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Abstract 

This thesis proposes, demonstrates, and evaluates, the concept of the normative 

Intelligent Tutoring System (ITS). Normative theories are ideal, optimal 

theories of rational behaviour. Two normative theories suitable for reasoning 

under conditions of uncertainty are Bayesian probability theory, which allows 

one to update one’s beliefs about the world given previous beliefs and new 

observations, and decision theory, which shows how to fuse one’s preferences 

with one’s beliefs in order to rationally decide how to behave. A normative ITS 

is a tutoring system in which beliefs about the student (the student model) are 

represented with a Bayesian network, and teaching actions are selected using 

decision-theoretic principles. The main advantage of a normative ITS is that the 

normative theories provide an optimal framework for implementing learning 

theories. In other words, the particular learning theory underlying the ITS is 

guaranteed to be optimally applied to the student if it is defined as a set of 

normative representations (probability distributions and utility functions). In 

contrast, the more traditional type of ITS with an ad-hoc implementation of a 

learning theory is not guaranteed to be optimal. 

A general methodology for building normative ITSs is proposed and 

demonstrated. The methodology advocates building an adaptive, generalised 

Bayesian network student model using machine learning techniques from 

student performance data collected in the classroom. The Bayesian network is 

then used as the basis for the decision-theoretic selection of tutorial actions. 

The methodology is demonstrated with two implementations. Both 

implementations were evaluated in a classroom, rather than a lab, setting. The 

first implementation is an extension to an existing ITS called SQL-Tutor. A 

Bayesian network-based student model was added to SQL-Tutor, and this was 
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applied to select the next problem for students. Although this system only partly 

implemented the normative methodology, the evaluation results were promising 

enough to continue in this direction. 

The second evaluation was more comprehensive. An entirely new ITS 

called CAPIT was implemented by application of the methodology. CAPIT 

teaches the basics of English capitalisation and punctuation to 8-10 year old 

school children, and it uses constraint-based modelling to represent domain 

knowledge. The system models the child’s long-term mastery of the domain 

constraints using an adaptive Bayesian network, and it selects the next problem 

and best error message (when a student makes more than one error following a 

solution attempt) using the decision-theoretic principle of expected utility 

maximisation. Learning theories define both the semantics of the Bayesian 

network and the form of the utility functions. 

The evaluation of CAPIT was a success. Three groups of children, A, B, 

and C, were enlisted and given a pre-test. Group B then used a randomised 

(non-normative) version of CAPIT for a four week period, while Group C used 

the full normative version of the tutor. All groups were then administered a 

post-test. The results show that while both Groups B and C gradually mastered 

the domain constraints, Group C mastered the constraints at a faster rate than 

group B. Group A, who did not have access to an ITS in the domain, actually 

regressed on the post-test. 
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Notation 

The following notation will be used in this thesis to distinguish between 

variables, values, sets of variables, sets of values, and constants: 

 

Object Formatting Example(s) 
Variable Italic, Uppercase X 
Value Italic, Lowercase Y 
Set of variables Bold, Uppercase X, PA(X) 
Set of values Bold, Lowercase e, pa(X) 
Constant Courier font Correct 
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Chapter 1 

Introduction 

Over the past thirty years, considerable research has been invested in the 

development of computer programs for effectively teaching students. These 

programs are called Intelligent Tutoring Systems (ITSs). The desire to build 

ITSs results from observations of the effectiveness of one-to-one tutoring. 

Compared to traditional classroom models in which one teacher tutors many 

students, one-to-one tutoring is highly effective. However, the approach is 

typically not feasible because the number of students greatly outweighs the 

number of teachers. With the advent of computers, however, the dream took one 

step towards reality. If a computer could be programmed to emulate the teacher, 

then one-to-one tutoring for all students would become a possibility. 

This philosophy of completely replacing the teacher with a computer is 

not surprising, given the field’s roots in Artificial Intelligence (AI). All one had 

to do, in theory, was program the computer with subject (domain) knowledge 

and pedagogy. This would require input from both cognitive and instructional 

science. Ideally, natural language processing advances would allow the student 

to converse with the computer in the same way she/he would converse with a 

human tutor. 

This aspiring initial approach rapidly proved to be an overly ambitious 

challenge. Firstly, natural language processing, while it has made great 
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advances in recent years, is not yet powerful enough to support natural language 

conversations between the tutor and the student. As a result, most ITSs have 

been developed with alternate interfaces. Secondly, it was realised that an ITS 

can never completely replace a teacher. There will always be students for whom 

computer-based instruction is not suitable. There may also be particular topics 

for which computer-based instruction is not appropriate. The goal, therefore, has 

been redefined to the much more realistic aspiration of supporting the teacher, 

be it in the classroom, the workplace, or at home. By having ITSs as supporting 

tools for the teacher, students are able to learn at their own pace and more time 

becomes available for the teacher to focus on one-to-one situations with 

students who may not be responding as well to the ITS approach. 

This introductory chapter forms a high- level overview of the rest of the 

thesis. The traditional architecture of an ITS is described in Section 1.1, and in 

that context, Section 1.2 discusses the central problem; specifically, the types 

and effects of the uncertainty inherent in an ITS and its consequences. Section 

1.3 proposes a solution: normative theories. Normative theories are general 

theories defining rational behaviour, and they are logically complete and 

consistent. By implementing normative theories in an ITS, the rationality of the 

system can be improved. Section 1.4 introduces two fully functional ITSs that 

were employed to demonstrate these ideas, SQL-Tutor and CAPIT 

(Capitalisation And Punctuation Intelligent Tutor), and Section 1.5 is a guide to 

the rest of the thesis. 

1.1 Architecture of the ITS 

The traditional architecture of an ITS is depicted in Figure 1.1. There are four 

significant components of the system. The domain expert is a representation of 

the domain knowledge. The quality of the domain knowledge is entirely 

variable; it can range from expert system-quality in which enough knowledge is 

represented to enable the ITS to solve problems itself, through to a subset of the 

knowledge that is just enough for the purposes of teaching. 

 



  3

 

Pedagogical 
Knowledge 

Interface Student Models 

Domain Expert 

Student 
Modeller 

Pedagogical 
Module 

Student 

Domain Knowledge 

 
 

Fig. 1.1. Traditional architecture of an ITS. 

 

The student modeller develops a representation of the current student 

using the ITS. This includes long-term knowledge, such as an estimate of the 

student’s domain mastery, as well as short-time knowledge, such as whether or 

not the student just violated a rule. Other factors such as motivation can also be 

modelled, though this is done less frequently. The student modeller will 

typically save the current student model to the database when the student logs 

off, and restore it when the student logs back in. 

The heart of the ITS is the pedagogical module, the subsystem that 

makes decisions about the teaching of the domain. Pedagogical decisions 

include, but are certainly not limited to, next problem selection, next topic 

selection, adaptive presentation of error messages, and selective highlighting or 

hiding of text. Typically, the pedagogical module will take into account both the 

current student model and the domain knowledge when making a decision. To 

illustrate, consider a hypothetical next topic selection. The job of deciding 

whether to select an entirely new topic or revisit an old one for revision falls to 

the pedagogical module. On the one hand, the ITS must ultimately cover the 

entire domain (if that is one of its teaching goals), but on the other hand, the 
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more time spent revising existing topics the better. The particular method by 

which this decision is made can be referred to as a pedagogical action selection 

(PAS) strategy. 

Finally, the fourth component of an ITS is the user interface. The user 

interface is of importance in an ITS. Firstly, it must provide the motivation for 

the student to continue. If the student lacks the desire to use the system, the ITS 

simply will not be effective. Secondly, the interface can improve learning 

significantly by reducing the cognitive load. If only one component of a 

problem is the focus of teaching, then the rest of the problem can be “externally 

stored” within the user interface. This means the student does not need to 

remember extraneous details and can instead target the component of problem-

solving that is of importance. 

Although all of the components of an ITS are important, it should be 

clearly obvious that the student model is the most critically important. If the 

student model is “bad” in that it does not even approximately describe the traits 

of the current student, then the quality of decisions made by the pedagogical 

module will be correspondingly bad. This is regardless of the quality of the 

pedagogical module itself. Considerable research, therefore, has been invested 

specifically in student modelling. 

1.2 The Problem: Uncertainty 

One significant difficulty for any system that models users or students is 

uncertainty. The ITS must build a student model from minimal amounts 

(relative to the human tutor) of highly uncertain information. The “keyhole” of 

the computer keyboard and mouse is a severe limitation. Furthermore, because 

the ITS bases its decisions (like a human tutor) on the student model, the 

uncertainty in the student model is carried over and may be realised as poorly-

adapted teaching actions. It is this uncertainty that has led to the development of 

other, “simpler” ITS metaphors, such as that of the discovery environment, 

which require less computational effort and inference for (its proponents claim) 

the same degree of benefit. 
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It is relevant to examine the types of uncertainty inherent in student 

modelling. A student model is constructed from observations that the ITS makes 

about the student. These can come in the form of responses to questions, 

answers to problems, traces of the student’s problem-solving behaviour, etc. 

The student model can in fact be thought of as a compression of these 

observations: the raw data is combined, some of it may be discarded, and the 

end result is a summarisation in the form of a set of beliefs about the student. 

The process of compression is usually defined by a set of inference rules 

mapping observations to beliefs. However, there are two potential sources of 

error in this process. 

Firstly, the amount of raw data and observations may be insufficient to 

draw strong conclusions. In the extreme case, one could argue that any data is 

insufficient unless it can be shown to lead to statistically significant hypotheses. 

Of course, an ITS rarely has sufficient time to acquire enough data to 

hypothesise about the student’s state to this degree, especially given that the 

state of the student can be expected to change rapidly. 

Secondly, the inference rules for building the student model may 

themselves be sub-optimal. If the inference rules are inconsistent, incomplete or 

semantically inexplicable, then the quality of the data will have a reduced 

bearing on the quality of the resulting student model. In other words, poor 

inference rules will lead to a poor student model regardless of how reliable or 

unreliable the data acquired from the student is. But reliable data combined with 

quality inference mechanisms will lead to a quality student model. 

Of course, determining the quality of data and inference rules is not a 

simple task. One can never guarantee that the data is truly representative of the 

current state of the student; it may just be random noise. Thus, building the 

student model is a highly uncertain activity. 

There is another class of uncertainty in this process. Whereas the first 

type of uncertainty arose from the construction of the student model from data, 

the second type arises from the fact that some teaching actions, such as next 

problem, topic or hint selection, are selected on the basis of the student model. 

These actions, therefore, can be thought of as functions of the student model. As 

discussed above, if the student model is uncertain then clearly this uncertainty 

will transfer to the action selection functions. It will manifest itself in the form 
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of actions being selected that are not optimally adapted to the student. However, 

if the student model is of a relatively high quality and the action selection 

functions are insensitive to small amounts of uncertainty, it may well be the case 

that the selected actions remain optimally near-optimally rational. 

Unfortunately, it is difficult to determine the degree of rationality of the action 

selection function, especially when the rules defining the function are not based 

on theory. In a hypothetical worst case, the action selection functions could 

make random decisions. Typically, however, the action selection function will 

be some heuristic that considers the values in the student model (e.g. one such 

heuristic is to give a hint on the rule that the student has most frequently 

violated in the past), though such an approach cannot guarantee that this is the 

best possible rule. This type of uncertainty, as well as the uncertainty inherent in 

the student model, can contribute to overall sub-optimal behaviour in the ITS. 

 Observation 

Teaching 
Actions Student Model 

Weak Inference 
Rules and Noisy 
Data 
à Uncertainty 
(1st Type) 

Sub-optimal Action Selection Rules 
à Uncertainty (2nd Type) 

Student 
responses

 
 

Fig. 1.2. Sources of uncertainty in an ITS. 

 

Figure 1.2 depicts the two types of uncertainty and where they fit into 

the cycle of interaction between a student and the ITS. The ITS builds its 

student model from observations of the student, but noise and weak inference 

rules introduce uncertainty. The student model is then used to select teaching 

actions (e.g. problems or instruction), but again poor action selection rules 

increase the uncertainty. The student responds to the teaching actions, 

generating more data. 
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1.3 Towards A Solution: Normative Theories 

The question that arises is how to minimise uncertainty. It is very difficult, if not 

impossible, to eliminate uncertainty of the first type. While the inference rules 

for building the student model may be optimised (and there is much research in 

this area), there is no way to guarantee the quality of the data. Uncertainty of the 

second type (which occurs because of sub-optimal action selection), however, 

presents a different challenge. Powerful general theories of decision-making, 

designed specifically for situations involving uncertainty, have been developed. 

One of them is Bayesian probability theory (Bayes, 1763), which deals with 

uncertain reasoning, and the other is statistical decision theory (Savage, 1954) 

that extends Bayesian probability to making decisions and incorporates a 

measure of preference for the outcomes of actions called utility. If the tenets of 

these theories are accepted (and to date there have been no substantial reasons 

why they should not be), then the theories define rationality. It is a challenge to 

ITS researchers, then, to define action selection functions based solely on these 

theories for incorporation in their systems. Doing so would eliminate 

uncertainty of the second type and make their systems more acceptable (i.e. 

more rational) in the process. A consequence of this is that when an ITS does 

exhibit irrational behaviour, the cause can be traced uncertainty of the first type 

rather than of the second. 

To describe in more detail exactly how to produce a normative ITS, a 

general methodology is introduced in this thesis. The methodology uses 

machine learning and statistical significance tests to construct a Bayesian 

network student model from student performance data. It describes how to 

integrate this model with decision-theoretic procedures for PAS. A critical 

component of the methodology is evaluation in a real classroom. All too 

frequently, ITSs are evaluated only in the lab and never make it to the 

classroom. However, classroom evaluation is essential in order to obtain 

valuable data which can guide the further development of the system. 

It is important to point out that normative theories like Bayesian 

probability and decision theory do not replace existing learning theories. Rather, 

they complement these theories. A normative theory is a general mechanism for 
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reasoning under uncertainty. When normative theories are referred to as 

“optimal” in this thesis, it is meant that given a scenario defined as a probability 

distribution and a utility function, then a normative system can reason and 

behave optimally within the confines of the scenario. Normative theories 

themselves are independent of the scenario semantics. For example, although 

Bayesian probability theory provides all the mechanisms for representing and 

reasoning about uncertain knowledge, it does not specify what the knowledge 

that is being reasoned about actually is. That is the domain of psychological 

learning theories. To further clarify this, consider that a particular learning 

theory may be implemented in two different ways: with normative methods, or 

using an ad-hoc representation such as heuristic rules. If the learning theory is 

precisely defined, the normative implementation will guarantee that the learning 

theory is optimally applied to the student in the sense that it is rational, but the 

ad-hoc implementation may be sub-optimal. 

1.4 Demonstrations of Normative ITSs 

The effectiveness of normative theories was evaluated in the classroom using 

two different ITSs. The first system, SQL-Tutor (Mitrovic & Ohlsson, 1999), is 

an existing ITS for teaching the SQL database language to computer science 

undergraduate students. Domain knowledge is represented in the form of 

constraints (Ohlsson, 1994) that specify the form of consistent or correct 

solutions. For its long-term student model, SQL-Tutor originally had a simple 

frequency-based overlay model. A Bayesian overlay model replaced this (Mayo 

& Mitrovic, 2000), and a new method of next problem selection was the 

implemented. This latter version of SQL-Tutor was evaluated in October 1999. 

The main demonstration of the effectiveness of normative theories, 

however, is the ITS CAPIT (Capitalisation And Punctuation Intelligent Tutor) 

(Mayo et al., 2000; Mayo & Mitrovic, 2001). CAPIT teaches basic literacy 

skills to school children in the 8-10 year old age group, and was fully 

implemented by the author. Like SQL-Tutor, CAPIT uses constraints to 

represent knowledge. However, CAPIT’s student model is far more 
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sophisticated than the simple Bayesian overlay in SQL-Tutor. CAPIT’s student 

model was constructed by application of the methodology described in this 

thesis. As a consequence, it has a sophisticated, adaptive Bayesian network that 

can model complex interdependencies between student performance and the 

domain constraints. The output of the Bayesian network (which is a prediction 

about how the student will be behave in a given context) is the input to a 

decision-theoretic process for tutorial action selection. Effectively, CAPIT’s 

entire mechanism for representing and reasoning about the student, and 

determining its own behaviour, is normative. 

CAPIT was fully evaluated in the classroom over a period of four weeks 

during June 2000. Three classes participated in the evaluation. One of the 

classes did not have access to CAPIT and use used as a baseline for comparing 

the pre- and post-test results; the second used a “randomised” non-normative 

version of CAPIT, and the third class used the normative version of CAPIT. 

Both classes using CAPIT improved from pre-test to post-test. The pre- and 

post-tests, and the log file analysis, indicate that the class using the normative 

version of the system learned the constraints at a faster rate than the class using 

the randomised version. 

1.5 Guide to the Thesis 

As a guide to the remainder of this thesis, Chapter 2 introduces the technicalities 

of Bayesian and decision-theoretic reasoning. After the foundations of 

probabilistic reasoning using Bayesian networks are introduced, the specific 

algorithms used in the construction of CAPIT are described. Chapter 3 provides 

the context for this thesis within existing student modelling and ITS research. 

Firstly, existing student modelling approaches are surveyed. It was found that 

student modelling philosophies tend to focus on either long-term or short-term 

knowledge about the student. Most existing ITSs combine approaches of both 

types. Secondly, Bayesian and decision-theoretic approaches to student 

modelling and PAS are considered. It is only recently with the development of 

advanced algorithms for probabilistic reasoning that Bayesian methods have 
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become feasible on- line. Hence, it is only in the last few years that Bayesian 

probability and decision theory have found their way into educational 

technology. In Chapter 4, the extensions to, and the evaluation results of, SQL-

Tutor are described. This evaluation produced valuable lessons that led to the 

development of the general methodology and CAPIT. Chapter 5 describes this 

general methodology and justifies it. Chapter 6 shows how the methodology 

was used to construct CAPIT and details the extensive evaluation results. 

Finally, Chapter 7 presents the conclusions and discusses future directions for 

research in this area. 



 

 11 

Chapter 2 

Bayesian Networks and Decision Theory 

Both Bayesian probability theory (Bayes, 1763) and statistical decision theory 

(Savage, 1954) are instances of normative systems. A normative system is a set 

of rules as well as the logical consequences of those rules (Gardenförs, 1989). 

Therefore, if logical reasoning and behaviour are assumed to define rationality, 

a normative system can be considered a model of rational behaviour. This 

implies that, given a specific normative model, the output from a normative 

system will be optimal for that model. Heuristic or ad-hoc systems cannot 

guarantee this because the inferences do not have to be logical consequences, 

and therefore they can be incomplete or inconsistent. 

Bayesian probability theory is a normative model that deals with the 

problem of how to reason under uncertainty. The specific issues it deals with are 

how to represent uncertain beliefs, and given those uncertain beliefs, how to 

update them when evidence arrives or other beliefs change. Bayesian reasoning 

has attracted the interest of researchers in the ITS field recently (e.g. Gertner & 

VanLehn, 2000; Mayo & Mitrovic, 2000; Millán et al., 2000; Mislevy & 

Gitomer, 1996) because the theory is well established and rigorous, and 

therefore increases the prospect of mainstream acceptance of ITSs in general 

(Everson, 1995). Decision theory extends Bayesian probability by showing how 

to make decisions when not only the beliefs are uncertain, but also the outcomes 



 12 

of actions. It provides a method of “fusing” preferences with beliefs to give a 

measure on possible actions called the expected utility. 

One aspect of normative systems is that because they are prescriptive, 

they specify what to compute for logical/rational behaviour (the prescriptive 

requirement) rather than how to compute it (the implementation). As a result, 

considerable research in recent times has been directed at the development of 

sophisticated algorithms for implementing normative reasoning (e.g. Lauritzen 

& Spiegelhalter, 1988). All the algorithms compute the same thing – they 

adhere to the tenets of the normative system – but their efficiencies vary 

considerably and depend to greater and lesser extents on the particular domain 

being modelled. 

This chapter aims to give the reader a firm grounding in Bayesian and 

decision-theoretic technology. Detailed descriptions are given of the algorithms 

used both in the construction of CAPIT (specifically, the Bayesian network 

induction algorithms) and during the execution of CAPIT (the Bayesian network 

reasoning algorithm and the decision-theoretic expected utility formula). 

Although complete understanding of the algorithms and mathematics is not 

necessary to appreciate the main results of the thesis, the details are included 

because they provide the foundation of the CAPIT tutoring system described 

later. Taking the time to absorb these algorithms will give the reader an 

appreciation of how normative approaches to knowledge representation and 

reasoning differ from other approaches. The most significant mathematical 

results will be reiterated at the end of this chapter. 

The prescriptive requirements of Bayesian probability theory are 

introduced in Section 2.1. A particular implementation of Bayesian probability – 

the Bayesian network (Pearl, 1988; D'Ambrosio, 1999) – is then introduced in 

Section 2.2. Bayesian networks streamline Bayesian reasoning by optimising 

both the storage requirements and the computation required for inference. This 

is shown in Section 2.3. They can also be induced from data, as described in 

Section 2.4. Finally, the prescriptive requirement of decision theory – the 

principle of maximising expected utility – is introduced in Section 2.5 before 

conclusions are drawn in Section 2.6. 
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2.1 Probability Basics 

Bayesian probability theory deals with events and the probabilities of those 

events. If A is an event, then the probability of A is denoted by a real-valued 

number, P(A).  The basic axioms of probability theory (Bayes, 1763; Cowell, 

1999) are: 

 

1. P(A) = 1 if and only if A is certainly true. 

2. P(A) = 0 if an only if A is certainly false. 

3. 0 = P(A) = 1. 

4. If A and B are mutually exclusive, then P(A ∪ B) = P(A) + P(B). 

 

It is pertinent to define a particular class of events, that of a variable X 

being with certainty in one and only one of the discrete states x1..xn. We denote 

the probability of this event by P(X=x i), and it follows from the axioms that: 

 

1
1

)( =∑
=

=
n

i ixXP  (2.1) 

 

The sequence of probabilities P(X=x1), P(X=x2), …, P(X=xn) define a 

probability vector. A useful shorthand way of referring to this vector is simply 

P(X). 

An important concept is that of the conditional probability, P(X=x|Y=y) 

= r. This represents the statement “If Y=y is true, and no other information to 

hand is relevant to X, then the probability of X=x is r.” A table defining 

conditional probabilities for every possible combination of values that X and Y 

can take is called a conditional probability distribution and is denoted by 

P(X|Y). 

Conditional probabilities are essential to a fundamental rule of 

probability calculus, the product rule. The product rule defines the probability 

of a conjunction of events: 

 

P(A ∩  B) = P(A|B)P(B) = P(B|A)P(A) (2.2) 
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Frequently, the literature shortens P(A ∩  B) to P(A,B), and that 

convention will be followed here. P(A,B) is also called a joint probability 

distribution, and like the conditional probability distribution, it is a table of 

values, one entry for each possible combination of values that its variables can 

jointly take. In the general case, a joint probability distribution over n variables 

can be defined recursively using the product rule (Equation 2.3): 

 

P(X1, X2,…, Xn) = P(X1| X2,…, Xn)P(X2,…, Xn) 

 = P(X1| X2,…, Xn)P(X2| X3,…, Xn)P(X3,…, Xn) 

 = P(X1| X2,…, Xn)P(X2| X3,…, Xn)….P(Xn-1|Xn)P(Xn) (2.3) 

 

This property of joint probability distributions is called the general factorisation 

property. Note that the product rule allows any ordering of variables in the 

factorisation. 

Rearranging the product rule leads to Bayes’ famous theorem: 

 

)(
)()|(

)|(
BP

APABP
BAP =  (2.4) 

 

Bayes’ Theorem is frequently used for reasoning about an uncertain hypothesis 

A given evidence B, and in that context P(A|B) is called the posterior 

probability of A, P(A) is called the prior probability of A, and P(B|A) is the 

likelihood of A. The factor )(
1

BP  is a normalisation constant, and if ignored, 

Bayes’ Theorem simplifies to: 

 

P(A|B) ∝  P(B|A)P(A) (2.5) 

 

This form of Bayes’ Theorem is important because frequently the normalisation 

step can be left until the very end of a chain of calculations, making the 

computations more efficient.  

While the product rule is used to construct joint probability distributions, 

marginalisation reduces a joint probability distribution to a distribution over a 

subset of its variables. More specifically, if we have the set of events X = {X1, 
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X2, …, Xz} and a joint probability distribution P(X) (equivalent to P(X1, X2, …, 

Xz)), then we can find the sub-joint probability distribution P(Xq) for any Xq ⊆  

X by applying the marginalisation rule: 

 

∑=
− qXX

XqX )()( PP  (2.6) 

 

This rule is effectively a summation over the variables that are not of 

interest (those being X-Xq), so the joint probability distribution collapses to a 

distribution over only those variables of interest (Xq). For example, suppose we 

have the joint probability distribution P(A,B,C) and we want to marginalise A. If 

B and C are binary (taking values Y or N), then using Equation 2.6 to calculate 

P(A) leads to the following calculation: 

 

P(A)  = P(A,B=Y, C=Y) + P(A,B=Y, C=N) 

 + P(A,B=N, C=Y)+ P(A,B=N, C=N) (2.7) 

 

This completes the definition of the basic concepts of probability theory. 

Conditional and joint probability distributions have been defined, and it has 

been shown how joint probability distributions can be both constructed using 

the product rule and reduced via marginalisation. Bayes’ Theorem, a rule crucial 

for Bayesian reasoning under uncertainty, has been introduced. 

2.2 Bayesian Network Basics 

A significant efficiency issue that any implementation of Bayesian probability 

theory must deal with is storage requirements. To illustrate, an explicit table 

representation of P(X1, X2,… ,Xn) will, if n=16 and each Xi is binary, require 216 

= 65,536 different entries. Thus, a naïve direct application of the theory to an 

implementation would result in gross inefficiency in terms of storage 

requirements. A more efficient alternative is to define some economical 

function f that can be evaluated to yield specific entries from the joint 
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probability distribution or a subjoint distribution thereof. This way, the entire 

joint probability distribution table would not need to be explicitly represented. 

For example, if we wished to determine an entry from a subjoint distribution, 

say P(X2=x2,X3=x3), we could simply evaluate the function f(X2=x2,X3=x3), 

instead of marginalising P(X2,X3) from P(X1, X2,… ,Xn) and then looking up the 

appropriate entry in P(X2,X3). 

The representation of P(X1, X2,… ,Xn) as a factorisation of n-1 

conditional probabilities and one probability vector (Equation 2.3) is a possible 

definition of f. Instead of representing the entire joint probability table 

explicitly, we represent each factor separately and multiply appropriate entries 

from each factor’s table every time f is evaluated. This would be very efficient 

for some queries, such as P(Xn=xn), which is represented explicitly, and P(Xn-1= 

xn-1, Xn=xn), which can be computed with a single multiplication using the 

product rule, but for other queries like P(X1=x1), the new representation will be 

no more efficient. Ideally, the factors should be compressed even further. 

One approach to achieving this is to look for a certain property of the 

conditional probability tables P(X1|X2…Xn), etc, called conditional 

independence. To illustrate conditional independence, consider the smaller joint 

distribution P(A,B,C). The product rule and the general factorisation property 

mean that we can express this as: 

 

P(A,B,C) = P(A|B,C)P(B|C)P(C) (2.8) 

 

Now, suppose that the factor P(A|B,C) has the property that it is always 

equal to P(A|C). That is, for every pair (a,c), P(A=a|B,C=c) remains constant as 

B varies. We therefore say that A is conditionally independent of B given C. In 

standard notation, this is expressed as: 

 

CBA |C  (2.9) 

 

We can therefore drop B from the conditional probability P(A|B,C) altogether 

and rewrite the representation as: 

 

P(A,B,C) = P(A|C)P(B|C)P(C) (2.10) 
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Storage-wise, this new representation is more efficient than Equation 2.8. That 

is, if A, B and C are binary, then the factor P(A|B,C) which requires 23 entries 

has been replaced by the factor P(A|C) requiring only 22 entries. 

Because of the efficiency gains that conditional independence gives us, 

Bayesian networks were developed to make the conditional independencies 

explicit. In a Bayesian network, a variable that conditions another variable in the 

factorisation (e.g. C conditions A and B in Equations 2.8 and 2.10, and B 

conditions A in Equation 2.8), becomes the parent of that variable in the 

network. It makes no sense to have directed loops in the network because this 

would represent a factorisation impossible to derive from the product rule. A 

Bayesian network, therefore, is a directed acyclic graph. Figure 2.1 depicts a 

Bayesian network for the distribution defined in Equation 2.8, and Figure 2.2 

depicts a network for the more efficient representation defined by Equation 2.9. 

 
 

A B 

C 

 
 

Fig. 2.1. A Bayesian network for P(A,B,C) = P(A|B,C) P(B|C)P(C) 

 
 

A B 

C 

 
 

Fig. 2.2. A Bayesian network for P(A,B,C) = P(A|C) P(B|C)P(C) 

 

The key advantage Bayesian networks give us is the ability to define the 

conditional independencies first, before specifying numerically the actual 

conditional probability distributions. 

A general conditional independence property of Bayesian networks is 

that any variable X in the network is conditionally independent of its non-

descendents ND(X) given its parents PA(X) (Pearl, 1988): 
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)PA()ND( XXX |C  (2.11) 

 

That is, if a variable’s parents become known, then any more 

information about nodes that are not on a directed path from X will be 

irrelevant. This is the so-called directed Markov property of Bayesian networks. 

It effectively sets bounds on the influence of new evidence, an important 

consideration for efficient inference that will be discussed in more detail later. 

The question arises as to how to use the directed Markov property to 

reduce the size of a general representation such as the factorisation in Equation 

2.3. Now, the product rule does not limit the order in which variables are 

factorised, so therefore if an ordering of nodes can be found such that each 

variable in the factorisation is conditioned on only its parents and its non-

descendents, then the non-descendents will “drop out” of the equation and each 

variable will be conditioned only on its parents. That is, we want to use 

conditional independence to simplify Equation 2.3 to: 

 

P(X1, X2,…, Xn) = P(X1| PA(X1))P(X2| PA(X2))….P(Xn| PA(Xn)) 

 = ∏
=

n

i
ii XXP

1

)|( )PA(  (2.12) 

 

It happens that a suitable ordering of nodes X1,  X2,…, Xn will always 

exist in a Bayesian network, and that ordering is called a topological ordering. 

A relatively simple algorithm can find the topological ordering (Cowell, 1999): 

initialise an empty list, then iteratively delete from the network any variable 

with no parents, and append it to the end of the list until all the variables have 

been appended. The list will then be a topological ordering of the nodes from 

which Equation 2.12 can be defined. Equation 2.12 is also known as a recursive 

factorisation, and is a standard method of numerically representing a Bayesian 

network. Note that a recursive factorisation corresponds to the topology of the 

Bayesian network, as there is one factor for each node and its parent set. 

Changing the numeric representation of a Bayesian network from 

Equation 2.3 to Equation 2.12 is a major efficiency gain. To illustrate, consider 

the example joint probability distribution from the start of this section that had 

n=16 binary variables. Recall that 65,536 entries were required to exp licitly 
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represent P(X1,…,X16). Now however, if each variable is on average dependent 

on only two parents, then an average of 23 = 8 conditional probabilities per 

factor need to be stored. This means that the entire joint probability distribution 

(specified by Equation 2.12) can be specified by approximately 8n = 128 

entries, a considerable saving. Of course, the size of the specification will 

increase as the number of dependencies increases, but, in practice, real-world 

Bayesian networks are sparsely connected and therefore they benefit from this 

representation. 

While conditional independence is highly advantageous for specifying a 

Bayesian network compactly, Equation 2.12 does not capture all the conditions 

under which variables within a network are independent. More generally, two 

variables are d-separated if evidence about one cannot influence the other. To 

determine whether or not two nodes are d-separated, one must consider all the 

undirected paths between the two nodes. Any node on any of the paths may 

“block” the dependence along that path, and therefore if all the paths between 

the two variables are blocked at least once, the two nodes will be independent 

(i.e., d-separated). The smallest set of nodes that d-separates two nodes X and Y 

is called the cut-set of X and Y (Pearl, 1988). 

Consider a node on a path in the Bayesian network. There are three 

classes of connection along that path: serial, diverging, and converging, and 

they are depicted in Figure 2.3. 

 

Serial: 
 

A C B 
 

Diverging: 
 

A C B 
 

Converging: 
 

A C B 
 

 

Fig. 2.3. Serial, diverging and converging connections to a node B on a path. 

 

Serial and diverging connections block the path if they are instantiated. 

That is, if B becomes known and B is a serial or diverging connection, then B 

effectively d-separates A and C. Note that a diverging connection represents the 
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special case of A being conditionally independent of its non-descendents given 

its parents, and is equivalent to Figure 2.2. 

The interesting case is that of the converging connection. If A and C 

converge to B, it transpires that they will be d-separated as long as B and none 

of B’s descendents are observed; if B or one of its descendents are observed, A 

and C become dependent. This interesting property of converging connections 

arises because A and C represent multiple explanations or causes of the 

converging node B. For example, suppose A is the proposition that Student X 

has mastered the topic and C is the proposition that Student X performs poorly 

on exams. If B is the proposition that Student X failed the exam, then A and C 

are two possible explanations for B and would therefore converge to B in a 

Bayesian network. If we subsequently observe B (say, to find that the 

proposition is true and the student did fail the exam), then B’s causes become 

dependent because if A is subsequently observed to be true as well, then it 

(intuitively) has some bearing on C (we might revise the probability of C 

downwards) and vice versa. 

Thus, d-separation characterises independence arising from lack of 

evidence as well as evidence. Note that any system for reasoning under 

uncertainty must capture these properties, as they are basic attributes of human 

reasoning (Jensen & Lauritzen, 2000). 

Finally, Bayesian network semantics will be mentioned. Consider the 

arcs in Figure 2.1. By applying Bayes’ Theorem, the direction of any arc can be 

reversed as long as a directed cycle is not induced. While changing the arc 

directionality may change the d-separation properties of the network, the overall 

joint probability distribution will be invariant. Therefore, technically, networks 

differing only in arc directionality can be considered equivalent. However, 

semantics are conventionally used to make particular configurations of arc 

directions unique. While not entailed by the underlying theories, the addition of 

semantics is convenient. The most common interpretation of an arc is causality: 

if A is a parent of B, then A is said to exert a causal influence on B, or precede B 

temporally, and not the other way around. Other semantics are certainly 

possible. For example, Collins et al. (1996) define arcs as pointing from skill to 

sub-skill, and Pearl (1988) has proposed a more general taxonomic hierarchy 

semantics for arcs. 
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2.3 Inference in Multiply-Connected Bayesian Networks 

Inference is the general problem of computing the posterior probability 

P(Q|E=e), for some evidence E=e and query Q (where Q ⊆  X and E ⊆  X). 

We defined the posterior probability using Bayes’ Theorem (Equation 2.4) in 

the previous section, but the problem is how to calculate this quantity 

efficiently. To illustrate how the naïve approach is inefficient, consider the 

Bayesian network depicted in Figure 2.4 and its recursive factorisation, 

Equation 2.13. The Bayesian network is a simple and contrived student model in 

which a student’s mastery of the domain topics (T1 and T2) implies her mastery 

of the various concepts (C1..C3), which in turn influences her performance on 

test questions (Q1..Q4). The questions may require the student to have mastered 

more than one concept. With this Bayesian network, we can perform inferential 

queries, such as P(Q1|T1=Mastered); diagnostic queries such as 

P(T2|Q3=Failed); or a combination of both, such as P(C2|Q4=Correct, 

T1=Not-Mastered). 

 
 

Q1 Q3Q2 

T1 

C2 C3

Q4

C1 

T2 

 
 

Fig. 2.4. Graphical structure of a Bayesian network. 

 

P(X) = P(Q1|C1,C3)P(Q2|C1)….P(C1|T1)…P(T1)P(T2) (2.13) 

 

Naïvely, we could compute P(Q,E) and P(E) by marginalising P(X), 

and then use the product rule to calculate P(Q|E) from which the probability 

table corresponding to our specific evidence, P(Q|E=e), can be read. However, 

this approach is in general, intractable because it is a global computation. For 
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even the simplest query, the marginalisation steps require summations and 

multiplications over all the variables in the network. 

A more efficient approach utilises conditional independence and the 

topology of the Bayesian network to perform a series of more efficient local, 

rather than global, computations. Local computation in a Bayesian network is 

the process of computing a variable’s posterior probability distribution from the 

posterior distributions of its neighbours – and only its neighbours. Thus, when 

evidence arrives at a node, its neighbours update themselves, then their 

neighbours update themselves, and so on, until the entire network “absorbs” the 

evidence. This process is analogous to propagation in a neural network, except 

that it is probabilistic consistency, as opposed to “activation”, that spreads 

across the network. 

Inference via local computation is highly efficient for singly-connected 

Bayesian networks (Pearl, 1988). Various algorithms with propagation time 

proportional to the number of variables in the network are described by Pearl 

(1988) and, specifically for implementation in an ITS, Murray (1999). However, 

the situation is more complex when the network is multiply-connected, because 

there are loops in the underlying undirected graph. To illustrate, consider Figure 

2.5. 

 
 

B C 

A 

D 
 

 

Fig. 2.5. A Bayesian network for P(A,B,C,D) = P(D|B,C)P(B|A)P(C|A)P(A) 

 

Figure 2.5 depicts a Bayesian network that is perfectly legal because it 

has no directed cycles, but it does contain the undirected loop A-B-C-D. As a 

result, evidence arriving at, for example, D, can propagate via two different 

paths (D-B-A and D-C-A) to A. The problem with local computation is that A 

will be unable to detect that it is receiving the same evidence twice, as it updates 

only from its immediate neighbours B and C. This is not a problem for singly-
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connected networks because there is always at most one path between any two 

variables, but singly-connected networks are highly restrictive and not suitable 

for many domains. For example, even the simple Bayesian network depicted in 

Figure 2.4 is multiply-connected, as can be seen from an isomorphic 

rearrangement of the nodes depicted in Figure 2.6. 

 
 

Q1 Q3Q2

T1 

C2 

C3

Q4

C1 

T2 

 
 

Fig. 2.6. The same Bayesian network as depicted in Figure 2.4, but with its nodes 

rearranged to make the undirected cycle T1-C2-Q3-C3-Q1-C1 explicit. 

 

We therefore present a general algorithm for inference in multiply-

connected Bayesian networks. The algorithm was introduced by Lauritzen & 

Spiegelhalter (1988) and further clarified by Jensen, Lauritzen et al. (1990) and 

Jensen, Oleson et al. (1990). It is most recently described in Jensen & Lauritzen 

(2000). Cowell et al. (1999) provides a tutorial introduction and overview of the 

algorithm for Bayesian network novices. The algorithm is a cornerstone for 

exact Bayesian network inference. Numerous variations (e.g. Kjaerulff, 1999) 

have since been proposed since in the literature, and the algorithm has been 

implemented in most of the common Bayesian network shells, e.g. HUGIN 

(Andersen, Oleson, et al., 1989), SMILE/GENIE (on World Wide Web at 

http://www2.sis.pitt.edu/~genie/), and MSBN (http://research.microsoft.com/ 

msbn). 

The basic approach of the Lauritzen/Spiegelhalter algorithm (hereafter 

referred to as the “L & S” algorithm) is to transform the Bayesian network into 

a singly-connected structure, and then perform local computations on that 

structure rather than the original network. The algorithm can be thought of as 
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having two stages: a compilation stage, in which the input is the original 

Bayesian network specification and the output is the singly-connected structure, 

and a propagation stage, in which evidence is absorbed and queries are 

performed on the new structure. If the network specification changes, 

compilation must occur again to produce an updated singly-connected structure 

before further queries can be performed. 

Another way of considering the algorithm is to think of two parallel 

processes; one graphical, in which the network structure is manipulated, and one 

numerical, in which the probabilities are manipulated. The numerical 

calculations always correspond to the graphical operations. Figure 2.7 depicts 

the architecture and functionality of the algorithm from these viewpoints. The 

details of this diagram will be explained in the following sub-sections. 
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Fig. 2.7. Overview of the L & S algorithm.  

2.3.1 Graphical Compilation 

The graphical compilation procedure involves taking the original Bayesian 

network and transforming it into a junction tree. The junction tree representation 

is equivalent to the original Bayesian network, except that it is singly-connected 

even if the original network was multiply-connected. The generation of a 

junction tree requires five steps, which are listed in Table 2.1. 
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Step  
1 Marry co-parents. 
2 Moralise network. 
3 Triangulate network. 
4 Form junction graph of cliques. 
5 Form junction tree. 

 

Table 2.1. Steps required to generate a junction tree. 

 

The first two steps are relatively straightforward. The marrying of co-

parents is the simple addition to the directed network of an edge between any 

two nodes that are parents of the same child, but not already neighbours. The 

moralisation of the network is the dropping of all directionality. That is, the 

directed network is turned into an undirected graph. The output of these two 

steps when applied to the example Bayesian network in Figures 2.4 and 2.6 is 

shown in Figure 2.8. The only non-adjacent co-parents in the original network 

are (C1, C3), and (C2, C3), and so edges between these pairs are added to the 

network. (The new edges are dashed in Figure 2.8.) 

 
 

Q1 Q3Q2

T1 

C2 

C3

Q4

C1 

T2 

 
 

Fig. 2.8. The married, moralised graph. 

 

The next step is triangulation: “short cuts” (or, in graph-theoretic 

terminology, chords) are successively added to every cycle of length 4 or more 

that does not already have a chord, until no such cycles exist. To illustrate, 

consider Figure 2.8. A number of cycles exist in this graph, such as Q1-C3-C1 

and C3-C1-T1-C2-Q3. However, neither of these are candidates for shortening 

because the former is a cycle of length 3 (not 4 or more), and the latter already 
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has a chord, C2-C3. In fact, there is only one cycle in Figure 2.8 appropriate for 

shortening, and that is the cycle C3-C1-T1-C2. There are two possible chords that 

could shorten this cycle: C1-C2 or T1-C3. In both cases, the new edge renders the 

graph fully triangulated. We have chosen to add the edge C1-C2, and the result is 

depicted in Figure 2.9. (An exact algorithm for triangulating the network will be 

discussed later.) 

 
 

Q1 Q3Q2

T1 

C2 

C3

Q4

C1 

T2 

 
 

Fig. 2.9. The triangulated graph. 

 

The fourth step involves firstly identifying the cliques in the triangulated 

graph, and secondly forming a new graph called a junction graph. A clique is a 

graph-theoretic concept defined as a “maximal, complete” subgraph. A 

subgraph is complete if every node in the subgraph is adjacent to every other 

node. For example, {C1,C2,T1} is a complete subgraph in Figure 2.9, but 

{C3,Q3,Q4} is not because there is no edge Q3-Q4. The maximal property adds 

the criterion that one cannot find another node in the network to add to the 

subgraph such that the subgraph will still be complete. In other words, 

{C1,C2,T1} is maximally complete because there is no other node that can be 

included in this subgraph whilst maintaining the completeness property. 

However, {C1,C3} is complete but not maximally so because {C1,C3, Q1}, the 

subgraph formed by adding Q1, is complete. The cliques of Figure 2.9, 

therefore, are: {T2, C3}, {C3, Q4}, {C1, C2, C3}, {C2, C3, Q3}, {C1, Q2}, {C3, Q1, 

C1}, and {C1, C2, T1}. 

In the junction graph, each node corresponds to a clique. Since there are 

seven cliques in Figure 2.9, there will be seven nodes in the junction graph. 
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Furthermore, variables from the original graph are likely to appear in more than 

one clique; to capture this in the junction graph, an edge is added between two 

cliques if their intersection is non-empty. Figure 2.10 is the junction graph 

derived from Figure 2.9. 

 
 

C1 C2 T1 C2 C3 Q1 

C1 Q2 C2 C3 Q3 

T2 C3 

C1 C2 C3 

C3 Q4 

 
 

Fig. 2.10. The junction graph. 

 

Recall that the motivation for the compilation stage is to produce a 

singly-connected structure on which inference via local computation is possible. 

This structure, the junction tree, is formed by simply “pruning” the junction 

graph until only a tree remains (see Section 2.3.5 for an algorithm that does 

this). However, the junction tree has an additional property not present in the 

junction graph; namely, the running intersection property: if any two cliques in 

the junction tree contain a mutual variable X from the original network, then 

every clique on the path between those two cliques must also contain X. This 

ensures that the junction tree does not have two or more disconnected 

“representations” of the same variable. The running intersection property thus 

restricts the way in which a junction graph can be “pruned” to a junction tree. A 

junction tree for Figure 2.10, with the clique intersections labelling the edges, is 

depicted in Figure 2.11. 

 
 

C1 C2 T1 C2 C3 Q1 

C1 Q2 C2 C3 Q3 

T2 C3 

C1 C2 C3 

C3 Q4 
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C2 C3 
C1 C2 

C1 

C3 

C3 

 
 

Fig. 2.11. A junction tree with the running intersection property. 
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2.3.2 Numerical Compilation 

A logical mapping exists between the original form of a Bayesian network and 

its recursive factorisation. For each variable X, there is one and only one factor 

P(X| PA(X)) in the recursive factorisation. Now that the original network has 

been converted into a junction tree, a new numeric representation with a logical 

mapping between cliques and factors can be derived. More specifically, if C is 

the set of cliques in the junction tree, a suitable new representation is: 

 

P(X1, X2,…, Xn)= ∏
=

n

i
ii XXP
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where P(Ci) is called a clique marginal, which is simply a joint probability 

distribution over the variables in the clique. 

One important change in the processing from now on is that beliefs 

rather than probabilities will be computed. A belief is equivalent to a 

probability, with the exception that individual beliefs are allowed to exceed 1, 

and there is no ensuing requirement that the entries in a belief table or vector 

must sum to unity. When beliefs are utilised, the relative rather than absolute 

differences between values becomes important. Other than that, beliefs and 

probabilities are identical. Beliefs allow for slightly more efficiency in the 

processing because the tables do not need to be normalised after each 

calculation. A belief table, denoted by BEL, can always be transformed into a 

probability table by dividing every entry in the belief table by the normalisation 

constant Z, i.e.: 

 

P(X) = Z-1BEL(X) (2.15) 

 

where Z is the sum of the ent ries in BEL(X). We therefore aim to transform the 

recursive factorisation of the Bayesian network into a product of beliefs (rather 

than probabilities) on the clique marginals. Thus, our new representation will 

be: 
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P(X1, X2,…, Xn) ∝  BEL(X1, X2,…, Xn) =∏
∈CC

iC
i

BEL )(  (2.16) 

 

The process by which the clique marginals BEL(C1) etc., are derived 

from the original conditional probabilities is straightforward and involves 

rearranging the terms of the recursive factorisation. Cowell et al. (1999, pp. 34) 

define an algorithm to achieve this, which is given in Listing 2.1. The algorithm 

transforms the recursive factorisation into a potential representation, from 

which the clique marginals can easily be derived via marginalisation. 

 

• For each clique Ci ∈ C, define a function 

ai(Ci). 

• Initialise ai(Ci) := 1 for each Ci. 

• For each factor P(X|PA(X)) in the recursive 

factorisation: 
o Find one clique Ci containing both X 

and PA(X) and redefine ai(Ci) := 

ai(Ci)P(X|PA(X)). 

 

List. 2.1. Defining a potential representation from a recursive factorisation (Cowell et 

al., 1999, pp. 34) 

 

More mathematical details of this process are available in Lauritzen & 

Spiegelhalter (1988) and Jensen et al. (1990). 

2.3.3 Graphical Propagation 

Having constructed a junction tree and transformed the representation of the 

Bayesian network into a product of clique marginals (Equation 2.16), evidence 

can now be propagated and queries performed. Propagation on a junction tree 

starts with a single clique receiving evidence, and its neighbours successively 

calibrate themselves to absorb the evidence. The evidence “flows” via the 

variables that are the intersection of the neighbouring cliques. Figure 2.12 

depicts the propagation of a single piece of evidence on a junction tree 
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consisting of two cliques. The evidence arrives at CLi and propagates to CLj in 

one time step. 

 

t=0: CLi CLj Si,j 

 

t=1: 
 

CLi CLj Si,j 

 
 

Fig. 2.12. Evidence arrives at CLi at time t=0, and CLj calibrates itself to CLi at time 

t=1. 

 

Propagating single pieces of evidence is relatively simple and this 

process could be used to sequentially propagate multiple pieces of evidence. 

However, a major advantage of the L & S algorithm is that multiple evidence 

items can be propagated on a junction tree simultaneously, and therefore much 

more efficiently (especially for parallel-processor implementations of the 

algorithm, e.g. Kozlov & Pal Singh (1994)). Figure 2.13 depicts a case where 

evidence is propagating to a single clique CLj from two of its neighbouring 

cliques, CLi and CLk. 

 

t=0: CLi CLj 
Si,j  CLk 

Sj,k 

 
 

t=1:  

CL i CLj 
S i,j CLk 

S j,k 

 
 

t=2:  

CL i CLj 
S i,j CLk 

S j,k 

 
 

Fig. 2.13. Evidence arrives at CLi and CLk at time t=0. CLj calibrates itself to both CLi 

and CLk at time t=1, then CLi and CLk calibrate themselves to CLj at t=2. 

 

An object-oriented scheme for propagation in junction trees is provided 

by Jensen et al. (1990). In this formulation, each clique in a junction tree is an 

object with two simple recursive methods: DistributeEvidence and 

CollectEvidence. The DistributeEvidence method has the clique asking each of 

its neighbouring cliques to calibrate themselves to it, and then it recursively 

calls DistributeEvidence in all of them. In this way, evidence is propagated 

around all the cliques in the tree. CollectEvidence is the inverse: the clique calls 
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CollectEvidence in all of its neighbours, then calibrates itself to them. Using 

these simple methods, this approach to Bayesian reasoning can be easily 

conceptualised. 

