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Abstract

In the intensive care units, hyperglycaemia among the critically ill is associated
with poor outcomes. Many studies have been done on managing hyperglycaemia
in the critically ill. Patients in the ICU continue to benefit from the outcome of
extensive studies including several randomized clinical trials on glycaemic control
with intensive insulin therapy. Tight glycaemic control has now emerged as a
major research focus in critical care due to its potential to simultaneously reduce
both mortality and cost. Although the debate on tight glycaemic control is
on going, managing glycaemic level in ICUs is gaining widespread acceptance
as the adverse effects are well known. However, in the less acute wards, to
date there have only been a single randomized, controlled study to examine the
benefit of glycaemic control. Patients in the less acute wards do not receive the
same level of care, as glycaemic control is not regarded as important and not
a priority. Glycaemic goals in the less acute wards are often judged based on
clinical experience rather than adhering to a standard protocol or a treatment

guideline.

It is important that patients in the less acute wards received the level of care
as practised in the ICU. If hyperglycaemia worsens outcome in the ICU, a similar
effect is seen within less acute wards. Hence, tight glycaemic control needs to be
extended in the less critical setting as well. To support the establishment of a
control protocol for patients in less acute wards, a method that has been successful
in the critical care and can be adapted to the less acute wards, is the model-
based or model-derived control protocol. Model-based protocol can deliver a safe
and effective patient-specific control, which means the glycaemic control protocol
can be devised to each individual patient. Hence, a physiological model that
represents the glucose-insulin regulatory system is presented in this thesis. The
developed model, Intensive Control Insulin-Nutrition-Glucose (ICING) is based

on the best aspects of two previous clinically-validated glucose-insulin models.
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Glucose utilisation and its endogenous production are more distinctly expressed.
A more realistic model for gastric glucose absorption accounting for the stomach,
gut and saturable glucose appearance is also introduced. Finally, the model also
includes explicit pathways of insulin clearance and transport from plasma, which

reflects biological mechanisms.

The ICING model is capable of accurately capturing long term dynamics and
evolution of a critically ill patient’s glucose-insulin response. The model achieved
low fitting and, most importantly, low prediction error when fitted to blood glu-
cose data from critically ill patients. Fitting errors and the 75" percentile pre-
diction errors were all well below measurement error for 173 patients and 42,941
hours of data. The new model outperforms its critical care predecessors, and has

greater physiological relevance and more detailed insulin kinetics.

A subcutaneous insulin absorption model for Glargine is also developed.
Glargine, a new type of insulin analog is incorporated in the study due to its
unique once or twice a day basal coverage. Glargine has been used for Type
1 and Type 2 diabetic patients and the take of Glargine for the basal coverage
of recovering critically ill patients is an interesting and promising approach. If
Glargine can be used successfully in less acute wards, the high nursing effort fre-
quently associated with tight glycaemic control can be greatly reduced. Hence,
an improved pharmacokinetics and pharmacodynamics of subcutaneous Glargine
model is developed and validated in this thesis. A further measure of validation is
performed in which the model output of Glargine plasma insulin curve is validated
using data from external independent studies. To account for intra- and inter-
patient variability in the absorption kinetics of Glargine, variability is introduced
to Glargine-specific parameters. The impact of variability is assessed with Monte
Carlo analysis and increases the potential of the subcutaneous absorption model

to be used effectively in a glycaemic control protocol.

Virtual trial provides a safe mean to develop and analyze glycaemic control
protocols prior to clinical validation in pilot trials. Protocols may be optimised
virtually to save time, save money and, most important of all, yield a better
patient outcome in clinical implementation. Employing the ICING and subcu-
taneous Glargine insulin absorption model, in silico virtual trials were done on
15 metabolically stable ICU patients. Glargine’s efficacy in this patient popula-

tion was tested by comparing simulation results to SPRINT clinical data, dose
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to dose. No control measure was adapted at this stage. Further virtual trials on
30 metabolically stable patients, combined an intravenous insulin protocol prac-
tised in the Christchurch ICU Hospital, New Zealand with subcutaneous Glargine
doses as a basal background. This approach is targeted for patients in transition,
from the ICU to less acute wards. It is expected that Glargine daily doses would
eventually replace the intravenous insulin bolus, once patients insulin sensitivity
is high and stable.

The transition protocol, with nutrition adjustments further looks into the
efficacy in terms of nursing intervention frequency. Aside from managing patient’s
glycaemic level, which is the main priority, this research looks further into the
nursing effort as the success of TGC protocol largely depends on human factor,
specifically the nursing resources. Current guidelines for switching patients to a
subcutaneous insulin are adhoc and often fail. A system is required to maintain
good blood glucose control outside of the ICU and allows a smooth transition
of patients from the ICU to less acute wards, while keeping nursing effort to
a minimum — a major and heretofore an insoluble task. Thus, a protocol that
does not burden nurses which is often limited in the less acute wards is highly
required and practical. The solution created in this thesis will be the first attempt

to generalize tight glycaemic control to less acute wards.

Monte Carlo analysis provide a further valuable approach to test the robust-
ness of the control protocol and robustness is achieved with the ability of the
control protocol accounting for possible blood glucose concentrations and varia-
tions of Glargine absorption. Overall, the results meet the primary goal of the

analysis to justify a clinical pilot study to fully validate these in silico results.

Hence, a protocol ‘Proof of Concept Study of Insulin Glargine in the Intensive
Care and the High Dependency Units” which has been granted ethics is presented
in this thesis. Having taken the modeling approach to a successful analytical
endpoint, it is a critical and unique opportunity to clinically validate these in

silico results.






Chapter 1

Introduction

Stress-induced hyperglycaemia is prevalent in critical care and can occur in pa-
tients with no history of diabetes [Krinsley, 2004; Capes et al., 2000; Van Den
Berghe et al., 2001]. Hyperglycaemia occurs when the glucose concentration in
the blood plasma is higher than a basal level of 5.5 mmol/L or 99 mg/dL [Mizock,
1995]. In which therapy should be initiated, hyperglycaemia is defined as being
consistently higher than fasting blood sugars of >7mmol/L ( >126 mg/dL) or
random blood sugars of >11mmol/L (>200 mg/dL) as adapted from the Ameri-
can Diabetes Association Expert Committee on the Diagnosis and Classification
of Diabetes Mellitus [Care, 2003]. Critically ill patients exhibit increased endoge-
nous glucose production, erratic insulin production, and significantly increased
insulin resistance [Capes et al., 2000; Esposito et al., 2003; Finney et al., 2003;
Krinsley, 2003; McCowen et al., 2001; Van Den Berghe et al., 2001; Van den
Berghe et al., 2003].

The occurrence of hyperglycaemia in critically ill patients is associated with
increases in counter regulatory hormones such as catecholamines, growth hor-
mone, cortisol and cytokines [McCowen et al., 2001; Barth et al., 2007a]. These
counter-regulatory hormones antagonize insulin production and stimulate endoge-
nous glucose production. They also decrease immune function response at high
blood glucose levels [Marik and Raghavan, 2004; Turina et al., 2005; Weekers
et al., 2003]. In addition, a combination of other factors also affect the patient’s
glycaemic level, mainly the severity of the patients underlying illness itself. Their
underlying glucose tolerance may also play a role with individuals with Type 2
diabetes having a higher incidence of ICU-related hyperglycaemia [Irwin and
Rippe, 2009].
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Other than that, the administration of some medications play a role. In
particular, steroids [Bradley, 2002], noradrenaline [Lewis et al., 2004] and beta
blockers [Freeman et al., 2001] are commonly used drugs that have been recog-
nized to exacerbate hyperglycaemia. Thus all these factors significantly increase
effective insulin resistance. Finally, high glucose content nutritional regimes exac-
erbate hyperglycemia and thus mortality [Weissman, 1999; Krishnan et al., 2003;
Elia et al., 2005], whereas reducing glucose intake from all sources has reduced
glycemic levels [Patino et al., 1999; Elia et al., 2005; Ahrens et al., 2005; Krajicek
et al., 2005] and can alleviate the impact of the hyperglycemic counter-regulatory
response that drives the problem [McCowen et al., 2001; Mizock, 2001; Thorburn
et al., 1995; Larsen et al., 2002].

Extensive studies have therefore linked hyperglycaemia to worse outcomes
[Krinsley, 2004] and higher hospital care cost [Furnary et al., 2004]. It is strongly
associated with increased mortality [Krinsley, 2003; Laird et al., 2004; Jeremit-
sky et al., 2005]. Increament in fasting plasma glucose for every 1 mmol/L, is
related with 33% increase in mortality in a study by Baker et al. [2006]. In par-
ticular, hyperglycaemic patients are at a higher risk of severe infection [Bistrian,
2001], myocardial infarction [McCowen et al., 2000] and critical illnesses such as
polyneuropathy and multiple organ failure [Chase et al., 2010b; Van Den Berghe
et al., 2001]. Hyperglycaemia has also been known to induce damage at a cel-
lular level including immunosupression, inflammation, thrombosis and increased
oxidative stress [Brownlee, 2001; Hirsch and Brownlee, 2005; Preiser and Devos,
2007]. Although not conclusive, several studies suggested that patients with no
prior history of diabetes are even at a higher risk for adverse complications com-
pared to patients with existing diabetes [Smiley and Umpierrez, 2008; Dungan
et al., 2009; Tonks et al., 2010]. Hence, hyperglycaemia has a significant phys-
iological impact via multiple routes on the critically ill patient that can by this

impact add significant difficulty and complexity to their care and management.

A number of studies have investigated the effects on patient outcomes when
blood glucose levels are controlled with insulin, and revealed markedly mixed re-
sults with some very positive reports showing the clear potential of this approach.
Hyperglycaemia used to be seen as a positive adaptive response in the critically
ill [Mesotten and Van den Berghe, 2009]. Since the landmark study in surgical
intensive care unit (ICU) patients by Van Den Berghe et al. [2001], which reduced
mortality by 18-45% using tight glycaemic control (TGC), the attitude towards



tolerating hyperglycaemia in critically ill patients has changed. Insulin, with
TGC, can ameliorate inflammatory responses and improve insulin sensitivity and
glycemic response [Weekers et al., 2003; Jeschke et al., 2004; Vanhorebeek et al.,
2005; Langouche et al., 2005]. Van Den Berghe et al. [2001], obtained significant
mortality reductions for a cardiovascular surgery cohort, as well as reducing other
outcomes and treatments. It was matched by the retrospective study of Krinsley
[2004]. TGC has now emerged as a major research focus in critical care due
to its potential to simultaneously reduce both mortality and costs. Specifically,
TGC is defined as having blood glucose range between 4.4-6.1 mmol/L (80-110
mg/dL). This is the normal range of blood glucose level of a healthy individual.
Table 1.1 lists the glycaemic target range employed by several different studies to
achieve normoglycaemia. The various glycaemic targets portray the widespread
acceptance of TGC, yet at the same time questions on the best TGC target still
remain. The final TGC band is yet to be established, with each study having its

own approach on protocol implementation and target goal.

In contrast to the physiological impact noted, other benefits demonstrated
from implementing TGC are lower rates of bacteremia, multiorgan failure, surgi-
cal site infection, renal failure and shorter duration of ventilation [Chase et al.,
2010b; Van Den Berghe et al., 2001, 2006b]. The anti-inflammatory effects of
insulin in reducing cellular level damage have also been noted [Van Den Berghe
et al., 2001, 2006b].

However, repeating these results that reduced mortality and other outcomes
has been difficult [Griesdale et al., 2009]. Several large trials [Finfer and Heritier,
2009; Brunkhorst et al., 2008; Preiser et al., 2009] were unable to repeat the early
results of Van Den Berghe et al. [2001] or other success by Krinsley [2004] and
Chase et al. [2008c]. For example, Brunkhorst et al. [2008] was stopped for safety
due to hypoglycaemia while Preiser et al. [2009] had unintended protocol viola-
tions. Thus, the role of tight glyceamic control during critical illness and suitable
glycaemic ranges have been under scrutiny in recent years [Schultz et al., 2008;
Kalfon and Preiser, 2008; Preiser, 2009; Moghissi et al., 2009; Chase and Shaw,
2007; Van Den Berghe et al., 2006b]. Overall, conclusions are varied with both
success [Van Den Berghe et al., 2001; Chase et al., 2007, 2008¢; Krinsley, 2004],
failure, [Finfer and Heritier, 2009] and, primarily, no clear outcome [Van Den
Berghe et al., 2006b; Chase and Shaw, 2007; Preiser and Devos, 2007; Vanhore-
beek et al., 2007; Brunkhorst et al., 2008; De La Rosa et al., 2008; Schultz et al.,
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2008; Wiener et al., 2008; Treggiari et al., 2008], as summarised in Griesdale et al.
[2009].

Below are few important methodological differences identified to be the cause

of deficiency or varying level of success and failure among TGC studies.

Differences in target range of BG between control and intervention groups.

Differences in routes of insulin administration.

Differences in sampling sites.

Differences in types of instrument for BG measurements.

Differences in nutritional strategies.

Differences in level of expertise among ICU nurses.

The study by Chase et al. [2010a] states that all the controversy surrounding
around TGC and its application are due to lack of understanding of both the
problem and the patient-specific dynamics that hinder clarity on the issues. More
specifically, the study reviews the basic known physiological and clinical aspects

of TGC, in terms of their impact on glycemia and thus outcome.

Table 1.1 Tight glycaemic control range in ICU

Reference TGC Range (mmol/L) TGC Range (mg/dL)
Chase et al. [2008¢] 4.4-6.1 80-110
Krinsley [2004] <77 <140
Saager et al. [2008] 5.0-8.3 90-150
Rood et al. [2005] 4.0-7.0 72-126
Dortch et al. [2008] 4.4-6.1 80-110
Hermayer et al. [2007] 4.4-7.1 80-129
Thomas et al. [2005] 5.4-7.1 97-128
Vogelzang et al. [2005] 4.0-7.5 72-135
Davidson et al. [2005] 5.5-7.7 100-140
Meynaar et al. [2007] 4.5-7.5 81-135
Pachler et al. [2008] 4.4-6.1 80-110

While many ICU patients are benefiting from extensive research, moderate to

high levels of hyperglycaemia are still tolerated within the less acute wards, such



as high-dependency (HDU) and post-surgical units. The management of TGC in
this area, remains under the influence of ineffective standards characterized by
tolerance to moderate hyperglycaemia and reluctance to use insulin intensively.
A major roadblock leading to this outcome is the reduced clinical manpower
available in these units to implement sometimes intensive protocols [Aragon, 2006;
Chase et al., 2008b]. Moreover, not all hospitals have HDU unit, with the numbers
of HDU and staffing are generally insufficient [Garfield et al., 2000; Leeson-Payne
and Aitkenhead, 1995; Jones et al., 1999]. Therefore patients who were discharged
from the ICU often were transferred directly to wards where TGC would even
be more difficult to implement. In general wards, the staffing ratio is 1:6, yet a
nurse usually may have to care for more [Aiken et al., 2008]. Hence, the use and
benefits of insulin protocols within these units (HDU or less critical wards) have
not yet been widely addressed in the literature [Whitehorn, 2007].

Based on current evidence from studies in medical and surgical ICUs, it is
logical to expect that the maintenance of normoglycaemia within less acute ward
patients would limit potential complications associated with elevated blood glu-
cose levels [Chase et al., 2010a]. This assumption is not unreasonable as patients
in the ICU and less acute wards share an accelerated catabolic, hyperglycaemic
state that also reduces the immune response. Extending tight control to these
wards could minimise rebound hyperglycaemia on discharge to the wards [Gold-
berg et al., 2004b] and minimize the development of (new) infections or further
complications, thus improving overall patient care. Furthermore, the workload
associated with patients who return to the ICU would be reduced. Studies on fac-
tors contributing to ICU rebound or readmission have increased in recent years,
evident with more studies being published [Bardell et al., 2003; Utzolino et al.,
2009; Rosenberg et al., 2001]. A review on ICU readmisson and rebound can be
found from Elliott [2006].

However, to fully implement TGC in less acute wards posed significant chal-
lenges. These wards do not have the same nursing resources compared to ICU,
making constant monitoring and titration difficult. In addition, patients do not
have arterial or (often) intravenous lines for regular blood sampling. IV insulin
has the advantages of administering accurate doses and provide a faster response
than subcutaneous insulin. Hence, there is a pressing need for insulin delivery
protocols that can be successfully implemented with minimal clinical effort, bur-

den and resources. This necessitates an entirely different approach in engineering
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a TGC protocol from that which is used in an ICU. More succinctly, while the
avenue of providing TGC remains the same in these wards (insulin), the means

and resources by which it is implemented will have to be very different.

1.1 Hyperglycaemia in less acute wards

Although it is now becoming an unacceptable practice to allow hyperglycaemia
and its associated effects [Preiser and Devos, 2007; Brownlee, 2001; Hirsch and
Brownlee, 2005; Egi et al., 2006], moderately elevated blood glucose levels are
tolerated or recommended [Moghissi et al., 2009] because of the fear of hypo-
glycaemia [Egi et al., 2010; Bagshaw et al., 2009a] and higher nursing effort
frequently associated with TGC [Mackenzie et al., 2005; Aragon, 2006; Preiser
and Devos, 2007; Vanhorebeek et al., 2007; Chase et al., 2008a]. It was hoped
that [Finfer and Heritier, 2009] would clear some of these confounding issues
about setting appropriate glycaemic targets. This study, better known as the
NICE-SUGAR (Normoglycaemia in intensive care evaluation and survival us-
ing glucose algorithm regulation) multi-centre study, had statistical power with
6100 patients. However, the control group with target range of 7.7-10.0 mmol /L
(140-180 mg/dL) had lower 90 day mortality rate compared to the interventional
group with strict lower range target of 4.5-6.0 mmol/L (81-108 mg/dL). More
significantly, they failed to separate their cohorts glycaemically, and had other
methodological issues [Chase et al., 2010a]. Hence, the study failed to answer
these questions, as did the similar Glucontrol study [Preiser et al., 2009].

