 1
0

� �

p0(1� p)1 S(0, 1) 1

π1 1 1
1

� �

p1(1� p)0 S(1, 1) 1

… … … … … …

k 
(k→+∞)

πk 0 k
0

� �

p0(1� p)k S(0, k) 1

πk 1 k
1

� �

p1(1� p)k�1 S(1, k�m+ 1), 
∀m � 1, 2, : : : , k

k�m
1� 1

� ��
k
1

� �

, 

∀m � 1, 2, : : : , k

πk 2 k
2

� �

p2(1� p)k�2 S(2, k�m+ 1), 
∀m � 1, 2, : : : , k� 1

k�m
2� 1

� ��
k
2

� �

, 

∀m � 1, 2, : : : , k� 1
… … … … …

πk k k
k

� �

pk(1� p)0 S(k, k�m+ 1), 
∀m � 1

k�m
k� 1

� ��
k
k

� �

, 

∀m � 1
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Proof. The detailed proof is presented in Online 
Appendix I.

Based on Corollary 1, a series of comprehensive simula-
tion experiments under the vertical queue assumption 
were conducted and are presented in Online Appendix J. 
These demonstrate the superiority and efficiency of 
Proposition 3 for various combinations of λ�and p. As 
N ~ Pois(λ), N has infinitely many possible outcomes, 
and the computation cost increases exponentially as the 
number of possible N considered increases. Therefore, it 
is impossible to enumerate all of the possible permu-
tations for the validation. Instead, random sampling of 
the possible permutations was conducted, based on the 
selected Pois(λ) and B(N, p) with various sample sizes 
(i.e., 100,000, 1,000,000, and 10,000,000), to estimate the 
mean and variance of p̃. Only when the sample size 
approaches infinity do such estimates asymptotically ap-
proach their true values. Thus, the estimates given here 
cannot be regarded as the ground truths for this case. 
Nevertheless, a gradual convergence of the mean and var-
iance of p̃ can be expected and their orders serve as a use-
ful reference for the validation of Corollary 1 and thus 
Proposition 3. For example, with λ � 10 and p � 0:1, the 
use of random sampling resulted in the computation time 
increasing linearly, from approximately 3.5s to 35s to 
350s, as the sample sizes increased from 100,000 to 
1,000,000 to 10,000,000, respectively. The means of p̃ were 
0.1 for all three selected sample sizes, indicating good con-
vergence when the sample size reached 100,000. Con-
versely, as the sample size of random sampling increased 
as above, the variance of p̃ gradually increased from 
0.04870 to 0.04875 to 0.04892. Although clear convergence 
was not observed for this parameter, the order of the esti-
mates served as a useful reference for the validation.

To obtain estimates using Corollary 1, the number of 
terms must be determined and summed. The greater the 
value of k, the higher the accuracy of the estimates; thus, 
as k tends to infinity, the estimates asymptotically ap-
proach the true values. In the case of λ � 10 and p � 0:1, k 
was chosen to be 20, 30, and 40; subsequently, the means 
of p̃ were instantly determined to be 0.1 for all of these 
three values of k. In addition, as k increased from 20 to 30 
to 40, the variance of p̃ gradually increased from 0.05068 
to 0.05071 and converged at 0.05071, with a minimal 
increase in computation time (from 0.010s to 0.025s to 
0.054s, respectively). These results clearly demonstrate 
that estimations based on Corollary 1 were obtained 
much more efficiently than those based on random sam-
pling. In addition, identical means for p̃ were estimated 
by the two approaches, and the variances of p̃ estimated 
by the two approaches were of the same order of magni-
tude and were only slightly different. To ascertain the 
accuracy of Corollary 1, all of the possible permutations 
for the case with λ � 10, p � 0:1, and k � 20 were fully 
enumerated, as this was computationally tractable. The 

ground truth of the variance of p̃ was 0.05068, which was 
the same as the result obtained based on Corollary 1.

4. Estimation of Constrained Queue 
Length Distribution

Proposition 3 states the PPR model for uncertainty esti-
mation for the SSDPRE. The method is generic and flexi-
ble, as the constrained queue length distribution can be 
any counting distribution. In this section, two models are 
introduced for estimating the essential constrained queue 
length distribution: the PDT model and the CDT model.

4.1. PDT Model
Section 4.1.1 derives the base PDT model, and Section 
4.1.2 presents the modified PDT model, which is more 
efficient. Section 4.1.3 compares the performance of the 
PDT model with that of the modified PDT model.

4.1.1. Base PDT Model. By considering random arri-
vals, the arrival pattern can be assumed to follow a Pois-
son distribution, Pois(qt), where q is the average arrival 
rate; t is a chosen observation period; and qt is the aver-
age number of arrivals in t. The probability mass func-
tion, f (η; qt), is thus given as follows:

f (η; qt) � (qt)ηe�qt

η!
, (12) 

where η�is the number of arrivals.
For any constrained queue set, Ψ, with a constrained 

queue length N � k, k can be decomposed into a set of 
sequences, where the sum of each sequence equals k. In 
each sequence, the elements represent the numbers of 
arrivals in different partitioned time intervals. Let the first 
partitioned interval be the red period r, the second parti-
tioned interval be the discharge period for the vehicles 
that have arrived during the first partitioned interval, the 
third partitioned interval be the discharge period for the 
vehicles that have arrived during the second partitioned 
interval, and so forth. Similarly, the first element in a 
sequence represents the number of arrivals during the 
first partitioned interval, the second element in a sequence 
represents the number of arrivals during the second parti-
tioned interval, and so forth. A sequence terminates with 
an element of zero value. Formally, Ωk � {Φk, 1,Φk, 2, 
: : : ,Φk,ωk}, which is the set of possible sequences where 
the combinational sum of each sequence equals k, where 
ωk � |Ωk | , the cardinality of the set Ωk, representing the 
number of these possible sequences; Φk, i � {ηk, i, 1,ηk, i, 2, 
: : : ,ηk, i,φk, i

}, which is the ith sequence, ∀i ∈ [1,ωk]; φk, i �

|Φk, i | , the cardinality of the set Φk, i, representing the 
number of elements in Φk, i; ηk, i, j ∈ N

+, ∀j ∈ [1,φk, i �1]; 
ηk, i,φk, i

� 0, indicating the termination of a sequence; and 
Pφk, i

j�1 ηk, i, j � k, ∀i ∈ [1, ωk]. For example, when k � 5, the 
ith sequence, Φ5, i, could be {η5, i, 1,η5, i, 2,η5, i, 3,η5, i, 4, 
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η5, i, 5} � {1, 2, 1, 1, 0} subject to (s:t:):
P5

j�1 η5, i, j � 5. 
Based on the notion of time interval partitioning, Proposi-
tion 4 describes the constrained queue length distribution 
under the condition of random arrival.