2.3.4 Numerical Propagation 

The numerical formulation of propagation consists of two rules for updating 

clique marginals: a simple rule for propagating evidence from one clique to 

another, and a more generalised rule for absorbing multiple evidence. Both rules 

are derived from the product rule. 

Let BELt(X) denote the belief distribution over variables in set X at time 

t. Consider two adjacent cliques in the junction tree, CLi and CLj. Now, CLi 

and CLj must have a non-empty intersection in order to be adjacent, and that 

intersection can be defined as another set: 

 

Si,j = CLi ∩  CLj (2.17) 

 

Si,j is called the separator of CLi and CLj. Now consider the remainder of both 

cliques when the separator is subtracted: 

 

Ri = CLi – Si,j, Rj = CLj – Si,j (2.18) 

 

Ri and Rj are called the residuals. 

Because a clique can be viewed as the union of the residuals and 

separators, a clique marginal can be defined by the product rule as: 

 

BELt(CLi) = BELt(Ri, Si,j) = BELt(Ri|Si,j)BELt(Si,j) (2.19) 

 

and by marginalisation, we can compute the subjoint belief over the separators 

from the joint belief over the clique: 

 

BELt(Si,j) = ∑
− ji,i SCL

iCL )(tBEL  (2.20) 
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Note that we can apply Equation 2.20 to both of the cliques CLi and CLj 

to get BELt(Si,j). Therefore, to indicate from which clique the distribution over 

separators was computed, a subscript i is used. For example, )( ji,St
iBEL  

indicates a distribution computed by applying Equation 2.20 to the belief over 

the ith clique, BELt(CLi), and not the jth clique, BELt(CLj). 

Given that two neighbouring cliques CLi and CLj can both compute 

belief distributions over their common separators, we say they are consistent if 

)( ji,St
iBEL = )( ji,St

jBEL , and inconsistent if )( ji,St
iBEL ? )( ji,St

jBEL . Ideally, 

they should always be consistant. However, if evidence arrives at one clique but 

not its neighbouring cliques, then that clique will become inconsistent with its 

neighbours. To absorb the evidence, the neighbouring cliques make themselves 

consistent via calibration. Thus, “propagation” or “evidence absorption” in a 

junction tree is the successive calibration of cliques to ensure consistency. 

Calibration of a single item of evidence is a relatively simple process. 

Suppose evidence arrives at clique CLi at t=0, as in Figure 2.12. BEL0(CLi) is 

the posterior belief distribution over the clique given the evidence, but so far its 

neighbour has not been updated. Therefore, CLj will be inconsistent with CLi 

and must calibrate.  

By Equation 2.19, )(0
ji,SjBEL  is a factor of BEL0(CLj). To calibrate, we 

essentially replace )(0
ji,SjBEL  in the factorisation with )(0

ji,SiBEL , and compute 

the new belief distribution over the clique, BEL1(CLj). That is, we delete the 

factor reflecting that state-of-affairs prior to the evidence ( )(0
ji,SjBEL ), and 

insert an equivalent factor that does incorporate the evidence ( )(0
ji,SiBEL ). This 

new factor also makes the cliques consistent. The entire operation can be 

captured by a single equation: 

 

)(
)(

)(
)( 0

0

0
1

ji,
ji,

j
j S

S

CL
CL i

j

BEL
BEL

BEL
BEL =  (2.21) 

 

By successive application of Equation 2.21, evidence propagates from 

clique to clique throughout the junction tree. 
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A generalisation of Equation 2.21 is used to update a clique (e.g. CLj) 

when evidence arrives at more than one of its neighbours (e.g. CLi and CLk), as 

in Figure 2.13. To do this, the separators between the clique and each of its 

neighbours must be considered. (In this example, the separators are Si,j and Sj,k .) 

The update rule allowing CLj to absorb evidence from both sources 

simultaneously is a generalisation of Equation 2.21: 

 

)()(
)()(

)(
)( 00

00

0
1

kj,ji,
kj,ji,

j
j SS

SS

CL
CL ki

jj

BELBEL
BELBEL

BEL
BEL =  (2.22) 

 

Now that CLj has been updated, it will still be inconsistent with its 

neighbours because the evidence from CLi has not propagated to CLk and vice 

versa; it has only got as far as CLj. The final step is to apply Equation 2.21 to 

calibrate CLi and CLk to CLj : 
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 (2.23) 

 

To summarise, the numeric propagation part of the L & S algorithm is 

basically the propagation of consistency from a clique to its neighbours in a 

junction tree (a process called calibration). Consistency is a property belonging 

to pairs of neighbouring cliques, and is achieved when marginalising on the 

variables shared by both neighbours yields the same belief distribution. 

Finally, the last step by which a general query P(Q|E=e) is calculated 

will be mentioned. We have already shown how the junction tree absorbs the 

evidence E=e. The final step is to find one or more cliques containing the 

variable(s) Q, and marginalise BEL(Q) from them. BEL(Q) can then be 

normalised to yield the posterior probability distribution over Q. 

2.3.5 Efficiency and Implementation Issues 

The compilation stage of the L & S algorithm contains two steps that admit 

many possible solutions: graph triangulation (Step 3), and junction tree 
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construction (Step 5). In this section, some algorithms for graph triangulation 

and junction tree construction are described. 

Graph triangulation has long been known to be an NP-Hard problem 

(Yannakakis, 1981). As a result, considerable research has been undertaken to 

develop heuristic, near-optimal solutions. One common approach is called one-

step look ahead triangulation (Cowell et al., 1999) and is shown in Listing 2.2. 

Basically, this approach takes each node and its neighbours, and “fills in” edges 

between them to form a completely connected subgraph in the network. 

Note that the order in which nodes are numbered depends on a user-

defined crit erion, c(V). Nodes can be selected to maximise or minimise this 

quantity. While the algorithm is relatively straightforward, its efficiency and the 

quality of the resulting triangulation will depend on how c(V) is defined. Cowell 

et al. (1999, pp. 58) suggest that c(V) be set to the size of the subjoint 

distribution over V and its neighbours, and therefore the function should be 

minimised. 

 

• Start with all vertices unnumbered. 

• Set i := n, where n is the number of nodes 

in the graph. 

• Do until there are no more unnumbered 

vertices: 
o Select an unnumbered node V that 

optimises the criterion c(V). 

o Number it with i (i.e. set Vi := V). 

o Form the set Ci consisting of Vi and 

its neighbours in the graph. 
o Add edges between the nodes in Ci to 

make Ci a complete subgraph. 

o Decrement i. 

 

List. 2.2. One-Step Look Ahead Triangulation (Cowell et al., 1999, pp. 58). 

 

Graph triangulation is not always necessary. It is quite possible that 

following the marrying and moralisation steps of the compilation, the network 

will already be triangulated and that therefore the execution of one step look 
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ahead is unnecessary. Maximum cardinality search, given in Listing 2.3, is an 

algorithm for determining whether or not a graph is triangulated. It is a highly 

efficient algorithm that operates in O(n+e) time, where n is the number of nodes 

and e is the number of edges in the network. Note that ne(V) is a function 

returning V’s neighbours in the network, but excludes V itself. 

 

• Set Output := “Graph is Triangulated”. 

• Set i := 1. 

• Set L := {} 

• Set V to all the nodes in the network. 

• For each node V ∈ V, set c(V) := 0. 

o Do while L ? V: 
o Set U:=V-L 

o Select any V from U maximising c(V) and 

number it i (i.e. set Vi := V) 

o Set Pi := ne(Vi) n L. 

o If Pi is not a complete subgraph, Then: 

Set Output = “Graph is not 

triangulated”. 

Else 

Set c(W)=c(W)+1 for each W ∈ 

ne(Vi) n U. 

o Set L := L ∪ {Vi} 

o Increment i. 

• Report Output. 

 

List. 2.3. Maximum Cardinality Search (Cowell et al., 1999, pp. 55). 

 

Besides determining the triangulatedness of a graph, maximum 

cardinality search also provides a useful numbering of the nodes V1…Vk. This 

ordering is special because it enables the efficient construction of a junction tree 

with the running intersection property. Thus, even if it is known that the graph is 

triangulated, maximum cardinality search is necessary to obtain the node 

ordering. Listing 2.4 is an algorithm that takes the numbered ordering of nodes 

produced by maximum cardinality search and outputs not only the cliques 
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CL1... CLp for the junction graph, but also a particular numbering of those 

cliques that is useful for building the junction tree from the junction graph.. 

 

• Start with the node numbering V1…Vk and the 
sets P1…Pk obtained by maximum cardinality 

search. 

• Denote the cardinality of Pi by pi. 

• Call Vi a “ladder node” if i=k or if i<k and 
pi+1<1 + pi. 

• Denote the jth ladder node, in ascending 

order, by λj. 

• Define the clique CLj = {λj} ∪ P(λj). 

 

List. 2.4. Finding the Cliques of a Triangulated Graph (Cowell et al., 1999, pp. 56). 

 

The ordering of the cliques produced by Listing 2.4 is crucial for the 

final algorithm presented here: junction tree construction. Listing 2.5 shows 

how to construct such a junction tree from the cliques and the clique ordering. 

Other algorithms for finding the optimal junction tree have been proposed by 

Jensen & Jensen (1994) and Kjaerulff (1992). 

 

• Associate a node of the tree with each 
clique CLi. 

• For i=2..p, add an edge between CLi and CLj 

where j is any one value in {1,…,i-1} such 

that CLi ∩ (CL1 ∪ CLi-1) ⊆ CLj. 

 

List. 2.5. Junction Tree Construction  (Cowell et al., 1999, pp. 55). 

 

To summarise, maximum cardinality search is an algorithm for 

determining if a network needs to be triangulated or if it is already in the 

triangulated state. If it is not triangulated, one-step look ahead triangulation is an 

effective near-optimal algorithm to triangulate the graph. Maximum cardinality 

search also orders the nodes in the network in a special way, such that it 
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becomes easier to find the cliques and construct a junction tree with the running 

intersection property, as demonstrated by the relatively simple algorithms 

shown in Listings 2.4 and 2.5. 

2.3.6 Summary 

Various other exact inference algorithms besides L & S have been proposed, but 

it has been shown that many of them contain a hidden triangulation step 

(Shachter et al., 1991). However, a key advantage of the L & S algorithm is that 

the computationally difficult triangulation step is shifted to the compilation 

stage, and only needs to be invoked once following the specification of the 

Bayesian network, rather than once per query. Propagation on the junction tree 

is therefore mostly highly efficient, as long as the specification of the Bayesian 

network does not change between queries. 

Propagation will not be efficient, however, when the networks is highly 

connected or nearly complete. In this case, the junction tree will clearly have a 

high ratio of cliques to variables, and therefore propagation time will be high. 

Fortunately for most real-world problems, the number of cliques compared to 

the number of variables is much lower, and therefore the L & S algorithm is an 

effective choice of inference algorithm. 

2.4 Bayesian Network Induction 

Bayesian networks can be learned from data. In this section, two classes of 

Bayesian network induction algorithm are introduced and described. The first 

class deals with the induction of the network’s conditional probability tables 

(the parameters) from data when the structure of the Bayesian network is 

already known. The second class deals with the induction of the Bayesian 

network structure itself. 

2.4.1 Parameter Learning 

An approach to parameter induction when no data is missing is described by 

Heckerman (1999) and Krause (1998). Let X=xk| PA(X) = pa(X) (which can be 
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shortened to xk|pa(X)), represent an observation of variable X in state xk when its 

parents PA(X) are in state pa(X). A standard Bayesian network maintains, for 

each possible xk|pa(X), a single conditional probability P(xk|pa(X)). An 

approach to learning conditional probabilities is to treat P(xk|pa(X)) itself as an 

uncertain variable, and to calculate its expected (average) value from the data. 

By assuming that the probability distribution over P(xk|pa(X)) is a special type 

of distribution called a Dirichlet distribution, the expected value then 

corresponds to the frequency. Suppose xk|pa(X) has been observed kα  times 

while PA(X)=pa(X) has been observed α  times. Obviously kα =α . Then, it is 

proven by Heckerman (1999) that the expected value of P(xk|pa(X)) is: 

 

E[P(xk|pa(X))] = 
α

α k  (2.24) 

 

If PA(X)=pa(X) is observed a further N times, while Nk further observations of 

xk|pa(X) are made, the expected value of the conditional probability updates 

simply to: 

 

E[P(xk|pa(X))|observations] = 
N
Nkk

+
+

α
α

 (2.25) 

 

This is a useful rule for on- line learning. The parameters α  and kα  are known 

as sufficient statistics, because they are adequate to define the conditional 

probabilities of a Bayesian network. Once they have been calculated, the 

training data from which they came can be discarded. 

Other more complex approaches to parameter induction deal with cases 

of incomplete and noisy data (Bauer et al., 1997; Neal & Hinton, 1999). 

2.4.2 Structural Learning 

An algorithm for learning the structure of a Bayesian network from data is 

described in Cheng et al. (1997, 1998). The algorithm makes the assumption 

that the higher the mutual information between two variables in the data, the 
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more likely it is that an arc should connect them in a Bayesian network. The 

mutual information between X and Y is defined as: 

 

∑=
YX YPXP

YXP
YXPYXI

, )()(
),(

log),(),(  (2.26) 

 

The algorithm has three phases: drafting, thickening and thinning. In the 

first phase, I(X,Y) is computed for every pair of variables (X,Y). The pairs are 

then sorted into the list L according to their mutual information, from highest to 

lowest. Pairs for which I(X,Y)  is less than some small threshold e are excluded 

from L. Starting with the pair (X,Y) in L that has the highest mutual information, 

if there is no undirected path between X and Y in the Bayesian network so far, 

an undirected edge is added between X and Y, and (X,Y) is deleted from L. This 

is repeated successively until L contains only pairs of variables that are not 

directly adjacent, but are connected via a longer path. The output of this phase is 

either one singly-connected network spanning the entire network, or multiple 

disconnected singly-connected networks. 

To illustrate the algorithm in action, let us consider the induction of a 

Bayesian network with five variables A,…, E. Suppose eight pairs of nodes have 

a mutual information greater than e, and that they are ordered from highest 

mutual information to lowest yielding L = {A-B, B-E, E-C, A-C, B-C, A-D, D-C, 

D-E}. Now, A-B, B-E, and E-C are added directly to the network since there is 

no path already between them. A-C and B-C cannot be added because the 

addition of the first three edges resulted in a paths connecting A and C, and B 

and C. A-D is next on the list to be added, and after this is done, the network has 

become singly-connected. The remaining pairs in L cannot be connected with an 

edge because a path already exists between them. The edges remaining in L are 

{A-C,B-C,D-C,D-E}, and the state of the network after drafting is depicted in 

Figure 2.14. 
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A B C 

D 

E 
 

 

Fig. 2.14. The network after the drafting stage. 

 

The next step, thickening, uses d-separation to add additional edges to 

the network. The algorithm considers each of the remaining (X,Y) pairs in L. It 

then invokes a search procedure to find the cut-set that d-separates X and Y. If a 

cut-set cannot be found, then X and Y must be dependent and so an edge is 

added between them. After this stage, the algorithm is guaranteed to have found 

all the edges in the final Bayesian network. Figure 2.15 depicts the thickened 

network. Edges A-C, B-C and D-C have been added from L because no cut-sets 

can be found d-separating these pairs of nodes. 

 
 

A B C 

D 

E 
 

  

Fig. 2.15. The network after the thickening stage. New edges added from L are dashed. 

 

However, unwanted surplus edges may have been added as a result of 

the linear order in which edges are added to the network from L. For example, 

suppose an edge is added between X1 and Y1 because no cut-set can be found 

that d-separates them, and assume that later in the sequence the edge X2-Y2 is 

also added. It may be the case that X2-Y2 is sufficient to create a cut-set d-

separating X1 and Y1, thus obviating the need for the edge X1-Y1 in the first 

place. X1-Y1 is thus a surplus edge.  

The third step, thinning, compensates for this problem. It considers 

every pair of adjacent nodes (X,Y) and temporarily removes the edge X-Y from 
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the network. It then attempts, using a procedure similar to that used in the 

previous step, to find a cut-set between X and Y. If such a cut-set is found, edge 

X-Y is permanently removed from the network; otherwise, it is returned. The 

output of this step is the final (undirected) structure of the Bayesian network. 

Consider our example. Note that edge A-C was added to the network before 

edges B-C and D-C. If it is the case that the addition of these latter two edges 

results in a cutset (e.g. {B,D}) d-separating A and C, then the thinning step 

would remove A-C permanently. The result of this is depicted in Figure 2.16. 

 
 

A B C 

D 

E 
 

 

Fig. 2.16. The network after the thinning stage. Note that the edge A-C has been 

dropped. 

 

All that remains is to orientate the edges. Consider the node B on a path 

A-B-C in Figure 2.16. Recall that if B is a converging connection, then B’s 

neighbours A and C on the path will be independent until B or one of its 

descendents is instantiated, at which point they become dependent. Therefore 

we can analyse the data to determine all the triplets of variables along a path in 

the network having this property, and thereby identify all the converging 

connections in the network. The remaining nodes must be either serial or 

diverging connections. In theory, this approach may not orient any edges at all 

(e.g. consider a Bayesian network with no converging connections at all), but in 

practice, a very high proportion of edges are oriented. When an edge cannot be 

oriented, the orientation task is left to the domain expert. In the case of our 

example, nodes D and B are found to be converging connections on all their 

paths, which allows every edge except E-C to be orientated. 
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A B C 

D 

E 
 

 

Fig. 2.17. The network after its edges have been oriented. Note that edge E-C cannot be 

oriented. 

2.5 Decision Theory Basics 

In this section, decision theory (Horvitz et al., 1988; Savage, 1954) will be 

briefly introduced. Whereas Bayesian networks are used to update beliefs from 

initial beliefs and observations, decision theory is a rational means of optimising 

behaviour by “fusing” uncertain beliefs with preferences. Suppose a rational 

agent is faced with the problem of selecting a single action from a set of 

possible actions D = {d1, d2…, dq}. (It is possible that one of the actions is the 

decision to perform no action.) If X =  {x1, x2, …, xn} represents the possible 

outcomes of D, then decision theory requires the agent to have a real-valued 

preference U(X, D) defined for each combination of values that X and D can 

take where P(X|D) is non-zero. U(X,D) is known as the utility function, and it is 

assumed that the agent’s preferences can in fact be translated into such a 

numeric form. Sometimes it is more convenient to encode the agent’s 

preferences along more than one dimension – this is permitted and is known as 

the multi-attribute utility, but it will not be discussed here. 

The agent must also be able to estimate the conditional probability 

distribution of X given D, a value that we have already shown can be efficiently 

calculated with a Bayesian network. One can then characterise a decision 

problem as a tree in which each path from root to leaf is composed of a 

sequence of edges alternately labelled with a decision and an outcome. The 

simplest case of a single decision D followed by a single outcome X is depicted 

in Figure 2.18. 
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Fig. 2.18. A decision tree for a single decision. 

 

The interpretation of the decision tree is as follows. The square nodes 

represent decision points where the decision-maker chooses an action D=di and 

thereby selects a branch of the tree to follow. The circular nodes are chance 

nodes where “nature” selects an outcome/branch X=x j with probability P(X=x j| 

D=di). When a leaf node has been reached, the process is over and the final state 

has some utility U(X=x i, D=dj) as defined by the utility function. Working 

backwards from leaf to root, one can calculate the expected utility (see below) 

of each alternative {d1, d2…, dq} from the individual utilities on the leaves. The 

chance nodes are also labelled with the expected utilities. Note that this scheme 

can be extended to modelling multiple decisions rather than just one. For 

example, if one is going to make two decisions D1 followed by D2 with 

outcomes X1 and X2 respectively, one could define a decision tree in which the 

nodes representing D2 and X2 succeed the chance nodes representing the first set 

of outcomes, X1.  

A more compact, though less clear and explicit, representation is the 

influence diagram (Howard & Matheson, 1984). An influence diagram is the 

extension of the Bayesian network to incorporate nodes representing decisions 

(squares) and utility functions (diamonds). Figure 2.19 illustrates an influence 

diagram equivalent to the decision tree in Figure 2.18. As in a Bayesian 

network, the arcs indicate causality, so the outcome X is interpreted as being 
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caused by the decision D that is made, and both D and X  lead to the utility U. D 

is treated as if it is a normal node in a Bayesian network, with the exception that 

it must always be instantiated to one of its values. The utility node U specifies a 

utility value for each combination that its parents can take. Clearly, then, one 

can see that the diagram is specified by exactly the same information as the 

decision tree; namely, a utility function U(X,D) and a conditional probability 

distribution P(X|D). 

 

 

U D X 

 
 

Fig. 2.19. A simple influence diagram. 

 

The expected utility of an action is a measure defined as the probability-

weighted sum of the utilities of each possible outcome of the action: 
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The principle of maximising expected utility states that the agent should select 

the action D=di that maximises this quantity. 

Expected utility is best explained by considering the decision tree in 

Figure 2.18. Each leaf in the tree has a utility. However, prior to making the 

decision D, the outcomes of D are uncertain. That is, if a decision such as D=d3  

is selected, then it is possible to follow any path through the tree, as long as it 

contains the edge d3 and the probability of the outcome is positive. The expected 

utility accounts for this uncertainty by averaging the utilities of the potential 

outcomes. 

Another explanation can be made in terms of the influence diagram in 

Figure 2.19. Because one of the parents of U, namely X, can be uncertain, one 

must allow for this uncertainty. In other words, the uncertainty in X propagates 

to U in a similar fashion to the way uncertainty propagates between nodes in 

Bayesian networks. The utility function U can therefore be thought of as having 
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a probability distribution over different possible utility values, and the expected 

utility is simply the average value of this distribution. 

Upon reflection, it is apparent that considering only the next single 

decision is not truly optimal. A decision D1=d1 may have a low expected utility, 

but it may well be the case that when D1 is considered in conjunction with the 

decision that will follow it, e.g. D2, then one of the decision sequences starting 

with D1=d1  may in fact have the highest expected utility. In other words, one 

should ideally consider all possible future action sequences, not jus t the next 

action. In practice, however, an agent is limited computationally and must make 

a decision within a finite amount of time. This is certainly the case with 

decision-theoretic ITSs, which must make the decisions on- line. However, some 

systems do perform look-ahead beyond the next single action. This is most 

important in planning in robotics (e.g. Dean, 1990). 

It is also possible to take into account the cost of a decision. This is a 

factor independent of the decision’s outcomes, but it may be important. For 

example, in medical diagnosis a test such as a biopsy may be highly informative 

(and therefore have high expected utility) compared to a simpler test (with lower 

expected utility), but the higher cost of the biopsy may make the simpler test 

more appealing initially. The expected utility function can therefore be 

redefined to account for cost: 
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The practice of limiting the look-ahead of an agent and incorporating 

cost into the decision-theoretic calculations is an extension to decision theory 

known as bounded rationality (Simon, 1976). 

Computationally, Equation 2.28 is straightforward enough to apply 

without requiring complex algorithms for optimisation, provided the P(X|D) 

factors are calculated efficiently. It has already been shown in Section 2.3 that 

efficient algorithms exists for this. 
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2.6 Summary 

Two normative theories, Bayesian probability theory and decision theory, have 

been introduced. The former is a system for reasoning under uncertainty, and 

the latter a rule for acting under uncertainty. Both are highly relevant to ITS 

design, because they provide a rational means for the specification and 

application of learning theories. The heart of Bayesian reasoning is Bayes’ 

Theorem (Equation 2.4) which shows one how to compute the posterior 

probability of a hypothesis from its prior probability and an observation. A 

Bayesian network and its associated algorithms are an efficient means of 

representing and evaluating Bayes’ Theorem for multiple hypotheses and 

observations. Decision theory combines the posterior probabilities with 

preferences, and by a process of weighted averaging, assigns an expected utility 

to each alternative. The alternative with maximum expected utility is always 

selected. 

A number of mathematical results were introduced in this chapter. 

Conceptually speaking, the most significant are Equation 2.3, which shows how 

to construct a joint probability distribution, and the definition of marginalisation 

(Equation 2.6) that defines the mechanism for extracting individual probabilities 

from joint distributions. Bayes Theorem (Equation 2.4) is essential for a 

conceptual understanding of how reasoning is implemented. The fundamental 

mathematical representation of Bayesian networks is given by Equation 2.12. 

Regarding decision theory, the main result is Equation 2.28 that defines the 

expected utility of an action. Technically, Equations 2.22 and 2.23 define the 

focal point of Bayesian inference using the Lauritzen-Speigelhalter algorithm. 

Equations 2.24 and 2.25 are the key rules for induction of Bayesian network 

conditional probabilities when learning from data, and Equation 2.26 (the 

definition of mutual information) is the central measure used to determine the 

structure of induced Bayesian networks. These key results are applied later in 

the thesis. 

Other models of uncertain reasoning such as fuzzy sets (Zadeh, 1983) 

and Dempster-Shafer theory (Shafer, 1986) are not as general as probability 

theory (Horvitz et al., 1988). One reason for the proliferation of alternate 
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schemes for uncertain reasoning in AI was the intractability of the direct 

application of the tenets of probability theory (Jensen, Lauritzen et al., 1990). 

However, since then recent algorithms for implementing normative theories 

such as the one described in Section 2.3 have overcome this problem. It has 

been demonstrated that Bayesian networks optimise the spatial storage 

requirements of a joint probability distribution’s representation, and that the 

compilation of a junction tree on which inference is performed optimises the 

time per query. The induction of Bayesian networks from data has also been 

discussed and illustrated. In Chapter 6, an ITS with a Bayesian network student 

model learned from data (both off- and on- line), and pedagogical strategies 

based on expected utility maximisation, is introduced. 
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Chapter 3 

The Student Model and Its Applications 

A student model is defined by Holt et al. (1994) as “…a representation of the 

computer system’s beliefs about the learner and… therefore, an abstract 

representation of the learner…” Student modelling therefore encompasses the 

entire spectrum of possible attributes that a student can have. However, it is 

important to distinguish between student modelling in practice and the more 

general task of user modelling. A student model is a core component of many 

intelligent computer-based instructional systems, and research on student 

modelling has mainly focused on representing traits of the student directly 

related to the desired pedagogical outcomes of such systems, such as the 

student’s mastery of the domain and the ir domain-specific behaviour. User 

modelling, in comparison, is much more general and research can be focused on 

traits other than mastery. User modelling domains are typically non-teaching 

domains. 

It is useful to consider student modelling in the light of instructional 

design and learning theory. There are three main learning theories: 

behaviourism, cognitivism, and constructivism. The first two theories are 

certainly compatible with the notion of modelling the student, but 

constructivism presents some difficulties. However, student modelling is not 

entirely at odds with constructivist theories. 
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The oldest learning theory is behaviourism, which treats the learner as if 

he/she is a black box. The behaviourist learner is similar to a machine that 

produces responses when exposed to stimulus. The task of learning is to teach 

the student a particular response to be made when a particular stimulus is 

presented, a process known as conditioning. Repeatedly presenting the stimulus 

and reinforcing correct responses while punishing incorrect responses is one 

means of achieving this. Instructional goals based on behaviourism are 

characterised by being “specified, quantified, terminal behaviours” (Mergel, 

1998). For example, a student is said to have mastered the domain when he or 

she scores more than 90% on a test. 

Cognitivism builds on behaviourism by postulating that learning is the 

“…acquisition or reorganisation of the cognitive structures through which 

humans store and process information.” (Good & Brophy, 1990, pp. 187). In 

other words, cognitivism explains learning as the formation and reformation of 

mental representations of the domain knowledge. So the cognitivist learner is 

definitely not a black box, and cognitivist models describe this internal 

representation. The knowledge structures are called schema, and schema can be 

combined, extended or altered to accommodate new information. Memory in 

this model is divided into sensory (which lasts up to four seconds), short-term 

(which can be retained for up to 20 seconds, and has a maximum capacity of 7 

plus or minus 2 items), and long-term (in which “deeper” processing such as the 

generation of linkages occurs). The theory also proposes a number of “effects” 

(Mergel, 1998), which can increase the efficiency and effectiveness of learning, 

such as the “organisational effect” (categorised information is easier to 

remember than uncategorised information) and the “meaningful effect” (new 

information related to existing schema is easier to learn). 

The third and final theory is constructivism. Whereas behaviourism and 

cognitivism are objective theories of learning, in which predetermined 

behaviours and/or cognitive structures are transferred to the student, 

constructivism is a subjective theory in which learners are said to construct their 

own reality based on experience. New knowledge is formed, rather than 

transferred, from the learner’s previous experiences. Their existing mental 

structures and beliefs are used to interpret objects and events. Thus, every 

student is expected to construct his or her own unique reality. Furthermore, 
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constructivism says that domain knowledge should not be decomposed and 

presented to the student in parts; instead, learning should take place in realistic 

settings with all the ambiguities and extraneous details that entails. As a result, 

the student will be able to construct knowledge better adapted to the context in 

which they will apply it. There are a number of other important constructivist 

principles following from this subjective view of learning. 

Where does the traditional ITS with a student model fit within this 

psychological framework? The notion of using a test to assess the mastery level 

of student is decidedly behaviourist. ITSs that also attempt to model the internal 

state of the student are clearly cognitivist in origin. However, constructivism is 

at odds with the traditional ITS. If every student constructs a reality unique to 

himself or herself, based on his or her prior knowledge and experiences, then it 

becomes futile to assume that a pre-specified student model can be a reasonable 

description of the student. Furthermore, the traditional ITS decomposes domain 

knowledge into parts and teaches students part-by-part. This is the basis for 

traditional student modelling: if the student has mastered 50% of the parts, for 

example, then the ITS considers that she has mastered 50% of the domain 

knowledge. This is completely at odds with constructivism, which advocates 

realistic settings in which problem-solving is learned in its full and glorious 

detail without decomposition. Because of these disparities, learning software 

based on constructivist principles has in the past been based on the exploratory 

or simulation environment. There is no direct intervention or instruction, and 

students are left to explore the environment at their own pace. 

However, as pointed out by Akhras & Self (2000), constructivism and 

student modelling can be compatible if the “intelligence” in the ITS is directed 

at supporting constructivist principles. For example, an important constructivist 

principle is reflection, and the student needs to reflect on problem-solving in 

order to construct their knowledge. If the student demonstrates an inability to 

reflect, for example, then this information could be stored in a student model. 

The student model, in turn, is used to tailor the environment such that reflection 

is encouraged. In this way, student modelling can be compatible with 

constructivism. 

Another issue is that recent research has shown that some students may 

lack the meta-cognitive skills required to make efficient use of constructivist 



  52 

environments. For example, Aleven & Koedinger (2000) provide evidence that 

children lack the ability to seek help (or even recognise when they need help) in 

the domain of Geometry. It may well be the case, therefore, that student model-

directed intervention is suitable for certain types of student in certain domains. 

This view is supported by Mergel (1998), who states that novices can often 

become “lost” in constructivist environments because they have no prior 

knowledge on which to build. A number of theorists have advocated a transitory 

model of learning, where novices are taught initially in an objective behaviourist 

or cognitivist fashion, before progressing to a subjective constructivist 

environment when they become intermediate- level students (Mergel, 1998). 

However, there is no currently no universal agreement and further research 

should be undertaken in this area from an ITS perspective. 

Having shown where student modelling fits into instructional science, 

the remainder of this chapter reviews approaches to student modelling from two 

different perspectives. The first perspective (Section 3.1) considers the various 

approaches to student modelling that have arisen over the field’s history, 

discussing the advantages and disadvantages of each. Student models are 

classified according to their content, and the persistence of their representation 

(whether it is long- or short-term). Over the past twenty years, the student 

modelling field appears to have become more cognitivist as increasingly 

detailed cognitive models have been advanced. However, the drawback of this 

is a decrease in the tractability of these models. The second perspective (Section 

3.2) has a much more recent and constrained focus, considering only Bayesian 

student modelling. Bayesian network-based student models, e.g. Gertner & 

VanLehn (2000) and Millán et al. (2000), have become popular recently and it 

is fitting, therefore, to examine the various different approaches in order to place 

the work of this thesis in context. Section 3.3 continues in this vein, examining 

how Bayesian network student models have been used to solve particular 

pedagogical decision tasks such as problem selection. Section 3.4 summarises 

the chapter. 
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3.1 Student Models: A Survey 

Student models can be classified by a number of factors, ranging from how they 

are generated, to their content, and then to their application. In this section, two 

factors are used as the basis for classification. Firstly, the persistence of the 

representation is considered important. Do the beliefs about the student typically 

last for a short duration, such as subsequent to a single problem attempt, or are 

they retained to build up a more long-term model of the student? Most ITSs 

implement both types of representation, having a short-term representation that 

is used to update a long-term student model. For example, SQL-Tutor (Mitrovic 

& Olhsson, 1999) combines overlays (the long-term representation) with 

Constraint-Based Modelling (CBM, the short-term representation). A particular 

approach may be more specific to one type of representation (long-term or 

short-term) than the other. For example, CBM is basically a definition of a 

short-term representation that has little to say about how the student should be 

modelled long-term. 

The second factor is content. What beliefs about the student does the ITS 

actually model? The answer to this question generally depends on the 

persistence. Short-term beliefs must, by their nature, be very specific, e.g. “the 

student violated rule X on problem Y”. These beliefs can be inferred or they 

might be observed matters of fact. The long-term model, on the other hand, 

typically contains a much greater proportion of inferred beliefs. These beliefs 

can also be much more abstract, such as beliefs about the student’s domain 

mastery, misconceptions, and behaviour. Figure 3.1 depicts the categorisation of 

student models that will be considered in this section. 

 Student Models 

Short-Term Long-Term 

Overlays Stereotypes Perturbation Model-Tracing CBM  
 

Fig. 3.1. Approaches to student modelling. 
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The main distinction between the four long-term student modelling 

approaches is as follows. Stereotypes are the simplest student model. They are 

simple abstract classifications of students into groups that are fixed, either 

permanently or initially. Overlays are more detailed representations of the 

student. They focus on modelling the student’s domain knowledge as a subset of 

a domain expert’s knowledge. The domain must therefore be decomposed into a 

set of items, and the overlay is simply a set of masteries over the items. 

Perturbation models add common misconceptions and other “bugs” to the 

overlay model, so the student’s knowledge becomes an overlay on the expert’s 

knowledge plus domain mal-knowledge. These three approaches are discussed 

in more detail in Section 3.1.1 to 3.1.3. 

Two approaches which have different stances on short-term student 

modelling are model tracing and constraint-based modelling (CBM). The main 

distinction between the two is that model- tracing tutors represent both the 

procedural and declarative knowledge possessed by the student, whereas 

constraint-based tutors represent only the declarative knowledge. The student 

modelling philosophy of model tracing is discussed in Section 3.1.5, and CBM 

is described in Section 3.1.6. 

3.1.1 Stereotypes 

Two types of stereotype exist, the fixed stereotype and the default stereotype. 

Fixed Stereotypes 

Fixed stereotyping is the simplest approach to student modelling 

whereby the student’s responses cast the student into a predefined stereotype. A 

basic example is to assign to each student a level. For example, WPS-Tutor 

(Wheeler & Regian, 1999) is an ITS for teaching algebra and geometry word 

problem solving skills to children. Problems are divided into levels, and each 

level is only slightly more difficult than the previous level. When the student 

solves two or more problems without help on the current level, the level 

increases. In WPS-Tutor, the level is the main description of the student in the 

student model. Fixed stereotyping makes the broad assumption that all students 

with the same stereotype will have the same domain-specific behaviour. 
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Furthermore, although the students may change their stereotype from session to 

session, the stereotypes themselves do not change or adapt. 

Another recent example of fixed stereotyping is from the domain of 

software engineering ethics, in which protocol analysis identified five different 

stereotypes (Winter & McCalla, 1999). Interestingly, in this domain, personality 

types rather than mastery was modelled. Students were presented with 

hypothetical scenarios and then asked questions about the course of action they 

would take. Each stereotype represented a particular ethical mindset, such as the 

“straight and narrow” student who is very concerned about ethical issues but 

deficient about her/his responsibilities, and the “opportunistic” student who 

would copy source code from a rival company but not breach the privacy of co-

workers and so forth. Out of the 82 students who completed the scenarios, a 

total of 15 did not fit any of the stereotypes. Students were also able to “role 

play” by responding in different ways on subsequent runs through the scenarios. 

Milne et al. (1996) also describe fixed stereotyping. ATULA is a system 

for teaching mathematical network theory. Empirical data was collected from 

134 students prior to their first use of the system. The data consisted of 

personality and background information acquired by questionnaire (which 

included psychological personality tests). Post-tests were also administered. The 

personality and background information was the primary input to the statistical 

cluster analysis; subsequent “fine tuning” of the clusters was performed using 

the post-test results. In the end, six male and six female student stereotypes were 

derived. The aim was to use the stereotypes as a guide for the teaching actions 

of the system. When a new student uses the system, the probability of the 

student being in each stereotype is calculated after they complete the same 

initial questionnaires. The student is then assigned to the most probable 

stereotype. However, the student’s stereotype may also change during the 

session. For example, if the stereotype contains an assumption about the 

student’s ability on a particular task, and this is observed not to be the case, then 

it may be necessary to switch the student to a more appropriate stereotype.  

In general, fixed stereotyping is a very coarse-grained representation of a 

student and the approach is not useful for more complex analysis. It is also 

questionable whether fixed stereotyping is even valid because it may be the case 

that the stereotypes vary from one group of students to another. However, 
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clearly for open domains where the knowledge cannot be easily decomposed 

into atomic units (such as software engineering ethics), this approach may be 

the only realistic student-modelling alternative. 

Default Stereotypes 

A more flexible approach to stereotyping is to consider the settings of 

each initial stereotype to be “default” values only. Thus, the students are only 

stereotyped when they start using the system, and as observations are made and 

evidence arrives about the student, the settings of the initial stereotype are 

gradually replaced by more individualised settings. This approach can be used 

in conjunction with an overlay model, where the default stereotype provides the 

initial values for the overlay. This approach is used in a number of systems 

surveyed by Kay (2000a). 

An example of an ITS with a default stereotype student model is STyLE-

OLM (Dimitrova et al., 1999), a learning environment for scientific 

terminology. The student engages in a superficial form of natural language 

dialogue with the system about the domain concepts. The system has a set of 

rules for building up its own default beliefs about the student’s beliefs from this 

dialogue. For example, if the student misuses a term or demonstrates an 

incorrect belief, then inferences drawn from these can be added to the student 

model. However, these default inferences are open to scrutiny by the student. 

By the process of dialogue, the student is able to examine and revise the beliefs 

in the student model. 

In the extreme case of default stereotyping, there may be only one 

default stereotype representing the “average” student, but that stereotype can be 

quickly adapted. This is the approach of MANIC (Stern et al., 1999), which 

initialises its student models to a default called the “population student model” 

that is derived from empirical analysis. MANIC is discussed in more detail in 

Section 3.2. 

3.1.2 Overlay Models 

The classic student model is the overlay model. This model projects a simple 

measure of mastery onto the elements of the domain that an expert would be 

expected to have mastered. The student’s domain knowledge is therefo re 
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represented as a subset of the expert’s knowledge. This is a highly tractable 

approach to student modelling because the specification is very abstract. As 

long as the expert’s knowledge can be broken down into generic items (e.g. 

rules, facts, etc.), then an overlay model can be constructed. Figure 3.2 depicts 

an overlay model for a simple domain that can be decomposed into ten skills or 

items. 

1 2 3 4 5 6 7 8 9 10

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Mastery

Item

Student

Expert

 
 

Fig. 3.2. An overlay student model. 

 

The mastery of each item in the example ranges from 0 (complete 

novice) to 1 (expert mastery). An expert is thus represented by an overlay with 1 

for each item. A student is represented by an overlay with at most 1 for each 

item. 

Interestingly, there are at least two different interpretations of the 

measure of mastery in the literature. In some systems, mastery is considered a 

binary variable that can be mastered or not-mastered, and the overlay on 

the item is the system’s belief that the item is in the mastered state. This could 

be termed the probabilistic interpretation, and is representative of ITSs that use 

Bayesian probability for student modelling. On the other hand, the measure 

could also be interpreted as an actual state of the student. So, for example, if the 

mastery of an item is 0.5, it means that the system believes that the student has 

only half- or semi-mastered the skill and needs more practice, but is at least not 

a complete novice at the skill. This is representative of the more traditional style 

of the overlay model. In practice there should be little difference in behaviour 
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between systems with differing interpretations, as both will act to maximise the 

measure. However, it is interesting to note that a value of 0.5 actually represents 

the state of maximum uncertainty when the probabilistic interpretation is used, 

and so diagnostic strategies may produce different results depending on whether 

the measure is considered probabilistic or absolute. 

The overlay model can also be specified at any level of granularity, and 

if it is specified at a low level of granularity, then rules can be defined to 

compute the overlay at a higher level. This is the purpose of OLAE (VanLehn & 

Martin, 1997). The measure of mastery is in many systems a simple function of 

the frequency with which the item has been used correctly or incorrectly (e.g. 

Clancey, 1983,1987, Kay, 2000b), or some function of the frequencies of 

different observations of student behaviour, e.g. Bloom et al. (1997). “Bounded” 

representations where the measure is uncertain but between a lower and upper 

limit have also been proposed (Elsom-Cook, 1990). 

More recently, Bayesian probability theory has attracted the interest of 

ITS researchers who have implemented the theory in their overlay models (e.g. 

Millan, 2000; Reye, 1998). The probabilistic overlay is a set of uncertain, 

probabilistic variables representing the student’s mastery of a domain. The main 

advantage this approach is that the overlay model can be updated in a non-ad-

hoc way from observations. That is, Bayes’ theorem (Equation 2.4) is available 

compute the posterior probability of domain mastery from its prior probability 

of mastery and observations made about the student. Bayesian networks also 

provide a graphical and therefore intuitive means of defining the dependence 

relationships between domain items. 

Differential model 

A more structured variant on the overlay model is the differential model 

(Holt et al., 1994). The differential model is essentially an overlay on expected 

knowledge, which in turn is an overlay on the expert’s domain knowledge. 

Expected knowledge is domain knowledge that a student should have at a 

particular point in time. Figure 3.3 depicts a differential model. In this example, 

only items 5 and 7 have masteries lower than the expected mastery. Instruction 

should therefore focus on these two items. 
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Fig. 3.3. A differential overlay student model. 

 

In a sense, the differential model is less strict than the overlay model 

because it considers only gaps in the expected knowledge to be significant; no 

inferences are made about the student’s mastery outside of the expected 

knowledge. For example, if it is expected that the student knows fact A, but it is 

not expected that the student knows B, then if the student fails to demonstrate 

both A and B, the differential modeller can infer that the student does not know 

A, but cannot infer anything about B. A system with a differential model is 

WEST (Burton & Brown, 1978). 

3.1.3 Perturbation Models 

A significant problem with the overlay and differential models is their 

presumption that the student’s knowledge is a subset of the expert’s knowledge. 

This assumption completely disregards the fact that real students can infer facts 

and rules of the domain that are totally false, as a result of mis- or 

preconceptions about the domain, or faulty reasoning processes. These “bugs” 

are collectively referred to as the student’s mal-knowledge. The philosophy of 

the perturbation model, then, is to represent the student as a subset of the 

expert’s knowledge and the possible mal-knowledge. By modelling the 

student’s misconceptions, the system will be better able to provide remediation. 

This scenario is depicted in Figure 3.4.  
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 Domain of Correct and Incorrect Knowledge 

Correct Knowledge 

Student’s Knowledge 

Incorrect Knowledge 
 

 

Fig. 3.4. The perturbation model. 

 

Like the overlay model, this approach gives no guidelines on the way in 

which domain and mal-knowledge should be represented, as long as the 

knowledge can be decomposed into items. There are three approaches to 

perturbation modelling: enumerative, generative, and reconstructive. In many 

tutors, two or more of these types are combined. 

Enumerative Modelling 

In this scenario, the ITS knowledge engineer uses protocol analysis to determine 

the possible bugs and misconceptions that students can have. The mal-

knowledge then becomes part of the domain model, along with the expert’s 

knowledge. 

DEBUGGY (Burton, 1982) is an early ITS with an enumerative 

perturbation model of the student. It is implemented in the domain of 

elementary subtraction, and can be used to diagnose student’s knowledge and 

mal-knowledge from test results. Figure 3.5 is an example of an incorrect 

solution to a typical subtraction problem.  
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307 

-135 

232 

 

Fig. 3.5. A student’s incorrect solution to a subtraction problem. 

 

The buggy answer can be explained by the mal-rule 0-n=n, which is a 

modification to the subtraction procedure stating that when the top digit of a 

column is 0, then the answer for the column is the bottom digit. In this case, the 

bug results in the digit 3 from 135 being copied directly to the second column 

of the solution. Another example of a bug is when borrowing from a column 

with zero on top, leave that column alone and borrow from the next column 

instead. In total, DEBUGGY contains 110 different “primitive” bugs. 

However, primitive bugs are not enough in an enumerative modeller. It 

is possible for a student to combine bugs to form new “bug compositions”, 

which explain more of the student’s behaviour than the constituent bugs do 

separately. The main problem with searching the space of bug compositions, 

however, is tractability. DEBUGGY attempts to minimise this problem by 

executing the following heuristic diagnosis algorithm. Given a student’s test 

results, DEBUGGY matches 110 primitives as well as 20 common 

compositions to each of the student’s incorrect answers. If any bug explains at 

least one incorrect answer, it is added to the hypothesis set. The hypothesis set is 

then trimmed according to a set of trimming rules. One such rule, for example, 

is to remove any bug that explains the same behaviours as another bug – exactly 

which of the bugs is removed depends on the rule. Pairs of bugs in the 

hypothesis set are then iteratively composed and compared to the student’s 

behaviour. If any composition explains more of the student’s behaviour than its 

constituents, then the composition is also added to the hypothesis set. There is a 

limit in DEBUGGY of four primitives per composition. The next step is 

coercion – DEBUGGY attempts to explain any remaining inconsistencies 

between the student’s behaviour and the bugs in the hypothesis set as noise. The 

output of this process is a classification of bugs as consistent (meaning that they 

are predictable from the problem state) or inconsistent (implying that they are 
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unpredictable random slips). Ideally, there should be many more consistant than 

inconsistent bugs. 

Enumerative perturbation modelling is still a popular approach to 

student modelling. Two recent perturbation models are described by Webb et al. 

(1997) and Virvou & Tsiriga (2000). 

Webb et al. (1997) describe the application of Feature-Based Modelling 

(FBM) to the prediction of student problem-solving actions, again in the 

subtraction domain. The goal of FBM is to use a machine learning algorithm to 

associate context and actions. The context is the set of features describing the 

current state of the problem, e.g. “subtrahend is zero”, and the actions range 

from the general (e.g. “result is correct”) to the specific (e.g., “subtrahend is 

subtracted from minuend in the second column”). Many of the actions are 

essentially subtraction bugs, but this approach extends perturbation modelling 

by asserting that cognitive assumptions are not necessary and that machine 

learning techniques are all that are required to predict errors from problem 

states. Two machine learning algorithms, FBM-IS and C4.5 (Quinlan, 1993) 

were tested after being trained on more than 30,000 data items acquired from 

the results of tests administered to primary school students. A basic strategy of 

assuming that every problem state is correct yields 90% accuracy, and this 

strategy was used as a baseline for comparison. FBM-IS and C4.5 increase that 

accuracy, statistically significantly, to 93% and 92% respectively. The 

prediction of errors is much more difficult, however. In the most general case, 

FBM-IS and C4.5 can predict the incorrectness of a state with 68% and 67% 

accuracy, but the accuracy for specific predictions about which error was made 

drops to 37% and 44%, respectively. This approach is somewhat weak because 

composite bugs cannot be predicted by the system, which restricts its 

expressiveness. 

A similar approach was taken in the design of EasyMath (Virvou & 

Tsiriga, 2000), an ITS for algebraic powers (i.e. addition, multiplication, etc. of 

integer powers). EasyMath was constructed following an empirical study in 

which 240 students were given a test covering the entire domain, and a library 

of common mistakes was determined. Unlike DEBUGGY, but similarly to 

Webb et al.’s (1997) approach, no attempt is made to match composite bugs 
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against student solutions; only single bugs are matched. However, this was a 

hindrance to diagnosis because the domain is simple and constrained. 

Other systems with enumerative perturbation models include LMS 

(Sleeman & Smith, 1981; Sleeman, 1982) from the domain of algebra, and 

PROUST (Soloway & Johnson, 1981; Bonar & Soloway, 1985), an ITS for 

teaching Pascal. PROUST has a substantial bug library, which took a 

considerable effort to formulate. 

A problem with the enumerative approach is three-fold. Firstly, the 

computational tractability of searching the space of bug compositions is a severe 

problem. The more recent tutors discussed above (Webb et al., 1997; Virvou & 

Tsiriga, 2000) circumvent the problem by not trying to match composite bugs at 

all, but the fact that composite bugs appear in domains as simple as subtraction 

(Burton, 1982) suggests that they are common to many other domains. In a 

domain more complex than subtraction, it may be completely intractable to 

match composite bugs. Secondly, even within a narrow domain, it has been 

shown that bugs vary greatly from school to school, and even class to class 

(Holt et al., 1994). This greatly limits the generality of any bug library. Thirdly, 

and partly as a result of this variability, the bug libraries are enormously 

expensive to elicit in terms of time. Therefore, the ITS community considered 

machine learning techniques for building bug libraries. 

Generative Modelling 

Generative modelling is an approach where the ITS uses a cognitive model to 

explain the student’s erroneous behaviour. No bug library is required because it 

is assumed that the system will be able to deduce the underlying misconceptions 

that leading to the bug from the cognitive model. 