Table 1.2 lists the established recommended glycaemic targets for patients in
non-critical settings. These glycaemic targets were established for patients with
Type 1 and Type 2 diabetes on the basis of growing evidence that tight glycaemic
control improves outcome [Nathan et al., 2005]. However, many patients in less
acute wards still do not meet these glycaemic goals and the glycaemic target has
been seen as too stringent, given the lack of study to support general inpatients
[Inzucchi and Rosenstock, 2005]. The fear of hypoglycaemia has led to raising
glycaemic target bands [Moghissi et al., 2009]. Moreover, with the result of NICE-
SUGAR study [Finfer and Heritier, 2009], reconsideration of glycaemic targets in
the critically ill meant target range in the less acute patients were reconsidered
as well. The American Diabetes Association [2008] and Garber et al. [2004] state
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that inpatient hyperglycaemia is common, harmful, and with better blood glucose
control, mortality can be decreased along with complications, length of hospital

stay and health care costs.

Table 1.2 Glycaemic target in less acute wards. Convert mg/dl to mmol/L; multiply by
0.055.

Resources Preprandial Postprandial

American Diabetes Association [2008] <126 mg/dl <180-200 mg/dl
American College of Endocrinology [2007] < 110 mg/dl <180 mg/dl

Patients in less acute wards, share more similarity in metabolic status to
patients recovering from critical illness than to critical care patients in general.
In Chase et al. [2008a, 2010a] as critically ill patients recover, their insulin sen-
sitivity rises, but is still low compared to ambulatory individuals with Type 2
diabetes. Consequently, their insulin requirements decrease and the hourly doses
are generally more consistent. Hence, it is likely that this patient population
would benefit from intensive insulin therapy being transferred from the ICU set-
ting to a less acute ward. However, there are several factors which hampered
the effort to apply the same level of control seen in the ICU to less acute wards,

namely:

e Fear of hypoglycaemia and method of TGC
e Clinical burden and lack of access for samples

e Lower nursing resources for intensive therapy and monitoring

These issues are very different from the ICU setting and thus necessitates a

different approach of tight glycaemic control.

1.1.1 Fear of Hypoglycaemia and TGC Method

Among practitioners, fear of hypoglycaemia is a major limiting factor in im-
plementing tight glycaemic control. Due to higher incidence of hypoglycaemia

among patients, two major studies were terminated early [Brunkhorst et al., 2008;
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Preiser et al., 2009]. In Brunkhorst et al. [2008], the incidence of severe hypo-
glycaemia <2.2 mmol/L (<40 mg/dL) was 17% in the intensive therapy group
compared to 4.1% in the conventional group. The study [Brunkhorst et al., 2008]
was supposed to include 600 septic patients, but was stopped after 488 patients,
with the conclusion that septic patients were put at an increased risk of serious
events related to hypoglycaemia. The multicentre mixed ICU Glucontrol study
of Preiser et al. [2009] had severe hypoglycaemia in 8.7% of the patients receiving
insulin therapy compared to 2.7% treated to a higher target. Hypoglycaemia in
Van Den Berghe et al. [2006b] is reported to be as high as 18.7% in the medical
ICUs. Results from the largest randomized trial to date, [Finfer and Heritier,
2009] also showed much higher incidence of severe hypoglycaemia in intensively
treated patients versus the control group, with 6.8% and 0.5% respectively. This
study, NICE-SUGAR study [Finfer and Heritier, 2009] also reported an increase
in the TGC arm with a lower glycemic target, but was also subject to criticism
of its treatment approach, analysis and randomisation methods [Henderson and
Finfer, 2009; Myburgh and Chittock, 2009; Preiser, 2009; Van den Berghe et al.,
2009]. The meta-analysis that followed the publication of the NICE-SUGAR
study showed that most studies failed to achieve a result either way, but also had
significantly variable numbers of centres, patients, target cohorts and ICU types
[Griesdale et al., 2009]. Thus, overall comparisons are difficult, making it almost

impossible to assess which factors are associated with successful TGC.

Due to hypoglycaemia, the neonatal NIRTURE TGC study [Beardsall et al.,
2007] was also terminated. Almost all studies report increased hypoglycemia with
intensive TGC [Griesdale et al., 2009], excepting SPRINT [Chase et al., 2008¢].
One recent study links hypoglycemia in the first 24h of stay, for those patients
who stay longer than 24h, as a factor for increased risk of death [Bagshaw et al.,
2009b] although this was not the case in SPRINT [Chase et al., 2008c|. Thus,
hypoglycemia and hyperglycemia are risk factors, and fear of hypoglycemia in

particular has thus driven recent doubts about the role of TGC.

Hypoglycaemia may be described as having blood glucose level lower than
2.2 mmol/L (40 mg/dL)[Van Den Berghe et al., 2001], 3.3 mmol/L (60 mg/dL)
[Kagansky et al., 2003] or 3.9 mmol/L (70 mg/dL) [Cryer et al., 2003]. The
differences are attributed towards hospital targets and whether it is categorized as
mild or severe hypoglycaemia. The symptoms include sweating, dizziness, fatigue,

blurred vision, confusion and convulsions [Cryer et al., 2003; Whitehorn, 2007].
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These clinical symptoms are often masked by patient’s own critical condition
and sedation. Seizures, coma, irreversible brain damage and in extreme cases
death, are among the major consequences of hypoglycaemia [Cryer et al., 2003;
Whitehorn, 2007; Bagshaw et al., 2009a; Egi et al., 2010]. Some physicians are
still unsure whether the benefit of tight glycaemic control outweighs the risk of
hypoglycaemia, making the issue of tight control still unresolved. However, from
an engineering perspective this issue is more about the means by which TGC is

implemented [Chase et al., 2010b] to manage patient variability.

Although these results were from the critically ill populations, physicians are
still apprehensive to implement tight glycaemic control in less acute wards. This
issue is partly due to insufficient studies in the area. To date there has only been
1 randomized controlled trial in the non-critical settings. The RABBIT-2 trial,
was a prospective, multicentre, randomized trial conducted in patients admitted
to a general medical service with blood glucose values between 7.7 mmol/L and
22.2 mmol/L (140 mg/dL and 400 mg/dL). Patients were randomized to receive
Glargine and Glulisine, and sliding-scale insulin. The study did not demonstrate
differences in mortality or clinical outcome between both groups. Hypoglycaemia
was observed to be low in both groups [Umpierrez et al., 2007]. However, the
study has its own significant limitations, where patients with hyperglycaemia
without pre-existing diabetes were excluded from the study. This group of pa-
tients are thus more likely to benefit from tight glycaemic control and see less

hypoglycaemia, which may have skewed the results.

As noted, the mixed results seen imply that best methods of providing TGC
have not yet been disseminated. In particular, of 3 successful studies [Van Den
Berghe et al., 2001; Krinsley, 2004; Chase et al., 2008c|, only the SPRINT protocol
by Chase et al. [2008¢c] reduced hypoglycaemia by 50% versus it’s conventional
group. This protocol was unique in its approach by controlling both insulin and
nutritional inputs to metabolic balance. Uniquely, it was also the only protocol
engineered using model-based methods [Lonergan et al., 2006b,a; Chase et al.,
2008c, 2010c]. In Lonergan et al. [2006a] and Chase et al. [2008c], these studies
showed reductions of 17-42% in mortality for patients whose length of ICU stay
was 3-b days or longer. They were matched by equally impressive reductions in
cost per patient treated [Van den Berghe et al., 2006; Krinsley and Jones, 2006],
and in reduced clinical incidence of sepsis, polyneuropathy and organ failure
[Chase et al., 2010b; Van den Berghe et al., 2003].
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Hence, SPRINT’s [Chase et al., 2008¢] unique design and approach was able
to rise above issues of workloads and patient variability to provide a better, more
consistent control and outcome than any other study. However, these methods

have not yet been used for less acute wards at this time.

In particular, many ICUs and less acute wards use sliding scale methods, that
titrates insulin on a simple proportional scale. Golightly et al. [2006]; Arnold and
Keller [2009]; Hirsch [2009] and [Schnipper et al., 2006] are among many other
studies that revealed outcomes associated with worse glycaemic control using
sliding-scale insulin method. Umpierrez et al. [2007] is the only study to date con-
ducted in non-critical settings, and clearly established that sliding-scale insulin
failed to provide adequate glycaemic control. Hence, scheduled subcutaneous in-
jection has been found to be better in these settings without the increased risk of
hypoglycaemia. Sliding-scale should not be used in management of hospitalized
patients with elevated blood glucose level. It is erratic, widely variable, often in-
effectual, and prone to deficiencies in monitoring, documentation, and prescribing
soundness [Golightly et al., 2006]. There have been suggestions to abolish the
use of sliding-scale [Queale et al., 1997; Umpierrez and Maynard, 2006].

Efforts to improve glycaemic control in this population of patients that are
less critically ill are thus clearly needed. A serious solution will account for
important factors such as patient specific insulin resistance, meals, weight, illness
and/or basal requirements [Moghissi, 2008]. Clearly, patients will not have the
same insulin sensitivities resulting in blood glucose variability and difficulty in
control. Hence, new engineered methods are required that can manage these

factors.

1.1.2 Clinical Burden and Lack of Access

When an ICU patient is transferred to a less acute ward, several things change
that impact glycaemic control. The most significant change have to do with
access lines to blood. This change affects both input infusions and drug delivery,

as well as blood samples.

More specifically, only ICU patients have arterial lines. Arterial lines are

commonly used in TGC for removing small amounts of blood to measure blood
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glucose with a glucometer or blood gas analyser. The alternative is a typical
pin-stick glucometer, which causes minor discomfort or a time consuming and
invasive venous blood draw via syringe. Neither is an option for measuring more

than 4x per day in a less acute ward.

Similarly, intravenous (IV) lines are also typically removed on leaving ICU.
Hence, insulin infusions (and other drugs) must be given in long acting doses.
For TGC this change necessitates the use of much more variable and difficult to
manage subcutaneous (SC) insulins, which increases the difficulty and variability
of TGC in these wards.

1.1.3 Nursing Resources and Less Intense Monitoring

Differences in routine, environments and loss of invasive monitoring [Coyle, 2001]
are among the factors that make nurses in less acute wards feel that caring for
recently discharged patients from the ICU is stressful [Hall-Smith et al., 1997].
Achieving tight glycaemic control is labour intensive [Aragon, 2006; Mackenzie
et al., 2005], and some patients who were discharged from ICU still need one-to-
one care. However, less acute wards are not well resourced to provide this level
of care with demand for ICU increasing annually [Wild and Narath, 2005; Green,
2002; Swenson, 1992].

High workloads often result in patient care being delayed in these situations.
However, to provide better glycaemic control care to patients, coordination and
timing of blood glucose monitoring, meals, administration of insulin must be be
done in timely manner. Missing any of these could result in hypo/hyperglycaemia.
Van Den Berghe et al. [2001, 2006a] used extra staff to accommodate the addi-
tional work required for intensive therapy in the ICU. In Goldberg et al. [2004b]
it is stated that every hour, a nurse should locate a glucose metre, perform a
fingerstick, record and properly document the readings and perform the appro-
priate insulin rate adjustments. This process would take around 5 minutes per
patient [Whitehorn, 2007]. For a protocol that optimizes nutritional intake as
well as insulin, the process would be even longer. Such monitoring is possible
in the ICU but not in less acute wards. Hence, methods for less acute wards
must be non-invasive in terms of workload, resuscitation and less monitoring and

oversight by stretched nursing resources.



12 CHAPTER 1 INTRODUCTION

In general, there is lack of concern over good glycaemic control in non-critical
settings. The result can include an unwillingness to treat and frequent inter-
ruptions to treatment during meal times, medications, examinations and other
procedures. All of these issues can prevent a protocol that can maintain a good
glycaemic control from achieving success [Moghissi, 2008; Deepak et al., 2003].
Hence, a pervasive feeling still exists that blood glucose control is not important

other than preventing hypoglycaemia.

Additionally, clinical data to support tight glycaemia control in this arena
is still lacking, and there is little agreement on how tight the control should be.
Although the debate on these issues continues, there should be no debate that
patients in less acute wards should continue to receive the level of control they
received in the ICU. The benefit of TGC should not be limited to the ICU. As a
result, patients often move from a clinical setting where glycaemic management
is a priority to one where it is ignored or receives less attention. Hence, it is not
uncommon to see stabilised patients moving to the less acute wards and then
returning in 1-3 days to the ICU with deteriorated condition and renewed high

blood glucose levels.

The challenge is to find and implement glycaemic goals with a standardized,
safe and effective protocol. There is a need for a system that can maintain good
blood glucose control outside of the ICU that can support patients transferring
from ICU to less acute wards, while addressing the differences in the environment.
Most importantly, the system or protocol must minimize the number of frequent
interventions and nursing effort to match the staffing available in these wards,

while simultaneously providing a quality care.

1.2 Model-based Glycaemic Control

Clinically validated glucose-insulin models that are clinically applicable and have
good predictive performance can eliminate potential for hypoglycaemia [Chase
et al., 2006, 2010c|. Interestingly, some TGC studies that reported a mortality
reduction also had reduced and relatively low hypoglycaemic rates [Chase et al.,
2008c|, whereas those reporting no change or higher mortality had excessive hy-
poglycaemia [Finfer and Heritier, 2009; Brunkhorst et al., 2008]. This latter set of
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‘point’ also effectively divides model-based or model-derived protocols (SPRINT)
from all others. More specifically, model-based and model-derived TGC meth-
ods have shown significant ability to provide very tight control with little or no
hypoglycaemia [Chase et al., 2006, 2007, 2008c; Hovorka et al., 2007; Le Compte
et al., 2009].

Many studies have developed glucose-insulin models with varying degrees of
complexity for a wide range of uses, primarily in research studies of insulin sensi-
tivity [Chase et al., 2007; Mari and Valerio, 1997; Bergman et al., 1981; Parker and
Doyle, 2001; Hovorka et al., 2008, 2004b; Wong et al., 2006b]. These studies were
developed primarily on different glucose intolerant but otherwise healthy cohorts
and relied on a range of different assumptions. The common and ultimate goal is
to develop model-based insulin therapy for tight glycaemic regulation, albeit for
different purposes in some cases. More importantly, depending on the context of
how the model is to be used, real-time identification of a patient-specific model

may or may not be a prerequisite.

TGC methods should directly account for patient-specific insulin sensitiv-
ity and its potential to vary hour to hour when determining a given intervention,
something only model-based approaches might currently provide [Lin et al., 2008;
Le Compte et al., 2009]. Patients are individual and dynamic in their condition.
To be patient-specific, a TGC protocol must directly (e.g. model-based) or in-
directly (model-derived) account for both intra- and inter- patient variability.
Currently, only a very few protocols either directly or indirectly adapt their in-
tervention based on patient insulin sensitivity [Chase et al., 2008c; Wong et al.,
2006b; Le Compte et al., 2009]. Most of these are model-based or, in the case
of SPRINT, model-derived [Lonergan et al., 2006a; Chase et al., 2007; Lonergan
et al., 2006a]. As a result, they are able to explicitly and directly account for
variations in the patients metabolic response, as they have greater insight than

typical clinically derived protocols without these computations.

Most other reported protocols, do not account for or assess insulin sensitivity
in any way [Van Den Berghe et al., 2001; Krinsley, 2004; Van Den Berghe et al.,
2006a; Treggiari et al., 2008; De La Rosa et al., 2008; Goldberg et al., 2004b;
Inzucchi and Rosenstock, 2005; Goldberg et al., 2004a; Finfer and Heritier, 2009;
Brunkhorst et al., 2008; Preiser et al., 2009], including the recent, major RCTs.

Other protocols, adjust based on surrogate response to insulin decreases (e.g
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resistance increases) [Davidson et al., 2005], but do so in fixed multiples, rather
than via an explicit or patient-specific algorithm. None account for the hour to

hour variability, or the risks it imposes.

For a model to be successful when used in the delivery of TGC, it needs
to reflect observable physiology, as well as known biological mechanisms. In
addition, it should be uniquely identifiable in clinical real-time, and thus the type
and number of parameters to be identified should reflect the clinically available
data. Finally, the most important aspect for a model to be used in model-based
TGC is its predictive ability. Most studies provide only fitting error as validation,
for example [Hovorka et al., 2007; Parker and Doyle, 2001]. Fitting and prediction
error are due to model being able to capture patient’s dynamics. How well a model
captures a patient’s dynamics is related to the fitting error, and if the model is
able to predict the future glycaemic changes, that verifies the model parameters
used do reflect clinical physiology. Therefore, prediction accuracy is significant
as it validates the fitting method used and that the model parameters were not
simply molded to fit the collected data.