Proposition 4. Given an arrival pattern following a Pois-
son distribution with an average arrival rate of q, a red 
period of r, and a saturation headway of τ, the constrained 
queue length distribution is given as follows:

P(N � k) �
Xωk

i�1
f (ηk, i, 1; qr)

Yφk, i

j�2
f (ηk, i, j; qηk, i, j�1τ) if k ∈ N+

f (0; qr) if k � 0:

8
><

>:

(13) 

Proof. Considering the commonly observed random 
arrivals, the vehicle arrival pattern can be assumed to 
follow a Poisson distribution with an average arrival 
rate of q. Let r and τ�be the red period and saturated 
discharge headway, respectively.

It follows that ∀Ψ�with |Ψ | � k, ∃ ωk sequences s:t:
Pφk, i

j�1 ηk, i, j � k, ∀i ∈ [1, ωk]. Considering the ith sequence 
Φk, i � {ηk, i, 1,ηk, i, 2, : : : ,ηk, i,φk, i

}, the jth element ηk, i, j, 
∀j ∈ [1,φk, i], represents the number of arrivals during 
the jth partitioned interval. For j � 1, the probability of 
observing ηk, i, 1 arrivals during the first partitioned inter-
val is given by f (ηk, i, 1; qr). For 1 < j ⩽φk, i, the probability 
of observing ηk, i, j arrivals during the jth partitioned 
interval is given by f (ηk, i, j; qηk, i, j�1τ). Thus, when k > 0, 
considering all of the possible sequences, the probability 
of N � k is given as follows:

P(N � k) �
Xωk

i�1
f (ηk, i, 1; qr)

Yφk, i

j�2
f (ηk, i, j; qηk, i, j�1τ): (14) 

In particular, when k � 0, ωk � 1 and Φ0 � {0}. In such 
cases, P(N � 0) � f (0; qr). Q.E.D.

For illustrative purposes, Table 2 presents all of the 
possible sequences and probabilities for the case when 
k � 4. Thus, the probability of N � 4 is the sum of all of 
the probabilities in the last column.

4.1.2. Modified Model. Proposition 4 models the con-
strained queue length distribution based on the enumera-
tion of all of the possible sequences of arrivals in various 
partitioned time intervals. As k increases, the number of 
possibilities and the computation time increase exponen-
tially. By adopting a recursive computation structure, 
Proposition 5 omits the repeated computation steps and 
thus efficiently models the constrained queue length 
distribution.

Proposition 5. Given an arrival pattern following a Pois-
son distribution with an average arrival rate of q, a red 
period of r, and a saturation headway of τ, the constrained 
queue length distribution is given as follows:
P(N � k)

�

f (k; qr)f (0; qkτ) +
Xk�1

i�1

XJi

j�1
f (i; qr)P̃j(N � k, M � i)Wj(N � k, M � i) if k ∈ N+

f (0; qr) if k � 0

,

8
>>>><

>>>>:

(15) 

where P̃j(N � k, M � i) is the jth unique value of the product 
of the probabilities of observing the remaining k� i vehicles 
in the subsequent partitioned time intervals, ∀k ∈ N+, i ∈
[1, k], j ∈ [1, Ji]; and Wj(N � k, M � i) is the weight of 
P̃j(N � k, M � i). P̃j(N � k, M � i) and Wj(N � k, M � i), 
∀j ∈ [1, Ji], can be obtained using Algorithm 1.

Proof. When k � 0, P(N � 0) � f (0; qr).
For k > 0, consider a generic sequence of arrivals in var-

ious partitioned time intervals, {η1, η2,η3,η4, : : : ,ηφ}, s:t:
k � η1 + η2 + η3 + η4+⋯ +ηφ, (16) 

where η1, η2,η3,η4, : : : ,ηφrepresent the numbers of arri-
vals during the 1st, 2nd, 3rd, 4th, : : : , φth partitioned in-
tervals, respectively, ∀η1, η2,η3,η4, : : : ,ηφ�1 ∈ N

+, and ηφ �
0. The probability of observing this sequence is given by

P(N � k |η1, η2,η3,η4, : : : ,ηφ)

� f (η1; qr)f (η2; qη1τ)f (η3; qη2τ): : : f (ηφ; qηφ�1τ):

(17) 
Rearranging the terms in Equation (14) affords

k� η1 � η2 + η3 + η4+ ⋯ +ηφ: (18) 

Table 2. Enumeration of All of the Possible Sequences When k � 4

Φ4, i η4, i, 1 η4, i, 2 η4, i, 3 η4, i, 4 η4, i, 5 Probability

Φ4, 1 4 0 f (4; qr) × f (0; q4τ)
Φ4, 2 3 1 0 f (3; qr) × f (1; q3τ) × f (0; q1τ)
Φ4, 3 2 2 0 f (2; qr) × f (2; q2τ) × f (0; q2τ)
Φ4, 4 2 1 1 0 f (2; qr) × f (1; q2τ) × f (1; q1τ) × f (0; q1τ)
Φ4, 5 1 3 0 f (1; qr) × f (3; q1τ) × f (0; q3τ)
Φ4, 6 1 2 1 0 f (1; qr) × f (2; q1τ) × f (1; q2τ) × f (0; q1τ)
Φ4, 7 1 1 2 0 f (1; qr) × f (1; q1τ) × f (2; q1τ) × f (0; q2τ)
Φ4, 8 1 1 1 1 0 f (1; qr) × f (1; q1τ) × f (1; q1τ) × f (1; q1τ) × f (0; q1τ)
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Similarly, the probability of observing such a sequence 
is given by

P(N � k� η1 |η2, η3, η4, : : : , ηφ)

� f (η2; qr)f (η3; qη2τ)f (η4; qη3τ): : : f (ηφ; qηφ�1τ):

(19) 

By substituting Equation (17) into Equation (19),
P(N � k |η1, η2, η3, η4, : : : , ηφ)

f (η1; qr)

� f (η2; qη1τ)
P(N � k� η1 |η2, η3, η4, : : : , ηφ)

f (η2; qr)
:

(20) 
By defining

P̃(N � k, M � η1) �
P(N � k |η1, η2, η3, η4, : : : , ηφ)

f (η1; qr)
(21) 

and

P̃(N � k� η1, M � η2) �
P(N � k � η1 |η2, η3, η4, : : : , ηφ)

f (η2; qr)
,

(22) 
and substituting Equations (21) and (22) into Equation 
(20), a generic recursive formula (Equation (23)) is ob-
tained for the product of the probabilities of observing 
the remaining vehicles in the subsequent partitioned 
time intervals for any k and η1:

P̃(N � k, M � η1) � f (η2; qη1τ)P̃(N � k� η1, M � η2):

(23) 
For η1 � 1, the probability of N being k with the seq-
uence {1, η2,η3,η4, : : : ,ηφ} is given by

P(N � k |η1 � 1, η2,η3,η4, : : : ,ηφ)

� f (1; qr)P̃(N � k, M � 1), (24) 

where P̃(N � k, M � 1) can be obtained recursively using 
Equation (19) for various possible sequences formed by 
η2,η3,η4, : : : ,ηφ. Some of the possible sequences are iden-
tical in terms of their values of P̃(N � k, M � 1). Let 
P̃j(N � k, M � 1), Wj(N � k, M � 1), and J1 be the jth 
unique value of the product of the probabilities of observ-
ing the remaining vehicles in the subsequent partitioned 
time intervals, where the weight of the jth unique value, 
and the number of unique values, ∀j ∈ [1, J1]. Then, 
P̃j(N � k, M � 1) and Wj(N � k, M � 1) can be obtained 
using Algorithm 1. It follows that by considering all of 
the possible sequences, the probability of N being k given 
that η1 � 1 is as follows:

P(N � k |η1 � 1) �
XJ1

j�1
f (1; qr)P̃j(N � k, M � 1)

Wj(N � k, M � 1): (25) 

Similarly, given η1 � 2, the probability of N being k is 
as follows:

P(N � k |η1 � 2) �
XJ2

j�1
f (2; qr)P̃j(N � k, M � 2)

Wj(N � k, M � 2): (26) 
The probability of N being k for η1 � 3, 4, : : : , or k, 
can be obtained in a similar manner. In particular, 
when η1 � k,

P(N � k |η1 � k) � f (k; qr)f (0; qkτ): (27) 

Summing all of the possibilities from η1 � 1 to η1 � k 
reveals that the probability of N being k is given by

P(N � k) � f (k; qr)f (0; qkτ) +
Xk�1

i�1

XJi

j�1
f (i; qr)

P̃j(N � k, M � i)Wj(N � k, M � i): (28) 
Q.E.D.

Let {P̃(N � k, M � i)} and {W(N � k, M � i)} be the 
arrays storing P̃j(N � k, M � i) and Wj(N � k, M � i), 
respectively, where ∀k ∈ N+, i ∈ [1, k], and j ∈ [1, Ji]. {P̃ 
(N � k, M � i)} and {W(N � k, M � i)} can then be ob-
tained using Algorithm 1.

Algorithm 1 (Computing {P̃(N � k, M � i)} and {W(N �
k, M � i)}, ∀k ∈ N+, i ∈ [1, k]) 

1: Initialization: {P̃(N � 1, M � 1)} ← {f (0; qτ)}, 
{W(N � 1, M � 1)} ← {1}.

2: For k in N+\{1} do
3: For i in {1, 2, 3, …, k} do
4: If i < k then
5: For l in {1, 2, 3, … , k� i} do
6: If l � 1 then
7: {P̃(N � k, M � i)} ← f (l; qiτ) ·

{P̃(N � k� i , M � l)}
8: {W(N � k, M � i)} ← {W(N � k� i, 

M � l)}
9: Else
10: For each value in f (l; qiτ) · {P̃(N � k�

i, M � l)} do
11: If value ∈ {P̃(N � k, M � i)} then
12: Find j such that P̃j(N � k, M � i)

� value
13: Wj(N � k, M � i) ←Wj(N � k, 

M � i) + 1
14: Else
15: {P̃(N � k, M � i)} ← {P̃(N � k, 

M � i)} + {value}
16: {W(N � k, M � i)} ← {W(N � k, 

M � i)} + {1}
17: End if
18: End for
19: End if
20: End for
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21: Else
22: {P̃(N � k, M � i)} ← {f (0; qiτ)}
23: {W(N � k, M � i)} ← {1}
24: End if
25: End for
26: End for
27: Output: {P̃(N � k, M � i)} and {W(N � k, M � i)}, 

∀k ∈ N+, i ∈ [1, k]:

4.1.3. Numerical Experiments Using Propositions 4 
and 5. To compare the computation efficiency of Propo-
sitions 4 and 5, a series of comprehensive simulation 
experiments based on the vertical queue assumption 
were conducted, as shown in Online Appendix K. Ex-
periments with various combinations of red periods and 
volume-to-capacity (V/C) ratios were performed. For 
example, with a red period of 30 s and a V/C ratio of 
approximately 0.5, the cycle length, saturation flow, satu-
ration headway, and traffic demand were 60 s, 2,268 
veh/h, 1.59 s, and 567 veh/h, respectively. For various 
ranges of constrained queue length k, namely, k ∈ [0, 10], 
k ∈ [0, 13], and k ∈ [0, 15], the constrained queue length 
distributions obtained based on Propositions 4 and 5
were identical. However, the computation times of the 
three cases using Proposition 4 increased drastically, 
from 0.353s to 50.682s to 2,045.356, whereas the compu-
tation times of the three cases based on Proposition 5
increased only slightly, from 0.028s to 0.064s to 0.112s, 
respectively. Similar results were obtained for other 
cases, demonstrating the superiority of Proposition 5
over Proposition 4 in terms of computation efficiency.

4.2. CDT Model
Under the assumption of random arrivals, Proposition 4
can elegantly model the constrained queue length distri-
bution based on the notion of time interval partitioning. 
As it adopts a recursive computation structure, Proposi-
tion 5 is more efficient than Proposition 4. Nevertheless, 
both models are rather complex. Therefore, the CDT 
model is introduced here as an approximation model that 
greatly simplifies the procedures of constrained queue 
length estimation.

