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Abstract 

This study investigates the vulnerability to fire and preparedness of New Zealand’s 

stadia for effective evacuations. The study covers aspects of crowd behaviour, 

observational findings and issues that must be considered when accommodating crowds. 

It provides an overview of the features stadia use to protect stadium patrons from fire, 

and a brief history of some famous stadium incidents and their contribution to the 

profile of the modern stadium.  

 

In 2001 there were two major mass casualty fire disasters in highly populated buildings 

in the USA. Subsequently there has been increased attention placed on the vulnerability 

of high profile sites and gathering places to large-scale mass casualty events. Effective 

mitigation in such variable populations is two-part: evacuation and protection of the 

populous. 

 

New Zealand (NZ) does not have work-place buildings of the scale of those in other 

developed countries such as the USA. The largest capacity structures in New Zealand 

are entertainment venues, namely stadia. In 2002 New Zealand had ten operational large 

stadia with the capacity to accommodate in excess of 20,000 patrons. The NZ Fire 

Service has attended 28 call outs to these stadia over the last 3.5 years. Three of these 

call-outs were to attend actual fires. By identifying issues particular to stadia 

evacuations (structural and management practice) it is hoped gain insight as to how to 

prevent New Zealand stadia from entering the international list of major mass casualty 

case studies. 

 

Experiments performed in this study included; 

• Analysis of the observed flow movements of egressing crowds at stadia 

• Simulation of stadium egress using modelling software  

• Estimated crowd flow potential based on previous pedestrian movement studies 

and standard calculations. 
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The results obtained by these methods were then compared in order to establish their 

relative consistency and credibility when applied to the New Zealand stadium crowd 

environment. 

 

In the course of this study it was found that there is a lack of consistency across New 

Zealand stadia in both fire protection and crowd management practices. In several 

instances, overseas regulations and codes have been adapted for use in the different 

New Zealand stadia. International practice with regards to stadium design and egress 

requirements for such varies; hence a review of different international codes and 

standards was incorporated into the study because of their applicability to New Zealand 

practice.  

 

Experimental analysis showed marked variation in the results obtained for egress when 

applying different methods of estimation. This relates to the underlying assumptions 

made in applying the various methods and their appropriateness to the particular 

dynamics of a “stadium crowd”. 
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1 Introduction 

Stadia have facilitated large crowds since their inception. With modern design 

techniques, the size and facilities of these venues have evolved and changed 

dramatically. In contrast to many other structures designed to hold large populations, 

stadia are subject to ever changing occupants and uses. Whereas a shopping malls and 

high-rises house the same occupancies for months to years, a modern stadium 

transforms itself weekly. It may facilitate a sporting event one weekend and then host an 

exposition through the week. With a stadium, not only do events and event management 

teams change frequently but so do retail concessions around the grounds. This rapid 

turnover of occupants and uses has greatly changed the considerations in stadium design 

since their early beginnings. 

 

In the last decade most of New Zealand’s stadia have undergone major renovations and 

modifications to allow them to accommodate more diverse activities than their original 

designs allowed for. Corporate suites are increasingly being used by owners as offices 

and or function rooms increasing non-event occupancy numbers and events are 

becoming more frequent. In order to attract high profile events and cater to corporate 

ownership, the modern stadium must be well furnished and provide a wide array of 

conveniences for both performers and patrons. As the quality of the stadium and the 

demand to see a performance or game increases, so does the acceptability of higher 

prices and hence potential profit to the owners. New Zealand’s stadia capacities range 

from less than 10,000 to 50,000, with larger stadia being in the areas of the country with 

higher population densities. New Zealand stadia are relatively small by international 

standards so a greater number of events must be held to achieve an acceptable level of 

profitability; hence there is much pressure for stadia to attract more diverse events than 

for their larger counterparts overseas.  

 

Large population densities occur in stadia, creating the potential for significant numbers 

of casualties and deaths should an untoward incident occur. Thankfully untoward 

incidents such as fires are uncommon1. Even so; it might be expected that as building 

technology has developed there would be a drop in the frequency of fires in this type of 

structure. This has not been the case. In fact, stadia disasters in general, including fires, 
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have steadily increased in number and severity over the last few decades (Table 1). This 

may be partially attributable to increased usage and capacities.  

 

Stadium disasters are rare; however they have resulted in approximately 3000 physical 

casualties over the last decade worldwide. Individual incidents involve large numbers of 

casualties and hence have a greater impact on the community than less sensational 

incidents that occur more frequently such as car crashes2. The disasters that have 

occurred have largely been a result of egress problems. The vast majority of disasters 

have occurred at soccer stadia; however there is no reason to assume that New Zealand 

is invulnerable to this sort of tragedy based simply on sporting codes. Indeed, fire call-

out statistics indicate that New Zealand’s stadia have been subject to a number of minor 

fires in the past and it may simply be a matter of time before a more serious incident 

occurs. 

 

Although only a fraction of stadia disasters occur as a direct result of fires, egress and 

evacuation procedures are crucial in preventing tragedy should a fire occur. 

Psychologists have found that crowds do not tend to behave as individuals do. As there 

are many individual behaviour patterns there are also many crowd behaviour patterns. 

Flight behaviour and subsequent crushing has been illustrated in a variety of structures 

fires involving crowds. In the majority of the events in Table 1, insufficient egress 

and/or poor crowd management contributed to the resulting injuries and fatalities.  

 

At this point New Zealand has only experienced a handful of stadium fires, of which no 

casualties have resulted (Appendix D). In line with international trends, many New 

Zealand stadia have been upgraded in the last decade, but against international trends 

there has not been an increase in disasters or potential disaster incidents. This study 

hopes to determine whether or not this is due to a fortunate lack of the occurrence of 

low probability incidents. 
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Year Location Country Incident Contributing factors Injuries Fatalities 

1902 Ibrox UK Structural Failure  517 26 

1946 Bolton UK Structural failure Stampede 500 33 

1964 
Maryland, 

Baltimore 
USA 

Crushed, lacerated 

children  

Escalator gate closed, Human 

error 
60 1 

1964 Lima Peru 
Stampede - 

Crushing 
Riot following referee decision 500 318 

1967 Kayseri Turkey Stampede 
Fighting weapons and resulting 

riot 
600 40 

1968 Buenos Aires Argentina 
Stampede - 

Crushing 

Hooliganism/Fire – burning 

paper thrown on crowd at 

egress bottle-neck  

200+ 74 or 73

1971 Salvador Brazil Stampede Fighting led to flight 1500 4 

1971 Ibrox UK 
Structural failure - 

Crushing 

Crowd behaviour egress reverse 

flow 
140 66 

1974 Cairo Egypt 
Stampede - 

Trampling 
Riot following referee decision  49 or 48

1979  Nigeria 
Stampede - 

Trampling 
Lighting failure led to flight  27 24 

1981 Athens Greece 
Stampede - 

Trampling 

Locked gate, no front to back 

communication 
? 24 

1981 Hillsborough UK Crushing Crowd surge 38  

1982 
Lenin, 

Moscow 
USSR Crushing Reverse flow in egress  61 or 340

1982 Cali Columbia 
Stampede - 

Trampling 

Intoxicated patrons inciting 

flight 
250 24 

1985 Bradford UK Fire 
Rubbish ignited poor 

housekeeping 
100+ 56 

1985 Mexico City Mexico Crushing 
No front to back 

communication at locked gates 
30 10 

1985 Heysel Brussels 
Structural failure - 

Crushing 
Crowd behaviour 437 39 

1988 Kathmandu Nepal 
Stampede - 

Crushing 

Hail storm led to flight, locked 

exits no front to back 

communications 

700 10 or 93
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1989 
Hillsborough, 

Sheffield 
UK Crushing 

Inappropriate police behaviour 

and overcrowding 
400+ 95 or 96

1991 Orkney 
South 

Africa 
Crushing 

Fighting led to flight against 

fences 
1900 40 

1992 Bastia Corsica Structural failure 
Temporary stands collapse, 

poor construction 
? 10 

1992 

Maracana, 

Rio de 

Janeiro 

Brazil 
Structural failure - 

Crushing 
Crowd behaviour 50 0 

1996 
Guatemala 

City 
Guatemala Stampede 

Individuals falling down, 

blocking stairwell 
180 83 

2000 

Harare 

National 

Sports  

South 

Africa 

Stampede - 

Crushing 
Inappropriate police behaviour scores 12 

2000 Sao Januário  Brazil 
Stampede - 

Crushing 
Fighting and oversold event 200  

2001 Ellis Park 
South 

Africa 
Crushing 

Crowd behaviour and oversold 

event 
hundreds 47 

2001 Accra Ghana 
Stampede - 

Crushing 
Inappropriate police behaviour 277 126 

2001 Akashi Japan Crushing 
Insufficient egress due to poor 

organisation and planning 
120 10 

Table 1: Stadium Disasters over the last century adapted from Dickie3 and Fruin4 

Table 1 shows mostly non-fire related disasters. Amongst these incidents there is a prevalence of 

crushings as crowds attempted to flee undesirable events. In most stadia disasters that have occurred 

over the last 30 years crowd behaviour has been the main contributor to the casualties. In some instances 

conflicting or non-specific numbers were available. 
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1.1 Profile of New Zealand Stadia 

Stadia, for the purpose of this thesis, should not be confused with indoor arenas. Indoor 

arenas are permanently fully enclosed. Indoor arenas are single structures. In contrast, 

stadia have an outdoor arena surrounded by stand and embankment structures. Some 

stadia may have sliding roofs that can cover the arena when desired but the majority of 

the time the arena is not covered. No stadia in New Zealand have sliding roofs, all are 

permanently uncovered.  

 

There are three schools of thought as to why New Zealand stadia have avoided major 

incident. The first is that it is because of the quality of their structures and management 

practice. The second is that it is primarily due to good fortune. The third is a 

combination of the other two. Regardless of the cause New Zealand stadia are less 

likely to experience a major incident or as severe an incident than in some other 

countries. This is purely because New Zealand’s population base does not support the 

usage patterns enjoyed by the likes of say Australian stadia. 

1.1.1 Event Times 

A study on the probability of major fires occurring in Australian stadia gives some 

interesting results. Bennetts et al5 estimated, using Australian and international data, 

that the probability of a significant fire in a modern stadium during a major event is 

once in 952 years if the stadium is not sprinklered and once in 47, 619 years if it is 

sprinklered (this assumes that 3% of fires have the potential to become large during 

occupied hours). Bennetts et al’s define a major event to be one with close to full 

capacity occupancy. Bennetts et al’s figures may therefore be misleading in that not all 

scheduled events are attended by capacity crowds. There figures are also biased in that 

their estimates are for fires occurring in furnished and storage areas of the stadium only.  

1.1.2 Non Event Times 

Outside of event times there can be as many as two hundred people in various parts of a 

stadium on a regular basis. These people are involved in catering, sporting practices, 

event management and various other activities. With such low occupant density the 

potential for a fire to develop unnoticed increases. This was illustrated in the Texas 

Stadium fire in the USA on October 13th, 19936.  
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The Texas Stadium fire occurred in the private suite area of the stadium on a non-event 

day. The suites concerned were accessible by corridors, internal stairwells and elevators. 

There was no open-air access to this part of the stadium. Cheerleaders practicing on the 

field detected the fire in the suite of fire origin and alerted the fire service. By the time 

fire fighters reached the fire, some three minutes later, it had had spread to twelve suites 

on two levels and to the plastic seating in the nearby bowl area.  

 

Before the fire was extinguished it had spread to several suites. Smoke had penetrated 

the adjoining corridor and entered the air-handling duct, resulting in smoke damage to a 

quarter of the suites in this part of the stadium. Heat melted vision panels in the suites 

affected by fire and through these openings smoke had vented into the playing field 

area.  

 

If Texas Stadium had had a greater occupancy at the time, such as that of an event day, 

one of two scenarios might have occurred. Firstly the fire might have been detected 

earlier and extinguished before it became established. Secondly the fire might not have 

been detected early enough to prevent its development, resulting in casualties in the 

surrounding rooms, hallway and main bowl area. 

 

What special considerations with respect to fire protection and evacuation are required 

for managing and designing a stadium as opposed to any other structure? It is widely 

accepted that management has as great a role to play in effective fire protection and 

evacuation as the design of the structure7. Currently New Zealand, unlike the UK8 and 

USA9, does not make any special provisions for such places. This study investigates 

whether it needs to, or whether current regulations and management practice are 

sufficient. 

 

Historically New Zealand legislature and regulations - with respect to safety - have for 

the most part developed responsively to major incidents and disasters in New Zealand 

(“stable door” legislation) or have mimicked changes in British legislature. An 

exception to this was when the UK passed the Safety at Sports Ground Act 1975 in 

response to incidents at sporting events and stadia. Although the potential loss 

associated with a stadium disaster appears insignificant when compared to the collective 
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loss from house fires annually, it would be a tragedy for such an event to occur simply 

because New Zealand did not adapt its regulations in response to the experience of other 

nations.  

 

The purpose of this thesis is to assess whether New Zealand stadia offer effective fire 

protection and evacuation procedures, to ensure the safety of all stadium occupants. 
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2 Objectives –  

The objectives of this thesis are to: 

 

• Examine the stadium occupant profile and determine how stadium occupants 

differ from occupants of other large capacity structures. The occupant profile has 

been limited to rugby and Australian football league game patrons so as to 

provide comparable demographics across multiple stadia 

 

• Examine past stadium fires and incidents resulting from egress issues. 

 

• Determine whether New Zealand stadia with the capacity to hold greater than 

20,000 patrons fit the profile of those stadia that have experienced disasters in 

the past. 

 

• Examine the coordination of stadium events in New Zealand to determine how 

effective evacuation of New Zealand stadia might be. 

 

• Compare evacuation calculations, simulations and observations to determine 

how accurately crowd movement has and is being anticipated in the stadium 

environment. 

 

• To identify current international trends in stadia with respect to fire protection 

and evacuation. 

 

• To determine whether New Zealand is inline with international practice.
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3 Literature Review 

3.1 The Development of Stadia 

As with most types of structure, stadia have changed as construction trends and 

consumer demands have dictated. Because of this there is great disparity between the 

construction and layout of a modern stadium, a partially upgraded stadium and an older 

style stadium. Stadia are large complexes and may consist of one or more structures. 

Due to cost and seasonal considerations the complexes may be constructed or modified 

in parts over a number of decades. This may mean reduced seating for a long period if 

the structures are being modified continuously or that larger discrete sections are 

modified at given intervals with construction occurring over a number of “off seasons”. 

Hence different parts of a stadium may be built to different specifications as what was 

common practice when the alterations were started is obsolete by the time the final 

stages are commenced. To understand some of the issues for egress planning and fire 

engineering at a stadium an overview of stadium constructions found in New Zealand 

has been included. 

3.1.1 Construction of older stadia 

Older style stadia are generally of timber or brick construction with lather and plaster 

finish. Seats consist of wooden benches or bleachers in single tier stands. Large sections 

provided no seating. Turnstile entries to the grounds were narrow and often set into 

concrete outer walls close to ticketing booths, as were the similarly narrow exits. 

 

Tiered grass or concrete embankments and terraces were often included around large 

parts of the arena as festival seating. These were traditionally the rowdiest sections of 

the stadium10. Tickets for these sections were cheaper than for seated sections as they 

provided less comfortable viewing and could accommodate more people per area than 

seated viewing areas. The stands may or may not have been roofed. Facilities under and 

around the stand consisted of changing rooms, public toilets, an office, ticketing booths, 

turnstiles, supporters’ club with a bar, score board, commentators box, storage space 

and a caretaker’s area. Vomitories and these other facilities were typically small and of 

brick or concrete block construction, designed to take up as little potential viewing 

space as possible. This has led to some stadia having somewhat complex egress paths. 
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This somewhat Spartan style of stadium remained typical for the first half of the 1900s 

possibly due to the influence of two world wars and the depression. 

3.1.1.1 Advantages 

Older stadia were low cost, low maintenance constructions requiring no more than a 

fresh coat of paint and someone to sweep up the rubbish after the games. The venues 

were designed to take the maximum number of people in the smallest possible space. 

When this type of stadia was in vogue people were used to queuing for war rations and 

other commodities. Queuing to get in and out of a stadium was no different to the 

queuing required for many other activities and the tolerance for delays was much higher 

than it is today. With only the radio as an alternative, those who wished to view an 

event had little alternative to patronising the stadium. 

3.1.1.2 Limitations 

• No or little provision for comfort was included. Generally events were restricted 

to daylight hours as lighting was only provided to those facilities under the stand 

that needed it. 

• Most stands were single tier so in order to accommodate larger crowds more 

land and deeper stands were required.  

• Patrons were often vulnerable to the weather. 

• Access in and out of the grounds was often limited by turnstiles. Vomitories and 

turnstiles were one person wide. Stairs were often steep and poorly lit. 

• No or very little provision was made for mobility-impaired patrons. 

• Police were responsible for crowd control 

• Fire engineering and pedestrian movement were not appropriately incorporated 

into designing the structure 



- 13 - 

 

3.1.1.3 Existing examples in New Zealand 

Parts of Carisbrook, and Eden Park are still of this type of construction. Jade Stadium 

retains only the Stevens Street Memorial Gates as a remnant of its earlier days. 

 

Figure 1 Stevens St Memorial Gate, Jade Stadium 

3.1.2 Construction 1970s – 1990s 

With the increase in air travel, improved roading, urbanisation, and television coverage 

of sporting events stadia, became more accessible and visible to the public. 

Consequently, many stadia were altered and new stadia built in an effort to attract 

international sporting events and the subsequent capacity crowds. In order to attract 

people to the stadium, the stadium had to be more appealing than competing 

alternatives. Stadia had to move away from the image of offering little more than just a 

cold pie and a spot to stand with your mates in the rain. Corporate sponsorship started to 

develop and the level of facilities began to exceed those of basic amenities. 

Christchurch has two early examples of this type of construction; the eastern stands at 

Jade Stadium and the stadium at QEII (then able to seat 34,000) both of which were 

constructed for the 1974 Commonwealth Games. Due to the incident at the 1972 

Olympic Games where nine Olympic athletes were taken hostage, safety of patrons and 
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competitors became a major focus of stadium management. Security features such as 

large gates allowing for emergency egress began to be incorporated into the designs. 

 

Multi-tier stadia were developed to accommodate more patrons, provide more space and 

improve viewing without increasing the distance from the field. This was especially 

important for existing stadia, as greater patronage could be accommodated without the 

need to purchase more land. For patrons this provided a viewing benefit by keeping all 

patrons close to the arena. It also introduced the additional benefit of providing shelter 

to the lower tiers without extensive roofing. The contrast between older and 1970s-90s 

styles is illustrated below by the two main Melbourne stadiums; Colonial Stadium and 

the Melbourne Cricket Ground (MCG). 

 

Figure 2 Colonial Stadium with its 

retractable roof open. Each level sits 

above the previous one providing a 

compact stadium with proximal views 

for all patrons. 

 

 

 

 

 

 

Figure 3 View of the MCG from the Great Southern Stand looking towards the Members Pavilion. Patrons in 

the back rows at the MCG are a great distance from the arena. 

 

Over time the comfort and quality of general patrons’ seating has improved, as has the 

quality of members’ lounges and corporate suites. This has led to an increase in the 

quantity of furnishings, kitchen facilities and car parking; hence a greater fire load is 
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present in some areas of the stadium than was ever envisaged for older style stadia. 

Some stadia, such as Aussie Stadium go so far as to include facilities such as television 

studios and nightclubs within their corporate and lounge structures. This alters the usage 

pattern of the stadium and may impact on the fire spread scenarios for the stadium in 

ways not anticipated in the design of pre-existing nearby structures within the stadium.  

 

Changing usage patterns, fire loads, proximity of patrons and capacity of stadia may 

vary considerably from the type of structure that was envisaged in determining the 

building code requirements for stadia. This was illustrated in two American stadium 

fires in 199311. 

 

The potential for fires in refurbished areas was realised in the USA in 1993 when two 

stadia; one in Texas and one in Georgia; experienced fires in their suite areas. Both 

stadia had been built in the 1960s and refurbished in the subsequent decades. Whilst no 

one was hurt in either event, both fires caused extensive localised damage. Both fires 

started by accident, one from a food warmer and one from electrical wiring. Both fires 

spread to other suites with one spreading to the plastic seating in the main arena. Both 

fires resulted in thick black smoke in corridors surrounding the fire. Smoke also entered 

the main arena through windows that fractured and melted as a result of the fires.12  

3.1.2.1 Advantages 

The increase in fire loading at stadia has not gone completely unnoticed. Stadia, just 

like any other type of structure, have for the large part continued to make improvements 

in fire safety. This has occurred in line with law changes and as technology and 

knowledge of fires and fire suppression has improved13. However because a stadium is 

large and is often made up of a number of structures some parts of the stadium may 

have escaped improvement as surrounding structures have been upgraded. 

 

Changes to stadium structures that have been introduced since the 1970s and enhance 

fire protection and evacuation of structures and patrons include: 

• streamlining egress paths 

• increasing exit numbers and widths 

• greater sign posting with fire procedures 

• installation of manual call points and sprinklers in covered areas 
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• no smoking policies 

• separate fire service access points 

• video surveillance 

• Dedicated power supplies for lighting 

• Intumescing pathway indicators 

• Greater uniformity of stairways 

• Installation of smoke alarms 

• Fold up seating (allows for less accumulation of rubbish) 

• Lower density of seated population on individual levels 

• Introduction of EWIS (emergency warning intercommunication systems) into 

the communication system. 

• The availability of television screens to relay information 

 

3.1.2.2 Failings 

As alluded to previously, stadia are not generally refurbished in one operation. The 

redevelopments tend to occur in stages over several years or even decades. This is so as 

to keep the stadium operational, maintaining near capacity crowds during the sporting 

season, and to spread the costs incurred over a longer period. In doing this, not all of the 

fire safety system is necessarily brought up to the current standards in a single phase. 

This increases the likelihood of a series of different contractors continuing upon 

previous work and the likelihood of disparity between the designed structure and the 

built structure. Examples of this were related during interviews at stadium visits around 

New Zealand. 

 

As with earlier stadium designs, many of this style of stadia have large quantities of 

fixed wooden seating. Most stadia in New Zealand that still have wooden seating are in 

the process of converting to folding plastic seating. The disadvantages of wooden 

seating are that it is easy for rubbish to accumulate under the seats and the seats take up 

more walk space than folding seats. Folding seats increase the available walk space 

once a person stands up. This makes removal of rubbish easier through improved access 

to the underside of seats by cleaners. Plastic seating also offers the stadium the 

advantages of low maintenance and comfortable seating.  
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3.1.3 Present Day Construction  

The modern stadium is now expected to be a multifunctional event centre. As such, fire 

engineering and evacuation planning are becoming increasingly important to designing 

stadia in order to provide safe venues under a wide range of circumstances14.  

 

Key characteristics of current stadium construction practice are: 

• Prestressed concrete and steel construction are now the construction materials of 

choice. Outdoor seating is predominantly plastic on metal frames. 

• Versatile, multi functional facilities within the structure. 

• High level of furnishings within corporate, function and administration sections 

of the structure. 

 

Stadia now provide facilities for corporate viewing, dining, special functions, vehicle 

access, under cover car parking, multimedia production areas, museums, catering, 

offices, indoor training areas, retail outlets, lounges, and security; as well as all the basic 

facilities found in a older style stadium. 

 

As stadia have become more complex, their construction materials have tended towards 

less combustible materials with increasing levels of fire resistance throughout. 

Unfortunately this does not necessarily translate to greater property protection. The 

potential for smoke, fire and water damage to the contents of suites, lounges and other 

facilities as a consequence of fire has increased as the level of furnishings and electrical 

equipment has increased. 

 

Bennetts et al15 identify the potential for smoke logging in narrow corridors to the rear 

of corporate suites as a potential hazard. This situation could develop before occupants 

in suites adjacent to the fire are aware of the need to evacuate. Consequently it may be 

necessary to provide shorter egress routes than those required by the building code16.  

 

The size of stadium corridors is such that they could accommodate rapid smoke filling. 

If the entertainment event in progress is particularly exciting crowd noise may obscure 

initial sounders and/or patrons in surrounding suites may be engrossed to the point 

where they delay leaving and subsequently become trapped17. 
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3.1.4 Future construction 

Superstadiums have been developed overseas, but at this point New Zealand does not 

have the population to justify such structures18. It has therefore been hypothesised that 

there will be no major changes from current stadium design in the near future.19  

 

The most likely change is in the proportion of suite and lounge facilities. The potential 

for a greater proportion of the stadium to comprise of suite facilities has increased with 

the introduction of corporate sponsorship. This means that the level of comfort and 

aesthetics of the stadium venue is likely to incorporate greater quantities of furnishings 

and catering facilities. This is likely to improve the fire safety of older stadia as 

modifying or replacing existing structures will mean that the fire protection afforded 

those structures will have to be upgraded. This does not however mean that the level of 

protection required under the existing building code or in overseas codes is sufficiently 

relevant to the ever changing usage and contents of these structures. 

3.2 International Practice 

There are three main issues that were addressed in researching this paper: 

• Identifying risk posed by fire in stadia 

• Identifying variables that affect evacuation of a stadium 

• Comparing regulations and guidelines used to manage these variables and risks 

It was noted that different countries have addressed these issues in different ways. 