1.3 Preface

In summary, the problem of critically ill or recovering critically ill patient is
summarised as a strong counter-regulatory hormone driven stress response that
induces significant insulin resistance and can antagonise insulin production and
action. Coupled with unsuppressed endogenous glucose production, FGP and
potentially excessive nutritional inputs, high blood glucose is inevitable. Dy-
namic patients whose condition, and thus insulin resistance, evolves regularly
and sometimes acutely, provide a further challenge to providing consistently tight
TGC across every individual patient in a cohort. Coupled with clinical burden
in measuring frequently, and large swings in blood glucose are inevitable with-
out the ability to adapt. Thus, the overall problem becomes one of managing a
highly dynamic cohort, with minimal effort or intervention, which also displays
significant variability both between and within patients. Considered generically,
this definition is a classic dynamic systems and control problem definition that
can be readily addressed if the major driving factors can be accurately modeled

and understood.
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Hence, the goal of this research is to develop a model-based protocol that is
clinically practical and tailored for glycaemic control in the less acute wards. It
will provide TGC by controlling insulin delivery in both the subcutaneous and/or
intravenous route (if available). Optimizing nutritional requirements intake may
also be a (lesser) option in this environment. The protocol design incorporates
physiological modeling and engineering techniques and must be able to adapt to
individual patient clinical requirements. By doing so, the protocol will produce
accurate patient-specific recommendations for each insulin interventions. It will
be a comprehensive protocol that follows insulin-resistant patients from ICU to
less acute wards, transitioning from intravenous insulin to subcutaneous insulin,
while maintaining normo-glycaemia and minimising clinical effort, and thus re-

ducing ICU rebound and cost.

The target would be to provide TGC for each individual patient, as in the
study by [Chase et al., 2010a]. Hence, the analysis of TGC from the developed
control model protocol besides from cohort analysis, would be on per-patient
analysis. A move that is not commonly reported in TGC trials apart from [Chase
et al., 2008¢c; Van den Berghe et al., 2003; Goldberg et al., 2004a).

The goal is pursued by further developing and linking physiological models
of each part for the whole system, from glucose regulation and the interaction
between glucose and plasma insulin to the absorption kinetics of long acting
subcutaneous insulin. All the models are validated before being used for protocol
analysis and design. Variability is introduced in the identified Glargine model
parameters to account for intra- and inter- patient variability, and simulated via

Monte Carlo analysis. The overall thesis preface is outlined:

Chapter 2 reviews previous glucose-insulin models that have been applied for
glycaemic control in the critical care settings. As computational capability
and access improve, there are avenues of further improvement where better
models or methods can be developed. This chapter presents an updated
glucose-insulin control model for use in real-time glycaemic control. The
developed model, ICING (Intensive Control Insulin-Nutrition Glycaemic
Model) is a comprehensive, more physiologically relevant glucose-insulin
dynamic system model. The ICING model is an integration and improve-

ment of two clinically validated glucose-insulin physiological models.
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Chapter 3 presents the parameter identification method for the critical pop-
ulation parameters in the developed glucose-insulin, ICING model. The
updated model with it’s fitting and predictive virtual patient validation is
also presented in this chapter. The results confirm that the ICING model is
suitable for developing model-based insulin therapies, and capable of deliv-

ering real-time model-based TGC with a very tight prediction error range.

Chapter 4 presents the development and validation of a detailed pharmacoki-
netics model of the subcutaneous absorption kinetics of Glargine. Glargine
will cover the basal need for patients in the less acute wards. If Glargine
can be successfully used for TGC, nursing effort can be greatly reduced as
Glargine only needs once or twice injection daily. Hence, in order to use
a model-based method, Glargine pharmacokinetics and pharmacodynam-
ics need to be modeled. The fundamental structure of the model is taken
from a prior model but new development is made to better capture the
physiological aspect. Critical pharmacokinetics measures, maximal plasma
insulin concentration, C,,,, and time to maximal plasma insulin concen-
tration, T),,, were used for validation purposes. A Monte Carlo study was
performed on identified model parameters to account for patients variability

often seen clinically.

Chapter 5 presents simulated virtual control trials adapting the glucose-insulin
pharmacokinetics, ICING model developed in Chapters 2 and 3, as well as
the validated subcutaneous Glargine absorption kinetics developed in Chap-
ter 4. Virtual trials were performed to assess the effectiveness of Glargine
as basal insulin replacement for TGC in less critical patients. Efficacy
of Glargine was evaluated by comparison of glycaemic performance using
Glargine in virtual trials against the clinical results from SPRINT protocol.
The overall results show an approach to managing the intravenous to sub-
cutaneous insulin transition that occurs as patients leave intensive care for
less acute wards during their hospital stay. Safe, effective approaches to this
transition will ensure that clinical burden and workload are not increased,

while maintaining the benefits of tight glycemic control.

Chapter 6 presents simulated virtual control trials to seek the optimum con-
troller by using Glargine as basal insulin and SPRINT protocol. The goal
is to seek a protocol that can aid patient recovery, and seamlessly transition

IV insulin in the intensive care unit to subcutaneous insulin that will be
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the sole form of TGC input used in less acute wards. A transition protocol
would enable a relatively labour intensive intravenous insulin with frequent
measurement in the ICU to less intensive, longer acting, subcutaneous in-
sulin in less acute wards with consequently fewer measurements. The op-
timal protocol, SPRINT-1U-+Glargine, has the potential to be effectively

employed in a clinical pilot study.

Chapter 7 presents Monte Carlo analysis to quantify the performance and ro-
bustness of the SPRINT-1U+Glargine protocol developed in Chapter 6.
The protocol is analyzed to assess its robustness towards physiological vari-
ability and sensor errors. For clinical implementation, it is crucially im-
portant to ensure the protocol is robust towards a wide range of expected

variability seen in a clinical setting.
Chapter 8 presents the conclusions of the thesis.

Chapter 9 presents the future avenues for the study with a focus on the pilot
clinical trial to be conducted at Christchurch Hospital’s ICU and High
Dependency Ward.






Chapter 2

Model Development

Metabolic modeling has been a useful tool for the understanding of glucose-insulin
dynamics. During the last decade, a wide variety of models have been proposed.
These models provide better insight, and serve as a platform to understand a
complex physiology with varying degrees of complexity. The primary use of
metabolic models has been the development of model-based measures to assess
metabolic parameters, with a focus on measuring insulin sensitivity [Docherty
et al., 2009; Lotz et al., 2008; Chase et al., 2007; Mari and Valerio, 1997; Bergman
et al., 1981; Parker and Doyle, 2001; Hovorka et al., 2008, 2004b; Wong et al.,
2006a,b].

Models can be grouped into two classes, simple models and comprehensive
models. A simple model has the advantage of having less identifiable parameters,
but at the potential expense of being less physiologically accurate or specific. A
comprehensive model on the other hand, may represent the true or more exact
nature of a system, but can be too complex and generally not identifiable without

extensive data that is not readily available in a clinical setting.

According to American Diabetes Association (ADA), among the two kinds

of models in healthcare are:

e Biological Modeling

e Clinical Medicine

Clinical glycaemic control modeling is a model that includes both of the above

compartments, biological modeling and clinical medicine, and requires a complete
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knowledge of the dynamic system. There is a need for physiological accuracy to
ensure accurate prediction from a known clinical intervention. However, given the
lesser amount of data typically available to fit patient-specific model parameters
for predicting outcomes, it may require less physiological resolution. Hence, most
clinical model-based control applications look for the simplest physiologically

relevant model to be effective.

This chapter examines several forms of existing clinical glycaemic control
models. Intensive insulin therapy and TGC, particularly in ICU, are the sub-
jects of increasing and controversial debate in recent years. Model-based TGC
has shown potential in delivering safe and tight glycaemic management, all the
while limiting hypoglycaemia. A comprehensive, more physiologically relevant
Intensive Control Insulin-Nutrition-Glucose (ICING) model is presented and val-
idated using data from critically ill patients. Two existing glucose-insulin models
are reviewed and formed the basis for the ICING model. Model limitations are
discussed with respect to relevant physiology, pharmacodynamics and TGC prac-

ticality. Model identifiability issues are carefully considered for clinical settings.

This chapter also contains significant reference to relevant physiology and
clinical literature, as well as some references to the modeling efforts in this field.
It then presents a more comprehensive model, ICING (Intensive Control Insulin-
Nutrition Glycaemic Model) from this context. ICING is designed specifically for

use in glycaemic control, particularly in the ICU and beyond.

2.1 Physiological Basis of Glucose-Insulin System

Metabolic modeling has been used to estimate glucose disappearance and insulin
glucose-dynamics for relatively 50 years now. Bolie [1961] is one of the pioneers
in modeling the linear glucose disappearance and glucose-insulin dynamics, in the
simplest form. This model although may be oversimplified, provided the base for
many research on diabetes modeling such as the work by [Ackerman et al., 1964].
With ordinary differential equations to represent the insulin and glucose system,

Bolie [1961] proposed the following model:
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Glucose disappearance:
G = —a1G(t) —aol(t) +p (2.1)

Insulin Kinetics:
I = —as3G(t) —aql(t) (2.2)

where G represents glucose concentration, I is the insulin, a; is rate of liver accu-
mulation of glucose, as is rate of tissue utilisation, as is rate of insulin destruction,

a4 is rate of insulin production, and p is glucose feed.

However, the starting point of glucose-insulin dynamics modeling, and per-
haps the best known, is the Minimal Model of Bergman et al. [Bergman et al.,
1981]. The equation presented below is not the originally published but the most
commonly known. This simple compartment model has two equations for glucose

disappearance, and one for insulin kinetics:

Glucose disappearance:

G = (X —P)G(t)+ PGy + P(t) (2.3)

X = —PX(t)+Ps(I(t)—I) (2.4)
Insulin Kinetics:

P= )+ Y (2.5)

where ¢ is the time, G(t) is the total plasma glucose concentration at time ¢, X (¢)
is proportional to insulin action in a remote compartment, and I(¢) is the plasma
insulin concentration. Inputs to the system include P(t), glucose appearance from
external glucose sources, and u(t), exogenous insulin. There are two terms that
define the steady state or basal plasma glucose and insulin levels under no external
influences, Gy and I,. Three patient-specific parameters, P, P, and P3, arise from
this model, with the ratio P;/P, being the insulin sensitivity index. Signs of P
and P, are changed from the original publication in Equations (2.3) and (2.4) to
have these parameters numerically positive valued per accepted sign conventions
[Carson and Cobelli, 2001]. A graphical representation of this Minimal Model

definition is shown in Figure 2.1.

The model is primarily used in clinical studies. In Bergman [2002], it is men-
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Figure 2.1 Minimal Model of Bergman et al. [1981] as defined by Equations (2.3)—(2.5).

tioned that more than 500 studies can be linked to the Minimal Model [Bergman
et al., 1981]. A major contribution from this model is it provides mean of esti-
mating insulin sensitivity, S;. The model clearly illustrates the three main basic

dynamics that must be captured in a glycaemic control problem:

1. Insulin pharmacokinetics and distribution — from exogenous input to ac-

tion in the periphery

2. Glucose pharmacokinetics and/or appearance, where meal models for P(t)

in Equation (2.3) would add compartments

3. Glucose-insulin pharmacodynamics accounting for the insulin-mediated re-

moval of glucose

However, the model does have some drawbacks particularly in regard to be
used as a clinical glycaemic control [Doran et al., 2004a,b]. Specifically, it does not
account for saturation of glucose removal by insulin [Prigeon et al., 1996; Natali
et al., 2000; Rizza et al., 1981], saturation of insulin transport [Thorsteinsson,
1990; Frost et al., 1973; Ellemann et al., 1987; Prigeon et al., 1996], measurable

and unmeasurable glucose compartments [Cobelli et al., 1992, 1999; Vicini et al.,
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1997; Caumo et al., 1999], or the dynamics of insulin receptors and their mass
[Hovorka et al., 2004a], to name a few. All of these issues have been raised in
the extensive physiological modelling literature, and several modified versions of
this model developed as a result. It is also not identifiable for individuals who
are highly insulin resistant when there is assay error or noise, creating significant

problems for use at the bedside.

After more than 3 decades, the minimal model analysis continues to evolve
and widely studied. Table 2.1 lists several studies that could be linked to Minimal
Model [Bergman et al., 1981].

One of these versions is the study by Van Herpe et al. [2007]. It is a fourth
order model which retains the fundamental structure of the Minimal Model
Bergman et al. [1981]. The model uses an optimized adaptive minimal mod-
eling approach, specifically designed for blood glucose prediction in the critically
ill. The equations that govern the model with parameter descriptions below are
taken from Van Herpe et al. [2007].

G = (P,—Xt)G(t) — PGy + % (2.6)

= PX(t) + P(I(t) — I) (2.7)
I = amaz(0,1,) —n((t) — I,) + % (2.8)
I = By(G(t) = h) — nl(t) (2.9)

where G is the glucose, I is the insulin concentrations in the blood plasma,
X describes the effect of insulin on net glucose disappearance proportional to
insulin in the remote compartment. I, does not have a clinical interpretation
but introduced for mathematical reasons-fraction of insulin concentration derived
from endogenous insulin secretion. G} is the basal value of plasma glucose and
I, is the plasma insulin. Inputs to the model are F; the exogenous insulin flow
and Fg the carbohydrate calories flow, where both are administered intravenously.
Glucose distribution space and insulin distribution volume are denoted by Vi and

V7 respectively. P; represents the glucose effectiveness when insulin remains at the
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basal level. P, and P5 are the fractional rates of net remote insulin disappearance
and insulin-dependent increase, respectively. Endogenous insulin is represented
as the insulin flow that is released in proportion (by ) to the degree by which
glycaemia exceeds a glucose threshold level h. Additionally, n denotes the time
constant for insulin disappearance. In cases where glycaemia does not surpass the
glucose threshold level, h the part that represents endogenous insulin production
from the first part of the equation I; is equal to 0. Finally, « is the scaling factor

for I, while (3 serves to keep the units checked.

To represent typical features of patients seen in the ICU, where intra- and
inter- patient variability are high, the model of Van Herpe et al. [2007] is re-
estimated at frequent intervals. By frequent re-estimation, the model should
better capture the patient’s dynamics. In contrast to the original Minimal Model,
this model introduces endogenous and exogenous insulin, where exogenous insulin
is not presented in the original Minimal Model. In particular, most patients in the
ICU do not have prior diabetes, which means their endogenous insulin secretion
capability is still functioning. In their case, with increased insulin resistance,
exogenous insulin is required. Hence, endogenous and exogenous insulin must
be modelled to capture the unique hyperglycaemic and hyperinsulinamic ICU

patient case.

The Minimal Model [Bergman et al., 1981] performs well during the intra-
venous glucose tolerance test (IVGTT) with a single glucose shot. IVGTT is a
test in which glucose, is given through an IV to test the response of the body in
releasing insulin into blood. This would correspond to how well the body reacts
to glucose and in turn, to insulin. The method is used to test for resistance to
insulin and ability to reduce insulin. However, in the ICU, this carbohydrate
appearance in the Minimal Model [Bergman et al., 1981] is not valid. Hence,
the model is developed with a goal for continuous flow of glucose. To portray
this dynamic, the endogenous insulin section of the Minimal Model [Bergman
et al., 1981] is transformed into two sections, as seen in Equation (2.8- 2.9) in
Van Herpe et al. [2007]’s model.

This predictive control model has not been clinically validated, and only
tested on a simulation basis using the first 48 hours after admission data for 19
critically ill patients. In-silico results, in terms of control behaviour with reference

tracking and suppression of unknown disturbance factors show the potential of
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the model based control algorithm to be used in the ICU [Van Herpe et al., 2009).
However, its predictive performance in validating the intervention chosen has not

been reported.

There have been several other metabolic models used in clinical examination
of critical care patients and glycaemic control [Wong et al., 2006a; Chase et al.,
2006, 2007, 2008¢; Hovorka et al., 2007; Le Compte et al., 2009]. The first model
as reviewed by Chase et al. [2006] is of [Chee et al., 2003, 2004], who used an
optimized PID (proportional-integral-derivative) and sliding mode control, and
focused on applying continuous glucose sensors. Although [Chee et al., 2003,
2004] is a control algorithm and not a physiological model, but the projected

glucose is a control model.

The PID control model from Chee et al. [2003, 2004] is defined:

AU/, if [|Wzone|| > 4.5
2U/L, if 3.6 < ||[Wzone|| < 4.5
2U/h, if 2.7 < [[Wzone|| < 3.6
2U/h, if ||[Waene|l < 2.7

Additional Insulin infusion = (2.10)

where
) 1 24
W zone || = —24 (Z nWzone [n]> (2.11)
Yt \io
and
6U/h, if Ay, > 2 mmol/L
Insulin bolus = ¢ 4U/h, if 1 < Ay, < 2 mmol/L (2.12)
0U/h, if Aypro; < 1 mmol/L
where

6
XY,
Aoy = <ZZ=1 )Aw (2.13)

Z?:l Xi2
Y= .15
= Tmaz —2i_ Lmin (216)
z»] — Ymax + Ymin (217)

2
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Tmae and T, are the maximum and the minimum time values in the 30-min
window, and ¥4 and Y, are the maximum and the minimum blood glucose

levels in the 30-min window.

The integral control Equation (2.10) is implemented when sliding tables do
not provide adequate glycemic reduction, and the amount of additional insulin
is calculated using Equation (2.11), a normalized weighted average of the blood
glucose level (BGL) zones using a 2-hour triangular window. Derivative control
is implemented using Equations (2.12)—(2.17). Expert control is implemented
by keeping an active sliding table and ‘offsetting’ the recommended sliding table
input according to several conditions, based on Equations (2.10)—(2.12), in order

to determine a the control input.