Despite the random nature of the arrival pattern, there 
exists an average arrival rate, q. For the purpose of deriv-
ing the average constrained queue length, the random 
arrival can be approximated by its average arrival pat-
tern, and there exists a constant dissipation time for that 
given average arrival rate. Given the red period r, aver-
age arrival rate q, and saturation flow s, the dissipation 
time t0 and constrained queue length N0 can be modeled 
by Equations (29) and (30), respectively, as follows:

q(r+ t0) � st0, (29) 
N0 � (r+ t0) × q: (30) 

Equation (29) models the flow conservation at the stop 
bar, based on which t0 can be deduced. As shown in 

Equation (30), N0 is directly proportional to r+ t0, during 
which the constrained vehicles are captured. Therefore, 
integrating Equations (29) and (30) affords N0, as follows:

N0 �
sqr

s� q : (31) 

Here, N0 can be regarded as the average constrained 
queue length. Thus, Equation (31) can be used in conjunc-
tion with Corollary 1. Under the assumption that the con-
strained queue length follows a Poisson distribution, 
Pois(λ), the parameter λ�in Corollary 1 can be set to N0 to 
enable estimation of the variability of the estimated pene-
tration rate.

5. VISSIM Simulation
The numerical experiments presented in previous sec-
tions were based on a vertical queue assumption. Thus, 
to more realistically mimic vehicle movement and queu-
ing processes, comprehensive simulation studies were 
performed on a VISSIM platform in a Windows 10 envi-
ronment on a machine equipped with an Intel Core 
i7-10700 CPU. Either the CDT model or the PDT model 
can be used for constrained queue length estimation. If 
the CDT model is used, then the estimated N0 is substi-
tuted into Corollary 1 (denoted “CDT model + Corollary 
1”); if the PDT model is adopted, then Proposition 3 is 
subsequently applied for the estimation (denoted “PDT 
model + Proposition 3”). However, despite the elegance 
and accuracy of these models, the results show that their 
ignorance of the braking and start-up motions of vehicles 
prevents them from exhibiting their full potential. Thus, 
a CTL model is devised that incorporates the braking 
and start-up motions of vehicles into its estimation and is 
used to calibrate the CDT and PDT models. The simula-
tion results demonstrate that the calibrated CDT and 
PDT models accurately model the constrained queue 
length distribution and hence guarantee the accuracy of 
variability estimation.

5.1. Uncertainty Estimation Directly Based on the 
PDT and CDT Models

“CDT model + Corollary 1” and “PDT model + Proposi-
tion 3” were directly applied to examine their perfor-
mance. A single-lane road with a length of one kilometer 
(km) connecting to an isolated junction was considered. 
A fixed time-signal plan was set: 30 seconds red, 27 sec-
onds green, and 3 seconds amber. Vehicles were gener-
ated according to a Poisson distribution with an average 
arrival rate of q � 700 veh/h and an initial average speed 
of u � 50 km/h. Default values were chosen for other set-
tings, such as the car-following model, driver behavior, 
and vehicle characteristics. Based on several simulation 
runs, the saturation flow s and saturation headway τ�
were determined to be 2,268 veh/h and 1.59s, respec-
tively. One thousand cycles of trajectory data were col-
lected. The CV penetration rate p was chosen to be 0.4; 
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thus, each of the vehicles was randomly assigned as a CV 
or a non-CV based on a probability of 0.4 and 0.6, respec-
tively. The SSDPRE was applied to each of these cycles, 
which generated a total of 1,000 results that were used to 
determine the CV penetration rate distribution. The vari-
ance of the CV penetration rate distribution served as the 
ground truth.

Table 3 presents the simulation result. Despite the diffi-
culties of obtaining second-moment estimations, both 
approaches accurately estimated the variances in the cor-
rect order, with absolute percentage errors (APE) of only 
approximately 20%–30%. Moreover, as expected, “PDT 
model+Proposition 3” performed better than “CDT 
model+Corollary 1” in terms of the computational ex-
pense of closely modeling the constrained queue length 
distribution. Nevertheless, the potential of this method 
remains to be fully realized.

5.2. Losses in Red Time and Dissipation Time
Given that the main focus is modeling the constrained 
queue length distribution, the derivations of PDT and 
CDT models in Section 4 are simplified by assuming that 
vehicles are able to instantly decelerate and accelerate to 
their desired speeds (see the ideal trajectories in Figure 3). 
However, in reality, it takes time for a driver to react and 
for a vehicle to accelerate or decelerate (see the actual tra-
jectories in Figure 3). Such delays lead to a shorter effec-
tive red time and a shorter dissipation time. In this 
context, ignorance of the braking and start-up motions of 
vehicles results in slight overestimates of the constrained 

queue length. For instance, in the simulation case pre-
sented in Section 5.1, the estimated average constrained 
queue lengths based on the PDT and CDT were approxi-
mately 8.438 vehicles, whereas the ground truth was 
6.547 vehicles. This illustrates that ignorance of the losses 
in the red time and dissipation time was the major con-
tributor to the remaining errors in the estimates.

5.3. Constant Time-Loss Model
To further improve estimation accuracy, the time losses 
due to the reaction times of drivers and the deceleration 
and acceleration times of vehicles must be incorporated 
into the models. As shown in Figure 3, the delay in the start 
of the effective red time can be represented by ∆1, whereas 
the delay in the start of the dissipation time can be repre-
sented by ∆2. Thus, the net loss of red time, ∆, is given by

∆ � ∆1�∆2: (32) 

Note that ∆ should only be dependent on the drivers’ 
reaction time and the vehicles’ start-up time and braking 
time. Thus, in general, ∆ only varies within a small range 
and can be taken as a constant.

For a generic constrained queue set, Ψ, with a con-
strained queue length N � k, k can be decomposed into a 
sequence of arrivals in various partitioned time intervals, 
{η1, η2,η3, : : : ,ηφ}, s:t:

k � η1 + η2 + η3+⋯ +ηφ: (33) 

By considering random arrivals with an average arrival 
rate of q, based on flow conservation, on average,

q(r+ η1τ+ η2τ+ : : : + ηφτ)

� q(r+ τk) � s(η1τ+ η2τ+⋯ +ηφτ) � sτk: (34) 

Let td be the dissipation time of the ideal constrained 
queue set, which is given by

td � τk �
qr

s� q
: (35) 

Table 3. Results of Simulation with Direct Application of 
CDT and PDT Models

Ground truth
“CDT model 
+ Corollary 1”

“PDT model 
+ Proposition 3”

Variance 0.09897 0.06381 0.07531
APE (%) — 35.53% 23.92%

Figure 3. (Color online) Illustration of Ideal Trajectories and Actual Trajectories 
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Let r′ be the effective red, and let t′d be the dissipation 
time of the actual constrained queue set, where r′ is given 
by

r′ � r�∆: (36) 

By substituting r′ and t′d into Equation (33), the following 
equation for the dissipation time of the actual constrained 
queue set is obtained:

t′d �
q r′

s� q �
q (r�∆)

s� q : (37) 

The dimensionless ratio µ of the dissipation time of the 
actual constrained queue set to the dissipation time of the 
ideal constrained queue set or the effective red to the red 
is obtained by dividing Equation (37) by Equation (35), as 
follows:

µ �
t′d
td
�

r′

r
�

r�∆

r
� 1�∆

r
: (38) 

Thus, t′d can be alternatively expressed as µtd or µτk. 
Based on Equation (36), detailed calibration procedures 
for ∆ of the PDT and CDT models, based on the CTL 
model, are provided in Online Appendices L and M, 
respectively. Once ∆ is calibrated, the effective red time r′
can be obtained and incorporated into the PDT and CDT 
models, thereby enabling a more accurate estimation of 
constrained queue lengths.