An early exploration of generative modelling is described by Matz 

(1982). The cognitive basis of Matz’s approach is that problem solving consists 

of two components: base rules and extrapolation techniques. Base rules 

encompass the knowledge extracted from examples or read directly from a 

textbook. Extrapolation techniques are rules for applying base rules to 

unfamiliar situations. Matz’s theory is that errors can be explained as the result 

of failed extrapolation. Specifically, the student may use a base rule 

inappropriately in a new situation, or he/she may modify a base rule 
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inappropriately to solve a new problem. If the general forms of the extrapolation 

errors in a domain can be determined, then the majority of buggy student 

behaviour can be explained. 

Matz analysed errors made by children learning algebra, and found a 

number of domain-specific extrapolation errors capable of explaining large 

numbers of errors. For example, one extrapolation error is to decompose the 

topmost operator of an algebraic expression over its parts. This strategy is 

sometimes correct, e.g.: 

 

A(B+C) = AB + BC (3.1) 

 

but when applied inappropriately, it becomes plainly incorrect, e.g.: 

 

BABA +=+ )(  (3.2) 

 

Algebra rules can also be falsely revised to cope with new situations. For 

example, suppose the student solves the problem 

 

(X-3)(X-4) = 0 (3.3) 

 

to obtain the solution X = 3 or X = 4. The student may learn from this that the 

correct rule to solve problems such as 

 

(X-A)(X-B) = 0 (3.4) 

 

is X = Solve[X-A = 0] or X = Solve[X-B = 0]. However, when faced with a new, 

but slightly similar problem of the form 

 

(X-A)(X-B) = K (3.5) 

 

the student incorrectly revises the solution rule to X = Solve[X-A = K] or X = 

Solve[X-B = K]. Yet a third example of extrapolation error in the algebra 

domain arises from conceptual change. Because students are taught arithmetic 
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first, they falsely extrapolate the rules of arithmetic to algebra. For example, in 

arithmetic, concatenation means addition: 

 

1½ = 1 + ½ (3.6) 

 

However, in algebra, concatenation sometimes means addition, but more 

frequently means multiplication, e.g.: 

 

1½ XY= (1 + ½) * X * Y (3.7) 

 

Thus, conceptual changes can lead to extrapolation errors. 

VanLehn’s (1982, 1990) REPAIR theory is in a similar vein to this and 

was constructed after an extensive study of children solving arithmetic 

problems, where many types of bugs (some often occurring in combination) 

were found. Like Matz’s work, the theory focuses on consistent (i.e. 

predictable) bugs. However, REPAIR theory also explains the fact that bugs are 

not always totally predictable and consistent. Specifically, there is a 

phenomenon called bug migration where students shift back and forth between 

different bugs in the same situation. According to repair theory, this is because 

when students arrive at an impasse during problem solving (i.e. a point where 

they do not know the next correct step in the procedure), they can select any 

incorrect step in an attempt to “repair” the procedure so the problem can be 

solved. Different repairs lead to different bugs. Repair theory was implemented 

in a system called SIERRA (VanLehn, 1990). 

Reconstructive Modelling 

Reconstructive modelling is, like generative modelling, an approach to 

reconstructing erroneous reasoning. However, the assumptions are stricter. It is 

assumed that the domain is composed of a set of operators. The operators are 

atomic in the sense that the students, whatever their mastery level, can apply the 

operator correctly every time to a problem state. A procedure in the domain is 

composed of a sequence of operators, and mal-knowledge forms when the 

student learns an incorrect sequence of operators. The aim of the machine 

learning algorithm is to induce the operator sequence that best fits a student’s or 



  66 

group of students’ observed errors. The reconstructive model therefore becomes 

an explanation of the errors. 

ACM (Automated Cognitive Modeller) (Langley et al., 1990) is an 

example of an ITS with a reconstructive student model. The tutor is 

implemented in the domain of elementary subtraction. The atomic operators are 

basic transformations of the solution state, such as Add-Ten to increment a 

value by ten, Decrement to reduce a value, and various focus-of-attention 

shifters. To reconstruct a student’s buggy solution, the system performs a depth-

first search of the space of operator sequences. The size of the search tree is kept 

in check by a number of heuristics. For example, “psychologically implausible” 

branches of the search do not have to be explored, nor do branches that are 

incompatible with the current solution state. Furthermore, as a result of the 

observation that student’s buggy solutions are often shorter than the length of 

the correct solution, the search depth is limited to the length of the correct 

solution plus one. The machine learning side of ACM allows the system to 

characterise the  behaviour of the student without needing to perform a complete 

depth-first search every time an erroneous answer is submitted. 

Another reconstructive tutor is INSTRUCT (Mitrovic et al., 1996). One 

problem with ACM and other, earlier reconstructive tutors is that inferences are 

made about the student from very small amounts of information. For example, 

in ACM (Langley et al., 1990), buggy solutions are reconstructed solely from 

the initial problem state and the buggy student’s solution. This leads to 

expensive search procedures and less reliable results. INSTRUCT resolves the 

problem by tracking the student’s problem solving actions so that additional 

information (namely, the relative ordering in which the operators were applied) 

can be used to better diagnose the student’s knowledge. Sequences of operators 

thus observed are called traces. The machine learning task in INSTRUCT is to 

induce the procedures that the student has knowledge of by example. 

INSTRUCT also takes account of the fact that students, once they learn a 

particular trace, can “chunk” the operators within the trace into a single macro-

operator. 
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Combinations 

An ITS combining both enumerative and generative techniques is SPENGELS 

(Bos & van de Plassche, 1994). SPENGELS teaches the correct conjugation and 

spelling of English verb forms. It has an underlying cognitive model of the 

spelling process as an algorithm, which was derived from pen-and-paper 

protocol analysis. The expert algorithm consists of two stages. Firstly, a 

decision tree is used to determine the correct suffix of the verb. Non- leaf nodes 

in the decision tree represent questions about the grammatical class of the verb 

(e.g. “Is it present tense?”, “Is the form finite?”, etc.). The second stage is to 

take the verb and the suffix and combine them using a set of morphological and 

spelling rules. The student’s ability to classify verb forms correctly using the 

decision tree, and their mastery of the second stage rules, is represented by a 

frequency-based overlay. A considerable amount of mal-knowledge is 

represented and used to diagnose students’ errors. The mal-knowledge is 

enumerative in that it contains explicit buggy rules for, e.g., over-generalisation, 

morphological errors and spelling errors. However, it is also generative in two 

ways. Firstly, the system can combine buggy rules to find the sequence that best 

explains the student’s incorrect answer. Secondly, it can traverse the decision 

tree of the expert spelling algorithm itself in order to attempt to find the point 

where an incorrect branch of the decision tree was followed. Therefore, bug 

diagnosis in SPENGELS uses a combination of both explicit mal-knowledge 

and inference from domain knowledge to explain bugs. 

Drawbacks 

Unfortunately, the main drawback of both generative and reconstructive 

modelling is that when existing approaches are generalised to achieve good 

domain coverage, they tend to generate many more implausible than plausible 

bugs. This is primarily because of the huge search spaces involved. Perturbation 

modelling was further weakened by reports such as that of Sleeman et al. (1989) 

who showed that a simple re-teaching strategy in the domain of algebra was just 

as effective as bug remediation. The validity of perturbation modelling has 

therefore become questionable and further research needs to be done (Holt et al., 

1994). 
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3.1.4 Model-Tracing 

Model-tracing is an entire framework for building ITSs (Singley, 1995). 

However, its principles have implications for student modelling. According to 

Singley (1995), the “…defining feature of a model-tracing tutor is the 

individualization of feedback and practice based on an articulate model of 

proficient performance.” In other words, the model-tracing tutor must give 

feedback on the student’s problem solving performance, in addition to the more 

traditional instruction on the knowledge underlying the problem solving. 

Another principle of model-tracing is making explicit the goal-structure of a 

problem, so students master the abstract as well as the concrete skills of the 

domain. These principles effectively require the tutor to model the student’s 

skill in problem solving as well as their conceptualisations of the domain, so 

specific remediation on performance can be given. This implies that the tutor 

must know how to solve the problems. More precisely, model tracing entails the 

representation of not only the declarative, factual knowledge that the student 

uses (e.g. knowing Pythagoras’ theorem), but also the procedural, goal-oriented 

knowledge (e.g. being able to apply Pythagoras’ theorem). This is effectively 

defines a short-term student model, because beliefs about how the student is 

solving the current problem is only relevant in the short-term. After the problem 

is solved or abandoned, this specific information is no longer important and it 

can be integrated into a longer term, more abstract model (such as an overlay). 

The exemplary model tracing tutors are the family of tutors called 

cognitive tutors that are based on the ACT-R theory developed by Anderson and 

co-workers (Anderson et al., 1996; Anderson & Lebiere, 1998; Anderson, 

1993). ACT-R is a theory of cognition that, amongst other things, assumes that 

all knowledge is either declarative or procedural. Procedural knowledge is 

represented as a production set. The cognitive tutors represent an expert’s 

knowledge as a large production set called the ideal student model. There are 

eight principles that the cognitive tutors adhere to, each of which is derived 

from ACT-R (Anderson, 1996). The principle assumption of cognitive tutoring 

is that the representation of the domain knowledge as a production set 

essentially is the expert’s representation. Because of this assumption, tutoring 

can be reduced to the process of transferring production rules from system to 
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student, and students are tutored specifically on productions because that is how 

the knowledge is represented cognitively. 

Cognitive tutors have been developed for LISP (Farrell et al., 1984), 

geometry (Aleven et al., 1998; Aleven & Koedinger, 2000), introductory 

statistics (Gluck et al., 1998), and (with a very large scale evaluation) algebra 

(Koedinger et al., 1997) amongst others. Some of these tutors have been 

coupled with a long-term student modelling technique based on Bayesian 

probability theory called knowledge tracing, which is discussed in Section 3.2. 

Another example of a model-tracing tutor is ANDES (Gertner & 

VanLehn, 2000). ANDES is an ITS implemented in the domain of physics. It 

uses much more sophisticated Bayesian techniques than knowledge tracing for 

reasoning about the student’s mastery and behaviour, and the Bayesian aspects 

of it are discussed in more detail in Section 3.2.1. Like the ACT-R tutors, 

ANDES solves physics problems using a production set. It also attempts to 

capture both the declarative and procedural knowledge used by the student 

during problem-solving in order to diagnose the student’s problem solving 

strategy. 

Unfortunately, the price of such complex cognitive modelling in model 

tracing systems is a substantial decrease in their tractability. The problem arises 

because of the massive amounts of uncertainty inherent in reasoning about a 

student, especially from the “keyhole” of the computer’s input devices. In 

general, the number of influences on the student that the computer does not 

know about (e.g. the textbook the student is reading while using the tutor; the 

knowledgeable friend sitting at the terminal next to the student; etc.) may be so 

great that sophisticated reasoning about the student becomes, as Self (1988) 

argued, intractable. It is a major combinatorial problem to match an incomplete 

sequence of student actions against a set of possible problem-solving strategies, 

in order to determine the most likely strategy that the student is following. 

To tackle this problem, cognitive tutors can attempt to capture as many 

as possible of the problem-solving steps that the student takes. For example, 

ANDES’ user interface tries to be “…as much like a piece of paper as 

possible…” (Gertner & VanLehn, 2000) in that the student can perform every 

task from drawing diagrams, to defining variables, to entering equations within 

it. While this “capture every step” approach may work in highly procedural, 
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well-defined domains such as mathematics and physics, it may not be a realistic 

solution in other domains where the ordering of problem-solving steps are either 

ill-defined (e.g. legal reasoning) or irrelevant (e.g. punctuation). It is thus not 

clear how the cognitive tutoring approach will generalise. 

Another tractability issue is the elicitation of knowledge for cognitive 

tutors. It has been estimated that the ACT-R tutors required, on average, ten 

hours of elicitation time per production rule (Anderson et al., 1996). ANDES 

also has a production set of considerable size and complexity, as well as 

knowledge contained outside the production set, such as lists of possible 

equations that the student might use. Clearly, there are domains larger and more 

complex than physics, and this approach may be uneconomical and infeasible in 

such domains. 

3.1.5 Constraint-Based Modelling 

There is empirical evidence that one of the cornerstones of model tracing, that a 

student follows a single path or strategy to solve a problem (which the system 

therefore tries to infer), is false. A number of studies surveyed by Ohlsson 

(1994) suggested that students, in fact, rapidly switch between several different 

strategies when problem solving, even after instruction. Some of the strategies 

are correct while others are incorrect. Ohlsson (1994) defines this as the radical 

strategy variability phenomenon, and if it turns out to be the normal case, then it 

invalidates approaches that assume the student follows only a single path to a 

problem’s solution.  

Another curious phenomenon about students is their ability to “catch” 

and correct errors before or after making them (Mitrovic & Ohlsson, 1999). This 

phenomenon appears to arise because students acquire the ability to discriminate 

correct and incorrect solutions before they acquire the actual skills to solve the 

problem correctly. Olhsson calls this initially-acquired type of knowledge 

evaluative, and the latter generative. He suggests that once a student acquires 

the evaluative knowledge, they have the cognitive skills to learn (perhaps by 

trial-and-error in the least efficient case) the generative knowledge. 

Furthermore, Ohlsson claims that diagnostic information about a student is most 

readily available in the problem states that the student arrives at. While the 
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diagnostic information can be selected from the problem solving steps (as in 

model tracing), radical strategy variability and tractability problems make this a 

much more difficult task. Therefore, an ITS may only need to model evaluative 

knowledge. The student can effectively be left to his or her own devices to 

induce the generative domain knowledge. 

Thus, Constraint-Based Modelling (CBM) is an attempt to define a 

domain- independent representation for evaluative knowledge. In its most 

general form, a constraint is a pair of patterns <Cr,Cs> where Cr is known as the 

relevance condition and Cs is called the satisfaction condition. The patterns 

match states of the student’s solutions. To illustrate, suppose the Cr of a 

hypothetical constraint is defined to match any string of the form n+n=*, where 

n is a non-negative integer and * stands for any other string. Then the Cr would 

match strings like “4+7=11”, “1+1=3” and “102+232=ABCDEFG”, but not 

“123-56” and “ABCDEFG”. The Cr is said to define the class of the student 

solution. Now, the Cs is also a pattern, so suppose it is defined in our example 

as n1+n2=sum(n1,n2). This is a more specific pattern than the Cr. If sum is 

a basic function that takes two numbers and returns the sum of its inputs, then 

this string will match only valid mathematical statements such as “4+7=11”, but 

not mathematically incorrect statements such as “1+1=3”, “ABCDEFG”, etc. 

Thus, the Cs defines the consistency (correctness) of the solution. If the Cr 

matches the solution and the Cs does not, the constraint is violated and 

constraint-specific tutoring can begin. In an implementation, the code fragment 

in Listing 3.1 would represent the matching process. 

 

If Matches(Student-Solution, Cr) Then 

If Not Matches(Student-Solution, Cs) Then 

Constraint-Is-Violated;  

Else 

Constraint-Is-Satisfied; 

 

List. 3.1. Code for determining constraint violation or satisfaction. 

 

Note that it makes no sense to match the Cs without first matching the 

Cr: the system must know that a constraint is relevant initially, as the 
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satisfaction condition can be very general and match many solutions. Consider, 

for example, a constraint from the punctuation domain where Cr = “The word is 

a singular possessive” and the Cs = “The word ends with an apostrophe 

followed by the letter s”. Obviously, this Cs could fail to match many possible 

words, but it only makes sense to match the Cs after determining firstly that the 

word is a singular possessive, by matching the Cr. 

The main advantage of CBM is that it is highly tractable. Little 

computational effort is required for constraint matching. Furthermore, an 

algorithm exists for “merging” constraints into a unified structure called a 

RETE network that can increase the efficiency of constraint matching even 

more (Mitrovic, 1998; Forgy, 1982). To illustrate its effectiveness, SQL-Tutor is 

a CBM tutor (Mitrovic & Ohlsson, 1999) containing over 500 constraints, and 

runs efficiently on PCs and the Web. 

Like cognitive tutors, an overlay model can be projected onto the 

constraints to measure the student’s mastery of each constraint. SQL-Tutor 

initially had a simple overlay on constraints determined by frequencies 

(Mitrovic & Ohlsson, 1999) but later supplanted this with an overlay based on 

probabilities (Mayo & Mitrovic, 2000). The overlay model is not even 

necessary for a CBM tutor. The initial version of CAPIT had no long-term 

model such as an overlay, and the analysis of evaluation study results show that 

students still learned constraints (Mayo et al., 2000). 

It is also worthwhile mentioning the elicitation time for constraints as 

opposed to production rules, which was slightly more than one hour (Mitrovic 

& Ohlsson, 1999). This represents a substantial improvement. 

Finally, constraints offer a solution to another of the ITS knowledge 

acquisition bottlenecks: problems with multiple solutions. Traditionally, the ITS 

designer would have to enumerate each correct solution to a problem. In a CBM 

tutor, however, the ambiguity is naturally relegated to individual ambiguous 

constraints. These constraints, when they are relevant to a solution, can be used 

to generate all the possible correct solutions. For example, in a punctuation 

tutor, an ambiguous constraint may state that direct speech can be enclosed in 

double speech marks (“”), which is standard to New Zealand English, or single 

quotes (‘’), as it appears in many American publications. This is an 
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advantageous property of CBM that may make building tutors in less well-

defined domains easier. 

3.1.6 Summary 

The content and persistence of traditional student models have been examined. 

Approaches to student modelling were divided into two classes: short-term, 

which models information relevant immediately to the current situation, such as 

the constraints that were violated on the last problem attempt or the student’s 

current goal structure, and long-term, which is a more comprehensive  and 

abstract representation of the student’s mastery and other traits are built up over 

time. Examples of long-term modelling are stereotyping, overlays, and 

perturbation models. Examples of short-term representations are the student 

modelling aspect of model-tracing and CBM. 

Perhaps the most pertinent issue in student modelling is the quality of 

the representation versus the tractability of the inferences versus the inherent 

uncertainty. In other words, what is the most appropriate level of detail that a 

student model should have before the inference becomes computationally too 

complex, and the uncertainty becomes too great? Clearly, model- tracing tutors 

that try to determine the exact solution path a student is following, and 

perturbation tutors that try to match composite bugs, are reaching the limits of 

tractability and certainty, and in more complex domains they may become 

infeasible. On the other hand, it is largely agreed that approaches such as fixed 

stereotyping are too limiting for ITSs. Approaches such as CBM represent a 

compromise. However, no-one to date appears to have conducted a comparative 

study of the effects of different student modelling techniques on the teaching 

effectiveness of ITSs. This is therefore a promising area for future research. 

3.2 Bayesian Student Modelling 

Recently, student modelling with Bayesian networks has attracted the interest of 

ITS researchers. Unlike the previous section where general approaches to 

student modelling were described, this section focuses specifically on issues 
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related to Bayesian student modelling and how they are solved. Specific 

Bayesian network-related issues include how conditional probabilities can be 

elicited, and how the structure of the network can be defined (and if it should be 

defined a priori or not). 

Three classifications of Bayesian network student model are considered: 

expert centric, efficiency-centric, and data-centric. Expert-centric student 

models are unrestricted products of domain analysis. That is, an expert specifies 

either directly or indirectly the complete structure and conditional probabilities 

of the Bayesian student model, in a manner similar to that with which expert 

systems are produced. This is the general approach of ANDES (Gertner & 

VanLehn 2000; Gertner et al., 1998; Gertner, 1998; Conati et al., 1997), 

HYDRIVE (Miselvy & Gitomer, 1996), DT-Tutor (Murray & VanLehn, 2000), 

and the Bayesian domain model of ADELE (Ganeshan et al., 2000). One 

possible disadvantage of this approach is that the resulting models may include 

so many variables that it becomes infeasible to evaluate the network efficiently 

on- line. For example, tractability was considered an important issue in the initial 

evaluation of DT-Tutor. Efficiency-centric models, on the other hand, work the 

other way: the model is partially specified or restricted in some way, and 

domain knowledge is “fitted” to the model. The restrictions are generally chosen 

to maximise some aspect of efficiency, such as the amount of numeric 

specification required and/or the evaluation time. This is the methodology of 

Reye (1998), Murray (1998), Collins et al. (1996), Mayo & Mitrovic (2000), 

and to a degree, Millán et al.  (2000). In general, restrictions to increase 

efficiency can introduce incorrect simplifying assumptions about the domain. 

Finally, the data-centric model is a new class of Bayesian student model, 

introduced and represented by CAPIT in this thesis, in which the structure and 

conditional probabilities of the network are learned primarily from data. 

CAPIT’s student model dispenses with attempting to model unobserved student 

states such as domain mastery and instead concentrates on modelling the 

relationships between observed variables to predict student performance. 

MANIC (Stern et al., 1999) is the closest existing Bayesian system the authors 

could find to the data-centric approach, but it learns only the probabilities and 

not the structure of the network, and is therefore closer to the efficiency-centric 



  75 

specification than the data-centric one. Figure 3.6 shows how existing Bayesian 

network student models fit this classification. 

 

 Expert-Centric 

Efficiency-Centric Data-Centric 

ANDES, HYDRIVE, 
DT-Tutor, ADELE 

Mayo &  
Mitrovic, 2000a 
 CAPIT (this 

thesis) 

Millán et 
al., 2000 

MANIC Reye, 1998 
Collins et al., 
1996 
Murray, 1998 

 
 

Fig. 3.6. A classification of Bayesian network student models. 

3.2.1 Expert-Centric Models 

ANDES (Gertner & VanLehn 2000; Gertner et al., 1998; Gertner, 1998; Conati 

et al., 1997), HYDRIVE (Miselvy & Gitomer, 1996), DT-Tutor (Murray & 

VanLehn, 2000) and ADELE (Ganeshan et al., 2000), are examples of tutors 

with large Bayesian networks with structures mostly engineered from complex 

domain analysis. To match the domains as closely as possible, their networks 

are not structurally restricted in any way. However, both networks do have a 

high proportion of variables representing unobserved, internal student states. A 

major hurdle for these systems, then, is how conditional probabilities can be 

elicited or defined for these variables in the absence of data. 

ANDES’ solution is to use “coarse-grained” conditional probabilities 

definitions such as noisy/leaky-ORs and noisy/leaky-ANDs. A noisy/leaky-OR 

variable is a binary variable with a high probability of being true only if at least 

one of its parents is true, and is very probably false otherwise; a noisy-AND 

variable has a high probability of being true if all of its parents are true, and is 

very likely false otherwise. In practice, restricting conditional probabilities to 

noisy/leaky-ORs and noisy/leaky-ANDs significantly reduces the number of 

required probabilities and makes the modelling of unobserved variables much 
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simpler because only the structure and node type (noisy/leaky-AND or 

noisy/leaky-OR) needs to be specified. However, it does reduce the specificity 

of the system. 

The Assessor Bayesian network is ANDES’ main student modelling 

component (Conati et al., 1997). It has two parts: a static component that 

persists from problem to problem, and a dynamic component that is constructed 

for every new problem and discarded after the problem is either solved or 

abandoned. The static component models the student’s abilities to apply rules in 

specific contexts as well as generally; the dynamic component models the facts, 

goal, strategies, and rule-applications relevant to modelling the student’s 

problem-solving steps on the current problem. The dynamic part of the Assessor 

network is constructed on- line from the problem’s solution graph, which is a 

representation of all possible solution paths for a particular problem. The 

solution graphs in turn are constructed off- line from the physics problem solver. 

HYDRIVE is an ITS for teaching troubleshooting skills to aircraft 

hydraulics system technicians. The student model is a Bayesian network that 

reasons from observations of specific troubleshooting actions, to 

characterisations of more general constructs such as systems, strategies and 

procedures. Unlike cognitive tutors which attempt to wholly model the expert, 

the goals behind the design of HYDRIVE’s student model was only to capture 

the factors important to discriminating between proficient and less proficient 

students. To determine these factors, a cognitive knowledge elicitation protocol 

called PARI was utilised. The PARI analysis determined the structure and 

semantics of the Bayesian network. 

Unlike ANDES and a number of other schemes that define mastery 

variables as having the basic values true and false only, the mastery 

variables in HYDRIVE take linguistic “fuzzy” values. For example, a student’s 

Strategic Knowledge can be expert, good, okay and weak. The conditional 

probabilities relating these variables were determined by qualitative estimates 

from expert instructors, patterns observed in PARI traces, and other 

“reasonable” modifications arising from simulation studies. 

The designers of HYDRIVE suggest testing their student model with 

actual data to assess its predictive performance. However, to date no such 
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assessment appears to have been reported in the literature. An assessment would 

be somewhat difficult because of the multiple values (expert, good, etc.) 

used to describe the student’s mastery of each item. Each student used to test 

HYDRIVE would have to be assigned a set of such values beforehand, but this 

assignment would be highly subjective due to the granularity and fuzziness of 

the terms. If HYDRIVE had used simple binary variables to represent their 

mastery, an evaluation might have been easier to perform because test students 

would only need to be assigned (more realistically) values of true and false 

indicating their mastery, rather than expert, good, okay or weak. 

On a more general front, this issue illustrates one difficulty of expert-

centric and cognitive modelling approaches: there are no clear, specific and 

detailed guidelines for cognitive modelling. How should the model be defined? 

How should details such as the specific representation of the student’s mastery 

be resolved? Model tracing is an extreme example of the stance that a student 

model should be as isomorphic as possible to the expert’s cognitive 

representation of the domain. The opposite stance taken in this thesis is that the 

function of the student model is to predict student behaviour, and that therefore 

the student model design should not be driven primarily by extreme cognitive 

fidelity, but instead by actual student performance data. Of course, some 

cognitive modelling will be required, but only to the extent that it helps predict 

student performance. The philosophy of HYDRIVE, where the student model 

was designed only to capture those elements discriminating between expert and 

non-expert behaviour, is one example of this approach. 

DT-Tutor is a generalised domain- independent architecture for student 

modelling and pedagogical action selection (PAS). Like ANDES and 

HYDRIVE, it models the student’s knowledge, but it goes much further and 

attempts to model other hidden states such as the student’s morale, 

independence, and focus of attention. A preliminary version of this system has 

been constructed but no details have been given as yet as to how the conditional 

probabilities are obtained, although it appears to follow ANDES’ lead by 

simplifying the probabilities to noisy/leaky-ORs and -ANDs in the domain 

knowledge representation network. 
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Models that largely represent unobserved, internal student states suffer a 

major disadvantage: the model structure and/or parameters cannot be adapted 

on- line to the student. To illustrate, consider a very simple Bayesian student 

model with two variables, Observations (observed) and Student State 

(unobserved), and a conditional probability P(Student State|Observations) 

relating them. When Observations becomes known, the posterior probability of 

Student State is updated. However, the conditional probability P(Student 

State|Observations) itself can never be updated. As a result, two students with 

the same Observations will be considered equivalent by the system even though 

the observations may only encompass the most recent interactions. This is 

essentially the case in ANDES and HYDRIVE. As an alternative, another 

system might comprise two observable variables, Before and After, related by a 

conditional probability P(After|Before). Now, given observations of Before and 

After, P(After|Before) can be updated. Such a system therefore adapts to the 

student, and its conditional probabilities will be a summary of all, not just the 

most recent, previous interactions. This is the approach implemented in CAPIT 

in Chapter 6. 

3.2.2 Efficiency-Centric Models 

The student modelling approach in the ACT-R tutors is called knowledge 

tracing (Corbett & Anderson, 1995; Corbett & Anderson, 1992). Knowledge 

tracing is a simple Bayesian overlay on production rules. It is assumed that each 

production rule can be in one of two states, learned or unlearned, with a 

certain probability. The mastery state of a production rule can only shift from 

unlearned to learned, and not the other way around (so “forgetting” is 

assumed impossible). There is a probability of a transition after each attempt at, 

or instruction on, a production rule. The current probability of mastery is simply 

the sum of the probability of mastery prior to an action and the conditional 

probability of learning the rule given the action. A rule is assumed to be 

mastered when the probability of it being learned exceeds 0.95. This 

approach has been shown to reasonably accurately predict student post-test 

performance (Corbett & Anderson, 1995). More recently, a third state has been 

added to the mastery representation of each rule (Corbett & Bhatnagar, 1997). 
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This new state represents a rule that can be successfully applied within the 

tutoring system, but not during a test outside of the ITS environment. In the 

words of the authors, it is “…indistinguishable from an ideal [i.e. a learned] 

rule in modelling the student’s tutor performance and … indistinguishable from 

no [i.e. an unlearned] rule in predicting test performance.” The addition of this 

state yields increases in post-test predictive accuracy. 

A similar approach using dynamic Bayesian networks (Russell & 

Norvig, 1995, Ch. 17) has been proposed by Reye (1998). In fact, Reye’s model 

generalises knowledge tracing, and a similar approach was used in the student 

model of SQL-Tutor (Mayo & Mitrovic, 2000; Chapter 4 of this thesis). The 

idea is to model the student’s mastery of a knowledge item over time. The 

tutor’s current belief that the student has mastered the item (Mt) depends on its 

previous belief (Mt-1), the outcome of the student’s last attempt at the item (Ot-

1), and the pedagogical response of the tutor to the last attempt (At-1). Using 

dynamic Bayesian networks, not only can the tutor’s current beliefs be 

determined, but also its future beliefs at time t+1 or beyond, although this is 

likely to be much more uncertain. This model is depicted in Figure 3.7 for a 

single knowledge item. In Figure 3.7, the student failed an attempt at the item at 

time t-1 and so the tutor provided remedial help. 

 
 

Mt-1 

At-1 

Ot-1

Mt 

At 

Ot 

Mt+1 

Ot+1 INCORRECT

LEVEL-1
HELP At+1

 
 

Fig. 3.7. A DBN modelling the mastery of the student on a single knowledge item 

equivalent to Reye’s approach. 

 

One problem with this approach is that the complexity-reducing 

assumption that mastery of a knowledge item is probabilistically independent of 

the mastery of any other items is unrealistic. Suppose, for example, that the 
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knowledge items are “high level”, such as concepts or topics. Then we would 

expect the mastery of some items to be dependent on the mastery of the items 

that are pre- and co-requisites. This is a basic assumption of many systems and 

the rationale behind many approaches to course sequencing, e.g. Brusilovsky 

(2000). Alternatively, the knowledge items could be “low level”, such as 

constraints (Ohlsson, 1994; Mitrovic & Ohlsson, 1999; Mayo et al., 2000). 

Clearly, we would expect many dependencies between constraint mastery based 

on factors such as syntactic and/or semantic relatedness. We demonstrate later 

that in the punctuation domain, a model with dependencies between items 

makes better predictions of student performance than a simpler model similar to 

Figure 3.8. 

There are Bayesian student models that allow some dependencies to be 

expressed whilst remaining efficiency-centric. They are the singly-connected 

hierarchical structures described by Murray (1998), Collins (1996), and Stern et 

al. (1999). A singly-connected network has the property that for every pair of 

nodes in the network, there is one and only one path between the nodes. 

Bayesian networks with a singly-connected topology have the advantage of 

evaluating in linear time (Pearl, 1988; Murray, 1999), and while they can 

express dependence between knowledge items, the singly-connected assumption 

means that certain types of dependence (namely, undirected loops) cannot be 

represented. This is clearly a strong restriction, because all the expert-centric 

models described above contain undirected loops in their Bayesian networks. 

The problems of single-connectedness are illustrated by MANIC (Stern 

et al., 1999), which attempts to learn the probabilities (but not the structure) of 

its network from observations of the student. MANIC’s hierarchical structure 

leads to the simplifying assumption that its variables are conditionally 

independent given their single mutual parent. Unfortunately, the data acquired 

from students directly contradicted this, and so Stern et al. were forced to 

compensate by introducing several ad-hoc “fixes” to the network, such as 

“merging” dependent nodes and deleting irrelevant nodes. The introduction of 

ad-hoc fixes like this essentially jeopardised the system’s normative status. A 

clear solution to this problem would have been to drop the restriction that the 

network was a hierarchy, although this would have led to a more complex 

model and the necessity for more complex learning and inference algorithms. 
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Interestingly, Millán et al. (2000) recently proposed an architecture that 

is to a degree both expert- and efficiency-centric. Their Bayesian network is 

selected to optimise the amount of numeric specification required, and to 

achieve this, the directionality of the arcs between groups of variables is fixed. 

The variables are also limited to binary states with specific semantics. However, 

the topology of the network does not have to be singly-connected which makes 

it quite flexible. 

3.2.3 Data-Centric 

Both the structure and conditional probabilities of the network are learned from 

data collected from real-world evaluations of the tutor in the data-centric 

approach. There are a number of benefits of this approach. Firstly, because the 

model is induced from actual data, its predictive performance can easily be 

evaluated by testing the network on data that was not used to train it. Secondly, 

data-centric models can be expected to be much smaller than the typical expert-

centric model because the latter represents both observed and hidden variables, 

while the former models only observable variables. We describe a general 

methodology for building data-centric models in Chapter 5, and introduce a 

specific tutor with a data-centric model (CAPIT) in Chapter 6. 

3.3 Applying The Bayesian Student Model 

Student modelling is a futile activity if it is without application. Perhaps the 

most straightforward and obvious objective of student modelling is assessment : 

measuring the student’s overall competency within a domain. However, a much 

more important application of student modelling is adapting the behaviour of 

the ITS to optimise the learning of the domain by the student. Tasks that can be 

adapted include curriculum sequencing, feedback and hint generation,  and 

instructional grain size adjustment. While both domain-specific and domain–

independent pedagogic knowledge are important for solving these problems, the 

most critical ingredient is obviously the student model. The class of decision 

problem where the student model is critical will be referred to as Pedagogical 
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Action Selection (PAS). In this section, we focus on applications implemented 

in ITSs whose student model is a Bayesian network. 

3.3.1 Assessment 

A system designed specifically for assessment is OLAE (VanLehn & Martin, 

1997), which integrates with the ANDES physics tutor (Gertner & VanLehn, 

2000). Because ANDES’ student model contains approximately 290 

probabilities of mastery, it can be very difficult for a human tutor to assess the 

student’s overall competence. OLAE is a graphical tool that simplifies this task. 

The human tutor can select groups of rules (e.g. all the rules comprised within a 

single chapter of a textbook) and OLAE automatically computes the probability 

that the student has mastered the group (i.e. the probability that the student has 

mastered the chapter). This overall probability is defined straightforwardly as 

the product of the individual probabilities. This is, in fact, a strange way of 

assessing the student because it computes only the probability that the student 

has mastered all (say, n) of the rules. A student that mastered n-1 rules with a 

high probability but has a very low probability of mastery of the nth constraint 

will consequently have a very low overall probability of mastery. A better 

approach would have been to assess the mean probability of mastery, and then 

calculate the standard deviation to determine the proportion of rules likely to 

have a low probability of mastery. 

Millán et al.’s (2000) diagnostic Bayesian network described in Section 

3.3.2 could also fit into this category. 

There is little in the way of other assessment tasks in the literature. 

Corbett et al. (1998) use their Bayesian student model to predict student 

performance on a post-test, which therefore validates their student model, but 

they do not report on any other more sophisticated assessment techniques. 

3.3.2 Pedagogical Action Selection 

Unfortunately, only a handful of papers describe how Bayesian student models 

have been applied to a task other than assessment. Of those that do, there seem 

to be three general approaches: alternate strategies, diagnostic strategies, and 
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decision-theoretic pedagogical strategies. The three classes and the systems that 

fall into them are given in Table 3.1. 

 

Alternate Diagnostic Decision-Theoretic 
LISP Tutor 
ANDES 
ADELE 
SQL-TUTOR 
Milne et al., 1996 

Millán et al., 2000 
Collins et al., 1996 

DT-TUTOR 
CAPIT 

 

Table 3.1. Decision-making with the student model. 

Alternate strategies 

Alternate strategies optionally take the posterior probabilities of the Bayesian 

network and use them as the input to some heuristic decision rule. To illustrate, 

the LISP Tutor uses a simple heuristic to decide whether or not to advance the 

student to the next section: if the probability of the student’s mastery exceeds 

some threshold, the student advances (Anderson et al., 1996). 

ANDES selects hints for the student based on the solution path that the 

student is following to solve the current problem (Gertner et al., 1998). 

However, the student’s solution path is by no means certain (e.g. the student 

could be on paths A, B or C with posterior probabilities P(A), P(B), and P(C)), 

and therefore the system uses the heuristic of assuming that the most probable 

solution path (e.g. A, assuming P(A)>P(B) and P(A)>P(C)) is the student’s 

solution path. However, this is a sub-optimal heuristic as demonstrated by a 

simple counter-example. Suppose the optimal hint for solution path A as defined 

by the learning theory is H1, but the optimal hint for both paths B and C is H2. 

Then if it is the case that P(B) + P(C) > P(A), hint H2 will be optimal, but the 

rule will incorrectly select hint H1.  

ANDES also has heuristic decision procedures disconnected entirely 

from the student model. For example, a simple matching heuristic is used to 

generate feedback on incorrect equation entries (Gertner, 1998). 

ATULA (Milne et al., 1996) also uses the same “most probable 

explanation” strategy as ANDES for stereotyping students. While it does not 

have a Bayesian student model, it does calculate a probability that the student is 

in each of the six possible different stereotypes. It assigns the student to the 
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most probable stereotype only, and this stereotype is used to guide the 

presentation of the subject matter. Again, like ANDES’ hint selection, it is 

possible to demonstrate sub-optimal behaviour arising from this strategy. 

Another system using heuristic decision procedures is ADELE 

(Ganeshan et al., 2000). ADELE has a Bayesian network model of the domain 

knowledge, and it uses a heuristic based on focus-of-attention to select the node 

in the network about which to provide a hint. Decision-theoretic processes were 

considered but abandoned because they were considered too inefficient. 

SQL-Tutor uses a heuristic for problem selection (Mayo & Mitrovic, 

2000). The main rationale for this was that, like ADELE, the computation 

required for exact decision-theoretic computation (which would have involved 

more than 500 constraints) made direct application of decision theory 

intractable. The heuristic used was based on Vigotsky’s Zone of Proximal 

Development (Vigotsky, 1978), and did tend to select problems of an 

appropriate complexity level efficiently. However, this approach is not 

guaranteed to select the most appropriate problem. 

Finally, it is worth summarising the reasons why ad-hoc decision 

procedures seem so prevalent (this includes systems with ad-hoc student models 

as well as systems with ad-hoc or alternative PAS). Firstly, there is the obvious 

convenience, simplicity and efficiency of ad-hoc strategies. They are 

straightforward to implement and understand, and they can be invoked on- line 

with little or no noticeable delays during execution. Indeed, in some domains 

(such as SQL), ad-hoc strategies may be the only efficient strategies in the 

absence of highly specialised algorithms. Secondly, there is the perception that 

precision in intelligent tutoring is not required, which therefore makes ad-hoc 

strategies all the more appealing. In the words of Katz et al. (1992), “…in low 

risk decision-making situations such as tutoring…imprecise student modelling 

is adequate…” This attitude implies that student modelling is not an endeavour 

worthy of such sophisticated approaches to uncertain reasoning. In a sense, this 

is true because any inferences a system can make about a student are likely be 

highly uncertain and therefore one could argue that rigorous theoretical 

reasoning may be no improvement on ad-hoc reasoning. On the other hand, the 

very fact that student modelling is a highly uncertain activity implies that we 

should be using the most rigorous and theoretically sound tools because 
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otherwise we will be introducing even more uncertainty into the student model. 

That is, under equivalent conditions, ad-hoc methods will at best perform as 

well as normative methods; but normative methods may out-perform ad-hoc 

methods. 

Diagnostic Strategies 

Millán et al. (2000) describe an approach for optimising test question selection. 

The approach expands on a strategy suggested by Collins et al. (1996). The 

Bayesian network has nodes representing questions, concepts, topics, and one 

node (say, A) for the overall proficiency of the student. Answers to questions are 

observed, and the probability distributions over the other (hidden) nodes are 

inferred via Bayesian updating. Interestingly, this approach uses theory rather 

than direct expert opinion to initialise the conditional probabilities. The theory is 

Item Response Theory, which states that there is a logistic relationship between 

the student’s mastery of a concept and the probability of a correct response. The 

logistic function is formed from the estimates of the probabilities of a slip (when 

an expert student slips and making an error) and a guess (when a novice student 

guesses and gets the item correct) for each item. 

Because the purpose of the network is adaptive testing, Millán et al. 

describe a procedure for question selection. The question selection criterion is 

informativeness. That is, questions are selected to maximise the precision of the 

variable A representing that student’s overall proficiency. When 

P(A=Proficient) or P(A=Not-Proficient) exceeds some maximum 

threshold t, then the system stops selecting questions because the probability of 

mastery or lack of mastery is sufficiently precise. The claim is that this is an 

optimal method of question selection for diagnosing the student’s state. It is also 

a highly tractable procedure. 

Is the approach decision-theoretic? In one sense it is, if the utility 

function is thought of as a function of the probabilities of the network rather 

than a disconnected function representing subjective preference. That is, 

because the adaptive testing procedure aims to maximise informativeness, then 

the utility to be maximised is essentially the precision of the variable A. On the 

other hand, the use of a threshold t to determine when question selection should 

terminate is not decision-theoretic, because the halting criterion should 
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(technically) be reached when the expected utility of every unasked question 

drops to zero or below, and this is not the case. 

Therefore, there is a case for Millán et al.’s approach being consistent, 

with some modification, to decision theory. However, because utility is defined 

as informativeness, this approach cannot be used for PAS. It is useful only for 

the diagnostic testing of the student’s state of knowledge, and furthermore, it 

makes the implicit assumption that the student’s knowledge does not change for 

the duration of the test so remedial actions such as instruction cannot be 

performed until afterwards. Therefore, outside of testing, the approach has 

limited applicability. 

Decision-Theoretic Pedagogical Strategies 

Decision-theoretic strategies are utilised in both DT-Tutor (Murray & VanLehn, 

2000) and CAPIT (Mayo & Mitrovic, 2001; Chapter 6 of this thesis). The key 

difference between this system and that of Millán et al.’s (2000) is that the 

utility function essentially encodes pedagogical knowledge (i.e. a learning 

theory) related to the decision being made by assigning utility to outcomes 

according to their pedagogical, rather than diagnostic, worth. Therefore, while 

diagnosis is obviously an important component of expected utility 

maximisation, it is only a secondary component. For example, in CAPIT, as 

shall be described, the expected utility of an action (e.g. problem selection) 

depends on the likely outcomes of the action (e.g. how many errors are made). 

In DT-Tutor, the action’s impact on many different factors related to the student 

(e.g. their morale, etc.) has an influence on expected utility. Diagnosis, 

therefore, is only required to the extent that it discriminates between alternate 

actions. The key difference between the DT-Tutor and CAPIT, as Figure 3.1 

depicts, is that DT-Tutor has a static, expert-centric student model whereas 

CAPIT has a data-centric student model that can adapt on- line. This impacts on 

action selection because the crucial P(X|D) component of the expected utility 

function (Equation 2.28) is evaluated from the Bayesian model. 
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3.4 Summary 

To summarise, student modelling has been introduced and overviewed. The 

advantages of CBM, namely tractability and cognitive plausibility, have been 

described. IOAM calibrated to domain knowledge was then proposed, which is 

the class of tutor to which CAPIT belongs. Bayesian student modelling was 

focused on and discussed in detail, as was the application of Bayesian models to 

tasks such as assessment and curriculum sequencing. 

This overview has focused on systems that exhibit normative approaches 

to both student modelling and PAS. It has been argued by Self (1994), Katz et 

al. (1992) and others that such specificity is not necessary because complete 

accuracy is not required for a student model to be useful. This claim, while it 

may be partly true, misses the point of normative modelling. The main 

advantage of the normative approach is that it isolates the uncertainty. Bayesian 

reasoning and decision-theoretic PAS are guaranteed rational. Therefore, if 

something goes wrong and the system appears to be behaving irrationally, then 

these procedures cannot be to blame. Rather, one should look at the probabilities 

and utilities specifying the model in the first place. Heuristic approaches fail to 

isolate the causes of erroneous behaviour in this way. 
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Chapter 4 

Case Study: A Probabilistic Student Model 

for SQL-Tutor and Its Application To 

Problem Selection 

This chapter describes an initial attempt at building an intelligent pedagogical 

decision strategy in an existing ITS. This implementation and the subsequent 

evaluation led to the development of the general methodology, and the 

punctuation tutor CAPIT. 

SQL-Tutor is an intelligent tutor for the SQL database language 

(Mitrovic, 1998; Mitrovic & Ohlsson, 1999; Mayo & Mitrovic, 2001). 

Knowledge is represented in the form of constraints (Olhsson, 1994). A simple 

frequency overlay forms the long-term student model, and a basic heuristic is 

used for next problem selection. The system was extended in two ways. Firstly, 

the frequency overlay was changed to a probabilistic overlay to support more 

robust reasoning about the student. Secondly, a more intelligent decision 

procedure for problem selection was implemented. Unfortunately, the size of the 

SQL domain meant that some compromises had to be made to achieve 

tractability. Specifically, and unlike CAPIT, the problem selection strategy is 

not entirely normative. However, the results were positive and they encouraged 

us to continue in this line of research. 
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The initial version of SQL-Tutor is introduced in Section 4.1. The 

probabilistic student model and the new problem selection method are then 

described in Section 4.2. An evaluation of the new problem selection method 

was held in October 1999 and the results are given in Section 4.3. Finally, a 

number of lessons were learned from this implementation that guided our future 

research. These are discussed in Section 4.4. 

4.1 SQL-Tutor 

SQL-Tutor is a practice environment for undergraduate university students 

enrolled in database courses. There are three functionally identical versions for 

Solaris, MS Windows and the Web. 

Problems are presented in the form of English statements that the student 

must convert into equivalent SQL. The student learns the concepts and 

fundamentals of SQL because the system gives feedback on violated constraints 

in the student’s solutions. SQL-Tutor only has one correct solution (the ideal 

solution) for each problem, even though multiple correct solutions may exist. 

The ideal solution is used to determine the correctness of the student’s solution.  

Figure 4.1 depicts the main interface to SQL-Tutor. The problem 

statement is shown at the top of the window. At the bottom of the window, the 

database schema is depicted. By showing the database schema, the student’s 

loading on his or her short-term memory is reduced, allowing the student to 

concentrate on the specifics of the query. The student enters the SQL query for 

the current problem (the student’s solution) into the middle portion of the 

window. 

The interface has a separate text field for each clause in the student’s 

solution. By breaking up the SQL statement in this way, the complexity of the 

solution is further reduced. When the student feels that the solution is correct, or 

if the student needs help, he/she can click Submit and the system will match the 

constraints of the domain against the current state of the solution and give 

feedback. The level of feedback is adjustable by the student and by the system, 
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and ranges from very brief (correct/incorrect), to feedback on every violated 

constraint, to showing the complete ideal solution. 

 

 
 

Fig. 4.1. SQL-Tutor Interface 

 

Figure 4.2 shows the architecture of SQL-Tutor. The system contains 

definitions of several databases and a set of problems for each database with 

their ideal solutions. Each problem is assigned a difficulty level. The difficulty 

level depends on many features, such as the wording of the problem, the 

constructs needed for its solution, the number of required tables/attributes, etc., 

and was determined by a domain expert. Each student is given a level of 

mastery, which dynamically changes in accordance with their performance. The 

student’s level is incremented if he/she solves two or more problems 

consecutively at or above his/her current level, each within three attempts. 
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Fig. 4.2. Architecture of SQL-Tutor 

 

The basic components of the system are the interface, the pedagogical 

module and the CBM student modeller. The pedagogical module (PM) observes 

every student's action and reacts appropriately. At the beginning of the session, 

a problem must be selected for the student. When the student enters the solution, 

the PM sends it to the student modeller, which analyzes the solution in order to 

identify possible errors. If any errors exist, the PM generates appropriate 

feedback messages. After the first attempt a student is only told whether his/her 

solution is correct or not. The level of detail increases if the student is not able 

to correct the solution. 

The conceptual domain knowledge is represented in terms of over 500 

constraints. A student’s solution is matched to the constraints to identify any 

that are violated. Long-term student knowledge is represented as an overlay 

model that tallies the percentage of times the constraint has been satisfied (i.e. 

used correctly). 

There are three ways to select the next problem in SQL-Tutor. Students 

can work through a pre-specified sequence of problems by clicking next 

problem, or they can turn problem selection over to the system by clicking 

system’s choice. In the latter case, SQL-Tutor examines the student model and 

selects the first problem with a level within ±1 of the student’s level, and also 

relevant to the student’s most frequently violated constraint. The rationale for 

this rule is that if the student has violated the same constraint several times, it is 

appropriate to target it for instruction. This problem selection strategy is overly 
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simple. In a real classroom, it was often the case that selected problems were too 

complex or simple for the student, or they jumped to another part of the domain 

seemingly not connected to the previous problem. The motivation for the 

changes to SQL-Tutor described in the next section, therefore, was to improve 

this situation. 

4.2 Extensions to SQL-Tutor 

To improve system’s choice problem selection in SQL-Tutor, a new method 

based on Bayesian networks was implemented. There were two main 

differences between the new method and the original. Firstly, the student model 

was changed from a frequency overlay to a probabilistic overlay. Secondly, a 

new rule for problem selection that considers all of the constraints in the domain 

(rather than just the single most violated) was implemented. 

4.2.1 Probabilistic Student Model 

The new student model consists of a set of binary variables Mastered1, 

Mastered2,…,Masteredn, where n is the total number of constraints. Each 

variable can be in the state YES or NO with a certain probability, indicating 

whether or not the student has mastered the constraint. 