 

Many variables play a part in fire prevention and effective evacuation of stadia. The 

diversity of stadia that have been involved in fires and evacuation problems make it 

difficult to generalise as to which variables play a greater role than others.  

 

Some of the variables that affect evacuation concern human behaviour of the occupants, 

such as: 

• Sobriety of patrons 

• Anonymity within the crowd 

• Euphoria of the crowd 

• Familiarity with the grounds 

• Age and mobility demographics of the patrons 
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• Interest in the event 

• Fear 

• Anger 

• Surging and other unsafe behaviour 

 

Others relate specifically to the stadium, its location and its management: 

• Fire protection built into the stadium 

• Design and labelling of egress routes 

• Visibility 

• Tolerance of management and police to disruptive and destructive behaviour 

• Competency of staff with regards to the evacuation procedures 

• Availability of information to evacuees 

• Legal obligations/requirements 

• Weather 

• Smoking policy of stadium 

• The robustness of the evacuation procedures 

• Fire loading of suites and indoor areas 

• Occupancy of the stadia 

• Familiarity of the fire service with their local stadium 

• Ability of the fire service to reach the stadium quickly 

• Surrounding properties and associated hazards 

• Maintenance and housekeeping of the stadium 

 

3.2.1 USA 

To date the USA has had remarkably few stadium incidents of note. Those that stand 

out include a Texan stadium fire (on a non-event day), a Georgian stadium fire (prior to 

a game)20 and a fire that occurred during the 1934 reconstruction of Fenway Park21.  

 

The Texan stadium fire, at Texas Stadium, Irving, rapidly spread to affect two levels of 

corporate suites and seating in the main bowl.  
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The Georgian fire occurred in the press suites at Atlanta Fulton County Stadium on July 

20th, 1993 in Atlanta. This fire was started by an unattended open flame food-warming 

device. Investigators concluded that the device ignited some nearby combustible 

materials within the room. Interestingly the fire was not detected by stadium occupants. 

An off duty fire fighter watching the pre-game coverage on his television at home was 

the first to report the fire.  

 

The room of fire origin flashed over shortly after the fire service arrived. The entire 

press suite area and several private suites were affected. The fire was extinguished after 

an hour and the scheduled game went ahead only slightly delayed. The stadium was not 

hosting a capacity crowd and so potentially affected patrons were accommodated in 

other parts of the stadium. Although the disruption to the game was minimal repair costs 

and the potential injuries and disruption had the fire occurred during the game were still 

significant. 

 

The Fenway Park fire in Boston occurred on January 5th, 1934. Every appliance in 

Boston at the time attended this fire. The fire was caused by an overturned salamander. 

A canvas covering was accidentally ignited as workmen tried to dry fresh concrete with 

the salamander. The fire quickly spread to the bleachers and ended up destroying most 

of the stadium, which was then rebuilt. Although this fire effectively occurred in a 

construction site rather than a stadium it did demonstrate the potential for fire spread 

within the stadium. As many stadia are renovated in parts over several seasons the 

potential for fire spread from a construction zone remains a relevant consideration for 

stadium fire engineering design and egress management today. 

 

In none of these incidents was anyone other than fire fighters injured. The NFPA 

standards and code and other compliance documents played a part in the lack of 

injuries, the major contributing factor was that none of these events occurred during 

peak occupancy times. The Texan and Georgian fires occurred in parts of the stadium 

that were completely unoccupied, the fires being observed from other parts of the 

stadium. The Fenway Park fire occurred in the presence of workmen. The fire occurred 

outdoors. All onsite workmen were present at the ignition of the fire and were easily 

able to escape the fire off site. The impact of any of these fires, had more occupants 

been present, could have been much greater.  
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Although injuries were avoided, the damage that occurred as a result of these three fires 

was considerable. NFPA investigations into the Texan and Georgian fires concluded 

that the stadia would have suffered significantly less damage had their fire protection 

been brought up to the latest NFPA code requirements.  

 

As mentioned, none of these three fires occurred during peak occupancy. In New 

Zealand most stadia have the facilities to accommodate cricket, soccer, rugby, rugby 

league and in some cases hockey and athletics. Because stadia in the USA are largely 

designed to suit a specific sporting code, e.g. grid iron football, baseball, or athletics, 

without the same pressure to perform multiple functions, the frequency of use has 

differed considerably from some other countries. One of the largest stadia in the USA, 

Beaver Stadium held only six sporting events in 2002. This low usage rate greatly 

reduces the opportunity for a fire to occur during a peak occupancy period when 

compared to a New Zealand stadium which might accommodate twenty or more major 

sporting events per year as well as various other functions. Usage of Australian and 

British stadia is greater again. 

 

There are three NFPA publications in US building regulations that are concerned with 

stadia construction and safety. NFPA 101®: Life Safety Code®22, NFPA 102®: 

Standard for Grandstands, Folding and Telescopic Seating, Tents, and Membrane 

Structures23, and NFPA 5000™: Building Construction and Safety Code™24. None of 

these are used throughout the USA but they are the most commonly accepted across the 

country.   

 

NFPA 5000 covers design requirements of “Grandstands and Bleachers” in chapter 

32.7, identifying the allowable types of construction for these types of structure. It also 

lists the frequency of inspection and load bearing capacities but does not provide a great 

deal of detail specific to stadia. NFPA 102 does relate specifically to stadia, as opposed 

to the other documents, rather than considering many types of structure. NFPA 101 

again is concerned with a wide variety of structures and has specific sections and 

clauses that relate to stadia, bleachers and grandstands. 
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NFPA 102 is intended to provide life safety for occupants of assembly seating in 

relation to fire, storm, collapse and crowd behaviour. This standard provides general 

minimum requirements for stadium components but does not differentiate between 

different occupant loads or cover specific methods of achieving these requirements.  

 

NFPA101 applies a similar methodology to the Acceptable Solutions in the Approved 

Document for the New Zealand Building Code25. NFPA 101 provides the greatest 

amount of information and detail on the requirements of stadia construction and 

management to ensure life safety and fire protection. NFPA 101 details minimum 

acceptable requirements of structures for given occupancies and provides an appendix 

of explanatory materials and diagrams to assist in interpretation of the Life Safety Code.  

 

The Life Safety Code, as with the Approved Document for the New Zealand Building 

Code is only one method of achieving life safety and there is allowance for alternative 

solutions to be used so long as they are approved by the “authority having jurisdiction” 

and provide either equivalent or greater life safety than that required in the Life Safety 

Code. There are however two main differences; occupancies are divided into a greater 

number of types and life safety evaluations are required for certain structures, stadia 

included. The Life Safety Code provides more detailed guidelines than those of the 

other two NFPA documents, the Life Safety Code’s purpose being to address fire and 

safety issues particular to specific structures. For each structure type general and egress 

requirements as well as protection, special provisions, building services and operating 

features are described. Stadia and stadium components are covered in chapters 11-1326 

overlapping three of the 32 types of structure addressed in this Code. These chapters 

deal with special purpose, old and new assembly occupancies.  

 

The Life Safety Code has specific requirements for various components that comprise a 

stadium such as grandstands, telescopic seating, festival seating and bleachers. The 

Code specifies parameters for a range of occupancy numbers varying from 50 - 

>25,000. The parameters covered are very similar to those covered in C1 – Outbreak of 

Fire, C2 – Means of Escape, C3 – Spread of Fire, C4 – Structural Stability During Fire, 

F1 – Hazardous Agents on Site and F6 – Lighting for Emergency of the Approved 

Document for the New Zealand Building Code but are specific to assembly 

occupancies. 
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3.2.2 United Kingdom 

The UK - in contrast to the USA - has been subject to a significant number of stadium 

disasters as indicated in Table 1. Only one of the UK incidents listed in the table 

involved fire but they all identified failures within either the structure and/or 

management that led to problems in evacuation from the incident. A number of Acts of 

Parliament have subsequently been passed that pertain specifically to sports grounds 

including the Fire Safety and Places of Sport Act 198727. These Acts were brought 

about largely as a way to minimise the effects of football hooliganism but have much 

greater effect by addressing the issues of crowd management, evacuation, prevention of 

crowd crushes, and many other crowd safety issues that sporting and stadium events 

may produce. Local authorities issue annual certificates allowing stadia to operate but 

can also issue prohibition notices preventing stadia from operating if they develop 

safety concerns prior to the expiry of the current certificate. 

 

It should be noted that in Approved Document B for the UK Building Regulations 

200028 a stadium falls into the category of “Assembly and Recreation Type 5 purpose 

group”. As such it is not distinguished from other places of assembly – in this way it is 

the same as the Approved Document for the New Zealand Building Code. Where the 

UK requirements for stadia do differ is in that they have special compliance 

requirements above those of the building code that must be met in order for a stadium to 

pass its annual safety inspection. These documents cover such additional structural 

features as turnstiles, crush barrier placement of, and ramp slopes along with 

requirements of risk assessment and management practice. The compliance documents 

that address assembly areas such as stadia include BS 5588: Part 6: 1991 Code of 

Practice for Places of Assembly29, Guide to fire precautions in existing places of 

entertainment and like premises30, Safety of Sports Grounds Act 197531, Fire 

Precautions (Workplace) Regulations 199732, the Fire Precautions Act 197133 and the 

main one; the UK Guide to Safety at Sports Grounds 199834.  

 

One of the most significant UK incidents was the Bradford Stadium disaster on 11th 

May 198535. Although this had fewer casualties than the Hillsborough disaster in 198936 

it is by far the most dramatic stadium disaster in British history and had legislative 

repercussions37. The incident was dramatic for two reasons, firstly the entire incident 
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was televised and secondly the rapidity with which the fire developed and spread. The 

size of the fire and the images of people emerging from the stand with their clothing 

alight were broadcast around the UK and the world. This resulted in intense interest in 

the subsequent investigation and much public outcry, demanding that government 

ensure this sort of tragedy could not reoccur38. The result of the investigation was to 

introduce the Fire Safety and Safety of Places of Sport Act 1987 and the review of the 

Home Office Guide to Safety at Sports Grounds. This was republished as the UK Guide 

to Safety at Sports Grounds39 (1989) - commonly referred to as the Green Guide 

because of the colour of its cover.  

 

Sporting spectator tragedies were not unknown in the UK. Ibrox, for example had two 

deaths due to crushing in 1961 and a further 66 in 1971, the second of which led the 

Wheatley Report40 and subsequently the first edition of the Green Guide41. It was not 

until after the 1971 tragedy that stadia began to change their policies with regards to 

safety of patrons. 

 

The Green Guide was further developed in 1990 in response to the Hillsborough 

disaster42. This guide covers all aspects of event management at an event as well as 

design requirements for architects and engineers. It has been revised three times since 

its inception. The document itself has no power and is only a guide. The use of this 

guide is however a determining factor in the issuance of annual certificates of safety 

that are required for all football fields with a capacity to accommodate 5000 spectators 

or more and all other stadia and sporting facilities able to accommodate upwards of 

10,000 spectators43. It divides stadia into categories based on a range of criteria. 

Depending on the level of fire protection afforded a stand, acceptable evacuation time 

recommendations for individual stands range from 180 seconds through to 8 minutes44. 

The acceptable period is able to be increased if additional safety measures are added to 

the stadium operating manual. 

 

As mentioned previously, sports grounds including stadia in the UK require a current 

safety certificate. The Green Guide provides recommendations and instructions on how 

the structure should be designed and maintained, as well as how the grounds and events 

should be managed. Evacuation procedures fall under the umbrella of management and 

detailed guidance on acceptable practice is provided. Some of the information is 
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common sense, some historic practice, some occupational safety and health, and some 

based on research in such fields as pedestrian movement, crowd control, crowd 

psychology, structural engineering and fire engineering. Strict adherence to the Green 

Guide and an increase in police powers to deal with hooliganism over the past few years 

has markedly reduced the UK’s stadium incidents45. 

3.2.3 Australia 

The Australian Building Code (BCA)46 classes stadia as “open spectator stands” in 

clause C1.7 and as such they may be constructed as Type C construction (for simple 

stands with one tier of seating) or Type A construction (for more complex structures) 

subject to concessions outlined in Table 3 of Specification C1.147. BCA96 does not 

make special considerations for special purpose buildings such as stadia. In the case of 

the Olympic Stadium, fire modelling illustrated that the deemed to satisfy egress 

requirements were insufficient and hence larger egress areas were designed48. In the 

case of at least four of the newest Australian stadia the UK Green Guide has been 

considered in the design of the structures49.  

 

In 1998 Bennetts et al50 of the Centre for Environmental Safety and Risk Engineering at 

Victoria University of Technology published a report exploring the implications of the 

“deemed to satisfy” requirements of the BCA for Type A construction stadia. The report 

provides guidance on considerations that should be made based on issues that have 

arisen historically in stadia and have the potential to impact on the performance of fire 

safety aspects of fire engineering for this type of construction. It highlights a number of 

issues that are peculiar to stadia and grandstands. These include the size of the 

evacuating crowd and potential impedance on fire-fighters ability to set up 

expeditiously. It does not, however, provide an opinion or assessment as to whether the 

BCA adequately addresses these concerns within the requirements for Type A 

construction. 

 

The most memorable Australian stadium fire in recent history occurred in August 1999 

when the MCG scoreboard caught fire51. The fire occurred on the 27th of August just as 

the players were entering the field for an AFL match between the Carlton Tigers and 

Richmond. One of the major hazards during this fire was when flaming pieces of 

scoreboard fell away and carried by the wind, drifted onto the top deck of the nearby the 
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Ponsford Stand. This had the potential to become a significant source of fire spread and 

injury but was quickly brought under control by prompt and effective response efforts 

of staff and fire service. The city end of the grounds where that scoreboard was located 

was immediately evacuated, the fire extinguished and twenty five minutes later the 

game commenced. Nobody was injured during the fire but the video scoreboard was 

severely damaged making the cost of the fire in the order of $10,000,000 including the 

cost of replacement screen and installation.  

 

Other than severely damaging the scoreboard no damage or injuries resulted from the 

fire. The incident did however raise concerns about evacuation and crowd management 

for an event especially in relation to ticketing areas52. Ticketing areas were a problem in 

that people exiting from the area were noticeably slowed. The MCG now has 

comprehensive emergency procedures and advises other stadia on how to prepare 

emergency plans53. 

3.2.4 New Zealand 

Requirements with respect to egress and evacuations are laid out in the Fire Safety and 

Evacuation of Buildings Regulations 199254. Stadia as facilities that accommodate 

greater than 100 people in a common gathering place require an evacuation scheme. 

Requirements with respect to fire protection and means of escape are laid out in the 

New Zealand Building Regulations 199255.  

 

New Zealand has over the past 12 years had 909 fires at stadia, grandstands and sports 

fields that were responded to by the fire service (Appendix D). Of these incidents an 

unknown amount occurred at the major sports stadia (those with spectator capacities of 

≥ 20,000) (Appendices C, D).  

 

Remarkably few published studies are available on New Zealand stadia. Most of the 

information that was readily obtained through studies of overseas stadia had to be 

obtained through interviews and internal records of stadia and fire service 

communications for New Zealand stadia.  

 

Many fires and false alarms have occurred at large stadia in New Zealand but none have 

resulted in injury or major damage (Appendices C, D). Of those fires and false alarms 
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occurring during scheduled events, one of the most interesting of these was at North 

Harbour Stadium, on 29th of August 199856. In this instance no fire occurred but a 

sprinkler above a deep fryer activated. This activation did not trigger the evacuation 

alarms to automatically sound. The alarms were manually activated some sixteen 

minutes later57. At this point evacuation of the entire complex was initiated. Shortly 

after that, the public address system was used by the attending fire service to advise 

patrons that there was no fire and they could remain in their seats. This caused a level of 

confusion amongst both patrons and staff, bringing to light issues that needed to be 

addressed in the evacuation procedures for that stadium58. Subsequently, North Harbour 

Stadium has placed a strong emphasis on evacuation procedures and was the first major 

stadium in New Zealand to achieve an approved fire safety evacuation plan. 59,60 

 

Other fire related incidents of note in New Zealand have occurred at Eden Park 

(scoreboard fire)61 and Carisbrook (Figure 4) where numerous fires have been set over 

the years by spectators on the terraces62. The fires at Carisbrook were peculiar to that 

stadium in that spectators were for a time allowed to bring furniture, such as couches, 

into the terrace area to watch sporting events. Occasionally, particularly when it was 

cold, some of these items of furniture were deliberately set alight by the spectators. The 

record number of fires on the terraces occurred in 1998 with 30 being set in one day. 

Management at Carisbrook banned the practice of bringing furniture into the grounds in 

1999 because of persistent fire lighters.63 The Dunedin City Council liquor licensing co-

ordinator has stated that the potential for lighting fires was one of the reasons that 

plastic and paper cups have not replaced cans for beer sales at Carisbrook64. Despite 

efforts to stop the practice through minimising fuel sources and through prosecutions, 

fire lighting continues to occur at Carisbrook on occasion. 
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Figure 4 “Atmosphere heats up...Smoke from one of several small fires lit on the terraces wafts across the 

crowd.”65 

The Approved Document for the New Zealand Building Code 2000 makes little 

mention of stadia. It lists an occupant density of 1.8 users/m2 for stadia and 

grandstands66, and 2.2 users per linear metre for bleachers and bench seating67. The 

Document addresses components of stadia but does not consider the stadium entity as a 

whole, in the same way that the BCA does in Australia. Grandstands are classed as CL 

(crowd occupancy with an occupant load exceeding 100) or CO (crowd occupancy 

space for viewing open air activities) purpose groups68 with areas such as the concourse 

possibly falling into the CM purpose group69. The fire hazard categories (FHC) for 

these purpose groups is 1 or 2 depending on the fire load energy density (FLED)70. 

There are of course other purpose groups that apply to specific fire cells within the 

stadium such as basement car parks and kitchens; however the majority of the structure 

consists of the arena seating, the concourse and the suite and lounge areas. These 

firecells are limited in size to 5000 m2 for unsprinklered fire cells of FHC 1 and 2500 

m2 for FHC 271. In theory this should limit the fire load to 2,000,000MJ in 

unsprinklered fire cells. There is no floor area limit for sprinklered fire cells. Based on 

communications and stadium visits, most New Zealand stadia have sprinklered all of 

their internal areas and many of the unenclosed areas. However, some of the older 

stadia have not yet upgraded all of their facilities and some large, furnished, 

unsprinklered fire cells remain.  
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3.3 Human and Crowd Behaviour 

Human behaviour is difficult to predict and many variables affect it. In developing 

evacuation procedures and planning structural design that facilitates effective 

evacuation for specific population types or sizes it is important to consider the variables 

that are most likely to influence that population. With stadia, crowd dynamics play a 

major role in effective evacuation so it is important to understand the basic profile 

characteristics of the crowds that will patronise the stadium under consideration.  

 

The most obvious and stereotypical example of stadium crowd behaviour is British 

soccer fans. British soccer fans have an international reputation for drunken, disorderly 

behaviour and starting fights72. For this reason a soccer stadium may be designed with 

many segregated areas in order to limit the number of patrons that would be affected by 

a disorderly incident or preventing disruption to the pitch73. This has a flow on effect to 

egress layouts, safe egress times and response times for reaching and controlling an 

incident. These can be calculated using access tree diagrams74 to determine the required 

safe egress time (RSET) but to quote Sime; - “The one component of RSET namely 

human behaviour is the one that poses the problem”75. It has long been recognised that 

even stadia hosting events of a common ilk may experience widely different crowd 

behaviour76. 

 

In the same way that stadia holding paraplegic games have specific features to facilitate 

the mobility profile of their patrons, all stadia must be designed considering the 

psychological profile and movement patterns of their typical patrons. One obvious 

difference in the crowd composition for a stadium crowd profile versus an office 

building crowd profile is the influence of alcohol. The proportion of the population that 

is to some degree under the influence of alcohol at a stadium event is significantly 

higher than might be expected for an office building. This is due to stadium events 

having a social context where alcohol consumption is often an accepted part of the 

associated social ritual, unlike a workplace, where it is not. As such, alcohol plays a 

larger role in defining the profile of the evacuating crowd and potential sources of fire. 

This was illustrated in the Carisbrook management decision to not introduce disposable 

cups or plastic bottles for alcohol sales77. 
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Destructive behaviour whilst uncommon is in general, far more likely to occur with a 

stadium or entertainment type of crowd than it is amongst most other crowd 

populations78. An example of this was the June 23, 1968 incident in Buenos Aires 

where 73 people died from crushing injuries as pressure built up against a closed exit 

door (door 12)79. Patrons were leaving after a soccer match between River Plate and 

Boca Juniors when youths began throwing burning newspaper into the crowd from an 

overhead terrace. This resulted in a stampede as people attempted to escape the flaming 

missiles. Unfortunately a large part of the fleeing crowd headed towards a closed door 

and with no front to back communication, crushing injuries and deaths occurred. In 

addition to those people crushed against doors, patrons in the stairwell were also 

injured. Descending patrons increased their movement rate attempting to flee. This led 

to crushing injuries in the stairwells beneath the youths as well. 

3.3.1 Flow Rates 

Much work has been done in the study of sports spectator crowds, possibly because of 

the frequency with which soccer crowds have been involved in mass casualty incidents. 

One such study, by Poyner, et al80 included flow rate measurements of the egressing 

crowd. In their study flow rates were measured for a period of twenty minutes, starting 

ten minutes before the final whistle and continuing for ten minutes after the final 

whistle. The study was conducted at eleven stadia but only three had sufficient lighting 

for egress to be filmed and accurately analysed (results from these three stadia are 

discussed below). Poyner et al state that the results obtained by head counting at the 

stadia were not as accurate as those obtained from reviewing film footage; hence only 

three of the data sets are reliable. It should be noted that this study was not looking at 

emergency egress but at normal flows.  

 

All of Poyner et al’s results were obtained by viewing patrons leaving at the end of 

football games. Due to poor lighting conditions and the technology of the time most of 

the videoed egresses were unsuitable for analysis. As a low yield of reliable data was 

produced, this information in isolation is of limited value. It does provide an interesting 

comparison to flow rates obtained by other researchers in other types of buildings, as 

well as rates obtained in the course of this research from video footage of patrons 

leaving rugby football games in New Zealand and Australia. 
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The results of Poyner’s monitoring showed a maximum flow rate of 118 people per 

minute, achieved across exit ways within a minute of the final whistle81. This indicated 

an unimpeded flow rate of 1.9 people per metre per second. The flow rate rapidly 

declined to a specific steady state flow rate of 1.4 people per metre per second. This rate 

was maintained for 5 minutes, followed by a similar rapid drop off over the following 

two minutes and all flow ceased after 18 minutes. During the 18 minutes of egress some 

1200 people passed through the 2 metre wide gates being monitored. As Poyner et al 

only studied the final exits they did not make any observations regarding bottle-necks or 

comparisons of flow rates on stairs, ramps or terraces. It is assumed (although not 

stated) that all of the exits studied were flat terrain on a straight path. 

 

Other studies observing different types of crowds have produced different rates to those 

observed by Poyner et al. A comparison of some of these is shown in table 2 and figure 

5 on the following pages. 

 

Studies reviewed were conducted by a number of researchers looking at different crowd 

populations in different countries. Not all studies were concerned with flow rate and 

density relationships. A summary of flow rates from some of these studies is shown in 

Table 1 and Figures 2 and 3.  
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Study Author 

(year) 
Crowd Type Terrain Study Type

Density at 

maximum 

flow rate 

(people/m2) 

Maximum 

flow rate 

(people/m/s)

Ando et al82 

(1988) 

Rail 

Commuters 
Flat 

Speed-age 

relationship
- - 

Walkways Flat 2.04 1.37 

Fruin (1971) 
Stairs Stairs 

Speed-

density 

relationship
2.78 0.93 

Nelson & 

MacLennan83 

Evacuation 

Trials 
 

Safe egress 

times 
- - 

Pauls Evacuations Stairs 

Speed-

density 

relationship

2.04 0.92 

Poyner, et al 

(1972) 

Football 

Crowd 
Flat 

Speed-

density 

relationship

- 1.96 

Flat 4.00 0.80 
Predtechenskii 

(1969) 
Stadia 

Stairs 

Speed-

density 

relationship
2.04 0.66 

Proulx84 (2001) 
Video 

Footage 
 

Human 

behaviour 
- - 

Puskarev85 

(1975) 

Shopping 

malls & 

Sidewalks 

Flat 

Collision 

Avoidance 1.0 0.98- 

Flat 1.23 1.16 
Simulex32 

Simulation 

Calculations Stairs 

Modelling 

1.23 0.58 

Tanaboriboon 

et al86 (1989) 
Market Places Flat 

Levels of 

Service 
2.7 1.68 

Table 2: Crowd Flow Studies 
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Crowd Flows on Walkways
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Figure 5: Flow Rates on walkways 



- 34 - 

 

Crowd Flow in Stairwells
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Figure 6: Flow Rates on stairwells 
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It is noticeable from the charts that there are distinct differences amongst the various 

calculation methods and observations. This is not unusual and is to be expected, as 

people do not always behave in the same way. The differences are possibly indicative of 

different crowds exhibiting different behaviour patterns. All are based on observational 

data and therefore valid. It is pure speculation as to the source of these behavioural 

differences as the studies do not make assertions as to psychological inputs that may 

have contributed to the flow rates. 