5.4. Uncertainty Estimation Based on the 
Calibrated PDT and CDT Models

Nine simulations with various signal plans and traffic 
demands were conducted, with all of the other settings 
identical to those presented in Section 5.1. In all of the 
simulations, the cycle time was set to 60 s and the amber 
period was set to 3 s; however, various r (i.e., 15, 30, or 
45s) and V/C ratio (i.e., 0.3, 0.5, or 0.7) combinations 
were considered. The resulting nine sets of data were 
used to calibrate the PDT and CDT models using the 
methods introduced in Online Appendices L and M. The 

∆ were determined to be 5.048s and 7.270s for the cali-
brated PDT and CDT models, respectively.

Based on the calibrated models, the constrained queue 
length distributions and the variances of the CV penetra-
tion rates of the nine cases were estimated. Table 4 reports 
the p-values of the Kolmogorov–Smirnov (KS) tests, the 
root-mean-square errors (RMSEs), and the relative root- 
mean-square errors (RRMSEs) of the estimated constrained 
queue length distributions, relative to the observed distri-
butions obtained from the VISSIM simulations. The null 
hypothesis of the KS tests is that the estimated distribution 
is consistent with the observed distribution. As the p-value 
of each case was greater than the level of significance 
(0.05), there was insufficient statistical evidence to reject 
the null hypothesis, indicating that the calibrated PDT 
and CDT models accurately replicated the observed con-
strained queue length distributions. Moreover, the mean 
and variance of the RMSEs and RRMSEs demonstrate 
that the calibrated PDT model generally performed better 
than the calibrated CDT model. Figure 4 illustrates the 
goodness-of-fit of the estimated distributions for the cali-
brated PDT and CDT models, with reference to the ob-
served distributions.

Table 5 presents the estimated variances of the nine 
cases based on the calibrated PDT and CDT models. 
Overall, the estimated variances of both models were 
extremely close to the ground truths, with significantly 
reduced APEs. All of the APEs of the estimates based on 
“Calibrated CDT model + Corollary 1” were much less 
than 15%, while the APEs of the estimates based on 
“Calibrated PDT model + Proposition 3” were much less 
than 10%. In general, the calibrated PDT model more 
closely modeled the constrained queue length distribu-
tion than the calibrated CDT model.

Subsequently, the simulation case presented in Section 
5.1 was reperformed using the PDT and CDT models cal-
ibrated based on the above nine sets of data. Table 6 pre-
sents a comparison of the results of the uncalibrated 
models and the calibrated models. The results of the 
uncalibrated models are extracted from Table 3. By using 

Table 4. p-Values of KS Tests, RMSEs, and RRMSEs of the Estimated Distributions

r V/C

Calibrated CDT model Calibrated PDT model

p-value RMSE RRMSE (%) p-value RMSE RRMSE (%)

15 0.3 0.833 16.312 17.94 0.997 23.287 25.62
15 0.5 0.365 12.997 27.29 0.603 9.824 20.63
15 0.7 0.503 36.154 65.08 0.781 15.565 28.02
30 0.3 0.997 21.013 23.11 1.000 12.982 14.28
30 0.5 0.422 13.764 31.66 0.422 4.768 10.97
30 0.7 0.351 17.997 50.39 0.944 4.676 13.09
45 0.3 0.994 10.034 10.03 1.000 8.792 8.79
45 0.5 0.751 16.752 28.48 1.000 12.731 21.64
45 0.7 0.172 17.346 45.10 0.172 13.705 35.63
Mean — 18.041 33.23 — 11.814 19.85
Variance — 49.988 0.02649 — 29.464 0.00701
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the calibrated models, the APEs of the estimates based 
on the CDT model and PDT model were significantly 
reduced (from 35.53% and 23.92%–3.06% and 2.48%, 
respectively). Similarly, the calibrated PDT model out-
performed the calibrated CDT model.

6. Applications
This section first validates the proposed models on the 
real-world NGSIM data set. A simple illustrative applica-
tion of CV-based adaptive signal control is then pre-
sented to demonstrate the potential improvement in 
system optimization by further incorporation of CV pen-
etration rate variability.

6.1. Real-World Validation
To demonstrate the readiness of applications in real- 
world scenarios, the calibrated PDT and CDT models 

defined in Section 5.4 were applied to the real-world 
NGSIM data set to obtain variance estimations for CV 
penetration rates. Two periods of 15-minute trajectory 
data (i.e., 12:45–13:00 and 16:00–16:15) for November 8, 
2006, were extracted from the arterial road data for 
Peachtree Street in Atlanta, Georgia (USA). The south-
bound through-lane between intersections 1 and 2 was 
chosen for the validation. According to the signal plans, 
the cycle times were 95 s and 100 s, and the red periods 
were 62 s and 64 s, respectively, for the two 15-minute 
periods. After observing several cycles, the saturation 
flow s was determined to be 1,761 veh/h, and the satura-
tion headway τ�was found to be 2.044s. Counting the 
number of vehicles traveling through the southbound 
through-lane revealed that the traffic demands of the two 
periods were 7.0 veh/cycle and 8.8 veh/cycle, respec-
tively. In reality, when only CV data are available, the 

Figure 4. (Color online) Illustrations of the Goodness-of-Fit of the Estimated Distributions Based on the Calibrated PDT and 
CDT Models 

Table 5. Variance Estimations Based on Calibrated CDT and PDT Models

r V/C
Ground truth

“Calibrated CDT model + Corollary 1” “Calibrated PDT model + Proposition 3”

Variance Variance APE (%) Variance APE (%)

15 0.3 0.17408 0.17034 2.15 0.16213 6.86
15 0.5 0.16807 0.17649 5.01 0.16000 4.80
15 0.7 0.13811 0.11758 14.86 0.12922 6.44
30 0.3 0.17076 0.18209 6.64 0.17246 0.10
30 0.5 0.12770 0.13244 3.71 0.13013 1.90
30 0.7 0.08266 0.07350 11.08 0.08345 0.96
45 0.3 0.18275 0.18260 0.08 0.17757 2.83
45 0.5 0.15336 0.16671 8.71 0.16055 4.69
45 0.7 0.11308 0.12575 11.20 0.12411 9.75
Mean — — 7.05 — 4.36
Variance — — 0.00206 — 0.00079
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traffic demand can be accurately estimated by dividing 
the CV flow by the result generated by the SSDPRE 
(Wong et al. 2019).