Initial values for P(Masteredc = YES) were determined by considering 

two frequencies from SQL-Tutor logs from previous evaluation studies. The 

frequency with which c was both satisfied and relevant in SQL-Tutor logs was 

divided by the frequency with which the constraint was relevant. That is, the 

initial probability of mastery is set to the fraction of times in the past that the 

constraint was satisfied when relevant. The logs were only analysed to the point 

where the user receives the first constraint-specific feedback about c, ensuring 

that the effects of learning did not bias the initial probabilities. 

This initialisation method could not be performed for all of the 

constraints, because some were new and did not appear in past SQL-Tutor logs, 

and others had simply never been relevant to a student’s solution before. For 
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these constraints, P(Masteredc = YES) was initialised to 0.5 to represent the 

state of maximum uncertainty. 

 

(a) If constraint c is satisfied, then P(Masteredc = YES) 
increases by 10% of (1-P(Masteredc=YES)). 
(b) If constraint c is violated and no feedback about c is 
given, then P(Masteredc = YES) decreases by 20%. 
(c) If constraint c is violated but feedback is given about 
c, then P(Masteredc = YES) increases by 20% of (1-
P(Masteredc=YES)). 

 

Table 4.1. Heuristics used for updating the student model 

 

The student model is updated after the student submits his/her solution 

to a problem and receives feedback. During this evaluation study, the system 

used the heuristics in Table 4.1 to update the probabilities. This is one of the 

areas in which normative techniques should have been applied, but were not. In 

particular, Bayes’ theorem (Equation 2.5) should have been applied to update 

the probability of mastery. However, this implementation and evaluation was 

exploratory in the sense that it led to the ideas presented in this thesis about 

using normative as opposed to ad-hoc systems. The extensions to SQL-Tutor, 

therefore, should be read in that light. CAPIT later demonstrated a completely 

normative solution to this problem. 

It is interesting to consider the effects of the heuristic used here as 

compared to the effect Bayes’ theorem would have had if it had been used. Let 

M denote mastery of a hypothetical constraint (M can take values YES or NO) 

and let L denote the outcome of the last attempt at the constraint (SATISFIED 

or VIOLATED). The case of violation with feedback will be ignored for the 

purposes of comparison. P(M) therefore denotes the system’s prior belief that 

the constraint is mastered, and P(M|L) is the system’s posterior belief given an 

observation of the student attempting the constraint, with outcome L. Table 

4.1(a) and (b) are essentially two ad-hoc rules for computing P(M|L) from P(M) 

and L. However, Bayes’ theorem is the normative means of performing this 

calculation. Substituting P(M) and P(L|M) these probabilities directly into 

Bayes’ theorem (Equation 2.5) yields: 
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P(M|L) = Z-1P(L|M)P(M) (4.1) 

 

where Z-1 is the constant of normalisation. Equation 4.1 can be expanded to 

show how individual entries in the P(M|L) table can be calculated. The 

expansion is: 
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Both Equation 4.1 and 4.2 require a definition of P(L|M), the probability 

that the constraint will be satisfied (or violated) given that the constraint is in the 

state of mastery (or non-mastery). This information is required by Bayes’ 

Theorem but not by the ad-hoc method. Simply defined, P(L|M) is a function of 

the probabilities that the constraint will be violated if mastered (an unlucky slip) 

or satisfied if not mastered (a lucky guess). This is because the mastery variable 

is binary; if M had more states (e.g. an intermediate level of mastery), then a 

much more complex definition of P(L|M) would be required. For the purposes 

of this comparison, let the slip and guess parameters be 0.1. The conditional 

probability P(L|M) can therefore be defined by Table 4.2. 

 

 M=YES M=NO 
L=SATISFIED 0.9 0.1 
L=VIOLATED 0.1 0.9 

 

Table 4.2. Definition of P(L|M). 

 

Now it is possible to compare Bayes’ theorem with the heuristic given in 

Table 4.1. The update rules are depicted for the cases where the constraint L is 

both satisfied (Figure 4.3) and violated (Figure 4.4). The prior probability of 

mastery (the input to the function) is along the x-axis of both figures, and the 

posterior probability (the output) is along the y-axes. 
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Fig. 4.3. Comparison of functions for updating P(M) when the constraint was satisfied. 
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Fig. 4.4. Comparison of functions for updating P(M) when the constraint was violated. 

 

Clearly, the heuristic produces a linear relationship between prior and 

posterior probability, but Bayes’ theorem results in a non- linear relationship. In 

Figure 4.3, Bayes’ Theorem rewards constraint satisfaction with a considerably 

greater increase in posterior probability than the heuristic, especially if the prior 

probability is lower. Conversely, a violation leads to a considerably greater 

relative decrease in posterior probability when Bayes’ theorem is applied. 
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This analysis shows that the effect of using the heuristic instead of 

Bayes’ theorem would be, if anything, a reduction in the sensitivity of the 

student model to individual constraint satisfactions and violations. That is, the 

current version of SQL-Tutor would require more satisfactions of a constraint to 

reach the same level of certainty that the constraint was mastered, than an 

equivalent version of the system implementing Bayes’ theorem. On the other 

hand, Bayes’ theorem makes use of more information about the domain 

(namely, the slip and guess parameters) than does the heuristic, which is 

independent of constraint-specific parameters. This can be a double-edged 

sword: if the parameters are accurate, then it should enhance the model; but if 

the parameters are less accurate due to a lack of prior information about the 

students (e.g. if they are set to constants, as they were in this study) then Bayes’ 

Theorem could actually introduce more uncertainty. 

Note the curvature of the Bayes’ Theorem functions in Figures 4.3 and 

4.4. The curvature tends to diminish (and the curve approaches linear) the closer 

the slip and guess parameters get to 0.5 (although the slope of the curve still 

differs from that of the heuristic). It would be an interesting avenue of future 

research to determine which function best describes actual student behaviour. 

4.2.2 Predicting Student Performance on Single Constraints 

We use the simple Bayesian network depicted in Figure 4.5 to predict the 

performance of a student given a problem P on a single constraint C. Masteredc 

is the mastery variable from the student model. Both RelevantISc,p and 

RelevantSSc,p are YES/NO variables. RelevantISc,p is YES if constraint C is 

relevant to problem P’s ideal solution. Because this can be determined from the 

problem database, RelevantISc,p is always known with certainty. RelevantSSc,p is 

YES if constraint C is relevant to the student’s solution to problem P. This is 

uncertain because the student may either enter an incorrect solution not relevant 

to C, or she/he may enter an alternate correct solution that is also not relevant to 

the constraint in question. Performancec,p is a three-valued node taking values 

SATISFIED, VIOLATED or NOT-RELEVANT. The arcs indicate that the 

relevance of the constraint to the student solution, RelevantSSc,p, depends on the 

relevance of the constraint to the ideal solution, RelevantISc,p. The performance 
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of the student on his/her next attempt at the constraint, Performancec,p, is 

dependent on whether or not the student has mastered the constraint C and C’s 

relevance to the student solution. 

 

RelevantSS Performance 

Mastered 

RelevantIS  c,p c,p c,p 

c 

 
 

Fig. 4.5. A simple Bayesian network for predicting student performance on a single 

constraint. 

 

A full specification of this Bayesian network requires prior and 

conditional probabilities. P(Masteredc) and P(RelevantISc,p) are the prior 

probabilities, which are already available from the student model and problem 

database respectively. Table 4.3 defines the conditional probability 

P(RelevantISc,p|RelevantSSc,p) as a function of two parameters of constraint C, 

αc and βc. Parameter αc (βc) is defined as the probability of a constraint being 

relevant to the student’s solution if it is (not) relevant to the current problem’s 

ideal solution. Effectively, αc and βc provide a measure of the “predictive 

usefulness” of the ideal solution. For example, when αc = βc = 0.5, the relevance 

of C to the ideal solution tells us nothing about the relevance of C to a potential 

student solution. However, if αc = 0.9 for example, there is a high probability 

that constraints relevant to the ideal solution will also be relevant to a student 

solution. 

 RelevantISc,p 
 YES NO 
YES αc βc 

Re
lS

S c
,p

 

NO 1-αc 1-βc 
 

Table 4.3. Definition of P(RelevantSSc,p|RelevantISc,p) 
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Like the initial probabilities of mastery, values for αc and βc were 

determined from past SQL-Tutor logs. However, these conditional probabilities 

are not available directly from the data. All that can be determined from the logs 

are the frequencies with which constraints are relevant to the ideal and student 

solutions, or both. Equation 4.3 shows how αc was calculated using a 

rearrangement of Bayes’ Theorem (Equation 2.4). A similar calculation was 

performed for βc. For new or previously unused constraints, αc and βc were 

initialised to 0.5 to reflect the state of maximum uncertainty. 

 

αc = P(RelevantSSp,c = YES | RelevantISp,c = YES) 

 = P(RelevantSSp,c = YES & RelevantISp,c = YES) 

 P(RelevantISp,c = YES) 

 = # times C is relevant to both the SS and the IS in the logs  

 # times C is relevant to IS in the logs 

(4.3) 

 

RelevantSSc,p 
Masteredc 

 YES 
YES 

YES 
NO 

NO 
YES 

NO 
NO 

SATISFIED 1-Slipc Guessc 0 0 
VIOLATED Slipc 1-Guessc 0 0 

Pe
rf

er
m

an
ce

c,

p.
 NOT-RELEVANT 0 0 1 1 

 

Table 4.4. Definition of P(Performancec,p|RelevantSSc,p,Masteredc) 

 

Table 4.4 is the conditional probability distribution of Performancec,p 

given its parent variables RelevantSSc,p, and Masteredc. Slipc (Guessc) is defined 

as the probability of a student who has mastered (not mastered) C slipping 

(guessing) and violating (satisfying) the constraint. In the third and fourth 

columns of Table 4.4, P(Performancec,p = NOT-RELEVANT) = 1.0, because 

these columns represent two scenarios where RelevantSSc,p = NO (i.e. C is not 

relevant to the student solution). The four columns represent situations where 

the values of the parent nodes are known with certainty. In practice, these will 

not be known with certainty because the mastery of a constraint and its 

predicted relevance to the student solution is uncertain. The probability 

distribution over Performancec,p, therefore, will be uncertain. 
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The Bayesian network is used to predict the probabilities of the student 

violating, satisfying, or not using c in his/her solution to p. A simple example 

will illustrate the evaluation process. Let us take the following constants: αp = 

0.9, βp = 0.1, Slipc = 0.3, Guessc = 0.05. Now, suppose that C is relevant to 

problem P’s ideal solution (i.e. P(RelevantISc,p = YES) = 1) and the student is 

not likely to have mastered C (e.g. P(Masteredc = YES) = 0.25). An evaluation 

of the network yields the probability distribution [P(Performancec = 

VIOLATED) = 0.709, P(Performancec = SATISFIED) = 0.191, 

P(Performancec = NOT-RELEVANT) = 0.1]. 

4.2.3 Evaluating problems  

A single problem requires mastery of many constraints before it can be solved. 

The number of relevant constraints per problem ranges in SQL-Tutor from 78 

for the simplest problems, to more than 200 for complex ones. It is therefore 

necessary to select an appropriate problem for a student on the basis of his or 

her current knowledge.  

We determine the value of a problem by predicting its effect on the 

student. If the student is given a problem that is too difficult, he/she will violate 

many constraints. When given a simple problem, they are not likely to violate 

any constraints. A problem of appropriate complexity is the one that falls into 

the zone of proximal development, defined by Vigotsky (1978) as “…the 

distance between the actual development level as determined by independent 

problem solving and the level of potential development as determined through 

problem solving under adult guidance or collaboration of more capable peers”. 

This can be interpreted as saying that a student should be given a problem that is 

slightly above their current level but not so difficult as to discourage the student.  

Let the strategy we propose for selecting problems be discussed. Each 

violated constraint triggers a feedback message. If the system poses a problem 

that is too difficult, there will be many feedback messages coming from various 

violated constraints, and it is unlikely that the student will be able to cope with 

them all. If the problem is too easy, there will be no feedback messages, as all 

constraints will be satisfied. A problem of suitable complexity will generate an 
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appropriate number of feedback messages. This is the basis of the evaluation 

function we propose. 

The algorithm for evaluating problems is given in Listing 4.1. The 

function takes two parameters, the problem P to be evaluated and an integer, 

OptimalFeedback. It returns the value of P. OptimalFeedback is an argument 

specifying the appropriate number of feedback messages the student should see 

regarding the current problem. Its value is currently set to the student’s level + 

2, reflecting the fact that novices are likely to cope well with a small number of 

messages at a time, while advanced students are able to resolve several 

deficiencies in their solutions simultaneously. 

 

int Evaluate(problem p, int OptimalFeedback) { 
   int Feedbacks:=0; 

   For every constraint c { 

      Evaluate the Bayesian network; 
      If P(Performancec,p = VIOLATED) > 0.45  

         Then Feedbacks := Feedbacks + 1; } 

   Return (- |OptimalFeedback – Feedbacks|); } 

 

List. 4.1. The problem evaluation function. 

 

Like the mastery probability update rule, this function is a heuristic. 

Ideally, decision-theoretic methods should have been used for problem 

selection. In fact, this was what was originally intended. However, initial tests 

indicated that an on- line decision-theoretic procedure incorporating the 

performance probability of all five hundred constraints would have been 

intractable, and so the heuristic method in Listing 4.1 was used. 

The evaluation function assumes that feedback will be generated for 

every constraint where P(Performancec,p = VIOLATED) > 0.45. It does not 

attempt to calculate the probability of a particular number of feedback 

messages, again because of tractability concerns. The constant 0.45 was chosen 

because initial tests showed that it gave the best results. The problem with the 

highest value is selected from the pool of unsolved problems within 1 level of 

the student’s level. 
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4.3 Evaluation Study Results 

We performed an evaluation study in October 1999, with second year students 

enrolled in an introductory database course. The students were randomly 

assigned to versions of SQL-Tutor either with the probabilistic student 

model/problem selector (the experimental group) or without it (the control 

group). A total of 18 students were placed in the control group, while 14 were 

placed in the experimental group. The study consisted of one 2-hour session in 

which students sat a pre-test, interacted with the system, and then completed a 

post-test. Timing of the study was a constraint, as students needed to have some 

overall understanding of databases prior to using SQL-Tutor. The only possible 

time for the study, therefore, was the last week of the school year, which had a 

negative effect on the number of participating students.  

4.3.1 Appropriateness of Selected Problems  

All student actions performed in the study were logged, and later used to 

analyse the effect of the proposed problem-selection approach on learning. Both 

groups had access to the two problem selection methods described in Section 

4.1: clicking next problem, or clicking system’s choice. In the case of the control 

group, clicking system’s choice led to a problem being selected using the 

original approach, whilst the Bayesian approach was used for the experimental 

groups. 

 

  Exper. 
group 

Control 
group 

Next problem 3.18 2.10 

System’s choice 2.69 4.55 

 

Table 4.5. Average number of attempts per solved problem. 

 

In order to evaluate the proposed problem selection method, we 

identified the logs of students who used system’s choice in both groups. Six 

students from the experimental group attempted 36 problems selected by next 
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problem and 38 problems selected by system’s choice using the new Bayesian 

approach. Thirteen students from the control group worked on 106 problems 

selected by next problem and 79 problems selected by system’s choice. The 

number of attempts it took to solve each problem was counted, and the averages 

are given in Table 4.5. The problems selected for the control group by the 

heuristic were the most difficult for the students, requiring 4.55 attempts on 

average to solve. The students in the experimental group were able to solve 

problems selected by the Bayesian approach on an average of 2.69 attempts, 

compared to 3.18 attempts when problems were visited in turn. The proposed 

problem selection method, therefore, compares favourably with the heuristic 

approach used by the control group. 

The average of 2.10 attempts by the control group when picking the next 

problem compared to 3.18 for the experimental group can be explained as 

follows. When the student clicks next problem, the problem immediately 

following the last attempted problem on the list of problems is selected. The 

problems are arranged on the list from easiest to hardest. To illustrate, consider 

a hypothetical situation where a student selects two problems, one via system’s 

choice and the other with next problem. The first problem is meant to be the 

most appropriate problem for the student, and therefore does not depend on the 

ordering of the problems in the list. The second problem will be the problem on 

the list following the first problem, and so it may not be well-adapted at all. In 

fact, if the system’s choice problem occurs later in the list (where the problems 

are harder), then the next problem may well be very difficult. This is reflected in 

the averages: the experimental group takes fewer attempts to solve system’s 

choice problems because they are well-adapted, but more attempts to solve 

problems selected via next problem because the next problem on the list may 

not necessarily be as well-adapted. Furthermore, because the experimental 

strategy progresses to more difficult problems at a faster rate (as shall be 

explained), this leads to the number of attempts by the experimental group being 

higher when next problem is selected. 
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Fig. 4.6. The average number of attempts to solve the ith problem by students in the 

experimental group. 
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Fig. 4.7. The average number of attempts to solve the ith problem by students in the 

control group. 

 

The new system’s choice method is only slightly better on average than 

the next problem option for the experimental group, but its advantages are 

clearer when the problem solving session is analysed temporally. The students 

begin with simple problems, and progress to more complex ones. Figure 4.6 

illustrates the average number of attempts that students in the experimental 
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group took to solve the ith problem, and Figure 4.7 depicts the same graph for 

the control group. It can be seen that the initial problems selected by next 

problem are easier for the experimental students than those selected by the 

Bayesian approach. This is explained by the fact that the Bayesian approach 

progresses faster to more complex problems. However, later problems selected 

by the Bayesian approach are more adapted to the student and therefore require 

fewer attempts to be solved. The opposite trend occurred in the control group 

(Figure 4.7), in which system’s choice progressively selected more difficult 

problems. This is perhaps due to the original problem selection rule that selects 

problems on the basis of a single constraint (the most violated) as opposed to the 

new rule that considers all the constraints. 

4.3.2 Pre/post tests 

Pre- and post-tests consisted of three multi-choice questions each, of 

comparable complexity. The marks allocated to the three questions were 1, 5 

and 1 respectively. Nine out of fourteen students in the experimental group and 

sixteen out of eighteen in the control group submitted valid pre-tests, the results 

of which are given in Table 4.6. The mean scores in the pre-test for the two 

groups are very close, showing that the control and experimental groups 

contained a comparable cross-section of students. However, a number of 

factors, such as the short duration of the user study, conducting the study during 

the last week of the year, etc., conspired to result in a very small number of 

post-tests being completed. Because some students did not log off, they did not 

sit the post-test that was administered on a separate Web page. Only one student 

from the control group and four from the experimental group sat the post-test. 

As a result, we can draw no conclusions from a comparison of the pre- and post-

test results. 

Question Experimental 
group 

Control 
group 

1 0.22 0.25 
2 2.67 2.73 
3 0.62 0.73 
Total 3.44 3.50 

 

Table 4.6. Means for the pre-test 
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4.4 Lessons Learned 

The feasibility of normative techniques were explored. Although the 

improvements to SQL-Tutor did have some heuristic elements, the evaluation 

results suggest that this approach leads to an improvement. Of course, an 

entirely Bayesian and decision-theoretic solution should have replaced SQL-

Tutor’s student model and problem selection heuristic. This did not happen for a 

number of reasons, mainly the complexity of SQL-Tutor and the size of the 

domain. Initial tests showed that the number of constraints (more than 500) 

made modelling all within one connected Bayesian network intractable, and so a 

number of compromises were made so the system could tractably evaluate 

problems. There are similar problems in other domains. For example, ANDES 

models many different physics rules and because it would be infeasible to 

consider all of them at once, the Assessor network considers only those rules 

appearing in the problem’s solution graph (Conati et al., 1997) because it is 

assumed that only those rules can be relevant. This is a strong assumption 

because it presupposes that all possible correct solutions or problem–solving 

methods are accounted for by the system. CBM does not make such an 

assumption because of phenomena such as radical strategy variability that 

suggest that the modelling of procedural knowledge is near- impossible. As a 

result, CBM tutors do not require a problem-solving component, but must take 

into account the fact that any constraint can potentially be relevant to a student’s 

solution. It is therefore necessary to model each constraint during every problem 

attempt, and this leads to the “multiple smaller networks” approach and the 

problem selection heuristic of Listing 4.1. 

Another source of sub-optimality in this implementation was the 

existence of levels. The method of considering only problems within one level 

of the student’s level effectively stereotypes the student. Although a domain 

expert assigned the problem levels, there is no guarantee that the most 

appropriate problem will actually be within the selectable levels. Ideally, an 

adaptive system would not require levels at all. However, again for tractability 

reasons, levels are necessary for SQL-Tutor because they limit the amount of 

problem evaluation that must be performed. 
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Finally, SQL-Tutor was also not designed specifically for the evaluation 

of PAS strategies. It is a large system that allows the student considerable 

control over the settings, such as the level of feedback (there are five) and the 

method of problem selection (system’s choice, next problem, or from the list). 

This flexibility makes it difficult to compare, for example, two problem 

selection strategies, because there are a number of additional uncontrolled 

variables. 

Therefore, although this evaluation did not demonstrate pure decision-

theoretic PAS, it did provide a number of guidelines for the research that 

followed. The first guideline was to select a domain where the number of 

constraints could be kept to a manageable quantity. This would ensure that 

enough data could be collected on each constraint to reliably estimate 

parameters such as the prior probability of the constraint being satisfied. The 

tutor still had to be practical, but a smaller number of constraints means that 

firstly, dependencies between constraints can be modelled, and secondly, pure 

normative methods would be tractable using standard algorithms. Better 

hardware and more sophisticated algorithms will lead to gains in tractability. 

The second guideline for future research was to eliminate all heuristics such as 

the problem selection heuristic and the mastery probability update rules. 

Additionally, the system should not contain subjective prior knowledge such as 

problem levels. The third and final guideline was to eliminate all sources of 

variability other than the decision strategies being used. That is, the student 

should not be permitted to modify the tutoring environment (e.g. the level of 

feedback, etc.), so that carefully controlled experiments can be performed. 

Although this is overly restrictive for general tutoring systems, it is necessary in 

order to evaluate and compare subtleties such as the difference between two 

decision strategies. Note also that the changes in the third guideline could have 

been implemented in SQL-Tutor, but because of the other problems, an entirely 

new tutor was later developed. We used these guidelines to formulate a general 

methodology for building the PAS component of a decision-theoretic tutor. 
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Chapter 5 

A Methodology for Building 

Decision-Theoretic Pedagogical Action 

Selection Strategies 

A methodology for developing normative tutors is proposed in this chapter. The 

basis of the methodology is to make explicit and draw together three “merits” or 

desirable qualities of an ITS design process. This first is that of evaluation 

during design. This is considered critically important by the ITS community. 

Systems should be evaluated in the classroom, and the feedback should be used 

to further improve the system. The second desirable quality is machine learning. 

More often than not, simple approaches such as frequency counts are used to 

construct long-term student models. However, such approaches may overlook 

properties of the domain and/or the student population that a slightly more 

powerful solution may detect. Interdependencies between knowledge items (see 

Chapter 3, Section 3.2.2) are one phenomenon that a frequency-based approach 

misses. Furthermore, because evaluation during design is also advocated, live 

student performance data can be used as the input to the machine learning 

algorithms. The third desirable quality of an ITS design process is to implement 

normative methods as the mechanism for representing and reasoning about the 
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student’s and system’s behaviour. This is the main thrust of this thesis, and the 

reasoning behind this has been extensively discussed earlier on. 

There are five steps involved in the methodology, and each step is now 

justified. Briefly, the first step is data acquisition. This involves a partly-

complete version of the ITS (with no long-term student model and randomised 

PAS) being deployed in the classroom for the purpose of collecting live student 

performance data. This step provides the data source for the next step, which is 

machine induction of a Bayesian network student model. The reasoning for this 

is that initialising the student model from actual student data is likely to lead to 

a more effective initial state than default values would lead to. The third step is 

decision-theoretic strategy construction. The point of this step is to immediately 

define the decision problems the ITS must solve and then link these to the 

student model. A student model in isolation is effectively useless; its value 

comes from the predictions it can make about the student, which in turn are used 

to select actions. The fourth step is another machine learning step. Once a new 

student is using the system and data is being acquired from this student, this 

new data can gradually replace the older data. Effectively, the Bayesian network 

is biased towards the current student over time. Finally, the fifth step is a full-

scale evaluation. The purpose is essentially to test the completed system in the 

classroom to ensure that the additional computational effort required to perform 

the normative calculations actually pays off. The final system must be shown to 

be better than the initial randomised version. 

Table 5.1 illustrates the five steps in the methodology. The order of the 

steps is certainly not rigid; the designer could iterate from one step to an earlier 

step, if required. Sections 5.1-5.6 describes each step in more detail, and then 

section 5.7 compares the methodology to other design processes. 

 

1 Randomised Data Collection 
2 Model Generation 
3 Decision-Theoretic Strategy 

Implementation 
4 On-line Adaptation 
5 Evaluation 

 

Table 5.1. The five-step methodology for designing decision-theoretic PAS strategies. 
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5.1 Randomised Data Collection 

The first step is randomised data collection, in which an almost fully functional 

version of the tutor is tested in a classroom representative of the intended 

population of users of the system. The only difference between this and the final 

version of the tutor is the PAS strategy. In the initial version of the tutor, the 

PAS strategy is random. In other words, given a set of alternatives (such as 

unsolved problems), the tutor makes the selection completely randomly. All 

actions should be logged as records of form <State, Action, Outcome>, where 

State is a description of some state prior to the action selection (e.g. the state of 

the student model, or the recent history of the student, or a combination thereof), 

Action is the pedagogical action that is randomly selected (e.g. the next 

problem), and Outcome is the observed outcome(s) of the action (e.g. correct or 

incorrect). Because PAS selection is random, the data should be uniformly 

spread over all the possible actions. 

5.2 Model Generation 

The next step is model induction, the construction of a Bayesian network for 

predicting student performance given the current student and an action selected 

by the tutor. More specifically, using normative methods the task is to build a 

predictor for the value of Outcome given values for State and Action. The data 

from Step 1 serves as the source from which the model is induced. At this stage, 

prior and expert knowledge can be optionally added to the network. This can be 

achieved either before learning by adding dependencies and probabilities 

between the variables, or after learning, by fine-tuning the induced network. 

Cheng et al. (1998) describe a Bayesian network induction algorithm capable of 

starting from a partial specification. However, the rationale for any decision at 

this stage should be to enhance predictive performance. Also, because the 

network is being learned from tutor log data, the variables can only represent 
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observations. Internal hidden states will be implicit in the conditional 

probabilities relating the observable variables. 

5.3 Decision-Theoretic Strategy Implementation 

The third step is implementation of the decision-theoretic strategy. This is an 

encoding of the expected utility function (Equation 2.28) to rank the outcomes 

of a pedagogical decision. When combined with the estimates of the 

probabilities of each outcome, the expected utility of each pedagogical action 

can be calculated. 

Recall that the expected utility function has two main components; the 

utility function U(X,D), and the conditional probabilities of outcomes given 

decisions, P(X|D). The Bayesian network constructed in the previous step is 

used to provide the outcome probabilities, P(X|D). However, the utility function 

is not yet defined. In fact, it is at this point that teaching knowledge is 

incorporated into the system. The utility function essentially ranks the outcomes 

of tutorial actions. To illustrate, if D represents a possible next problem and X is 

the number of errors the student makes when attempting the problem, then 

U(X,D) can be defined to be maximal for some appropriate number of errors. 

This incidentally is the strategy used to select problems in CAPIT, and will be 

discussed in more detail in the next chapter. 

5.4 On-Line Adaptation 

Step four involves implementing an on- line Bayesian network learning 

algorithm. In Step 2, the Bayesian network is constructed from population data. 

Stern et al. (1999) coined the phrase “population student model” to refer to a 

probabilistic model induced from population data. However, as data is acquired 

directly from the current student, this population data should be gradually 

discounted. In other words, the population student model needs to gradually 
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become more individualised to the student. Additionally, as the student state 

changes over time, even old data acquired from the student will need to be 

discounted. While there are a number of existing algorithms for Bayesian 

network induction from data, there is little in the way of on-line Bayesian 

network induction algorithms. Furthermore, the online learning algorithms that 

do exist (e.g. Heckerman, 1999; Bauer et al., 1998) make the assumption that 

the data-source is essentially static and unchanging over time, in direct contrast 

to an actual student whose state changes constantly. Therefore, when the 

methodology was applied to CAPIT, as will be described in the next chapter, an 

existing algorithm for on- line conditional probability learning was modified to 

account for this. The much more difficult problem of updating a network’s 

structure on- line was not considered. 

5.5 Evaluation 

The fifth step is an evaluation of the decision-theoretic PAS strategy. This is 

necessary to ensure that the decision-theoretic strategies actually provide a 

benefit for the extra computational effort they require. One strategy that requires 

virtually no computational effort is the randomised PAS strategy implemented 

for Step 1. Therefore, one can compare the PAS strategy developed in Steps 2-4 

with the random PAS strategy used in Step 1. In other words, the decision-

theoretic and randomised PAS strategies are to be evaluated in a controlled 

experiment in which one group of students (the control group) use a version of 

the tutor with the original, randomised strategy, and the second group of 

students (the experimental group) use the version with the decision-theoretic 

strategy. Both versions of the tutor should be identical and limit the student’s 

ability to modify the tutoring environment (e.g. feedback levels) so as to make 

the comparison as valid as possible. We have performed this evaluation with 

CAPIT. 
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5.6 Summary 

The methodology is a five-step process for constructing a Bayesian network 

student model and a decision-theoretic PAS strategy for one or more tasks. A 

summary of the methodology is as follows. Firstly, data is collected by 

evaluating the initial randomised version of the system in a classroom. This data 

is used to induce a Bayesian network that predicts a probability distribution over 

Outcomes given a State and an Action. A utility function over the different 

outcomes is also defined at design-time. At run-time, for each potential next 

action being considered, P(Outcomes|Action) is computed by the Bayesian 

network. When combined with the utility function, this information is sufficient 

to compute the expected utility of an action. The action with the highest 

expected utility is always selected. When the actual outcomes are observed, this 

information and other information such as the student’s State and the Action that 

was finally selected are added to the training data and used to update the 

Bayesian network on- line. 

Figure 5.1 illustrates the process. Some of the components of the figure 

are labelled to clarify the stage of the methodology in which they are created. 

For example, the training data is accumulated during Step 1 and updated by the 

procedure created in Step 4, and the Bayesian student model is constructed in 

Step 2 and updated during Step 4. 
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Utility Function 

Actions  
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P(Outcomes) 

Actual 
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Fig. 5.1. Overview of the methodology. 
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5.7 Comparison to other ITS Design Methodologies 

Bloom et al. (1997, pp. 251) advocate evaluation as a crucial step in the design 

of intelligent tutoring systems. In their words, “Having end-users involved from 

the onset of a development project helps ensure that the system developed is 

more likely to satisfy the functional requirements and performance criteria, as 

well as meet their affective requirements.” Two types of evaluation discussed by 

Bloom et al. and Mark & Greer (1993) are formative and summative evaluation. 

Formative evaluation considers the architecture and behaviour of the 

ITS. Does it work as expected? Can it be used effectively? This type of 

evaluation is characterised by experts inspecting all the internal aspects (e.g. the 

domain knowledge and pedagogy) as well as the external aspects (the 

behaviour) of the tutor to assess its usefulness and suggest improvements. It 

may also include pilot studies in which students use the system either 

individually or in groups in a classroom setting, which can be extremely useful 

for assessing the user interface. Detailed results are then used to improve the 

system. 

Summative evaluation, on the other hand, considers the teaching 

effectiveness of a (usually) completed system. It is an extensive external 

assessment of the tutor. It includes both subjective analyses directed at students 

and instructors (e.g. questionnaires, ratings) as well as objective analysis from 

acquired data (e.g. student model and log analysis). The process advocated by 

Bloom et al. is to iterate the process of design followed by formative evaluation, 

and to finish with a final summative evaluation. 

This procedure was used to develop the intelligent tutoring system 

LEAP (Bloom et al., 1997). LEAP teaches customer interaction skills to 

customer contact employees (salespeople) in a corporate environment. The 

system was modelled on the metaphoric “interactive book” and comprises three 

instructional components: a multimedia guide book, a “what if?” analysis 

module in which students can observe expert responses to certain situations, and 

a conversation rehearsal module in which students can simulate conversations 

with customers. LEAP went through four design-evaluate cycles. Major changes 

to the domain models, pedagogy, and user interface were introduced as a result 



 116 

of the first two evaluations; more refined changes were made following the 

latter two. A summative evaluation of the final version of LEAP is described in 

Bloom et al. (1997). Interestingly, there were a number of design issues still 

outstanding in the final version of the system, despite the considerable 

evaluations. Most significantly, only one of the three instructional methods 

(namely, conversation rehearsal) was used frequently. Other issues involved the 

lack of flexibility of some parts of the system, and the detail and type of 

feedback. Despite these drawbacks, the students’ abilities and confidence were 

shown to improve, and the system was well- liked by both instructors and 

students. Overall, the LEAP evaluation was described as a “quality learning 

experience” and could therefore be described as a successful ITS. 

The methodology discussed in this chapter is in the same vein as that of 

the methodology used to design LEAP. However, the focus is much narrower: 

rather than using evaluation as a component in the design of an entire system, 

we consider only the development of the student model and intelligent decision 

strategies within an existing system. This allows more focus on the comparison 

of different normative techniques (e.g. different Bayesian network structures) 

for decision making, but makes the implicit assumption that the rest of the 

system, (e.g. the user interface, feedback messages, etc.), is complete and 

remains static during the iterative development. This ensures that differences 

between strategies can actually be isolated. 

Another difference between the method proposed here and LEAP’s 

design is that whereas LEAP had a designer to interpret the results of each 

evaluation and make the subsequent improvements to the system, the 

philosophy of the methodology proposed here is to make the designer as 

“transparent” as possible. That is, the improvements to the system should come 

from objective processes such as machine learning rather than designer 

decisions. This is, of course, feasible when one is considering only the student 

model and the selection strategies; other issues such as user interface design can 

only be dealt with by a human designer. Naturally, the designer cannot be 

completely removed from any design process (e.g. she/he must at least select the 

Bayesian network learning algorithms that will be used), but his/her influence 

can be minimised. Despite these differences, the key philosophy of both 

processes is the incorporation of evaluation into the design process. 
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EasyMath also involved extensive evaluation in the design process 

(Virvou & Tsiriga, 2000). EasyMath is a tutor for algebraic powers, and the 

designers of the system realised from the outset that involvement of teachers 

and students would be highly beneficial. They were also concerned that a 

number of ITSs have been developed and tested in laboratory settings only, and 

not within real classrooms. In their own words, ITSs “…have often been 

criticised that they are mainly research products, which have not been used in 

real classrooms.” Evaluation in the classroom was therefore a design goal. The 

development of EasyMath was a three-step process. Firstly, the inception phase 

was an empirical study of the algebraic powers domain. Teachers were asked to 

construct a test covering the entire domain and the test was administered to over 

200 students. The results were used to determine an enumerative bug library. 

Teachers were also asked to specify their requirements during this phase. The 

elaboration phase occurred next, which involved testing the first executable 

version of EasyMath with two teachers and ten students. The system was 

evaluated by observation and questionnaires. Finally, the third phase, 

construction, extended the initial prototype into the final version of EasyMath 

using the results of the initial evaluation as a guide. 

The approaches of Bloom et al. (1997), Virvou & Tsiriga (2000), and 

myself during the development of CAPIT are frameworks for incorporating 

evaluation into the ITS design process. The main difference between the 

approaches is that machine learning is advocated in this thesis as a suitable 

method for developing decision strategies, whereas the more traditional 

software-engineering approaches of Bloom et al. and Virvou & Tsiriga would 

have a knowledgeable human designer programming the decision strategies 

from evaluation results. The methodology is most similar to Virvou & Tsiriga’s 

approach in that two evaluations are performed during the design process: one 

evaluation to collect data (equivalent to the elaboration phase), and a final 

evaluation of the completed system (equivalent to the construction phase). 

To conclude, a five step methodology has been proposed for designing 

normative student modelling and PAS components for ITSs. In the next chapter, 

a demonstration of the application of the methodology is described. 
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Chapter 6 

Case Study: Using the Methodology to 

Construct CAPIT 

The application of the general methodology to the development of a Bayesian 

student model and decision-theoretic strategies for the intelligent tutor CAPIT 

(Capitalisation And Punctuation Intelligent Tutor) is described in this chapter. 

CAPIT is an ITS that teaches the basic mechanical rules of English 

capitalisation and punctuation to children in the 8-10 year old age group. 

Section 6.1 introduces CAPIT and describes the system’s interface and overall 

architecture. In Sections 6.2 and 6.3, the problems and constraints represention 

are described in detail. The application of the general methodology to the 

construction of CAPIT’s student model and decision-theoretic strategies is then 

described. Specifically, Section 6.4 describes the first step, randomised data 

collection. Section 6.5 shows how the optimal Bayesian network student model 

was selected used statistical significance tests (Step 2 of the methodology). In 

Sections 6.6 and 6.7, the problem and feedback selection strategies are 

described (constituting Step 3 of the methodology). The implementation of Step 

4, a mechanism for adapting the conditional probabilities of the Bayesian 

network to the student, is described in Section 6.8. The last step in the 

methodology, an extensive evaluation, is described in Section 6.9. Finally, the 

results are summarised and discussed in Section 6.10. 
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6.1 CAPIT: Capitalisation And Punctuation Intelligent Tutor 

CAPIT (Mayo et al., 2000; Mayo & Mitrovic, 2001) is the second intelligent 

tutor to implement Ohlsson’s Constraint-Based Modelling (CBM) (Ohlsson, 

1994), the other being SQL-Tutor that was introduced in Chapter 4. CBM was 

described in Section 3.1.5. CAPIT is implemented in Visual Basic 6, and it runs 

on any 32-bit Windows platform. The Bayesian network reasoning module it 

uses is MSBN which is provided by Microsoft 

(http://research.microsoft.com/msbn). 

Traditional capitalisation and punctuation exercises for children tend to 

fall into one of two categories (Bouwer, 1998): completion (the student must 

punctuate and capitalise a fully lowercase, unpunctuated piece of text), and 

check-and-correct (the student needs to check for errors, if any, and correct 

them). CAPIT poses problems of the first class, the completion exercise. If the 

child makes a mistake, an error message is displayed. For example, Table 6.1 

depicts one of the shorter problems in the system, a student’s incorrect attempt 

at punctuating and capitalising it, and the tutor’s correct solution. 

 

(a) the driver said it will rain  
(b) The driver said, “it will rain”. 
(c) The driver said, “It will rain.” 

 

Table 6.1. (a) A problem, (b) a student’s incorrect solution, and (c) the correct 

solution. 

 

There are two errors in the student’s solution: the direct speech does not 

start with a capital letter, and the period is outside the quotation marks. 

Currently, CAPIT displays only one error message at a time, and the student is 

expected to correct the error (and any others) and resubmit the problem before 

any more feedback is displayed. If the student submitted the solution given in 

Figure 6.1(b), a feedback message such as The full stop should be within the 

quotation marks! Hint: look at the word rain in your solution would be 

displayed. Error messages are typically short and relate to only a single mistake, 



 121 

but if the student wants more detailed information, she/he can click Why? to be 

shown further explanatory material. 

The current version of CAPIT contains 45 problems and 25 constraints. 

The problems are relevant to the constraints in roughly equal proportions, 

although a small number of constraints (such as capitalisation of sentences) are 

relevant to all the problems. The constraints cover the following parts of the 

domain: 

 

• Capitalisation of sentences. 

• Capitalisation of the names of both people and places. 

• Ending sentences with periods. 

• Contracting is and not using apostrophes (e.g haven’t). 

• Denoting ownership using apostrophes (e.g. John’s dog). 

• Separating clauses using commas. 

• Separating list items us ing commas (e.g. apples, oranges, lemons and 

pears). 

• Denoting direct speech with quotation marks. 

• The correct punctuation of the possessive pronoun its. 

 

All the constraints are listed in Appendix C. 

6.1.1 Interface 

CAPIT’s main user interface, showing a partially completed problem, is 

depicted in Figure 6.1. Brief instructions relevant to the current problem are 

clearly displayed at the top of the main interface. This reduces the cognitive 

load by enabling the learner to focus on the current goals at any time without 

needing to remember them. Immediately below the instructions, and clearly 

highlighted, is the current problem. In this area, the child interacts with the 

system by moving the cursor using keyboard or mouse, capitalising letters, and 

inserting punctuation marks. The child can provide input either by pointing and 

clicking the mouse, or by pressing intuitive key combinations such as Shift-M to 

capitalise the letter m. By requiring the cursor to be positioned at the point 
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where the capital letter or punctuation mark is to go, the child’s ability to locate 

errors as well as correct them is tested. 

 
 

Fig. 6.1. CAPIT’s main user interface. 

 

Motivation is provided in two ways. Firstly, whenever a correct solution 

is submitted, some points are added to the child’s score. The number of points 

added is equal to the number of punctuation marks and capital letters in the 

solution that was just submitted. Secondly, whenever a correct answer is 

submitted, an animation is displayed. These simple strategies were found to be 

highly effective motivators for children in the target age group of 8-10 years 

old. 

6.1.2 Architecture  

Figure 6.2 shows the architecture of CAPIT. The student model comprises a 

record of the outcome of the previous attempt at each constraint (the short-term 

model) and the current configuration of the Bayesian student model (the long-

term model). The student modeller is a pattern matcher that takes the student’s 

solution to a problem and determines which constraints are violated. It then 

passes the violated constraints (if any) to the pedagogical module. The 
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pedagogical module is the core component of the system. It currently performs 

two significant PAS tasks: firstly, given the violated constraints, it selects the 

single violated constraint about which feedback should be given; secondly, 

when Pick Another Problem is clicked, or when the student solves the current 

problem, the pedagogical module selects the most appropriate next problem for 

the student. The current version of the pedagogical module can perform PAS in 

two ways: randomly, or using decision theory. More details of these strategies 

will be given later in the paper. 
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Fig. 6.2. The architecture of CAPIT. 

6.2 Problem Representation 

Problems in CAPIT are represented as arrays of words. Each word in the 

representation is properly punctuated and capitalised, and the tutor generates the 

initial problem text by removing the punctuation marks and capitals, and 

stringing the words together into a single piece of text that the student can then 

edit. Each word also has one or more tags associated with it. The tags specify 

the semantic and/or grammatical classes of a word, to the degree that it is 

relevant for punctuation and capitalisation. For example, Table 6.2 is the tutor’s 

internal representation of a short problem. Each word in this problem has one or 
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more tags. The tags themselves have no explicit meaning in the system; their 

meaning is implicit, deriving from the fact that they determine which 

constraints are relevant to the word and the problem. 

The tag DEFAULT indicates that a word does not need to be punctuated 

or capitalised (although the system does not actually prevent the student from 

doing so), such as driver and will in the example. As DEFAULT words have 

their capitalisation and punctuation requirements completely specified (they do 

not have any), such words do not require any other tags. Other tags such as L-

CASE indicate that a word does not need to be capitalised, but says nothing 

about the punctuation requirements (and vice-versa for the tag NO-PUNC). 

Other types of words need more specific tags. For example, The is the first 

word in the sentence and therefore carries the tag SENTENCE-START. 

Similarly, rain is the last word in both the sentence and the direct speech. This 

fact is reflected by one of its tags, DIRECT-QUOTE-ENDING-SENTENCE. A 

longer example, more representative of the complexity of the problems in the 

database, is given in Table 6.3. All the problems represented in CAPIT’s 

knowledge base are listed in Appendix A. 

 

The SENTENCE-START,NO-PUNC 
driver DEFAULT 
said, WORD-PRECEDING-DIRECT-QUOTE, 

L-CASE,ONE-PUNC 
“It DIRECT-QUOTE-START,ONE-PUNC 
will DEFAULT 
rain.” DIRECT-QUOTE-ENDING-SENTENCE, 

L-CASE,TWO-PUNC 
 

Table 6.2. Problem representation for The driver said, “It will rain.” 
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There's SENTENCE-START,IS-CONTRACTION, 
ONE-PUNC 

a DEFAULT 
bee DEFAULT 
buzzing DEFAULT 
past DEFAULT 
me. SENTENCE-END,ONE-PUNC,L-CASE 
It's SENTENCE-START,IS-CONTRACTION, 

ONE-PUNC 
taking DEFAULT 
its ITS-POSSESSIVE-PRONOUN,NO-PUNC, 

L-CASE 
honey DEFAULT 
back DEFAULT 
to DEFAULT 
its ITS-POSSESSIVE-PRONOUN,NO-PUNC, 

L-CASE 
hive. SENTENCE-END,ONE-PUNC,L-CASE 
I SENTENCE-START,NO-PUNC 
hope DEFAULT 
it DEFAULT 
knows DEFAULT 
its ITS-POSSESSIVE-PRONOUN,NO-PUNC, 

L-CASE 
way DEFAULT 
home. SENTENCE-END,ONE-PUNC,L-CASE 

 

Table 6.3. Representation of a more complex problem. 

6.3 Constraint Representation 

Constraints in CAPIT are the representation used for modelling domain 

knowledge and also short-term knowledge about the student. Constraints 

specify the correct and acceptable patterns of capitalisation and punctuation, 

and are also the basis for determining what errors the student made after each 

attempt. Longer-term student modelling is achieved using a Bayesian ne twork, 

into which the short-term knowledge (i.e. which constraints were satisfied or 

violated on the last attempt) are integrated by the processes of instantiation (see 

Section 6.5) and on- line learning (see Section 6.8).  
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Following the model proposed by Ohlsson (1994), each constraint is 

defined as a tuple <Cr, Cs> where Cr is the relevance condition and Cs is the 

satisfaction condition. If a constraint is relevant to a solution, then it must also 

be satisfied or the constraint is violated. CAPIT has additional short explanatory 

feedback messages for each constraint that may be displayed whenever the 

constraint is violated. The feedback messages give the student a clue as to how 

to satisfy the constraint. Some constraints have more detailed explanations tha t 

can be accessed by clicking the Why? button when the feedback message is 

being displayed. 

CAPIT implements constraints based on regular expressions. In Section 

6.3.1, regular expressions are introduced and defined. In Section 6.3.2, a formal 

definition of the constraints used in CAPIT is given. Finally, in Section 6.3.3, 

some examples of constraints and their application are provided. 

6.3.1 Regular Expressions  

A regular expression is a standard, highly expressive, and compact 

representation for patterns occurring in a string of symbols. They are a common 

feature of most operating systems and many programming languages. Briefly, a 

regular expression is said to match a string if the pattern it represents occurs in 

the string. 

Regular expressions are composed of both literal characters and special 

characters and character sequences. For example, in the regular expression 

^the, the character ^ is a special character denoting the start of the string and 

the characters the are literals. Such a regular expression would match strings 

whose initial three characters are the, such as these and therefore, but 

not those. Another special character is $, denoting the end of the string. An 

expression such as ch$ would, therefore, match beach but not beaches. 

Logical operations are possible within a regular expression. Disjunctions 

are denoted by the special character |. For example, the regular expression 

(^apple$)|(^orange$) will match either the string apple or the string 

orange. Conjunctions are defined simply by concatenating patterns together. 

For example, the expression ^a.*e$ matches any string that starts with letter 

a and ends with letter e, such as apple or ahoy there. The special 
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character . denotes any literal character, and * denotes zero or more repetitions 

of the previous character. The special character concatenation .* therefore 

denotes a string containing any or no characters. 

Other special characters particularly useful in CAPIT’s knowledge base 

include +, which is similar to * but denotes at least one repetition of the 

previous character (rather than zero or more repetitions), and ?, which denotes 

only one or zero repetitions. These special characters can be applied to entire 

patterns as well. For example, (happy)* will match happyhappy. 

A short-hand method of representing a complex disjunction is to use 

square brackets to define a positive or negative character set. Character sets are 

denoted by square brackets. For example, the regular expression [abc] 

matches any string containing one of the characters in the set, such as plain 

(matched by the a) or back (matched by the b and the c). A negative character 

set matches any string containing characters not in the set. Negative character 

sets are denoted by the ^ symbol within the square brackets. For example, 

[^abc] matches the s in scab, but fails to match aabbcc at all. Character 

sets can also be shortened using ranges. A range is denoted by the dash symbol 

(–) within the square brackets of a character set. For example, [a-g] is 

equivalent to the character set [abcdefg]. 

For the sake of completeness, all the special characters and sequences 

available in the version of the regular expression language used in CAPIT are 

defined in Appendix B. 

6.3.2 Constraint Definition 

A constraint in CAPIT is formally defined as follows. The relevance condition, 

Cr, is a disjunction of one or more tags. Recall that a tag is a symbol attached to 

a word in a problem. Any word may have one or more tags. The function of the 

tags is to define the semantic and/or grammatical class to the word, to the 

degree required to successfully punctuate and capitalise it. The tags, in turn, 

determine which constraints are relevant to the word, and therefore the problem. 

For example, the first word The in the sentence depicted in Table 6.2 has the tag 

SENTENCE-START associated with it, which means the problem will be 

relevant to any constraint whose Cr includes SENTENCE-START. Consider 
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constraint C3 (defined in Appendix C), which determines whether or not there 

are too many capital letters in a word. This constraint is relevant to words 

whose tags include SENTENCE-START, NAME-OF-PERSON, NAME-OF-

PLACE, or DIRECT-QUOTE-START. The Cr is therefore SENTENCE-

START|NAME-OF-PERSON|NAME-OF-PLACE|DIRECT-QUOTE-START, 

which would match the problem depicted in Table 6.2 twice, via the words The 

and It. Note that a constraint can be relevant to a problem more than once, if its 

Cr matches more than one word in the problem. 