 

Fruin describes six different “levels of service”87. Those displayed in the previous charts 

and table correspond to levels E and F, “congested stairs and walkways”. These are 

recommended for determining egress paths for emergency movement and limited space 

situations. Fruin’s flow rates increase and then flat-line once a critical density is 

reached. The density impedes speed above the critical density but not to the point where 

flow rates decline through stagnation of movement. 

 

Fruin’s research was published some months earlier than Poyner’s and looked at crowd 

flow on a number of different terrains or “levels of service”. Fruin quotes seven people 

per square metre as sufficient density for the crowd to act as a fluid, propagating 

shockwaves88. He describes this concentration of people as preventing any individual 

action. This density can result in people fainting from heat, anxiety and pressure. There 

is no way for individuals to help those who fall and their injuries can be severe89.  

 

Pauls and Predtechenskii, in contrast to Fruin, both observed optimum flow rates with 

flow rates decreasing above the critical density. Pauls’ critical density for stairwells is 

similar to Predtechenskii’s but the flow rate achieved is notably higher. Pauls flow rate 

at critical density is 0.94 people per metre width second whereas Predtechenskii’s is 

0.67. This equates to a flow rate 1.4 times that observed by Predtechenskii. 

 

Nelson and MacLennan90 list a maximum specific flow for corridors, aisles, ramps and 

doorways of 1.3 people per second per metre effective width. This is lower than that 

given by Fruin or that observed in SCICON91. It is of note that the maximum specific 

flow obtained using Simulex peaks at a lower density than that of the other authors with 

unimpeded walking speed range from 0.8-1.7m/s. Fruin by contrast recorded average 
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walking speeds of 0.51-1.27m/s. This maximum speed is achieved in unimpeded flow 

that is, with a density less than 3.8 people/m2 Nelson and MacLennan or 2.2 people/m2 

92. 

 

With all of these varying recommendations and results which ones have become 

standard practices for estimating flows at stadia? It appears that there is little conformity 

between nations. Different nations have adopted recommendations based on research 

performed on crowds in their countries. No literature could be found that identified how 

the different nations selected the rates they adopted with the exception of the UK, where 

the SCICON study was commissioned specifically for the purpose of establishing flow 

rates at stadia93. 

 

The following chart outlines maximum walking flow rates that have been adopted in 

various different countries: 

 

Source Country Rate 

Fruin USA 1.4 

Puskarev USA 1.4 

Brilon Germany 1.6 

Tanaboriboon & Guyano Thailand 1.7 

Green Guide UK 1.8 

Table 3: Internationally Recommended Flow Rates94



- 37 - 

 

Comparative Walkway Cumulative Flow Rates
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Figure 7: Cumulative Flow Calculation Comparisons
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3.3.2 Wayfinding 

Occupants may desire to evacuate a structure quickly, but may have difficulty finding 

their way out95. This may be due to visual obscuration, physical barriers, disorientation 

or lack of familiarity with the building. Regardless of these factors there are two other 

obstacles the occupants must overcome. These are the influence of others and an innate 

desire to egress along their ingress route96. 

 

Using video footage from surveillance videos in public buildings, Proulx97 observed that 

the most common response to an alarm is to ignore it as “just another false alarm.” As 

some individuals ignore the alarm a passive, psychological pressure to conform to the 

group delays other individuals from evacuating or alerting others. They do this in order 

to avoid mistakenly causing a scene having adopted the assumption that if it was an 

actual alarm everyone else would not be ignoring it. Proulx also observed that people 

tend to exit via the door they entered, often ignoring fire exits along their egress route. 

Proulx further observed that there was a tendency to complete activities prior to leaving 

the building - even in the presence of smoke.  Proulx is not alone in observing this type 

of behaviour. Although this study was conducted in real fire situations a number of 

studies of this behaviour under simulated conditions have also been conducted. Latane 

and Darley98 observed this type of behaviour in experiments in the 1960s.  

 

The repercussions of such behaviour can be significant. The delay in movement may 

make wayfinding more difficult as smoke and fire cut off routes and diminish the 

senses. As a fire develops the danger to people becomes greater and in extreme cases 

may be sufficient to prevent people from successfully egressing from an affected 

structure. The most notable example of such behaviour in stadium crowds occurred at 

Bradford Football Stadium in 1985 where people unnecessarily delayed moving away 

from the fire affected stand99. As a consequence many casualties resulted. 

 

3.3.3 Crowd Density 

Crowd density is well recognised as a major factor in determining the speed of an 

evacuation and hence egress routes are designed so as to accommodate the egressing 
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population without the crowd density exceeding the predetermined limit. This is for the 

large part strictly a numbers game. The influence of the crowd dynamics is often 

ignored100.  

 

Psychologists describe human interaction within a crowd as a collection of “cells”101. 

Small groups of individuals make up a cell. These individuals have limited 

communication with each other regardless of whether they know each other or not. The 

cells overlap one another and a collection of these cells make up a crowd (figure 8). 

Individuals may be members of several cells at a given time but they are not able to 

communicate with cells they are not currently a part of. This is most obvious in 

situations where poor front to back communication leads to crushing injuries102. People 

on the outer edges of the crowd are less densely packed and are unaware of the 

conditions further in. Individuals on the outer edges can act independently of the crowd 

body however as crowd density around an individual increases individual actions 

decrease103.  

 

 
Figure 8 - Overlapping cells within a crowd 
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The crowd goes through phases as the density increases. Initially the crowd behaves like 

a gas where the molecules, or in this case cells are constantly changing. Cells can 

absorb shockwaves and can compress or expand as physical boundaries and obstacles 

are encountered. Then as the density increases further, groups of cells compress to the 

point where they condense and act as a fluid. Fruin104 suggests seven people per square 

metre as the required density for this to occur.  Fruin uses different densities to quantify 

the level of service available to individuals. Level of Service A is free motion 

uninhibited by other people. Level F is when only shuffling motion is possible because 

of the lack of space around a person. Fruin’s levels of service and the size of a person 

within his model are illustrated in the following figure.  

 

 

Figure 9 Fruin's Levels of Service 

Analysis of video footage of the Hillsborough disaster illustrated how Fruin’s model 

falls over when applied to stadia105. The footage showed movement of the order of 

1.3m/s (4.7km/hr) at densities consistent with Level of Service E (0.78 m2 per person). 

Fruin suggests that at this density only restricted motion is possible. 

 

In the “fluid” phase the cells are fairly constant in their composition. Cells can no longer 

absorb shockwaves. Ripples can be sent through the crowd. As with any liquid it is 

virtually incompressible. People at the back of the crowd may perceive the compression 

Level of Service B: 3.25m2 

 Level of Service C: 2.32m2 

Level of Service D: 1.39 m2 

 

 

Level of Service E: 0.93m2 

 Level of Service F: 

0.46m2 

Person 

0.58mx.03m 
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of cells from “gas” to “fluid” as forward movement and hence push forward, further 

exasperating the situation. In this type of situation security often identifies the problem 

at the front and advises those people at the front not to push, when in fact they are 

incapable of independent motion and it is the gentle jostling at the back that is actually 

causing the problem106. 

 

The crowd densities that produce fluid type behaviour are best avoided, hence, they do 

not occur except under rare and extreme conditions. Fruin describes these in terms of 

force, information, space and time (FIST). There are five environments that result in this 

type of crowd density. 

 

3.3.4 Flight  

In a bid to escape from danger, a crowd may attempt to move faster than it is able to 

crushing those in front. This type of behaviour was exhibited in Buenos Aires in 1968 

when hooligans threw wads of burning paper down into packed stairwells107. It has also 

been observed in stadia at the onset of hail storms and heavy rain108. 

 

3.3.5 Surging or Craze  

The opposite of flight behaviour. The crowd rushes towards something causing the front 

of the crowd to surge forward, much as a wave builds as it approaches land. This 

predominantly occurs in festival seating arrangements109. This is unlikely to occur in a 

fire situation. 

 

3.3.6 Interruption of flow  

Where a walkway narrows producing a bottle-neck the crowd is unable to maintain 

speed crushing those near the front110. This occurred at a stadium’s ticket stiles prior to 

a game in New Zealand in 2002. Pressure was relieved by opening egress gates to allow 

unimpeded ingress. 
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3.3.7 Blockage of flow  

An extreme version of interruption of flow where no flow is possible. This typically 

occurs when doors are blocked or they open into the crowd. Crash or crush doors are 

designed to avoid this situation, “crashing” open when a critical “crush” pressure is 

applied to the opening mechanism. Illegally locked gates were involved in a number of 

the crushing incidents mentioned in Table 1 and have been the cause of crushing 

injuries and deaths in many structure fires over the years111. 

 

3.3.8 Crossed flow  

Unlike the other four situations this results in the people in the middle of the crowd 

being exposed to the greatest pressure. Crossed flow occurs when part of the crowd 

changes direction or multiple flows fail to merge successfully. Crossed flow has the 

potential for the greatest incidence of injury as pressure is applied from different 

directions making it more difficult to maintain balance or “ride the wave”. Moscow’s 

Lenin Stadium (1982), Hillsborough112 (1989) and the Ibrox incident113 (1971) all 

resulted from crowds changing direction. Areas where poor merging occurs are often 

identifiable during normal egress situations and can be addressed preventing major 

incidents from occurring. 

 

3.4 Coordination/management 

Coordination and management of a stadium crowd is different to that of an office 

building. As a place of entertainment the crowd is more social and potentially less 

compliant than that of an office building or a hotel might be. This can be due to a 

number of factors, the increased likelihood of members of the crowd to “egg on” an 

individual who is confronting authority114, greater dissociation from self into a mass 

mentality, increased annoyance at having an enjoyable activity interrupted and the 

higher incidence of the influence of alcohol amongst crowd members. 

 

In USA stadia, like many other countries, alcohol is provided for patrons to purchase. 

However the in the USA low alcohol beer is the norm at such venues, reducing the 

potential for drunken behaviour. College stadia, which make up a large proportion of 

the largest stadia in the USA may not provide any alcohol if they are part of a dry 
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campus. The USA is also different in that due to low labour costs it is more viable for 

alcohol to be provided in cups. This limits the quantity that an individual is able to carry 

thereby reducing the level of consumption. This is not the case in other countries.  

 

In the UK control of alcohol at stadia was only introduced after the Bradford 

disaster115.For the most part alcohol consumption is not a problem for stadium 

management but in certain circumstances it has the potential to make crowd behaviour 

disruptive and or more difficult to manage or coordinate. Many studies of response time 

and reasoning impairment have shown that inebriated individuals are less responsive 

than sober individuals. Several incidents that have developed into disasters at stadia 

have been instigated by drunken individuals. For these reasons the potential for alcohol 

consumption to affect egress management and crowd movement in emergency 

situations has to be recognised.  
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4 Experimental Method 

The experimental part of this study was designed to gather information about actual 

crowd movement and levels of fire protection in New Zealand stadia. From this it was 

anticipated that it could be determined whether crowd movement at New Zealand 

stadia is consistent with that of other researchers and that suggested by standard texts 

such as the SFPE Handbook of Fire Protection Engineering116. Information about the 

level of fire protection in New Zealand stadia and stadia in Australia was gathered so 

as to assess whether there were any major differences in the protection afforded 

stadium structures in New Zealand as compared with other countries. 

 

• Observational experimental data was collected in two ways: 

⋅ Interviews or survey sheets with stadium management and persons related 

to managing egress and/or fire service liaison at the various stadia 

⋅  Video footage of egressing crowd movement at stadium events 

 

• Egress simulation data was obtained using Simulex evacuation software and 

CAD drawings of stadia or sections of stadia. 

 

• Hand calculations were performed using formulae from Section 3 Chapter 14 

Emergency Movement of the SFPE Handbook 3rd ed.117 

 

• Comparisons of emergency movement data from video footage, simulation 

output and hand calculations were then made. 

4.1 Personal Correspondence 

Interviews were conducted with stadium operations and security management, fire 

safety officers and fire service personnel associated with the various stadia. A copy of 

the interview questions and the individuals that were interviewed is included in 

Appendix B. Interviews were used to obtain information on how crowd egress was 

managed, the fire protection methods used at the venue and problems that had been 

encountered, anticipated or overcome. 
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4.2 Observing Stadium Egress 

4.2.1 Crowd Movement 

Of the stadia visited, an initial survey of the stadium was conducted and suitable 

locations to record egress were identified. These locations were chosen based on 

information from stadium staff about their experience with egress flow around the 

grounds. Those sites that had potential visibility problems, would interfere with egress 

flow or did not have obvious landmarks to measure against were dismissed. The 

remaining sites were measured across the width of the egress path. Where possible, 

distances between landmarks along the egress paths were also measured. These 

measurements were taken in order to allow video footage to be later analysed for: 

 

• Speed of flow 

• Density of flow 

• Flow rate 

 

In some cases additional areas were identified as unusual during the egress. Where 

these were videoed measurements were taken after the egress had ceased. 

 

The majority of video footage was recorded at the end of “Super 12 Competition” 

rugby games. Recording started shortly before the end of games and a verbal cue was 

recorded upon hearing the final whistle that ended the game. Where the final whistle 

was not used as a cue the actual time as recorded by the video camera was used to 

provide starting and finishing times for sequences. Recording was stopped either 

when crowd density dropped to the point where other patrons did not impede 

movement or when no further patrons were using the egress path.  

 

Video footage of vomitories and concourse areas around food vendors was obtained at 

half time or prior to the game only where crowd densities were sufficient to be of 

interest.  
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Due to the liquor licensing arrangements at stadia in New Zealand, it was not practical 

to collect observational data for comparison from corporate or lounge areas. These 

areas remained populated after the end of the game, and continued to be occupied 

until they were closed. 

 

4.2.2 Individuals within the crowd 

In some cases the time taken for an individual to traverse a known distance was 

recorded. In densely packed crowds this was only possible with individuals who stood 

out from others, primarily by wearing an unusual, large or brightly coloured article of 

clothing. Attempts were made to record similar footage of mobility impaired 

individuals however opportunities for this were limited. Where viewing access was 

suitable families or groups within the crowd were identified and their interaction with 

the greater crowd was noted. Verbal cues recorded on the video footage identified 

these individuals or groups for later analysis. 

 

Video footage was obtained using a single digital video camera. Consequently it was 

not possible to obtain data from all areas of the various grounds. Total evacuation 

times were estimated from observations of the control room surveillance cameras or 

observations taken within the grounds. 

4.2.3 Video Analysis 

Video footage was analysed using the eyeball technique. Although this is not difficult 

it is arduous and must be repeated for each set of data that is collected in a given 

sequence. Footage was transferred to computer. Footage was edited to start at the time 

of the final whistle (or other cue). The time since the initial cue and the number of 

patrons to pass the preassigned landmarks were then recorded by hand while viewing 

the video footage. Where individuals or groups were identified as being of interest, 

the time taken for them to traverse a known distance was recorded and compared to 

that of other presumably unrelated members of the crowd. Playback was viewed using 

frame advance and counts were taken every 1 second of recording. Not all video 

footage collected was suitable for analysis. 
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Figure 10 illustrates the following examples of observational analysis.  

4.2.3.1 Flow Rates 

All of the individuals whose heads have been marked with a black dot passed arrow A 

within a 1 second increment. The width of the walkway was measured. This analysis 

technique provides data in terms of specific flow (people per time per effective 

width).  

4.2.3.2 Speed 

The man in the striped jersey and cap to the left of the diagram (oval) has just passed 

the mark in the join on the concrete (arrow A). The time taken from him reaching this 

mark until his head drops when he reaches arrow B indicates the time it takes for him 

to reach the top of the stairs. As the distance between arrows A and B is known his 

speed can be calculated. 

4.2.3.3 Density 

The crowd density can be established by counting the total number of heads between 

the dotted lines marking arrows A and B in a given frame. 

 

Figure 10: Observational Method 

A 

B 
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4.3 Calculations 

A selection of calculations found in Section 3 Chapter 14 of the SFPE Handbook 3rd 

ed.118 were used to perform hand calculations on sections of egress paths at different 

stadia. 

4.3.1 Premovement Time: 

Assumptions were made in order to justify the use of egress footage at the end of a 

game as an approximation of emergency movement. The most significant assumption 

is that there is no premovement time at the end of a game.  

 

Evacuation times are a way of gauging the speed with which occupancies empty. This 

information is gathered routinely during evacuation trials and data from actual 

emergency evacuations. From these studies it has been found that there are four main 

determinants in evacuation times; premovement activity, speed of evacuees, distance 

to safety and density of the crowd, all other variables affect one of these four 

determinants. For example, poor visibility affects speed and possibly premovement, 

obstacles and uneven terrain can affect speed, density and distance, obviously 

detectable danger such as visible smoke may affect premovement, speed and density. 

Speed, distance and density are not independent of each other either. If, as in the case 

of a high rise building there is significant distance to traverse to a point of safety 

people become tired and speed decreases. Similarly if the front of the crowd is 

moving more slowly than the back of the crowd the density will increase.  

 

The information from crowd movement is then compared to the speed with which a 

danger, such as a fire spread, could develop in the occupancy to determine whether 

the occupant’s could/should/did evacuate rapidly enough to avoid injury. This 

determines the “required safe egress time” to complete an evacuation (RSET) and the 

“available safe egress time” before conditions become untenable (ASET). RSET is the 

time required to evacuate the building based on occupancy levels and egress path 

distances. ASET is the time available to perform an evacuation before the egress path 

is likely to be compromised by untenable conditions. ASET can be increased by 

increasing the fire protection of an occupancy and should always be greater than 

RSET. 
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RSET is a sum of the various time increments required to perform evacuation tasks 

from the time of fire ignition until the evacuation is complete. This can be 

summarised as: 

mpmade ttttt +++=       Equation 1119 

where et = time to evacuate, dt = time from ignition to detection, at = time from 

detection to notification, pmt = premovement time and mt = movement time.  

 

Observations of the end of rugby games were assumed to have dt , at , pmt =0, 

therefore me tt = , with mt commencing when the referee blows his whistle for full 

time. Simulations and calculations that are compared against observational data 

therefore have also assumed me tt = . 

 

This assumption is based on the following: 

 

• the majority of occupants have no reason to stay after the game 

• patrons are with their associates and have all their possessions in hand 

• patrons are anticipating the referee’s whistle 

• many patrons attempt to “beat the rush” and leave as promptly as possible 

• weather conditions during rugby season are often such that people are in a 

hurry to get somewhere warm 

• queuing times absorb any delay to evacuate by slow to respond patrons  

 

The assumption of no premovement time would be invalid during an actual fire 

evacuation. Premovement time has been ignored in this case only to simplify the 

acquisition and application of observational data.  

 

In the event of a fire alarm sounding the premovement time would be greater. While 

weather conditions and having possessions in hand may be common to both 

situations, patrons are not anticipating a fire alarm and if the game is still in play they 

are not likely to be keen to leave. Similarly patrons may assume that a fire alarm is a 

false alarm and therefore only a temporary interruption. In this case there may be no 
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initial motivation to evacuate unless obvious signs of fire can be observed. If the game 

continues despite the alarm, patrons may decide not to leave, obstructing others and 

slowing down the evacuation. Of even greater concern, should something sensational, 

happen during the evacuation some patrons may try to return to the arena against the 

flow of the crowd resulting in crush injuries to those evacuees in the middle of the 

crowd. This was typified by crowd movement at the 1971 Ibrox incident120 when 

members of the crowd tried to rush back into the arena. 

 

4.3.2 Effective width 

It is commonly recognised that people do not use the full width of a pathway. They 

maintain a boundary layer between themselves and stationary obstacles. 

 

Effective width (We) = clear width – width of boundary layers  Equation 2 

 

Boundary layer widths were selected from those recommended in the SFPE handbook 

page 3-369121.  

 

Element Boundary Layer 

Obstacle such as bollard, column or 

rubbish bin 

10cm 

Walls bordering concourses, passageways 

and vomitories 

46cm 

Walls bordering corridors, ramps sand 

stairs 

15 cm 

Table 4: Boundary Layers 

4.3.3 Speed 

Speed is determined to be a function of occupant density and speed factor, k, which is 

determined by the slope of the surface between densities of 0.54 and 3.8 people/ m2. 

This can be expressed as:  
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akDkS −=       Equation 3 

 

where a= 0.266. k = constants reflective of the established maximum speed for 

studied terrains (for flat surfaces using Fruin’s data k=1.40122). Density is assumed to 

be optimum when maximum specific flow is achieved, and is taken as 1.9 people per 

metre squared of exit route space. This is interpolated from the specific flow - density 

relationship outlined in the SFPE Handbook123 and deriving the maximum density 

from the formula for specific flow as shown in the following equations, Equation 4, 5. 

4.3.3 Specific Flow and Calculated Flow 

Specific flow (Fs) is a measure of evacuating persons past a given point as a function 

of speed (S) and density (D). 

SDFs =       Equation 4 

Optimum density can be derived by: 
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    Equation 5 

Optimum density is therefore dependant on a. As a is independent of the type of 

egress, e.g. stairs, concourse, etc specific flow should be maximised at this density for 

all types of egress. 

 

Calculated flow (Fc) is the flow predicted for a given point as a function of specific 

flow and effective width. 

esc WFF =       Equation 6 

Calculated flow predicts the maximum capacity that can be achieved through an 

egress path. 

4.3.4 Varying k 

Estimates of evacuation flows and densities using a combination of observational data 

and established research were also calculated for comparison with the observed data 
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using equation 4 and its derivative equation, equation 3, relating speed in terms of 

densities and constants based on terrain. 

 

As mentioned previously, k = constants reflective of the established maximum speed 

for studied terrains. A table of values reflective of Fruin’s work can be found in 

Chapter14 of the 3rd edition of the SFPE Handbook124. A value of k=1.8 was used in 

order to establish values based on Poyner’s work. 

 

4.3.5 Estimated Egress Times (time for passage) 

Assuming that the gate, stair or pathway that was monitored was representative of all 

egress from the stadium and that in an evacuation the maximum Fs were maintained 

once it was reached estimates of the potential minimum egress times through the 

monitored point could be extrapolated to provide values for the total stadium. It would 

be unlikely for the extrapolated values to be accurate as few stadia were laid out 

symmetrically and certain exits are used preferentially based on external incentives 

such as proximity to public transport. It must be stressed that these values only 

provide a best estimate based on the collected data and should not be used as a 

definitive method of calculating stadium egress potential.  

 

The formulae used for estimating egress times for a population (P) are referred to as 

time for passage (tp) in the SFPE Handbook125. Time for passage calculations were 

made once maximum Fs was reached. 

c
p F

Pt =       Equation 7 

Using equations 3, 4, and 5, Fc can be expressed in terms of density and effective 

width: 

e
p kDWaD

Pt
)1( −

=      Equation 8 

 

A table of the spreadsheet calculations performed on observational data can be found 

in the results section. Actual results from the spreadsheet are located in Appendix E. 
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4.4 Computer simulations 

A number of computer programs are available that facilitate the simulation of 

evacuations with inputs for premovement (or delayed evacuation), speed, density and 

distance. The problem with simulations is that despite the convenience, people and 

crowds do not always behave with the response that the model predicts. Many models 

are based on the flow of objects such as ball bearings or traffic. One of the main 

problems with these models is that movement occurs in one direction independent of 

other individuals. Conversely within even dense crowds small groups will fight 

against the crowd to maintain contact or protect weaker individuals within their group. 

Direction of motion available to humans (as opposed to simulations) is 

multidirectional within all but very dense crowds. Humans are able to reverse, 

sidestep, travel against the crowd, faster than the crowd or take unusual paths such as 

sliding down stair rails to bypass others. This is done through altering personal space, 

varying pace, pushing, communication with others and taking advantage of variations 

in the crowd movement around them. These movement patterns can in some instances 

affect the general crowd flow but they are difficult to model and are not considered by 

simulation software. 

 

In predicting crowd movement it must be recognised that a crowd is not a mindless 

mass. Although it may act with one overriding personality, individuals within the 

crowd are constantly making decisions that affect that personality. Examples observed 

during this study included variations between different sporting crowds and based on 

the location and accessibility of the stadia. At some stadia it was observed that 

although people entered the stadium from all entrances, the majority of them 

attempted to leave through only one or two exits, rather than exiting the way they 

entered. The reason for this was people had gone from work to the stadium using a 

wide range of transport and were going from the stadium to town or to home via the 

local public transport depot. Similarly it was recognised by stadium staff and 

observation that there were often blockages to egress at the base of light poles or by 

feature objects such as inflatable advertisements where people had arranged to meet. 

During an evacuation it must be recognised that while people’s prime motivation 

should be to escape danger other considerations will also be affecting their movement. 
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4.4.1 Egress Simulation 

One way of testing the efficacy of a structural design for evacuation purposes is to run 

computer simulations. There are several advantages to running a simulation as 

opposed to a trial evacuation: 

 

• A simulation can be performed prior to or at any point during construction as 

the actual building is not required.  

• There is no disruption to the venue or its occupants. 

• Large numbers of people do not need to be sourced (as with a trial evacuation 

at a stadium). 

• Alterations to egress routes can be made quickly and simulations rerun without 

the associated logistics of rerunning a trial evacuation. 

• A simulation produces a permanent, viewable record of the evacuation plan 

for the entire structure that can be easily reviewed in sections or as a whole. 

 

A number of software packages are available for this purpose. The one used in this 

study is Simulex32.  