Another model is that of Hovorka et al. [2002] that forms the basis of MPC
model. However, it is more of a physiological research, specifically a tracer study
on healthy adults. Hence, a better reference of models that have been used for
clinical control is of Hovorka et al. [2004a], which was used for controlling Type
1 diabetes.
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VaG(t) (2.18)
—FR + Ug(t) + EGPO[l — l'g(t)]
Qa(t) = 1 (H)Q1(t) — [k1z2 + 22(0)]Q2()y() G (t) = Q‘;_gf) (2.19)
Fi=S r o (2.20)
2.15 otherwise

P { 8.003(0 — Ve i)fﬂiiigsemmol/L (2.21)
Us(t) = DGAGt:;t/tmaz,G (2.22)
Si(t) = u(t) — tSlﬂ (2.23)
= - 228
I(t) = UIT@) — kI(t) (2.25)
Ui (t) = tS 2(1) (2.26)
T1(t) = —kaw1(t) + kI (t) (2.27)
Bo(t) = —kaaw2(l) + k(1) (2.28)
ZL’3(t) = —k’alxg(t) + kbgl(t) (229)

where ()7 and ()5 represent masses of glucose in the accessible and inaccessible

compartments, k1o the transfer rate between the inaccessible and accessible com-

partments, Vg the distribution volume of the accessible compartment, y and G

the measurable glucose concentration, and EG F, the endogenous glucose produc-

tion extrapolated to the zero insulin concentration. F§; is the total non-insulin-

dependent glucose flux corrected for the ambient glucose concentration and Ffg is

the renal glucose clearance above the glucose threshold of 9 mmol/L. Ug(t) is the

gut absorption rate, dependent upon the carbohydrates digested, D¢, carbohy-

drate bioavailability, Ag, and the time-of-maximum appearance rate of glucose
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in the accessible compartment, t,,,, . The insulin subsystem is described by
Equations (2.23)—(2.29). S; and Sy are a two-compartment chain for absorp-
tion of subcutaneously administered rapid-acting insulin, u(¢) the insulin input
(bolus/infusion), and ¢,,4, ; the time-to-maximum insulin absorption. I(¢) is the
plasma insulin concentration, k. is the fractional elimination rate and V; the dis-
tribution volume. The insulin action subsystem consists of three components,
endogenous glucose production, transport/distribution and disposal (x, x5 and
x3). Finally, k,; and ky; (¢ = 1,...,3) represent the activation and deactivation
rate constants of insulin action, respectively. A graphical representation is shown

in Figure 2.2.
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Figure 2.2 Glucose-insulin compartmental model of Hovorka et al. [2004a] as defined by
Equations (2.18)-(2.29).

The MPC approach is most suitable for systems with long delays and open-
loop characteristics. However, a similar version of this approach is used for ICU
patients in the eMPC approach [Plank et al., 2006; Hovorka et al., 2007]. It
has been trialled for 48 hours on cardiovascular surgery ICU patients with good

results. Again, its predictive ability and validity have not been reported.
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2.2 Glucose-Insulin Physiology Model

Two clinically validated glucose-insulin physiology models set the basis for this
study. The model from Chase et al. [2007] was developed and validated specifi-
cally for glycaemic level management in the ICU. It is very loosely based on the
Minimal Model [Bergman et al., 1987] with additional non-linear terms and a
grouped term for insulin sensitivity. Unlike the Minimal Model, this model cap-
tures the fundamental dynamics seen in critically ill patients, yet has a relatively
simple mathematical structure enabling rapid identification of patient-specific pa-
rameters [Hann et al., 2005]. This model only requires measurements in blood
glucose levels. Therefore, it can be used for identification of 1-2 critical parame-
ters at the bedside for clinical real-time identification and control. This structure
has been widely used in clinical TGC studies and other analysis [Wong et al.,
2006a; Lonergan et al., 2006a,b; Lin et al., 2006, 2008; Le Compte et al., 2009].

The second model is from Lotz et al. [2008] and was developed for high resolu-
tion diagnosis of insulin resistance with minimal clinical intensity and effort. The
modeled insulin sensitivity has high correlation to the euglycaemic hyperinsu-
linemic clamp (EIC) and high repeatability [Lotz et al., 2008, 2006]. This model
has more patient-specific parameters, but is not suitable for real-time patient-
specific parameter identification because it also requires non-real time plasma
insulin and C-peptide assays [Lotz et al., 2009]. The laboratory turnaround time
for plasma insulin and C-peptide levels is typically overnight which is not prac-
tical for supporting therapy selection. Recent work has sought to eliminate this
issue in healthy subjects while using this model, but at a less of model precision

[Docherty et al., 2009].

This section quickly reviews both models, and presents a new combined model
that is more comprehensive and has a stronger physiological relevance for use in
the ICU and less acute wards.

2.2.1 Critical Care Glucose-Insulin Model

Equations (2.30)—(2.34) presents the model used for glycaemic control in intensive
care from Chase et al. [2007], hereafter referred to as the “ICU Model”.
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ICU Model
. Q1) P
G pGG(t) S[(G(t) + GE)l I OégQ(t> + VG (230)
Q = —kQ(t)+EkI) (2.31)
[' — nl<t) + ueac(t) (2.32)

14 al(t) Vi

P(tl <t< ti-i—l) = ]DH_l + (P(tl) — Pi_i_l)e_kpd(t_ti) where pi+1 < P(tz) (233)
P(tl <t < ti+1) = ]3i+1 + (P(tl) — PiJrl)@ika(titi) where piJrl > P<t1> (234)

A schematic of the model is shown in Figure 2.3. The symbols G' [mmol/L] de-
notes the glucose above an equilibrium level, Gg [mmol/L|. Plasma insulin is
I [mU/L] and exogenous insulin input is u.,(t). The effect of previously infused
insulin being utilized over time in the interstitium is represented by ¢ [mU/L],
with & [1/min] accounting for the effective life of insulin in the system. Pa-
tient endogenous glucose removal and insulin sensitivity are pg [1/min] and
S; [L/mU/min] respectively. The parameter V; [L] is the insulin distribution
volume and n [1/min] is the constant first order decay rate for insulin from
plasma. External nutrition is P(¢) [mmol/min]. In Equations (2.33)—(2.34),
kpe [1/min] and k,q [1/min] are the rise and decay rates of exogenous (enteral)
plasma glucose appearance, and P, and P, are the stepwise consecutive enteral
glucose feed rates used to model dextrose control. The glucose distribution vol-
ume is Vg [L]. Michaelis-Menten functions are used to portray saturations, with
parameter «; [L/mU] used for saturation of plasma insulin disappearance, and

ag [L/mU] for saturation of insulin-stimulated glucose removal.

This model was developed explicitly for critical care glycaemic control [Chase
et al., 2007; Wong et al., 2006b; Chase et al., 2005; Lin et al., 2008], and its
fundamental structure was validated on clinical data from critically ill patients
[Chase et al., 2008¢, 2010c; Suhaimi et al., 2010]. All the compartmental transport
and utilisation rates are treated as constants except insulin sensitivity, S;. Insulin
sensitivity Sy is the critical dynamic parameter, and is typically fitted to patient
data hourly [Hann et al., 2005], producing a step-wise hourly varying profile.
The SPRINT glycaemic control protocol [Chase et al., 2008c; Lonergan et al.,



32 CHAPTER 2 MODEL DEVELOPMENT

Simple equations describing Other insulin-independent

glucose absorption through glucose uptake pxG
naso-gastric feeding
P Insulin-independent
oo Lo : glucose uptake through
receptor-bound msulin
receptor |
binfi?ng : SJX(G+GE)X1+§GQ

Plasma
Tnsulin Interstitial
insulin

degradation

Ingulin
injections

Insulin clearance

1
I+af

nx

Figure 2.3 Schematic of Critical Care Glucose-Insulin Model defined in Equations (2.30)—
(2.34). The model is adopted from Chase et al. [2007] and referred to as the “ICU Model”.
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2006a,b] was developed using this model. Importantly, the pre-trial virtual trial
simulation of SPRINT gave very similar results to the subsequent actual clinical
implementation results [Chase et al., 2007], providing a further measure of model

validation.

However, this model does not describe the gastric uptake of glucose in a
completely realistic way. Equations (2.33) and (2.34) express simple exponential
rises and decays of glucose absorption, which eventually reach the steady state
equals to the feeding rate. This simple expression works well in critical care,
where nasogastric feeding rate is not adjusted frequently. If the feeding rate is
changed more frequently than once every hour, Equations (2.33) and (2.34) fail
to describe the gastric absorption correctly. In particular, the amount of glucose
fed does not equate the area under the glucose appearance curve. Figure 2.4

demonstrates this issue graphically.

This model also uses an “equilibrium blood glucose level” term, Gg, which is
usually set to the patient’s blood glucose level at the start of insulin therapy or
a long moving average. This term effectively addresses the endogenous balance
of glucose and insulin. Hence, this model does not explicitly express endogenous
insulin production. Thus, when there is a significant shift in this balance in a
patient, for any number of reasons [Chase et al., 2005; Wong et al., 2006b; Doran
et al., 2004a], G often needs to be adjusted to capture the patient’s (then)
current clinical glucose-insulin dynamics. Hence, the term is non-physiological,
unidentifiable and ignored in later versions of this model [Chase et al., 2007; Le
Compte et al., 2009; Lin et al., 2008; Blakemore et al., 2008; Suhaimi et al., 2010].

These latter models also includes endogenous insulin terms in the same form.

This model also has relatively simple insulin kinetics compared to other more
extensive models [Thorsteinsson, 1990; Ferrannini and Cobelli, 1987a,b; Toffolo
et al., 2006]. It does not explicitly express different routes of insulin clearance and
transport from plasma. Instead, the lumped out-flux from plasma is expressed by
a saturable term —n/l /(1 + a;I). In addition, as only kI appears as an input to
interstitial insulin @, the difference between n and &, (n-k) is implicitly the insulin
clearance by liver and kidneys, which was clinically validated in Lotz et al. [Lotz
et al., 2006]. The insulin flux between plasma and interstitial is also only one way
in this model, ignoring the diffusion from interstitium back to plasma, as it was

designed for IV TGC using bolus delivery. Therefore, the insulin concentration
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Figure 2.4 Gastric glucose absorption issues with the Critical Care Glucose-Insulin model of
Equations 2.33 and 2.34 depicted in red dots, (- - - ). The model does not realistically describe the
gastric uptake of glucose, portraying simple exponential rises and decays of glucose absorption.
This model works well in the ICU where feed, P(t) is not adjusted frequently. The solid blue
line, () shows the ICING feed model of Equations (2.41)—(2.43). This model is suitable for
modeling meal ingestion over a short period of time as it conserves ingested glucose.
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gradient between plasma and the interstitium using bolus delivery is always large
enough that diffusion back to plasma is negligible. However, this case and mode
of insulin delivery is less typical in the ICU in general and will introduce error

no matter the delivery mode.

2.2.2 Glucose-Insulin Model for Insulin Sensitivity Test

Equations (2.35)—(2.37) presents the model used for insulin sensitivity testing
from Lotz et al. [2008], hereafter referred to as the “S; Test Model”.

St Test Model

G = —peG(t) — Si(G(l) + Gg) 7 figé)(t) + PV(;) + EGP(t) (2.35)
Q = U1~ QM) = neQ() (2:36)
Q
P = ) - s = T - (o) + M
+(1 - L)u“"f) (2.37)

where the nomenclature for this model is largely the same as that for the critical
care model from Chase et al. [2007] in Section 2.2.1 and Equations (2.30)—(2.34).
This model has more parameters and more extensive insulin kinetics. It includes
the endogenous glucose production rate EGP [mmol/min|, as well as the endoge-
nous insulin production 4., [mU/min]. The endogenous insulin production can be
calculated from C-peptide measurements using a well validated insulin-C-peptide
kinetics model [Van Cauter et al., 1992]. Endogenous insulin goes through first
pass hepatic extraction, where x is the fraction of extraction. This model also
has more physiologically specific insulin transport parameters compared to Chase
et al. [Chase et al., 2007], where ng is the kidney clearance rate of insulin from
plasma [1/min|, ny, is the liver clearance rate of insulin from plasma [1/min],
ny is the diffusion constant of insulin between compartments [L/min], and n¢

is the cellular insulin clearance rate from interstitium [1/min]. Finally, it also
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Figure 2.5 A schematic of glucose-insulin sensitivity test as defined in the Equations (2.35)—
(2.37). The schematic and its pharmacodynamic interaction is adopted from Lotz et al. [2008].
In this study, the model is referred to as the “S; Test Model”.

uses different volumes for each compartment, where Vp is the plasma volume
(+Fast exchanging tissues) [L] and V{, is the interstitial fluid volume [L]. The

experimental Vp and Vg are however very close [Lotz et al., 2008].

In [Lotz et al., 2008; Van Cauter et al., 1992], measurements from insulin and

C-peptide are used to identify n; and z, for each person. Sy and Vi are then cal-

culated for each person using blood glucose measurements. All other parameters

are treated as population constants. The insulin sensitivity S; identified using
this model correlates highly to EIC results [Lotz et al., 2008, 2006]. Therefore,

this model is effective as a diagnostic tool for insulin resistance, but considered

too complex for use in TGC for ICU patients.

2.2.3 Intensive Control Insulin-Nutrition Glycaemic Model-

ICING

The new and more physiologically comprehensive model developed from the best
aspects of both models [Chase et al., 2007; Lotz et al., 2008] is defined:
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Q) P(t)+ EGP,— CNS

G = —pGG(t)—SIG(t)1+aG 0 e (2.38)

Q@ = w10 - Q) = e 2 (2:39)
Io= —ngl(t) - ZLO{S)@ —ni(I(t) — Qb)) + “e(/ft)

+(1 - m%ﬁ: (2.40)

Pl = —d,P1+D(t) (2.41)

P2 = —min(dyP2, Ppay) + di P1 (2.42)

P(t) = min(dyP2, Ppay) (2.43)

ton(t) = hye (2.44)

A schematic of the model is shown in Figure 2.6. The nomenclature for this
model is largely the same as defined in Sections 2.2.1 and 2.2.2. However, this
model does not use “equilibrium blood glucose level” G anymore, and G(t)
is now the absolute (total) blood glucose level, per more recent works [Wong
et al., 2008c; Suhaimi et al., 2010; Blakemore et al., 2008; Le Compte et al.,
2009]. This model has an additional insulin independent [Hasselbalch et al.,
1999] central nervous system glucose uptake, CN.S, as well, with value between
0.29-0.38 mmol/min [Hasselbalch et al., 1996, 1998, 1999; Baron et al., 1988;
Takeshita et al., 1972; Cohen et al., 1967; Strauss et al., 2003; Hattori et al., 2003;
Bingham et al., 2002]. Finally, the model also has a constant “basal” endogenous
glucose production term EG P, for the theoretical maximum endogenous glucose

production for a patient with no exogenous glucose or insulin.

This EGP, term is the theoretical endogenous glucose production for a pa-
tient under no presence of exogenous glucose or insulin. Endogenous glucose
production is difficult to obtain in clinical setting without extensive clinical test-
ing. The testing involves euglycaemic clamp for insulin sensitivity measure, and
radioactively labelled glucose is given intravenously 120-180 mins before clamp
begins. Multiple samples are drawn at baseline (before clamp) and after steady

state is achieved, to measure specific plasma glucose activity. The testing is labo-
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rious and time-consuming thus the value of EG P, can’t be obtained in real-time.
Moreover, the actual value of clinical testing can be affected since radioactively
labeled glucose is lost in metabolic pathways. The actual quantification of the en-
dogenous glucose production is beyond the scope of this thesis but it is described
extensively in Radziuk [1987].

Therefore, the term EGP, is a constant in this model, whereas the EGP
in Lotz et al. [2008] is a function of time. Experimentally, endogenous glucose
production (i.e., time-varying measurements) would be suppressed in normal in-
dividuals with increasing blood glucose level G(t) and increasing insulin in the
interstitial space Q(t) [DeFronzo and Ferrannini, 1991]. However, as noted in
Chapter 1, one feature of the ICU patients studied is unsuppressed EGP can
increase with G(t) instead of decrease. In this case, EGPF, is taken as a constant
and modulated by glucose using the pg term of Equation (2.38). Any variation
in the actual value of EG P, would be described by the combining effect of EG P,
pe and S7. These three parameters represent the whole body insulin sensitivity
of the patient. For instance, if EFG P is high, this would be reflected with lower
values of Sy, which in turn would mean a higher value of glucose. The decision
to keep EG P, as a constant and within a physiological range is justified, since at

any instant the term is undermodeled, it will be reflected in pg and Sj.

As in Equation (2.38), insulin independent glucose removal, excluding central
nervous system uptake C'N .S and the suppression of endogenous glucose produc-
tion from EGP, with respect to G(t) are represented by pe. Insulin mediated
glucose removal and the suppression of EGP from EGP, is represented by S;. ST,
thus effectively represents the whole-body insulin sensitivity, which includes tissue
insulin sensitivity and the action of Glucose Transporter-4 (GLUT-4). The action
of GLUT-4 is associated with the compounding effect of receptor-binding insulin
and blood glucose, and its signaling cascade is also dependent on metabolic con-
dition and can be affected by medication [McCarthy and Elmendorf, 2007; Foster
and Klip, 2000; Bryant et al., 2002; Andersen et al., 2004]. Therefore, St is time
varying and can reflect evolving patient condition. Its variation through time can
be significant, particularly for critically ill patients whose metabolism is extreme
and highly dynamic [Lin et al., 2006, 2008].

Equations (2.39) and (2.40) define the insulin pharmacokinetics similarly to
Lotz et al. [2008] and Equations (2.36)—(2.37). Insulin flux from plasma is sat-
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urable, as its degradation after binding in the interstitium [Duckworth et al.,
1998]. The receptor-bound insulin Q)/(1 + ac@) is also the insulin effective for
glucose removal to cells. Hence this term also appears in Equation (2.38) for
glucose dynamics. Note that n; in Equations (2.39) and (2.40) has unit [1/min]
rather than [L/min] as in Equations (2.36) and (2.37). This is because the new
model in Equations (2.38)-(2.44) does not use different volumes for plasma and
interstitial insulin distribution, since the experimental values are very similar in
Lotz et al. [2008]; Lotz [2007]. To compare and convert n; from Lotz el al., its

value needs to be divided by Vp from Lotz et al., to obtain the same units.