The satisfaction condition of a constraint, Cs, is defined as a modified 

regular expression. The Cs differs from a standard regular expression in that it 

may contain a function %SYMBOLSET% that is evaluated at run-time. This 

function simply returns a string containing all and only the punctuation symbols 

that the system currently lets the student solve problems with. In CAPIT, only 

four punctuation symbols are permitted: the comma, the period, the apostrophe, 

and the quotation mark. The modified regular expression [%SYMBOLSET%] is 

therefore converted at run-time to the standard regular expression [\.,'?] 

(the escape character \ is necessary because a period is a special character in a 

regular expression by default, so it must be escaped in order to refer to an actual 

period). 

The satisfaction condition is matched to each word in the problem that 

the relevance condition matches. Because the student may have added 

punctuation marks to the solution, the word includes all characters between the 

white-space characters preceding and succeeding the word. In other words, the 

correctly punctuated sentence The driver said, “It will rain.” would be broken 

up into words by taking each contiguous non-whitespace sequence of 

characters, as it has been in Table 6.2. The last word of a correct solution would 

therefore be rain.” rather than just rain. This entire sequence of characters, 

including letters and punctuation marks, are then matched to the satisfaction 

condition. 

The constraint’s Cs will be matched to more than one word if the Cr 

matched more than one word. In this case, the Cs might match one word but fail 

to match another word. The rule for resolving this is simple: if the constraint 
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fails to match any of the relevant words, then the constraint is violated. If it 

matches all of the relevant words, then it is satisfied. 

6.3.3 Examples 

This section gives examples of some of the constraints in CAPIT’s knowledge 

base and shows how they are matched to student solutions. All the constraints 

are listed in Appendix C. 

In general, the constraints fall into two categories. General constraints 

are relevant to many different types of word and encapsulate “common sense” 

knowledge, such as the rule that words starting with a capital letter (such as a 

person’s name) do not need capitals at any other positions in the word 

(Constraint C3), the rules that some words do not need to capitalised and 

punctuated at all (Constraints C1 and C2), and the fact the some words require 

two and only two punctuation marks (Constraint C22). 

On the other hand, the bulk of the rules form the set of specific 

constraints. Specific constraints govern the correct punctuation and 

capitalisation of specific constructs, such as the capitalisation of sentences 

(Constraint C4), the correct punctuation of an is contraction (Constraint C9), the 

fact that its when used as a possessive pronoun does not require an apostrophe 

(Constraint C15), and the correct punctuation of direct speech (Constraints C17-

C21 and C23-C25). 

Table 6.4 depicts four examples of constraints. The first constraint is 

general, and the remaining three are specific constraints of varying 

complexities. 

 

 Cr Cs Msg 
C1 {DEFAULT|L-CASE} ^[a-z0-

9%SYMBOLSET%]*$ 
This word doesn't need any 
capital letters! 

C5 {NAME-OF-PERSON} ^[%SYMBOLSET%]*[A
-Z0-9] 

Each word in a person's 
name should start with a 
capital! 

C15 {ITS-POSSESSIVE-
PRONOUN} 

[^']s$ No apostrophe is required 
in its! 

C23 {DIRECT-QUOTE-
ENDING-SENTENCE} 

[^%SYMBOLSET%]+((
\.+"+)|"+|\.+)?$ 

The full stop should be 
within the quotation marks! 

 

Table 6.4. Four constraints from the knowledge base. 
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Constraint C1 is a simple constraint defining words that do not need any 

capital letters at all. The relevance condition of C1 is DEFAULT|L-CASE, 

which means that the constraint will be relevant to any words in the solution 

with either the tag DEFAULT or the tag L-CASE. Recall from Section 6.2 that 

DEFAULT means that the word needs no punctuation or capital letters. L-CASE 

is like DEFAULT but simply means that only capital letters are not required; it 

has no bearing on whether or not punctuation marks are necessary for the word. 

The satisfaction condition is the regular expression ^[a-z0-

9%SYMBOLSET%]*$, which matches any string consisting of zero or more 

lower case letters, numbers, or punctuation symbols. 

The correct capitalisation of a person’s name is defined by constraint C5. 

In problems featuring the name of a person, the words in the person’s name are 

identified by the tag NAME-OF-PERSON, which matches the relevance 

condition of C5. The satisfaction condition for this constraint is 

^[%SYMBOLSET%]*[A-Z0-9], an expression matched by any word whose 

first alphanumeric character is either an upper case letter in the range A-Z, or a 

number in the range 0-9. The constraint ignores any punctuation marks 

preceding the first letter or number of the word, as specified by the 

^[%SYMBOLSET%]* portion of the expression (which matches zero or more 

punctuation symbols at the start of the word). It is assumed that if there are any 

punctuation symbols preceding the first alphanumeric character (such as a 

quotation mark), then other constraints will handle them. 

Constraint C15 is specific to a particular word, namely its when used as a 

possessive pronoun. Every occurrence of its as a possessive pronoun in any 

problem must have the tag ITS-POSSESSIVE-PRONOUN associated with it, 

which will make constraint C15 relevant. The constraint is satisfied only when 

the regular expression [^']s$ matches. That is, if the student incorrectly 

punctuates its to it’s, then the constraint will be violated. Furthormore, it will 

only be violated under this condition because the negative character set [^'] 

matches any character that is not an apostrophe. 

The final example is constraint C23, which partly determines the correct 

punctuation of direct speech. This constraint is relevant to words in a problem 

with the tag DIRECT-QUOTE-ENDING-SENTENCE. This tag should be 
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attached to any word that is both the last word in a direct quotation, and ends a 

sentence. In other words, in the example The driver said, “It will rain.”, the 

word rain carries the tag DIRECT-QUOTE-ENDING-SENTENCE. There are 

several other constraints relevant to this tag, and therefore relevant to rain, 

namely constraints C20 and C21. Constraint C20 matches the word if it is 

followed by a period, and C21 matches if it is followed by a quotation mark. 

Both are necessary to correctly punctuate the last word of both a direct quote 

and a sentence. Constraint C23, however, specifies the correct order of the 

punctuation symbols: the period should precede the quotation mark (and 

therefore be enclosed in the direct speech). This constraint can only be violated 

if rain is followed by both the period and the quotation mark, in that order. If 

the order is reversed, the constraint will be violated. In all other circumstances 

(e.g. where the word is succeeded only by a period and not a quotation mark), 

the constraint will be satisfied. This is because the other two constraints, C20 

and C21, are designed to deal with these situations. 

In a more exact form, the satisfaction condition of C23 is defined as 

[^%SYMBOLSET%]+((\.+"+)|"+|\.+)?$. Note that this regular 

expression has no start-of-string marker (̂ ), but it does have the end-of-string 

marker ($). Therefore, the expression matches patterns occurring only at the 

end of a string. The [^%SYMBOLSET%]+ portion of the expression matches at 

least the last character in the word that is not a punctuation mark. So, for 

example, in The driver said, “It will rain.”, the word rain is matched by this 

portion of the expression, but the period and the quotation mark following it are 

not. The rest of the expression specifies the correct patterns of punctuation that 

can follow the n in rain. Recall that the symbol | is a simple logical 

disjunction, and \. is a special means of referring to a period character in a 

regular expression. The portion of the expression ((\.+"+)|"+|\.+)? 

therefore matches one or more periods followed by one or more quotation 

marks, or one or more quotation marks, or one or more periods. It also matches 

the situation where no periods or quotation marks succeed rain, as indicated by 

the ? operator (indicating one or zero occurrences of the preceding pattern). In 

such a case, constraint C23 would be satisfied but constraints C20 and C21 would 

generate errors. The only case where this constraint fails to be satisfied, 



 132 

however, is when there is one or more quotation marks followed by one or more 

periods. In other words, the constraint is violated when the order of the 

punctuation marks is incorrect. Note also that the word rain in Table 6.2 is 

associated with the tag TWO-PUNC, which in turn is relevant to constraint C22. 

This constraint limits the total number of punctuation marks attached to the 

word to two. Effectively, therefore, the only punctuation of rain that will satisfy 

all the relevant constraints is to succeed the word with a period followed by a 

quotation mark. This is the correct way to punctuate the word. 

It is worth mentioning some characteristics of this system of constraints. 

Frequently, the same error will violate many constraints. For example, as 

previously discussed, incorrectly punctuating rain in the example problem 

depicted in Table 6.2 may violate any combination of the constraints C20, C21, 

C22 or C23. Similarly, when its as a possessive pronoun appears in a problem, it 

has the tags ITS-POSSESSIVE-PRONOUN and NO-PUNC associated with it. 

This leads to both the specific constraint C15, and the general constraint C2, 

being relevant to the word. Incorrectly punctuating the possessive pronoun its to 

it’s will therefore violate both constraints. Making other errors, e.g. i’ts, will 

violate only the general constraint C2. 

Another characteristic of this system of constraints is that some 

constraints may be very similar, differing only in their relevance condition and 

feedback message. For example, constraints C5 and C6 are both violated when 

the first letter of a word is lower case, and therefore they both have the same 

satisfaction condition. However, C5 is relevant to words forming the name of a 

person (with tag NAME-OF-PERSON) whilst C6 is relevant to words forming 

the name of a place (with tag NAME-OF-PLACE). This redundancy is 

necessary for two reasons. Firstly, it allows more targeted instruction on errors. 

If C5 and C6 were combined into a single constraint, then a single more generic 

error message would have to cover cases where both place names and people 

names are not capitalised. This may be too abstract for teaching purposes, 

especially where the target user population comprises children. The second 

reason for the redundancy is to maintain the semantic richness of the constraint 

knowledge base. Although it happens that C5 and C6 have the same satisfaction 
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conditions, other constraints may be relevant only to words with the NAME-

OF-PERSON tag but not the NAME-OF-PLACE tag, and vice-versa. 

6.4 Worked Example: Analysing A Solution Attempt 

This section briefly demonstrates how CAPIT determines which constraints are 

satisfied and violated when a problem attempt is submitted. Table 6.5 depicts a 

problem from CAPIT’s problem database. When presented to the student, the 

initial problem text is: 

 

the teachers chalk marker and overheads were stolen the principles filing 

cabinet telephone and typewriter are also missing 

 

The student’s task is to add apostrophes of possession, commas separating list 

items, and capitals and periods to signify the start and end of sentences. 

 

The SENTENCE-START, NO-PUNC 
teacher's POSSESSIVE-NOUN-NOT-ENDING-IN-S, ONE-PUNC, 

L-CASE 
chalk, INTERMEDIATE-ITEM-IN-LIST, ONE-PUNC, L-CASE 
marker INTERMEDIATE-ITEM-IN-LIST-PRECEDING-

CONJUNCTION, NO-PUNC, L-CASE 
and DEFAULT 
overheads FINAL-ITEM-IN-LIST, NO-PUNC, L-CASE 
were DEFAULT 
stolen. SENTENCE-END, ONE-PUNC, L-CASE 
The SENTENCE-START, NO-PUNC 
principal's POSSESSIVE-NOUN-NOT-ENDING-IN-S, ONE-PUNC, 

L-CASE 
filing DEFAULT 
cabinet, INTERMEDIATE-ITEM-IN-LIST, ONE-PUNC, L-CASE 
telephone INTERMEDIATE-ITEM-IN-LIST-PRECEDING-

CONJUNCTION, NO-PUNC, L-CASE 
and DEFAULT 
typewriter FINAL-ITEM-IN-LIST, NO-PUNC, L-CASE 
are DEFAULT 
also DEFAULT 
missing. SENTENCE-END, L-CASE, ONE-PUNC 

Table 6.5. An example from CAPIT’s problem database. 
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Let us suppose that the student makes some of the corrections, but fails 

to make all of the corrections. Furthermore, he or she incorrectly capitalises and 

punctuates some words that did not need to be changed. Here is just such an 

attempt: 

 

The teacher’s chalk marker and Overheads were stolen. the principles filing 

cabinet, telephone, and typewriter are also missing. 

 

In this example, the apostrophe is missing from principles and the comma 

separating list items is missing after chalk. An extraneous comma has also been 

added after telephone. This comma is unnecessary because the single-word list 

items telephone and typewriter are already separated by the conjunction and. 

The word Overheads is unnecessarily capitalised, but the first word of the 

second sentence, the, has not been capitalised when it should have been. 

The system first determines the relevant constraints. This is achieved by 

matching the tags of each word against the relevance condition of each 

constraint. In this case, specific constraints C8, governing the punctuation of 

possessive singular nouns, and C11, C12 and C16, specifying the correct 

punctuation of items in a noun list, are relevant. Constraints C4 and C7, dealing 

with the punctuation of sentences, are also relevant. There are some general 

constraints that are relevant as well; namely, C1, C2, C3, and C14. 

The next step is to match the satisfaction condition of each relevant 

constraint against each of the relevant words in the problem to determine if the 

constraint has been violated or satisfied. Constraint C11 is relevant to chalk, 

because chalk is the second item is a list of nouns, and therefore has the tag 

INTERMEDIATE-ITEM-IN-LIST. However, the constraint is violated 

because the satisfaction condition of C11 requires the word to be followed 

immediately by a comma. General constraint C1 is also violated, because the 

incorrectly capitalised word Overheads has tag L-CASE, which is relevant to 

C1 and specifies that the word must contain no uppercase letters. Failing to 

capitalise the first word in the second sentence violates constraint C4, because 

C4 requires words with tag SENTENCE-START to begin with a capital letter. 

The missing apostrophe in principles violates constraint C8, because principles 

has the tag POSSESSIVE-NOUN-NOT-ENDING-IN-S which makes the 
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constraint relevant and therefore requires the word to have an apostrophe. 

Constraint C16 is violated by the addition of a comma following telephone, 

because telephone is an INTERMEDIATE-ITEM-IN-LIST-PRECEDING-

CONJUNCTION, and therefore does not require a comma. The incorrect 

punctuation of telephone also violates constraint C2 because telephone has tag 

NO-PUNC which, being relevant to C2, means that no punctuation marks at all 

are required for the word. 

In total, six of the ten relevant constraints are violated. The current 

version of the system displays only one feedback message per attempt, so the 

system now has to choose which of the six feedback messages to display. In this 

thesis, that problem is solved using the Bayesian network student model and 

decision theory (see subsequent sections of this chapter for more information on 

this). After the feedback message is displayed, the student can attempt to 

correct the solution. 

Note that some of the constraints are relevant more than once, and may 

match some words but not others. For example, teacher’s was correctly 

punctuated and therefore matches the satisfaction condition C8. However, 

principles is also relevant to C8 but fails to match the constraint’s satisfaction 

condition. The rule in this case is to consider the constraint violated if it fails to 

match at least once. 

6.5 Data Collection 

Initial data for Step 1 of the decision-theoretic PAS strategy development was 

acquired from a preliminary study of CAPIT at Westburn School, Christchurch, 

New Zealand in March 2000 (Mayo et al., 2000). A version of CAPIT was used 

in which problems and error messages were selected randomly. The problems 

came from the pool of all unsolved problems, and the error message was 

selected from the set of constraints violated on the current attempt (recall that 

there is one error message per constraint). The preliminary study consisted of 

four 30-45 minute sessions. Details of each problem attempt and error message 

displayed were logged. Subsequent analysis revealed the following averages. 
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Each student made 89 attempts at 28 different problems, on average. 21 of the 

problems were eventually solved, and 7 abandoned. Students violated an 

average of 181 constraints during the sessions, of which feedback was given on 

68. 

A total of 3300 records of the form <State, Action, Outcome> were 

acquired during this step. In this particular implementation, State is defined as a 

record of the outcome of the last attempt at each constraint (which may include 

attempts at previous problems, if for example, a constraint was relevant to the 

last problem but is not relevant to the current problem), Action is the problem 

that was selected randomly, and Outcome is a record of the constraints that 

were violated and satisfied following the problem attempt. 

An example of a record is given in Figure 6.3. Both the State and the 

Outcome consist of 25 values, one for each constraint. Prior to the problem 

being presented, the student had satisfied constraints 1 and 25 on the last 

attempt, violated constraint 2, violated constraint 24 but received feedback on 

it, and had not even attempted constraint 3 before. The system then selected 

problem 80, and after the student clicked Submit, the satisfied constraints 

included 1,3, 24 and 25, but constraint 2 was violated. 

 

 C1 C2 C3 ……….. C24 C25 

State S V NR ……….. VFB S 

Action Problem_80 (The teacher said, “The crab lives in its shell.”) 

Outcome S V S ……….. S S 

 

Fig. 6.3. Example of a single record in the dataset collected during the first evaluation 

study. 

6.6 Model Selection 

The data acquired from the preliminary study was used to generate the best 

Bayesian network for long-term student modelling. The selection criterion was 

the ability of the network to predict student performance on constraints. An 
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issue at this point was whether to use a model in which the constraints were 

independent of each other, as in Reye’s model, or whether to allow (more 

realistically) any dependencies between constraints to be learned from the data. 

This decision is quite significant because a model in which constraints are 

assumed to be independent can be formulated with only four variables, whereas 

a model in which any dependencies between constraints are allowed is much 

more complex and in this system must consist of at least twice the number of 

variables as there are constraints. Figures 6.4, 6.5 and 6.6 illustrate the 

competing “small” and “large” specifications. In each diagram, Li represents the 

outcome of the last attempt at the ith constraint, and can take values S 

(satisfied), V (violated), VFB (violated with feedback), or NR (has not been 

relevant before). Ni is the predicted outcome of the next attempt, whose values 

can take one of the values {S, V, NR}. Note that neither network explicitly 

models unobserved student states. In both cases, the output from the network is 

a set of posterior probability distributions over the Ni variables given the values 

for the Li variables. The large networks (Figures 6.5 and 6.6) only need to be 

evaluated once per problem, whereas the small network (Figure 6.4) needs to be 

evaluated once per relevant constraint per problem. 

Note that in all the large networks, the L layer nodes are always root 

(parentless) nodes. This was by design rather than as a result of the learning 

algorithm. The reason for this is two-fold. Firstly, the L nodes precede the N 

nodes temporally; therefore the arcs should always be directed from the L nodes 

to the N nodes. Secondly, because the L nodes are always known with certainty 

(since they represent the student’s interaction history to date), any arcs between 

L nodes can be effectively ignored. Arcs are only used for uncertain reasoning, 

but if both cause proposition and effect proposition at either end of the arc is 

certain, then the arc becomes redundant in the network. 

In each diagram, a bold arc indicates that the arc was added to the 

network prior to the induction of the rest of the network from data, and is fixed 

during the learning process. Figure 6.4 depicts the structure of the Small 

network. In this example, the network is predicting the outcome of the next 

attempt at previously violated constraint 11, which is relevant to current 

problem 35. All the arcs in Figure 6.4 are fixed apriori. Figure 6.5, on the pther 
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hand, depicts the Large Bayesian network. As depicted, the student has 

previously satisfied constraints 1 and 2, violated constraints 3 and 25 (receiving 

feedback on 3), and has not yet attempted constraint 4. The network is currently 

configured to predict this student’s performance on a problem whose relevant 

constraints include 2, 3 and 25. In Figure 6.5, none of the arcs are determined 

beforehand, but in Figure 6.6, arcs from Li to Ni are initially added. 

 
 

Ni 
 

Li 

Problem Constraint
 

V 

P35

Const_11 

 
 

Fig. 6.4. The structure of the small Bayesian network for predicting the outcome of the 

next attempt at the ith constraint. 

 

L1 N1 

L25 N25 

L2 N2 

L4 N4 

L3 N3 

NR
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VFB

S

S

NR 

NR 

 
 

Fig. 6.5. The structure of the large Bayesian network specification after learning. 

 



 139 

L1 N1 

L25 N25 

L2 N2 

L4 N4 

L3 N3 

NR

V

VFB

S

S

NR 

NR 

 
 

Fig. 6.6. The same network as depic ted in Figure 6.5, but with fixed arcs from each 

node Li to Ni added to the network prior to learning. 

 

A number of variants of the large network were considered. In each 

case, the algorithm proposed by Cheng et al. (1998) for structural learning by 

mutual information maximisation (described in Section 2.4.2) was utilised to 

learn a Bayesian network structure from the data collected in Step 1. The 

conditional probabilities were estimated using the Dirichlet priors approach 

(Heckerman, 1999) which was outlined Section 2.4.1. An important component 

of the structural learning algorithm is the minimum threshold ε. This essentially 

determines the minimum amount of mutual information required between two 

variables before an arc can connect them. For these experiments, ε values of 4, 

6 and 10 were selected (initial experiments showed that a threshold below 4 

resulted in a network far too complex for on-line evaluation). 

Another parameter that we wanted to investigate was the addition of 

prior knowledge: does it enhance predictive performance? The “obvious” prior 

knowledge to add is an arc from Li to Ni, for each constraint i, indicating that at 

the very least, the outcome of the next attempt at a constraint is partly 

dependent on the outcome of the previous attempt. We thus formulated six 

specifications for large networks: Large(4), Large(6) and Large(10) being the 

specifications without prior knowledge (see Figure 6.5), and PLarge(4), 
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PLarge(6) and PLarge(10) being specifications with prior knowledge (see 

Figure 6.6). For each of the large specifications, the Li nodes were fixed as root 

nodes, to reflect the fact that they come before the Ni nodes in temporal order. 

Thus, there are two types of arc that can be learnt from the data for the large 

networks: arcs from the L layer to the N layer, and arcs within the N layer. 

The data was then divided into training and test datasets. Approximately 

20% of the records were selected randomly into the test dataset. The remaining 

80% were kept in the training set, and used to train one large network for each 

of the six specifications. A simpler network equivalent to Figure 6.4 (Small) 

was also trained from this data, although in this case the structure was specified 

and only the conditional probability P(Ni|Li,Problem,Constraint) had to be 

learned. This entire process of training was repeated three times for three 

different random training/test dataset divisions. The total number of different 

networks that were generated, therefore, was 21. 

The first question to answer was whether or not the larger networks 

were better predictors of student performance than the small ones on the test 

data. Each of the six large networks generated from the ith training set was 

compared to the Small network generated from the ith training set in the 

following way. For each problem attempt in the ith test set, the large and small 

networks were given the values for L1..L25. The large networks had their P1..P25 

nodes set to NR for each constraint not relevant to the attempt’s problem. The 

values of the remaining node from P1..P25 were then predicted. For the large 

networks, this required one evaluation of the network, and for Small, one 

evaluation per relevant constraint was necessary. The standard junction tree 

algorithm for Bayesian network inference was used (Lauritzen & Spiegelhalter, 

1988). Then, for each Pi representing a relevant constraint, the predicted value 

of Pi was compared to the actual value of Pi. The total number of correct 

predictions was counted. A correct prediction was deemed to occur if the 

predicted outcome with maximum probability matched the actual outcome. To 

clarify further, the output of each comparison was essentially a table of tuples 

of the form <i, L(i), S(i), T(i)>, where i=1..n is the attempt (n is the number of 

attempts in the test set), L(i) is the number of correct predictions given by the 

large network, S(i) is the number of correct predictions given by the small 
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network, and T(i) is the maximum number of correct predictions (simply the 

total number of relevant constraints on that attempt). 

The coefficient of determination (r2) was calculated for each network by 

taking the number of correctly predicted constraints as a function of the number 

of relevant constraints, for training/testing dataset and each specification. The 

results are summarised in Table 6.6. 

 

 TestData1 
(n=639) 

TestData2 
(n=608) 

TestData3 
(n=686) 

PLarge(10) 0.7649 0.7434 0.7638 
PLarge(6) 0.7562 0.7385 0.7615 
PLarge(4) 0.7101 0.7208 0.7417 
Large(10) 0.7446 0.7464 0.7495 
Large(6) 0.749 0.7347 0.7511 
Large(4) 0.7117 0.7236 0.7387 
Small 0.7312 0.7086 0.7314 

 

Table 6.6. Coefficients of determination. 

 

The r2 values are all within a narrow margin, with the large networks 

performing slightly better than Small most of the time. Visual inspection of the 

results reinforces this view. Figure 6.7 compares bubble graphs of the 

network/dataset combination with the highest r2 against the network/dataset 

combination with the lowest r2. The size of the bubble is proportional to the 

frequency with which y correct predictions were made when there were x 

relevant constraints. 
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(a) r2=0.7649 
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Predictive Accuracy of Small on Dataset 2
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(b) r2=0.7086 

 

Fig. 6.7. Bubble graphs comparing the (a) accuracy of the network and dataset 

resulting in the highest r2 and (b) the network and dataset resulting in the lowest r2. 

 

Next, we tested to see if the large networks were statistically 

significantly better predictors of student performance than the small networks. 

Note that for each of the 18 comparisons, the number of correct predictions 

made by the small and large networks are paired. That is, for each attempt 

i=1..n in each of the 18 tests, both an S(i) and a L(i) were generated by the 

small and large networks respectively, both of which can be considered 

stochastic functions of i. Therefore, the samples are pair-wise dependent. A 

paired-difference experiment (McClave & Benson, 1991, pp. 421-7) was used 

to test for significant differences. 

The results of the statistical significance tests are given in Table 6.7. In 

this table, H0 the hypothesis that there is no difference in the mean number of 

correct predictions made by both networks. A positive t value indicates that the 

large network is better than Small. The rejection region for all the datasets is 

approximately ±2.58 for 99% confidence, and ±1.96 for 95% confidence. 

Table 6.7 shows that the PLarge(10), PLarge(6) and Large(6) 

specifications all produce Bayesian networks that are statistically significantly 

better predictors of student performance than the networks produced by the 

Small specification. The other specifications each had at least one comparison 

where no statistically significant difference was found (indicated by “Accept 

H0”). For these tests, a high t value indicates greater significance. For all the 

networks, the outcomes in the second test set were much more difficult to 
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predict than those of the first and third sets, resulting in lower t values. This is 

obviously due to the random nature by which the datasets were generated. The 

exception to this is Large(10), which performed barely acceptably on the 

second test set but not the first and third. From these results, we were able to 

eliminate Small as a worthwhile specification. 

 

 TestData1 
(n=639) 

TestData2 
(n=608) 

TestData3 
(n=686) 

 Small Small Small 
PLarge(10) t=5.75, α=0.01 t=3.95, α=0.01 t=5.46, α=0.01 
PLarge(6) t=5.17, α=0.01 t=3.30, α=0.01 t=5.06, α=0.01 
PLarge(4) Accept H0 Accept H0 t=2.1, α=0.05 
Large(10) Accept H0 t=1.98, α=0.05 Accept H0 
Large(6) t=4.01, α=0.01 t=2.78, α=0.01 t=3.93, α=0.01 
Large(4) Accept H0 Accept H0 t=2.05, α=0.05 

 

Table 6.7. Results of two-tailed paired difference experiments comparing each large 

network against Small. 

 

The next task was to determine the most accurate large network. In 

particular, does the selection of the minimal threshold or the addition of prior 

knowledge result in improved performance? For this analysis, the three large 

networks with the highest average t values (PLarge(10), PLarge(6) and 

Large(6)) were compared. H0 was once again the hypothesis tha t there is no 

difference in the mean number of correct predictions made by both networks, 

with rejection region for all datasets of approximately ±2.58 for 99% 

confidence and ±1.96 for 95% confidence. No statistically significant difference 

was found between PLarge(10) and PLarge(6) on any of the training/testing 

dataset divisions. However, significant differences were found between 

PLarge(10) and Large(6) as Table 6.8 shows. This implies that prior knowledge 

does enhance the predictive performance. 
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 TestData1 
(n=639) 

TestData2 
(n=608) 

TestData3 
(n=686) 

 Large(6) Large(6) Large(6) 
Plarge(10) t=3.13, α=0.01 Accept H0 t=2.08, α=0.05 

 

Table 6.8. Results of two-tailed paired difference experiments comparing PLarge(10) 

against Large(6). 

 

To conclude Step 2, PLarge(10) was selected as the best specification 

with which to proceed, because the average t value in Table 6.7 for this 

specification was greater than the average t value of PLarge(6). The training 

and testing datasets were combined into a single dataset and a Bayesian 

network with the PLarge(10) specification was learned. One of the desirable 

features discussed earlier was to take advantage of the unique ability of a 

Bayesian network to integrate prior knowledge and data; this has been shown to 

improve predictive accuracy. 

6.7 Next Problem Selection 

Step 3 is the implementation of decision-theoretic PAS strategies. The key task 

is to define a utility function U(X,D) specific to the task that can be substituted 

into the expected utility function (Equation 2.28) to yield the task-specific 

expected utility function. For CAPIT, we were interested in two specific tasks: 

next problem selection, and error message selection following an attempt in 

which multiple constraints are violated. Recall that the utility function 

essentially encodes the system’s pedagogical preference for different outcomes. 

The value of the next problem D ∈ {Problem_1, …, Problem_45} 

can be determined by predicting the student’s performance on the problem with 

the Bayesian network. An appropriate problem is one that falls into the zone of 

proximal development, defined by Vigotsky (1978).1 This principle implies that 

utility should be maximised for problems where one or two errors are likely 

(reflecting a challenging problem), but minimised for problems whose outcome 
                                                 
1 The zone of proximal development is defined in Chapter 4. 
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is no errors (being too easy) or several errors (being too hard). This utility 

function is defined in Table 6.9.  

 

X U(X,D) 
No-Errors 0.0 
1-Error 1.0 
2-Errors 1.0 
3+Errors 0.0 

 

Table 6.9. The utility function for problem selection. Utility is maximised for 

problems resulting in one or two errors only. 

 

We assume that the cost of all problems is zero. Let us also assume that 

ξ comprises the student history (i.e. the instantiations of L1..L25) and the 

instantiations of Ni to NR for those constraints not relevant to D. Substituting 

into the general expected utility function (Equation 2.28) yields the expected 

utility of problem d: 

 

]|),([ ξDXUE  = P(No-Errors|D,ξ) U(No-Errors,D) 

 + P(1-Error| D,ξ) U(1-Error, D) 

 + P(2-Errors| D,ξ) U(2-Errors, D) 

 + P(3+Errors| D,ξ) U(3+Errors, D) – 0 

 = P(1-Error| D,ξ) + P(2-Errors| D,ξ) (6.1) 

 

The equation basically says that the expected utility of a problem is simply the 

sum of the probabilities that the student will make one or two errors. 

Now we need to calculate P(1-Error|D,ξ) and P(2-Errors|D,ξ) 

from the Bayesian network. This is not straightforward because the predicted 

outcomes N1..N25 are not necessarily mutually or conditionally independent. In 

fact, the best way to deal with this computation is to extend the Bayesian 

network itself at runtime by adding a deterministic function NumErrors to the 

network, whose inputs are the predicted values of the relevant constraints only, 

and whose possible states are {No-Errors, 1-Error, 2-Errors, 

3+Errors}. The function simply counts the number of its parents that are 

violated, but because the parents of NumErrors are likely to be uncertain, the 
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uncertainty is transferred to NumErrors by the Bayesian network inference 

algorithm (Lauritzen & Speigelhalter, 1988) in the correct way. For example, 

suppose there are only two constraints relevant to the problem being considered 

and, given the student’s history, the posterior probabilities of the constraints 

being violated are 0.5 and 1. Then the value of NumErrors will be 1-Error or 

2-Errors, with a probability of 0.5 in each case. 

The addition of NumErrors to the example large network is illustrated in 

Figure 6.8. The probabilities of Equation 2.28 can now be determined by 

querying the posterior distribution over the NumErrors variable. 
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L3 N3 
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Fig. 6.8. An example of a Plarge(X) network with NumErrors added as a child of all 

the Ni nodes representing relevant constraints on the current problem. 

6.8 Feedback Message Selection 

The strategy for decision-theoretic error message selection is slightly different. 

In this case, D ∈ {FBi | Constraint i was relevant and violated on the last 

attempt}, where FBi is the decision to give feedback on the ith constraint. It is 

assumed that an error message about a constraint can influence the outcome of 
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the next attempt at the constraint, resulting in a satisfaction (desired) or a 

violation (not desired). Table 6.10 characterises this as a utility function 

 

X U(X,D) 
Ni=V 0.0 
Ni=S 1.0 

 

Table 6.10. The utility function for feedback selection. 

 

Because the system gives feedback on only one violated constraint per 

attempt, the probabilities of these outcomes can be read directly from the 

network by “pretending” that feedback was given on the ith constraint. That is, 

we instantiate Li to VFB instead of V and query Ni to obtain P(Ni=V|D, ξ) and 

P(Ni=S|D, ξ). However, the cost of each feedback message cannot be assumed 

to be zero, because each constraint will have a different probability of being 

satisfied without feedback anyway. This probability of satisfaction can be 

considered the “opportunity cost” of giving feedback on the ith constraint, 

which is therefore defined as: 

 

cost(D) = P(Ni=S|ξ) (6.2) 

 

Substituting these values into Equation 2.28 yields the expected utility for 

feedback: 

 

]|),([ ξDXUE
( ) )|()(),|()(),|( ξξξ SVVSS ===+= −== iiiii NPNUDNPNUDNP

)|(),|( ξξ SS =−== ii NPDNP  (6.3) 

 

The expected utility of an error message is therefore simply the posterior 

gain in probability that the constraint will be satisfied, given the feedback 

message. 
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6.9 On-line Adaptation of the Student Model 

The next step was implementing an on- line learning algorithm so that the 

Bayesian student model would adapt to the student. Note that online learning is 

one of the two ways in which the student model is adapted to the student. The 

first, standard, method of adaptation is to simply instantiate the variables in the 

network. In other words, the variables L1..L25 are set to known values and the 

posteriors over N1..N25 are calculated. However, this approach takes account of 

only the outcomes of the most recent attempt at each constraint. On- line 

learning, on the other-hand, lets us take account of all the previous outcomes. 

This is because the conditional probabilities of the network are incrementally 

changed after each attempt, and this forms an implicit history of the student’s 

behaviour. Furthermore, the incremental changes can be biased towards the 

most recent attempts at each constraint so they more accurately reflect the 

current state of the student. In this section, the particular method of on- line 

adaptation implemented in CAPIT is described. 

It is shown in Section 2.4.1 that that the expected value of 

P(X=xk|PA(X)=pa(X)) is 
α

α k , where kα  is the frequency with which X=xk is 

observed in the data when PA(X) = pa(X), and α  is the frequency with which 

PA(X) = pa(X) appears.  

The problem with this algorithm is that it does not take into account the 

temporal ordering of the cases, and  therefore there is no way to “bias” the 

conditional probabilities towards most recent cases. This simplification makes it 

straightforward to convert batch learning algorithms into on- line learning 

algorithms, as is done by Bauer (1997). However, this is a poor approach for an 

intelligent tutor to take because the student’s state cannot be assumed to be 

static and unchanging. Dynamically changing the student’s state is in fact the 

very objective of the intelligent tutor. The system therefore needs a way of 

gradually discarding old data, such as the population student model and old data 

acquired from the student. However, the effect of the standard approach would 

be that as α  becomes increasingly large, the influence of new cases on the 

conditional probabilities decreases. To illustrate, CAPIT’s population student 
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model was learned from records of approximately 3300 problem attempts. The 

average student is likely to make only 50-100 problem attempts. Therefore, the 

standard Dirichlet priors approach would not be expected to adapt the network’s 

parameters to the desired extent. In other words, the initial population data 

would not be discarded fast enough. 

Fortunately, the standard approach can be modified to prefer more 

recent observations. Our solution is to reduce α  to a value such that the effect 

of new cases becomes significant. Let that value be aMAX. The sufficient 

statistics can now be replaced by two new statistics, 'α  and 'kα , defined as: 

 

'α  = aMAX, 'kα  = aMAX(ak/a) (6.4) 

 

The lower the constant aMAX, the more significance new cases will have on the 

conditional probabilities. In CAPIT, the conditional probabilities are updated 

after every attempt (so N=1). The update rule (Equation 2.25), therefore, 

simplifies to: 

 

E[P(X=xk|pa(X))|One observation of X=xk when PA(X)=pa(X)] = 
1'
1'

+
+

α
α k (6.5) 

 

and 

 

E[P(X=xk|pa(X))| j ? k , One observation of X=xj when PA(X)=pa(X)] = 
1'
'

+α
αk

 (6.6) 

 

A value for aMAX was chosen by trials with simulated students. Two 

students were simulated: a “good” student who got every problem correct, and a 

“poor” student who made numerous mistakes and frequently abandoned 

problems. A domain expert analysed the sequence of problems that was 

selected for each student. It was found that when aMAX > 5, the system was not 

quick enough to present challenging problems to the good student even after 

several problems were solved correctly in single attempts. This occurred simply 

because the conditional probabilities did not update fast enough. For the bad 
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student, simple problems were repeatedly selected regardless of the value of 

aMAX. A value of aMAX = 5 was therefore selected. 

6.10 Evaluation 

Two evaluations were performed. Firstly, an informal evaluation of the system 

by simulating the behaviour of students were carried out. This was primarily to 

detect any obvious inconsistencies in the behaviour of the system. The second 

evaluation was an extensive trial of the system in three classrooms in a New 

Zealand primary school. 

6.10.1 Simulated Student Evaluation 

The first step in the evaluation was an informal observation of the behaviour of 

the decision-theoretic version of CAPIT. The observations were noted during 

trial runs with both simulated good and bad students. 

The system always starts with the easiest problem, which involves 

merely dividing the text into sentences and inserting capital letters at the start, 

and periods at the end, of each sentence. For the good student, further problems 

typically introduced new constraints one at a time until a certain point was 

reached (probably when the posterior probability of the student satisfying the 

most common constraints was sufficiently high), after which more difficult 

problems introducing more than one new constraint (e.g. direct speech 

problems) were selected. This is similar to a human tutor assessing a good 

student’s capabilities initially with easier problems, before moving more 

directly to challenging problems. 

For the bad student who repeatedly made mistakes and abandoned 

problems, the tutor appeared to repeatedly select problems from a pool of three-

four easier problems; again, a similar strategy to that of a human tutor 

repeatedly returning to previously abandoned problems that must be mastered 

before progression to more difficult problems. Note that problems in this 

system do not have explicit levels – all unsolved problems are available to be 

selected at any one time. Feedback selection was also observed. In the extreme 
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case of the bad student who repeatedly submitted the same (incorrect) solution 

with multiple violated constraints, the selection of feedback messages seemed 

to cycle from the most to the least specific constraints, and back again, with 

each attempt. Again, there is no explicit rule programmed into the tutor to make 

it do this. The behaviour is entirely a result of the configuration of the network 

that was learned from the student population data, and the subsequent 

adaptation of the model to the student. 

6.10.2 Classroom Evaluation 

Three classes of 9-10 year olds at Ilam School, Christchurch, New Zealand, 

participated in a four-week evaluation of CAPIT. The first class (Group A) did 

not use the tutor at all. The second class (Group B) used the initial version of 

the tutor with randomised problem and error message selection, and the third 

class (Group C) used the full version of the tutor with decision-theoretic PAS 

and the adaptive Bayesian student model. The groups that used the tutor, B and 

C, had one 45-minute session per week for the duration of the study, and they 

worked in the same pairs each week. Every interaction between the students and 

the system was logged. All groups were administered the same pre- and post-

tests, and the tests were completed by students in the same pairs as they were 

put into to use the tutor. 

Some significant attributes of the performance of Groups B and C 

during the evaluation are summarised in Table 6.11. Pairs of students in Group 

C used CAPIT for approximately 34 minutes more on average than those in 

Group B, a difference attributable to the teachers. However, Group B actually 

solved more problems than Group C. This can be explained by the fact that after 

the evaluation study, it transpired that Group C was actually a less able class 

than Group B. Initially it had been thought that both classes were of 

approximately equivalent ability. Additionally, Group C made many more 

attempts, and asked for more Why? explanations, than Group B. The average 

time per attempt for both groups was approximately 43 seconds. However, 

despite the additional interaction time, Group C attempted and solved fewer 

problems than Group B, and abandoned more problems. An interesting 

discrepancy is the mean number of attempts per solved problem. Group C 
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performed better in this area, perhaps suggesting that the feedback messages 

were better adapted in their case. 

 

 Group B Group C 
Number of pairs  16 14 
Ave. interaction time per pair (mins) 80.9 115 
Ave. # attempts 109.7 167.3 
Ave. # solved problems per pair 29 22 
Ave. # attempted problems per pair 34 30 
Ave. # attempts per solved problem 5.8 5.5 
Ave. # expl. asked for per pair 10.3 18 
 

Table 6.11. Various averages describing Group B and C’s performances on CAPIT. 

 

Further analysis was performed at the level of the individual constraints. 

Figure 6.9 gives the average number of times each constraint was relevant per 

user. This reflects the higher number of attempts made by Group C, and makes 

explicit the constraints that are common to most of the problems, for example, 

constraint C4 (a sentence must start with a capital letter) and constraint C7 (a 

sentence must end with a period). This table can be compared to Figure 6.10, 

the frequency with which constraints were violated when relevant. It shows that 

Group C violated proportionately more constraints that Group B, which 

corresponds with the averages in Table 6.11. However, it is interesting to note 

that the constraints defining the correct punctuation of direct speech (constraints 

C17-C25) were violated proportionately less by Group C. This suggests that the 

decision-theoretic problem sequencing placed problems involving direct speech 

(which are more difficult) later in the sequence, after the student had solved 

some of the easier problems. This strategy allowed the students to focus on 

learning direct speech punctuation after showing that they had mastered the 

other constraints. 
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Fig. 6.9. The average frequency per user of constraint relevance to problems. 
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Fig. 6.10. The average proportion per user of violations per relevant constraint. 

 

The pre- and post-tests were comparable (and challenging) and 

consisted of eight completion exercises similar to those presented by CAPIT, 

but done manually with pencil-and-paper. Students completed the tests in their 

assigned pairs. The score for each test was calculated by subtracting the number 

of punctuation and capitalisation errors from the number of punctuation marks 

and capital letters required for a perfectly correct solution; it was thus possible 

for a pre- or post-test to have a negative score. The mean scores and standard 

deviations (the Y error bars) are shown in Figure 6.11. Both Group B and C 

show an improvement in mean test scores, although the improvement is more 

marked for Group C. Group A, the class that did not use the tutor, actually 

regressed. 
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Fig. 6.11. Mean pre- and post-test scores. 

 

Statistical significance tests were performed to compare the individually 

matched improvements of Groups B and C from pre-test to post-test. Because 

the same pair of students in each group completed both a pre- and a post-test, a 

one-tailed paired difference experiment (McClave & Benson, 1991, pp. 421-7) 

was performed to gauge the significance of the improvement. With H0 being the 

proposition that a group did not improve, it was found that Group B improved 

with 95% confidence (a = 0.05, t = 1.86, rejection region ± 1.75) while Group C 

improved with 99% confidence (a = 0.01, t = 3.4, rejection region ± 2.6). The 

improvement is thus much more significant for Group C, which used the 

decision-theoretic strategies. 

The effect size, which is defined as the difference in the mean gains of 

the control (Group B) and experimental groups (Group C) divided by the 

standard deviation of the mean gain of the control group, was also calculated. 

This measure gives the magnitude of the gain attributable to the normative PAS 

strategies as opposed to the randomised strategies. The effect size is 0.557, a 

value that is comparable to the effect size of 0.63 found by Albacete & 

VanLehn (2000) after a two-hour session with their tutor. (The average total 

interaction time in our case was less than two hours for both groups.) 

The pre- and post-tests analysis, and the frequencies in Figure 6.10, 

suggest that although Group C was initially less able than Group B, they 

learned the constraints at a faster rate. The constraint violation frequencies were 
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investigated further to see if this was indeed the case. Each attempt at a problem 

was analysed, and the total proportion of violated constraints was calculated for 

each attempt. This was averaged over all students in each group, and the result 

is depicted in Figure 6.12. This scatter plot shows that Group C initially made 

more errors than Group B, but that the rate of constraint violation decreased 

much faster for that group, supporting the hypothesis that Group C learned the 

rules of the domain more quickly. Figure 6.13 shows the results of the same 

analysis, as an example, for constraints C4 and C7 only, which both depend on 

the child’s cognitive ability to separate the problem text into sentences. The 

difference is much more marked for these constraints than for the average of all 

the constraints, but the trend is the same. For both scatter diagrams, a cut-off 

point of 125 attempts was selected because approximately half of the pairs of 

students reached this number of attempts, and beyond this number, statistical 

effects arising from the smaller number of pairs tends to corrupt the trend. 
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Fig. 6.12. Rate of constraint violation by attempt, for all constraints. 
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Fig. 6.13. Rate of constraint violation by attempt, for constraints 4 and 7. 

 

Further analysis investigated the mean number of attempts, and the 

mean time required, to solve the nth problem. Figures 6.14 and 6.15 show the 

results of this analysis. Both line graphs show the same basic trend; Group C 

was less able initially, but improved at a faster rate than Group B. 
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Fig. 6.14. Number of attempts solving the nth problem. 
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Fig. 6.15. Time required solving the nth problem. 

 

To summarise, we have demonstrated that the version of CAPIT with 

decision-theoretic problem and error message selection, and an adaptive 

Bayesian network student model, has led to a faster rate of learning than the 

same system with decisions made randomly. Evidence for this is provided by 

the pre- and post-tests results, and the analysis of constraint violations over 

time. This completes the fifth and final step of the application of the general 

methodology we have proposed for CAPIT. 

6.11 Summary 

This chapter has demonstrated a general methodology for the design and 

implementation of decision-theoretic intelligent tutors. CAPIT, a tutor for 

capitalisation and punctuation, is both a working illustration that decision-

theoretic computations in intelligent tutors can be tractable, and proof that the 

methodology works. It is therefore possible to build intelligent tutors with 

decision strategies that are guaranteed to be rational, given the specific utility 

function and posterior probabilities. 

One area of concern with this approach is scalability, both to large r 

domains and different domains. In a larger domain, the space of <State, Action, 

Outcome> triples may be so large as to effectively render network induction 
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impossible. This may be because the size of the State variable is very large 

(much larger than the 25 constraints modelled CAPIT), or there may be a high 

number of values that Action can possibly take (the limit in CAPIT was 45). A 

possible solution is to manipulate the learning algorithm to compensate for this 

additional complexity. That is, the higher the number of variables in the 

network, the lower the number of edges that should be added to the network. 

The algorithm used to learn CAPIT’s Bayesian network in Section 6.6 could be 

used with a higher ε value to prevent relationships between variables with lower 

mutual information from appearing in the network. The effect of this measure 

would depend on how the constraints are interrelated. For example, if the 

domain constraints are highly interrelated but with only a low average mutual 

information, raising ε will actually eliminate most the relationships which 

would have a negative effect on the student model’s predictions. On the other 

hand, if there are a handful of strong interrelationships amongst the large 

number of weak ones, raising ε will effectively eliminate only the weaker 

relationships. 

With respect to actions, a possible solution is to break the actions up 

into groups and then apply decision-theoretic action selection twice: firstly to 

select the group; secondly to select the action within that group. This way, the 

total number of actions being considered will be equal to the number of groups 

plus the number of items in the selected group. The effect of using this strategy 

on the performance of the system will depend on how the groups of actions are 

determined. For example, a class of problem in an algebra tutor might be 

problems of the form ax+b=c. This is a precisely defined class in the sense 

that the skills required to solve the problems in the class are uniform. Similarly, 

a precisely defined problem grouping for CAPIT would be to group problems 

according to relevant constraints and problem metrics. For example, problems 

that are relevant to only constraints 1, 2, 3, 4, 7, and 12 and consist of two 

sentences. On the other hand, a problem class such as problems in which 

singular possession must be denoted by an apostrophe  is not precisely 

defined because it specifies only one of the skills required to solve the problems 

in the class. The approach of grouping problems and applying decision theory 
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to the groups, therefore, would be expected to remain effective for precisely 

defined action groupings but degrade for less well defined groupings. 

The exact volume of data required for the construction of the Bayesian 

network student model is also a scalability concern. Bayesian networks have the 

property that they can be induced from minimal amounts of data. The primary 

question is how a minimal amount of student performance data affects both the 

behaviour of the system initially, before the model has had a chance to adapt to 

the student, and the length of time required to adapt the model to the student. 

Bayesian networks induced from minimal amounts of data may also be overly 

sensitive to small changes in the conditional probabilities and structure of the 

network. Fortunately, one possible work-around to this problem may be to 

compensate for lack of data by adding more prior knowledge (i.e. arcs and 

probabilities defined by protocol analysis or an expert) to the network. This is 

one of the advantages of using Bayesian networks as opposed to, for example, 

neural networks to which prior knowledge cannot be easily added. However, an 

in-depth investigation would be needed in this area, especially with respect to 

the sensitivity of the action selection procedures to the amount and quality of 

the data acquired during the first step of the methodology. 

A limitation of the problem representation in CAPIT is that while lower-

level ambiguity can be encoded into the constraints (e.g. in CAPIT, commas 

separating short clauses can easily be made optional by setting the Cs to the 

appropriate regular expression), the problem representation used in CAPIT is 

unable to deal with ambiguity arising from word and sentence semantics. To 

illustrate, the possessive pronoun teachers could be punctuated to either 

teacher’s or teachers’. The latter is less plausible (unless there is specific 

contextual evidence that there is more than one teacher), but both are 

technically correct. CAPIT resolves this problem by accepting only the single 

most plausible solution as the correct solution (teacher’s in this example), and 

treating other solutions as incorrect. This is acceptable for a system designed for 

children, because the system can control what its users are exposed to. That is, 

it is not ideal for a child to continually punctuate possessive nouns such as 

teachers to teachers’ when the goal of the problem is to teach the correct 

punctuation of singular possessive nouns. However, in other domains, it may be 

that the system needs to know when a solution is technically correct. This 
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suggests the need for either a problem solving module, or more advanced 

natural language processing capabilities which in turn would entail a more 

sophisticated problem representation for CAPIT. 