4.4.2 Egress modelling 

Egress modelling has developed along two different lines. This is indicative of the 

background of the modellers126. One line of development has evolved from human 

behaviour research whereas the other has evolved from traffic modelling. 

 

With the first type of modelling a wide range of characteristic inputs are available and 

the modelling takes into account the way individuals within a crowd interact and 

allows for the impact of different behaviours and stimuli. The software involved is 

complex and consequently involves considerable computing power. The second type 

of modelling treats individuals within the crowd as independent individuals that do 

not interact with others. This is particularly evident when a conflict occurs and the 

individuals do not act cooperatively to overcome the conflict. For example one 

individual stopping to let another pass. Limited characteristics are available. These 

relate to speed, size and response time. With this type of modelling two different 

approaches to movement have been taken, one treats the flow of people as discrete 
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particles and can be described as “ball bearing” modelling127. Ball bearing modelling 

is also known as “cellular automata” modelling. The other treats the flow as a fluid or 

suspended solution. With this type of modelling individuals are swept along in the 

flow and eddies are created on the periphery. Simulex32 is one of the available 

models in the “ball bearing” category, sometimes referred to as optimisation 

modelling128.  

 

4.4.3 Software 

The software used for the modelling part of this study was Simulex32 product version 

2.7.0.1 produced by IES Ltd. Simulex32 is a coordinate-based model designed for 

calculating evacuation movement of individuals in a multi-storey building. Simulex32 

was developed by Dr Peter Thompson of IES Ltd. 

4.4.3.1 Simulex32 

The Simulex32 model is quite simplistic with evacuation movement almost 

exclusively determined by the shortest route to an exit. It determines the rate of flow 

based on body size (of which four options are possible) and density of the crowd. 

Way finding and environmental conditions are not considered. Conflict Resolution 

within Simulex32 consists of two or more people banging into each other with some 

sideways shuffling in an attempt to get past each other. However if both individuals 

are trying to progress in the same general direction or if there is insufficient clear 

space for the individuals to shuffle past then an impasse is reached and neither person 

moves. This phenomenon results in opposing rather than merging flows. Models with 

greater behavioural properties apply rules and protocols to allow individuals to make 

decisions, resolving such conflicts. 

  

To develop a Simulex32 model a CAD drawing must first be developed and this is 

used to define the boundaries and distances to exits. The CAD drawing is inserted into 

Simulex32 as a DXF file. DXF files are standard ASCII text documents used to store 

vector data. This results in a two dimensional, floor plan representation of the 

structure in the Simulex32 model. The next step is to define exits, stairwells and links 

people will move through. These are inserted manually. Once this has been done 

distance maps are developed by the program in order to identify distances to exits 
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from all points within the represented structure. People may then be characterised and 

entered into the file, in preparation for simulations to commence. Characterisation 

options include basic size demographics, speed parameters which can be assigned to 

follow normal, triangular or uniform distributions, and predetermined exit selections 

can be assigned. 

 

The algorithms used in Simulex32 are based on real life data. Simulex32 allows for 

the following inputs. 

 

Up to 50 exits, 100 stairwells and up to 100 links may be included in a model. The 

size, orientation and location of these are all individually assigned. As mentioned 

previously it is possible to vary the characteristics of the population, altering the 

demographics and assigning exits to individuals or groups. However, as the number of 

distribution maps that can be used is limited to 10, it is difficult in a stadium structure 

to assign stairwells to individuals in the same way.  

 

The demographics of the population can be assigned using predetermined 

populations; such as commuters (30% average, 30% male, 30% female, 10% children) 

or by assigning a group as female, male, children or average. This determines the 

body size of the individuals.  

 

Figure 11: Simulex32 Body Types From (Thompson 1996) 

The four different body types have the following dimensions: 

Body type Average Male Female Child

R(t) (m) 0.25 0.27 0.24 0.21 

R(s) (m) 0.15 0.17 0.14 0.12 

S (m) 0.10 0.11 0.09 0.07 

Table 5: Simulex32 Body Type Dimensions From (Thompson 1996) 



- 58 - 

 

The population can also be assigned average response times with different 

distributions. Overtaking, queuing, and to some degree redirection are all built into the 

model. As individuals get closer their speed reduces with unimpeded walking speed 

being randomly distributed between 0.8m/s and 1.7m/s. 

 

Egress Paths 

Exits - As mentioned previously Simulex32 allows for up to 50 exits. Exit size, 

position and orientation are determined by the user. Through developing distance 

maps different groups or individuals can be assigned exits to use or by default they 

will select exits by the shortest path. 

 

Stairwells - Up to 100 exits may be included in a model. Stairwells allow the user to 

define width and length as well as orientation and position. Rise and run are preset 

and standard for all stairs. 

 

Links – Links are used to associate floors with stairs. The width of links is set by the 

user and may be independent of stair width to allow for doorways into the stairs. More 

than two links may be associated with one stair – allowing for multiple floors to enter 

a single stairwell. The model allows for up to 100 links. 

 

People - Modelling people in Simulex32 is to some degree customisable. Both the 

demographics and the response times of individuals or groups of individuals can be 

assigned within certain limitations. 

 

Demographics - The people simulated in the Simulex32 model are assumed to be 

able bodied and are all capable of a full range of speeds dependant on density. The 

speed of individuals with an unhindered (>1.5m) interpersonal distance is randomly 

determined using a normal distribution. Speeds and other properties of the Simulex32 

evacuation model are based on evacuation drill data and do not necessarily reflect the 

movement present in actual fires. It is assumed that during trials optimum speeds are 

reached as there are minimal obstructions and environmental stimuli to interfere with 

the evacuation. As such Simulex32 ‘should’ offer optimal evacuation times. Walking 
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velocities vary with density for densities with <1.5m interpersonal distance (Figure 

12). 

Response time - Response times may be preset by assigning a uniform, triangular or 

normal distribution curve to groups or individuals. Response times are then randomly 

assigned to those individuals in that population. It is interesting to note that a Weibull 

distribution has been identified by evacuation researchers as most closely matching 

evacuation drill data by several researchers129. Weibull distributions are determined 

by the shape parameter, this allows greater flexibility in fitting a curve to data. 

Weibull curves can therefore be used to fit data that is shifted from the mean as 

opposed to distributions, such as the normal curve, that are symmetrical about the 

mean. This allows for ‘tailing off’ that is commonly observed when the last people 

leave a structure. 

Assumptions 

In modelling the chosen stadia certain assumptions were made. These were made 

progressively in attempts to make the simulations run smoothly. While it is not 

Figure 12: Simulex32 Walking Velocities (Thompson 1996) 
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normal to ‘tweak’ a model when accurate input data is available, in this case 

unrealistic results were achieved when accurate floor plans and population 

distributions were input. Simplifications were made to reduce the occurrence of 

anomalies. Eliminating anomalous behaviour reduced simulation times making the 

results more credible. 

 

Only one stadium was modelled in its entirety. Initially the upper, corporate levels 

were modelled separately to the bowl. Vomitories between the bowl and concourse 

proved to inhibit egress far more than stairwells between the other levels and the 

concourse. Consequently, to reduce the processing time of the full model, the upper 

levels were simplified. Corporate levels were altered so that rooms became simple 

boxes with no obstacles for occupants to negotiate. Openings were changed to the 

same width as the stairwells. This was a valid simplification as early attempts to 

model egress showed that the passages immediately prior to the stairwells were the 

limiting factor in achieving evacuation from the upper levels rather than the width of 

doorways. The simplification did not impact on egress times for those levels. This 

simplification served two functions. It reduced processing time of the model without 

impacting on the flow rate from the upper floors and made the output images from the 

simulation more difficult to identify with a specific stadium, maintaining its 

anonymity. The following three figures illustrate how the passageway immediately 

prior to entering the stairwell impacts on movement. 

 

Figure 13: 5 seconds into the simulation a room near the stairway is emptying 
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Figure 14: 19s into the simulation all rooms have emptied and all occupants are in the outer passageway 

enroute to stair ways. 

 

Figure 15: 35s into the simulation congestion in passageways immediately prior to stairwells determines the 

rate of egress 

4.4.3.2 AutoCAD 

All CAD drawings used in modelling for this study were developed or modified using 

AutoCAD 2000. Files inserted into Simulex32 were in DXF2000 format. All non-

essential information was stripped from the DXF files prior to inserting the floor plans 

into Simulex. Files were modified where necessary in order to improve the 

performance of the Simulex32 modelling. 

4.4.4 Data Processing 

Video footage, hand calculations and egress simulations were compared in order to 

determine how well they correlate. This was performed using standard spreadsheets to 

produce data summaries. Figure 13 shows the information obtained. Not all egress 

paths produced sufficient information to fill all fields on the sheets. This was due to 

the suitability of the pathway, and viewing limitations. 
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Observational Data Unit     Unit 
Capacity of Stadium (g) people Width of path (W)  metres 
Attendance at event (q) people Boundary layer (b)  metres 
Time to clear stadium (tc) minutes Effective Width (We) W-2b metres 
Flow Rates       
Time to clear gate/path/stair (h) minutes Specific flow speed x We people/s/m effective width 
Total usage of gate/path/stair (y) people     
Time to reach max Fs (t) minutes Maximum Specific Flow (Fs -max)  people/s/m effective width 
Total usage at max Fs (x) people Population in area We x L  people  
Density at max Fs people/m2     
Time to reach sustained Fs minutes Sustained Specific Flow (Fs)  people/s/m effective width 
Duration of sustained Fs minutes     
Density at sustained Fs people/m2     
Queuing time seconds Calculated Flow (Fc) Fs x We people/minute 
Queue density people/m2     
Boundary layer maintained       
Individual Speeds    time/L   
Travel distance (L) metres Mean speed  m/s 
Terrain   Maximum speed  m/s 
Total no. individuals tracked   Minimum speed   m/s 
Estimated Evacuation Times (if monitored gate flow is representative of all gates)      
Fraction to leave through gate pre max Fs (A)  x/y   - 
Fraction of populous to use gate (B)  y/q   - 
Total to leave through gate post max Fs (C )  y-x  people 
Estimated populous to leave pre max Fs (f)  x/B  people 
Estimated populous to leave post max Fs (r )  q-f  people 
Est. min. egress time for gate (Tg)  (C/ Fc) + t  minutes 
Est. min. egress time for populous (Tp)  ((C/ Fc)/(h/tc)) + t  minutes 
Est. min. egress time for full stadium (Tf)   ((g/q) x (C/ Fc)/(h/tc)) + t   minutes 
Evacuation Estimates (based on established research)         
Anticipated Fs (Fruin) a=1.9 (people/m2) k=1.40(flat), 1.16 (stair) (m/s) k people/s/m effective width 
Anticipated Fc (Fruin)  Fs (Fruin)xWex60  people/minute 
Anticipated Fs (Poyner) a=1.9 (people/m2)* k=1.8 (flat) (m/s) k people/s/m effective width 
Anticipated Fc (Poyner)  Fs (Poyner)xWex60  people/minute 
Anticipated density at max Fs assuming max unimpeded speed (Fruin)  Fs /k  people/m2 
Anticipated density at max Fs based on observed mean speed (Fruin)  Fs -max/S  people/m2 
*actual value unavailable, estimated as being the same as for Fruin       

Figure 16: Master data sheet
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5 Results 

Eleven venues were visited and studied. They have randomly been assigned 

pseudonyms A-K. Where particular stadia are identified, the associated information is 

readily available in the public domain and was not necessarily obtained during field 

observations. Video footage of people movement was obtained for 23 egress paths 

within these stadia. Multiple events were attended at three of the stadia. Not all video 

footage was of suitable quality to obtain consistently reliable results. This was due to a 

number of factors including; obscuration of view, inappropriate angle to the flow, and 

complexity of movement.  

 

In summary, video data obtained can be broken down as follows: 

 

• Individuals speeds of egressing patrons were obtained from 8 locations 

• Crowd densities were obtained from 7 locations 

• Specific flow data was obtained from 8 locations 

• Total egress times of general admission patrons were obtained for 13 events 

 

Results have been divided into two sections. The first contains fire protection 

information gained from observations and interviews. This is displayed as tables on the 

following pages. The first table (table 6) provides general information about the stadia 

and anticipated response capabilities. The tables following that (tables 7 and 8) identify 

the components of the fire protection systems that were present. There is a common key 

to tables 7 and 8.  

 

Table 7 is concerned only with aspects of fire protection that are connected directly to 

the fire service. It details whether active fire protection is present in various locations 

within stadia. The active protection referred to includes manual call points, sprinklers, 

heat detectors and smoke detectors.  

 

Table 8 identifies the range of fire protection used in protecting the stadia. Not all areas 

of stadia were protected by all types of fire protection. For example fire resistant glazing 

was only present in areas such as lounges and suites with large vision panels. In this 
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case they provide protection against fire spread such as that of the Texas Stadium fire 

described in the literature review. 

 

The second section of the results contains data obtained for specific egress paths from 

video analysis, calculations and computer simulations. Specific flow data has been 

calculated for one minute periods at five second intervals. A brief description of 

locations that were videoed, including those that were not suitable for video analysis is 

provided. A rough sketch is included to aid visualisation of the egress scenario that was 

observed.  
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Results from Interviews and Survey sheets 

Stadium A B C D E F G H I J K 

Stadium Egress time post game (min) 21 16 18 9 24 19 38 15 est. 8 est. <10 est. 12 est. 

Crowd Coordinators Contractors Contractors In House In House In House Contractors Contractors Contractors In House In House In House 

Fire Service Presence (before/after/during event) 
Mostly Sometimes Always Never Never Never Always Always Never Never Never 

Fire service accommodated for in  

main control room 
Yes Yes Yes No No No Yes Yes No No No 

Number of Separate Fire Control Rooms 1 1 1 2 2 1 1 1 1 1 1 

Distance to nearest Fire Service 0-3km 0-3km 0-3km 0-3km 0-3km 0-3km 0-3km 3-5km 5-0km 0-3km 5-10km 

Expected Response Time <5min <5min <5min <5min <5min <5min <5min <10min <10 min <5min <10min 

Foreseen Delays Traffic Nil Nil Traffic Nil Traffic Traffic Traffic Nil Nil Nil 

Anticipated Evacuation Time 8 min <8 min 8 min <8 min 8 min 10 min >15 min <8 min 8 min ? ? 

Foreseen Delays 
nil nil bottle-neck nil 

preferred

route 

space 

limitations 

bottle-neck,

alerting 
nil nil nil 

preferred 

route 

Alternate fire engine access/fire control 

 room 
No Yes No Yes Yes Yes No Yes Yes No Yes 

Full radio coverage for staff Yes Yes Yes No Yes Yes No Yes Yes Yes Yes 

Trained fire wardens Yes Yes No Yes Yes No No Yes Yes Yes Yes 

Event type fire drills carried out regularly No No No Yes Yes No No Yes Yes Yes Yes 

Non-event type fire drills carried out regularly Yes Yes No Yes Yes Yes No Yes Yes Yes Yes 

Fire Service Approved Evacuation Schemes No No No Yes Yes No No Yes Yes Yes Yes 

Table 6: Stadium Survey Sheet 1 – Background Information
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Active Fire Protection connected to Fire Service 

Stadium A B C D E F G H I J K 

Concessions - fixed Y Y Y Y Y N/A N Y Y Y Y 

Concessions - mobile Y Y Y N/A N/A N N Y N/A N/A N/A 

Kitchens Y Y Y Y Y Y Y Y Y Y Y 

Offices Y Y Y Y Y N Y Y Y Y Y 

Storage areas Y Y Y N N N N Y Y Y Y 

Players areas Y Y Y Y Y N N Y Y Y Y 

Restaurants Y Y Y Y Y Y Y Y Y Y Y 

Lounges Y Y Y Y Y Y Y Y Y Y Y 

Suites  Y Y Y Y N Y N Y Y Y Y 

Temporary stands N/A N N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Outdoor permanent stands N N N N N N N N N/A N/A N 

Covered permanent stands N N N Y N N N Y N/A Y Y 

Control Rooms Y Y Y Y Y Y N Y Y Y Y 

Car parking Y Y N N N N N Y N/A N/A Y 

Concourse N Y N Y N N Y Y Y Y Y 

Ticket Booths/Turnstiles N N N N N N N N Y Y Y 

Surrounding grounds N N N N N N N N Y N Y 

Toilet Facilities Y Y Y Y N N Y N Y Y Y 

Embankment/Terraces N/A N/A N N N/A N N N N/A N/A N/A 

Scoreboard/Big Screen Y Y Y Y ? Y Y N Y Y Y 

First Aid/Police Rooms Y Y Y Y ? Y N/A N Y Y Y 

Gathering Places/Landmarks N/A N N N N N N/A N/A Y N N/A 

Table 7: Stadium Survey Sheet 2 – Active Fire Protection 
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Interview and Observational Information from Stadia that were Visited Fire Protection Used at 
Stadium A B C D E F G H I J K 
Structural fire protection Y Y Y Y Y Y * Y Y Y Y 
Fire resistant glazing ? ? ? ? ? ? ? N Y Y Y 
Fire doors Y Y Y Y Y * * Y Y Y Y 
Fire Cells Y Y Y Y Y * * Y Y Y Y 
Addressable detection 
system Y Y Y Y Y Y N Y Y Y Y 
Smoke detectors Y Y Y Y Y N N Y Y Y Y 
Smoke extraction system * Y Y N Y N N Y Y Y Y 
Smoke curtains Y Y N N ? ? N N ? ? ? 
Sprinklers Y Y Y Y Y Y Y Y Y Y Y 
Direct link to fire service Y Y Y Y Y Y N Y Y Y Y 
Risers Y Y Y Y Y Y Y Y Y Y Y 
Hose reels Y Y Y N Y Y Y Y Y Y Y 
Extinguishers Y Y Y Y Y Y Y Y Y Y Y 
Manual call points Y Y Y Y Y Y * Y Y Y Y 
Sounders Y Y Y Y Y Y * Y Y Y Y 
Backup lighting/power N N Y Y Y Y N Y Y Y Y 
Fire exits Y Y Y Y Y Y Y Y Y Y Y 
Reflective Exit signs Y Y Y Y Y Y Y Y Y Y Y 
Lit Exit signs Y Y N Y Y N N Y Y Y Y 
Evacuation signage Y Y Y Y Y N N Y Y Y Y 
Reflective/Marked egress 
paths Y Y N N N N N N Y Y Y 
Muster points ? ? ? Y Y N ? Y ? ? Y 
Public addressable 
televisions Y Y Y Y Y Y Y Y Y Y Y 
Public addressable sound 
system Y Y Y Y Y Y Y Y Y Y Y 
CCTV Y Y Y Y Y Y N Y Y Y Y 
                        

Key                       
Y Present in some or all sections of the stadium at time of visit  
N Not present in any section of the stadium at time of visit  

N/A Not applicable to this stadium 
* incomplete/some disabled at time of visit 
? unknown/not certain at time of visit 

Table 8: Stadium Survey Sheet 3 - Methods of Fire Protection used at Stadia 
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5.1 Fire Protection Information 

From table 6 it is evident that there is wide variation between the stadia and their approach to 

fire preparedness. Five of the stadia have some level of fire service presence in event 

operations. This ranged from maintaining a presence in the operations control room through 

to quizzing fire wardens, inspecting the occupancies and filing reports on their findings. Most 

stadia were located very close to a fire station and their expectations for how long it would 

take for the fire service to respond was reflected by this. Despite the proximity; it was 

recognised by fire station personnel, fire safety officers and or stadium management that at 

five of the stadia there was the potential for delayed response due to traffic problems. 

 

Several stadia had multiple access points for the fire service to approach the fire control room 

from and two had multiple fire control rooms. The reasons given for these were to mitigate 

against access problems due to patrons or traffic, to allow better access to different parts of 

the stadium, because the fire control room had been relocated and to better facilitate response 

in the event of a large fire. 

 

For most of the stadia there was a marked difference between the anticipated evacuation time 

and the time taken for regular post game egress (based on past observations of interviewees). 

This was most obvious in stadia C, E, F and G. Stadium G took the longest to clear post game 

and recognised that this was a problem as far as patron enjoyment was concerned. They 

anticipated that an evacuation could take longer than might be expected but did not see this 

delay as life threatening, nor had any work been done to reduce the time taken to clear the 

grounds. Stadia C, E and F credited the difference as being due to stragglers and autograph 

hunters. However, of these three stadia only E had conducted event type fire drills to verify 

their anticipated evacuation time. The basis for determining anticipated evacuation times 

quoted by interviewees varied. Some were quoted from evacuation plans, others were not. 

Several stadia indicated that they had attempted to comply with the eight minute acceptable 

evacuation time recommended in the Green Guide. 

 

From table 7 it is evident that several stadia rely heavily on people alerting the fire service 

rather than on the activation of fire protection systems to alert the fire service of a fire. This is 

due in part to a history of false alarms and in part to the age of the structures. All of the 
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modern structures used EWIS to monitor fire protection systems but few of the older 

structures had this installed. For those stadia that do not rely on fire protection systems to alert 

the fire service there is the potential for a fire to develop unnoticed in many areas if it 

occurred in non event times or during a small scale event. The stadium most vulnerable to this 

is stadium G.  

 

In contrast to stadium G, stadium I has adopted the opposite approach where virtually the 

entire grounds are protected by an active system connected to the fire service. Stadium I has 

identified gathering places that people tend to congregate around external to the buildings and 

has installed active fire protection in these areas too. Stadiums I and K had the most extensive 

fire service connected active fire protection of those stadia visited. 

 

From table 8 it is evident that stadia utilise a wide range of fire protection devices. All stadia 

have incorporated their public address systems into their fire protection and evacuation plans 

with most using closed circuit television monitoring (cctv) to identify and observe suspicious 

activities. Not all devices were used in all areas. Most notable was the absence of manual call 

points in areas that were not readily visible to security. Stadium G was the only stadium 

without smoke detectors. This was due to the smoking policy of the stadium. Stadium G was 

the only stadium that had not become smoke-free at the time of this study. All other stadia had 

adopted or were in the process of adopting smoke-free policies. 

 

Overall most areas of most stadia were equipped with comprehensive fire protection. The 

notable exception being stadium G. Stadium G is in the process of upgrading some of its 

facilities and it is anticipated that the level of fire protection will improve as part of that 

process. 

 

One area where half of the stadia could improve is in the holding of event type fire drills. 

There are two strategies used by stadia to implement evacuations; total evacuation or 

staged/partial evacuation. For an occupancy of potentially 20,000 or more both strategies 

require a degree of coordination and practice. The main deterrents to holding fire drills were 

given as the cost of bringing in sufficient staff and pretend patrons to hold a drill, the 

disruption to an event and television coverage if a drill was held during an event, disruption to 
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patrons and the potential for confusing incoming patrons if a drill was held prior to an event. 

Two stadia overcame these objections by using school aged students on non event days and 

providing a tour or catering as way of payment. They felt the cost of bringing in event staff 

for the drill was not excessive.  

 

Information on the adoption of international documents and guidelines in combining crowd 

management, fire protection and evacuation planning has not been laid out in a table. This is 

because there was great variation in how guidelines had been incorporated into stadium 

management. No stadium had adopted a single set of guidelines in its entirety and several had 

only applied guidelines to certain areas of the stadium or certain aspects of coordinating 

egress movement. 

 

Stadia adapted a range of documents and guidelines in order to meet their crowd management 

needs. This was dependant on the awareness of management and consultants to the existence 

of such documents. No guidance is provided in New Zealand with regards to suitable sources 

of such information. Consequently the application of these guidelines varied.  

 

Because crowd management and evacuation planning are closely linked there is an 

implication that evacuation planning can be impacted by crowd management strategies. This 

is recognised internationally and has led to the creation of such documents as the Green 

Guide. Advanced crowd management strategies are not considered as part of meeting the 

provisions of the New Zealand Building Code but are alluded to in meeting obligations under 

the Fire Safety and Evacuation of Building Regulations. From table 5 it is apparent that not all 

stadium have met this obligation. 

 

In reviewing the application of adopted documents, primarily NFPA 102 and the Green 

Guide, deviations from the guidelines were apparent. At one stadium crush barriers had been 

installed as part of following the Green Guide’s recommendation on managing festival seating 

areas. However, they did not comply with the installation layout as set out in the Green Guide 

and followed a layout that is recognised in the current Green Guide as being inappropriate. 

This deviation from the Green Guide recommendations had not been picked up. The layout 
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has recognised implications on safety of high density crowd movement and therefore potential 

impacts on egress and evacuation.  

 

At various stadia there were instances where a document was quoted as the reason for the 

adoption of crowd management or evacuation planning strategies, but upon investigation 

these were found to be inconsistent with the quoted document. It is thought that in some cases 

these deviations or partial adoption may be detrimental to actual evacuations in the affected 

parts of the stadia.  
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5.2 Specific Egress Paths 

5.2.1 Egress Path 1 

Egress path 1 was part of a pathway near one of the main entrance-exits to the 

stadium. The pathway had a row of bollards across it. Not all bollards were in place at 

the end of the game. Egress was monitored between two bollards.  

 
 

 

Figure 17: Sketch of egress path 1 

 

Egress path 1 took a relatively long time for the flow of people to abate completely. 

This might indicate it to be a preferential exit from the grounds for all areas of the 

stadium. This would be a reasonable assumption to make based on the proximity of 

public transport and car parking and that the specific flow profile is similar to that 

produced in modelling the evacuation of final exits for a complete stadium. The 

specific flow remained lower than predicted by Fruin and the egress continued for 

over 25 minutes indicating a long travel path.  