These two equations are largely similar to that of Lotz et al. [2008]. The
insulin degradation from interstitial space is saturable in this model. It was
found that insulin degradation from interstitial space is by interaction with insulin
degrading enzyme after receptor binding [Duckworth et al., 1998]. Therefore, it
is the receptor bound insulin that is degraded from interstitium. Since insulin
binding is a saturable process due to limited number of receptor available, the
amount of bound insulin is expressed by Q/(1 + ag@Q). It is also this receptor
bound portion of insulin that is capable of mobilizing GLUT-4 and remove glucose
from plasma. Hence, this term is the part responsible for insulin-mediated glucose

removal in Equation (2.38).

Equations (2.41)—(2.43) present the gastric absorption of glucose-a model
that describes compartments of stomach, gut and the rate of glucose appearance.
Specifically, P1 [mmol] represents the glucose in the stomach while P2 [mmol]
represents the gut. The complex process of digestion is assumed to be linear
and presented by linear transport rates between the compartments, d; [1/min]
and dy [1/min]. Amount of dextrose from enteral feeding is D(¢) [mmol/min].
Glucose appearance, P(t) [mmol/min] from enteral food intake D(t), is the glu-
cose flux out of the gut P2. This flux is saturable, and the maximal out flux
is Ppaz = 6.11 [mmol/min]. The addition of this saturable gut absorption rate,
P,... effectively makes the gut absorption a non-linear process, hence more physi-
ologically true. Typically, for ICU patients on enteral feeding, P, is not reached.
Any additional parenteral dextrose is represented by PN (t). This dextrose ab-
sorption model conserves ingested glucose, and therefore is also suitable for mod-
eling meal ingestion over a short period of time in contrast to the simpler model
of Equations (2.33) and (2.34). The previous feed model describe by Equations

(2.33) and (2.34) is only a simple mathematical approximation suitable for model-
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ing relatively constant enteral feeding. This meal model which describes the main
compartments of digestion with respect to patients who are either on enteral feed
or TPN, is sufficient. However, once patients start to eat a more extensive model

is required.

Equation (2.44) is a generic representation of endogenous insulin production
when C-peptide data is not available from the patient for specific identification
of its production. Endogenous insulin production, with the base rate being k;
[mU /min], is suppressed with elevated plasma insulin levels. The exponential
suppression is described by generic constants ko and k3. Model parameters as-
sociated with endogenous insulin production, eventhough are not identifiable in
real-time, can be kept at population constants which is within justifiable phys-
iological range. To ensure its robustness, sensitivity test must be performed.
Therefore, eventhough the model of Lotz et al. [2008] required non-real time
plasma-insulin and C-peptide data, it will not affect the efficacy of the Intensive
Control Insulin-Nutrition Glycaemic Model, as the endogenous insulin production

for critical and less critical patients will be suppressed with exogenous insulin.

The major difference between this model and the models of Chase et al. [2007]
and Lotz et al. [2008] is the elimination of Gg. The concept of “equilibrium blood
glucose level” is ambiguous and hard to determine in a dynamic situation. For
the experimental setting in Lotz et al. [2008], patients are subjected to overnight
fast before insulin sensitivity testing. Therefore G can be assumed and obtained
as the first blood glucose measurement in insulin sensitivity test. However, it is
not possible to determine Gg correctly for a patient just admitted to the ICU
needing insulin therapy as they are under an extreme metabolic state. This model
eliminates G but uses a constant FGP,. This allows the model to adapt to the
patient’s dynamic through ps and S;, which represent insulin-independent and
insulin-dependent glucose removal respectively. Because of this change, pg, St
and EG P, need to be identified for this model. Parameter identification method

is discuss in detail in the following chapter.
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2.3 Summary

Focusing on concept and development of a model, a comprehensive, more physio-
logically relevant glucose-insulin dynamic system model, ICING (Intensive Con-
trol Insulin-Nutrition Glycaemic Model) is developed in this chapter. The IC-
ING model is an integration and improvement of two clinically validated glucose-
insulin physiological models. The new model has more explicit physiological
relevance. Glucose utilisation and its endogenous production in particular, are
more distinctly expressed. A more realistic model for gastric glucose absorption
accounting for the stomach, gut and saturable glucose appearance is also intro-
duced. Finally, the model also includes explicit pathways of insulin clearance and

transport from plasma, which reflects biological mechanisms.



Chapter 3

Parameter Identification and Dynamic System
Model Validation

This chapter presents the parameter identification method used to identify critical
constant population parameters in the developed ICING model of the previous
chapter. The methodology (rigorous) on finalising model parameter values and
thus, which dynamics are important is discussed in this chapter. The validation
outcome goals on prediction and fitting error are part of the methodology. Iden-
tification of critical constant population parameters was performed in two stages,
thus addressing model identifiability issues. It is a critical aspect of this modeling

approach to ensure clinical utility.

Model predictive performance is the primary factor for optimizing population
parameter values. The use of population values are necessary due to the lim-
ited clinical data available at the bedside in the clinical control scenario [Hann
et al., 2005; Lotz et al., 2008]. To validate these choices, a sensitivity study to
confirm the validity of limiting time-varying parameters to hourly identified in-
sulin sensitivity, Sy is also presented. Insulin sensitivity, Sy, the only dynamic,
time-varying parameter, is identified hourly for each individual. All population
parameters are justified physiologically and with respect to values reported in the
clinical literature. The parameter sensitivity study confirms the validity of limit-
ing time-varying parameters to S; only, as well as the choices for the population

parameters.

The ICING model is validated against clinical data from critically ill patients.
It is assessed for both its fitting and, more critically for model-based tight gly-
caemic control, its predictive performance. The outcome goal is a next generation

TGC control method suitable for developing model-based insulin therapies, and
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capable of delivering real-time model-based TGC with a very tight prediction

error range.

3.1 Validation Cohort

The total number of patients that were on SPRINT glycaemic control protocol
study [Chase et al., 2008c¢], is 394 patients. SPRINT is a model-derived protocol
implemented at the Christchurch Hospital Department of Intensive Care. From
these 394 patient records, patients who stayed less than 72 hours in the ICU,
were excluded from model validation. It has been identified that patients with
length of stay greater than 3 days were to benefit more from intensive insulin
therapy than short-stay patients [Van Den Berghe et al., 2006a]. Moreover, for
model parameter identification sufficient data measurements are needed for model
parameter evaluation. Patient with a short stay would not fit in this criteria.
Hence, this cohort (> 3 days) is of a greater interest for validating the glucose-

insulin pharmacodynamics models for glycaemic control.

Model validation was thus performed on data from 173 patients (42,941 to-
tal hours) that were on the SPRINT TGC protocol for 3 or more days, from
August 2005 to September 2007 [Chase et al., 2008c|. Validation is performed
on data of critically ill patients instead of patients in a high-dependency unit as
Christchurch Hospital does not until recently have patients in the step down unit.
Data was collected for all BG measurements, insulin administered and nutrition
given. Insulin used was Actrapid while Resource Diabetics Norvatis or Glucerna
was used for nutrition. This cohort had statistically significant hospital mortal-
ity reductions of 25-40% depending on length of ICU stay, as well as significant
reductions in the rate and severity of organ failure [Chase et al., 2010b]. These
patients had long enough stays to exhibit periods of both dynamic evolution and
metabolic stability. Hence, they usually reached a more stable condition and were
responding to the glycaemic control protocol used in the Christchurch Hospital
ICU, New Zealand.

Partition of test and validation were not performed since the method works
well with modest or small data sets, where few patients may dominate results

one way or another. With more than 42,000 hours worth of data, any outliers
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would not be significant. Thus, performing data partitioning would only add

complexity and unnecessary in this context.

To evaluate the severity of patient’s disease and for comparison of cohort,
particularly to assess the efficacy of different protocols with different settings,
an APACHE II (Acute Physiology And Chronic Health Evaluation) ICU scoring
system is used. Patient is more severe and at a higher risk of death with higher
scores. The median APACHE II score for this cohort is 19 [IQR:16, 25] and the
median age is 64 [IQR:49, 73] years old. The percentage of operative patients is
33%. This cohort broadly represents the cross-section of patients often seen in
the ICU. Table 3.1 shows the cohort characteristics covering medical condition,

sex, APACHE II score and age.

Table 3.1 Model Validation Cohort Summary

N 173
Age (median [IQR]) 64 [49,73]
Percentage of Males 63.58%
APACHE II Score (median [IQR]) 19 [16,25]
Total Length of SPRINT (hours) 42941
Operative
Cardiovascular 10.40%
Respiratory 1.73%
Gastrointestinal 13.87%
Neurological 1.73 %
Sepsis 0
Trauma 4.04%

Other(Renal,metabolic,orthopaedic) 1.15%

Non-Operative

Cardiovascular 6.93%
Respiratory 24.27%
Gastrointestinal 7.51%
Neurological 5.78 %
Sepsis 8.67%
Trauma 9.82%

Other(Renal,metabolic,orthopaedic) | 4.04%
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3.2 Parameter Identification

The introduction of EG P, and its implied relationship with pg and Sy in the new
ICING Model in Chapter 2.2.3 compared to the ICU Model in Chapter 2.2.1,
requires EGP,, pg and S; to be identified. Apart from pg and EGPF,, model
parameters associated with insulin kinetics, primarily ng, np, nc and n; also
need to be evaluated for validation and use with ICU patient data. Since ICU
patient data only contains blood glucose levels, feed rates (via enteral nasogastric
or parenteral routes) and insulin inputs (infusion and/or bolus), the parameter
identification and model validation in this study were performed in two stages to

avoid identifiability issues.

The first stage focuses on glucose dynamics and substitutes the glucose equa-
tion in the ICU model Equations (2.30), (2.33) and (2.34) with Equations (2.38)
and (2.41)—(2.43). Identification of pg and EGPF, as model constants in Equa-
tion (2.38) is performed in this stage. The model used in this stage, (Equations
(2.31), (2.32), (2.38) and (2.41)—(2.43)) is referred to as the ‘Intermediate Model’.
The second stage focuses on insulin kinetics and transforms the model into its
final form defined by Equations (2.38)—(2.44). Identification of insulin kinetics

parameters is performed in this stage.

Insulin sensitivity, Sy, the critical dynamic parameter, is identified hourly us-
ing an integral based method for a grid of pg and EG P, values [Hann et al., 2005].
Optimal parameter values for pg, EG P, and insulin kinetics are chosen accord-
ing to the model’s goodness of fit and, more importantly, the one hour forward
prediction accuracy. The goodness of fit is simply the error between the clinical
blood glucose measurements and the identified model generated blood glucose
levels. The predictive ability looks at how accurately the model can forecast clin-
ical blood glucose levels for known interventions one hour ahead. The prediction
is made by assuming the current fitted hourly S; for the next hour, and calcu-
lating the model predicted blood glucose level for the next hour using Equation
(2.38) and the clinical records of insulin and feed. Importantly, better predictive
performance implies better model-based clinical glycaemic control performance.
Therefore, predictive performance is the primary criterion, with goodness of fit
second, in determining the best parameter values. Finally, a sensitivity study is

performed on the other parameters treated as population constants. This verifies
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the validity of using population constants for these parameters.

Intra- and inter- patient variabilities are examined by looking at the data on
a by-cohort or per-patient basis. By-cohort analysis looks at the statistics on all
the available hourly fitting and prediction errors (weighting each hour equally),
whereas per-patient analysis looks at the statistics on each individual patient

(weighting each patient equally).

Essentially the model improvements from the ICU model to the ICING model
are made in two stages: firstly on the glucose compartment, secondly on the
insulin pharmacokinetics. During each stage, the important population constant
parameters are optimised using grid-search methods. The grid-search approach
is robust to measurement noise and can provide an assessment of parameter
sensitivity. Moreover, if the decision space or range to be set up is known and
sufficiently covers the physiological range, then grid-search approach is the best
method. Furthermore, since the cost function being minimized is multi-variable
(fit, predict, median and 90% interval) the variable space may be non-convex.
Thus, grid-search will ensure all minima is located and the best value would be
chosen. The only drawback is the computational burden, as each grid point will

be evaluated.

During the first stage of improvements on the glucose compartment, EGP,
and pg are optimised as a pair. The insulin pharmacodynamics are kept as
in Equations (2.31) and (2.32) during this stage-as the constant parameters in
Equations. (2.39) and 2.40 are yet to be optimised. In the second stage of model
improvement, the ICING model takes its complete form and the constant insulin
pharmacokinetics parameters are optimised. Finally a re-assessment of pg and
EGP,, as well as a parameter sensitivity using the completed ICING model is

performed.

The following section describes in detail the parametric grid identification of
pa, EG P, and the insulin kinetics parameters. The cost function being minimized
is effectively the median and 90% interval of fitting error, as well as median and
90% of prediction error where prediction precedes fitting error. The goal is to find
the best population parameters. The overall parameter identification process and
the stages of model transformation are shown as a flowchart in Figure 3.1. Note

that the second stage has three components, which thus include the validation
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of Stage 1 values after the Stage 2 to ensure the overall integrity of the resulting

model.
Equations Model
INSULIN MODEL
Equations (2.31)-(2.32)
GLUCOSE MODEL +
Equations (2.38) INTERMEDIATE
and (2.41)-(2.43) MODEL
Equations (2.38)-(2.44) ICING MODEL

v

Parameter

Identification

Stage

Identification of pg

)

I

Identification of
insulin kinetics
parameters,
Ri, R, Be and #n;

I

Re-Identification
of p; and EGP,

v

:

Parameter

sensitivity

analysis on
Nk, Ni, N, and ag

Stage 1

Stage 2a

Stage 2b

Stage 2c

Figure 3.1 Flowchart of the parameter identification process for the ICING model develop-

ment.

3.2.1 Identification of p; and FGP, — Stage 1

In the first stage of model improvement, ps and EG P, are optimised as a pair.

Constant parameter values used in this stage of parameter identification can be

seen in Table 3.2. These constant parameters are consistent with values found

in surveys of population studies [Wong et al., 2006b; Lin et al., 2008; Wong

et al., 2008c|]. These values have been verified for their suitability of being set

to population constants in a previous parameter sensitivity study [Hann et al.,

2005], as well as in clinical glycaemic control and analysis studies [Le Compte

et al., 2009; Wong et al., 2006b; Chase et al., 2005; Blakemore et al., 2008|.

The same integral fitting method used for S; cannot be applied to either pg
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or EGP,. In particular, p; and S; are both coupled to the first order solution
of G(t). Consequently, a unique solution cannot be identified. In addition, pg
trades off with EGP,. Therefore, a grid analysis of pg and EGP, is used to find

the most suitable combination of parameter values.

More specifically, patient blood glucose data are fitted by integral identi-
fication of S;, while holding ps and EGP, constant at a selected grid coordi-
nate. The grid covers pg = 0.001 — 0.1 [1/min] with increments of 0.001, and
EGP, = 0.0 — 3.5 [mmol/min] with increments of 0.1. These values more than
span the clinically relevant range. The resulting fitting and prediction error are
calculated for each patient at each pg, EG P, coordinate. The resulting errors are
than analysed across all 173 patients at each grid coordinate to find an optimal

combination.

3.2.2 Identification of Insulin PK Parameters — Stage 2

Model improvements on insulin pharmacokinetics (PK) are made in the second
stage, and the model takes its final form as defined in Equations (2.38)-(2.44).
Parameters associated with insulin kinetics are identified in this stage. Lotz
et al. [2008] uses measurements from insulin and C-peptide to identify patient-
specific liver clearance ny, and first pass endogenous insulin hepatic uptake, x,
in Equations (2.36)—(2.37). In particular, the value for kidney clearance, ng,
was taken from a well validated population model of C-peptide kinetics, and the
transcapillary diffusion rate, n;, was calculated by a method proposed by the

same authors [Van Cauter et al., 1992].

For this study, ICU patient data does not contain the insulin measurements
to allow for unique identification of n; and x;. However, the transition from
Equations (2.31) and (2.32) to Equations (2.39) and (2.40) makes n; the critical

parameter to be investigated.

The interstitial insulin transfer rate, k, in Equation (2.31) was calculated to
correspond to the active interstitial insulin half-life [Chase et al., 2005]. Effec-

tively, Equation (2.31) thus represents a delay compartment for insulin action in
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the interstitium, and can be re-written:

Q(t) = /OtI(T)e_k(t_T)dT (3.1)

On the other hand, the analytical solution of @ in Equation (2.39) is:

Q(t) =ng /t ](T)e_(”IJr"C)(t_T)dT (3.2)
0

Therefore, the decay rate of interstitial insulin is n; + n¢ in Equation (2.39), and

this rate should be comparable to k in Equation (2.31).

Studies indicated that the steady state interstitial to plasma insulin ratio is
between 0.4 — 0.6 [Gudbjornsdéttir et al., 2003; Sjostrand et al., 1999; Sjostrand
et al., 2000]. Lotz et al. [2008] uses a population value of 0.5 for this ratio. There-
fore n; = ne can be assumed from the steady state calculation using Equation
(2.39) provided the steady state @ is low so that Q/(1 + acQ) =~ Q.