An interesting conclusion of the statistical comparison between different 

Bayesian network architectures in Section 6.6 is that the Small specification 

produced networks that predicted student performance almost as well as the 

various large network specifications (the r2 values varied by at most 0.06). The 

question arises as to why this is so. An informal analysis of the data collected 

during Step 1 revealed that, on average, a constraint previously satisfied will be 

satisfied on the next attempt 91% of the time. This regularity may well explain 

Small’s relatively good performance. However, other domains may not exhibit 

this degree of regularity. For example, in a domain where the constraints are 

highly interdependent, the probability of a constraint being satisfied on the next 

attempt may depend much more on the previous (and current) outcomes of 

other constraints. On the other hand, Small can be expected to outperform the 

large networks on domains where constraint performance is wholly or mostly 

probabilistically independent. 

This suggests that there must be some careful justification (e.g. the 

statistical significance tests performed in Section 6.6) when a larger, complex 

model is chosen over a much simpler one. This issue is important, and it should 

not be skirted over when describing the rationale for a particular intelligent 

tutor architecture. Furthermore, the relatively good performance of a Bayesian 

network with no explicit model of the student’s internal representation at 

predicting student performance begs the question of which domains in general 

are suitable for such an approach. Suitable domains may be those where the 

concepts are ill-defined, or where different students are expected to 

conceptualise the domain in different ways, (e.g. constructivist environments). 

Also, as discussed earlier, domains where the conceptualisation is too complex 

to produce a simple, tractable model might benefit. 

Another advantage of this approach is that it bypasses the problem of 

prior probabilities in Bayesian networks. VanLehn et al. (1998) report that 

different choices of prior probabilities for root nodes in a network can 

significantly influence the posterior probabilities of other nodes. The work-

around suggested by VanLehn et al. (1998) is to treat only the difference 
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between a variable’s prior and posterior probability as significant. Our Bayesian 

model circumvents this problem entirely. Whenever the network is evaluated, 

the root nodes L1..L25 are always known with certainty because they represent 

the observed student’s history. That is, the causality is always directed from the 

known (L1..L25) to the unknown (N1..N25), and not the other way around. 

Whenever the network is properly used, therefore, the Li nodes must be 

instantiated. Therefore priors do no even need to be maintained for these 

variables. The significant probabilities in our networks are the conditional 

probabilities. 

To reiterate, the results of the evaluation study are positive and show 

that the application of normative techniques such as decision theory to 

intelligent tutoring is effective. The log analysis shows that the class using the 

decision-theoretic version of CAPIT learned the constraints of the domain at a 

faster rate than another class using the randomised version. The pre- and post-

test results support this. Furthermore, on the post-test, both classes 

outperformed another class that did not have access to the tutor at all. 
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Chapter 7 

Conclusions 

This thesis has dealt with the application of normative theories to ITS design, 

for the express purpose of more rationally modelling the student and 

implementing pedagogical theories. While having acknowledged limitations in 

some cases, the methodology is a powerful new approach to ITS architecture 

design. Section 7.1 discusses the main original contribution, that being the 

methodology itself and its application to CAPIT and subsequent evaluation. 

Section 7.2 outlines some of the other original contributions of this thesis. In 

Section 7.3, future research directions that build on the results described in this 

thesis are outlined. Finally, closing remarks are made in Section 7.4. 

7.1 Summary of Main Original Contribution 

This thesis has proposed a methodology for the development of normative 

reasoning components as a solution to the problem of how to handle the 

uncertainty and sub-optimality inherent in the behaviour of traditional ITSs. 

When a learning theory is framed as a set of probability distributions and utility 

functions, normative mechanisms of reasoning guarantee that the learning 

theory will be applied rationally to the student. Consequently, the cause of sub-
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optimal or irrational behaviour in such an ITS can be traced to the specification 

of the theory itself (i.e. the values of the conditional probabilities and utilities) 

rather than the reasoning mechanisms underlying it. In a traditional ITS, in 

contrast, both theory specification and reasoning mechanism may be at fault. 

The methodology addresses the practicality of applying normative 

methods to ITS design. In particular, it emphasises testing a prototypical 

“unintelligent” version of the tutor with randomised action selection and no 

long-term student model in the classroom, in order to acquire data about student 

performance in different situations. That data then becomes the source from 

which a Bayesian network student model is induced, using statistical 

significance tests to discriminate between alternative induction techniques. 

Once the initial Bayesian network is determined, it can be easily adapted to the 

student on- line (using online induction algorithms) and the network’s 

predictions can then be fed into decision theoretic procedures for action 

selection. Psychological learning theories play an important role in the whole 

process; they are used to define both the semantics of the Bayesian network and 

the values of the utility functions.  

CAPIT (Mayo et al, 2000; Mayo & Mitrovic, 2001) illustrates the 

application of the methodology. In this particular case, the nodes in the 

Bayesian network student model represent constraints (Ohlsson, 1994), and the 

model is utilised to predict the student’s behaviour with respect to the 

constraints given different problems and the student’s unique interaction history 

with the ITS. Vitgosky’s (1978) Zone of Proximal Development is used to 

define the values of the utility function for next problem selection. A simpler 

theory defines the utility function for feedback message selection. 

CAPIT and the methodology are also original in that they demonstrate 

that induction of general, unrestricted Bayesian networks from student 

performance data is entirely feasible. To date, work on induction of Bayesian 

network student models has been limited to very simple structurally restricted 

networks such as naive Bayes. This thesis has demonstrated both off- line (Step 

2 of the methodology) and on- line (Step 4) Bayesian network induction. 

Evaluation is a major component of this thesis. A total of three 

classroom studies were performed during 1999 and 2000. The first evaluation, 

of the extended version of SQL-Tutor (Mayo & Mitrovic, 2000), provided the 
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impetus for the development of the general methodology. In turn, CAPIT was 

developed by applying the methodology and evaluated in the classroom as well. 

The successful evaluation of CAPIT is proof that application of entirely 

normative methods to ITSs can be both practical and effective. 

7.2 Other Original Contributions 

Besides the general methodology and CAPIT, this thesis makes some interesting 

secondary – but none-the-less original – contributions to other aspects of ITS 

research. 

7.2.1 A New Perspective on Student Modelling 

Chapter 3 highlighted two different perspectives on student modelling. The first 

perspective concerns the persistence of knowledge in the student model. 

Knowledge and beliefs about the student were shown to be either short or long-

term. Short-term knowledge is typically recent and specific. In the case of 

CAPIT, the short-term knowledge is the outcome of the last attempt at each 

constraint. The short-term knowledge is then integrated into the long-term 

component of the student model by a process of inference. In other words, facts 

and observations of the student’s behaviour are transformed into a set of beliefs 

about the student. Chapter 3 has shown that most ITS student models contain 

both short-term knowledge (e.g. constraints, traces), and long-term knowledge 

(typically overlay models). 

The second perspective introduced in Chapter 3 was the analysis of 

Bayesian network student models. Three different motivations underlie these 

models. Firstly, there is the expert-centric approach that focuses on the Bayesian 

network being a cognitive model of the student. These networks are essentially 

hand-crafted by a domain expert. The second approach is efficiency-centric, in 

which the nature of the Bayesian network is restricted in some way to maximise 

the computational efficiency or reduce the knowledge-acquisition bottleneck. 

The cognitive model is then “fitted” to this restricted representation. The third 

and final class is data-centric, in which student modelling focuses on the 
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student’s behaviour rather than their cognitive state. The cognitive state may 

still be implicit in the model, but because this approach deals explicitly with 

observables, it is amenable to machine learning. CAPIT was designed as a data-

centric tutor. 

7.2.2 An Alternative Approach to Cognitive Student Modelling 

CAPIT illustrates an alternative to the predominant cognitive approach to 

student modelling. In the past, considerable research effort has been expended 

developing more and more realistic cognitive student models. As was argued in 

Chapter 3, the price of such complexity is computational tractability. The 

complexity arises from both the complexity of the cognitive model itself and the 

need to compensate for high degrees of uncertainty in raw data and inferences. 

More often than not, the ability of the ITS to efficiently evaluate the student 

model on-line, which is its very purpose, is compromised. However, the 

argument for these models (largely from ITS researchers with a background in 

psychology) is that because they are based on psychological theory, they must 

be the most accurate models. The flow of information in an ITS with a cognitive 

student model is summarised by Figure 7.1. 

 

 
Cognitive Model 

Inputs 
(Student-System 

Interaction History) 

Outputs 
(Student Behaviour 

Prediction) 
 

 

Fig. 7.1. Traditional ITS with a cognitive student model. 

 

A concerning aspect of this philosophy is that whilst cognitive student 

models are many and varied, few of these systems (with the exception of some 

of the systems produced by the major research efforts, such as the ACT-R 

tutors) have actually been validated. Validation is the simple process of taking a 

real student history (the Inputs in Figure 7.1), feeding them into the student 
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model, and comparing the model’s predicted outputs to what the student 

actually did. The rationale for validation is that a student model, no matter how 

cognitively compelling it is, will be ineffective if it cannot ultimately account 

for student behaviour. The capacity for the student model to predict student 

behaviour is critical for other tasks such as tutorial action selection. 

This thesis has proposed an alternative to the traditional approach. This 

is a system where there is no explicit cognitive model of the student, but instead 

a direct relationship between the inputs of the model and its outputs. Figure 7.2 

depicts such a system. Because there is no need to expend effort developing a 

complex cognitive model, design and development can be directed towards 

developing a valid model instead. This approach is conducive to the data-centric 

method of building Bayesian network student models, described in this thesis. 

 

 

Inputs 
(Student-System 

Interaction History) 

Outputs 
(Student Behaviour 

Prediction) 
 

 

Fig. 7.2. Student model of CAPIT. 

7.2.3 Constraint-Based Modelling in a Literacy Domain 

Another contribution of this thesis is CAPIT as an extension of Constraint-

Based Modelling (Ohlsson, 1994), and more generally an extension of student 

modelling, to a literacy domain. To date, there has been little work in this area. 

Only Bouwer (1998) has developed a tutor for punctuation, but that was 

targeted at university students rather than children. Less recently, Bos & van der 

Plassche (1994) developed an ITS for English verb-form tutoring. A recent New 

Zealand study found that “…40% of employees here are below the minimum 

level of literacy competence required for everyday life and work.” (Harmer, 

1998). It is surprising, therefore, that more work has not been done in this area 

by ITS researchers. Literacy skills comprise a challengingly different collection 

of domains to traditional ITS domains such as mathematics or medical 

reasoning. For example, in traditional domains, the sequence of problem-solving 

steps is important and can provide useful diagnostic information. This has been 
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the impetus behind the development of student modelling techniques such as 

model tracing. On the other hand, in literacy domains, the order of problem 

solving steps is often irrelevant and it is only the final solution state that is 

important. Therefore, in CAPIT, the student is free to punctuate and capitalise 

sentences in any desired order. Ohlsson’s (1996) theory of learning from 

performance errors is relevant here precisely because it is the student solution 

state rather than the problem-solving sequence of steps that is relevant. 

The role of semantics is another key difference between traditional and 

literacy domains. In traditional domains, the reasoning is formal and symbolic 

and could, in principle, be implemented as an expert system for solving 

problems (although not all ITSs do this). The fact that the domain can be 

decomposed in this way shows that there is a clear distinction between the 

symbolic reasoning and the semantics. The teaching of the semantics can, 

effectively, be isolated to canned explanations of the symbols and operators that 

the student must learn. This is certainly not the case in literacy domains. Here, 

semantics are highly integrated with student solutions and complex natural 

language processing problems such as ambiguity arise as a result. It is possible 

to minimise these issues by restricting problems to certain simple types. For 

example, the verb form tutor (Bos & van der Plassche, 1994) poses simple 

single-word completion exercises. However, in the general case, new techniques 

and methods will have to be introduced to ITSs. This is not a daunting prospect; 

natural language understanding researchers have struggled with these ideas in 

the past and natural language processing already has a place in ITS research 

(see, e.g. Freedman et al., 2000). These techniques will be invaluable in literacy 

domains. CAPIT therefore represents a first step towards non-trivial ITSs in the 

literacy domains. 

7.3 Future Research Directions 

There is considerable work that could be undertaken in this area. Firstly, 

alternative means of Bayesian student modelling are certainly possible and can 

fit this framework. A novel example is to model the student as a Bayesian 
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network that is literally a sub-network of a “gold standard” Bayesian network 

representing the expert’s knowledge (Horvitz, 2000). This approach, similar in 

concept to the overlay model but more sophisticated, is ideal for teaching 

uncertain reasoning in appropriate domains. 

Another alternative is to hybridise Bayesian methods with existing 

student modelling methods. For example, consider the combination of a 

Bayesian network and a genetic graph. Genetic graphs are a knowledge 

representation for ITSs that are based on semantic networks, but with additional 

richness (Brecht & Jones, 1988). Nodes in a genetic graph represent the facts, 

rules, skills, or concepts of the domain, and edges define the way in which the 

domain items relate to each other from a pedagogical perspective. A student can 

only learn a new item if it is adjacent to an already known item. As a result, the 

student’s progression from novice to expert can be envisaged as the gradual 

“spreading” of a connected subgraph over the original graph. 

Edges are classified according to the type of relationship they represent. 

Examples are analogy, generalisation/specialisation, refinement, and 

component; there are several others. The relationship type can indicate how the 

item should be taught. For example, if a known topic is adjacent to an unknown 

topic and the relationship is analogy, then that defines a way in which the new 

topic can be taught and related to what the student already knows. Further 

structure is possible in the genetic graph by clumping sets of nodes into 

“islands” which require substantially similar underlying conceptual knowledge. 

Genetic graphs are interesting from a Bayesian perspective because they 

could be represented directly by a Bayesian network. Further uncertain variables 

could be added to to the model representing the student’s conduciveness to the 

different edge types (e.g. the student may prefer explanation by analogy rather 

than generalisation/specialisation), and this could be the basis for a decision-

theoretic procedure for planning the optimal path through the genetic graph. 

A second avenue for future research is to investigate further the 

application of decision theory to ITSs. The approach taken in this thesis of 

maximising expected utility is relatively straightforward, but aside from DT-

Tutor (Murray & VanLehn, 2000), decision theory has not been widely 

implemented in existing ITSs. There are considerably more sophisticated 

decision-theoretic reasoning schemes that could be explored. For example, the 
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decision-theoretic troubleshooting scheme proposed by Breese & Heckerman 

(1996) could form the reasoning component of a trouble-shooting tutor. More 

generally, Blythe (1999) gives a highly relevant overview of decision-theoretic 

planning techniques. Clearly, this is a fruitful avenue for ITS research, which 

will produce more robust and rational tutors. 

Efficiency considerations are a third topic for future research. Bayesian 

networks and decision theory, despite enormous strides in the development of 

efficient numeric algorithms, can still be intractable if the domain is large. For 

example, the initial investigation of how to extend SQL-Tutor that led to the 

first evaluation study showed early on that it was infeasible to model all 500 

constraints as a Bayesian network and have decision-theoretic problem 

selection. This is why heuristics supplanted normative techniques in that initial 

evaluation. There are more efficient alternatives to numerical algorithms, and 

these are qualitative algorithms. Qualitative models replace numeric 

specification with linguistic categories, and inference is performed symbolically 

on these categories. For example, the qualitative Bayesian networks described 

by Chao-Lin & Wellman (1998) replace numeric conditional probabilities with 

qualitative “influences”. Qualitative decision-theoretic schemes also exist (e.g., 

Fargier & Perny (1999)). 

A fourth possibility for future research is to continue to test and extend 

CBM (Olhsson, 1994). Prior to CAPIT, SQL-Tutor was the only ITS using 

CBM to model student knowledge. CAPIT is implemented in a completely 

different domain, and CBM has proven useful. The logical next step in the 

evaluation of CBM is to extend the approach to more complex modelling in a 

literacy domain. For example, grammar and reading are two such domains that 

would present significant new challenges to CBM. 

Fifth and finally, it would be interesting to investigate how tolerant 

decision-theoretic methods are to uncertainties in the student model. An 

implication of considering student modelling from the perspective of decision 

theory is that the accuracy of the student model may not be as important as it is 

in diagnostic systems. Decision theory aims to maximise the expected utility of 

actions, not the accuracy of beliefs. In other words, uncertainty can be tolerated 

in a student model if the most rational action is unaffected. For example, the 

next best tutorial action may be invariant regardless of whether or not the 
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student’s mastery of a particular item has a probability of 0.8 or 1 attached to it. 

This is not true in diagnostic systems where accuracy is important. The point to 

bear in mind is that in an ITS, an extremely precise student model is not 

necessarily the best student model, and the effort required to build in the 

additional precision may be best spent elsewhere (such as on the construction of 

a pedagogically-reasonable utility function). It would be fascinating to try and 

quantify this degree of tolerance for real-world domains. 

7.4 Final Remarks 

ITS technology is currently in its infancy. Systems developed in the lab have 

only in recent years found their way into the classroom, but this is usually only 

for short-term evaluations. Despite this, there is a large potential commercial 

market for quality ITSs, especially now that large-scale low-cost electronic 

distribution of software is possible via the Internet. The main differentiating 

factor between ITSs and other educational software is the built- in “intelligence”; 

in addition to exercises and multi-media tuition, the ITS has a pedagogy which 

it applies to make learning more efficient. Research should therefore be directed 

towards making the pedagogy more effective. Indeed, the community of student 

modelling researchers are going a long way towards achieving this. The 

contribution of this thesis is to show that normative theories are effective tools 

for computationally representing and implementing pedagogical theories. 
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Appendix A 

Problems In CAPIT 

Problem Relevant Constraints  

The morning is beautiful. The sun is rising. The 

birds are chirping. There is not a cloud in the 

sky. 

C001, C002, C003, C004, C007, 

C014 

Charlie Smith has a dog called Ratbag. Aunty 

Maude baked a cake for Charlie. Ratbag ate the 

cake. Aunty Maude was not pleased. 

C001, C002, C003, C004, C005, 

C007, C014 

We are going to Nelson for the holidays. We 

live in Christchurch. It is a long drive from 

Christchurch to Nelson. 

C001, C002, C003, C004, C006, 

C007, C014 

The woman's hat was taken by mistake. She 

complained to the shop's manager. The 

manager's apology was not accepted. 

C001, C002, C003, C004, C007, 

C008, C014 

There's a cricket game today. It's starting soon. 

Our teacher's the captain of one team. 

C001, C002, C003, C004, C007, 

C009, C014 

You can't play hockey. You haven't got a 

hockey stick. Your mother doesn't want you to 

have one. 

C001, C002, C003, C004, C007, 

C010, C014 

We used pencils, rulers, books and paper. We 

also sang, danced and played. 

C001, C002, C003, C004, C007, 

C011, C012, C014, C016 
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We went to the wedding, then drove to the 

reception. The best man gave a speech, and we 

all cheered. 

C001, C002, C003, C004, C007, 

C013, C014 

Jenny Porter drove from Dunedin to Picton. 

The car broke down near Timaru. Jim Baird 

fixed the car for Jenny. 

C001, C002, C003, C004, C005, 

C006, C007, C014 

We are playing games on Max's new computer. 

The computer's monitor is very large. Max's 

sister Annabelle wants to use the computer. 

C001, C002, C003, C004, C005, 

C007, C008, C014 

Jack's going to the movies. There's a movie 

starring Eddie Murphy. Eddie Murphy's a 

funny police officer in the movie. 

C001, C002, C003, C004, C005, 

C007, C009, C014 

Maggie Jones can't go to the beach. She hasn't 

tidied her room. We aren't going to wait for 

Maggie. 

C001, C002, C003, C004, C005, 

C007, C010, C014 

Harvey Smith, Matilda West and John 

Snodgrass are late for school. 

C001, C002, C003, C004, C005, 

C007, C011, C012, C014, C016 

Justine Chambers packed her bags, and she left 

home. She was going to catch a bus, but Andy 

convinced Justine to go back home. 

C001, C002, C003, C004, C005, 

C007, C013, C014 

We visited Auckland's airport. The airport's 

tour guide showed us around. We watched a 

plane arrive from Hong Kong. 

C001, C002, C003, C004, C006, 

C007, C008, C014 

Westburn School's a great school. My teacher's 

very nice. She's taking us to the Botanic 

Gardens. 

C001, C002, C003, C004, C006, 

C007, C009, C014 

He can't climb Mount Everest. He isn't fit 

enough. He had better come back to New 

Zealand. 

C001, C002, C003, C004, C006, 

C007, C010, C014 

I want to go to America, Canada and Australia. 

She wants to go to Taiwan, Malaysia and 

Singapore. 

C001, C002, C003, C004, C006, 

C007, C011, C012, C014, C016 

Canterbury is south of Marlborough, but it is 

north of Otago. There are more people in 

Canterbury, and fewer in Marlborough. 

C001, C002, C003, C004, C006, 

C007, C013, C014 
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My friend's wallet's in the car. There's money 

in it. I will put it in the car's glovebox. 

C001, C002, C003, C004, C007, 

C008, C009, C014 

The dog's bone isn't here. He can't find it 

anywhere. There isn't a spot in my parent's 

house where he hasn't looked. 

C001, C002, C003, C004, C007, 

C008, C010, C014 

The teacher's chalk, marker and overheads 

were stolen. The principal's filing cabinet, 

telephone and typewriter are also missing. 

C001, C002, C003, C004, C007, 

C008, C011, C012, C014, C016 

The baby's cot is set up, but my brother's bed is 

still in the baby's room. My brother's things 

will be shifted out, then the baby's room will be 

ready. 

C001, C002, C003, C004, C007, 

C008, C013, C014 

A big shark's in the bay. It isn't travelling very 

fast. We haven't seen this shark before. There's 

a chance that swimming's dangerous. 

C001, C002, C003, C004, C007, 

C009, C010, C014 

The gardener's planting cabbages, tomatoes and 

onions. She's growing them for me, my uncle 

and my mother. There's plenty for everyone. 

C001, C002, C003, C004, C007, 

C009, C011, C012, C014, C016 

The writer's staying in his room, because he's 

writing a book. He's going to finish it soon, and 

there's a good chance he will be famous. 

C001, C002, C003, C004, C007, 

C009, C013, C014 

Our mother said that we mustn't eat lollies, 

chocolate and ice cream. We shouldn't eat 

cakes, biscuits and desserts. 

C001, C002, C003, C004, C007, 

C010, C011, C012, C014, C016 

Your friend shouldn't play on the computer, 

and she can't read my books. 

C001, C002, C003, C004, C007, 

C010, C013, C014 

Porridge, cereal and toast are available for 

breakfast, and you can drink tea, coffee or 

juice. 

C001, C002, C003, C004, C007, 

C011, C012, C013, C014, C016 

Angus Harrison planted a tree. It grew until its 

trunk was two metres wide. Its branches were 

twenty metres long. Jack Johnson cut the tree 

down. 

C001, C002, C003, C004, C005, 

C007, C014, C015 

Chile is a country west of Argentina. Its capital 

is Santiago. The South Pacific Ocean is its 

neighbour to the west. 

C001, C002, C003, C004, C006, 

C007, C014, C015 
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My mother's car is not starting. Its battery may 

be flat. Its radiator may be frozen. We will 

have to take my father's bike instead. 

C001, C002, C003, C004, C007, 

C008, C014, C015 

There's a bee buzzing past me. It's taking its 

honey back to its hive. I hope it knows its way 

home. 

C001, C002, C003, C004, C007, 

C009, C014, C015 

The monster can't believe its luck. The gold 

wasn't stolen from its cave during its absence. 

C001, C002, C003, C004, C007, 

C010, C014, C015 

The elephant is wearing its boots, helmet and 

jacket. The mouse is wearing its pajamas, 

necktie and watch. 

C001, C002, C003, C004, C007, 

C011, C012, C014, C015, C016 

The robot tried to walk all the way, but its 

batteries ran out. Its movements got slower and 

slower, until its legs would not move anymore. 

C001, C002, C003, C004, C007, 

C013, C014, C015 

The teacher said, "Open your books." C001, C002, C003, C004, C014, 

C017, C018, C019, C020, C021, 

C022, C023 

"Jack and Matilda went to the market," said 

Mrs Ashton. 

C001, C002, C003, C005, C007, 

C014, C018, C019, C020, C022, 

C024, C025 

He said, "I will visit both Afghanistan and 

Korea." 

C001, C002, C003, C004, C006, 

C014, C017, C018, C019, C020, 

C021, C022, C023 

The team's captain said, "The ref's decision is 

wrong." 

C001, C002, C003, C004, C008, 

C014, C017, C018, C019, C020, 

C021, C022, C023 

"That's a good deal," said the salesman. "Here's 

a better one." 

C001, C002, C003, C007, C009, 

C014, C018, C019, C020, C021, 

C022, C023, C024, C025 

The doctor said, "You shouldn't eat any more 

vegetables. Your body can't tolerate them." 

C001, C002, C003, C004, C007, 

C010, C014, C017, C018, C019, 

C020, C021, C022, C023 

"We saw planes, trains and automobiles," said 

the boy. 

C001, C002, C003, C007, C011, 

C014, C016, C018, C019, C020, 

C022, C024, C025,  
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The woman said, "Roses are red, but violets are 

blue." 

C001, C002, C003, C004, C013, 

C014, C017, C018, C019, C020, 

C021, C022, C023 

"The crab lives in its shell," explained the 

teacher. 

C001, C002, C003, C007, C014, 

C015, C018, C019, C020, C022, 

C024, C025 
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Appendix B 

Regular Expression Special Characters and 

Character Sequences 

Definition of the regular expression special characters and symbols used in 

CAPIT, adapted from Microsoft (2000). Literal characters are denoted by 

courier font, and variables standing for sequences of literals are highlighted 

by italicising the font. 

 

Character(s) Description 
\  Marks the next character as either a special character or a literal. 

For example, n matches the character n but \n matches a 

newline character. The sequence \\ matches \, and \( matches 

(. 

^  Matches the beginning of input. 

$  Matches the end of input. 

*  Matches the preceding character zero or more times. For 

example, zo* matches either z or zoo. 

+  Matches the preceding character one or more times. For 

example, zo+ matches zoo but not z. 
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?  Matches the preceding character zero or one time. For example, 

a?ve? matches the ve in never.  

. Matches any single character except a newline character.  

(pattern)  Matches pattern and remembers the match. Parentheses 

characters can be matched using \( or \). 

x|y Matches either x or y. For example, z|food matches z or 

food, and (z|f)oo matches zoo or foo.  

{n} Matches exactly n times, where n is a nonnegative integer. For 

example, o{2} does not match the o in Bob, but matches the 

first two o's in foooood. 

{n,}  Matches at least n times, where n is a nonnegative integer. For 

example, o{2,} does not match the o in Bob and matches all 

the o's in foooood. o{1,} is equivalent to o+. o{0,} is 

equivalent to o*. 

{n,m}  Matches at least n and at most m times, where m and n are 

nonnegative integers. For example, o{1,3} matches the first 

three o's in fooooood. o{0,1} is equivalent to o?. 

[xyz]  A character set. Matches any one of the enclosed characters. For 

example, [abc] matches the a in plain.  

[^xyz]  A negative character set. Matches any character not enclosed. 

For example, [^abc] matches the p in plain.  

[a-z]  A range of characters. Matches any character in the specified 

range. For example, [a-z] matches any lowercase alphabetic 

character in the range a through z.  

[^m-z]  A negative range characters. Matches any character not in the 

specified range. For example, [m-z] matches any character not 

in the range m through z.  

\b  Matches a word boundary, that is, the position between a word 

and a space. For example, er\b matches the er in never but 

not the er in verb.  
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\B  Matches a nonword boundary. For example, e*r\B matches the 

ear in never early.  

\d  Matches a digit character. Equivalent to [0-9].  

\D  Matches a nondigit character. Equivalent to [^0-9].  

\f  Matches a form-feed character.  

\n  Matches a newline character.  

\r  Matches a carriage return character.  

\s  Matches any white space including space, tab, form-feed, etc. 

Equivalent to [ \f\n\r\t\v]. 

\S  Matches any nonwhite space character. Equivalent to 

[^ \f\n\r\t\v].  

\t  Matches a tab character.  

\v  Matches a vertical tab character.  

\w  Matches any word character including underscore. Equivalent to 

[A-Za-z0-9_].  

\W  Matches any nonword character. Equivalent to [^A-Za-z0-

9_].  
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Appendix C 

Constraints in CAPIT 

 Cr Cs Msg 

C1 DEFAULT| L-CASE ^[a-z0-

9%SYMBOLSET%]

*$ 

This word doesn't need 

any capital letters! 

C2 DEFAULT| NO-PUNC ^[a-z0-9A-

Z]*$ 
This word doesn't need 

to be punctuated! 

C3 SENTENCE-START| 

NAME-OF-PERSON| 

NAME-OF-PLACE| 

DIRECT-QUOTE-START 

^[%SYMBOLSET%

]*[^%SYMBOLSE

T%][^A-Z]*$ 

There are too many 

capital letters in this 

word! 

C4 SENTENCE-START ^[%SYMBOLSET%

]*[A-Z0-9] 
A sentence should start 

with a capital letter! 

C5 NAME-OF-PERSON ^[%SYMBOLSET%
]*[A-Z0-9] 

Each word in a person's 

name should start with 

a capital! 

C6 NAME-OF-PLACE ^[%SYMBOLSET%

]*[A-Z0-9] 
Each word in a place's 

name should start with 

a capital! 

C7 SENTENCE-END \.$ A sentence should end 

with a full stop! 
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C8 POSSESSIVE-NOUN-NOT-

ENDING-IN-S 

's$ An apostrophe is 

required to show 

possession! 

C9 IS-CONTRACTION 's$ An apostrophe is 

required to show the 

contraction of is! 

C10 NOT-CONTRACTION n't$ An apostrophe is 

required to show the 

contraction of not! 

C11 INTERMEDIATE-ITEM-

IN-LIST 

,$ A comma is required to 

separate items in a list! 

C12 FINAL-ITEM-IN-LIST [^,]$ A comma is not 

required after the last 

item in the list! 

C13 END-OF-CLAUSE ,$ A comma should 

separate the two parts 

of the sentence! 

C14 ONE-PUNC ^[^%SYMBOLSET

%]*[%SYMBOLSE

T%]?[^%SYMBOL

SET%]*$ 

No more than one 

punctuation mark is 

required in this word! 

C15 ITS-POSSESSIVE-

PRONOUN 

[^']s$ No apostrophe is 

required in its! 

C16 INTERMEDIATE-ITEM-

IN-LIST-PRECEDING-

CONJUNCTION 

[^,]$ Items in a list separated 

by a conjunction don't 

need to be separated by 

a comma as well! 

C17 WORD-PRECEDING-
DIRECT-QUOTE 

,$ A comma is needed 

before the direct speech 

starts! 

C18 DIRECT-QUOTE-START ^[%SYMBOLSET%

]*[A-Z0-9] 
Direct speech always 

starts with a capital 

letter! 

C19 DIRECT-QUOTE-START ^" A quotation mark is 

needed to show the 

start of direct speech! 
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C20 DIRECT-QUOTE-END| 

DIRECT-QUOTE-ENDING-

SENTENCE| 

FINAL-ITEM-IN-LIST-

DIRECT-QUOTE-END 

[%SYMBOLSET%]

*"[%SYMBOLSET

%]*$ 

A quotation mark is 

needed to show the end 

of direct speech! 

C21 DIRECT-QUOTE-ENDING-

SENTENCE 

[%SYMBOLSET%]

*\.[%SYMBOLSE

T%]*$ 

The direct speech 

should end with a full 

stop! 

C22 TWO-PUNC ^([^%SYMBOLSE

T%]*[%SYMBOLS

ET%]+){2}[^%S

YMBOLSET%]*$ 

Exactly two 

punctuation marks are 

required in this word! 

C23 DIRECT-QUOTE-ENDING-

SENTENCE 

[^%SYMBOLSET%

]+((\.+"+)|"+

|\.+)?$ 

The full stop should be 

within the quotation 

marks! 

C24 DIRECT-QUOTE-END| 

FINAL-ITEM-IN-LIST-

DIRECT-QUOTE-END 

[%SYMBOLSET%]

*\,[%SYMBOLSE

T%]*$ 

A comma should 

follow the direct 

speech! 

C25 DIRECT-QUOTE-END| 

FINAL-ITEM-IN-LIST-

DIRECT-QUOTE-END 

[^%SYMBOLSET%

]+((,+"+)|"+|

,+)?$ 

The comma should be 

within the quotation 

marks! 
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Appendix D 

AI’99 Paper (Published) 

The following paper (Mayo & Mitrovic, 1999) was presented and published as a 

poster paper at AI’99 in Australia, Nov. 1999. It is the proposal for the work 

that is described in Chapter 4. 

 



Estimating Problem Value in an Intelligent Tutoring 
System using Bayesian Networks 

Michael Mayo and Antonija Mitrovic 

Department of Computer Science, University of Canterbury 
Private Bag 4800, Christchurch, New Zealand 

mjm185@student.canterbury.ac.nz, tanja@cosc.canterbury.ac.nz 
 
SQL-TUTOR [1,2] is an ITS for teaching the database language SQL to upper-level 
undergraduate students taking database courses. Students using SQL-TUTOR work 
through a series of problems where the solution is an SQL statement. Although SQL-
TUTOR does not solve problems, it does have an ideal solution (IS) for each one. A 
correct student solution (SS) to a problem may be the same as the IS although there 
can be more than one correct solution. Figure 1 is an example of a problem in SQL-
TUTOR, its IS, and an incorrect SS. 

 
Problem Ideal Solution Student Solution 
List the titles of all 
movies that have a 
critics rating. 

SELECT title
FROM movie WHERE
NOT(critics=’NR’); 

SELECT title
FROM movie WHERE
critics NOT ‘NR’;

Fig. 1. An SQL problem, its ideal solution, and a student’s incorrect solution. 
 
SQL-TUTOR models students using Ohlsson’s Constraint-Based Modeling (CBM) 

[3]. CBM proposes the modeling of domains as a set of constraints of the form (Cr, 
Cs). Cr specifies the set of student solutions to which the constraint is relevant, and 
Cs specifies the subset of the relevant student solutions where the constraint is 
satisfied. Each constraint has an associated feedback message that can be displayed if 
the constraint is violated. In figure 1, the student has violated constraint 168 and the 
feedback message is: Make sure NOT is in the right place in the WHERE clause. 

Until recently, problem selection in SQL-TUTOR was based on one simple rule: 
the first problem relevant to the single constraint that the student has most frequently 
violated in the past was selected. In a real classroom, this is an overly simple strategy 
because it was often the case that selected problems were either too complex or too 
simple. Our research has been aimed at improving this situation. 

We propose a new problem selection module based on Bayesian belief networks 
(BBNs) [4]. Our approach involves applying the following two steps to each potential 
next problem p. Firstly, the system predicts, for each constraint c, the potential 
teaching effects of p. The main calculation is of the posterior probability 
P(Performancec,p = VIOLATED), the probability that c will be violated by the student 
should he/she attempt problem p. Constraint violations lead to feedback messages, 
and constraint-specific feedback is the main way that students learn constraints in 
SQL-TUTOR. A BBN for this is depicted in figure 2. RelevantISc,p is the probability 
of c being relevant to p’s IS. The value for this node is always known with certainty. 
RelevantSSc,p is the probability of c being relevant to p’s SS. Masteredc is the 
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probability of the student having mastered the constraint c. Finally, Performancec,p 
predicts the behaviour of the student on constraint c. All the nodes except 
Performancec,p are binary variables. Performancec,p is a three-valued node taking 
values {SATISFIED, VIOLATED, NOT-RELEVANT}. 

RelevantSS Performance 

Mastered 

RelevantIS c,p c,p c,p

c 

 
Fig. 2. A Bayesian network for predicting student performance on a single constraint. 

The second step is to summarise the predictions for p over all the constraints c. 
Currently this is done by counting the number of constraints for which 
P(Performancec,p = VIOLATED) > 0.45. This number, Feedbacks, is then compared 
to the student’s OptimalFeedback. The value of p is (- | Feedbacks – 
OptimalFeedback |). That is, p has a high value if Feedbacks is close to or the same as 
OptimalFeedback. The rationale behind this rule is that if the predicted number of 
feedback messages exceeds OptimalFeedback then the student will be overwhelmed 
with information and the teaching effects of each message will be discounted. On the 
other hand, if the number of feedback messages is less than optimal, then student 
learning will be inefficient and the problems may be too easy. Presently 
OptimalFeedbacks starts at 2 and increases linearly with the competence level of the 
student. 

After the student has submitted his solution, the prior probabilities of mastery for 
each constraint, P(Mastered1), P(Mastered2)…etc, are updated if the constraint was 
relevant to the SS. 

We have performed several off-line experiments using student history logs from 
previous user studies of SQL-TUTOR, comparing problems that were selected by the 
original system against problems that would have been selected by the proposed 
system. In the majority of cases, the new system outperforms the old system. 

Future research will investigate the acquisition of probabilities for the BBNs both 
subjectively (by an expert) and from data. We also plan an on-line evaluation of the 
new system in a user study. 
 
1. Mitrovic A., 1998. Learning SQL with a Computerized Tutor, Proc. 29th SIGCSE Tech. 

Symposium, 307-311. 
2. Mitrovic A., Ohlsson, S., 1999. Evaluation of a constraint-based tutor for a database 

language, Int. J. Artificial Intelligence in education, 10, 3-4, to appear. 
3. Ohlsson S., 1994. Constraint-based Student Modeling. In: Greer, J.E., McCalla, G.I. 

(eds.): Student Modeling: the Key to Individualized Knowledge-based Instruction. NATO 
ASI Series, Vol. 125. Springer-Verlag,  Berlin, 167-189. 

4. Pearl J. 1988. Probabilistic reasoning in intelligent systems: networks of plausible 
inference (revised 2nd edition). Morgan Kauffman, USA. 
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Appendix E 

ITS’2000 Paper (Published) 

The following paper (Mayo & Mitrovic, 2000) was presented and published at 

the ITS’2000 conference in Montreal, Canada. It covers the bulk of Chapter 4. 
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difficulty
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Abstract. Bayesian networks have been used in Intelligent Tutoring Systems
(ITSs) for both short-term diagnosis of students’ answers and for longer-term
assessment of a student’s knowledge. Bayesian networks have the advantage of
a firm theoretical foundation, in contrast to many existing, ad-hoc approaches.
In this paper we argue that Bayesian nets can offer much more to an ITS, and
we give an example of how they can be used for selecting problems. Similar
approaches may be taken to automating many kinds of decision in ITSs.

Keywords: instructional design; student modeling; evaluation of instructional
systems

1 Introduction

Our research is aimed towards developing a general methodology for using the
student model to solve decision problems in an ITS. There has been much research in
the field of student modeling, and student models that can reasonably accurately
predict student post-test performance have been developed (e.g. the ACT
Programming Tutor [5]). However, to be truly adaptive, an ITS must make optimal
use of the information contained in the student model to tailor its actions to the
specific needs of the student. Actions include selecting an appropriate problem if the
student asks for it, next topic selection, feedback selection, and selective
highlighting/hiding of information. We have developed an approach to adaptive
decision-making based on Bayesian probability theory. For each alternative, simple
Bayesian networks are used to make multiple predictions about student performance
on atomic domain elements called constraints. These multiple predictions are then
combined heuristically to give an overall measure of the value of the alternative. The
approach is demonstrated in a problem selection module for SQL-Tutor [8,9], an ITS
for teaching the database language SQL.

Section 2 briefly introduces SQL-Tutor. In section 3 we describe an approach to
selecting problems of appropriate complexity via Bayesian networks. The results of a



preliminary evaluation study are discussed in section 4, followed by a comparison of
this approach to others section 5. Section 6 is conclusions and future research.

2 SQL-Tutor

SQL-Tutor is a practice environment for undergraduates enrolled in database courses.
There are three functionally identical versions for Solaris, MS Windows and the Web.
Here we give only a brief description of the system, and the interested reader is
referred to other papers [8,9] and the system’s Web page1 for details.

The architecture of the system is illustrated in Figure 1. The system contains
definitions of several databases, a set of problems for each database and the ideal
solutions to them. The solutions are necessary because SQL-Tutor evaluates student
solutions by comparing them to the correct ones. Each problem is assigned a
difficulty level, which depends on many features, such as the wording of the problem,
the constructs needed for its solution, the number of required tables/attributes etc.

Each student is given a level of
mastery, which dynamically
changes in accordance with
student’s performance.

The basic components of the
system are the interface, the
pedagogical module and the CBM
student modeler. The pedagogical
module (PM) observes every
student's action and reacts
appropriately. At the beginning of
he session, a problem must be
selected for the student. When the
student enters the solution, the PM
sends it to the student modeler,

which analyzes the student’s solution in order to identify possible errors. If any errors
exist, the PM generates appropriate feedback messages. After the first attempt a
student is only told whether his/her solution is correct or not. The level of detail
increases if the student is not able to correct the solution.

SQL-Tutor uses Constraint-Based Modeling [10] to diagnose students’ solutions.
The conceptual domain knowledge is represented in terms of over 500 constraints. A
student’s solution is matched to the constraints to identify any that are violated. Long-
term student knowledge is represented as an overlay model that tallies the percentage
of times the constraint has been satisfied (i.e. used correctly). Both students and
problems in SQL–Tutor are assigned a level. The student’s level is incremented if
he/she solves two or more problems consecutively at or above the student’s current
level, within three attempts each.

1 See http://www.cosc.canterbury.ac.nz/~tanja/sql-tut.html

Fig. 1. Architecture of SQL-Tutor



There are three ways to select the next problem in SQL-Tutor. Students can work
through a pre-specified sequence of problems by clicking next problem, they can
select a practice problem directly from a menu of problems, or they can turn problem
selection over to the system by clicking system’s choice. In the third case, SQL-Tutor
examines the student model and selects the first problem whose level is within +1 or –
1 of the student’s level, which is also relevant to the constraint that the student has
violated most frequently. The rationale for this rule is that if the student has violated
the same constraint several times, it is appropriate to target that constraint for
instruction. This problem selection strategy is overly simple. In a real classroom, it
was often the case that selected problems were too complex or simple for the student,
or they jumped to another part of the domain seemingly not connected to the previous
problem. We set out here to explore other possibilities for problem selection.

3 Problem Selection using Bayesian Networks

Bayesian networks [2,11] are tools for representing and reasoning with uncertain
knowledge using Bayesian probability theory.

3.1 The probabilistic student model

Before Bayesian networks could be applied to the task of problem selection, SQL-
Tutor’s student model had to be reformulated in probabilistic terms. The new student
model consists of a set of binary variables Mastered1, Mastered2,…,Masteredn, where
n is the total number of constraints. Each variable can be in the state YES or NO with
a certain probability, indicating whether or not the student has mastered the
constraint.

Initial values for P(Masteredc = YES) were determined by firstly counting the
frequencies with which c was both satisfied and relevant (i.e. either satisfied or
violated) in SQL-Tutor logs from previous evaluation studies, and then by dividing
the former frequency by the latter. The logs were only analysed up to the point where
the user gets the first constraint-specific feedback about c. This ensured that the
effects of learning did not bias the initial probabilities. Some constraints did not
appear in past SQL-Tutor logs either because they were new or they had never been
used. For these constraints, P(Masteredc = YES) was initialised to 0.5.

If constraint c is satisfied, then P(Masteredc = YES)
increases by 10% of (1-P(Masteredc=YES)).
If constraint c is violated and no feedback about c is
given, then P(Masteredc = YES) decreases by 20%.
If constraint c is violated but feedback is given
about c, then P(Masteredc = YES) increases by 20%
of (1-P(Masteredc=YES)).

Table 1. Heuristics used for updating the student model

The student model is updated after the student submits his/her solution to a
problem and receives feedback. The system currently uses the heuristics in Table 1 to



update the probabilities. This heuristic approach was chosen over Bayes’ rule,
because we do not make the assumption that constraints in the SQL domain are
probabilistically independent, whereas many other models (e.g. Reye’s model [12])
do. Therefore, applying Bayes’ rule would result in a calculation that would be
impractical to perform on-line. Dependence between constraints in SQL-Tutor arises
at least because each violated constraint generates an error message, and so mastery
of a constraint depends to some extent on how many other errors were made at the
same time. This point is discussed further in sections 3.3 and 5. Constraints may also
be dependent because of semantic overlap, syntactic proximity in problems, and pre-
and co-requisite relationships. We believe that models where probabilistic
independence between all knowledge items is assumed are unrealistic (e.g. Reye’s
model [12]).

3.2 Predicting student performance on single constraints

We use a simple Bayesian network (Figure 2) to predict the performance of a student
given a problem p on a single constraint c. Masteredc is from the student model. Both
RelevantISc,p and RelevantSSc,p are YES/NO variables. RelevantISc,p is YES if
constraint c is relevant to problem p’s ideal solution. Because this can be determined
from the problem database, RelevantISc,p is always known with certainty.
RelevantSSc,p is YES if constraint c is relevant to the student’s solution to problem p.
Performancec,p is a three-valued node taking values SATISFIED, VIOLATED or NOT-
RELEVANT. The arcs indicate that RelevantSSc,p is dependent on RelevantISc,p.
Performancec,p is dependent on whether or not the student has mastered c, and c’s
relevance to the student solution.

RelevantSS Performance

Mastered

RelevantISc,p c,p c,p

c

Fig. 2. A Bayesian network for predicting student performance on a single constraint.

A full specification of this Bayesian network requires prior and conditional
probabilities. P(Masteredc) and P(RelevantISc,p) are the prior probabilities, which are
already available from the student model and problem database respectively. In Table
2, αc and βc are properties of the constraint c. αc (βc) is the probability of a constraint
being relevant to the student’s solution if it is (not) relevant to p’s ideal solution.
Effectively, αc and βc provide a measure of the “predictive usefulness” of the ideal
solution. For example, when αc = βc = 0.5, the relevance of c to the ideal solution tells
us nothing about the relevance of c to a potential student solution. However, if αc =
0.9 for example, there is a high probability that constraints relevant to the ideal
solution will also be relevant to a student solution.



RelevantISc,p
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Table 2. P(RelevantSSc,p|RelevantISc,p)

Like the initial probabilities of mastery, we determined values for αc and βc from
past SQL-Tutor logs. However, these conditional probabilities were not available
directly from the data. All that can be determined from the logs was the frequencies
with which constraints were relevant to the ideal and student solutions, or both.
Derivation (1) shows how αc was calculated using the chain rule. A similar
calculation was done for βc. For new or previously unused constraints, αc and βc were
initialised to 0.5.

αc = P(RelevantSSp,c = YES | RelevantISp,c = YES)

= P(RelevantSSp,c = YES & RelevantISp,c = YES) / P(RelevantISp,c = YES)

= # times c is relevant to both SS and IS in the logs / # times c is relevant
to IS in the logs

(1)

RelevantSSc,p

Masteredc

YES
YES

YES
NO

NO
YES

NO
NO

SATISFIED 1-Slipc Guessc 0 0
VIOLATED Slipc 1-Guessc 0 0P

er
f c

,p
.

NOT-RELEVANT 0 0 1 1

Table 3. P(Performancec,p|RelevantSSc,p,Masteredc)

Table 3 is the conditional probability distribution of Performancec,p given its parent
variables RelevantSSc,p, and Masteredc. Slipc (Guessc) is defined as the probability of a
student who has mastered (not mastered) c slipping (guessing) and violating
(satisfying) the constraint. In the third and fourth columns of Table 3,
P(Performancec,p = NOT-RELEVANT) = 1.0 and the other entries are 0, because these
represent the two scenarios where RelevantSSc,p = NO (i.e. c is not relevant to the
student solution). The four columns represent situations where the values of the parent
nodes are known with certainty. In practice, the values of the parents will not be
known with certainty.

The Bayesian network is used to predict the probabilities of the student violating,
satisfying or not using c in his/her solution to p. A simple example will illustrate the
evaluation process. Let us take the following constants: αp = 0.9, βp = 0.1, Slipc = 0.3,
Guessc = 0.05. Now, suppose that c is relevant to problem p’s ideal solution (i.e.
P(RelevantISc,p = YES) = 1) and the student is not likely to have mastered c (e.g.



P(Masteredc = YES) = 0.25). An evaluation of the network yields the probability
distribution [P(Performancec = VIOLATED) = 0.709, P(Performancec = SATISFIED)
= 0.191, P(Performancec = NOT-RELEVANT) = 0.1].

3.3 Evaluating problems

A single problem requires mastery of many constraints before it can be solved. The
number of relevant constraints per problem ranges in SQL-Tutor from 78 for the
simplest problems, to more than two hundred for complex ones. It is therefore
necessary to select an appropriate problem for a student on the basis of his or her
current knowledge.

We determine the value of a problem by predicting its effect on the student. If the
student is given a problem that is too difficult, he/she will violate many constraints.
When given a simple problem, they are not likely to violate any constraints. A
problem of appropriate complexity is the one that falls into the zone of proximal
development, defined by Vigotsky [14] as “the distance between the actual
development level as determined by independent problem solving and the level of
potential development as determined through problem solving under adult guidance
or collaboration of more capable peers”. Therefore, a student should be given a
problem that is slightly above their current level but not so difficult as to discourage
the student.

Let us discuss the strategy we propose for selecting problems. Each violated
constraint triggers a feedback message. If the system poses a problem that is too
difficult, there will be many feedback messages coming from various violated
constraints, and it is unlikely that the student will be able to cope with them all. If the
problem is too easy, there will be no feedback messages, as all constraints will be
satisfied. A problem of appropriate complexity will generate an optimal number of
feedback messages. This is the basis of the evaluation function we propose.