 

At no point was crowd density sufficient to use the entire exit way. The maximum 

number of people who crossed the egress point simultaneously was five. People 

generally crossed the effective width in groups of two or three. Although most people 

maintained a boundary layer around the bollards some people hurdled them or 

stopped beside them to wait for others. This data reflects free motion with relatively 

wide variations in specific flow. The specific flows observed are relatively low. This 

is due to the low density rather than slow movement on the part of the egressing 

patrons.  

 

4.5m  
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In comparing figure 18 and 19 it should be noted that, as described earlier on page 65, 

figure 19 is not derived directly from figure 18. Figure 18 reflects data collection that 

has been binned into 5 second intervals. Figure 19 shows the specific flows, 

calculated for one minute periods at 5 second intervals. This makes periods of 

consistent flow more obvious and enables mean flow values to be established more 

easily.   
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Egress path 001 - counts of people egressing through a 4.5m wide section of concourse following a 
football game 
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Figure 18: Egress Path 001 – egress as a function of time 
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Specific Flow Rate, Fs, for Egress path 001 - people egressing through a 4.3m effective width section of concourse following a football game
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Figure 19: Egress Path 001 – specific flow as a function of time 
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5.2.2 Egress Path 2 

Egress path 2 went across a concourse area between a vomitory and a staircase. The double 

headed arrow indicates the monitored path. People exiting the vomitory moved away in three 

directions. Most moved along the concourse to their left. The remaining occupants were divided 

between following the concourse to their right and exiting via the staircase. Only those using the 

staircase were monitored in this part of the study.  

 
 

 

Figure 20: Sketch of egress path 2 

 

Egress path 2 was monitored in order to assess walking speeds of egressing patrons but also 

served to support the theory that people do not always egress via the shortest route. A very low 

number of patrons exited the vomitory and crossed the concourse to the exit. Speeds varied 

considerably. Some people were almost running while others moved very slowly. Density 

remained low throughout the egress period so this data reflects free motion (figure 21). 

 

Distance travelled was estimated. The measured distance was taken from the centre of the 

vomitory to the centre of the base of the staircase. This was the shortest path to exit the stadium 

from that vomitory but relatively few people used it. Reconnaissance of the grounds revealed 

that this was the exit closest to the taxi stands but one of the furthest from other public transport 

and the car parks. It is suspected that this may have influenced exit choice. 
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Egress path 002 - Speeds of people egressing across a 8.2m wide section of concourse following a 
football game 
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Figure 21: Egress Path 002 – egress speeds
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5.2.3 Egress Path 3 

This egress path involved movement down a divided staircase. In this instance the staircase was 

divided evenly in two by a central handrail. On side A of the stair a person with a walking stick 

had difficulty descending the stairs. Other patrons offered assistance. This created a congestion 

point or bottle-neck on one side of the staircase, reducing the effective width to C. C was 

variable and not measured. Travel times were recorded for individuals to descend only when 

people approached both sides of the stair within 1 second of one another. 

 

 

Figure 22: Sketch of egress path 3 

 

Egress path 3 was unusual in that it presented the opportunity to observe a temporal disparity in 

movement on structurally identical stairs. A temporary congestion point was generated through 

slow movement of a member of the crowd. Speeds were compared for people initiating descent 

of the stairs at approximately the same time. Variance in speeds indicates that patrons using stair 

A were slower than for stair B. The graph on the following page (figure 23) shows that once the 

congestion point was established speeds reduced from >1m/s down to <0.4m/s. The mobility 

impaired patron took approximately ten times as long to descend the stairs as able bodied patrons 

on uncongested stairs (see figure 24). These results indicate the potential for temporarily 

congested flow to have a major impact on egress movement. This could have significant 

implications for stadia hosting functions that attract a high proportion of mobility impaired 

patrons. 
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Egress path 003 - comparison of simultaneous egress speeds on a partially congested stairwell
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Figure 23: Egress Path 003 – egress speeds 
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Egress path 003 - comparison of times taken to traverse 6.5m down a divided staircase when one 
side becomes partially blocked by a mobility impaired individual 
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Figure 24: Egress Path 003 – egress duration
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5.2.4 Egress Path 4 

Egress path 4 produced a main body of activity within the first 2.5 minutes. Usage of this path 

was over relatively quickly compared to the total egress time for the stadium. An unusually large 

number of people used this egress path while other potential egress paths nearby remained 

relatively unused. This path was one of the main ingress paths before the game and that may 

have influenced egress path selection. Speeds (figure 28) were calculated from the time to travel 

between the dotted lines. This represents a distance of 3.5m. Densities were calculated at the 

time individuals crossed the first line. Speeds were relatively high for the densities recorded.  

 
 

 

Figure 25: Sketch of egress path 4 

 

This was one of the main ingress areas of the stadium and its egress usage may be a reflection of 

that. The contrast between maximum and sustained specific flow values (figure 27) may indicate 

that there was greater independent movement within this crowd than for others of lower effective 

width. The effective width in conjunction with familiarity with the path, due to this being a main 

ingress path, may have influenced speed. It appeared more as if people were swept along by the 

high density rather than experiencing restricted movement. This was a flat simple layout with no 

corners. Knowledge to that effect may have made people more assured about moving quickly at 

that order of density. 
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Egress path 004 - counts of people egressing through a  8.6m effective width section of concourse 
following a football game
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Figure 26: Egress Path 004 – egress as a function of time 
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Specific flow rate, Fs, for Egress path 004 - people egressing through a 8.6m effective width section 
of concourse following a football game

1.98

0.00

0.50

1.00

1.50

2.00

2.50

0 30 60 90 120 150 180 210 240 270 300

Time (s)

Sp
ec

ifi
c 

Fl
ow

 (p
eo

pl
e/

s/
m

 e
ffe

ct
iv

e 
w

id
th

)

Mean flow = 1.03
Std Deviation = 0.05

Mean flow = 0.34
Std Deviation = 0.02

 
Figure 27: Egress Path 004 – specific flow as a function of time
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Egress path 004 - speeds of people egressing along a concourse following a football game 
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 Figure 28: Egress Path 004 – egress speeds
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5.2.5 Egress Path 5 

This egress path was a ramp. It was intended to track people from the start of the ramp to where 

it met a level surface. Unfortunately due to the angle and lighting egress movement on this ramp 

was difficult to discern from the video footage. Consequently results were not recorded. It was 

noted that few people used the handrails, unlike observations of people on stairs. This may be 

one attribute to ramps that makes movement on them more akin to walkways than stairs. 

 

 

Figure 29: Sketch of egress path 5 

 

5.2.6 Egress Path 6 

This egress path was a vomitory amongst bleachers. The intent was to monitor the flows D, C 

and B into A. Once egress started a queue developed and people spread across the bleachers 

obscuring the egress flows. No results were discernible from the recorded footage. 

 

 

 

 

 

 

 

 

Figure 30: Sketch of egress path 6 
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5.2.7 Egress Path 7 

Egress path 7 was a staircase. Egress was monitored from the landing to the ground. The length 

of the handrail was taken as the distance travelled. Egress appeared to occur in waves as if the 

rate of flow was determined higher up the stair or at a point along the egress path leading to the 

stair. 
 

 

Figure 31: Sketch of egress path 7 

 

The waves of activity that were observed are reflected in the way the specific flow fluctuated 

(figure 33). This may indicate that people in the area feeding the staircase waited for densities to 

decrease before entering the staircase. Both the anticipated specific flow and the density were 

greater than the figures suggested by Fruin130 for this effective width. The density is very similar 

to that observed on walkways in other egress paths. This may be influenced by egress movement 

approaching the stairs and or by the size of the staircase. Presumably the greater the length of the 

staircase the greater its influence on densities of occupants. 
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Egress path 007 - counts of people egressing down a 1.2 m effectve width staircase following a 
football game

0

2

4

6

8

10

12

-60 -30 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600

Time (s)

Pe
op

le
 p

er
 5

s 
in

te
rv

al

 

Figure 32: Egress Path 007 – egress as a function of time 
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Specific flow rate, Fs, for egress path 007 - people egressing down a 1.2m effective width staircase 
following a football game
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Figure 33: Egress Path 007 – specific flow as a function of time 
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Egress path 007 - speeds of people egressing down a staircase following a football game
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Figure 34: Egress Path 007 – egress speeds
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5.2.8 Egress Path 8 

Egress path 8 was bordered by a fence and a garden. Egress along this path appeared constant 

until the end. The flow stopped relatively quickly. The nearby egress paths were much wider 

than egress path 8 and better lit. It is hypothesised patrons selected these alternate routes in 

preference to egress path 8 once they had cleared. Because this was one of several routes leading 

to the final exit movement was most likely slow due to one of these other routes having 

preferential flow through the final exit. 

 

 

 

 

 

 

Figure 35: Sketch of egress path 8 

 

Egress counts for egress path 8 (figure 36) appear to indicate pulses of movement within the 

crowd. This was not obvious on initial observation and is not reflected in the specific flow data 

(figure 37). Speeds of individuals within the crowd remained fairly constant throughout (figure 

38). The sustained specific flow remains relatively low for the majority of the path use but the 

associated densities were considerably higher than those predicted for optimum specific flow by 

either Poyner et al or Fruin so this is not unexpected. 
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Egress path 008 - counts of people egressing through a 2.1m effective width section of concourse 
following a football game
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Figure 36: Egress Path 008 – egress as a function of time 
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Specific flow rate, Fs, for egress path 008 - people egressing through a 2.1m effective width section 
of concourse following a football game
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Figure 37: Egress Path 008 – specific flow as a function of time



- 93 - 

 

Egress path 008 - speeds of people egressing through a 2.1m wide section of concourse following a 
football game
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Figure 38: Egress Path 008 – egress speeds
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5.2.9 Egress Path 9 

Egress path 9 involved the intersection of a staircase and a walkway. The intent was to monitor 

egress across the base of the staircase. Unfortunately flow along the walkway to the side of the 

stair obscured the view of this. Rather than persevere another path (Egress path 10) was selected. 

 
 

 

Figure 39: Sketch of egress path 9 

 

5.2.10 Egress Path 10 

Egress path 10 was located in a different area of the same stadium as egress path 9. This egress 

path was not monitored until six minutes after the game finished. Because of this a full profile of 

the path was not recorded. This was an interesting path because it narrowed due to a vehicle that 

had been parked along side it and a bend in the path. Counts were taken across the narrowest 

point and densities were calculated for the entire narrow section (marked by dotted lines). 
 

 

Figure 40: Sketch of egress path 10 

 

Consistent flow was maintained for a large proportion of the time egress path 10 was monitored. 

This may indicate that due to the narrowing of the path specific flow was modified by increasing 

density. The densities measured for this pathway were not discernible at the narrowest point as 

distinct from the whole area of monitored travel. Both specific flow and mean speeds increased 

markedly towards the end of this paths usage indicating that the density for the majority of the 
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monitored period was high enough to impact on movement along this pathway. The recorded 

speeds were relatively slow indicating that movement was inhibited. The effect of the narrowing 

path may have been exaggerated by the vehicle’s shape. Protrusions such as rear view mirrors 

may have exaggerated the observance of a boundary layer. This is speculation as a view of 

proximity to the vehicle was not obvious from the video footage. Regardless of the reasons a 

high density low speed crowd movement was observed. 
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Egress path 010 - counts of people egressing through a 2.6m effective width congestion point along 
a section of concourse following a football game
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Figure 41: Egress Path 010 – egress as a function of time 
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Specific flow rate, Fs, for egress path 010 -  people egressing through a  2.6m effective width 
congestion point along a section of concourse following a football game

1.94

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

360 390 420 450 480 510 540 570 600 630 660 690 720

Time (s)

Sp
ec

ifi
c 

Fl
ow

 (p
eo

pl
e/

s/
m

 e
ffe

ct
iv

e 
w

id
th

)

Mean flow: 1.53 people/m/s
Std deviation: 0.03

 
Figure 42: Egress Path 010 – specific flow as a function of time 
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Egress path 010 - speeds of people egressing through a  2.6m wide congestion point along a section 
of concourse following a football game
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Figure 43: Egress path 010 – egress speeds
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5.2.11 Egress Path 11 

Egress path 11 was not strictly observation of an egress path. Rather, it was observation of 

egress preferences and influences from inside the arena. From the interior of the stadium the time 

to clear different sections of the bowl were recorded in order to determine if any part of the 

stadium experienced any notable congestion. This was done in order to try and glean greater 

understanding of observations from concourses. It also served to offer some insight as to the 

believability of simulated egress from the stadium. The stadium attendance was well below 

capacity and not all sections were occupied.  

 

Stadium management provided floor plans of the stadium and these were used to map out the 

occupied areas. The stadium was divided into nine zones (I-IX). Up to four levels of seating were 

available in the various stands around the stadium so zones were subdivided into levels. Of the 

resulting sections only sixteen were in use during the game. The times for each section to empty 

were noted (table 9).  

  

Zones 

observed 

Level 4 Level 3 Level 2 Level 1 

I    10.25pm 

II 10.25pm   10.28pm 

III 10.25pm 10.24pm  10.30pm 

IV    10.29pm 

V 10.24pm 10.23pm 10.24 10.26pm 

VI 10.26pm    

VII    10.27pm 

VIII 10.24pm   10.24pm 

IX    10.27pm 

10.27 all clear except italicised bold. All clear in 8 minutes 

Table 9: Egress Path 11 Zone Clearance 
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No queuing was observed at any of the vomitories. There was a six minute difference between 

the first and last section clearing. The majority of the occupants had left the bowl in less than 5 

minutes. The oldest occupied stand (Zones II-IV on Level 1) was the slowest to clear. The 

vomitories for this stand are located further back from the arena than in any of the other stands. 

The increased path distance will have contributed to the longer egress time. In most cases people 

left through the nearest vomitory to their seat. A minority of people walked to other vomitories. 

This action may have been more pronounced if there had been congestion at any of the 

vomitories. 
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5.2.12 Egress Path 12 

Stadium management suggested that the intersection of a stairwell and vomitory at this egress 

point would be suitable for recording merging flows. Unfortunately neither the stairwell nor the 

vomitory experienced sufficient flow to obtain any useful data. The reason that this egress path 

was not heavily used on this day was unknown. 

 
 

 

Figure 44: Sketch of egress path 12 

 

5.2.13 Egress Path 13 and 14 

Egress path 13 monitored the same area as an egress path 14 but was filmed during half time 

rather than post game. Flow in this video footage went in two directions and was near retail 

concessions. Speeds were recorded for a section of the concourse (indicated by dashed lines in 

figure 45). Movement along the concourse occurred in two directions and a recessed area with 

concessions provided two way flow to and from the concourse. The flow was complex in this 

area hence it was monitored at both half time and full time. The direction of flow was more 

varied during half time (Egress path 13). This was probably due the large area of seating that was 

serviced by the concessions. 

 
 

 

Figure 45: Sketch of egress path 13 & 14 
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Egress path 13 

The most interesting feature of this profile is that Egress path 13 produced higher flow rate 

values than egress path 14. This may be due to people accessing the concessions and returning as 

opposed to the end of the game when return movement is uncharacteristic. 

  

There was a discernable decrease in movement towards the middle of half time which was 

discernible in both speed and specific flow data. This may be attributable to queuing at the 

concessions.  

 

Egress path 14 

Egress path 14 experienced a wide range of speeds with the fastest movement occurring towards 

the end of the egress. Notably greater speeds were achieved post game (egress path 14) than at 

half time (egress path 13) despite egress path 13 having higher flows.  

 

The maximum specific flow in both egress path 13 and 14 was lower than for most of the other 

egress paths observed. In both egress paths 13 and 14 a large proportion of the crowd appeared 

to be milling rather than egressing. This, and the multidirectional flow, may have contributed to 

these results being lower than those observed in other egress paths. 
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Egress path 013 - counts of people moving along egress path in two directions near concessions 
during the half time break at a rugby game - effective width 4.5m
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Figure 46: Egress Path 013 – egress as a function of time 
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Specific flow rate, Fs, for egress path 013 -  people moving along egress path in two directions near 
concessions during the half time break at a rugby game - effective width 4.5m
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Figure 47: Egress Path 013 – specific flow as a function of time 



- 105 - 

 

Egress path 013 - speeds of peoplemoving along egress path in two directions near concessions 
during the half time break at a rugby game - effective width 4.5m
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Figure 48: Egress path 013 – egress speeds
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Egress path 014 - counts of people moving along a 4.5m wide egress path in two directions after a 
football game
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Figure 49: Egress Path 014 – egress as a function of time 
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Specific flow rate, Fs, for egress path 014 - people moving along a 4.5m wide egress path in two 
directions after a football game
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Figure 50: Egress Path 014 – specific flow as a function of time 
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Egress path 014 - speeds of people moving along a 4.5m wide egress path in two directions after a 
football game
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Figure 51: Egress Path 014 – egress speeds
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5.2.14 Egress Path 15 

Egress path 15 was an intersection between terraces and concourse. Egress through the 

intersection was monitored. A large proportion of the crowd on the terraces walked past this 

egress point and queued to exit onto the concourse at a point closer to the final exit. Flow 

through this exit was never slowed to the point of queuing. 

 
 

 

Figure 52: Sketch of egress path 15 

 

The maximum flow rate at egress path 15 was rapidly reached (figure 54) and a high flow was 

maintained from that point for approximately 3 minutes. This egress path exhibited the highest 

sustained specific flow of any of the observed walkways. It also closely matched calculated flow 

using the Green Guide. The flow of people with time dropped off markedly after 3.5 minutes. 

The reason for this may be that preferential pathways had cleared and these alternate routes were 

used.  
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Egress path 015 - counts of people moving onto a concourse through a 1.3m wide  terrace gate 
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Figure 53: Egress Path 015 – egress as a function of time 
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Specific flow, Fs, for eEgress path 015 - counts of people moving onto a concourse through a 1.3m 
wide  terrace gate 
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Figure 54: Egress Path 015 – specific flow as a function of time 
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5.2.15 Egress Path 16 

Egress path 16 involved the intersection of a vomitory with a concourse at half time during a 

game. Relatively little movement occurred through this vomitory. There was insufficient 

movement to warrant analysis. 

 
 

 

Figure 55: Sketch of egress path 16 

 

5.2.16 Egress Path 17 

Egress path 17 was post game observation of a walkway between a stand and the arena. This was 

one of the few incidents of queuing that were observed. The cause of the queuing was a temporal 

congestion point generated by a football player at the edge of the arena engaging fans. Due to the 

angle of observation and density of people it was not possible to discern milling fans from 

egressing patrons. Because of this density of the moving crowd and flow rates could not be 

acquired from the video footage of movement past the congestion. 

 

 
 

Figure 56: Sketch of egress path 17 

 

player 

Crowd 
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5.2.17 Egress Path 18 

Egress path 18 concerned patrons egressing through a vomitory. Data was recorded of the 

number of people who exited. This egress path was specifically simulated using Simulex32. It 

was represented as a link (indicated by the double headed arrow in figure 57) between the inside 

of the bowl and the concourse. A comparison of simulation data and actual data is described in 

section 5.2 Simulation. 
 

 

Figure 57: Sketch of egress path 18 

 

Actual egress through this vomitory was relatively low. Sustained flow was not observed and it 

cleared within six minutes. The observed egress exhibited quite a high specific flow with the 

maximum specific flow being reached relatively quickly. This may have been due to the 

vomitory’s distance from the main exit. Although the specific flow is high, other observed 

specific flows were similar and the value is not outside the expected range.  
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5.2.18 Egress Path 19 

Egress path 19 was similar in layout to egress paths 4 and 8. Patrons experienced free movement 

but the two points selected for measuring the travel distance were difficult to discern on the 

video footage. Consequently this data has not been analysed. 
 

 

Figure 58: Sketch of egress path 19 

 

5.2.19 Egress Path 20, Egress Path 21 

This egress point was observed during half time (egress path 20) and at full time (egress path 

21). At this intersection flow from one direction interfered with flow from another direction. 

Egress at this stadium took longer than any other. This was due mainly to congestion at this 

point. 
 

 

Figure 59: Sketch of egress path 20 & 21 

Analysis of this path was not possible due to its complexity. Movement at the intersection 

consisted of crossed flow, merging flow and queuing. Similar congestion patterns were 

observed at half and full time although the congestion was far more pronounced at full 

time. 
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5.2.20 Egress Path 22 

Video footage of this egress point was accidentally erased before it could be analysed. This 

egress path had a similar layout to egress path 9. 
 

 

Figure 60: Sketch of egress path 22 

 

5.2.21 Egress Path 23 

Egress path 23 was observed outside a stadium, along a street. Following a football game crowd 

movement along the footpath between a street sign and a lamp post was observed (figure 61). 

This was done to determine if there was any behavioural difference between people inside the 

stadium and those outside the stadium. It was found that there were differences. The most 

obvious difference was that people inside the stadium appeared to focus on their path whereas 

people outside the stadium often looked around assessing the surroundings. Another difference 

was that people did not adhere to the pathway. Rather than remain on the footpath many walked 

on the road or across the road into slow moving traffic. Movement in the stadium was far more 

structured and considerate of others than was observed outside of the stadium. 
 

 

 

Figure 61: Sketch of egress path 23
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5.2 Simulation 

Three stadia were initially selected for modelling and calculations comparison with observational 

data. It was envisaged that one stadium would be simulated in its entirety, one stadium’s 

embankment/terrace area and associated shared pathways would be modelled and one stadium’s 

slowest evacuation point – cross flow near a vomitory (egress path 20), would be simulated.  

 

Problems Encountered 

• Evacuation simulations of the embankment and of egress path 20 proved beyond the 

capabilities of the simulation software. 

• Evacuation of the embankment would not run due to the high population density – people 

from different directions converged and jammed up within the first few seconds. Modelling of 

egress path 20 succumbed to similar problems.  

• Complete evacuation of the third stadium proved more successful, but only after the floor 

plans were modified. An outline of the modelling results of this stadium are summarised on the 

following pages. 

 

Simulation of a Vomitory (egress path 18) 

In comparing egress measurements from observation and simulation (figure 62) there is a 

significant difference between the anticipated specific flow and the observed specific flow. The 

simulation only achieved 25% of the cumulative egress observed for this vomitory. The 

maximum specific flow was significantly lower in the simulation than that which was observed.  

 

Calculated egress flow values based on the effective width (1.4m) produce values that are more 

conservative than were viewed. Simulation produced more conservative results again. 

 

 
Observed 

Calculated 

(Fruin) 

Calculated 

(Poyner) 
Simulation 

Maximum Fs 

(people/second/metre effective width) 
1.88 1.40 1.80 0.82 

Fc (people/minute) 158 118 151 69 

Table 10: Estimated flows for egress path 18 
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The observed egress was closest to calculations based on values from Poyner et al’s study, which 

are advocated in the Green Guide. This stadium’s egress paths were developed using Green 

Guide values. Observed egress times from the stadium as a whole closely matched the 

recommended values given in the Green Guide. 

 

In reviewing the simulated data it was determined that other vomitories closer to the final exits 

of the stadium were chosen in preference to this one. Hence individuals within the model moved 

around the interior of the bowl, past this vomitory, and congregated around vomitories that were 

closest to final exits rather than using the most proximate vomitory to their starting position.  

 

In comparing simulation data for an entire stadium with that observed for the same stadium, the 

simulation was found to be grossly conservative in anticipating exit usage rates. The main reason 

for this was the disproportionate use of vomitories. As outlined in previous examples, patrons at 

stadia exhibit a tendency to select the shortest route to their desired exit but this is not carte 

blanche. Ease of access to the shortest route reduces the proportion of people that behave in this 

manner. The simulation does not take this into account and so more people select the shortest 

route than is observed. In the simulations performed this meant that some vomitories were not 

used in preference to others. This led to overloading of the preferred vomitories to the exclusion 

of others nearby. A disproportionate number of occupants in the simulation moved around the 

seating area and selected the vomitories that were closer to the nearest final exit rather than 

selecting the nearest vomitory and moving around the concourse as is observed in an actual 

egress. This accounts for some of the variations between the observed and simulated usage of 

egress path 18. If there had been more final exits evenly placed about the stadium the effect of 

shortest route selection would have been less pronounced and the simulation would have more 

closely matched reality. Stadia are generally built with a few very wide final exits rather than 

many smaller ones in order to better utilise space, and direct flow. 
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Comparison of Simulation and Actual Fs data for a vomitory (egress path 18) at a stadium
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Figure 62: Egress Path 018 – specific flow as a function of time
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Complete evacuation simulation of a stadium using Simulex32.exe:  

Vomitory B_18 (label in model simulation) is shown with its associated area of the 

bowl and concourse, 10 minutes and 34 seconds after evacuation was initiated (figures 

63, 64 and 65). The dots represent people as if viewed from above. Approximately one 

third of the stadium had evacuated at this point. The total time for this evacuation 

simulation was over 38 minutes. The stadium on which this simulation was based often 

clears in less than ten minutes following a rugby game and its anticipated evacuation 

time is less than eight minutes.  

 

Figure 63: The vomitory is represented as stairs with Link 63 linking to the bowl and Link 64 linking to the 

concourse. 