The CV penetration rate p was set to 0.1, 0.4, or 0.7. In 
each case, each vehicle was randomly assigned to be a 
CV or a non-CV, as per the predefined CV penetration 
rate. Thus, by applying the SSDPRE to each constrained 
queue, a CV penetration rate distribution and its variance 
were obtained. Because of the small sample size (only 
nine complete cycles in a 15-minute period), the variance 
estimates fluctuated due to the random seeds during CV 
assignments. To minimize this sampling error, the nine 
constrained queues were replicated 10,000 times. Accord-
ingly, by repeating the above steps, 10,000 CV penetra-
tion rate distributions and variances were obtained. The 
mean of the 10,000 variances served as the ground truth.

The PDT and CDT models calibrated in Section 5.4, 
with ∆ being 5.048s and 7.270s, respectively, were ap-
plied for the variance estimations. Table 7 summarizes 
the results. Both the calibrated PDT and CDT models 
accurately estimated the variances in all six real-world 
scenarios, with APEs much less than 20%. “Calibrated 
PDT model + Proposition 3” afforded average APEs of 
10.91% and 5.22% for the two 15-minute periods, respec-
tively. “Calibrated CDT model + Corollary 1” resulted in 
comparable performance, with average APEs of 11.32% 
and 6.57% for the two 15-minute periods, respectively. 
Although the simplified CDT model led to slightly larger 
errors, the average computation time was only 0.001s, 
which was much shorter than that of the “Calibrated 
PDT model + Proposition 3” approach (2.355s). Thus, in 
certain real-time applications requiring instant responses, 
the “Calibrated CDT model + Corollary 1” approach 

could be advantageous. These results demonstrate the 
robustness of the models developed in this study and 
illustrate their readiness for real-world applications.

6.2. Illustrative Application of CV-Based Adaptive 
Signal Control

To demonstrate the importance of the potential improve-
ment in system optimization by further incorporating 
the CV uncertainty in system optimization, a simple 
CV-based adaptive signal control application is con-
structed using VISSIM in this subsection. Two adaptive 
signal control schemes are compared. The first scheme 
(Scheme A—without uncertainty) optimizes the signal 
plan by minimizing the total delay according to the 
expected traffic demand estimated using the CV penetra-
tion rate. The second scheme (Scheme B—with uncer-
tainty) searches for the most robust signal plan by further 
considering the traffic demand variability estimated using 
the CV penetration rate variability.

Consider a crossroad with two approaches to an iso-
lated intersection. Traffic demands for the two approa-
ches were generated using Poisson distributions, one 
with an average arrival rate of 800 veh/hour and the other 
with an average arrival rate of 400 veh/hour. Setting the 
ground-truth CV penetration rate as 0.4, each of the gener-
ated vehicles had a 40% or 60% probability of being 
assigned as a CV or non-CV, respectively. A simple red- 
green-amber signal structure was adopted for each ap-
proach. The cycle length, amber time, and clearance time 
were fixed at 60, 3, and 5 seconds, respectively. The signal 
plan was optimized at the end of each cycle according to 
the estimated traffic demand.

Table 6. Comparison of the Results of the Uncalibrated Models and the Calibrated Models

Ground truth

“CDT model + Corollary 1” “PDT model + Proposition 3”

Uncalibrated Calibrated Uncalibrated Calibrated

Variance 0.09897 0.06381 0.09594 0.07531 0.10142
APE (%) — 35.53% 3.06% 23.92% 2.48%

Table 7. Real-World Application of Variance Estimations Based on Calibrated CDT and PDT Models

Period p
Ground truth

“Calibrated CDT model + Corollary 1” “Calibrated PDT model + Proposition 3”

Variance Variance APE (%) Variance APE (%)

12:45–13:00 0.1 0.07318 0.07463 1.98 0.07336 0.25
0.4 0.15138 0.13321 12.00 0.13161 13.06
0.7 0.11441 0.09156 19.97 0.09217 19.44

Mean — — 11.32 — 10.91
16:00–16:15 0.1 0.06249 0.06852 9.65 0.06774 8.40

0.4 0.10184 0.10248 0.63 0.10435 2.46
0.7 0.07313 0.06624 9.42 0.06962 4.80

Mean — — 6.57 — 5.22
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To estimate the traffic demand, the total number of 
vehicle arrivals in cycle i on approach j, Mi, j, is given by

Mi, j �mi, j + qi, j(1� pi, j)C, ∀j ∈ {1, 2}, (39) 

where mi, j, qi, j, pi, j, and C represent the number of CV 
arrivals in cycle i on approach j, the real-time average 
arrival rate in cycle i on approach j, the real-time CV pen-
etration rate in cycle i on approach j, and the cycle length, 
respectively. Thus, Mi, j and its variability depend on pi, j 
and its variability. Besides mi, j, ni, j, and Ñi, j are also 
observable in the CV environment. A likelihood function, 
as shown below, can be established by adopting the CDT 
model and Corollary 2. The likelihood function can be 
maximized by estimating the parameters—the average 
arrival rate, qi, j, and the CV penetration rate, pi, j—such 
that the observables ni, j and Ñi, j are the most probable:

max
qi, j, pi, j

YT

k�0
P(ni�k, j, Ñi�k, j), (40) 

where T � 0, 1, 2, : : : , i� 1 is the number of past cycles 
considered in the likelihood function formulation (T was 
set to 2 in this illustration). The maximum likelihood esti-
mators, q∗i, j, p∗i, j, can be taken as the real-time average 
arrival rate in cycle i on approach j, qi, j, and the real-time 
CV penetration rate in cycle i on approach j, E(pi, j), which 
can then be used as inputs of the CDT model and Corol-
lary 1 to estimate the real-time CV penetration rate vari-
ance, Var(pi, j).