In this study, a grid search of n; is used to obtain a suitable model value.
Again, integral fitting is used to identify hourly S;. The grid covers n; = ng =
107* — 0.02 [1/min]. The fitting and prediction error are calculated at each
grid point for each patient. Other constant parameter values are listed in Table
3.2. The value for ng is taken from Van Cauter et al. [1992] and ny, is the mean
fitted value found in Lotz et al. [2008] and Lotz [2007]. First pass hepatic insulin
uptake, x, was also a fitted parameter in Lotz et al. [2008], and is coupled with
liver clearance ny. In this study, z; is assumed to be 0.67, which is within the
range reported by Lotz et al. [2008] and Lotz [2007]. More specifically, x, has
a relatively insignificant role in this study compared to Lotz et al. [2008] and
Lotz [2007], as patients on intensive insulin therapy can be assumed to have their
endogenous insulin production suppressed due to elevated plasma insulin levels
[Chiasson et al., 1980; Insel et al., 1975]. The other constant parameters are kept
the same as in the identification of pg and EGP,.
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3.2.3 Re-assessment of p; and FGP,—Stage 2b

Following the Stage 2 identification of n;, a re-assessment of the population con-
stant values of pg and EGP, from Stage 1 is performed using the complete 1C-
ING model. The grid analysis covers pg = 0.005 — 0.025 [1/min| and EGP,=
0.5 — 2.5 [mmol/min| with an increment step of 0.0033 and 0.33 respectively.
The analysis is performed as before with prediction and fitting error assessed.
The goal is to ensure the values used in Stage 2a are still justified. Note that, if

necessary, Stage 2a and 2b can be iterated to convergence.

3.2.4 Parameter sensitivity analysis—2c

Finally, the robustness of model population parameters ny, ng, nc and ag on
the model fit and predictive performance of the ICING model are tested by
modifying individual model values (summarized in Table 3.2) by £50%. While
one parameter is being altered, the rest of the parameters are kept at their original
values in Table 3.2. Changes in model performance can indicate the suitability
of their assumed values, and whether or not they should be used as population
constants. This last stage is the final model validation to ensure robustness of

the optimised parameters.

3.3 Results

3.3.1 pg and EGP, — Stage 1

The per-patient median fitting and prediction errors over the ranges
pec = 0.001 — 0.1 [min~!] and EGP, = 0 — 3.5 [mmol/min] are shown in
Figure 3.2. Sub-figures 3.2(a) and 3.2(c) show the median of all median hourly %
errors for each patient. Sub-figures 3.2(b) and 3.2(d) show the median range of
the 90% confidence interval in hourly % error for each patient. Smaller (tighter)
ranges mean a tighter distribution with less outliers. In general, lower fitting and
prediction errors and error ranges are produced in the lower pg and lower EG P,

regions, where the plot is darkest.
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Figure 3.2 Per-patient percentage fitting and prediction error with respect to pg and EGP,.
Each coordinate plots the median of the results from individual patients. 3.2(a) and 3.2(c) show
the median of the median hourly % error for each patient. 3.2(b) and 3.2(d) show the median
range of the 90% confidence interval in hourly % error for each patient. Smaller (tighter) range

means tighter distribution with less outliers.
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Figure 3.3 Cumulative distribution functions (cdf) of by-cohort prediction and fitting errors
with different combinations of pg and FGP,. The following values of ps and EGP, were
tested; [pg, EGP,] = [0.002, 0.5], [0.006, 0.8], [0.006, 1.16] and [0.006, 2.3] Every hourly error
contributes to the cdf. The performances are quite similar for all combinations excepting pg
and EGP,= [0.006, 2.3], which were tested as a supra-physiological value across the cohort.

Figure 3.3(a) shows the cumulative distribution function of the prediction
error over all available hourly data for the selected pg and EG P, combinations.
The performance is very similar for [pg, EGP,] = [0.002, 0.5], [0.006, 0.8] and
[0.006, 1.16]. However, the predictive performance is significantly worse for EG P,

= 2.3 mmol/min, where this value is tested to demonstrate the impact of applying
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an extreme, supra-physiological value across the entire cohort. In contrast, Figure
3.3(b) shows the cumulative distribution function of the fitting error for the same
combinations of pg and FGP, values. The model clearly delivers the best fitting
error with [pg, EGPB,] = [0.006, 1.16].

From the figures of percentage prediction and fitting error generated, it can
be observed that the best balance between fitting and prediction is achieved by
the combination [pg, EGF,| = [0.006, 1.16]. Glucose metabolism studies reported
EGP values range from 0.91 — 1.4 [mmol/min]| [Blakemore et al., 2008; Tappy
et al., 1999; Chambrier et al., 2000]. The value for EG P, identified in this study
is therefore physiologically valid. Reported values for pg from studies have been
shown to range between 0.004 — 0.047 min~! [Bergman et al., 1981; Cobelli et al.,
1999; McDonald et al., 2000; Pillonetto et al., 2002]. Therefore, the identified pg
= 0.006 [1/min] is also physiologically valid.

3.3.2 Insulin Kinetics Parameters — Stage 2a

The median of the 25, 50" and 75" percentile fitting and prediction errors for
each patient across n; = 107* — 0.02 min~! in the full ICING model are shown
in Figure 3.4. It can be seen that n; = 0.003 min~! provides the best predictive

performance while fitting error is low through the entire range.

The value for n; identified for the new model is very low compared to that
of [Lotz et al., 2008; Lotz, 2007] (0.003 v.s. ~0.0476 min~'). Lotz et al. [2008]
and Lotz [2007] used a method to calculate n; adopted from Van Cauter et al.
[1992]. This method estimates n; from an individual’s age, sex, weight, BSA,
BMI and diagnosis of type 2 diabetes, developed using a model for C-peptide
and its measurements. However, the n; population value calculated using this
method fails to capture long term blood glucose-insulin dynamics. The interstitial
insulin peaks and decays a lot faster and does not accumulate over a few hours

compared to having n; at its newly identified value, as shown in Figure 3.5.

Specifically, insulin “pooling” and delayed utilization effects have been ob-
served in critically ill patients by [Doran et al., 2004a]. With n; at such a high
value, these features are lost from the model because the modeled insulin degra-

dation is too fast. Note that given n; = nc = 0.0476 min~!, the interstitial
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half life of insulin from Lotz et al. [2008] is more than 3 times shorter than the
shortest reported time [Natali et al., 2000].

“Effective” insulin half lives have been reported to be between 25-130 mins
(k in Equation (3.1) or n; + n¢ in Equation (3.2) to be between 0.0277-0.0053
min~!) [Mari and Valerio, 1997; Natali et al., 2000; Turnheim and Waldhausl,
1988]. The value for k in the Critical Care Model of Equation (2.30)—(2.34) was
0.0198 min~!, which corresponds to a interstitial half life of 35 mins based on
the same references. The value for n; + ne in the ICING model is 0.006 since
n; = ne = 0.003 min~!, and corresponds to a half life of 115.5 mins. The half
lives from both models, although both within the reported ranges, were on the
opposite ends of the spectrum. However, when k was chosen for the Critical Care
Model, clinical data were limited for its optimization [Chase et al., 2007; Wong
et al., 2006b; Chase et al., 2005]. The grid search on n; performed in this study

clearly optimized this value for model performance using currently available data.

Patient 5004 is shown in Figure 3.6 as an example of typical model fit using the
fully identified ICING model. The results show the model is capable of capturing
the patient’s highly variable dynamics during critical illness, particularly from the
50" hour to the end of the patient’s stay, where the insulin requirement varied

significantly from hour to hour.

In Figure 3.6, only the end-of-hour insulin levels in plasma, I and interstitial
insulin, ) are plotted for readability. Plasma insulin is depicted in the second
panel while interstitial and effective interstitial insulin, () are in the third panel.
The response curves from insulin injections plotted by the minute can be seen in
Figure 3.5. The impact of n; on modeled insulin can be seen with two different
values used. The receptor bound insulin using n; = 0.0476 min~! from Lotz
et al. [2008] peaks and decays a lot faster than having the smaller n; = 0.003
min~! found in grid search. More importantly, the large n; value does not allow
receptor-bound insulin levels to accumulate over time. In addition, it also means
there is a lot of unbound insulin that is diffused back to plasma. Hence, the slower
decay in plasma concentrations. Applying this large n; value, the model fails to
capture a patient’s long term glucose-insulin response. The per-patient fitting
error also increases to 5.32 [IQR: 0.98, 9.70]% from 2.80 [IQR: 1.18, 6.41]%.
More specifically, over 25% of the hourly modeled BG fails to capture clinical

measurements, which typically have a minimum measurement error of 7% based
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Figure 3.6 Model simulation results on Patient 5004 using the parameters identified for the
ICING model. Only end-of hour data are plotted for readability. In the top panel, the solid
line (—) illustrates the blood glucose model simulation while crosses (x) represents the actual
blood glucose measurements. The second panel demonstrates the plasma insulin appearance
(=) and plasma glucose appearance (---). The third panel shows the interstitial insulin (-)

and the effective (receptor-bound) interstitial insulin (- -

). Model fitted insulin sensitivity is

displayed in the bottom panel.
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on the glucometres used in the SPRINT [Chase et al., 2008c| study [Arkray,
2001].

Figure 3.7 shows the model fit on Patient 5004 using n; = 0.0476 min~! in
the ICING model. Values for ng and ny are the same, but n; is 0.0476 min~!
instead of the value of 0.003 min~—"! used in Figure 3.6. The model clearly failed to
capture the patient’s glucose-insulin dynamics as can be observed with the poor
blood glucose fit in the top panel. The fitted insulin sensitivity, Sy profile in the

bottom panel also contains unphysiological spikes.

Figure 3.8 shows the effect of ignoring receptor binding saturation on insulin
degradation on Patient 5004. The term Q/(1 + ac@) was taken out of Equation
(2.39) to produce this figure by setting ag=0, with all other parameters as before.
The quality of fit for the blood glucose measurements is similar to Figure 3.6
when saturation is included in insulin degradation from interstitium. However,
noticeably lower insulin concentrations in plasma are achieved and are likely not
physiologically realistic given the dosing given and reported insulin half lives in
the literature. Hence, there is a need for saturable receptor binding degradation.
With the introduction of receptor binding saturation in the ICING model, there
is a limit for receptor bound insulin degradation. In return, the plasma insulin
level would be higher as noticeable in the third panel of Figure 3.6, since insulin

that do not bind with receptors would diffuse back into plasma.

The improvements in model performance from the ICU model of Equations
(2.30)—(2.34), through improvements in glucose compartment of Equations (2.38)
and (2.41)-(2.44) (Stage 1), and finally the ICING model in Equations (2.38)-
(2.44) are shown in Table 3.3. The table shows the median and IQR for absolute
percentage model fit and predictive error for the total 42,941 hours of clinical
data from 173 patients. Results are shown on both per-patient and by cohort

basis to highlight any inter- and intra- patient variability in model performance.

The final model achieved improvements in performance compared to the ICU
model in Equations (2.30)—(2.34). The predictive ability of the ICING model
improved significantly with much lower median prediction errors. More impor-
tantly, the spread of error is tighter, evident by a much lower upper quartile (75"
percentile) error, which is now within measurement error for both by-cohort and

per-patient results. The main reduction is in the upper quartile cohort predic-
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Figure 3.7 Model simulation results on Patient 5004 using insulin kinetics parameters values
from Lotz et al. Lotz et al. [2008]. In the top panel, the solid line (-) illustrates the blood glucose
model simulation while crosses (x) represents the actual blood glucose measurements. The
second panel demonstrates the plasma insulin appearance (-) and plasma glucose appearance
(--+). The third panel shows the interstitial insulin (-) and the effective (saturated) interstitial
insulin (---). Model fitted insulin sensitivity is displayed in the bottom panel.
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Figure 3.8 Model simulation results on Patient 5004 using the Intensive Control Insulin-
Nutrition Glycaemic Model but without saturation in insulin degradation from interstitium.
In the top panel, the solid line (-) illustrates the blood glucose model simulation while crosses
(x) represents the actual blood glucose measurements. The second panel demonstrates the
plasma insulin appearance (-) and plasma glucose appearance (- --). The third panel shows the
interstitial insulin (-) and the effective (saturated) interstitial insulin (- - - ). Model fitted insulin
sensitivity is displayed in the bottom panel.
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tion error, which is reduced to 6.47% from 10.64%, indicating significantly better

management of inter-patient variability in the final model.

The main results in Table 3.3 show:

1. Improvement in glucose compartment reduces intra- patient variability

with lower per-patient upper quartile prediction.

2. Finalised ICING model reduces inter- patient variability with lower upper

quartile by-cohort prediction errors.

Table 3.3 Comparison of median and IQR for prediction and fitting error
Prediction Error (%) median [IQR]

Original ICU Model  TE5oved GlUcase  10ING Model

Per-Patient®  5.90 [4.75,7.51]  5.23 [4.20,6.36]  2.80 [1.18,6.41]
By Cohort™  5.59 [2.46,10.64]  5.02 [2.11,10.34] 2.81 [1.08,6.47]

Fitting Error (%) median [IQR]
Per Patient?  1.11 [0.84,1.63]  0.86 [0.58,1.18] 0.50 [0.21,0.99]
By Cohort™  1.02 [0.41,1.94]  0.71 [0.23,1.44] 0.47 [0.20,0.97]

Sy (1073 L/mU/min) median [IQR]
Per-Patient?  0.25 [0.11,0.45]  0.21 [0.13,0.41] 0.31 [0.23,0.40]
By Cohort™  0.24 [0.14,0.40]  0.21 [0.14,0.32]  0.31 [0.20,0.48]

# Per-patient analysis weights each patient equally, indicating inter-patient variability.
T By-cohort analysis weights each hour of data equally, indicating intra-patient variability.

3.3.3 Re-Identification of p; and EGP,—2b

Results for the re-identification process of pg and EG P, by grid analysis covering
pe=0.005 — 0.025 [1/min] and EGP,= 0.5 — 2.5 [mmol/min] with an increment
step of 0.0033 and 0.33 respectively, are shown in Figure 3.9. The result, in terms
of per patient median percentage fitting and prediction error conveys that the
initial coordinate selection of p; and EG P, as identified in Section 3.3.1 is justified
and is therefore left unchanged. The combination of pg= 0.006 [1/min] and
EGP,= 1.16 [mmol/min] by employing the model described in Equations (2.38)-
(2.43) produces a result that is within the same range of fitting and prediction
error as obtained in Section 3.3.1. Hence, no adjustments to the model are

required after this added validation stage.
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Figure 3.9 Per-Patient Median Percentage Fitting and Prediction Error with respect to pg
and EGP, in the final ICING model.

3.3.4 FEGP in Other Models

Many models have tried to include an estimated time-varying function for endoge-
nous glucose production, EGP typically for use in experimental tracer studies
[Dalla Man et al., 2004; Avogaro et al., 1996; Caumo and Cobelli, 1993b; Mari
et al., 1994]. Others developed functions based on study data [Hovorka et al.,
2008; Araujo-Vilar et al., 1998; Picchini et al., 2005; Ruiz-Veldzquez et al., 2004;
Silber et al., 2007]. Many other models simply assume total suppression of en-
dogenous glucose production by either exogenous insulin, exogenous glucose, or
both [Chase et al., 2005; Bergman et al., 1987; Wong et al., 2008b], based on
research studies in Type 1 and Type 2 diabetes [Mittelman et al., 1997; Ader and
Bergman, 1990; Shah et al., 2000; Thomaseth et al., 2008; Cherrington et al.,
1998].

In reality, tracer studies require different assumptions depending on exper-
imental settings. The results are thus highly variable between individuals and
influenced by different conditions [Chambrier et al., 2000; Cherrington et al., 1998;
Mevorach et al., 1998; Monzillo and Hamdy, 2003; Cherrington, 1999; Elahi et al.,
1989]. Models focusing on a particular group of patients typically choose to treat

endogenous glucose production as a constant, particularly in considering diabetic
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individuals [Jauslin et al., 2007; Hovorka et al., 2002; Wong et al., 2008b].

Parameters for endogenous glucose removal, pg, and basal endogenous glucose
production, EFGPF,, in the ICING model, trade off with each other. Therefore,
it is important that they are identified as a pair as was done in Stage 1. The
definition for EG P, implies this parameter stays constant for any given patient.
Hence, this study uses a basal endogenous glucose production EG P, as a constant
in the mathematical model. This choice allows the variation in actual endogenous
glucose production be described by combining EG P, variable suppression via pg
and G, and also S7 and I. More importantly, the approach allows S; be uniquely

identified given the available data is limited to 1-2 hourly BG measurements.

The value for pg found in this study is somewhat at the lower end of the range
found in other studies [Bergman et al., 1981; Cobelli et al., 1999; McDonald et al.,
2000; Pillonetto et al., 2002]. Tt is suspected for hyperglycaemic ICU patients
that the suppression of EGP by plasma glucose levels is minimized compared
to otherwise healthy subjects, which has been reported elsewhere due to high
levels of circulating catecholamines, thus reducing the suppression of EGP from
elevated G and I [Bistrian, 2001; McCowen et al., 2000; Mizock, 2001; Thorell
et al., 2004; Dungan et al., 2009]. Hence, this lower value appears justified on
physiological grounds.

The decision to keep pg as a constant in this study is based on its relatively
constant behaviour in ICU patients in prior analysis [Hann et al., 2005]. Grid
analysis for the identification of pg and EG P, as constants population parameters
found the most suitable combination of parameter values in reported physiological
ranges [Bergman et al., 1981; Blakemore et al., 2008; Tappy et al., 1999; Cobelli
et al., 1999]. Hence, this choice is left since no new evidence arose from this

analysis to contradict this choice.