The algorithm for evaluating problems is given in Figure 3. The function takes two
parameters, the problem p to be evaluated and an integer, OptimalFeedback. It returns
the value of p. OptimalFeedback is an argument specifying the optimal number of
feedback messages the student should see regarding the current problem. Its value is
currently set to the student’s level + 2, reflecting the fact that novices are likely to
cope well with a small number of messages at a time, while advanced students are
able to resolve several deficiencies in their solutions simultaneously.

int Evaluate(problem p, int OptimalFeedback) {
int Feedbacks:=0;
For every constraint c {

Evaluate the Bayesian network;
If P(Performancec,p = VIOLATED) > 0.45

Then Feedbacks := Feedbacks + 1; }
Return (- |OptimalFeedback – Feedbacks|); }

Fig. 3. The problem evaluation function.

The evaluation function assumes that feedback will be generated for every
constraint where P(Performancec,p = VIOLATED) > 0.45. This heuristic is used



because it is intractable to calculate the exact probability of a problem producing the
optimal number of feedback messages. The 0.45 value was chosen because initial
tests showed that it gave best the results. The problem with the highest value is
selected from the pool of unsolved problems within 1 level of the student’s level.

4 Evaluation

We performed an evaluation study in October 1999, with second year students
enrolled in an introductory database course. The students were randomly assigned to a
version of the system with and without the probabilistic student model/problem
selector (the control and experimental group respectively). The study consisted of one
2-hour session in which students sat a pre-test, interacted with the system, and then
completed a post-test. Timing of the study was a constraint, as students needed to get
some overall understanding of databases prior to the study. The only possible time for
the study was the last week of the school year, which had a negative effect of the
number of participating students.

4.1 Appropriateness of selected problems

All student actions performed in the study were logged, and later used to analyse the
effect of the proposed problem-selection approach on learning. Both groups had

access to the problem selection methods
described in section 2: clicking next
problem, selecting the problem from a menu,
or clicking system’s choice. In the case of
the control group, clicking system’s choice
lead to a problem being selected using the
simple heuristic discussed in section 2, while
the Bayesian approach was used for the
experimental groups.

In order to evaluate the proposed problem selection method, we identified the logs
of students who used system’s choice in both groups. Six students from the
experimental group attempted 36 problems selected by next problem and 38 problems
selected by system’s choice using the new Bayesian approach. Thirteen students from
the control group worked on 106 and 79 problems selected by next problem and the
original system’s choice respectively. We counted the number of attempts it took to
solve each problem, the averages of which are given in Table 4. The problems
selected for the control group by the heuristic were most difficult for students,
requiring 4.55 attempts on average to solve. The students in the experimental group
were able to solve problems selected by the Bayesian approach in 2.69 attempts on
average, compared to 3.18 attempts when problems were visited in turn. The proposed
problem selection method compares favourably with the heuristic approach used by
the control group.

Average
attempts

Exper.
group

Control
group

Next
problem 3.18 2.10

System’s
choice 2.69 4.55

Table 4. Average number of
attempts per solved problem.



The new system’s choice method is only slightly better on average than the next
problem option for the experimental group, but its advantages are clearer when we
observe what happens during the problem solving session. The students start with
simple problems, and progress to more complex ones. Figure 4 illustrates the average
number of attempts students in the experimental group took to solve the ith problem.
It can be seen that the initial problems selected by next problem are easier for students
than those selected by the Bayesian approach. This is explained by the fact that the
Bayesian approach progresses faster to more complex problems. However, later
problems selected by the Bayesian approach are more adapted to the student and
therefore require fewer attempts to be solved.

4.2 Pre/post tests

Pre- and post-tests consisted of three multi-choice questions each, of comparable
complexity. The marks allocated to the three questions were 1, 5 and 1 respectively.
Nine out of fourteen students in the experimental group and sixteen out of eighteen in
the control group submitted valid pre-tests, the results of which are given in Table 5.

The mean scores in the pre-test for the two
groups are very close, showing that the control
and experimental groups contained a
comparable cross-section of students.
However, a number of factors, such as the
short duration of the user study, the holding of
the study during the last week of the year etc,
conspired to result in a very small number of
post-tests being completed. Because some

students did not log off, they did not sit the post-test which was administered on a
separate Web page. Only one student from the control group and four from the
experimental group sat the post-test. As the result, we can draw no conclusions from
the post test results.
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Fig. 4. The average number of attempts to solve ith problem by students in the
experimental group.

Question Exper.
group

Control
group

1 0.22 0.25
2 2.67 2.73
3 0.62 0.73

Total 3.44 3.50

Table 5. Means for the pre-test



5 Related Work

Other researchers have proposed the use of Bayesian networks in ITSs. ANDES
[4,6,7], an ITS for teaching Newtonian physics, uses Bayesian networks for predicting
student performance and problem solving behaviour. The ANDES network has a
dynamic component, comprising nodes specific to the current problem, and a static
component, comprising nodes representing the student’s knowledge. The dynamic
component is constructed on-line when a new problem is started. However, this
approach relies on the system knowing a priori which rules can be relevant to the
problem’s solution. This is not the case in the SQL domain where the ideal solution is
only one example of a correct solution. The usefulness of the ideal solution in
predicting the student’s actual solution is determined by the αc and βc parameters.
Thus, in the SQL domain, we are forced to model the entire domain for each problem.

One approach that does model the entire domain is Collins et al.’s [3] hierarchical
Bayesian network model for student modeling and performance prediction on test
items. A similar hierarchical model was initially intended for our probabilistic student
model. However, the key difference between our domain and Collins' example is that
SQL-Tutor contains more than 500 constraints whereas Collins' example consists of
only 50 questions. Initial investigations showed that it was infeasible to evaluate on-
line a traditional Bayesian network modeling all the 500 constraints. Furthermore,
Collins' example domain of elementary arithmetic divides neatly into 10 categories
(e.g. addition theory, subtraction theory etc) that can be easily organised into a
hierarchy, whereas in SQL there is no such simple classification of constraints.

Finally, Reye [12] has proposed a dynamic Bayesian network model for student
modeling. Each variable, corresponding to a single knowledge item, is dynamically
updated over time using Bayesian probability theory as the student's performance is
observed. Again, this is a similar scheme to our student model where single
constraints are represented by single nodes. However, Reye's model makes each
knowledge item probabilistically independent. This simplification makes Bayesian
student modeling tractable, but for solving decision tasks such as problem selection
the probabilities need to be combined in some way. Reye does not show how this can
be done, whereas this is the main emphasis of our paper.

6 Conclusions & Future Work

One of the vital tasks an ITS has to perform is to provide problems that are of
appropriate complexity for the student’s current knowledge. In this paper we looked
at an existing system for teaching SQL and proposed an improved method for
selecting such problems. We use Bayesian networks to predict student performance.
Problem value is dependent on the predicted the number of errors the student is likely
to make. Each error results in a feedback message. Novices are unable to deal with
many feedback messages, while advanced students can, and therefore an optimal
number of feedback messages can be established based on the current student’s level.
Of all available problems, we select the problem that is most likely to generate the
optimal number of feedback messages.



Initial evaluations indicate that the proposed solution is promising. However, we
have implemented several heuristics due to the inefficiencies of evaluating large
Bayesian networks on-line. For example, both Table 1 and Figure 3 depict heuristics
used by the system. Ideally the system should use theoretically sound rules based on
probability theory and/or decision theory. Future work will look at developing this
further. Use of new technologies such as qualitative Bayesian networks [1], which are
known to be much faster in their evaluation time than traditional Bayesian networks,
may also make the development of large-scale Bayesian networks feasible.

Future research will also focus on other decision tasks that an ITS must solve.
Problem selection is only one, and other tasks include topic selection, adapting
feedback, hint selection, and selective highlighting of text. We are working towards a
general framework for solving these type of problems.
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IWALT’2000 Paper (Published) 

The following paper (Mayo et al, 2000) was published and presented at the 

IWALT’2000 conference in New Zealand, December 2000. It described the 

initial version of the CAPIT system and the results of the initial data acquisition 

study described in parts of Chapter 6 
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Abstract 
 

We describe a new Intelligent Tutoring System (ITS) 
that teaches the mechanical rules of English 
capitalisation and punctuation. Students must 
interactively capitalise and punctuate short pieces of 
unpunctuated, lower case text (the completion exercise). 
The system represents the domain as a set of constraints 
specifying the correct patterns of punctuation and 
capitalisation, and feedback is given on violated 
constraints. The ITS was evaluated during several 
sessions in a classroom of 10-11 year old school 
children. The results show that the children effectively 
mastered the 25 rules represented in the system.  
 
1. Introduction 
 

We present CAPIT (Capitalisation And Punctuation 
Intelligent Tutor), a new Intelligent Tutoring System 
(ITS) designed for, and evaluated with, school children 
in the 10-11 year old age group. CAPIT teaches a subset 
of the basic rules of English capitalisation and 
punctuation, such as the capitalisation of sentences and 
the basic uses of commas, periods, apostrophes and 
quotation marks. Initial indications are that CAPIT 
motivates children to complete capitalisation and 
punctuation exercises significantly more so than the 
traditional approach of using a textbook. We report on 
results from a user study in which the tutoring system 
was tested in a real classroom. 

 
2. Punctuation and Capitalisation 
 

Traditional capitalisation and punctuation exercises 
tend to fall into one of two categories [1]: completion 
(the student must punctuate and capitalise a fully 
lowercase, unpunctuated piece of text), and check-and-
correct (the student needs to check for errors, if any, and 
correct them). Our tutor poses problems of the first class, 
the completion exercise. If the child makes a mistake, an 

error message is displayed. For example, Figure 1(a) 
depicts a short problem in the system.  
 

(a) the teacher said open your books 
(b) The teacher said, “open your books”. 
(c) The teacher said, “Open your books.” 

Figure 1(a). A problem, (b). a student’s incorrect 
solution, and (c). the correct solution. 

 
Figure 1(b) is an incorrect solution submitted by a 

student, with two errors: the direct speech does not start 
with a capital letter, and the period is outside the 
quotation marks. Currently the system displays only one 
error message at a time, and the student is expected to 
correct the error (and possibly any others) and resubmit 
the problem before any more feedback is displayed. If 
the student submitted this solution, a feedback message 
such as “The full stop should be within the quotation 
marks! Hint: look at the word books in your solution” 
would be displayed. Error messages are typically short 
and relate to only a single mistake, but if the student 
wants more detailed information, she/he can click Why? 
to be shown further explanatory material. Most of the 
problems typically are much longer than 1(a) and contain 
multiple sentences. 

Knowledge for the tutor was primarily acquired 
from capitalisation and punctuation course material used 
in New Zealand primary schools (e.g. [8]). We also had 
considerable input from the third author, a professional 
teacher, who made useful suggestions as to which rules 
the tutor should cover. For example, a common 
punctuation error made by children is to insert an 
apostrophe into the possessive pronoun its. Knowledge 
of common errors like this is more difficult to find in 
textbooks, and so the input from the teacher was 
invaluable. The third author also tailored the 
appropriateness and vocabulary of the system’s 
feedback, explanatory and introductory messages to the 
age group. 

 
 



 

 

3. Constraint-Based Modelling 
 

CAPIT is the second ITS to implement Ohlsson’s 
Constraint-Based Modelling (CBM) [3], the other being 
a tutor for the SQL database language [5, 6]. A CBM 
tutor represents domain knowledge as a set of constraints 
of the form <Cr, Cs> where Cr is the relevance condition 
and Cs is the satisfaction condition. The constraints 
define which problem states are consistent (or correct), 
and which are not. A constraint is relevant to a problem 
if the Cr is true. All relevant constraints must also be 
satisfied for the problem state to be correct. Otherwise, 
the problem state is incorrect and feedback can be given 
depending on which relevant constraints had their 
satisfaction condition violated.  
 
4. CAPIT 
 

CAPIT’s user interface was designed with the target 
age group of 10-11 year olds in mind. Two issues of 
importance when designing interfaces for this age group 
are facileness and motivation. 

The main interface is depicted in Figure 2. Brief 
instructions relevant to the current problem are clearly 
displayed at the top of the screen. This reduces the 
cognitive load by enabling the child to focus on the 
current goals at any time without needing to remember 
them. Immediately below the instructions, and clearly 
highlighted, is the current problem. In this area, the child 
interacts with the system by moving the cursor, 
capitalising letters, and inserting punctuation marks. The 
child can provide input either by pointing and clicking 
the mouse, or by pressing intuitive key combinations 
such as Shift-M to capitalise the letter m. By requiring 
the cursor to be positioned at the point where the capital 
letter or punctuation mark is to go, the child’s ability to 
locate errors as well as correct them is tested. 

 

 
Figure 2. The tutor’s main user interface. 

 

Motivation is provided in two forms. Firstly, children 
accrue points every time they submit a correct solution. 
The total number of points accrued so far, and the value 
in points of the current problem, is clearly displayed on 
the main interface. Secondly, when a correct solution is 
submitted, a simple animation is displayed as a reward. 
We have found this to be adequate motivation for 10-11 
year olds. 
 
4.1. Architecture 
 

The architecture of CAPIT comprises databases of 
constraints, problems and student models, the user 
interface, the student modeller, and the pedagogical 
module. The interconnections of these components are 
depicted in Figure 3. 

The pedagogical module solves two key decision 
tasks: it selects the next problem when the child clicks 
Pick Another Problem, and it selects a single error 
message for display when the child submits an incorrect 
solution. In the current system, a simple random strategy 
solves these decision problems. 
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Figure 3. System Architecture 

 
When the user submits a solution, it is passed to the 

student modeller. The student modeller determines firstly 
which constraints are relevant to the current solution, and 
secondly, which constraints are satisfied. The violated 
constraints are then passed to the pedagogical module so 
that an error message can be selected.  
 

4.2 Knowledge Representation 
 

In the current version of CAPIT, 45 problems and 25 
constraints are represented. The problems are relevant to 
the constraints in roughly equal proportions, although a 
small number of constraints (such as capitalisation of 
sentences) are relevant to all the problems. The 
constraints cover the following parts of the domain: 
• Capitalisation of sentences. 
• Capitalisation of the names of both people and places. 
• Ending sentences with periods. 
• Contracting is and not using apostrophes. 



 

 

• Denoting ownership using apostrophes. 
• Separating clauses using commas. 
• Separating list items using commas. 
• Denoting direct speech with quotation marks. 
• The correct punctuation of the possessive pronoun its. 

Problems are represented as arrays of properly 
punctuated and capitalised words. Each word has one or 
more tags associated with it. The tags specify the 
semantic and/or grammatical classes of the word, to the 
degree that it is relevant for punctuation and 
capitalisation. Figure 4 depicts the tutor’s internal 
representation of a short problem. Each word in this 
problem has one, two or three tags. The tag DEFAULT 
indicates that a word requires no capitals or punctuation 
marks. Other tags such as L-CASE indicate that a word 
does not need to be capitalised, but says nothing about 
the punctuation requirements (and vice-versa for the tag 
NO-PUNC). Other types of word need more specific tags. 
For example, The is the first word in the sentence and 
therefore carries the tag SENTENCE-START. Similarly, 
books is the last word in both the sentence and the direct 
speech, which is reflected by the tag DIRECT-QUOTE-
ENDING-SENTENCE. 
 

The SENTENCE-START,NO-PUNC
teacher DEFAULT
said, WORD-PRECEDING-DIRECT-QUOTE,

L-CASE,ONE-PUNC
“Open DIRECT-QUOTE-START,ONE-PUNC
your DEFAULT
books.” DIRECT-QUOTE-ENDING-SENTENCE,

L-CASE,TWO-PUNC
Figure 4. Problem representation for The teacher 

said, “Open your books.” 
 
 Cr Cs 
(a) {DEFAULT,

L-CASE}
^[a-z0-
9%SYMBOLSET%]*$

 This word doesn't need any capital letters!
(b) {NAME-OF-PERSON} ^[%SYMBOLSET%]*[A

-Z0-9]
 Each word in a person's name should start with a 

capital!
(c) {DIRECT-QUOTE-

ENDING-SENTENCE}
[^%SYMBOLSET%]+((
\.+"+)|"+|\.+)?$

 The full stop should be within the quotation marks!
(d) {ITS-POSSESSIVE-

PRONOUN}
[^']s$

 No apostrophe is required in its!
Figure 5. Examples of constraints. 

 
The constraints used in CAPIT comprise three parts: 

namely, the relevance condition, Cr, which is a set of 
tags; the satisfaction condition, Cs, which is a regular 

expression; and a hint that may be shown when the 
constraint is violated. Figure 5 gives examples of four 
constraints that range from the very general to the very 
specific. In addition, most constraints have an associated 
page of textual explanation that is displayed when the 
student clicks the Why? button. 

The tags of each word determine which constraints 
are relevant to the problem. If at least one word from the 
problem has a tag that is also in a constraint’s Cr, then 
that constraint is relevant to the problem. For example, 
constraints 5(a) and (c) are relevant to the problem in 
Figure 4, but 5(b) and (d) are not. 

If a constraint is relevant to a word, then its 
satisfaction condition, Cs, is evaluated against that word. 
The main difference between the expressions used in 
satisfaction conditions and standard regular expressions 
is the presence of %SYMBOLSET%, which refers to a 
string of all the punctuation marks that the tutor knows 
about. For example, the current version of CAPIT deals 
with commas, periods, quotation marks and apostrophes, 
so the Cs of 5(a) becomes the standard regular expression 
^[a-z0-9’”,.]*$ before being matched to a 
student’s solution. More details of the regular 
expressions used in the system are given in [4]. 

Constraints in the tutoring system fall into two 
distinct categories. General constraints apply to many 
different words because they are relevant to general tags 
such as DEFAULT and L-CASE. As a result, the 
feedback is more general and may not address the 
specific misconceptions that led to the error. Figure 5(a) 
is one constraint of this class. Specific constraints are 
satisfied only by specific punctuation/capitalisation 
patterns, and feedback is much more specific in this case. 
Constraints 5(b), (c) and (d) are examples of these. 
 
5. Evaluation Study 
 

An evaluation of CAPIT was held in March 2000 at 
Westburn School in Christchurch, New Zealand. A 
classroom of 28 children in the 10-11 year old age group 
used the tutor in pairs for four 30-45 minute sessions. In 
general, the teachers found that CAPIT motivated the 
children to a high degree. 

Details of students’ interactions with the tutor (the 
problems that were attempted, the errors that were made, 
and the feedback that was displayed) were logged. 
Subsequent analysis revealed the following averages. 
Each student made 89 attempts at 28 different problems. 
The average time for an attempt was 30 seconds, giving 
a total average interaction time of 45 minutes (equivalent 
to 90 minutes for each pair of students). 21 of the 
problems were eventually solved, and 7 abandoned. 
Students violated an average of 181 constraints during 
the sessions, of which feedback was given on 68. An 
interesting observation is that students only asked for 



 

 

more detailed explanations of their errors (by clicking 
Why?) an average of 8 times, or twice per session. The 
third author noted this during the evaluation study, and 
suggested that the next version of the tutor should 
provide some motivation for reading the detailed 
explanations. 
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Figure 6. Mean proportion of constraints that were 
violated on the nth attempt. 

 
We analysed how the students learned the constraints 

by calculating the proportion of violated constraints 
following the nth attempt, averaged across all students 
and all constraints. The maximum number of attempts 
was 223, but only one student got this far. Just over half 
of the students were still using the tutor by the 55th 
attempt, so the data analysis was concluded at this point. 
The averages are depicted in Figure 6, and they fit a 
power trend line with R2=0.687. A similar result was 
found in the other CBM tutor [6]. The interpretation of 
this trend is that the most frequently relevant constraints, 
such as the constraint that sentences must start with a 
capital letter, are acquired rapidly initially. More 
specialised constraints are less frequently relevant and 
are therefore acquired at a slower rate.  
 
6. Future Work and Conclusions 
 

Bouwer recently described an ITS for Dutch 
punctuation [1]. There are three significant differences 
between the two intelligent tutors. Firstly, Bouwer’s 
tutor is targeted at university-level students, and so it 
focuses on the rhetorical, as well as the grammatical, 
aspects of punctuation; our tutor is concerned only with 
the grammar of capitalisation and punctuation. Secondly, 
his tutor poses check-and-correct as opposed to 
completion exercises. Thirdly, and most significantly, 
Bouwer’s tutor explicitly represents each possible 
correct solution for a problem. This means that when 
new problems are added to the system, even if they use 
the same rules as existing problems, all their correct 
solutions solution must also be added. This is a 

knowledge acquisition bottleneck that is resolved by 
CAPIT. Constraints also offer a natural representation 
for multiple correct solutions to the same problem; rather 
than specifying all possible solutions, the constraint-
based tutor localises the ambiguity to specific 
constraints. For example, a hypothetical constraint 
specifying the correct separation of hours and minutes 
when punctuating times could be satisfied by both a 
colon and a period (e.g. both 11:20 and 11.20 could 
satisfy the constraint). This ambiguous constraint 
matches all correct solutions. 

The next step in this project will be to implement a 
pedagogical module with an intelligent, rather than 
random, decision strategy. We are interested in the 
application of decision theory to ITSs [2], and plan to 
learn the structure and probabilities of a Bayesian 
network from the data collected during this evaluation 
study. This is in contrast to other proposed and existing 
architectures that use Bayesian networks (e.g. Reye’s 
model [7]), because the structure of the network will not 
be fixed a priori. We believe this is an appropriate 
avenue of future research. 
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Appendix G 

IJAIED Paper (Published) 

The following journal paper (Mayo & Mitrovic, 2001) has been published in the 

International Journal of Artificial Intelligence and Education. The article is an 

extensive description of the methodology and the implementation and 

evaluation of CAPIT. The bulk of the material in the article is from Chapters 5 

and 6, but parts of Chapter 3 also appear. 
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Abstract. We propose and demonstrate a methodology for building tractable normative 
intelligent tutoring systems (ITSs). A normative ITS uses a Bayesian network for long-term 
student modelling and decision theory to select the next tutorial action. Because normative 
theories are a general framework for rational behaviour, they can be used to both define and 
apply learning theories in a rational, and therefore optimal, way. This contrasts to the more 
traditional approach of using an ad-hoc scheme to implement the learning theory. A key step of 
the methodology is the induction and the continual adaptation of the Bayesian network student 
model from student performance data, a step that is distinct from other recent Bayesian net 
approaches in which the network structure and probabilities are either chosen beforehand by an 
expert, or by efficiency considerations. The methodology is demonstrated by a description and 
evaluation of CAPIT, a normative constraint-based tutor for English capitalisation and 
punctuation. Our evaluation results show that a class using the full normative version of CAPIT 
learned the domain rules at a faster rate than the class that used a non-normative version of the 
same system. 

INTRODUCTION 

Intelligent tutors must operate with incomplete and usually highly uncertain information about 
their students. Knowledge about the student�s current state (the student model) is necessary for 
assessment, and more importantly, adaptive pedagogical action selection (PAS). Frequently 
however, the student�s interaction time will be insufficient for an accurate student model to be 
inferred. Even if the student was interacting for the requisite time, the student�s state is likely to 
be changing so rapidly (and there are so many other external influences) that the student model 
is never likely to be complete or totally correct. To compensate for this dearth of valid 
information, intelligent tutors should be equipped with strong methods for handling uncertainty. 
Such methods should ideally be provably optimal, i.e. given observations about the student, the 
method should be guaranteed to perform optimal PAS. 

No guarantees of optimality are made by other methods, like those developed by Artificial 
Intelligence (AI) scientists. In fact, even for perfectly certain student models, these methods are 
not provably optimal because the very mechanisms of their reasoning (e.g. production rules) are 
open to incompleteness and inconsistencies. 

To overcome this potential for sub-optimality, we have investigated general theories of 
rationality (known as normative theories) and applied these to the design of an intelligent tutor. 
This approach has two advantages. Firstly, such theories are not usually the product of AI alone, 
but the product of a collaboration of scientists from many different fields over many years. 
Therefore, they are likely to be more widely tested and accepted than the typical AI theory. 
Secondly, the entrenchment of the intelligent tutor in a theory of rationality means that its 
behaviour will be guided by general principles of rational behaviour. This implies optimality. 

We propose statistical decision theory (Savage, 1954), encompassing Bayesian probability 
theory (Bayes, 1763), as a particular theory of rationality suitable for application to intelligent 
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tutoring systems. It is only recently that efficient and effective structures and algorithms for 
Bayesian reasoning, known as Bayesian networks (Pearl, 1988), have become available. 

Note that normative theories are not domain specific, so they do not specify what is being 
reasoned about. In an intelligent tutor, this is the task of the learning theory. The main 
advantage that normative theories confer is that the learning theory can be defined within a 
rational framework. In turn, this means that the learning theory is guaranteed to be optimally 
applied to the student, with respect to the chosen normative theories. This compares favourably 
to the architecture of the traditional intelligent tutor in which the learning theory is defined 
using a less rigorous scheme (e.g. heuristic rules) that lack optimality guarantees. 

In this paper, we review Bayesian and decision-theoretic approaches in existing intelligent 
tutors, and propose a number of desirable features that a decision-theoretic tutor should have. 

We then define a general methodology for the development of decision-theoretic PAS 
strategies for intelligent tutors incorporating these desirable features. The methodology 
emphasises the collection of real-world data for evaluating and comparing different Bayesian 
network specifications. This �data-centric� approach contrasts to existing approaches to 
Bayesian network design, such as the �expert-centric� approach whereby a domain-expert 
directly or indirectly specifies the structure and maybe also the probabilities of the network, as 
in ANDES� Assessor network (Conati et. al., 1997; Gertner & VanLehn, 2000); and the 
�efficiency-centric� approach where the network is pre-specified to some degree to optimise 
either the specification size (e.g. Millán, 2000) or the efficiency of evaluation (e.g. Collins et. 
al., 1996; Reye, 1998), and the domain knowledge is �fitted� to this limited specification. 

The proposed methodology is applied to the development of optimal PAS strategies for 
CAPIT (Capitalisation And Punctuation Intelligent Tutor). CAPIT is a constraint-based tutor 
that teaches the basic rules of English punctuation and capitalisation to 8-10 year old 
schoolchildren (Mayo et. al., 2000). The two decision-theoretic PAS strategies we have 
developed using this methodology are problem selection and error message selection. The 
strategies have been evaluated in the classroom and compared to randomised versions of the 
same strategies. 

DECISION THEORY AND BAYESIAN NETWORKS 

Decision theory and Bayesian probability theory are both instances of normative theories. A 
normative system encompasses not only a set of rules, but also the set of logical consequences 
of those rules (Gärdenfors, 1989). Therefore they can be considered logically complete and 
consistent. Under the assumption that a rational agent will act logically, normative systems can 
be thought of as prescriptive models for rational behaviour. This is in direct contrast to 
descriptive models that attempt to describe either the behaviour of an individual (such as an 
expert or a teacher) or a group of individuals (e.g. a psychological theory derived from 
observations), which may be subject to logical inconsistencies or incompleteness. 

Bayesian probability theory is a set of rules for updating beliefs in an uncertain world. 
Subjective belief in a proposition such as �variable X is in state x� is represented by the 
statement p(X = x) = r, where r = 1 implies that the proposition is certainly true while r = 0 
implies certain falsehood. A value of r between 1 and 0 indicates the degree of uncertainty 
between the certain extremes. 

To update its beliefs, a Bayesian agent needs to maintain a model of the relationships 
between its uncertain propositions about the world. Two propositions A and B, for example, are 
mutually independent if a change in the agent�s belief about one proposition does not influence 
its belief in the other proposition. On the other hand, A and B are dependent if a change in belief 
about one affects the agent�s belief in the other. Dependence is represented by a conditional 
probability statement such as p(B|A) that defines the agent�s �posterior� belief in B given all the 
possible values of A. It is important to note that this relationship is reversible; given p(B|A), we 
can always calculate p(A|B) using Bayes� rule (Bayes, 1763): 
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Once the relationship between the variables is determined, the joint probability distribution 

can be calculated. The joint probability distribution defines a table of probabilities, one entry for 
each different combination of values that the variables can jointly take. For example, if A and B 
are binary variables, then the joint probability distribution is referred to as p(A,B) and consists 
of four different probability entries. The sum of all the entries must be 1. 

Sometimes it is convenient to represent variables and their dependencies as a directed 
graph, and this notation is called a Bayesian network. Figure 1 illustrates Bayesian networks for 
all the possible relationships between two variables. 
 

 

A B 

 
(a) p(A,B)=p(A)p(B) 

 

A B 

 
(b) p(A,B)=p(A)p(B|A) 

 

A B 

 
(c) p(A,B)=p(A|B)p(B) 

Figure 1. Graphical notation depicting (a) two mutually independent variables A 
and B, (b) two related variables A and B, and (c) the same two related variables 
but with the direction of the arc reversed. 

 
Bayesian networks can be used to model the relationships between observed student 

actions, student internal states, and outcomes. Figure 2 depicts a simple example of this for 
illustrative purposes. Note that both Read Textbook and Watched Video are set with certainty to 
values YES and NO. This is called instantiation, and implies that these variables have been 
observed. When an uninstantiated node is queried, its probability distribution must be updated 
to incorporate all the currently instantiated nodes in the network. Lauritzen and Spiegelhalter 
(1988) describe an efficient and effective updating algorithm in common use. 
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Figure 2. A hypothetical Bayesian network for predicting the performance of a 
student on a test. 

 
Although the direction of any arc can be reversed, for practical purposes a Bayesian 

network cannot have any directed cycles. Furthermore, while it is a common convention that the 
arc directionality corresponds to the direction of causality, it is possible to apply other semantics 
to arc directionality. For example, Collins et. al. (1996) interpret arcs as emanating from topic to 
subtopic. 

Whereas Bayesian networks are used to update beliefs from initial beliefs and observations, 
decision theory is a rational means of optimising behaviour by �fusing� uncertain beliefs with 
preferences. Suppose the agent is faced with the problem of selecting a single action di from a 
set of possible actions d1, d2�, dn. If x is a possible outcome of di, then decision theory requires 
the agent to specify a real-valued preference U(x, di) for each possible combination of x and di. 
This is called the utility function. The agent must also be able to estimate the probability of x 
should it opt for di, a value that can be determined from its Bayesian network. The expected 
utility of di is defined, therefore, as the probability-weighted sum of the utilities of each possible 
outcome less the cost of the action: 
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The principle of maximising expected utility says that the agent should select the action di that 
maximises Equation 1. 

It is also relevant to mention the foundations of decision theory. Bayesian probability was 
introduced over 200 years ago, and decision theory was first proposed in 1954 (Savage, 1954). 
There has been ample time, therefore, for these models to be widely tested. The fact that they 
are now accepted and applied in a variety of fields is a testament to their rigorous foundations. 
Intelligent tutors built on these fundamentals, therefore, will be widely accepted, a vision 
espoused by Everson (1995). 

One reason for the neglect of these theories in Artificial Intelligence and related fields, 
however, was the problem of tractability (Jensen, Lauritzen et al., 1990). In its naïve form, 
Bayesian probability theory and decision theory are intractable. This led to the development of 
other schemes, such as fuzzy sets (Zadeh, 1983) and Dempster-Shafer theory (Shafer, 1986), 
which are not as general as normative theories, but are highly tractable (Horvitz et al., 1988). 
Since then, however, recent advances in the tractability of the normative reasoning have been 
made and researchers in these areas are showing renewed interest in normative models. 

A noteworthy property of Bayesian networks is that both prior/expert knowledge and data 
can be seamlessly integrated within a single network. For example, an expert can specify some 
or all of a Bayesian network, data can be used to learn the rest of it, and then the expert can 
�fine-tune� the final version. This property is not typical of other representations such as neural 
networks, and is a significant, natural property of Bayesian networks that will be demonstrated 
in this paper. 

For more technical details, the interested reader is referred to a number of general tutorials 
on Bayesian networks (D�Ambrosio, 1999; Cowell, 1999). Mislevy & Gitomer (1996) introduce 
Bayesian networks in the context of intelligent tutors. The learning of Bayesian networks from 
data is an important component in this paper, and suitable tutorials are provided by Heckerman 
(1999) and Krause (1998). Decision theory and AI are introduced by Horvitz et. al. (1988) and 
Russell & Norvig (1995, Ch. 16-17). 

NORMATIVE TECHNIQUES IN EXISTING TUTORS 

A number of recent intelligent tutors have been proposed with Bayesian network student model. 
In this section, we review the different approaches to Bayesian student modelling, and then we 
discuss some of the different applications of the student model to PAS. 

Bayesian Network Student Modeling 

It is possible to classify Bayesian network student models into three different groups, according 
to the technique by which they were constructed. Expert-centric student models are unrestricted 
products of domain analysis. That is, an expert specifies either directly or indirectly the 
complete structure and conditional probabilities of the Bayesian student model, in a manner 
similar to that with which expert systems are produced. This is the general approach of ANDES 
(Gertner & VanLehn 2000; Gertner et. al., 1998; Gertner, 1998; Conati et. al., 1997), 
HYDRIVE (Miselvy & Gitomer, 1996), DT-Tutor (Murry & VanLehn, 2000), and the Bayesian 
domain model of ADELE (Ganeshan et. al., 2000). One possible disadvantage of this approach 
is that the resulting models may include so many variables that it becomes infeasible to evaluate 
the network effectively on-line. For example, tractability testing was an important issue in the 
initial evaluation of DT-Tutor. Efficiency-centric models, on the other hand, work the other 
way: the model is partially specified or restricted in some way, and domain knowledge is 
�fitted� to the model. The restrictions are generally chosen to maximise some aspect of 
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efficiency, such as the amount of numeric specification required and/or the evaluation time. 
This is the methodology of Reye (1998), Murray (1998), Collins et al (1996), Mayo & Mitrovic 
(2000), and to a degree, Millán et. al. (2000). In general, restrictions to increase efficiency can 
introduce incorrect simplifying assumptions about the domain. Finally, the data-centric model 
is a new class of Bayesian student model, introduced and implemented in this paper, in which 
the structure and conditional probabilities of the network are learned primarily from data. This 
class of student model dispenses with attempting to model unobserved student states, such as 
their domain mastery, and instead concentrates to modelling the relationships between observed 
variables to predict student performance. MANIC (Stern et. al., 1999) is the closest existing 
system the authors could find to the data-centric approach, but it learns only the probabilities 
and not the structure of the network, and is therefore more efficiency-centric than data-centric. 
Work in this area is also described by Beck & Woolf (2000), but Bayesian networks are not 
used. Figure 3 shows how existing Bayesian network student models fit this classification. 
 

 Expert-Centric 

Efficiency-Centric Data-Centric 

ANDES, HYDRIVE, 
DT-Tutor, (Ganeshan et. al., 
2000) 

(Mayo &  
Mitrovic, 2000) 

CAPIT 

Millán et. al., 
2000 

MANIC 

(Reye, 1998) 
(Collins et. al., 
1996) 
(Murray, 1998) 

 
Figure 3. A classification of Bayesian network student models. 

Expert-Centric 

ANDES (Gertner & VanLehn 2000; Gertner et. al., 1998; Gertner, 1998; Conati et. al., 1997), 
HYDRIVE (Miselvy & Gitomer, 1996) and DT-Tutor (Murray & VanLehn, 2000), are 
examples of tutors with large Bayesian networks with structures mostly engineered from 
complex domain analysis. To match the domains as closely as possible, their networks are not 
structurally restricted in any way. However, they all have a high proportion of variables 
representing unobserved, internal student states. A major hurdle for these systems, then, is how 
conditional probabilities can be elicited or defined for these variables in the absence of data. 

ANDES� solution is to use �coarse-grained� conditional probabilities definitions such as 
noisy-OR and noisy-AND. A noisy-OR variable has a high probability of being true only if at 
least one of its parents is true, and similarly for noisy-AND variables. In practice, restricting 
conditional probabilities to noisy-ORs and noisy-ANDs significantly reduces the number of 
required probabilities and makes the modelling of unobserved variables much simpler because 
only the structure and node type (noisy-AND or noisy-OR) needs to be specified. 

In HYDRIVE, the conditional probabilities are defined subjectively in a �fuzzy-like� 
fashion. For example, a student�s Strategic Knowledge takes the vague linguistic values 
expert, good, okay and weak. Tutorial actions and observations of student behaviour 
modify the probability distribution over these values via conditional probabilities, which were 
elicited from domain experts. 

Finally, DT-Tutor is a generalised domain-independent architecture for student modeling 
and PAS. Like ANDES and HYDRIVE, it models the student�s knowledge, but it goes much 
further and attempts to model other hidden states such as the student�s morale, independence, 
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and focus of attention. A preliminary version of this system has been constructed but no details 
have been given as yet to how the conditional probabilities will be obtained. 

Models that largely represent unobserved, internal student states suffer a major 
disadvantage: the model structure and/or parameters cannot be adapted on-line to the student. 
To illustrate, consider a hypothetical very simple Bayesian network with discrete variables, 
Observations and Student State. Suppose that the system maintains the conditional probability 
p(Student State|Observations) for computing the posterior probability distribution over the 
hidden Student State from the observable variable Observations. This, in a highly abstract form, 
is how the student models in ANDES and HYDRIVE operate. Now, consider how this model 
can be adapted to the student. There are two different approaches. The first is to observe the 
student and instantiate Observations, and then update the value of Student State from this. This 
is the standard way in which Bayesian networks are used, but is means that p(Student 
State|Observations) will remain static and that the previous value of Observations will be lost. 
An alternative approach is based on machine learning, and involves modifying p(Student 
State|Observations) itself. If a particular value of Observations leads to a particular Student 
State, then p(Student State|Observations) is altered to increment slightly the probability that the 
same Student State will be observed again when the same or similar Observations are made 
again in the future. 

However, this second approach relies on Student State being an observable variable, 
something that it is not in our simple model. This is an important reason for advocating models 
that eliminate hidden variables: they are simply more adaptable. Consider an equally simple 
model defining the relationship between two observable variables, Observations and Next-
Observations. Because the variables are both observable, a conditional probability such as 
p(Next-Observations|Observations) becomes amenable to machine learning, and therefore the 
system is more adaptable. 

Efficiency-Centric 

An approach to student modelling using dynamic Bayesian networks (DBNs, Russell & Norvig, 
1995, Ch. 17) has been proposed by Reye (1998). Reye�s model is a generalisation of the 
student model used in the ACT Programming Languages Tutor (Corbett & Anderson, 1992; 
Corbett & Bhatnagar, 1997), and a similar approach was used in the student model of SQL-
Tutor (Mayo & Mitrovic, 2000). The idea is to model the student�s mastery of a knowledge item 
over time. The tutor�s current belief that the student has mastered the item (Mt) depends on its 
previous belief (Mt-1), the outcome of the student�s last attempt at the item (Ot-1), and the 
pedagogical response of the tutor to the last attempt (At-1). Using dynamic Bayesian networks, 
not only can the tutor�s current beliefs be determined, but also its future beliefs at time t+1 or 
beyond, although this is likely to be much more uncertain. This model is depicted in Figure 4 
for a single knowledge item. 
 

 
Mt-1 

At-1

Ot-1 

Mt

At 

Ot 

Mt+1 

Ot+1INCORRECT

LEVEL-1
HELP At+1

 
Figure 4. A DBN modelling the mastery of the student on a single knowledge 
item equivalent Reye�s approach. At time t-1, the student failed an attempt at the 
item and so the tutor provided remedial help. 

 
One problem with this approach is that the complexity-reducing assumption that mastery of 

a knowledge item is probabilistically independent of the mastery of any other items is 
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unrealistic. Suppose, for example, that the knowledge items are �high level� such as concepts or 
topics. Then we would expect the mastery of some items to be dependent on the mastery of 
items that are pre- and co-requisites. This is a basic assumption of many systems and the 
rationale behind many approaches to course sequencing, e.g. Brusilovsky (2000). Alternatively, 
the knowledge items could be �low level� such as constraints (Ohlsson, 1994; Mitrovic & 
Ohlsson, 1999; Mayo et. al., 2000). Clearly, we would expect many dependencies between 
constraint mastery based on factors such as syntactic and/or semantic relatedness. We 
demonstrate later that in the punctuation domain, a model with dependencies between items 
makes better predictions of student performance than a simpler model similar to Figure 4. 

There are Bayesian student models that allow some dependencies to be expressed whilst 
remaining efficiency-centric. They are the singly-connected hierarchical structures described by 
Murray (1998), Collins (1996), and Stern et. al. (1999). A singly-connected network has the 
property that for every pair of nodes in the network, there is one and only one path between the 
nodes. Bayesian networks with a singly-connected topology evaluate in linear time (Pearl, 1988; 
Murray, 1999), and while they can express dependence between knowledge items, the singly-
connected assumption means that certain types of dependence (namely, undirected loops) 
cannot be represented. This is clearly a strong restriction, because all of the expert-centric 
models described above contain undirected loops in their Bayesian networks. 

The problems of single-connectedness are illustrated by MANIC (Stern et. al., 1999), 
which attempts to learn the probabilities (but not the structure) of its hierarchy from 
observations of the student. MANIC�s hierarchical structure explicitly assumes that its variables 
are independent of each other given their mutual parent variable. Unfortunately, the data 
acquired from students directly contradicted this and Stern et. al. were forced to compensate by 
introducing several ad-hoc �fixes� to the network, such as �merging� dependent nodes and 
deleting irrelevant nodes. This jeopardised its normative status. A clear solution to this problem 
would have been to drop the restriction that the network was a hierarchy, although this would 
have led to a more complex model and the necessity for more complex learning algorithms. 

Interestingly, Millán et. al. (2000) recently proposed an architecture that is to a degree both 
expert- and efficiency-centric. Their Bayesian network is selected to optimise the amount of 
numeric specification required, and to achieve this, the directionality of the arcs between groups 
of variables is fixed. The variables are also limited to binary states with specific semantics. 
However, the topology of the network does not have to be singly-connected which makes it 
quite flexible. 

Data-Centric 

This is the approach whereby both the structure and conditional probabilities of the network are 
learned from data collected from real-world evaluations of the tutor. There are a number of 
benefits of this approach. Firstly, because the model is induced from actual data, its predictive 
performance can easily be evaluated by testing the network on data that was not used to train it. 
Secondly, data-centric models can be expected to be much smaller than the typical expert-
centric model because the latter represents both observed and hidden variables, while the former 
models only observable variables. 

This is not to say that data-centric models may not contain hidden variables. If many 
observable variables are �compressed� in some way into a single hidden variable, then the 
resulting student model with hidden variables will in fact be smaller than the original model 
without hidden variables. However, there are some difficult issues to deal with. For example, 
how is the compression to be performed and more importantly, will the resulting hidden 
variables be consistent with the original observable variables? In a Bayesian system, it follows 
that probabilistic inference should be used to deduce the probability distribution over the new 
hidden variables from the original observable variables. If this is not done, the new compressed 
model will be probabilistically inconsistent with the original model. However, the additional 
computation required to maintain this consistency may well offset the space-saving that the 
compression afforded, rendering the whole process futile. On the other hand, there are 
theoretically sound methods of compressing Bayesian networks by introducing hidden variables 
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(Heckerman, 1999). The advantage of adding hidden variables to a Bayesian network is that, if 
the hidden variables are defined carefully, then the number of arcs in the network can be 
reduced as a result, without a significant corresponding decrease in the accuracy of the network. 
If such an algorithm were applied to a Bayesian network student model however, there is no 
guarantee that the hidden variables will be semantically meaningful (i.e., they might not 
correspond to states such as concept mastery). 

Pedagogical Action Selection 

Given a Bayesian student model, the next issue is how to use the model to optimise the 
pedagogical actions of the intelligent tutor. Unfortunately, only a handful of papers describe 
how their Bayesian student models are actually applied to a task other than assessment. Of those 
that do, there seem to be three general approaches: alternative strategies, diagnostic strategies, 
and decision-theoretic pedagogical strategies. The three classes and the systems that fall into 
them are given in Table 1. 
 

Table 1. Decision-making with the student model. 
Alternative Diagnostic Decision-Theoretic 
ANDES 
Ganeshan et. al., 2000 
SQL-TUTOR  

Millán et. al., 2000 
Collins et. al., 1996 

DT-TUTOR 
CAPIT 

Alternative strategies 

Alternative strategies optionally take the posterior probabilities of the Bayesian network and use 
them as the input to some heuristic decision rule. To illustrate, ANDES selects hints for the 
student based on the solution path that the student is following to solve the current problem 
(Gertner et. al., 1998). However, the student�s solution path is by no means certain (e.g. the 
student could be on paths A, B or C with posterior probabilities p(A), p(B), and p(C)), and 
therefore the system uses the heuristic of assuming that the most probable solution path (e.g. A, 
assuming p(A)>p(B) and p(A)>p(C)) is the student�s solution path. However, this is a sub-
optimal heuristic as demonstrated by a simple counter-example. Suppose the optimal hint for 
solution path A is H1, but the optimal hint for both paths B and C is H2. Then if it is the case that 
p(B) + p(C) > p(A), hint H2 will be optimal, but the heuristic rule will incorrectly select hint H1. 
ANDES also has heuristic decision procedures disconnected entirely from the student model. 
For example, a simple matching heuristic is used to generate feedback on incorrect equation 
entries (Gertner, 1998). 

Another system using heuristic decision procedures is ADELE (Ganeshan et. al., 2000). 
ADELE has a Bayesian network model of the domain knowledge, but it uses a heuristic based 
on focus-of-attention to select the node in the network about which to provide a hint. Decision-
theoretic processes were considered but abandoned because they were considered too 
inefficient. 

Finally, SQL-Tutor uses a heuristic for problem selection (Mayo & Mitrovic, 2000). The 
main rationale for this was that, like ADELE, the computation required for exact decision-
theoretic computation (which would have involved more than 500 constraints) made direct 
application of decision theory intractable. The heuristic used was based on Vigotsky�s Zone of 
Proximal Development (Vigotsky, 1978), and did tend to select problems of an appropriate 
complexity level efficiently. However, this approach is not guaranteed to select the optimal 
problem. 

Diagnostic Strategies 

This is the approach of Millán et. al. (2000), which expands on the strategy suggested by Collins 
et. al. (1996). The basic idea is to select actions whose outcomes are likely to maximise the 
posterior precision of some node in the network. For example, Millán et. al.�s domain is test 
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question selection, and questions are selected to maximise the system�s certainty that the student 
has mastered the domain concepts. This strategy has limited applicability outside of diagnostic 
tests. 

Decision-Theoretic Pedagogical Strategies 

Decision-theoretic strategies are utilised in both DT-Tutor (Murray & VanLehn, 2000) and 
CAPIT (this paper). Both systems select tutorial actions that maximise expected utility 
(Equation 1). While diagnosis is obviously an important component of expected utility 
maximisation, it is only a secondary component. The primary consideration of an expected 
utility calculation is the likely outcomes of the action, and their pedagogical utility. For 
example, in CAPIT as shall be described, the expected utility of an action (e.g. problem 
selection) depends on the likely outcomes of the action (e.g. how many errors are made). In DT-
Tutor, the action�s impact on many different factors related to the student (e.g. their morale, etc) 
has an influence on expected utility. Diagnosis, therefore, is only required to the extent that it 
discriminates between alternate actions. The key difference between the two systems is, as 
Figure 3 depicts, DT-Tutor has a static, expert-centric student model whereas CAPIT has a data-
centric student model that can adapt on-line. This impacts on action selection because the 
crucial p(x|di) component of Equation 1 is evaluated using the Bayesian model. 

Summary: Desirable Features 

To summarise, there are a number of desirable features of decision-theoretic tutors. The first 
obvious desirable feature is to select pedagogical actions according to pure decision-theoretic 
principles rather than heuristics. This, combined with a Bayesian student model, means that the 
system will be fully normative and therefore its behaviour will be optimal. Secondly, the data-
centric approach has two key advantages: the specification size of the network is smaller, and its 
predictive performance can be readily evaluated. This data-centric approach is therefore an 
attractive approach. The approach of MANIC (Stern et. al., 1999), in which the probabilities of 
the Bayesian network are initialised from population data (the �population student model�) and 
subsequently adapted on-line to the current student, was a first step in this direction. A natural 
extension to MANIC�s approach is to abandon the assumption that the student model is a 
hierarchy, and instead learn its structure as well as its conditional probabilities from data. The 
methodology presented in the next section shows how to develop just such a system with these 
desirable features. 

A METHODOLOGY FOR DEVELOPING RATIONAL PAS STRATEGIES 

In this section, one approach to building a normative intelligent tutoring system is described. 
While this is the general approach used to build CAPIT, it is by no means the only approach. 
The approach is described as a five-step methodology. The main point to note is that in the first 
step, a version of the tutor with no intelligent decision-making capabilities is deployed in a 
classroom. The point of this is to collect data describing the behaviour of students in the 
domain. All the student actions and system responses are logged, and then machine learning 
techniques are then used to induce a Bayesian network model from this data. In turn, the 
Bayesian network model is the basis for the decision-theoretic PAS strategies. Table 2 illustrates 
the process, although like any engineering process, the order of the steps is by no means fixed. 
The steps are now discussed in more detail. 
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Table 2. The five-step methodology for designing decision-theoretic PAS 
strategies. 

1 Randomised Data Collection 
2 Model Generation 
3 Decision-Theoretic Strategy Implementation 
4 On-line Adaptation 
5 Evaluation 

 
The first step is randomised data collection, in which an almost fully-functional version of 

the tutor is tested in a classroom representative of the intended population of users of the 
system. The only difference between this and the final version of the tutor is the PAS strategy: 
this version�s PAS strategy is random. That is, given a set of alternatives (such as unsolved 
problems), the tutor makes the selection completely randomly. All actions should be logged as 
records of form <State, Action, Outcome>, where State is a description of some state prior to the 
action selection (e.g. the state of the student model, or the recent history of the student, or a 
combination thereof), Action is the pedagogical action that is randomly selected (e.g. the next 
problem), and Outcome is the observed outcome(s) of the action (e.g., correct or incorrect). 
Because PAS selection is random, the data should be uniformly spread over all the possible 
actions. 