In Scheme A, the variability of the CV penetration rate 
was not considered. Assuming that traffic demands in 
cycles i and i+ 1 were identical, Mi+1, j was estimated by 
directly substituting qi+1, j and pi+1, j in Equation (39) by 
q∗i, j and p∗i, j, respectively. The real-time delays in cycle 
i+ 1 for the two approaches, Di+1, 1 and Di+1, 2, can be 
readily estimated using the method presented in Online 
Appendix N. The optimal signal plan can be obtained by 
solving the following optimization problem with the 
objective of minimizing the total delay using a simple 
line search method:

min
gi+1, 1,gi+1, 2

{Di+1, 1 + Di+1, 2}

s:t: gi+1, 1 + gi+1, 2 � 52
gi+1, 1P5
gi+1, 2P5:

(41) 

After the first 30 warm-up cycles with a fixed signal plan, 
the signal plan was optimized 1,000 times at the end of 

each cycle as per the above signal control scheme. The 
results of the actual delays are given in Table 8.

In Scheme B, the uncertainty in the CV penetration 
rates, and thus the uncertainty in the traffic demands were 
considered. As pi, j, by definition, is confined between 0 
and 1, it was assumed to follow a beta distribution. 
Through Monte Carlo sampling, 1,000 sets of the possi-
ble CV penetration rates for the two approaches were 
sampled from the assumed beta distributions. Using Eq-
uation (39), 1,000 sets of possible traffic demands were esti-
mated from the sampled CV penetration rates. For each 
set of traffic demands, the delays predicted for the two 
approaches were evaluated using Equations (N1) and 
(N2). Given a signal plan, the average total delay over the 
1,000 sets of traffic demands, E(Di+1, 1 +Di+1, 2), can thus 
be estimated. A robust signal plan for cycle (i+ 1) can be 
formulated in Equation (42) below to minimize the aver-
age total delay, which can also be solved by a simple line 
search method on gi+1, 1 (with gi+1, 2 � 52� gi+1, 1),

min
gi+1,1,gi+1,2

E(Di+1, 1 +Di+1, 2)

s:t: gi+1, 1 + gi+1, 2 � 52
gi+1, 1P5
gi+1, 2P5:

(42) 

Similarly, after the first 30 warm-up cycles, the robust sig-
nal plan was optimized 1,000 times at the end of each 
cycle as per the described control scheme. The results are 
given in Table 8.

The results show that the incorporation of the CV pen-
etration rate uncertainty reduced the average actual 
delay and maximum actual delay by approximately 15% 
and reduced the variance in the actual delay by approxi-
mately 45.5%. Thus, this simple illustrative application of 
CV-based adaptive signal control clearly demonstrates 
the potential improvement in system optimization via 
the incorporation of the CV penetration rate uncertainty.

7. Conclusion
This study proposed the PPR model (i.e., Proposition 3) 
for estimating the variability of the SSDPRE. Constrained 
queue length distribution is the essential input for the 
PPR model. Thus, the PDT model and CDT model were 
derived. The PDT model closely models the constrained 
queue length distribution under the assumption of ran-
dom arrival, whereas the CDT model is a simplified 
model based on the assumption of constant dissipation 
time. However, due to the PDT and CDT models’ 

Table 8. Comparison of Results Obtained Using Scheme A and Scheme B as Control Schemes

Metric Scheme A—without uncertainty Scheme B—with uncertainty Improvement (%)

Average actual delay (s) 27.2 23.1 15.1
Maximum actual delay (s) 202.5 171.5 15.3
Variance in actual delay (s2) 843.0 459.6 45.5
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ignorance of the braking and start-up motions of vehicles, 
their potential cannot be fully realized. The CTL models 
and calibration procedures for the PDT and CDT models 
were therefore established. Simulation studies showed 
that the calibrated PDT and CDT models accurately 
modeled the constrained queue length distribution and 
estimated the variances of CV penetration rates. Applica-
tions of these models to NGSIM data demonstrated their 
robustness and readiness for real-world applications. 
Although the calibrated PDT model usually had better 
estimation accuracy, the calibrated CDT model had the 
shortest computation time. A simple illustrative applica-
tion of CV-based adaptive signal control based on the 
proposed models clearly demonstrated the potential im-
provement in system optimization via the incorporation 
of the CV penetration rate uncertainty. Future work will 
extend the framework to manage cases of near-capacity 
conditions.
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Ambühl L, Menendez M (2016) Data fusion algorithm for macro-

scopic fundamental diagram estimation. Transportation Res. Part 
C Emerging Tech. 71:184–197.

Argote J, Christofa E, Xuan Y, Skabardonis A (2011) Estimation of 
measures of effectiveness based on connected vehicle data. 
Proc. 14th Internat. IEEE Conf. Intelligent Transportation Systems 
(IEEE, Piscataway, NJ), 1767–1772.

Cao Y, Tang K, Sun J, Ji Y (2021) Day-to-day dynamic origin–destination 
flow estimation using connected vehicle trajectories and automatic 
vehicle identification data. Transportation Res. Part C Emerging Tech. 
129:103241.

Comert G (2013) Simple analytical models for estimating the queue 
lengths from probe vehicles at traffic signals. Transportation Res. 
Part B Methodological 55:59–74.

Comert G (2016) Queue length estimation from probe vehicles at 
isolated intersections: Estimators for primary parameters. Eur. J. 
Oper. Res. 252:502–521.

Comert G, Cetin M (2009) Queue length estimation from probe vehicle 
location and the impacts of sample size. Eur. J. Oper. Res. 197: 
196–202.

Comert G, Cetin M (2011) Analytical evaluation of the error in 
queue length estimation at traffic signals from prove vehicle 
data. IEEE Trans. Intelligent Transportation Systems 12(2):563–573.

Du J, Rakha H, Gayah VV (2016) Deriving macroscopic fundamen-
tal diagrams from probe data: Issues and proposed solutions. 
Transportation Res. Part C Emerging Tech. 66:136–149.

Federal Highway Administration (2006) Next generation simulation: 
Peachtree Street data set. Retrieved June 25, 2022, https://data. 
transportation.gov/Automobiles/Next-Generation-Simulation- 
NGSIM-Program-Peachtree/mupt-aksf.

Feng Y, Head KL, Khoshmagham S, Zamanipour M (2015) A real- 
time adaptive signal control in a connected vehicle environ-
ment. Transportation Res. Part C Emerging Tech. 55:460–473.