3.3.5 Parameter Sensitivity—2c

The parameter sensitivity study results for ng, ny, nc and ag are shown in Table
3.4. Changes of £50% from their final parameter values for the ICING model in
Table 3.2 have no clinically (as opposed to statistically) significant effect on sim-

ulation results in terms of prediction error, fitting error and identified insulin sen-
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sitivity, S;. The values for pg, EGP, and n; are 0.006 [1/min], 1.16 [mmol/min]
and 0.003 [1/min] respectively. These sensitivity study results suggest ny, nr, nc
and ag can be fixed at their current population values without over simplifying
the model. However, ag does produce a notable shift in insulin sensitivity, S
as expected, given their trade-off relationship mathematically. A previous study
showed changes in ag produce a magnification in insulin sensitivity S; without
compromising model performance, unless it approaches non-physiological levels
Chase et al. [2004].

3.4 Model Limitations and Justification

This model would benefit from further investigation into some parameters. The
critical parameters are those that influence the shape of Q/(1 + agQ), as this
level is the ultimate unknown (being unmeasurable) and the critical link between
insulin and BG response. These parameters are effectively n;y and ag, as the
parameters that only appear in the plasma insulin equation (Equation (2.40))
can be more readily identified given insulin and C-peptide measurements. ag
in this model is assumed to be 1/65, which is the highest saturation level. The
reason is purely for safety, as to avoid excessive insulin from being administered.
Hence, it is more of a conservative choice. Simulation studies had been car-
ried out to investigate the impact of these parameters, namely “effective” insulin
half life and insulin-stimulated glucose removal saturation [Chase et al., 2005,
2004]. Both variables have direct impact on S;. However, given that both pa-
rameters are kept in reported range of physiological levels, their variation simply
creates a shift or magnification in the identified S; profiles and do not compromise
model fitting or prediction performance. Ultimately, it is the control, or predic-
tion performance, that is the most critical for a model designed for model-based
therapeutics. However, further studies where plasma insulin and C-peptide was
measured would provide unique raw data on these parameters and their variation

in the critically ill patient.

The discrepancy between n; found in this study and Lotz et al. [2008] may
have several explanations. These explanations include inherently different plasma-
interstitium diffusion rates under critical illness and insulin diffusion across bar-

rier being a saturable process. The latter possibility arises because the experimen-
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tal diffusion rates are determined by using C-peptide measurements. Although
C-peptide has very similar molecular properties to insulin, it does not go through
a high and variable degree of first pass extraction in the portal vein [Van Cauter
et al., 1992]. Therefore its concentration is several folds higher than insulin in
plasma. If the diffusion process is to any level saturable [Thorsteinsson, 1990], the

rates determined using C-peptide measurements will not be reflective of insulin.

In addition, the plasma concentration achieved in critically ill patients is very
different to that in EIC experiments or otherwise healthy diabetic individuals.
The relatively low value of n; identified in this study may indicate a significantly
impaired transcapillary transport for patients who are critically ill, which is a
unique result. In particular, sepsis causes a dysfunction in micro-circulation as
well as cell metabolism, which is a condition prevalent in critical care. Patients
in [Lotz, 2007] were subjected to an overnight fast. Hence, their plasma concen-
trations are relatively low and diffusion rates are faster for the short, very low
insulin dose tests used in that research. In contrast, critically ill patients are often
hyperinsulinaemic and infused with large amount of insulin. Therefore, it is ex-
pected that the value of n; for patients in less critical ward would increase. These

ideas need to be further investigated with more insulin and C-peptide studies.

Glucose uptake is strongly correlated with interstitial insulin [Poulin et al.,
1994]. However, interstitial insulin concentrations and dynamics are difficult or
impossible to measure experimentally. This study attempted to find a realis-
tic description of interstitial insulin by linking plasma insulin and BG response
through known biological mechanisms and parameter identification. The dif-
fusion rate between plasma and the interstitial space n;, was identified as the
critical parameter, and its population value is chosen using grid search. The
identified optimal parameter value provided low fitting and prediction error in
BG and particularly reduced inter-patient variability in prediction error. Hence,
the established shape of interstitial insulin can be concluded as realistic, bridging

the link between plasma insulin and blood glucose response.

Any attempt to improve the shape of interstitial insulin should be continued
once additional data from C-peptide and plasma insulin are available, justifying a
clinical study. For now, the model is more than satisfactory since the percentage
of fitting and prediction errors are predominantly below the measurement error

of 7-12%. The data used for the development of the model covers a broad cohort
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of what is typically seen in ICU patients, both highly dynamic and stable.

3.5 Model Identifiability

A further important issue addressed throughout this study is model identifiability.
Given the limited data available, it is crucial to maintain a model that is uniquely
identifiable with relatively infrequent (hourly at most frequent) bedside blood
glucose measurements. Although the model presented in this study requires many
population assumptions, and resulted in a much simpler structure compared to
many others [Sorensen, 1985; Parker and Doyle, 2001; Hovorka et al., 2008, 2004b;
Parker et al., 2001], it is able to accurately capture the highly dynamic response
in critical illness. With limited data in a noisy and highly variable environment,
such as critical care, a model that requires the minimal number of parameters
to be identified will potentially cope most successfully both mathematically and
clinically. All the parameters kept as population constants have been carefully

studied and their sensitivity analysed.

Eventhough the model parameters were fitted and validated using data of
patients in the ICU, this would not be an issue. Data of patients from step
down unit weren’t used simply because it is not available. However, patients in
the intensive care and step-down unit do share similarities in metabolic status.
Sensitivity analysis up to 50% was performed on model parameters to ensure the
robustness. In Le Compte et al. [2009], the model used for glycaemic control of
neonates in ICU was developed from the model of Chase et al. [2007]. Most of the
model parameters for neonates were kept at same values as in Chase et al. [2007],
and to ensure the validity, a 20% sensitivity analysis was performed. Hence, for
this study, sensitivity analysis of up to 50% should be more than sufficient as it
is not expected that the model parameters for the critically ill and less critically

ill patients, would vary much more than 50%.

The study thus presents a clinically applicable yet comprehensive glucose-
insulin model that is uniquely identifiable for each patient at any given time.
Eventhough data of 173 patients (translates to 42 000 hours of data) may seem
to be limited, but the patients cover a broad cohort of what is typically seen in

the ICU. Virtual simulation is the best method to assess clinical control protocol-
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saves time, cost and a number of protocols can be tested. Therefore, having a
large amount of data is appreciated, a clear benefit for in-silico trials. However,
as for now assessing future protocol performance and controller’s adaptability
would work well on these 173 patients. Long stay patient (> 3 days) may exhibit
both periods of dynamic evolution and metabolic stability. The low, and more
importantly tightly distributed, prediction errors of the model, where few fail to
be within the clinical measurement error of 7-12% [Chase et al., 2008¢, 2007],

indicates the model is well suited for use in real-time, patient-specific TGC.

3.6 Summary

The new ICING model presented and validated in this study chapter is an inte-
gration and improvement of two clinically validated glucose-insulin physiological
models [Chase et al., 2007; Lotz et al., 2008]. This new model has more explicit
physiological relevance without increasing the number of patient-specific parame-
ters to be identified. In particular, the insulin kinetics is expressed with distinctive
routes for insulin clearance and transport from plasma, which reflects biological
mechanisms. A more realistic model for gastric glucose absorption accounting for

the stomach, gut and saturable glucose appearance is also introduced.

The model is capable of accurately capturing long term dynamics and evo-
lution of a critically ill patient’s glucose-insulin response. Insulin sensitivity S
is the only parameter that is identified hourly for each individual. Its identifi-
cation is guaranteed to be unique given the integral fitting method used in this
study. Population constant parameters pg, EG P, and n; have been identified in
steps to avoid model identifiability issues. Parameter sensitivity analysis further
confirms the validity of limiting time-varying parameters to S; only. The model
achieved low fitting and, most importantly, low prediction error when fitted to
blood glucose data from critically ill patients. Fitting errors and the 75 per-
centile prediction errors were all well below measurement error for 173 patients
and 42,941 hours of data. The new model outperforms its critical care predeces-

sors, and has greater physiological relevance and more detailed insulin kinetics.

It is also, unlike almost all other similar models in the literature, predictively

validated against a very large range of clinical data, which is critical for a model
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to be used in designing or applying real-time TGC at the bedside. This model
therefore offers a platform to develop robust insulin therapies for tight glycaemic

control.



Chapter 4

Glargine Model Development

This chapter presents the development and validation of a detailed pharmacoki-
netics model of the subcutaneous absorption kinetics of Glargine. Model param-
eters associated with Glargine-specific precipitate decomposition and transport
were identified using 6 sets of plasma insulin time-course absorption curves from
4 Glargine studies found in a larger literature review [Scholtz et al., 2005; Heine-
mann et al., 2000; Lepore et al., 2000; Owens et al., 2000]. Four additional,
independent studies [Klein et al., 2007; Danne et al., 2003; Becker et al., 2008;
Heise et al., 2004], were used as independent validation test to show the validity
of the model and parameters found. The identified model is validated by com-
parison to reported values for maximum plasma insulin concentration, C,,,., and

time to maximum plasma insulin, 7},,,;.

Absorption kinetics often show significant intra- and inter- individual variabil-
ity. To add this variability to the pharmacokinetics model of Glargine, ranges of
variation for the identified Glargine model parameters were introduced into 1000
Monte Carlo simulations. This assessment and analysis portray the likely intra-
individual and inter- individual variability that could be expected clinically. The
Monte Carlo analysis thus defines a range and distribution of identified and val-
idated model parameter variations to consider in designing a glycaemic control

protocol using Glargine.
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4.1 Introduction

Basal insulin therapy, has gained renewed interest since the introduction of Glargine
[Campbell et al., 2001]. Glargine, a human insulin analogue is prepared by re-
combinant DNA technology in which the amino acid asparagine at position A21
is replaced by glycine and two arginines are added to the C-terminus of the B-
chain at position B31 and B32 [Lantus, 2001]. It is these 3 amino acids that
make Glargine different from the human insulin. The addition of two molecules
at the B-chain shifts the isoelectric point from 5.4 to 7.4 which makes Glargine a
soluble insulin at a slightly acidic pH and less soluble at physiological pH levels
[Heinemann et al., 2000; Campbell et al., 2001; Dunn et al., 2003]. The positively
charged amino acids ionizes the insulin analogue, hence allowing it to remain sol-
uble at acidic pH of the injection medium and less soluble at the physiologic
pH [Campbell et al., 2001; Wang et al., 2003]. Figure 4.1 shows the structural

formula of Glargine, and how it differs from the human insulin:

A - chain

Figure 4.1 Glargine structural formula from [Lantus, 2001]. Asparagine has been replaced by
glycine at position A21. At the end of C-terminus of the insulin B-chain, 2 arginine molecules
are added. This modification shifts the isoelectric point from pH 5.4 to 7.4. This makes Glargine
more soluble at slightly acidic pH and less soluble at physiologic pH [Heinemann et al., 2000;
Campbell et al., 2001; Dunn et al., 2003; Wang et al., 2003].

Most conventional basal insulin types have pharmacodynamic (PD) profiles

that poorly approximate the flat, basal insulin secretion of a non-diabetic, healthy
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individual. Figure 4.2 shows the plasma insulin profile of several rapid, regular
and long acting insulins taken from [Hirsch, 2005]. NPH and ultralente are such
insulins that are used as basal insulin therapy despite having pharmacokinetics
that do not match the endogenous insulin secretion [Scholtz et al., 2005]. Ultra-
lente, for example has a large day to day absorption variability [Binder, 1969]
that will caused large swings or fluctuations in blood glucose level. Ideally, basal
insulin should mimic the basal insulin secretion of a healthy pancreas, with no
distinct peak, a continuous effect over 24 hours, and an absorption pattern that is
slow, constant, predictable and reproducible [Campbell et al., 2001]. Glargine, a
recombinant insulin analogue appears to mimic this behaviour with its relatively
flat time-action profile and more predictable effects [Rosenstock et al., 2001]. This
unique property allows Glargine to be given once daily. Thus, this is what makes

Glargine the insulin of choice in this thesis.

Other therapy such as CSII (continuous subcutaneous insulin infusion), an
insulin pump therapy is not considered as few obstacles are commonly associated
with CSII [Wesorick et al., 2008]. Mainly, there is a constant need for pump
management which most hospitals lack in expertise. The issue is lack of exposure
on CSII among nurses. CSII also involves patient participation, and thus it is
limited by patient’s level of consciousness. Plus, a physician order must be placed
each time insulin dosage is adjusted, and this does not go along with the target
of this thesis to develop a nurse-driven protocol. Furthermore, cost is also a big
obstacle to CSII therapy and it is the most expensive option for insulin pump
[Bruttomesso et al., 2009].

Owens et al. [2000]; Heinemann et al. [2000]; Lepore et al. [2000]; Scholtz et al.
[2005] and Luzio et al. [2003] are few literatures that studied the pharmacokinetics
and pharmacodynamics of Glargine, comparing it to NPH or ultralente insulin.
To find the absorption rate of Glargine from the subcutaneous site, the studies
used either euglycaemic glucose clamp technique or external gamma-counting.
The time to disappearance of 25% from the administered radioactivity, after
subcutaneous injection and residual radioactivity 24 hours after radiolabelled

injection, is then measured.

In [Scholtz et al., 2005], the day to day variability in the time-concentration
and time-action profiles of Glargine were compared to NPH and ultralente. The

result of the study showed that Glargine is associated with low variability and
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Figure 4.2 Ideal insulin time-action profiles of several insulins reproduced from [Hirsch, 2005].

reproducible activity. NPH on the other hand, had a definite early peak ex-
posure while ultralente with no pronounced peak is highly variable in terms of
glucose lowering effect among subjects. Meanwhile, Lepore et al. [2000] found
that both NPH and ultralente had a peak concentration and action. Intersubject
variability is found to be greater in ultralente compared to Glargine and NPH.
A study by Heinemann et al. [2000], also compared the pharmacodynamic prop-
erties of Glargine to NPH with the result confirming a smoother metabolic effect
in Glargine in comparison to NPH. Lastly, Owens et al. [2000] found that the

subcutaneous absorption of Glargine is delayed compared to NPH.

However, limited research has been done in terms of modelling the absorption
process of Glargine, since its introduction in 2000. Pharmacokinetics and pharma-
codynamics modeling analysis have been used to support licensing dose of drugs.
The FDA (US Food and Drug Administration) states that PK/PD might be the
supporting evidence of clinical trial efficacy [Rolan and Molnar, 2006]. Hence,
there is a definite importance of PK/PD modeling with the widespread confi-
dence. To date, only Tarin et al. [2005] and Wong et al. [2008a,b] reported com-
prehensive pharmacokinetic models. Mosekilde et al. [1989] proposed an absorp-
tion kinetics model for subcutaneous injected insulin. It was the first mechanism

based model utilising chemical relationships between insulin polymers to explain
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the absorption kinetics. This model was refined and simplified by Trajanoski
et al. [1993]. Tarin et al. [2005] later extended the model to cover Glargine’s
peakless time action profile. Finally, Wong et al. [2008a,b] constructed an exten-
sive physiologically consistent ten-compartment model for the pharmacokinetics

of several rapid acting, regular and long acting insulins including Glargine.

Critical reviews of other available studies with general models of subcuta-

neously injected insulin are reported in Nucci and Cobelli [2000].

Using such deterministic models to determine the pharmacokinetics of in-
sulin, physicians and nurses can better overcome barriers to effective glucose
management. The use of model-based methods in Type 1 and Type 2 diabetes
has shown the potential for developing successful therapeutic methods for effec-
tive glycaemic control [Wong et al., 2008a,b,c; Hovorka et al., 2007; Lehmann,
2001; Tudor et al., 1998]. However, models can not give meaningful prediction
or portray the underlying physiology unless their parameters are determined and
justified with clinical data. In addition, significant intra- and inter- patient vari-

ability in the PK and PD of insulin offer further barriers to model-based control.

To capture the dynamics of Glargine’s absorption kinetics, this chapter presents
a more comprehensive physiological compartmental model specifically developed
for this insulin class. As insulin action is a saturable process, there is a need to
model the saturation in Glargine’s pharmacokinetics which was not accounted for
in the prior model of Wong et al. [2008a,b]. The model structure of Wong et al.
[2008a,b] is re-analyzed and re-identified with new parameters, with the addition
of Michaelis-Menten saturation thus better capturing the physiological aspects.
The model is further validated with several independent studies, thus providing
external validation aspect to confirm the validity of the developed model. In
particular, intra- or inter- individual variation in insulin absorption can range
from 35%-50% [Heinemann et al., 2000]. Thus, a robust model that can capture
these variations is equally important. Hence, the model developed in this study
accounts for variability seen clinically among patients under Glargine therapy.
By having a robust model, it will give sufficient time for intervention and ad-
justment of insulin before glucose concentrations drift from desired ranges. As a
result, hypo/hyperglycaemia can be better avoided. It is intended that this sub-
cutaneous absorption model development would eventually offer a safe means to

develop and compare control algorithms using Glargine prior to clinical testing.
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4.2 Glargine Compartmental Model

Upon subcutaneous injection, Glargine forms a depot from which absorption into
the systemic circulation occurs. The unique pharmacology of Glargine due to the
isoelectric shift that alters the association properties stated earlier, makes it pre-
cipitate into stable hexamers within the physiologically pH-neutral environment
[Guerci and Sauvanet, 2005]. Hexameric dynamics are one of the main processes
in a model that determines the onset time and action curve of different insulin
preparations [Lehmann et al., 2009]. The addition of zinc as hexamer-stabilizing
agent improves the time-action profile [Campbell et al., 2001; Wang et al., 2003].
Insulin hexamers dissociate further over time into dimers or monomers, which are
the forms easily absorbed into the bloodstream. It is this unique dissociation pro-
cess, and the unique very flat and long acting profile of Glargine that it creates,
which determines the onset time and action curve [Campbell et al., 2001]. Figure

4.3 describes the disassociation process from hexamer to dimers and monomers.