 

Figure 64: In the bowl patrons are visibly congregating around the vomitories with vomitories closer to the 

exits attracting a greater share of the population. 
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Figure 65: The concourse shows people flow from Vomitory B18 and a neighbouring vomitory into the stream 

of evacuating patrons.  

In order to facilitate the software, the floor plan of the stadium was modified. This is 

most obvious where seats have been removed from the bowl area (figure 64). Bottle-

necks are visible where aisles open into the vomitory areas. Simplifications made to 

other areas of the floor plan included the exclusion of furniture and other obstacles from 

dining and lounge areas and removal of barriers in hallways that connect corporate 

suites. This was done so as to shorten path lengths and improve utilisation of stairwells.  

 

The graph on the following page (figure 66) shows the specific flow values across all 

exits from the stadium. It is of note that the time taken for this simulated egress was 

over twice that recorded following the observed football game at this stadium. Other 

data obtained from the simulation regarding usage of paths was also unrealistic in that 

extreme queuing occurred and conflicting flows were generated where merging flows 

normally occur.  
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Simulated use of exits in an evacuation
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Figure 66: Exitways – simulated specific flow as a function of time 



 



- 122 - 

 

6 Analysis and Discussion 

Analysis and discussion of the findings of this study have been divided into three 

sections:  

 

• general observations about stadium considerations for egress management and 

fire protection 

• comparison of results obtained from different egress paths calculations and 

simulations 

• a discussion of software limitations that were encountered and their 

implications. 

 

6.1 General observations 

In observing egress and operational management at stadia, in both Australia and New 

Zealand, it was found that all stadia have developed or adopted some components of fire 

protection and or egress management that work particularly well. That being said many 

also have some components that could be improved. All stadia are different because of 

their location, design history and functionality but some general observations can be 

made regarding fire protection, egress movement and management, and the hazards 

associated with fires at stadia. 

6.1.1 Stadium considerations for egress management and fire protection 

In general fire protection and evacuation procedures are the domain of stadium 

operations managers in New Zealand and Australia. Almost half of these contract out 

the role to security, health and safety or building compliance organisations. This 

delegation of control to an external agency has in the past, and may in the future, lead to 

problems with emergency egress management. This problem arises because stewarding 

staff may not have a suitable working knowledge of documented evacuation procedures. 

Similarly they may not be aware of the influence of actions, such as locking certain 

gates, may have on the effectiveness of an evacuation. This problem has been identified 

at a number of stadia. Management at these stadia have responded to try and minimise 

this problem by encouraging a greater degree of communication and consultation 
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between the agencies that coordinate stewardship, normal operational procedures and 

emergency procedures.  

 

Some stadia have taken this a step further by assigning stewardship of an area to the 

same stewards each time. By doing this, stewards become particularly familiar with 

their area and what is required to facilitate safe egress through it. As stewardship in 

many areas may only be required 10-12 hours a month it can take some time for a 

steward to appreciate crowd movement through an area, emergency egress plans for that 

area and features that must be monitored and maintained. These features include fire 

doors that get jammed open, emergency gates that become obstructed by vehicles, 

cabling or being locked and fire protection devices that are commonly tampered with. 

 

All but one of the stadia viewed use an emergency warning intercommunication system 

(EWIS). This has enhanced the relationship between stewardship and emergency 

operations. EWIS allows operations to direct investigation of incidents and emergency 

movement by integrating information flow to stewarding staff and to the public. This is 

further enhanced by the ability to use television screens around the stadium to provide 

information and instruction to patrons. 

 

Management considerations regarding the logistics and implications of evacuations are 

greater than they were in the past. This is partially due to facilitating a range of event 

types with differing evacuation needs and partially due to the delegation of crowd 

management to contractors. The implications of interrupting live television broadcasts 

also plays a role in evacuation planning for some stadia. This has led to the evolution of 

two types of evacuation strategy. Some stadia adopt a total evacuation policy whereas 

others have developed partial and or staged evacuation schemes. Both strategies have 

their advantages. 

 

One of the issues with total evacuations is where to put the people. Many stadia do not 

have large areas of land attached to them adjacent to the stadium. Unlike the end of a 

game or event when people move away from the stadium, evacuated patrons require 

assembly or muster areas to wait while the cause of the evacuation is attended to. If no 

suitable areas are available then surrounding roads may become blocked as traffic is 
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disrupted by the crowd. Few stadia would consider bringing patrons onto the arena for a 

number of reasons: 

 

• The arena is often protected from wind by the surrounding stands and may 

expose occupants to smoke and radiant heat hazards from a large fire. 

• Arenas are not designed to accommodate mass movement into or out of them. 

• The pitch can be damaged by trampling. 

 

Other issues include the implications of stopping an event. Disrupting events and 

televised broadcasts for false alarms can have flow on effects for stadium selection in 

hosting future events. 

 

The advantages of a total evacuation are based on its simplicity: 

 

• It is easy to communicate instructions to occupants. 

• It is very similar to the movement that occurs during normal egress. 

 

In contrast, staged evacuations or partial evacuations provide more options. A partial 

evacuation involves selected zones within a stadium moving at different times. The 

most vulnerable zone is evacuated first, then if necessary the adjoining zones. A staged 

evacuation works the same way but involves evacuating zones until the stadium is 

empty. This is an extreme version of a partial evacuation. 

 

The disadvantages of a partial evacuation are that it: 

 

• Requires greater training of stewarding staff. 

• It is more complex than a total evacuation. 

• Involves giving different messages to different occupants. 

• Is quite different to normal stadium egress and has greater potential for 

confusion. 

• May be hard to initiate if the game is still in play and no obvious signs of danger 

are apparent to occupants. 

 



- 125 - 

 

Its advantages are that: 

 

• The most vulnerable patrons can be focussed on and removed from the danger 

quickly. 

• There is less initial disruption to the majority of patrons 

• People in surrounding zones can be prepared to move, reducing their 

premovement time. 

• People can initially be evacuated to other areas of the stadium reducing the need 

for large muster or assembly areas. 

• Disruption to the event is minimised. 

 

Both strategies have their uses, although the partial evacuation affords greater flexibility 

and may be perceived as more desirable from a management perspective. 

 

Other management related issues of concern that were identified in the course of this 

study were:  

 

• Staff awareness - Contractors are used to perform a wide range of functions at 

stadia. This is because of the vast difference between event and non event 

requirements. Staff awareness of emergency procedures varied between stadia. 

By questioning stewarding staff and other staff on evacuation procedures it was 

established that some stadia go to great effort to ensure staff are prepared for 

evacuations whereas others do not, relying on contractors to brief their staff on 

the day. At a number of stadia staff were seen locking gates, and restricting the 

clear width of exit ways while they took breaks. When questioned, these staff 

were unaware of the implications of their actions. Fire doors were jammed open 

and gates were opened into the oncoming crowds. At one stadium management 

removed and confiscated door jams from the same fire door three times. This 

type of practice was not true of all stadia. Some stadia provided staff with maps 

of evacuation routes for their areas and routinely quizzed the personnel on 

evacuation procedures and the importance of maintaining clear routes. One 

stadium insisted that all contract security staff (hired by the stadium or event 

organisers) familiarise themselves with the entire grounds, evacuation 
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procedures and all exits before they were permitted to perform any security or 

ushering tasks. 

 

• Maintenance - Although the majority of areas in visited stadia were in good 

condition, some venues included areas that had been poorly maintained or only 

partially modified. These neglected areas were found predominantly in sections 

of older stadium buildings. The level of maintenance afforded these structures 

varied.  

 

Problems identified included: 

o poor maintenance records of fire protection devices 

o unsprinklered corporate levels  

o Fire protection systems that had been disconnected from the fire service.  

o Disconnected manual call points in hallways  

o Structural protection had not been maintained in areas that were out of sight 

(see example in figure 67).  

o Rubbish and broken furniture that had been allowed to accumulate or stored 

in gaps behind older stands.  

 

 

Figure 67 Poorly maintained structural protection of I beam in hallway between suites and players area 
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All of these problems have the potential to impact on preventing fires from occurring or 

reducing fire spread within the stadium and ensuring life safety. In some stadia 

management were aware of the problems and in others they had not noticed the 

deterioration. In either case greater care in maintaining the structures and equipment is 

warranted. 

6.1.2 Design of vomitories - crossed flow and congestion 

Vomitories at stadia differ considerably. Only in new structures have vomitories been 

designed as shown in figures 70 and 71. In some stadia the ability to accommodate extra 

seating has determined the shape of the vomitory. An example of this is shown in figure 

68.  

 

In figure 68 flow from one direction (the left) is severely restricted while flow from the 

opposite direction (the right) has preference. In this instance it took in excess of 20 

minutes for this part of the stadium to clear. Management indicated that it was not 

uncommon for this area to still be densely populated 30 minutes after a game had 

finished.  

 

 

Figure 68: Crossed flow crowd movement – people 

from the left must turn an acute angle to enter the 

vomitory. 

 

 

Figure 69: Sketch of cross flow movement 

directions. 

As mentioned previously attempts to model evacuation of this part of the stadium were 

beyond the capabilities of the software used due to the complexity of movement. Figure 

69 attempts to explain this – it is a 90-degree anti-clockwise rotation of figure 68. The 

right-hand angle at the T-junction is obtuse and the left-hand angle is acute. Although 

the left-hand flow has the advantage in accessing this vomitory, other vomitories further 
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to the left are less obstructed. People from the right move directly against the flow from 

the left in an effort to reach other vomitories. This slows movement from the left and 

further inhibits flow from the right.  

 

The gridlock observed at this vomitory was more extreme than at any other egress point 

in any of the studied stadia. Although other stadia did not experience this degree of 

crossed flow congestion during normal egress there were areas where crossed flow 

crowd movement did occur. This serves to show how congestion in one small area of a 

stadium can have implications on the effective egress of a large part of the structure. 

The only way to facilitate an evacuation for this type of layout would be to stagger the 

evacuation. Patrons to the left and the right of the vomitory would have to be evacuated 

in two separate stages in order to prevent gridlock. This is not currently part of the 

evacuation plan for the stadium. The current plan is for a complete evacuation which in 

this area is inappropriate. 

 

Figure 70: Ideal vomitory sizing 
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Figure 71: Ideal vomitory egress flow 
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6.1.3 The potential for smoke hazards to affect egress at New Zealand Stadia 

Having viewed stadia throughout New Zealand it could be assumed that smoke 

emissions from a fire represents a minimal hazard to the majority of patrons. This is 

primarily due to the size and open layout of these structures. Smoke layer height in 

concourses and enclosed areas may be assumed to only present a problem once the layer 

is lower than 2m. In the majority of cases this is unlikely to occur due to high ceilings 

and open layouts.  

 

The bowl 

It is possible for smoke hazards to occur under adverse wind conditions within the bowl 

of a stadium but only in an extremely large fire. The stadium most vulnerable to this has 

a completely enclosed arena with no vertical breaks between stands. The nominal 

distance between the back row of seating and the ceiling of the bowl roof was not found 

to be less than 2.2 metres in any of the stadia visited. This distance increased 0.2-0.4m 

each successive row toward the field. A person would have to remain in the back row 

while the wind blew smoke towards them to be significantly affected by smoke. 

 

Concourses 

In the observed concourses ceilings typically sloped, mirroring the rise in seating within 

the bowl. The height of ceilings varied and the majority were open to the outside 

allowing free ventilation of smoke. Only one stadium has a fully enclosed concourse. 

The height of the ceiling was approximately 9m at its peak. The volume of this 

concourse exceeds 20,000 cubic metres. The concourse is almost entirely concrete and 

steel. Rubbish bins represent the greatest fire loading within the concourse. Considering 

the size of the concourse a rubbish bin fire should not present a significant hazard.  

 

Suites, lounges and restaurants 

The only areas of the observed stadia that are vulnerable to fire and smoke hazards are 

the furnished areas such as suites and lounges. These are not normally accessible to the 

general admission patrons and occupancy levels are lower than for the rest of the 

stadium. Smoke accumulation in these areas would not pose a problem for the majority 

of evacuees from a stadium but it could pose difficulties to a minority, such as those in 

the approximate vicinity of a fire, given certain conditions.  
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The realisation of smoke and fire hazards in furnished areas was documented by 

Isner131. The Texas City Stadium fire produced conditions where smoke accumulated in 

hallways potentially blocking egress from surrounding suites. The possibility for this 

type of incident to occur exists in many New Zealand stadia. The majority of stadia 

have narrow corridors in the executive levels not dissimilar to those described by Isner. 

A predisposition for catering staff and media personnel to jam fire doors open to ease 

access for trolleys and cables creates a suitable environment for the type of smoke 

inundation that occurred at Texas City Stadium. Education of the implications of these 

types of action are the best way to change this behaviour.  

6.2 Observations specific to crowd flow and egress 

There are two ways to compare the obtained egress results: 

 

1. Observed values can be compared between one another. 

2. Observed values can be compared within the context of other studies and 

simulations. In order to compare observed values within this context values 

obtained from applying standard calculations and documented movement trends 

have been used. 

6.2.1 Egress Flows 

The most striking outcome from the results is the wide variation in specific flow values 

(figures 72 and 73) that were observed. Maximum specific flows range between 1.98 

people per second per metre effective width down to 0.71 people per second per metre 

effective width. On the surface this would appear to be quite a difference but upon 

examination it is clear that the lowest values are for egress path 1, which never reached 

sufficient densities for specific flow to be optimised, and for egress path 8, which 

experienced the highest density at its maximum specific flow of any of the path ways. 

By discounting these two results the range is narrowed to 1.55-1.98 people per second 

per metre effective width. All of these values are higher than predicted by recommended 

maximum specific flow values in Chapter 13 of the SFPE handbook132.  

 

In comparing the densities of the different walkways (figure 76) there are several 

interesting features. Firstly, egress path 18 has a notably lower density at maximum 

specific flow rate than the other egress paths. It was observed that people moved very 
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quickly from this vomitory although speeds were not obtained. It was asserted that this 

may have been because of the distance that this vomitory was from the main exit. This 

would imply a speed close to that observed in egress path 4. The next most obvious 

feature is that three egress paths experienced the same density at maximum specific 

flow. This is particularly interesting because each of these egress paths was quite 

different; one was a staircase, one was a narrowing path and one was a concourse with 

mixed flow movements. Each of these situations had the potential to create higher than 

usual densities. This indicates that high densities may not inhibit crowd speeds 

markedly until they become very high. The third point of note is the wide range of 

densities observed for maximum specific flows. Once again this indicates that flow rates 

are quite robust across a range of densities and speeds. 

 

The sustained specific flows show greater variation than the maximum specific flow 

rates (figure 74). This may in some cases be due to a supply of alternate routes allowing 

diversion of occupant flow from the monitored egress paths to other paths, lowering the 

density of the observed flow. In other cases the speed with which a sustained specific 

flow was established may have played a greater role in determining the observed 

sustained specific flow. 

 

Comparing calculated flows of different egress paths (figure 75) does not provide much 

meaningful information as paths had different effective widths. These values only 

become meaningful when compared to calculated values using standard accepted 

maximum specific flows. 

 

The variations in speeds are only significant in the fact that relatively high speeds were 

achieved. The highest speed observed, 2.7m/s, was a slow jog. This was observed at a 

low density egress path. The remainder of maximum speeds (figure 77) and mean 

speeds (figure 78) vary from slow to moderate walking speeds. 
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Maximum specific flows at stadia following football games for 8 walkways 
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Figure 72: Comparison of maximum specific flow rates for different egress paths 
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Sustained specific flows at stadia following football games for 7 walkways and 1 stairway
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Figure 73: Comparison of sustained specific flow rates for different egress paths 
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Maximum and sustained specific flows for egress paths in stadia following football games
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Figure 74: Comparison of maximum and sustained specific flow rates for different egress paths 
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Calculated Flows at stadia following football games for 8 walkways and 1 stairway

183

1019

94 106

303

503

417

134
158

0

200

400

600

800

1000

1200

1 4 7 8 10 13 14 15 18

Egress Pathway

Fc
 (p

eo
pl

e/
m

in
ut

e)

Stairway

 

Figure 75: Comparison of calculated flow rates for different egress paths 
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Densities at maximum specific flows at stadia following football games for 6 walkways and 1 stairway

2.56

3

3.8

3 3

2.4

1.2

0

0.5

1

1.5

2

2.5

3

3.5

4

4 7 8 10 13 14 18

Egress path

D
en

si
ty

 (p
eo

pl
e/

 s
q.

 m
) 

Stairwell

 

Figure 76: Comparison of densities for different egress paths at maximum specific flow rates 
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Maximum Speeds at stadia following football games for 6 walkways and 2 stairway
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Figure 77: Comparison of maximum speeds for different egress paths 
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Mean speeds at stadia following football games for 6 walkways and 2 stairway
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Figure 78: Comparison of mean speeds for different egress paths 
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6.2.2 Observations from simulation and data flow calculations 

Having compared egress movement between different pathways at stadia it is appropriate to put 

this into the context of recognised crowd movement for more general situations. 

 

The figures on the following pages compare observed flow rates and speeds with documented 

values. 

 

Specific flow 

Crowd flow on walkways (figure 79) plots maximum specific flow against density from 

literature with maximum and sustained specific flows from this study. The observed maximum 

specific flow rates were generally much greater than Fruin’s level of service suggests. The 

maximum specific flow rate results are however consistent with Poyner et al and Ando et al’s 

research into specific flows at stadia and train stations respectively. Ando et al purport that once 

a high density crowd is achieved the density has a diminished effect on flow rates. The Green 

Guide suggests an optimum specific flow rate of 1.82 people/s/m effective width but notes that 

higher values can be achieved. This is consistent with what was observed. 

 

The mean specific flow rates observed, with the exception of egress path 8; do appear to loosely 

correlate to Fruin’s observations for maximum specific flow although they are still higher. There 

appears to be little correlation between the observed mean rates and those predicted by 

Simulex32 or Predtechenski’s work although there are insufficient data points to completely 

discount this. Within the context of these other researchers observations, the results from this 

study tend to suggest that stadium crowds move more rapidly and at higher densities than more 

general crowds. 

 

Insufficient data was collected to identify a trend for stairway movement (figure 80). Only one 

stairway produced results that could be compared to that of existing research. It is possible that 

the data from egress path 7 could indicate adherence to Fruin’s observations but in the absence of 

other data this cannot be stated with any conviction. It can be said that specific flow rates on 

stairs at stadia can be achieved at a higher than predicted rate. 
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Crowd Flows on Walkways
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Figure 79: Specific flow values for walkways from the literature and from this study 
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Crowd Flow in Stairwells
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Figure 80: Specific flow values for stairs from the literature and from this study 
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Comparison of calculated flow rates (figure 81) were achieved using equation 6 and maximum 

specific flow rates from the Green Guide133 and the SFPE Handbook134. In six of the eight egress 

paths the calculated flow rates were within 10% of the values suggested using the Green Guide 

(Poyner et al’s work). In only two instances was the SFPE prediction (Fruin’s work) within 10% 

of the observed calculated flow. In two cases, egress paths 1 and 8, the calculated flow using 

observed data was lower than either prediction. Egress path 1 was under utilised and so this is 

expected and egress path 8 had too great a density to produce an optimum specific flow value for 

calculated flow. This tends to suggest that the Green Guide is a more appropriate document for 

calculating flows at stadia than the SFPE Handbook. It also reinforces the observation that 

stadium crowd movement is not the same as more general crowd movement. 

 

In plotting observed speeds and densities over established speed density curves it can be seen 

that the correlation between density and speed holds (figure 82, 83) although once again there is 

insufficient data to confidently quantify this. Speeds do appear to be greater than those suggested 

in the SFPE handbook135 for given densities. Work by Ando et al136 may explain this. Mean 

speeds have been shown by Ando et al to vary with age and sex as well as density. Ando et al 

found young males to produce the highest speeds at measured densities. The observed results 

from New Zealand stadia may well be influenced by the predominance of this demographic 

amongst stadium crowd patrons. 

 

Further studies of flow rates at stadia are needed so as to better map out speed-density and 

specific flow-density relationships for stadium crowds. It may be found that specific flows for 

stadium crowds remain fairly constant across a band of densities as suggested by Smith137. This 

would indicate that the maximum achievable specific flows for stadia are determined not so 

much by density but by demographics and sociology. Observations of Egress path 23 would tend 

to support this hypothesis. Individuals observed outside of the stadium exhibited different 

characteristics to those inside the stadium. This may be part of the reason that they are able to 

move more rapidly than other crowds. 
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Comparisons of calculated flows for various walkway egress paths at stadia
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Figure 81: Comparison of calculated flows for different egress paths 
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Movement speed as a function of density for walkways - data and S=k-akD curves
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Figure 82: Movement rate as a function of density for walkways 
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Movement speed as a function of density for stairs- data and S=k-akD curves
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Figure 83: Movement rate as a function of density for stairs
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6.3 Software limitations 

Modelling human behaviour is not an easy task. Human behaviour is complex and 

varies with environments. The software that was used to simulate egress at stadia 

simplifies some of the behavioural patterns apparent in crowd movement. In less 

complex applications this would not be a problem but in this application it was. 

Consequently evacuation times obtained in using the software are dissimilar to those 

times observed by timing crowds. The flow profiles determined by established 

researchers show wide variations between each other and observations from this study. 

As Simulex32 is based on some of this research it makes sense that Simulex32s results 

also differ from that which was observed.  

 

Problems that were encountered are not necessarily specific to Simulex32. These 

problems may well be encountered when trying to apply other software to occupancies 

on the scale of stadia. The problems encountered do serve to illustrate that a modelling 

program that is highly suitable for application to some occupancies is not necessarily 

suitable for application to all occupancies. Although many problems were encountered 

this should not reflect upon Simulex32s capabilities to handle other types of occupancy. 

Information on software limitations is only included in order to illustrate aspects of 

modelling that may lead to variations from observed flow movement. 

 

In simplifying behavioural characteristics the software used did not allow for the 

following: 

 

Wheelchairs and mobility impaired patrons – As found by results from egress path 3 

(figure 83) mobility impaired patrons have the potential to significantly impact localised 

crowd flow at corners and other congestion points. Sporting events such as the Para 

Olympics or other events such as Papal visits or concerts that attract a predominantly 

elderly population will have a greater distribution of these people. Venues that intend to 

cater to these types of population need to be able to consider these impacts on their 

evacuation planning.  
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Grouping of individuals within the crowd – Rugby games are typically attended by 

groups of people. These groups may consist of a family unit, friends or a tour party. The 

sizes vary from 3-4 to 10-20. Different types of group will have different levels of 

cohesion. In an ingress or egress situation individuals within these groups attempt to 

maintain contact with each other. This often results in the group moving more slowly 

than the rest of the crowd. The front people move slowly to enable the back people to 

keep up and the rest of the group constantly shuffles against the crowd in an effort to 

maintain group integrity. If the group becomes separated then either individuals stop to 

wait for the others or both factions fight the crowd in order to reunite. The prevalence of 

this type of movement is determined by the event. In assigned seating situations this 

type of action may not be as dominant as for festival seating due to the structure 

assigned seating provides.  

 

Group type movement is in contradiction to “ball-bearing/cellular automata” egress 

models. This may make them inappropriate for modelling social venues. Social events 

such as rugby or concerts produce much greater internal group characteristics than other 

types of crowd that are modelled. To draw a greater distinction, commuter crowds (e.g. 

trains) attract very little grouping phenomenon. Although models such as Simulex32 

may accommodate this in determining average flow rates, the behavioural pattern is not 

exhibited when simulations are performed.  

 

Figure 84: Altruistic behaviour decreasing effective width of egress path 
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Reverse flow – In the evacuation of a high-rise, unidirectional flow occurs in the 

direction of the exit. With stadia, once the concourse is reached there are often multiple 

exits available. Stadia occupy large spaces. Should a person exit at the wrong point they 

would potentially have to walk around the outside of the grounds in order to get to the 

place they intended. People are therefore inclined to try and leave through a 

predetermined exit rather than the nearest one.  

 

Many studies of human behaviour and fires show a predisposition to leaving the way 

that was entered. It is hypothesised that this may account for the relatively high 

calculated flow exhibited by Egress path 4. As observed in Egress path 2 and 4 people 

will move in different directions within the concourse rather than simply radiating from 

the structure. Other instances of reverse flow occur when people attempt to evacuate 

toward the danger. Due to the size of stadia it is possible that egressing crowds may 

initially move toward a hazard and then attempt to reverse directions. This type of 

movement initiated the Ibrox disaster. Having the ability for individuals to reverse 

direction motion themselves based on queuing would have improved the performance of 

the simulations that were performed. 

 

Sloped floors – Simulex32 allows for flat surfaces and stairs. Many stadia have ramps 

as well as flat surfaces and stairs. These may be for wheelchair access or for more 

general use. In either case the rate of movement on a ramp is not the same as for a stair 

or for a flat surface and the population density and speed accommodated on a ramp is 

greater than that of a stairwell. In the simulations run as part of this study stairs were 

used in place of ramps. In general, sloped pathways are treated as level surfaces rather 

than as stairs. This is difficult to do and increases the complexity of the model when 

attempted in Simulex32. It is therefore easier to treat ramps as stairs. This may not be 

appropriate but it reduces the incidence of the model “people” malfunctioning. 