The next step is model induction, the construction of a Bayesian network for predicting 
student performance (the outcomes) given a state and an action. The data from Step 1 serves as 
the source from which the model is induced. At this stage, prior and expert knowledge can be 
added to the network. This can be done either before learning by adding dependencies and 
probabilities between the variables, or after learning, by fine-tuning the induced network. There 
is at least one Bayesian network learning algorithm that can cope with this type of prior 
knowledge (Cheng et. al., 1998). However, the rationale for any decision at this stage should be 
to enhance predictive performance. Also, because the network is being learned from data, the 
variables can only represent observations. 

The third step is implementation of the decision-theoretic strategy. This is an encoding of 
Equation 1 to design a procedure that selects pedagogical actions that maximise expected utility. 
Equation 1 has two main components, the utility function U(x,d), and the conditional 
probabilities, p(x|d), for each possible outcome x of each potential next action d. The Bayesian 
network constructed in the previous step is used to provide the outcome probabilities, p(x|d). 
However, the utility function is not yet defined. In fact, it is at this point that learning theories 
are incorporated into the system. The utility function essentially defines a learning theory for a 
particular task. To illustrate, if d represents a possible next problem and x is the number of 
errors the student makes when attempting the problem, then U(x,d) can be defined to be 
maximal for some optimal number of errors. This is exactly the strategy used in one of the 
decision strategies in CAPIT, and will be discussed in more detail later. 

Step four involves implementing an on-line Bayesian network learning algorithm. In Step 
2, the Bayesian network is constructed from population data. Stern et. al. (1999) refer to this as 
a �population student model�. However, as data is acquired directly from the current student, 
the population data should be gradually discounted. Additionally, as the student state changes 
over time, older data acquired from the student will need to be discounted as well. While there 
are a number of existing algorithms for Bayesian network induction from data, there is little in 
the way of on-line Bayesian network induction algorithms. Furthermore, the online learning 
algorithms that do exist (e.g. Heckerman, 1999; Bauer et. al., 1998) make the assumption that 
the data-source is essentially static and unchanging over time, in direct contrast to an actual 
student whose state changes constantly. In our application of the methodology to CAPIT, 
therefore, we describe a modification to an existing algorithm for on-line conditional probability 
learning, and avoid the much more difficult problem of updating a network�s structure on-line. 

Finally, the fifth step is an evaluation of the decision-theoretic PAS strategy. This is 
necessary to ensure that the decision-theoretic strategies actually provide a pedagogical benefit 
for the extra computational effort they require. One strategy that requires virtually no 
computational effort is the randomised PAS strategy implemented for Step 1. We therefore 
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advocate evaluating decision-theoretic and randomised PAS in a controlled experiment in which 
one group of students (the control group) use a version of the tutor with the original, randomised 
strategy, and the second group of students (the experimental group) use tutor version with the 
decision-theoretic strategy. We have performed this evaluation with CAPIT. 

CAPIT: AN INTELLIGENT TUTOR FOR CAPITALISATION AND PUNCTUATION 

CAPIT (Mayo et. al. 2000) is an intelligent tutor implemented in Visual Basic 6. It runs on any 
32-bit Windows platform, and use the MSBN API provided by Microsoft for its Bayesian 
networks implementation (http://research.microsoft.com/msbn). 

It is also the second intelligent tutor to implement Ohlsson�s Constraint-Based Modelling 
(CBM) (Ohlsson, 1994), the other being a tutor for the SQL database language (Mitrovic & 
Ohlsson, 1999). CBM was proposed in part because of the intractability of modelling 
approaches that try to infer students� mental processes from problem solving steps, and in part 
because Ohlsson believes that diagnostic information is most readily available in the problem 
states that the student arrives at. It is also computationally highly efficient. 

A CBM tutor represents domain knowledge as a set of constraints of the form <Cr, Cs> 
where Cr is the relevance condition and Cs is the satisfaction condition. The constraints define 
which problem states are consistent, and which are not. A constraint is relevant to a problem if 
its Cr is true. All constraints that are relevant to a problem state must also be satisfied for the 
problem state to be correct. Otherwise, the problem state is incorrect and feedback can be given 
depending on which relevant constraints had their satisfaction condition violated. 

Traditional capitalisation and punctuation exercises for children tend to fall into one of two 
categories (Bouwer, 1998): completion (the student must punctuate and capitalise a fully 
lowercase, unpunctuated piece of text), and check-and-correct (the student needs to check for 
errors, if any, and correct them). CAPIT poses problems of the first class, the completion 
exercise. If the child makes a mistake, an error message is displayed. For example, Table 3 
depicts one of the shorter problems in the system, a student�s incorrect attempt at punctuating 
and capitalising it, and the tutor�s correct solution. 
 

Table 3. (a) A problem, (b) a student�s incorrect solution, and (c) the correct 
solution. 

(a) the driver said it will rain  
(b) The driver said, �it will rain�. 
(c) The driver said, �It will rain.� 

 
There are two errors in the student�s solution in Table 3: the direct speech does not start 

with a capital letter, and the period is outside the quotation marks. Currently, CAPIT displays 
only one error message at a time, and the student is expected to correct the error (and any 
others) and resubmit the problem before any more feedback is displayed. If the student 
submitted this solution, a feedback message such as The full stop should be within the quotation 
marks! Hint: look at the word rain in your solution would be displayed. Error messages are 
typically short and relate to only a single mistake, but if the student wants more detailed 
information, she/he can click Why? to be shown further explanatory material. 

The current version of CAPIT contains 45 problems and 25 constraints. The problems are 
relevant to the constraints in roughly equal proportions, although a small number of constraints 
(such as capitalisation of sentences) are relevant to all the problems. The constraints cover the 
following parts of the domain: 

• Capitalisation of sentences. 

• Capitalisation of the names of both people and places. 

• Ending sentences with periods. 

• Contracting is and not using apostrophes (e.g haven�t is a contraction of have not). 
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• Denoting ownership using apostrophes (e.g. John�s dog). 

• Separating clauses using commas. 

• Separating list items using commas (e.g. apples, oranges, lemons and pears). 

• Denoting direct speech with quotation marks. 

• The correct punctuation of the possessive pronoun its. 

While the domain coverage is not complete, it is adequate to make CAPIT an intelligent 
tutoring system with practical application. In our evaluation study, classes used the tutor over a 
period of one month. While some students quickly mastered all the rules, most of them failed to 
master all the rules by the end of the evaluation. 
 

 
Figure 5. CAPIT�s main user interface. 

 
CAPIT�s main user interface, showing a partially completed problem, is depicted in Figure 

5. Brief instructions relevant to the current problem are clearly displayed at the top of the main 
interface. This reduces the cognitive load by enabling the learner to focus on the current goals at 
any time without needing to remember them. Immediately below the instructions, and clearly 
highlighted, is the current problem. In this area, the child interacts with the system by moving 
the cursor using keyboard or mouse, capitalising letters, and inserting punctuation marks. The 
child can provide input either by pointing and clicking the mouse, or by pressing intuitive key 
combinations such as Shift-M to capitalise the letter m. By requiring the cursor to be positioned 
at the point where the capital letter or punctuation mark is to go, the child�s ability to locate 
errors as well as correct them is tested. 

Motivation is provided in two ways. Firstly, whenever a correct solution is submitted, some 
points are added to the child�s score. The number of points added is equal to the number of 
punctuation marks and capital letters in the solution that was just submitted. Secondly, 
whenever a correct answer is submitted, an animation is displayed. These simple strategies were 
found to be highly effective motivators for children in the target age group of 8-10 year olds. 
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Figure 6. The architecture of CAPIT. 

 
Figure 6 shows the architecture of CAPIT. The student model comprises a record of the 

outcome of the previous attempt at each constraint1 (the short-term model) and the current 
configuration of the Bayesian student model (the long-term model). The student modeller is a 
pattern matcher that takes the student�s solution to a problem and determines which constraints 
are violated. It then passes the violated constraints (if any) to the pedagogical module. The 
pedagogical module is the core component of the system. It performs two significant PAS tasks: 
firstly, given the violated constraints, it selects the single violated constraint about which 
feedback should be given; secondly, when Pick Another Problem is clicked, or when the student 
solves the current problem, the pedagogical module selects the most appropriate next problem 
for the student. The current version of the pedagogical module can perform PAS in two ways: 
randomly, or using decision theory. More details of the decision-theoretic strategies are given 
later. 

Problems in CAPIT are represented as arrays of words. Each word in the problem 
representation is properly punctuated and capitalised, and the tutor generates the initial problem 
text by removing the punctuation marks and turning all capital letters into lowercase. Each word 
also has one or more tags associated with it. The tags specify the semantic and/or grammatical 
classes of a word, to the degree that it is relevant for punctuation and capitalisation. For 
example, Table 4 is the tutor�s internal representation of a short problem. Each word in this 
problem has one, two or three tags. The tag DEFAULT indicates that a word does not need to be 
punctuated or capitalised (although the student may incorrectly attempt to do so), such as driver 
and will in the example. Because DEFAULT completely specifies the capitalisation and 
punctuation requirements, DEFAULT words do not require any other tags. Other tags such as L-
CASE indicate that a word does not need to be capitalised, but says nothing about the 
punctuation requirements (and vice-versa for the tag NO-PUNC). Other types of words need 
more specific tags. For example, The is the first word in the sentence and therefore carries the 
tag SENTENCE-START. Similarly, rain is the last word in both the sentence and the direct 
speech. This fact is reflected by one of its tags, DIRECT-QUOTE-ENDING-SENTENCE. A 
longer example, which is more representative of the complexity of the 45 problems in the 
database, is given in Table 5. 
 
 
 
 

                                                      
1 An �attempt at a constraint� in this context means an attempt at a problem whose solution is relevant to 
the constraint. 
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Table 4. Problem representation for The driver said, �It will rain.� 
The SENTENCE-START,NO-PUNC
driver DEFAULT
said, WORD-PRECEDING-DIRECT-QUOTE,L-CASE,

ONE-PUNC
�It DIRECT-QUOTE-START,ONE-PUNC
will DEFAULT
rain.� DIRECT-QUOTE-ENDING-SENTENCE,L-CASE,

TWO-PUNC

 
Table 5. Representation of a more complex problem. 
There's SENTENCE-START,IS-CONTRACTION,ONE-PUNC
a DEFAULT
bee DEFAULT
buzzing DEFAULT
past DEFAULT
me. SENTENCE-END,ONE-PUNC,L-CASE
It's SENTENCE-START,IS-CONTRACTION,ONE-PUNC
taking DEFAULT
its ITS-POSSESSIVE-PRONOUN,NO-PUNC,L-CASE
honey DEFAULT
back DEFAULT
to DEFAULT
its ITS-POSSESSIVE-PRONOUN,NO-PUNC,L-CASE
hive. SENTENCE-END,ONE-PUNC,L-CASE
I SENTENCE-START,NO-PUNC
hope DEFAULT
it DEFAULT
knows DEFAULT
its ITS-POSSESSIVE-PRONOUN,NO-PUNC,L-CASE
way DEFAULT
home. SENTENCE-END,ONE-PUNC,L-CASE

 
Table 6. Examples of constraints. 

 Cr Cs Msg 
(a) {DEFAULT, L-CASE} ^[a-z0-

9%SYMBOLSET%]*$
This word doesn't need any 
capital letters!

(b) {NAME-OF-PERSON} ^[%SYMBOLSET%]*[A-Z0-
9]

Each word in a person's name 
should start with a capital!

(c) {DIRECT-QUOTE-ENDING-
SENTENCE}

[^%SYMBOLSET%]+((\.+"
+)|"+|\.+)?$

The full stop should be within 
the quotation marks!

(d) {ITS-POSSESSIVE-
PRONOUN}

[^']s$ No apostrophe is required in 
its!

 
The constraints used in CAPIT comprise three parts: namely, the relevance condition, Cr, 

which is a set of tags; the satisfaction condition, Cs, which is a regular expression; and 
associated explanatory material. Table 6 gives examples of four out of the 25 constraints that 
range from the very general to the very specific. The error message field of each constraint 
shows only the hint that is displayed when the constraint is violated; in addition, most 
constraints have an associated page of textual explanation that is displayed when the student 
clicks the Why? button. 

The tags of each word determine which constraints are relevant to the problem. If at least 
one word from the problem has a tag that is also in a constraint�s Cr, then that constraint is 
relevant to the problem. For example, constraint (a) from Table 6 is relevant to the problem in 
Table 4 because several words have the tags DEFAULT and L-CASE. Similarly, constraint (c) is 
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relevant to the same problem because the last word has the tag DIRECT-QUOTE-ENDING-
SENTENCE. Constraints (b) and (d) are not relevant. 

If a constraint is relevant to a word, then its satisfaction condition, Cs, is evaluated against 
that word. The satisfaction condition is a regular expression, which is a language for pattern 
matching. The main difference between the expressions used in the tutor and standard regular 
expressions is the presence of %SYMBOLSET% in the Cs. %SYMBOLSET% stands for a string of 
all the punctuation marks that the tutor knows about. For example, the current version of CAPIT 
deals with commas, periods, quotation marks and apostrophes. Therefore the Cs condition of 
constraint (a), ^[a-z0-9%SYMBOLSET%]*$, becomes the standard regular expression ^[a-
z0-9’”,.]*$ before being matched to a student�s solution. 

Briefly, a regular expression like ^[a-z0-9’”,.]*$ defines a pattern that can be 
matched to a string. The symbol ^ defines the start of the string and $ defines the end of the 
string. The square brackets [] define a set of characters, while a negative character set (which 
matches any characters not in the set) is defined by square brackets with a ^ inside the brackets, 
e.g. [^a-z]. The symbol * usually follows a character or pattern and means �zero or more 
repetitions of the previous pattern�. Thus, the ^[a-z0-9’”,.]*$ is matched by any string 
containing zero or more characters that are lower case letters, numbers or punctuation marks. A 
word containing an upper case letter does not match the expression, and therefore the constraint 
would be violated. Constraint (d) has a much simpler Cs, [^']s$. This regular expression is 
simply matched by all strings ending in s that do not have an apostrophe in the penultimate 
position. 

The constraints in CAPIT tend to fall somewhere on a continuum between general and 
specific. General constraints apply to many different words because they are relevant to general 
tags such as DEFAULT and L-CASE. As a result, the feedback is more general and may not 
address the specific misconceptions that led to the error. Constraint (a) from Table 4 is one 
example of this class. Specific constraints are satisfied only by specific 
punctuation/capitalisation patterns, and feedback can be more specific in this instance. For 
example, constraint (b) is satisfied only when a word with the tag NAME-OF-PERSON starts 
with a capital letter or digit (excluding any punctuation marks at the beginning). Constraint (c) 
is violated only when the student punctuates a word that ends both a direct quote and a sentence 
incorrectly, with the quotation mark preceding the period (e.g. see Table 1(b)). In this case, the 
tutor can tell the student specifically to reverse the order of the punctuation marks. In all other 
cases, the constraint is satisfied. Similarly, (d) is violated only when the student tries to add an 
apostrophe before the s in the possessive pronoun its, and is satisfied otherwise. 

DECISION-THEORETIC PAS IN CAPIT 

Decision problems conducive to our methodology include next problem selection, error message 
selection, topic selection, selective highlighting/hiding of text, and timing of interventions to 
give help. We decided to develop decision-theoretic strategies for the first two of these tasks, 
problem selection and error message selection. In this section, we describe how the general 
methodology was applied to develop these strategies for CAPIT.  

Step 1: Randomised Data Collection 

Initial data for Step 1 of the decision-theoretic PAS strategy development was acquired from a 
data acquisition deployment of CAPIT at Westburn School, Christchurch, New Zealand in 
March 2000 (Mayo et. al., 2000). A version of CAPIT was used in which problems and error 
messages were selected randomly. The problems came from the pool of all unsolved problems, 
and the error message was selected from the set of constraints violated on the current attempt 
(recall that there is one error message per constraint). The evaluation study consisted of four 30-
45 minute sessions. Details of each problem attempt and error message displayed were logged. 
Subsequent analysis revealed the following averages. Each student made 89 attempts at 28 
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different problems. 21 of the problems were eventually solved, and 7 abandoned. Students 
violated an average of 181 constraints during the sessions, of which feedback was given on 68. 
A total of 3300 records of the form <State, Action, Outcome> were acquired during this step, 
where State is a record of the outcome of the last attempt at each constraint (which may include 
attempts at previous problems, if for example, a constraint was relevant to the last problem but 
is not relevant to the current problem), Action is the problem that was selected randomly, and 
Outcome is a record of the constraints that were violated and satisfied following the problem 
attempt. 

Step 2: Model Selection 

The data acquired from the evaluation study was used to generate the best Bayesian network for 
long-term student modelling. The selection criterion was the ability of the network to predict 
student performance on constraints. An issue at this point was whether to use a model in which 
the constraints were independent of each other, as in Reye�s model, or whether to allow (more 
realistically) any dependencies between constraints to be learned from the data. This decision is 
quite significant because a model in which constraints are assumed independent can be 
formulated with only four variables, whereas a model in which any dependencies between 
constraints are allowed is much more complex and must consist of at least twice the number of 
variables as there are constraints. Figures 7 and 8 illustrate the competing �small� and the 
�large� specifications. In both diagrams, Li represents the outcome of the last attempt at the ith 
constraint, and can take values S (satisfied), V (violated), VFB (violated with feedback), or NR 
(has not been relevant before). Ni is the predicted outcome of the next attempt, whose values are 
{S, V, NR}. Note that in accordance with the �desirable features� discussed earlier, neither 
networks explicitly model unobserved student states. 
 

 

Ni 
 

Li 

Problem Constraint 
 

Violated

Prob_35

Const_11

 
Figure 7. The structure of the small Bayesian network for predicting the 
outcome of the next attempt at the ith constraint. In this example, the network is 
predicting the outcome of the next attempt at constraint 11 which is relevant to 
the current problem, 35, and was previously violated. 
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L2 N2
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Figure 8. The structure of the large Bayesian network specification after 
learning. The student has previously satisfied constraints 1 and 2, violated 
constraints 3 and 25 (receiving feedback on 3), and has not yet attempted 
constraint 4. The network is currently configured to predict this student�s 
performance on a problem whose relevant constraints include 2, 3 and 25. 

 
A number of variants of the large network were considered. In each case, an algorithm 

proposed by Cheng et. al. (1998) for structural learning by mutual entropy maximisation was 
utilised to learn a Bayesian network from the data collected in Step 1. The conditional 
probabilities were estimated using the standard Dirichlet priors approach (Heckerman, 1999) 
which is described in more detail later. An important component of the structural learning 
algorithm is the minimum threshold. This essentially determines the minimum amount of 
mutual information required between two variables before an arc can connect them. For these 
experiments, minimum thresholds of 4, 6 and 10 were selected (initial experiments showed that 
a threshold below 4 resulted in a network far too large for on-line evaluation). Another 
parameter that we wanted to investigate was the addition of prior knowledge: does it enhance 
predictive performance? The �obvious� prior knowledge to add is an arc from Li to Ni, for each 
constraint i, indicating that at the very least, the outcome of the next attempt at a constraint is 
partly dependent on the outcome of the previous attempt. We thus formulated six specifications 
for large networks: Large(4), Large(6) and Large(10) being the specifications without prior 
knowledge, and PLarge(4), PLarge(6) and PLarge(10) being specifications with prior 
knowledge. For each of the large specifications, the Li nodes were fixed as root nodes, to reflect 
the fact that they come before the Ni nodes in temporal order. Thus, there are two types of arc 
that can be learnt from the data for the large networks: arcs from L layer to the N layer, and arcs 
within the N layer. 

The data was then divided into training and test datasets. Approximately 20% of the 
records were selected randomly into the test dataset. The remaining 80% were kept in the 
training set, and used to train one large network for each of the 6 specifications. A simpler 
network equivalent to Figure 7 (Small) was also trained from this data, although in this case the 
structure was already specified and only the conditional probability p(Ni|Li,Problem,Constraint) 
had to be learned. This entire process of training was repeated three times (j=1..3), each time 
with a different randomly generated training/test dataset divisions. The total number of different 
networks that were generated, therefore, was 21. 

The first question to answer was whether or not the larger networks were better predictors 
of student performance than the small ones on the test data. Each of the 6 large networks 
generated from the jth training set was compared to the Small network generated from the jth 
training set in the following way. For each problem attempt in the jth test set, the large and 
small networks were given the values for L1..L25. The large networks had their P1..P25 nodes 
instantiated to NR for each constraint not relevant to the attempt�s problem. The values of the 
remaining uninstantiated nodes in P1..P25 were then predicted. For the large networks, this 
required one evaluation of the network, and for Small, one evaluation per relevant constraint 
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was necessary. The standard junction tree algorithm for Bayesian network inference was used 
(Lauritzen & Spiegelhalter, 1988). Then, for each Pi representing a relevant constraint, the 
predicted value of Pi was compared to the actual value of Pi. The total number of correct 
predictions was counted. A correct prediction was deemed to occur if the predicted outcome 
with maximum probability matched the actual outcome. To clarify what was done further, the 
output of each comparison was essentially a table of tuples of the form <i, Lj(i), Sj(i), Tj(i)>, 
where i=1..nj is the attempt (nj is the number of attempts in the jth test set), Lj(i) is the number 
of correct predictions given by the large network, Sj(i) is the number of correct predictions 
given by the small network, and Tj(i) is the maximum number of correct predictions (simply the 
total number of relevant constraints on that attempt). 

The coefficient of determination (r2) was calculated for each network by taking the number 
of correctly predicted constraints as a function of the number of relevant constraints. The results 
are summarised in Table 7. The r2 values of the large networks are higher than those of the 
small networks, suggesting that the large specifications are better. 
 

Table 7. The coefficients of determination characterising the number of correct 
predictions as a function of the total number of relevant constraints, for each 
network and training/test dataset. 

 TestData1 (n=639) TestData2 (n=608) TestData3 (n=686) 
PLarge(10) 0.7649 0.7434 0.7638 
PLarge(6) 0.7562 0.7385 0.7615 
PLarge(4) 0.7101 0.7208 0.7417 
Large(10) 0.7446 0.7464 0.7495 
Large(6) 0.749 0.7347 0.7511 
Large(4) 0.7117 0.7236 0.7387 
Small 0.7312 0.7086 0.7314 

 
Next, we tested to see if the large networks were statistically significantly better predictors 

of student performance than the small networks. Note that for each of the 18 comparisons, the 
number of correct predictions made by the small and large networks are paired. That is, for each 
attempt i=1..nj in each of the 18 tests, both an Sj(i) and a Lj(i) were generated, both of which can 
be considered stochastic functions of i. Therefore, the samples are pair-wise dependent. A 
paired-difference experiment (McClave & Benson, 1991, pp. 421-7) was used to test for 
significant differences. 

Table 8 shows that the PLarge(10), PLarge(6) and Large(6) specifications all produce 
Bayesian networks that are statistically significantly better predictors of student performance 
than the networks produced by the Small specification. The other specifications each had at least 
one comparison where no statistically significant difference was found (indicated by �Accept 
H0�). For these tests, a high t value indicates greater significance. For all the networks, the 
outcomes in the second test set were much more difficult to predict than those of the first and 
third sets, resulting in lower t values. The exception to this is Large(10), which happened 
perform barely well on the second test set but not the first and third. From these results, we were 
able to rule out Small as a worthwhile specification to continue with. 
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Table 8. Results of two-tailed paired difference experiments comparing each 
large network against Small. H0 is the hypothesis that there is no difference in 
the mean number of correct predictions made by both networks. A positive t 
value indicates that the large network is better than Small. The rejection region 
for all the datasets is approximately ±2.58 for 99% confidence, and ±1.96 for 
95% confidence. 

 TestData1 (n=639) TestData2 (n=608) TestData3 (n=686) 
 Small Small Small 
PLarge(10) t=5.75, α=0.01 t=3.95, α=0.01 t=5.46, α=0.01 
PLarge(6) t=5.17, α=0.01 t=3.30, α=0.01 t=5.06, α=0.01 
PLarge(4) Accept H0 Accept H0 t=2.1, α=0.05 
Large(10) Accept H0 t=1.98, α=0.05 Accept H0 
Large(6) t=4.01, α=0.01 t=2.78, α=0.01 t=3.93, α=0.01 
Large(4) Accept H0 Accept H0 t=2.05, α=0.05 

 
The next task was to determine the most accurate large network. In particular, does the 

selection of the minimal threshold or the addition of prior knowledge result in improved 
performance? For this analysis, the three best large networks (PLarge(10), PLarge(6) and 
Large(6)) were compared. No statistically significant difference was found between PLarge(10) 
and PLarge(6) on any of the training/testing dataset divisions. However, significant differences 
were found between PLarge(10) and Large(6) as Table 9 shows. 
 

Table 9. Results of two-tailed paired difference experiments comparing 
PLarge(10) against Large(6). H0 is the hypothesis that there is no difference in 
the mean number of correct predictions of made by both networks. A positive t 
value indicates that the PLarge(10) is better than Large(6). The rejection region 
for all the datasets is approximately ±2.58 for 99% confidence, and ±1.96 for 
95% confidence. 

 TestData1 (n=639) TestData2 (n=608) TestData3 (n=686) 
 Large(6) Large(6) Large(6) 
Plarge(10) t=3.13, α=0.01 Accept H0 t=2.08, α=0.05 

 
To conclude step 2, PLarge(10) was selected as the best specification to proceed with 

because the t values for PLarge(10) were, on average, greater than those of PLarge(6) in Table 
8. The training and testing datasets were combined into a single dataset and a Bayesian network 
with the PLarge(10) specification was learned. One of the desirable features discussed earlier 
was to take advantage of the unique ability of Bayesian network to integrate prior knowledge 
and data; this has been shown to improve predictive accuracy here. 

Step 3: Decision-Theoretic Strategy 

Step 3 is the implementation of decision-theoretic PAS strategies. The key task here is to define 
a utility function U(x,d) specific to the PAS strategy that can be substituted into Equation 1 to 
yield a task-specific expected utility function. For CAPIT, we were interested in two tasks: next 
problem selection, and error message selection following an attempt in which multiple 
constraints are violated. 

The value of the next problem d ∈  {Problem_1, �, Problem_45} is determined by 
predicting the student�s performance on the problem with the Bayesian network. An appropriate 
problem can be considered to fall into the zone of proximal development, defined by Vigotsky 
(1978) as �the distance between the actual development level as determined by independent 
problem solving and the level of potential development as determined through problem solving 
under adult guidance or collaboration of more capable peers�. We interpret this as stating that a 
student should be given a problem slightly above their current level but not so difficult as to be 
discouraging. This principle implies that utility should be maximised for problems where one or 
two errors are likely (reflecting a challenging problem), but minimised for problems whose 
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outcome is no errors (being too easy) or several errors (being too hard). This utility function is 
defined in Table 10.  
 

Table 10. The utility function for problem selection. Utility is maximised for 
problems resulting in one or two errors only. 

x U(x,d) 
No-Errors 0.0 
1-Error 1.0 
2-Errors 1.0 
3+Errors 0.0 

 
The cost of all problems is assumed to be zero. Let us also assume that ξ comprises the 

student history (i.e. the instantiations of L1..L25 ) and the instantiations of Ni to NR for those 
constraints not relevant to d. Substituting into Equation 1 yields the expected utility of problem 
d: 
 
 ]|),([ ξdxUE  = p(No-Errors| d,ξ) U(No-Errors, d) 
  + p(1-Error| d,ξ) U(1-Error, d) 
  + p(2-Errors| d,ξ) U(2-Errors, d) 
  + p(3+Errors| d,ξ) U(3+Errors, d) � 0 
 = p(1-Error| d,ξ) + p(2-Errors| d,ξ) 
 

Now we need to calculate p(1-Error| d,ξ) and p(2-Errors| d,ξ) from the Bayesian 
network. This is not straightforward because the predicted outcomes N1..N25 are not necessarily 
mutually or conditionally independent. In fact, the best way to deal with this computation is to 
extend the Bayesian network itself at runtime by adding a deterministic function NumErrors ∈  
{No-Errors, 1-Error, 2-Errors, 3+Errors} to the network, which is dependent on 
the relevant constraints only. The function simply counts the number of its parents that are 
violated, but because the parents of NumErrors are uncertain, the uncertainty is transferred to 
NumErrors by the Bayesian network inference algorithm (Lauritzen & Speigelhalter, 1988) in 
the correct way. The addition of NumErrors to the example large network is illustrated in Figure 
9. The probabilities of Equation 1 can now be determined by querying the posterior distribution 
over the NumErrors variable. 
 

L1 N1 

L25 N25 

L2 N2 

L4 N4 

L3 N3 

NR

V

VFB

S

S

NR

NR

Num 
Errors

 
Figure 9. The same large network as depicted in Figure 8, but with NumErrors 
added as a child of all the Ni nodes representing relevant constraints. 

 
The strategy for decision-theoretic error message selection is slightly different. In this case, 

d ∈  {FBi | Constraint i was relevant and violated on the last attempt} where FBi is the decision 
to give feedback on the ith constraint. It is assumed that an error message about a constraint can 
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influence the outcome of the next attempt at the constraint, resulting in a satisfaction (desired) 
or a violation (not desired). Table 11 characterises this as a utility function 
 

Table 11. The utility function for feedback selection. 
x U(x,d) 
Ni=V 0.0 
Ni=S 1.0 

 
Because the system gives feedback on only one violated constraint per attempt, the 

probabilities of these outcomes can be read directly from the network by �pretending� that 
feedback was given on the ith constraint. That is, we instantiate Li to VFB instead of V and 
query Ni to obtain p(Ni=V|d, ξ) and p(Ni=S|d, ξ). However, the cost of each feedback message 
cannot be assumed to be zero, because each constraint will have a different probability of being 
satisfied without feedback, anyway. This probability of satisfaction without feedback can be 
considered the �opportunity cost� of giving feedback on the ith constraint, which is therefore 
defined as: 
 

cost(d) = p(Ni=S|ξ) 
 
Substituting these values into Equation 1 yields the expected utility for feedback: 
 
 
 ]|),([ ξdxUE  ( ) )|()(),|()(),|( ξξξ SVVSS =−==+=== iNpiNUdiNpiNUdiNp  
 )|(),|( ξξ SS =−== iNpdiNp  
 
The expected utility of an error message is therefore the posterior gain in probability of the 
constraint being satisfied that the message results in. 

This step illustrates the framing of two simple learning theories as utility functions. To 
capture the more general notions such as a curriculum, other learning theories could be 
represented as more complex utility functions and thus integrated into the normative framework. 

Step 4: On-line adaptation 

The next challenge was implementing an on-line learning algorithm so that the Bayesian student 
model would adapt to the student. Heckerman (1999) shows how to calculate conditional 
probabilities for a Bayesian network from data. Let X=xk|Pax=pax represent an observation of 
variable X in state xk when its parents Pax are in configuration pax. A normal Bayesian network 
maintains, for each possible X=xk|Pax=pax, a single conditional probability p(X=xk|Pax=pax). 
The Dirichlet priors approach treats p(X=xk|Pax=pax) itself as an uncertain variable, and 
calculates its expected value from the data. It turns out that by assuming that the probability 
distribution over p(X=xk|Pax=pax) is a Dirichlet distribution, the expected value corresponds to 
the frequency. Suppose X=xk| Pax=pax has been observed kα  times while Pax=pax has been 
observed α  times. Obviously kα ≤α . Then, it shown by Heckerman (1999) that the expected 
value of p(X=xk|Pax=pax) is: 
 

E[p(X=xk|Pax=pax)] = 
α
α k  

 
If Pax=pax is observed a further N times, while Nk further observations of X=xk|pax are made, the 
expected value of the conditional probability updates simply to: 
 

E[p(X=xk|Pax=pax)|observations] = 
N
N kk

+
+

α
α  



Mayo and Mitrovic 

 22 

 
The parameters α  and kα  are known as sufficient statistics, because they are adequate to 
define a Bayesian network; once they have been calculated, the rest of the training data can be 
discarded. 

The problem with this algorithm is that it does not take into account the temporal ordering 
of the cases, and therefore there is no way to �bias� the conditional probabilities towards to 
most recent cases. This is an incorrect assumption for an intelligent tutor to make because the 
student�s state is expected to change constantly. The system therefore needs a way of gradually 
discounting the effects of old data. However, the effect of the standard approach would be that 
as α  gets increasingly large, the influence of new cases on the conditional probabilities 
decreases. To illustrate, CAPIT�s population student model was learned from records of 
approximately 3300 problem attempts. The average student is likely to make only 50-100 
problem attempts. Therefore, the standard Dirichlet priors approach would not be expected to 
adapt the network�s parameters to the student to the desired extent. 

Fortunately, the standard approach can be modified to prefer more recent observations. Our 
solution is to reduce α  to a value such that the effect of new cases becomes significant. Let that 
value be αMAX. The sufficient statistics α  and kα  can now be replaced by two new statistics, 'α  
and 'kα , defined as: 
 

'α  = αMAX, 'kα  = αMAX(αk/α) 
 
The lower the constant αMAX, the more significance new cases will have on the conditional 
probabilities. In CAPIT, the conditional probabilities are updated after every attempt (so N=1). 
The update rule, therefore, simplifies to: 
 

E[p(X=xk|pax)|One observation of X=xk when Pax=pax] = 
1'
1'

+
+

α
α k  

 

E[p(X=xk|pax)| j ≠ k, One observation of X=xj when Pax=pax] = 
1'
'

+α
α k  

 
A value for αMAX was chosen by trials with simulated students. Two students were 

simulated: a �good� student who got every problem correct, and a �bad� student who made 
numerous mistakes and frequently abandoned problems. A domain expert analysed the sequence 
of problems that was selected for each student. It was found that when αMAX > 5, the system was 
not quick enough to present challenging problems to the good student even after several 
problems were solved correctly in a single attempt. This occurred simply because the 
conditional probabilities did not update fast enough. For the bad student, simple problems were 
repeatedly selected regardless of the value of αMAX. A value of αMAX = 5 was therefore selected. 

Step 5 Evaluation 

Two evaluations were performed; a simple, informal evaluation to ensure that the system was 
behaving reasonably, followed by an extensive classroom evaluation with school students. 

Simulated Students Evaluation 

The first step in the evaluation was an informal observation of the behaviour of the decision-
theoretic version of CAPIT. The observations were noted during the trial run with the simulated 
good and bad students. The system always started with the easiest problem, which involved 
merely dividing the text into sentences and inserting capital letters at the start, and periods at the 
end, of each sentence. For the good student, further problems typically introduced new 
constraints one at a time until a certain point was reached (probably when the posterior 
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probability of the student satisfying the most common constraints was sufficiently high), after 
which more difficult problems (e.g. direct speech problems) introducing several new constraints 
at a time were selected. This is similar to a human tutor assessing a good student�s capabilities 
initially with easier problems, before moving more directly to challenging problems. For the bad 
student who repeatedly made mistakes and abandoned problems, the tutor appeared to 
repeatedly select problems from a pool of 3-4 easier problems but never selected the same 
problem twice consecutively. Again, a similar strategy to that of a human tutor returning to 
previously abandoned problems while maintaining some variety. Note that problems in this 
system do not have explicit levels � all unsolved problems are available to be selected at any 
one time. Feedback selection was also observed. In the extreme case of a bad student who 
repeatedly submitted the same (incorrect) solution with multiple violated constraints, the 
selection of feedback messages seemed to cycle from the most to the least specific constraints, 
and back again, with each attempt. Again, there is no explicit rule programmed into the tutor to 
make it do this. 

Classroom Evaluation 

Three classes of 9-10 year olds at Ilam School in Christchurch, New Zealand, participated in a 
four-week evaluation of CAPIT. The first class (Group A) did not use the tutor at all. The 
purpose of this group was to provide a baseline for comparing the pre and post test results of 
students that did use a tutor in the domain with those that did not. The second class (Group B) 
used the initial version of the tutor with randomised problem and error message selection, and 
the third class (Group C) used the full version of the tutor with decision-theoretic PAS and the 
adaptive Bayesian student model. The groups using the tutor, B and C, had one 45-minute 
session per week for the duration of the study, and they worked in the same pairs each week. 
(Working in pairs was necessary because of the limited availability of computers.) Every 
interaction was logged. Pre and post tests were also completed, with students completing the 
tests in the same pairs. 

Some significant attributes of the performance of Groups B and C during the evaluation are 
summarised in Table 12. Pairs of students in Group C used CAPIT for approximately 34 
minutes more on average than those in Group B, which was a result of a teacher cutting one of 
the sessions short. As a result, Group C made many more attempts, and asked for more Why? 
explanations, than Group B. The average time per attempt for both groups is approximately 43 
seconds. However, despite the additional interaction time, Group C attempted and solved less 
problems than Group B, and abandoned more problems. This is probably due to Group C being 
a less-able class than Group B, an observation that was confirmed by the teachers. In hindsight, 
pairs of students should have been assigned to groups randomly rather than by class. An 
interesting discrepancy is the mean number of attempts per solved problem. Group C performed 
better here, perhaps suggesting that the feedback messages in their case were better adapted. 
 

Table 12. Averages describing the behaviour of Groups B and C�s. 
 Group B Group C 
Number of pairs  16 14 
Ave. interaction time per pair (mins) 80.9 115 
Ave. # attempts 109.7 167.3 
Ave. # solved problems per pair 29 22 
Ave. # attempted problems per pair 34 30 
Ave. # attempts per solved problem 5.8 5.5 
Ave. # expl. asked for per pair 10.3 18 

  
Further analysis was performed at the level of the individual constraints. Figure 10 gives 

the average number of times each constraint was relevant per user. This reflects the higher 
number of attempts made by Group C, and highlights the constraints that are common to most 
of the problems, for example, constraint 4 (a sentence must start with a capital letter) and 
constraint 7 (a sentence must end with a period). This table can be compared to Figure 11, the 
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frequency with which constraints were violated when relevant. It shows that Group C violated 
proportionately more constraints that Group B, which corresponds with the averages in Table 
11. However, it is interesting to note that the constraints defining the correct punctuation of 
direct speech (constraints 17-25) were violated proportionately less by Group C. This suggests 
that the decision-theoretic problem sequencing placed problems involving direct speech (which 
are more difficult) later in the sequence, after the student had mastered the other constraints, 
therefore allowing them to focus on learning direct speech punctuation. 
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Figure 10. The frequency of constraint relevance to selected problems. 
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Figure 11. The frequency of constraint violation when relevant. 

 
The pre- and post-tests were comparable (and challenging) and consisted of eight 

completion exercises similar to those presented by CAPIT, but done manually with pencil-and-
paper. Students worked in their assigned pairs to complete the test. The score for each test was 
calculated by subtracting the number of punctuation and capitalisation errors from the number 
of punctuation marks and capital letters required for a perfectly correct solution; it was thus 
possible for a pre- or post-test to have a negative score (fortunately none of the students were 
that bad). The mean scores and standard deviations (the Y error bars) are shown in Figure 12. 
The mean pretest score for Group C is almost 10% lower than that of Group B. Both Group B 
and C show an improvement in mean test scores, although the improvement is more marked for 
Group C. Group A, the class that did not use the tutor, actually regressed. 
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Figure 12. Mean pre- and post-test scores. 

 
Statistical significance tests were also performed to compare the individually matched 

improvements of Groups B and C from pre-test to post-test. Because the same pair of students 
in each group completed both a pre- and a post-test, a one-tailed paired difference experiment 
(McClave & Benson, 1991, pp. 421-7) was performed to gauge the significance of the 
improvement. With H0 being the proposition that a group did not improve, it was found that 
Group B improved with 95% confidence (α = 0.05, t = 1.86, rejection region ± 1.75) while 
Group C improved with 99% confidence (α = 0.01, t = 3.4, rejection region ± 2.6). The 
improvement is thus much more significant for Group C, which used the decision-theoretic 
strategies. 

We also calculated the effect size, which is defined as the difference in the mean gains of 
the control (Group B) and experimental groups (Group C), divided by the standard deviation of 
the mean gain of the control group. This measure gives the magnitude of the change attributable 
to the intelligent PAS strategy as opposed to the random one. The effect size is 0.557, a value 
that is comparable to the effect size of 0.63 found by Albacete & VanLehn (2000) after a two-
hour session with their tutor. (The average total interaction time in our case was less than two 
hours for both groups.) 

The pre- and post-tests analysis, and the frequencies in Figure 11, confirm that Group C 
was initially less able than Group B, but learned the constraints at a faster rate. We decided to 
investigate the constraint violation frequencies further. Each attempt at a problem was analysed, 
and the total proportion of violated constraints was calculated for each attempt. This was 
averaged over all students in each group, and the result is depicted in Figure 13. The scatter plot 
shows that Group C initially made more errors than Group B, but that the rate of constraint 
violation decreased much faster for that group, supporting the hypothesis that Group C learned 
the rules of the domain more quickly. Figure 14 shows the results of the same analysis, as an 
example, for constraints 4 and 7 only, which both depend on the child�s cognitive ability to 
separate the problem text into sentences. The difference is much more marked for these 
constraints than for the average of all the constraints, but the trend is the same. For both scatter 
diagrams, a cut-off point of 125 attempts was selected because approximately half of the pairs 
of students reached this number of attempts, and beyond this number statistical effects arising 
from the smaller number of pairs tend to corrupt the trend. 
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Figure 13. Rate of constraint violation by attempt, for all constraints. 
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Figure 14. Rate of constraint violation by attempt, for constraint 4 and 7. 

 
Further analysis investigated the mean number of attempts, and the mean time required, to 

solve the nth problem. Figures 15 and 16 show the results of this analysis. Both line graphs 
show the same basic trend; Group C was less to able initially, but improved at a faster rate than 
Group B. 
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Figure 15. Number of attempts solving the nth problem. 
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Figure 16. Time required solving the nth problem. 

 
To summarise, we have demonstrated that the version of CAPIT with decision-theoretic 

problem and error message selection, and an adaptive Bayesian network student model, has led 
to a faster rate of learning than the same system with randomised PAS. This completes the fifth 
and final step of the application of the general methodology we have proposed to CAPIT. 

DISCUSSION AND CONCLUSION 

The significant contribution of this paper is the proposal and demonstration of a general 
methodology for the design and implementation of normative intelligent tutors. CAPIT, a tutor 
for capitalisation and punctuation, is both a working illustration that decision-theoretic 
computations in intelligent tutors can be tractable, and evidence that the methodology works. It 
is therefore possible to build normative intelligent tutors (with Bayesian student models and 
decision-theoretic PAS) that are guaranteed to be optimal with respect to the normative 
principles of rational behaviour. We have also made explicit the data-centric approach to 
building Bayesian network student models, whereby the structure and conditional probabilities 
are learned from data, and then continuously adapted on-line to the student. We believe that this 
approach produces student models better able to predict student performance than both the 
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expert- and efficiency-centric approaches. The data-centric approach also results in more 
compact student models, because it only explicitly models observable variables. 

An interesting conclusion of the statistical comparison between different Bayesian 
networks architectures in Step 2 is that the Small specification produced networks that predicted 
student performance almost as well as the various large network specifications (the r2 values 
varied by at most 0.06). The question arises as to why this is so. An informal analysis of the 
data collected during Step 1 revealed that, on average, a constraint previously satisfied will be 
satisfied on the next attempt 91% of the time. This regularity may well explain Small�s 
relatively good performance. However, other domains may not exhibit this degree of regularity. 
For example, in a domain where the constraints are highly interdependent, the probability of a 
constraint being satisfied on the next attempt may depend much more on the previous (and 
current) outcomes of other constraints. On the other hand, Small can be expected to outperform 
the large networks on domains where constraint mastery is wholly or mostly probabilistically 
independent. 

This suggests that there must be some careful justification (e.g. the statistical significance 
tests performed in Step 2) when a larger, complex model is chosen over a much simpler one. 
This issue is important, and it should not be skirted over when describing the rationale for a 
particular intelligent tutor architecture. Furthermore, the relatively good performance of a 
Bayesian network with no explicit model of the student�s internal representation at predicting 
student performance begs the question of which domains in general are suitable for such an 
approach. We suggest that suitable domains are those where the concepts are ill-defined, or 
where different students are expected to conceptualise the domain in different ways, (e.g. 
constructivist environments). Also, as discussed earlier, domains where the conceptualisation is 
too complex to produce a simple, tractable model might benefit. 

Another advantage of this approach is that it bypasses the problem of prior probabilities in 
Bayesian networks. VanLehn et. al. (1998) report that different choices of prior probabilities for 
root nodes in a network can significantly influence the posterior probabilities of other nodes. 
The workaround suggested by VanLehn et. al. is to treat only the difference between a 
variable�s prior and posterior probability as significant. Our Bayesian model circumvents this 
problem entirely. Whenever the network is evaluated, the root nodes L1..L25 are always known 
with certainty because they represent the observed student�s history. That is, the causality is 
always directed from the known (L1..L25) to the unknown (N1..N25), and not the other way 
around. Therefore we do not even need to maintain priors for these variables. 

One issue arising from the design of the evaluation study was that it was inevitable that 
Group C, which had an intelligent version of CAPIT, would outperform Group B, who were 
using the randomised version. While it would have made for a better comparison if Group B had 
been using an alternate intelligent version of CAPIT (e.g. perhaps a version using heuristics to 
select the next problem and error message), the amount of data required to establish any 
significant differences between the two strategies would have had to have been much greater, 
requiring a much more large-scale evaluation study. 

One area of concern with this approach is scalability, both to larger domains and different 
domains. In a larger domain, the space of <State, Action, Outcome> triples may be so large as to 
effectively render network induction impossible. This may be because the size of the State 
variable is very large (much larger than the 25 constraints modelled CAPIT), or there may be a 
high number of values that Action can possibly take (the limit in CAPIT was 45). A possible 
solution is to manipulate the learning algorithm to compensate for this additional complexity. 
For example, if the number of variables in the network is higher, then less numbers of edges 
should be added to the network during the learning process in order to keep the complexity 
down. Cheng�s (1998) algorithm is flexible enough to perform this. With respect to actions, a 
possible solution is to divide the set of actions into groups, and then apply decision-theoretic 
action selection twice: firstly to select the group; secondly to select the action within that group. 
This way, the total number of actions being considered will be equal to the number of groups 
plus the number of items in the selected group. 

Scaling the system to different domains is another issue. A limitation of CBM is that 
constraints must either match or fail to match; the constraint author decides beforehand the 
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conditions of satisfaction and violation. While ambiguity can be encoded into individual 
constraints (e.g. in CAPIT, commas separating short clauses can be made optional), higher-level 
ambiguity is not handled by CBM. To illustrate, the possessive pronoun teachers could be 
punctuated to either teacher�s or teachers�. The latter is less likely (unless there is specific 
contextual evidence that there is more than one teacher), but both are technically correct. CAPIT 
resolves the problem by accepting only the single most likely solution as the correct solution 
(teacher�s in this example), and treating other solutions as incorrect. This is acceptable for a 
system designed for children, because the system needs to control what its students are actually 
learning. For example, it is not ideal for a child to continually punctuate possessive nouns such 
as teachers to teachers� when the goal of the problem is to teach the correct punctuation of 
singular possessive nouns. However, in other domains, it may be that the system needs to know 
when a solution is technically correct. This would require a comprehensive problem-solving 
module. In a literacy domain, advanced natural language processing would be needed in order to 
enumerate possible correct solutions. This is beyond the scope of CBM. 

To reiterate, the results of the evaluation study are positive and show that the application of 
normative theories to intelligent tutoring is effective. The log analysis shows that the class using 
the decision-theoretic version of CAPIT learned the constraints of the domain at a faster rate 
than another class using the randomised version. The pre- and post-test results support this. 
Furthermore, on the post-test, both classes outperformed another class that did not have access 
to the tutor at all. 

To conclude, this paper has introduced a methodology for the design of Bayesian long-term 
student models and decision-theoretic PAS strategies for intelligent tutors. The methodology 
encompasses a number of new features not present in other systems such as the integration of 
prior knowledge and data into a single Bayesian network; the learning of both the structure and 
parameters of the network from data; on-line adaptation; and, decision-theoretic PAS. 
Furthermore, this methodology is compatible with existing methods for domain knowledge 
representation and short-term student modelling, such as CBM. The methodology has been 
found to be effective in the domain of English capitalisation and punctuation, as demonstrated 
by our new intelligent tutoring system CAPIT.  
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Appendix H 

Relative Contributions To Published Papers 

Regulation 8(c) of the Degree of Doctor of Philosophy section in the 2000 

University Calender states that “where the published work has more than one 

author it shall be accompanied by a statement signed by the candidate 

identifying the candidate’s own contribution.” The contributions are as follows. 

For all the papers, Dr Mitrovic contributed useful practical advice on 

how to conduct evaluation studies, and how to analyse results. She also 

provided a wealth of information about ITS research and some of the 

psychological theories underlying them, which was exceedingly useful. 

For the papers specific to SQL-Tutor, Mayo & Mitrovic (1999) and 

Mayo & Mitrovic (2000), Dr Mitrovic is the author of the SQL-Tutor system 

and performed some of the statistical analysis of the evaluation results. Her 

programmer, Kurt Hausler, also assisted in joining my student 

modelling/problem selection model to the rest of the system and setting up the 

evaluation study. The rest of the work, including research on Bayesian 

networks, the bulk of the implementation, and the rest of the results analysis, 

was carried out by myself. 

The papers specific to CAPIT are Mayo & Mitrovic (2001), and Mayo et 

al. (2000). There are a total of three authors of these papers: myself, Dr. 

Mitrovic, and Jane McKenzie. I designed the methodology and built CAPIT, 
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organised and carried out the evaluation studies, and analysed the results. Dr 

Mitrovic provided advice. Jane McKenzie is a teacher who assisted in tailoring 

the interface and feedback messages for 8-10 year olds. She also gave valuable 

advice about which parts of the domain the constraints should cover. 

 

Signed _________________________ Date ____________________ 
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