Geroliminis N, Daganzo CF (2008) Existence of urban-scale macro-
scopic fundamental diagrams: Some experimental findings. 
Transportation Res. Part B Methodological 42(9):759–770.

Hao P, Ban XJ, Guo D, Ji Q (2014) Cycle-by-cycle intersection queue 
length distribution Estimation using sample travel times. Trans-
portation Res. Part B Methodological 68:185–204.

Iqbal MS, Hadi M, Xiao Y (2018) Effect of link-level variations of 
connected vehicles (CV) proportions on the accuracy and 

reliability of travel time estimation. IEEE Trans. Intelligent Trans-
portation Systems 20(1):87–96.

Jenelius E, Koutsopoulos HN (2013) Travel time estimation for 
urban road networks using low frequency probe vehicle data. 
Transportation Res. Part B Methodological 53:64–81.

Jenelius E, Koutsopoulos HN (2015) Probe vehicle data sampled by 
time or space: Consistent travel time allocation and estimation. 
Transportation Res. Part B Methodological 71:120–137.

Khan SM, Dey KC, Chowdhury M (2017) Real-time traffic state esti-
mation with connected vehicles. IEEE Trans. Intelligent Transpor-
tation Systems 18(7):1687–1699.

Lu Y, Xu X, Ding C, Lu G (2019) A speed control method at successive 
signalized intersections under connected vehicles environment. 
IEEE Intelligent Transportation Systems Magazine 11(3):117–128.

Meng F, Wong SC, Wong W, Li YC (2017a) Estimation of scaling factors 
for traffic counts based on stationary and mobile sources of data. 
Internat. J. Intelligent Transportation Systems Res. 15(3):180–191.

Meng F, Wong W, Wong SC, Pei X, Li YC, Huang H (2017b) Gas 
dynamic analogous exposure approach to interaction intensity 
in multiple-vehicle crash: Case study of crashes involving taxis. 
Anal. Methods Accident Res. 16:90–103.

Mousa SR, Ishak S (2017) An extreme gradient boosting algorithm for 
freeway short-term travel time prediction using basic safety mes-
sages of connected vehicles. Transportation Res. Board 96th Annual 
Meeting (Transportation Research Board, Washington, DC).

Rahmani M, Jenelius E, Koutsopoulos HN (2015) Non-parametric esti-
mation of route travel time distributions from low-frequency float-
ing car data. Transportation Res. Part C Emerging Tech. 58:343–362.

Sen S, Head KL (1997) Controlled optimization of phases at an inter-
section. Transportation Sci. 31(1):5–17.

Tian D, Yuan Y, Qi H, Lu Y, Wang Y, Xia H, He A (2015) A 
dynamic travel time estimation model based on connected 
vehicles. Math. Problems Engrg. 2015:903962.

Wang P, Zhang J, Deng H, Zhang M (2020) Real-time urban 
regional route planning model for connected vehicles based on 
V2X communication. J. Transportation Land Use 13(1):517–538.

Wong W, Wong SC (2015) Systematic bias in transport model cali-
bration arising from the variability of linear data projection. 
Transportation Res. Part B Methodological 75:1–18.

Wong W, Wong SC (2016a) Biased standard error estimations in 
transport model calibration due to heteroscedasticity arising 
from the variability of linear data projection. Transportation Res. 
Part B Methodological 88:72–92.

Wong W, Wong SC (2016b) Evaluation of the impact of traffic inci-
dents using GPS data. Transport 169(3):148–162.

Wong W, Wong SC (2016c) Network topological effects on the mac-
roscopic Bureau of Public Roads function. Transportmetrica A 
Transporation Sci. 12(3):272–296.

Wong W, Wong SC (2019) Unbiased estimation methods of non-
linear transport models based on linearly projected data. Trans-
portation Sci. 53(3):665–682.

Wong W, Wong SC, Liu X (2019) Bootstrap standard error estima-
tions of nonlinear transport models based on linearly projected 
data. Transportmetrica A Transportation Sci. 15(2):602–630.

Wong W, Wong SC, Liu X (2021) Network topological effects on the 
macroscopic fundamental diagram. Transportmetrica B Transport 
Dynamics 9(1):376–398.

Wong W, Shen S, Zhao Y, Liu X (2019) On the estimation of con-
nected vehicle penetration rate based on single-source con-
nected vehicle data. Transportation Res. Part B Methodological 
126:169–191.

Yang X, Lu Y, Hao W (2017) Origin-destination estimation using 
probe vehicle trajectory and link counts. J. Advanced Transporta-
tion 2017:4341532.

Yin Y (2008) Robust optimal traffic signal timing. Transportation Res. 
Part B Methodological 42(10):911–924.

Jia, Wong, and Wong: Uncertainty Estimation of CV Penetration Rate 
16 Transportation Science, Articles in Advance, pp. 1–17, © 2023 The Author(s) 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
5.

23
8.

10
9.

23
2]

 o
n 

26
 J

ul
y 

20
23

, a
t 0

4:
01

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Program-Peachtree/mupt-aksf
https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Program-Peachtree/mupt-aksf
https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Program-Peachtree/mupt-aksf


Zhao Y, Wong W, Zheng J, Liu HX (2022) Maximum likelihood esti-
mation of probe vehicle penetration rates and queue length dis-
tributions from probe vehicle data. IEEE Trans. Intelligent 
Transportation Systems 23(7):7628–7636.

Zhao Y, Zheng J, Wong W, Wang X, Meng Y, Liu HX (2019a) Esti-
mation of queue lengths, probe vehicle penetration rates, and 

traffic volumes at signalized intersections using probe vehicle 
trajectories. Transportation Res. Record 2673(11):660–670.

Zhao Y, Zheng J, Wong W, Wang X, Meng Y, Liu HX (2019b) Vari-
ous methods for queue length and traffic volume estimation 
using probe vehicle trajectories. Transportation Res. Part C 
Emerging Tech. 107:70–91.

Jia, Wong, and Wong: Uncertainty Estimation of CV Penetration Rate 
Transportation Science, Articles in Advance, pp. 1–17, © 2023 The Author(s) 17 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
5.

23
8.

10
9.

23
2]

 o
n 

26
 J

ul
y 

20
23

, a
t 0

4:
01

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 


	Uncertainty Estimation of Connected Vehicle Penetration Rate
	Introduction
	Problem Statement
	Uncertainty Estimation for the SSDPRE
	Estimation of Constrained Queue Length Distribution
	VISSIM Simulation
	Applications
	Conclusion