 

Drunken behaviour – various behavioural anomalies may be observed in sports or 

other social crowds distinct from offices or general places of public assembly. The most 

notable of these is drunken behaviour. Drunken behaviour features more predominantly 

for stadia than for most other structures (excluding public houses). Drunken patrons 

have initiated stadium stampedes through fighting and disorderly behaviour. Alcohol 

may potentially impact on a person’s ability to react appropriately to an evacuation 
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signal. Behaviour of inebriated individuals during an evacuation may include slow 

movement, surging, falling over and moving against the crowd. Evacuating such 

individuals may require assistance of staff not only to initiate their movement but also to 

escort them to safety. Euphoric fans may exhibit similar behaviour after a victory. 

Video footage at Bradford in 1985 showed an apparent lack of awareness of anything 

other than the outcome of the game by many fans. The somewhat random behaviour of 

drunks during an evacuation is not considered in Simulex32. The ability to model this 

type of behaviour may also be suitable for modelling of sleeping accommodation 

occupancies when awakened people may not behave as logically as they normally 

would. 

 

Conflict Avoidance - Simulex32 will allow people to bump into each other and shuffle. 

This action sometimes jostles individuals free of a conflict. Other times individuals 

repeatedly bang into each other and the model has to be rerun. In reality this behaviour 

is almost never observed. People will move sideways or give way to each other. This 

type of conflict avoidance occurs on a regular basis in the general population especially 

where multiple flows merge. The inability to resolve or avoid such conflicts in 

modelling means that simulation of vomitories is severely inhibited.  

 

Front to back communication – Many crowd-crushing instances occur as the result of 

poor front-to-back communication. Front-to-back or back-to-front communication refers 

to communication between those at the front and the back of a crowd. If for some 

reason an exit is blocked, those people at the front cannot get out but those people at the 

back are unaware. People at the back continue to push forward resulting in increased 

pressure on the front people. This culminates in either the blockage giving way or 

people becoming asphyxiated and injured by the pressure. In Simulex32, as the density 

of the crowd increases people slow down and eventually stop. There is no simulation of 

pressure build up as movement ceases once the inter-person distance reaches 

approximately 30cm. 

 

Obscured vision such as at night or in smoke – Simulex32 makes no environmental 

considerations in determining travelling speed. Movement is determined solely by 

density and terrain.  
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Other variables that need to be considered are: 

 

• Obscuration to vision by smoke or poor lighting 

• Factors that affect a person’s respiratory function; such as smoke and distance 

travelled.  

 

Most people should not be affected by the distance to traverse half a stadium but, if they 

are travelling through light smoke the demands on their respiratory system may impact 

on their speed.  

 

Poor visibility will contribute to a slow travelling speed. Poor visibility can occur 

through smoke obscuration affecting the visible distance and impacting on the effective 

illumination from lighting, or blackout conditions. Either of these may occur during a 

fire. In enclosed concourses and stairwells this is a greater issue than for outdoor areas.  

 

Logic decisions such as line of sight and alternate exit selection – In many cases it is 

easier to travel farther to reach a destination more quickly. In modelling stadia in 

Simulex32, people always seek the shortest path regardless of how many others are in 

their way. This means that some stairways and pathways are over utilised and others are 

not used at all.  

 

Evacuation times were greatly affected by path utilisation. This highlighted the 

importance of decision making in evacuation models. It can be observed in many 

situations that people have low tolerance for queuing. When an alternate path is in line 

of sight people will switch. An example of this is supermarket queues. Simulex32 does 

not accommodate changes in path choice. Distance maps determine the shortest distance 

to the exit and this is the path that is taken by people in the model.  

 

An emergency such as a fire is artificially modelled by blocking off an area. All 

occupants automatically “know” this and seek the next shortest distance map. 

Backtracking or avoiding congestion is not possible in the model. 
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7 Conclusions and Recommendations 

New Zealand stadia are not markedly different to stadia in other parts of the world. The 

only major differences are that New Zealand stadia are relatively small, because of the 

smaller population base, and crowd management is not as comprehensively regulated as 

in some countries. Stadium profiles range from older type structures through to modern 

structures that are in line with modern stadia found in Australia. The trend towards 

multifunctionality of stadia is common to many stadia in New Zealand and elsewhere. 

This has led to greater quantities of furnishing, electronics and catering than was evident 

in the past. In upgrading stadia to accommodate these additions fire protection has also 

been upgraded. There are however areas of some stadia that have not been structurally 

altered but have been developed to facilitate different usage patterns than were 

originally intended. In these structures there is a need for greater fire protection.  

 

In comparing observational data, recommended values, and simulation modelling for 

stadia, it is apparent that there is some disparity between them. As anticipated, the 

results obtained from comparing standard egress movement values, simulations and 

observed egress movement do show stadium egress movement to be unique. Standard 

methods of anticipating egress movement when applied to stadia appear to be more 

conservative than actual movement. Although this study only produced a small sample 

of egress values for stadia it produced sufficient results as to determine that crowd 

movement at stadia is a special case and as such may warrant special consideration with 

regards to anticipating egress requirements.  

 

Unfortunately consistency from observational data sets was insufficient to confidently 

isolate specific egress movement relationships for stadia based on effective width and 

density. This is may be attributable to a number of variables. These variables include 

experimental error, time of day (lighting), outcome of the game, variation in effective 

widths and weather conditions. An insufficient quantity of data was collected to isolate 

which variables played a significant role in influencing the observed movements. Other 

researchers have found wide variations in density for specific flows on flat surfaces138 

so the variations observed are not uncharacteristic for densely packed crowds. Further 

study of densely packed, large scale entertainment crowds is needed to quantify the 

egress movement relationships for stadia and determine whether these relationships are 
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common to other densely populated, large scale entertainment venues such as indoor 

arenas. 

 

In most of the observed egresses in this study crowd movement was expeditious. This 

implies that for the most part egress is managed appropriately and safe, timely 

evacuations should be achievable. Stadium management with the fastest clearance times 

achieved this through attempting to meet the goal of an eight minute evacuation. Stadia 

with longer evacuation times had no such goal. The recommendation of a standard 

acceptable evacuation time for stadia might be helpful in encouraging all stadia to 

improve their egress capabilities. 

 

The occupant profile observed in this study varied from that observed in other crowded 

environments by other researchers. The implication of this is that crowd movement 

varies with the type of crowd. This emphasises the importance of trial evacuations or 

profiling of crowds in anticipating actual movement rates for different types of 

occupancy so as to ensure that appropriate egress times can be and are achieved. In this 

case the standard movement profiles in the SFPE handbook and the simulation software 

that was used underestimate egress movement, ergo it is likely that in other instances 

standard movement profiles may over estimate egress movement.  

 

Consideration of specific crowd profiles such as mobility impairment may warrant 

special consideration in evacuation planning. Based on the observations of the 

formation of temporal congestion by slow moving patrons, egress planning should 

include the potential impact large numbers of elderly or disabled patrons could have on 

evacuations. This does not apply to all stadia, but those hosting disabled sporting events 

or events targeting the mature generation should consider the implications of this 

demographic on evacuation efficacy. 

 

There is wide variation in the understanding and implementation of evacuation 

requirements and application of fire protection at New Zealand’s main stadia. The role 

management plays is key in affecting appropriate measures to ensure the safety of 

patrons in the event of a significant fire. Because alerting and fire protection systems are 

closely linked to effective evacuation, structures that accommodate large scale 

populations need to consider this in developing crowd management strategies. The 
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variation in the level of fire protection afforded to and evacuation planning between 

stadia indicate that greater guidance is required in order to ensure a consistent minimum 

acceptable level of safety is provided to patrons. Currently no such guidance is provided 

in New Zealand for buildings accommodating very high numbers of occupants.  

 

Stadium management have applied an ad hoc adoption of overseas guidelines and other 

documents in conjunction with occupational safety inputs in order to meet the 

requirements of the building code and manage normal occupant usage. There is no 

policing of this and inconsistencies and compromises to the intent of adopted documents 

can be found at a number of stadia. Adoption or recommendation of a common 

guideline such as the Green Guide would assist in consolidating crowd management and 

evacuation policies in a way that provides a consistent level of protection to patrons in 

fire and other situations as per the intent of the Acceptable Solutions in the Approved 

Document for New Zealand Building Code and the Fire Safety and Evacuation of 

Buildings Regulations.  

 

The suitability of modelling software must be carefully considered when applied to 

determining evacuation requirements or performance at large scale structures with high 

numbers of occupants such as stadia. It should not be assumed that modelling software 

that is suitable for smaller structures will deliver meaningful results for all types and 

sizes of occupancies. An understanding of, and appreciation for software limitations, as 

well as an appreciation for the types of crowd movement associated with the structure to 

be modelled, must be held by the modeller in order to determine the viability of 

simulation outputs in application to the actual structure. The software used in this study 

was not suitable for application to stadia but did provide an excellent learning tool in 

identifying pitfalls that can be encountered when attempting to model stadia. 
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8 Appendices 

8.1 Appendix A – Glossary 

Term Definition 

Arena  Area enclosed by stands e.g. playing field. 

CIMS Coordinated Incident Management System as used by the emergency

services and others in coordinating multi agency response efforts to

both emergency and non-emergency events 

Concessions Temporary or permanent retail outlets located within the grounds.

These typically sell, memorabilia, food and beverages. Those selling

food and beverages typically manufacture or prepare some of  the food

and beverages within the concession area. 

Concourse The walkways within the stadium that permit access to the various

seating areas 

Control Room Room from which security, police, ambulance and sometimes other

services are commanded during an event. Video surveillance and

intercoms are usually based in this room. This room may contain a

mimic fire panel. 

Egress The process of leaving the venue 

Embankment Sloping area for festival seating 

Emergency Abnormal situation requiring response by emergency services in order

to re-establish order or preserve safety of individuals 

Event For the purpose of this document an event indicates a scheduled activity 

that takes place in a stadium, primarily the arena, to which patrons

attend e.g. rugby game. 
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Festival seating Area in which no seats are provided and people are be able to sit on the 

ground or stand. Permanent festival seating areas often consist of

grassed or concrete terraces or embankments with crush barriers

interspersed. These may have aisles but do not have vomitories or roofs. 

Festival seating at concerts is often provided in the area in front of the

stage. Exits are either at the front and/or back and/or sides of the

festival seating area. 

Full time Signal that ends a game of sport. 

Grounds The entire property within which the stadium is located 

Incident Unscheduled activity within the grounds that disrupts

viewing/attendance of the event by patrons or the occurrence of the

event itself e.g. a fire. An incident may lead to an emergency.  

Ingress The process if entering the venue 

Lounge Open plan room, usually fully furnished with carpet, a variety of fabrics

and furniture items, containing a licensed bar. Access to these areas is

usually controlled by security. 

Media Suite Area in which the media is based during an event. Usually unfurnished 

but will contain many power outputs. On an event day such rooms

usually contain large amounts of cables, photographic equipment,

catering facilities, backdrops and makeup stations. These suites contain

large viewing panels facing the arena. In many stadia these viewing 

panels may be opened. 

Patrons Those people attending the venue for the sole purpose of viewing the

event. 

Private Suite Viewing room and/or section of the stand that is either owned or leased

by private individuals. These suites may be occupied outside of event 

hours. Private suites are typically furnished by the owner or leasee and

may contain plush furnishings. Catering and bar facilities are typically

included in the suite during an event. 

Restaurant Similar to a lounge but with table and chair seating and catering. This 

may include facilities for heating food. Food preparation may or may

not occur in an adjoining area.  
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Stadium Arena, surrounding stands, concourse and vomitories 

Staff Contractors, stadium employees or volunteers performing a function at 

the venue that contributes to the event. 

Steward Anyone whose main occupation is to direct the crowd or members of

the crowd into or out of the stadium. This includes caterers but excludes

concessionaries 

Terraces Sloping area for festival seating 

Venue Site on which an event occurs and attendees have access to. May or

may not include the entire grounds. 

Viewing panels Windows facing the arena. Usually made of glass or plastic. Sometimes

these panels can be opened. Panels typically include windows between 

adjoining suites so as to increase the view. 

Vomitories Access routes into and out of the stands 
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8.2 Appendix B – Interviews  

Survey Questions – The stadium questions were asked at all stadia that were visited. 

The Fire service questions were asked where it was possible. More than one person may 

have been required to answer all the questions in either section of the survey. 

8.2.1 Questionnaire 

Name of Venue:   

Date of Interview:   

Stadium Questions 

Event at Stadium:   

Crowd attendance: 

Reason for limited capacity attendance (if applicable): 

Typical time for crowd to clear grounds following event: 

Are there normally any difficulties in clearing the grounds? If so what and why? 

Has your fire protection system ever been compromised by deliberate acts or otherwise? 

Elaborate. 

Do you have an operations centre? 

Who is involved in the operations centre? (Job title, experience and training) 

What other roles are performed with respect to crowd safety, egress and crowd 

behaviour prior to /during/after the event? 

Do you have any concerns about the way operations may perform in an emergency 

situation such as a fire? 

When was your evacuation plan last evaluated? 

When was your fire protection system last evaluated? 

Do you believe these plans and systems are of an acceptable standard? 

Describe your fire protection system: 

Egress 

Detection 

Structural Integrity 

Warning Systems 

Confinement 
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Smoke control  

Extinguishment 

Access for fire service 

Do you have any fire service or response teams on site during an event? 

What problems do you normally face during an event? 

If there is a power cut how does this affect your fire protection system? 

Are you familiar with CIMS? What provision is there for using staff under emergency 

situations within CIMS by the lead agency? 

If an aspect of your fire protection system is isolated how long does it take to bring it 

back on line? 

Are there any aspects of your stadium that people have questioned with regards to fire 

safety and egress?  

If so what are they and what is your answer to their questions? 

What impact does live television broadcasting have on your willingness and or ability to 

stop a game and or evacuate the stadium? 

Do you believe that your stadium can be evacuated expeditiously and safely if required? 

The information gathered in this survey can remain anonymous if required. 

Is it acceptable to name the stadium this data refers to in my thesis? 

Is there certain data you do not want attributed specifically to this stadium? 

If not, then this information shall be attributed to one (or more) stadium(s). 

Fire Service Questions  

What is your fire service role in relation to the stadium? 

Are you familiar with the stadium? 

How often do you visit the stadium during event time?  

During non event time? 

What do you anticipate as your response time during a scheduled event? 

At the end of a scheduled event? 

Are you familiar with the stadiums emergency plans as they relate to fire service 

attendance? 

Do you have any concerns about the stadium from a fire fighting perspective? 

Do you believe the stadium could be evacuated expeditiously and safely if required? 
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8.2.2 Interviewees 

Stadium Interviewee Organisation Title 

Carisbrook Mark Perham 

Carisbrook 

Stadium   

Carisbrook Neville Frost   OSH Contractor 

Eden Park Jayson Ryan Red Badge Group Operations Director 

Eden Park Murray Reade Eden Park Stadium   

Eden Park Trevor Sampson Trevor Sampson   

Jade Hamish McLennan 

Holmes Fire and 

Safety Director 

Jade  Jayson Ryan Red Badge Group Operations Director 

MCG Julie McLoughlin 

Melbourne Cricket 

Club 

Manager Safety and 

Training 

MCG Peter Murphy 

 Melbourne 

Cricket Club   

MCG Scott Butler 

Melbourne Cricket 

Club Facilities Manager 

North Harbour Murray Dick 

North Harbour 

Stadium Operations Manager 

North Harbour Neville Trevarton 

New Zealand Fire 

Service 

North Shore District 

Chief Fire Officer 

Stadium Australia/Sydney Cricket 

Ground/ Sydney Football Stadium Bob Russell 

New South Wales 

Fire Brigade Station Commander 

Stadium Australia/Sydney Cricket 

Ground/ Sydney Football Stadium Chris Jurgeit NSW Fire Service Fire Safety Officer 

Sydney Superdome Tony Edwards Sydney Superdome Security Manager 

Waikato Stadium Jayson Ryan Red Badge Group Operations Director 

Waikato Stadium Keith Parker Waikato Stadium 

Stadium Operations 

Manager 

Waikato Stadium Kevin Richards 

New Zealand 

Police Senior Seargent 

Waikato Stadium 

Neil Callaghan, 

IQP 

Building 

Compliance Ltd Director 

Westpac Trust Colin Clemens 

New Zealand Fire 

Service Fire Safety Officer 

Westpac Trust Mark Nunn 

Westpac Trust 

Stadium Operations Manager 
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8.3 Appendix C – Stadium Statistics
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Capacity of New Zealand's Main Stadia ,June 2002
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Yarrow Stadium is not currently functional. Upgrades are scheduled for completion in September 2002.    

Figure 85: Capacities of New Zealand’s main stadia 
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Profile of a New Zealand Stadium 

 

Events held in the last year: 24 

Hours used for events in the last year (excluding preparation time): 241 hours 

 

Occupancy Data for Events over a three-year period 

%age of Capacity 

Occupancy 

Estimated %age of 

occupied hours based on 

event types 

>0% 100% 

>1% 99% 

>2% 94% 

>5% 76% 

>10% 66% 

>15% 62% 

>20% 59% 

>25% 54% 

>30% 53% 

>40% 49% 

>50% 49% 

>60% 39% 

>75% 27% 

>80% 25% 

>85% 19% 

>90% 16% 

>95% 14% 

100% 7% 

Table 11: Occupancy Data For a New Zealand Stadium 
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eg 90% of the time that the stadium has an event on there is greater 
than 4% of the capacity occupancy. 20% of the time there is greater 
than 85% of the capacity occupancy.7% of the time the stadium is full. 
This stadium is used for events approximately 4.5 hrs per week on 
average.

Average Event Attendance For A New Zealand Stadium Over Three Years

 

Figure 86: Average Event Attendance for a New Zealand Stadium over three years  
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8.4 Appendix D – Stadium Callouts 

Information kindly provided by the New Zealand Fire Service (15th April 2002) 

Grandstand, Stadium, Sports field 

 
All 

Fires 

Hazardous 

Emergencies 

Overpressure, 

Rupture, 

Explosives, 

Over Heating 

Rescue, 

Emergency, 

Medical Call 

Special 

Service 

Calls 

Natural 

Disasters 

False 

Alarms 

All 

Incident 

Types 

1990/91 42 2 0 3 4 0 34 85 

1991/92 12 0 0 0 3 0 21 36 

1992/93 43 1 1 0 6 0 38 89 

1993/94 47 1 0 0 9 0 50 108 

1994/95 52 1 0 4 14 3 53 127 

1995/96 75 2 0 4 19 3 76 179 

1996/97 92 4 0 10 28 5 73 212 

1997/98 118 2 0 16 29 2 94 261 

1998/99 96 5 0 18 32 3 115 269 

1999/00 75 3 0 4 31 1 93 207 

2000/01 132 8 1 8 33 2 31 215 

2001/02 125 3 0 5 40 1 0 174 

All Years 909 32 2 72 248 20 678 1,962 

Table 12: Stadium Call Outs By Incident Type 1990-2002 

Stadium Incidents since January 1999 

 
Structure 

Fire 

Mobile 

Property 

Fire 

Rescue, 

Emergency, 

Medical 

Flammable 

Liquid, Gas 

Incident 

Special 

Service 

Mobil 

Property 

False 

Alarms
Total

North Harbour Stadium 1 1     2 4 

Jade Stadium       7 7 

WestpacTrust Stadium (Wgtn)   1  1  3 5 

WestpacTrust Centre (ChCh)       3 3 

Carisbrook Ground    1 1 1  3 

Eden Park 1      2 3 

Rotorua International Stadium       3 3 

Waikato Stadium  - No data as stadium is new and not in Database 0 

Table 13: Stadium Call Outs By Stadium (1999-2002) 
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Details: Date: Cause: 

North Harbour Stadium 08/16/2000 False alarm -defective 

North Harbour Stadium 06/1/2000 Car/truck fire 

North Harbour Stadium 05/6/2001 Structure Fire with damage 

North Harbour Stadium 01/19/2001 False alarm -defective 

Jade Stadium 06/3/1999 False alarm - accidental operation 

Jade Stadium 09/30/2000 False alarm - excess smoke, heat 

Jade Stadium 03/2/2001 False alarm - good intent - steam/dust mistaken for smoke 

Jade Stadium 09/17/2000 False alarm - accidental operation 

Jade Stadium 03/9/2001 False alarm -defective 

Jade Stadium 03/31/2002 False alarm - malicious 

Jade Stadium 04/3/2001 False alarm -defective 

WestpacTrust Stadium (Wgtn) 10/11/2000 False alarm -defective 

WestpacTrust Stadium (Wgtn) 10/7/2000 False alarm -defective 

WestpacTrust Stadium (Wgtn) 09/7/2000 False alarm - undetermined alarm activation 

WestpacTrust Stadium (Wgtn) 01/30/2001 Rescue - in or under machinery 

WestpacTrust Stadium (Wgtn) 09/5/2001 Assist ambulance 

WestpacTrust Centre (ChCh) 02/25/2001 False alarm - malicious 

WestpacTrust Centre (ChCh) 02/11/2001 False alarm -defective 

WestpacTrust Centre (ChCh) 02/3/2002 False alarm - not classified 

Carisbrook Ground 02/6/2002 Mobile property accident 

Carisbrook Ground 09/17/2001 Repair roof 

Carisbrook Ground 04/7/2001 Liquid, gas spill no fire 

Rotorua International Stadium 02/24/2002 False alarm - accidental operation 

Rotorua International Stadium 03/4/2002 False alarm -defective 

Rotorua International Stadium 08/18/2001 False alarm -defective 

Eden Park 02/10/1999 Structure Fire with damage 

Eden Park 12/13/1999 False alarm - good intent - steam/dust mistaken for smoke 

Eden Park 05/25/2001 False alarm - accidental operation 

Table 14: Stadium Call Out Details By Stadium (1999-2002) 
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8.5 Appendix E – Guide to spread sheet calculations
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Egress Path 1  Description Gate  
Viewed from In front, level Terrain Flat  
Day or Night (D/N) D  Wet, Cold or Dry (W/C/D) D  
Observational Data Value Unit   Value Unit 
Capacity of Stadium (g) 41,000 people Width of path (W) 4.5 metres 
Attendance at event (q) 38,000 people Boundary layer (b) 0.1 metres 
Time to clear stadium (tc) 26 minutes Effective Width (We) 4.3 metres 
Flow Rates        
Time to clear gate/path/stair (h) 26 minutes Specific flow  people/s/m eff. width 
Total usage of gate/path/stair (y) 1982 people     
Time to reach max Fs (t) 5 minutes Max. Specific Flow (Fs -max) 0.71 people/s/m eff. width 
Total usage at max Fs (x) 541 people Population    
Density at max Fs  people/m2     
Time to reach sustained Fs 6 minutes Sustained Specific Flow (Fs) 0.42 people/s/m eff. width 
Duration of sustained Fs 7 minutes Population    
Density at sustained Fs  people/m2     
Queuing time 0 seconds Max. Calculated Flow (Fc) 183 people/minute 
Queue density N/A people/m2     
Boundary layer maintained (Y/N) Y       
Estimated Evacuation Times (if monitored gate flow is representative of all gates) Individual Speeds     
Fraction to leave through gate pre max Fs (A) 0.27  - Travel distance (L)  metres 
Fraction of populous to use gate (B) 0.05  - Terrain    
Total to leave through gate post max Fs (C ) 1441 people Total no. individuals tracked    
Estimated populous to leave pre max Fs (f) 10372 people Mean speed  m/s 
Estimated populous to leave post max Fs (r ) 27628 people Maximum speed  m/s 
Est. min. egress time for gate (Tg) 13 minutes Minimum speed  m/s 
Est. min. egress time for populous (Tp) 13 minutes Density at max. speed  people/m2 
Est. min. egress time for full stadium (Tf) 13 minutes Density at min. speed   people/m2 
Evacuation Estimates (based on established research)          
Anticipated Fs (Fruin)  k=1.40(flat), 1.16 (stair) (m/s) 1.4 people/s/m eff. width 
Anticipated Fc (Fruin)    361 people/minute 
Anticipated Fs (Poyner)  k=1.8 (flat) (m/s) 1.8 people/s/m eff. width 
Anticipated Fc (Poyner)    464 people/minute 
Anticipated density at max Fs assuming max unimpeded speed (Fruin) S=1.19(flat), 1.00 (stair) (m/s) 0.6 people/m2 
Anticipated density at max Fs based on observed mean speed (Fruin)   #DIV/0! people/m2 
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Egress Path 2  Description Vomitory  
Viewed from In front, above Terrain Flat  
Day or Night (D/N) N  Wet, Cold or Dry (W/C/D) DC  
Observational Data Value Unit   Value Unit 
Capacity of Stadium (g) 41,000 people Width of path (W)  metres 
Attendance at event (q) 38,000 people Boundary layer (b)  metres 
Time to clear stadium (tc) 21 minutes Effective Width (We) 0 metres 
Flow Rates        
Time to clear gate/path/stair (h) 21 minutes Specific flow  people/s/m eff. width 
Total usage of gate/path/stair (y)  people     
Time to reach max Fs (t)  minutes Max. Specific Flow (Fs -max)  people/s/m eff. width 
Total usage at max Fs (x)  people Population    
Density at max Fs  people/m2     
Time to reach sustained Fs  minutes Sustained Specific Flow (Fs)  people/s/m eff. width 
Duration of sustained Fs  minutes     
Density at sustained Fs  people/m2     
Queuing time 0 seconds Max. Calculated Flow (Fc)  people/minute 
Queue density N/A people/m2     
Boundary layer maintained (Y/N) N       
Estimated Evacuation Times (if monitored gate flow is representative of all gates) Individual Speeds     
Fraction to leave through gate pre max Fs (A) #DIV/0!  - Travel distance (L) 8.2 metres 
Fraction of populous to use gate (B) 0  - Terrain Flat   
Total to leave through gate post max Fs (C ) 0 people Total no. individuals tracked 50   
Estimated populous to leave pre max Fs (f) #DIV/0! people Mean speed 1.7 m/s 
Estimated populous to leave post max Fs (r ) #DIV/0! people Max. speed 2.7 m/s 
Est. min. egress time for gate (Tg) #DIV/0! minutes Minimum speed 1 m/s 
Est. min. egress time for populous (Tp) #DIV/0! minutes Density at max. speed 0.28* people/m2 
Est. min. egress time for full stadium (Tf) #DIV/0! minutes Density at min. speed  0.34* people/m2 
Evacuation Estimates (based on established research)         
Anticipated Fs (Fruin)  k=1.40(flat), 1.16 (stair) (m/s) 1.4 people/s/m eff. width 
Anticipated Fc (Fruin)    0 people/minute 
Anticipated Fs (Poyner)  k=1.8 (flat) (m/s) 1.8 people/s/m eff. width 
Anticipated Fc (Poyner)    0 people/minute 
Anticipated density at max Fs assuming max unimpeded speed (Fruin) S=1.19(flat), 1.00 (stair) (m/s) 0.0 people/m2 
Anticipated density at max Fs based on observed mean speed (Fruin)   0.00 people/m2 
 * approximate as there was no defined path width           
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Egress Path 3  Description Descending  
Viewed from Below, in front Terrain Stairs  
Day or Night (D/N) N  Wet, Cold or Dry (W/C/D) D   
Observational Data Value Unit   Value Unit 
Capacity of Stadium (g) 38,000 people Width of path (W)  metres 
Attendance at event (q) 37,500 people Boundary layer (b)  metres 
Time to clear stadium (tc) 18 minutes Effective Width (We) 0 metres 
Flow Rates        
Time to clear gate/path/stair (h)  minutes Specific flow  people/s/m eff. width 
Total usage of gate/path/stair (y)  people     
Time to reach max Fs (t)  minutes Max. Specific Flow (Fs -max)  people/s/m eff. width 
Total usage at max Fs (x)  people Population    
Density at max Fs  people/m2     
Time to reach sustained Fs  minutes Sustained Specific Flow (Fs)  people/s/m eff. width 
Duration of sustained Fs  minutes     
Density at sustained Fs  people/m2     
Queuing time 0 seconds Max. Calculated Flow (Fc) 0 people/minute 
Queue density N/A people/m2     
Boundary layer maintained (Y/N) Y       
Estimated Evacuation Times (if monitored gate flow is representative of all gates) Individual Speeds     
Fraction to leave through gate pre max Fs (A) #DIV/0!  - Travel distance (L) 6.5 metres 
Fraction of populous to use gate (B) 0  - Terrain    
Total to leave through gate post max Fs (C ) 0 people Total no. individuals tracked    
Estimated populous to leave pre max Fs (f) #DIV/0! people Mean speed 0.8  m/s 
Estimated populous to leave post max Fs (r ) #DIV/0! people Max. speed 1.3 m/s 
Est. min. egress time for gate (Tg) #DIV/0! minutes Minimum speed 0.1 m/s 
Est. min. egress time for populous (Tp) #DIV/0! minutes Density at max. speed  people/m2 
Est. min. egress time for full stadium (Tf) #DIV/0! minutes Density at min. speed   people/m2 
Evacuation Estimates (based on established research)          
Anticipated Fs (Fruin)  k=1.40(flat), 1.16 (stair) (m/s) 1.16 people/s/m eff. width 
Anticipated Fc (Fruin)    0 people/minute 
Anticipated Fs (Poyner)  k=1.8 (flat) (m/s)  people/s/m eff. width 
Anticipated Fc (Poyner)    0 people/minute 
Anticipated density at max Fs assuming max unimpeded speed (Fruin) S=1.19(flat), 1.00 (stair) (m/s) 0.0 people/m2 
Anticipated density at max Fs based on observed mean speed (Fruin)   0.00 people/m2 
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Egress Path 4  Description Concourse  
Viewed from Above  Terrain Flat  
Day or Night (D/N) D  Wet, Cold or Dry (W/C/D) D  
Observational Data Value Unit   Value Unit 
Capacity of Stadium (g) 38,000 people Width of path (W) 9.5 metres 
Attendance at event (q) 37,500 people Boundary layer (b) 0.46 metres 
Time to clear stadium (tc) 18 minutes Effective Width (We) 8.58 metres 
Flow Rates        
Time to clear gate/path/stair (h) 5 minutes Specific flow  people/s/m eff. width 
Total usage of gate/path/stair (y) 2297 people     
Time to reach max Fs (t) 1.25 minutes Max. Specific Flow (Fs -max) 1.98 people/s/m eff. width 
Total usage at max Fs (x) 908 people Population 77   
Density at max Fs 2.56 people/m2     
Time to reach sustained Fs 1 minutes Sustained Specific Flow (Fs) 0.34 people/s/m eff. width 
Duration of sustained Fs 0.5 minutes     
Density at sustained Fs 0.24 people/m2     
Queuing time 0 seconds Max. Calculated Flow (Fc) 1019 people/minute 
Queue density N/A people/m2     
Boundary layer maintained (Y/N) N        
Estimated Evacuation Times (if monitored gate flow is representative of all gates) Individual Speeds     
Fraction to leave through gate pre max Fs (A) 0.40  - Travel distance (L) 3.5 metres 
Fraction of populous to use gate (B) 0.06  - Terrain Flat   
Total to leave through gate post max Fs (C ) 1389 people Total no. individuals tracked 20   
Estimated populous to leave pre max Fs (f) 14824 people Mean speed 1.5 m/s 
Estimated populous to leave post max Fs (r ) 22676 people Max. speed 1.8 m/s 
Est. min. egress time for gate (Tg) 3 minutes Minimum speed 1.0 m/s 
Est. min. egress time for populous (Tp) 6 minutes Density at max. speed  people/m2 
Est. min. egress time for full stadium (Tf) 6 minutes Density at min. speed   people/m2 
Evacuation Estimates (based on established research)          
Anticipated Fs (Fruin)  k=1.40(flat), 1.16 (stair) (m/s) 1.4 people/s/m eff. width 
Anticipated Fc (Fruin)    721 people/minute 
Anticipated Fs (Poyner)  k=1.8 (flat) (m/s) 1.8 people/s/m eff. width 
Anticipated Fc (Poyner)    927 people/minute  
Anticipated density at max Fs assuming max unimpeded speed (Fruin) S=1.19(flat), 1.00 (stair) (m/s) 1.7 people/m2 
Anticipated density at max Fs based on observed mean speed (Fruin)   0.23 people/m2 
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Egress Path 7  Description Descending  
Viewed from Below  Terrain Stair  
Day or Night (D/N) N  Wet, Cold or Dry (W/C/D) D   
Observational Data Value Unit   Value Unit 
Capacity of Stadium (g) 38,000 people Width of path (W) 1.5 metres 
Attendance at event (q) 20,000 people Boundary layer (b) 0.15 metres 
Time to clear stadium (tc) 17 minutes Effective Width (We) 1.2 metres 
Flow Rates        
Time to clear gate/path/stair (h) 10 minutes Specific flow  people/s/m eff. width 
Total usage of gate/path/stair (y) 651 people     
Time to reach max Fs (t) 2 minutes Max. Specific Flow (Fs -max) 1.31 people/s/m eff. width 
Total usage at max Fs (x) 158 people Population 13   
Density at max Fs 3 people/m2     
Time to reach sustained Fs 2.5 minutes Sustained Specific Flow (Fs) 1.1 people/s/m eff. width 
Duration of sustained Fs 8 minutes     
Density at sustained Fs 2.8 people/m2     
Queuing time 8 seconds Max. Calculated Flow (Fc) 94 people/minute 
Queue density 4.1 people/m2     
Boundary layer maintained (Y/N) Y       
Estimated Evacuation Times (if monitored gate flow is representative of all gates) Individual Speeds     
Fraction to leave through gate pre max Fs (A) 0.24  - Travel distance (L) 3.6 metres 
Fraction of populous to use gate (B) 0.03  - Terrain Stair   
Total to leave through gate post max Fs (C ) 493 people Total no. individuals tracked 33   
Estimated populous to leave pre max Fs (f) 4854 people Mean speed 0.4 m/s 
Estimated populous to leave post max Fs (r ) 15146 people Max. speed 0.5 m/s 
Est. min. egress time for gate (Tg) 7 minutes Minimum speed 0.2 m/s 
Est. min. egress time for populous (Tp) 11 minutes Density at max. speed  people/m2 
Est. min. egress time for full stadium (Tf) 19 minutes Density at min. speed   people/m2 
Evacuation Estimates (based on established research)          
Anticipated Fs (Fruin)  k=1.40(flat), 1.16 (stair) (m/s) 1.16 people/s/m eff. width 
Anticipated Fc (Fruin)    84 people/minute 
Anticipated Fs (Poyner)  k=1.8 (flat) (m/s)  people/s/m eff. width 
Anticipated Fc (Poyner)    0 people/minute 
Anticipated density at max Fs assuming max unimpeded speed (Fruin) S=1.19(flat), 1.00 (stair) (m/s) 1.3 people/m2 
Anticipated density at max Fs based on observed mean speed (Fruin)   2.75 people/m2 
            
Egress Path 8  Description Concourse  
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Viewed from Above  Terrain Flat  
Day or Night (D/N) D  Wet, Cold or Dry (W/C/D) D  
Observational Data Value Unit   Value Unit 
Capacity of Stadium (g) 38,000 people Width of path (W) 2.5 metres 
Attendance at event (q) 18,000 people Boundary layer (b) 0.2 metres 
Time to clear stadium (tc) 18 minutes Effective Width (We) 2.1 metres 
Flow Rates        
Time to clear gate/path/stair (h) 6 minutes Specific flow  people/s/m eff. width 
Total usage of gate/path/stair (y) 551 people     
Time to reach max Fs (t) 2 minutes Max. Specific Flow (Fs -max) 0.84 people/s/m eff. width 
Total usage at max Fs (x) 178 people Population 37   
Density at max Fs 3.8 people/m2     
Time to reach sustained Fs 0.5 minutes Sustained Specific Flow (Fs) 0.79 people/s/m eff. width 
Duration of sustained Fs 4.5 minutes     
Density at sustained Fs 2.6 people/m2     
Queuing time 0 seconds Max. Calculated Flow (Fc) 106 people/minute 
Queue density N/A people/m2     
Boundary layer maintained (Y/N) N        
Estimated Evacuation Times (if monitored gate flow is representative of all gates) Individual Speeds     
Fraction to leave through gate pre max Fs (A) 0.32  - Travel distance (L) 4.6 metres 
Fraction of populous to use gate (B) 0.03  - Terrain Flat   
Total to leave through gate post max Fs (C ) 373 people Total no. individuals tracked 20   
Estimated populous to leave pre max Fs (f) 5814 people Mean speed 0.4 m/s 
Estimated populous to leave post max Fs (r ) 12185 people Max. speed 0.5 m/s 
Est. min. egress time for gate (Tg) 6 minutes Minimum speed 0.3 m/s 
Est. min. egress time for populous (Tp) 13 minutes Density at max. speed  people/m2 
Est. min. egress time for full stadium (Tf) 24 minutes Density at min. speed   people/m2 
Evacuation Estimates (based on established research)          
Anticipated Fs (Fruin)  k=1.40(flat), 1.16 (stair) (m/s) 1.4 people/s/m eff. width 
Anticipated Fc (Fruin)    176 people/minute 
Anticipated Fs (Poyner)  k=1.8 (flat) (m/s) 1.8 people/s/m eff. width 
Anticipated Fc (Poyner)    227 people/minute 
Anticipated density at max Fs assuming max unimpeded speed (Fruin) S=1.19(flat), 1.00 (stair) (m/s) 0.7 people/m2 
Anticipated density at max Fs based on observed mean speed (Fruin)   1.98 people/m2 
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Egress Path 10  Description Concourse  
Viewed from Above, in front Terrain Flat  
Day or Night (D/N) N  Wet, Cold or Dry (W/C/D) DC  
Observational Data Value Unit   Value Unit 
Capacity of Stadium (g) 50,000 people Width of path (W) 3 metres 
Attendance at event (q) 25,000 people Boundary layer (b) 0.2 metres 
Time to clear stadium (tc) 19 minutes Effective Width (We) 2.6 metres 
Flow Rates        
Time to clear gate/path/stair (h)  minutes Specific flow  people/s/m eff. width 
Total usage of gate/path/stair (y)  people     
Time to reach max Fs (t) 10.75 minutes Max. Specific Flow (Fs -max) 1.94 people/s/m eff. width 
Total usage at max Fs (x)  people Population 30   
Density at max Fs 3 people/m2     
Time to reach sustained Fs 7.5 minutes Sustained Specific Flow (Fs) 1.53 people/s/m eff. width 
Duration of sustained Fs 2.5 minutes     
Density at sustained Fs 2.8 people/m2     
Queuing time 0 seconds Max. Calculated Flow (Fc) 303 people/minute 
Queue density N/A people/m2     
Boundary layer maintained (Y/N) N       
Estimated Evacuation Times (if monitored gate flow is representative of all gates) Individual Speeds     
Fraction to leave through gate pre max Fs (A) #DIV/0!  - Travel distance (L) 3.9 metres 
Fraction of populous to use gate (B) 0  - Terrain Flat   
Total to leave through gate post max Fs (C ) 0 people Total no. individuals tracked 10   
Estimated populous to leave pre max Fs (f) #DIV/0! people Mean speed 0.5 m/s 
Estimated populous to leave post max Fs (r ) #DIV/0! people Max. speed 0.7 m/s 
Est. min. egress time for gate (Tg) 11 minutes Minimum speed 0.4 m/s 
Est. min. egress time for populous (Tp) #DIV/0! minutes Density at max. speed  people/m2 
Est. min. egress time for full stadium (Tf) #DIV/0! minutes Density at min. speed   people/m2 
Evacuation Estimates (based on established research)          
Anticipated Fs (Fruin)  k=1.40(flat), 1.16 (stair) (m/s) 1.4 people/s/m eff. width 
Anticipated Fc (Fruin)    218 people/minute 
Anticipated Fs (Poyner)  k=1.8 (flat) (m/s) 1.8 people/s/m eff. width 
Anticipated Fc (Poyner)    281 people/minute 
Anticipated density at max Fs assuming max unimpeded speed (Fruin) S=1.19(flat), 1.00 (stair) (m/s) 1.6 people/m2 
Anticipated density at max Fs based on observed mean speed (Fruin)   3.06 people/m2 
            

 

Egress Path 13  Description Concourse (half time) 
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Viewed from Above, side on Terrain Flat  
Day or Night (D/N) N  Wet, Cold or Dry (W/C/D) D  
Observational Data Value Unit   Value Unit 
Capacity of Stadium (g) 27,000 people Width of path (W) 5.4 metres 
Attendance at event (q) 27,000 people Boundary layer (b) 0.46 metres 
Time to clear stadium (tc) 18 minutes Effective Width (We) 4.48 metres 
Flow Rates        
Time to clear gate/path/stair (h)  minutes Specific flow  people/s/m eff. width 
Total usage of gate/path/stair (y)  people     
Time to reach max Fs (t) 0.75 minutes Max. Specific Flow (Fs -max) 1.87 people/s/m eff. width 
Total usage at max Fs (x)  people Population 61   
Density at max Fs 3 people/m2     
Time to reach sustained Fs 6 minutes Sustained Specific Flow (Fs) 1.51 people/s/m eff. width 
Duration of sustained Fs 1.5 minutes     
Density at sustained Fs 1.9 people/m2     
Queuing time 0 seconds Max. Calculated Flow (Fc) 503 people/minute 
Queue density N/A people/m2     
Boundary layer maintained (Y/N) Y       
Estimated Evacuation Times (if monitored gate flow is representative of all gates) Individual Speeds     
Fraction to leave through gate pre max Fs (A) #DIV/0!  - Travel distance (L) 4.5 metres 
Fraction of populous to use gate (B) 0  - Terrain Flat   
Total to leave through gate post max Fs (C ) 0 people Total no. individuals tracked    
Estimated populous to leave pre max Fs (f) #DIV/0! people Mean speed 0.7 m/s 
Estimated populous to leave post max Fs (r ) #DIV/0! people Max. speed 1.1 m/s 
Est. min. egress time for gate (Tg) 1 minutes Minimum speed 0.4 m/s 
Est. min. egress time for populous (Tp) #DIV/0! minutes Density at max. speed  people/m2 
Est. min. egress time for full stadium (Tf) #DIV/0! minutes Density at min. speed   people/m2 
Evacuation Estimates (based on established research)          
Anticipated Fs (Fruin)  k=1.40(flat), 1.16 (stair) (m/s) 1.4 people/s/m eff. width 
Anticipated Fc (Fruin)    376 people/minute 
Anticipated Fs (Poyner)  k=1.8 (flat) (m/s) 1.8 people/s/m eff. width 
Anticipated Fc (Poyner)    484 people/minute 
Anticipated density at max Fs assuming max unimpeded speed (Fruin) S=1.19(flat), 1.00 (stair) (m/s) 1.6 people/m2 
Anticipated density at max Fs based on observed mean speed (Fruin)   2.16 people/m2 
            

 

Egress Path 14  Description Concourse  
Viewed from Above, side on Terrain Flat  
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Day or Night (D/N) N  Wet, Cold or Dry (W/C/D) D  
Observational Data Value Unit   Value Unit 
Capacity of Stadium (g) 27,000 people Width of path (W) 5.4 metres 
Attendance at event (q) 27,000 people Boundary layer (b) 0.46 metres 
Time to clear stadium (tc) 18 minutes Effective Width (We) 4.48 metres 
Flow Rates        
Time to clear gate/path/stair (h) 10 minutes Specific flow  people/s/m eff. width 
Total usage of gate/path/stair (y) 1667 people     
Time to reach max Fs (t) 2 minutes Max. Specific Flow (Fs -max) 1.55 people/s/m eff. width 
Total usage at max Fs (x) 501 people Population 49   
Density at max Fs 2.4 people/m2     
Time to reach sustained Fs 4.5 minutes Sustained Specific Flow (Fs) 1.23 people/s/m eff. width 
Duration of sustained Fs 1.5 minutes     
Density at sustained Fs 1.4 people/m2     
Queuing time 0 seconds Max. Calculated Flow (Fc) 417 people/minute 
Queue density N/A people/m2     
Boundary layer maintained (Y/N) Y       
Estimated Evacuation Times (if monitored gate flow is representative of all gates) Individual Speeds     
Fraction to leave through gate pre max Fs (A) 0.30  - Travel distance (L) 4.5 metres 
Fraction of populous to use gate (B) 0.06  - Terrain Flat   
Total to leave through gate post max Fs (C ) 1166 people Total no. individuals tracked 20   
Estimated populous to leave pre max Fs (f) 8115 people Mean speed 0.9 m/s 
Estimated populous to leave post max Fs (r ) 18885 people Max. speed 1.5 m/s 
Est. min. egress time for gate (Tg) 5 minutes Minimum speed 0.6 m/s 
Est. min. egress time for populous (Tp) 7 minutes Density at max. speed  people/m2 
Est. min. egress time for full stadium (Tf) 7 minutes Density at min. speed   people/m2 
Evacuation Estimates (based on established research)          
Anticipated Fs (Fruin)  k=1.40(flat), 1.16 (stair) (m/s) 1.4 people/s/m eff. width 
Anticipated Fc (Fruin)    376 people/minute 
Anticipated Fs (Poyner)  k=1.8 (flat) (m/s) 1.8 people/s/m eff. width 
Anticipated Fc (Poyner)    484 people/minute 
Anticipated density at max Fs assuming max unimpeded speed (Fruin) S=1.19(flat), 1.00 (stair) (m/s) 1.3 people/m2 
Anticipated density at max Fs based on observed mean speed (Fruin)   1.37 people/m2 
            

 

Egress Path 15  Description Aisle  
Viewed from Above, behind Terrain Ascending  
Day or Night (D/N) N  Wet, Cold or Dry (W/C/D) D  
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Observational Data Value Unit   Value Unit 
Capacity of Stadium (g) 27,000 people Width of path (W) 1.5 metres 
Attendance at event (q) 27,000 people Boundary layer (b) 0.1 metres 
Time to clear stadium (tc) 18 minutes Effective Width (We) 1.3 metres 
Flow Rates        
Time to clear gate/path/stair (h) 4.5 minutes Specific flow  people/s/m eff. width 
Total usage of gate/path/stair (y) 274 people     
Time to reach max Fs (t) 2.5 minutes Max. Specific Flow (Fs -max) 1.72 people/s/m eff. width 
Total usage at max Fs (x) 78 people Population    
Density at max Fs  people/m2     
Time to reach sustained Fs  minutes Sustained Specific Flow (Fs) 1.64 people/s/m eff. width 
Duration of sustained Fs  minutes     
Density at sustained Fs  people/m2     
Queuing time 0 seconds Max. Calculated Flow (Fc) 134 people/minute 
Queue density N/A people/m2     
Boundary layer maintained (Y/N) ?       
Estimated Evacuation Times (if monitored gate flow is representative of all gates) Individual Speeds     
Fraction to leave through gate pre max Fs (A) 0.28  - Travel distance (L)  metres 
Fraction of populous to use gate (B) 0.01  - Terrain Flat   
Total to leave through gate post max Fs (C ) 196 people Total no. individuals tracked    
Estimated populous to leave pre max Fs (f) 7686 people Mean speed  m/s 
Estimated populous to leave post max Fs (r ) 19313 people Max. speed  m/s 
Est. min. egress time for gate (Tg) 4 minutes Minimum speed  m/s 
Est. min. egress time for populous (Tp) 8 minutes Density at max. speed  people/m2 
Est. min. egress time for full stadium (Tf) 8 minutes Density at min. speed   people/m2 
Evacuation Estimates (based on established research)          
Anticipated Fs (Fruin)  k=1.40(flat), 1.16 (stair) (m/s) 1.4 people/s/m eff. width 
Anticipated Fc (Fruin)    109 people/minute 
Anticipated Fs (Poyner)  k=1.8 (flat) (m/s) 1.8 people/s/m eff. width 
Anticipated Fc (Poyner)    140 people/minute 
Anticipated density at max Fs assuming max unimpeded speed (Fruin) S=1.19(flat), 1.00 (stair) (m/s) 1.4 people/m2 
Anticipated density at max Fs based on observed mean speed (Fruin)   #DIV/0! people/m2 
            

 

Egress Path 18  Description Vomitory  
Viewed from Above, in front Terrain Flat  
Day or Night (D/N) N  Wet, Cold or Dry (W/C/D) D  
Observational Data Value Unit   Value Unit 
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Capacity of Stadium (g) 34,500 people Width of path (W) 1.7 metres 
Attendance at event (q) 31,000 people Boundary layer (b) 0.15 metres 
Time to clear stadium (tc) 14 minutes Effective Width (We) 1.4 metres 
Flow Rates        
Time to clear gate/path/stair (h) 5 minutes Specific flow  people/s/m eff. width 
Total usage of gate/path/stair (y) 441 people     
Time to reach max Fs (t) 0.75 minutes Max. Specific Flow (Fs -max) 1.88 people/s/m eff. width 
Total usage at max Fs (x) 93 people Population    
Density at max Fs 1.2 people/m2     
Time to reach sustained Fs  minutes Sustained Specific Flow (Fs)  people/s/m eff. width 
Duration of sustained Fs  minutes     
Density at sustained Fs  people/m2     
Queuing time 0 seconds Max. Calculated Flow (Fc) 158 people/minute 
Queue density N/A people/m2     
Boundary layer maintained (Y/N) Y       
Estimated Evacuation Times (if monitored gate flow is representative of all gates) Individual Speeds     
Fraction to leave through gate pre max Fs (A) 0.21  - Travel distance (L)  metres 
Fraction of populous to use gate (B) 0.01  - Terrain    
Total to leave through gate post max Fs (C ) 348 people Total no. individuals tracked    
Estimated populous to leave pre max Fs (f) 6537 people Mean speed  m/s 
Estimated populous to leave post max Fs (r ) 24462 people Max. speed  m/s 
Est. min. egress time for gate (Tg) 3 minutes Minimum speed  m/s 
Est. min. egress time for populous (Tp) 7 minutes Density at max. speed  people/m2 
Est. min. egress time for full stadium (Tf) 8 minutes Density at min. speed   people/m2 
Evacuation Estimates (based on established research)          
Anticipated Fs (Fruin)  k=1.40(flat), 1.16 (stair) (m/s) 1.4 people/s/m eff. width 
Anticipated Fc (Fruin)    118 people/minute 
Anticipated Fs (Poyner)  k=1.8 (flat) (m/s) 1.8 people/s/m eff. width 
Anticipated Fc (Poyner)    151 people/minute 
Anticipated density at max Fs assuming max unimpeded speed (Fruin) S=1.19(flat), 1.00 (stair) (m/s) 1.6 people/m2 
Anticipated density at max Fs based on observed mean speed (Fruin)   #DIV/0! people/m2 
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