Hexamer

o |

Figure 4.3 The pathway describing the process of insulin hexamers, dimers and monomers.
Image sourced from www.endotext.org.

A four compartment description of subcutaneous insulin kinetics is presented,
where Glargine is modelled to appear in its precipitate, hexameric, dimeric /

monomeric, and (local) insterstitium states. The underlying structure of this
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pharmacokinetics model is adopted from Wong et al. [2008a,b]. The model de-

scribes the pharmacokinetics processes following subcutaneous administration of

Glargine:

Precipitate State:

: _kprep glapgla (t)
Pgta(t) — + Up,gia(t)
1 g )
Upgla(t) = Ogialiotal,glall)
Hexameric State:
: k. rep,glaPgla t
Thgla(t) = —(kigia + ka)Tngia(t) + — 7708 0
L Jomenstep,, (t)
—I—uh,gla(t)
uh,gla(t) - utotal,gla(t)(l - agla) - um,gla(t)

Dimeric/Monomeric State:

Zam(t) = — (ko + ka)Tam(t) + k1 gian.gia(t) + tm.gia(t)

Interstitium:

sz(t) = —(k?3 + k:dz)xz(t) + k?g(l,’dm(t)

(4.5)

(4.6)

where all variables in Equations (4.1)—(4.6) are defined in Table 4.1 and the model

is shown schematically in Figure 4.4:
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Table 4.1 Description of Glargine compartmental parameters.

Parameters Description

Th,gia(t) Mass in glargine hexameric compt. [mU]
Pgia(t) Mass in glargine precipitate compt. [mU]
Zam (1) Mass in dimer/monomer compartment [mU]
x;(t) Mass in the interstitium compartment [mU]

Tdis,max (t)
utotal,gla(t)

Max glargine precip. dissolution rate [mU/min]
Insulin glargine input [mU/min]

Up, gla (1) Glargine precipitate state insulin input [mU/min]

Un,gia(t) Glargine hexamer state insulin input [mU/min]

U, gia(t) Glargine dimer/monomer state insulin input

Eprep,gla Glargine precipitate dissolution rate [min-1]

k1 Hexamer dissociation rate [min-1]

k1 gla Glargine hexamer dissociation rate [min-1]

ko Dimeric/monomeric insulin transport rate into interstitium [min-1]

ks Interstitium transport rate into plasma [min-1]

kai Rate of loss from interstitium [min-1]

kq Rate of diffusive loss from hexameric and dimeric/monomeric
state compartments [min-1]

Ogla Fraction of glargine as precipitate

Equations (4.1) and (4.3) differ from the original non-linear model in Wong
et al. [2008a,b] with the introduction of the Michaelis-Menten saturation terms
in these equations. The rate of Glargine precipitate dissolution, kyrepgia, is a
saturable process and is slower with the introduction of the Michaelis-Menten
saturation function. There is a need to model this saturation as the solubility of
the Glargine precipitate is limited due to the shifted pH of Glargine molecules
[Tarin et al., 2005]. Glargine injection is completely soluble at a pH of 4.0, and
once injected in a neutral subcutaneous state with pH 7.4, Glargine is neutralized
and formed microprecipitates [Campbell et al., 2001]. Specifically, this model
adds a non-linear transport saturation based on the impact of Glargine molecule’s
own pH on the surrounding depot pH, which limits and extends the process to
give Glargine its characteristically flatter profile. Hence, the model development

with Michealis-Menten saturation has a greater physiological relevance.

Subcutaneous absorption kinetics are predominantly concentration and vol-
ume dependent [Sgeborg et al., 2009]. To account for the volume effects of injected
insulin volume, the rate of diffusive loss from the hexameric and dimeric/monomeric

state, kg, represents this physiology of the injection site as:
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3D
3‘/;71_7 1
ro= () (48)

kq is the rate of diffusive loss from hexameric and dimeric /monomeric com-
partments [min-1], D is the diffusion constant [cm?/min], r is the radius of the

subcutaneous depot [cm], and V;,; is the dose injection volume [ml or cm?].

4.2.1 Glargine Sub-model structure

Once Glargine precipitates, it is slowly released from this form to hexamerics.
The Glargine sub-model structure is used to model the maximum dissolution
rate, Tgis,maz Of the precipitate pgy,(t), into a hexameric form in Equations (4.1)
and (4.3), Tp gia(t), which is unique to Glargine compared to other insulin [Tarin
et al., 2005; Dunn et al., 2003]. This process is defined:

Brrdis,max UglaUtotal gla
)
Utres (aglautotal,gla >= Utres)

Tdis,max(t) - Brdis7max(aglautotal,gla < Utres) +

(4.9)

where Brgismaz 15 the baseline value of 745 mqq for a given dose and Uy, is the
dose threshold value. Thus, this term in Equations (4.1) and (4.3) limits the

precipitate to hexameric change, and is unique to this model.
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4.2.2 Plasma Insulin Model Structure

To portray insulin absorption into the overall plasma and interstitium, the ICING
glucose-insulin model in Chapter 2.2.3 is used. From the interstitium, exogenous
insulin which is from the administration of Glargine will appear in Equation 4.11
as e, after multiplication with ks, the interstium transport rate into plasma.

The action of insulin, as developed before in Chapter 2 is described:

- Q)
Q@ = n(I(t)—Q(t)) — "I anQ) (4.10)
_ o) B Uer (1)
P = () - 0 () - Q) + 25
+(1 - a:L)%" (4.11)
Uen(t) = ke I(Z):Q when C-peptide data are
not available (4.12)

where all variables in Equation (4.10)—(4.12) are defined in Chapter 2: Model

Development.

4.3 Model Identification and Analysis Method

4.3.1 Model Parameter Identification

The parameters for the Glargine Compartmental Model in Section 4.2 are iden-
tified a priori from clinical results in the literature except for Kprepgias k1 gias
Bt gismaz and Uy,.s, the latter 2 of which define rgsmq in Equation (4.9). For
the plasma insulin model structure of the ICING model, the complete parameters

can be referred to in Chapter 3: Parameter Identification and Model Validation.

Overall, the model in Wong et al. [2008a,b] has been converted from a non-
linear function of hexameric and precipitate compartments into a saturated, lin-

car differential form in Equations (4.1) and (4.3). This change means that the
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Glargine precipitation model parameters must be re-identified and re-validated.
The model parameters associated with this process are the Glargine precipitate
dissolution rate [min_l], Eprep,gia and Glargine hexamer dissociation rate [min_l],
k1 gia- SInce 7gis mar is the maximum dissolution rate of the precipitate into the
hexameric form unique to Glargine, this parameter also needs to be identified
and validated for this study.

The constant parameters defined in Wong et al. [2008a,b] are given in Table
4.2. The parameters are kept because they are common to, and validated for,
to multiple insulin types in the overall model for multiple insulin types in [Wong
et al., 2008a,b]. Hence, this study examines only those model parameters specific
to Glargine, thus maintaining the physiological consistency of the combined model

if this version of the Glargine model were used.

The remaining parameters associated with the Glargine Compartmental Model,
Eprep.gia> K1,gias BTdismae and, Uges were identified using 6 sets of plasma insulin
time-course absorption curves from Glargine studies found in a larger literature
review [Heinemann et al., 2000; Scholtz et al., 2005; Owens et al., 2000; Lepore
et al., 2000]. The corresponding pharmacokinetic parameters are calculated from
each study and the final population values were taken as the average of all studies.
This method is typical of conventional pharmacokinetic study [Rolan and Mol-
nar, 2006]. The Glargine parameters are identified using a standard non-linear

recursive least squares (NRLS) fitting method.

NRLS requires initial search values for the optimisation since the method
is starting point dependent, which were taken or estimated from those used in
[Wong et al., 2008a,b]. In Wong et al. [2008a,b], the parameter values used as

starting point for optimisation were obtained from [Shimoda et al., 1997].

The ability of the NRLS method to effectively identify Glargine model pa-
rameters, is highly dependent on the initial selection of parameter values. This
posed as a limitation in the beginning when the initial selection from Wong
et al. [2008a] was not sufficient to give a good data fitting. The method became
time-consuming as a unique identifiability is essential for model identification.
However, the NRLS managed to converge to an area of ‘true parameters’ after a

few sets of initial parameter values.
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Model parameter values resulting in the closest fit to the plasma insulin time-
course data in the literature in terms of sum squares of error (SSE) are regarded
as the best Glargine model parameters. The SSE function relative to time-course

absorption curves data is defined [Wong et al., 2008a,b]:

N

SSE; =Y (I —Ii(t;.:))° (4.13)

i=1

where N; is the number of plasma insulin data points in the j;, data set, [;; is
the iy, plasma insulin concentration data point in the jy, data set, and I j) is
the modeled plasma insulin concentration for the j;, data set at t;;, the time at

the iy, plasma insulin concentration data point.

Table 4.2 Glargine constant population parameters [Wong et al., 2008a,b]

Parameters Values

ko 0.0106 [min-1]

ks 0.0618 [min-1]

ka 0.0029 [min-1]
gl 0.9462

D 0.00009 [cm?/min]

4.3.2 Independent Pharmacokinetics Validation

The model with identified parameter values is validated by simple pharmacoki-
netic measures. Specifically, the time to maximal concentration, T},,,, and maxi-
mal concentration reached, C,,,, as shown in Figure 4.5. In this example, C,,,, is
equivalent to 4.8 mU/L while T,,, occurs at 762.9 minutes. A validation compar-
ison was made to equivalent C,,,, and T,,,, from reported data where available.
In cases where C,,,, and T},,, are not reported, an estimate is made from best
model fit (SSE) alone. To further improve the validity of the model, four fur-
ther independent published studies were utilized for validation [Klein et al., 2007;
Danne et al., 2003; Becker et al., 2008; Heise et al., 2004]. Validation with these
additional independent studies provides a broader cohort, as seen in Table 4.3,

and illustrates the robustness and the validity of the model to be used for a wider
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population. In particular, the independent study by [Danne et al., 2003] pro-
vides data for children and adolescents as compared to adults. Hence, this data
set provides a direct comparison on the behaviour of Glargine pharmacokinetics

profile between three different age groups.

Plasrma Insulin {mL/L)

: : ;
0 500 1000 1500
Time (rin)

Figure 4.5 An individual model fit example of [Owens et al., 2000] to show the plasma insulin
curve with T;,4. and C,,.z, the important criteria used as a model validation. The solid blue
line (—) is the plasma curve of Owens et al. [2000] model fit while the dotted red line (---)
corresponds to each maximal plasma insulin, C),.., and time to reach maximal plasma insulin,
Crmar-

4.3.3 Monte Carlo Study

Subcutaneous insulin absorption varies from one person to another, and can
also be influenced by temperature, exercise, depth of injection, and many other
insulin-dependent /independent factors [Berger et al., 1982; Binder et al., 1984].
Clinical experience has shown that under comparable patient conditions, the
same injected subcutaneous dose often does not produce the same metabolic
effect [Heise et al., 2004]. Studies on variability of insulin absorption after a
subcutaneous administration began several decades earlier [Moore et al., 1959;
Binder, 1969]. However, our knowledge on this topic is still limited [Heinemann,
2002].

To model Glargine absorption variability in this study, lognormal distribu-

tions in several critical parameters are combined to produce variability matching
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reported ranges in Glargine dose-response studies. Lognormal distributions are
used because the varied model parameters must be positive, which using a normal

distribution does not guarantee.

The lognormal propability density function is given:

—(In(x)—p)?
p(z|p, o) = M}/ﬁexp [ U 50)2 ) } (4.14)

where p and o are the mean and standard deviation of the variable’s natural

logarithms.

A lognormal distribution is defined with reference to a normal distribution.
To determine i and o we need to use this relationship. If X is lognormally dis-

tributed, the following describes the algebraic relationship:

Mean [X]:

= ent05e? (4.15)

Standard Deviation [X]:

eh 0597 [oo? (4.16)

Parameters kprep gia; k1,91 and o, are the critical parameters given lognormal
distribution in this study, producing variations in C,,,, matching published data.
These parameters are critical as they partly define the hexameric compartment.
As mentioned previously, hexameric dynamics are one of the main processes that
determines the onset time and action curve. Figure 4.6 shows the effect on

plasma-insulin curve of Glargine with different tested values for kprep gia, K1,gia
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and ag,. Final parameters chosen were those that produced the closest variations
up to one standard deviation to reported C,,,,. The other parameters are kept
constant in the Monte Carlo simulations at their a priori values. The Glargine
pharmacokinetic responses are computed for 1000 Monte Carlo simulations to

produce the expected variability distribution.

4.4 Results

4.4.1 Glargine Model Parameters

The identified model parameters for the Glargine subcutaneous absorption model,
Eprep.gia> F1,gia and 7qme, function, Brgismaes and Uges are shown in Table 4.4.
Final values are chosen as the mean of each parameter identified individually for
each of the 6 studies used [Heinemann et al., 2000; Scholtz et al., 2005; Owens
et al., 2000; Lepore et al., 2000]. Figure 4.7 depicts the individual model fit from
Scholtz et al. [2005] and Lepore et al. [2000] using fitted parameter values from
Table 4.4, along with the reported experimental data.

Aside from minimizing error between model fit and data, the estimation of
model parameters needs to consider the elimination of experimental noise. Ex-
perimental noise, as can be seen in Figure 4.7(b) is defined here as the variation
between data points in each data set, which can influence the identified model pa-
rameters. This is apparent around minutes 200, where there are 2 plasma insulin
concentration points at 8 mmol/L. These data points are inaccurate in respect
to the subcutaneous Glargine concentration due to the presence of a significant
rate of IV insulin infusion for the first 3 hours. A specific assay for measurement
of Glargine at this first 3 hours is not available in the study [Lepore et al., 2000].
A portion of data from 820-1170 minutes, were missed in the model. However, it
is not significant as the model approximates the supposed plateau concentration
as expected from subcutaneous Glargine. The time from 820-1170 minutes were
thus treated as a smooth plateau. The final identified pharmacokinetics model
parameters, averaged over the 6 studies used in this study, show good agreement
with the data. Good agreement is quantified with SSE and can be referred in
Table 4.4. Model parameters that produced model with lowest SSE are selected.
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Figure 4.6 The effect of different tested values for agiq, kprep,gia, and ki giq-
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Figure 4.7 Glargine model response of plasma insulin with injection amount of 32U and
24U incorporating the average parameter values fitted to Scholtz et al. [2005] and Lepore et al.
[2000]. Solid line (-) corresponds to the model generated output while model fit to experimental
data is represented by (---). Crosses (x) present the measured experimental data from Scholtz
et al. [2005] and Lepore et al. [2000].
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4.4.2 Independent Pharmacokinetics Validation

The subcutaneous Glargine absorption model with the identified mean param-
eters is validated against external experimental data presented by Klein et al.
[2007]; Danne et al. [2003]; Becker et al. [2008] and Heise et al. [2004]. These
independent, additional studies provide a measure of external validation as their
data was not used for model parameter identification. Table 4.5 shows that the
reported C),q, and 7,4, from the model generated curves are within one standard
deviation of C,4, and T,,4, from the published data of [Klein et al., 2007; Danne
et al., 2003; Becker et al., 2008; Heise et al., 2004].

By covering several studies in cohort difference, the quality of mean parame-
ter estimates for Glargine model parameters will increase. The study by [Danne
et al., 2003] provides data for group of patients belonging to different age groups.
Hence, it is interesting to see if this population would give a different behaviour
in comparison to adults population. Validation of the Glargine pharmacokinetic
profile in this younger patients conform with Lantus [2001] that there is no differ-
ence in the Glargine profile between children, adolescents and adults with Type
1 diabetes. The model is validated by computing 7},., and C,,q., the critical

clinical parameters modeled to those published in the literature.

To see the performance of the identified model parameters, the dynamics
of the model in simulating different Glargine doses of 10U, 20U, 30U, 40U and
50U are shown in Figure 4.8. The clinically flat insulin concentration profile of
Glargine with no pronounced peak can be observed. Lepore et al. [2000] reported
a duration of action of 20-24 hours after a single dose and 24 to 25.6 hours at
steady state. As can be observed, all model curves in Figure 4.8 conform to these
existing reports [Lepore et al., 2000; Campbell et al., 2001; Dunn et al., 2003]
and maintained the delayed onset of action and a prolongation of action with no
pronounced peak, as expected from the pharmacokinetics of Glargine. Note that
it is this lack of specific peak that also yields the large variability in C),,, and
Tz in Table 4.5.
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Figure 4.8 Glargine dose responses from model generated output. The slopes over the first
60 mins are different (different rate of absorption). As expected from the time-action profile
of Glargine, there is a flat basal period with no pronounced peak. At this basal part, the
rate of absorption is the same. The dashed line () is for the injection amount of 10U. Dot-
dashed line (--- -) portrays the dose response with injection amount of 20U. The dotted line
(- ) represents injection amount of 30U. The solid line (-) represents injection amount of 40U.
Finally, the weighted solid line (-) is Glargine dose response with the injection amount of 50U.

Table 4.6 Specifications of lognormal distribution for Glargine model parameters

Glargine Model Parameters Lognormal Distribution Specifications

n o
Kprepgla -3.49 0.3
k1 gia -5.1855 0.8330

alphagq -0.081 0.019
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4.4.3 Monte Carlo Analysis and Variability

Table 4.6 shows the assumed p and o in Equations (4.14)—(4.16). These val-
ues specify the lognormal distribution of Glargine pharmacokinetics parameters,
Eprep.gia> k1 gia; and ag,. The decision to adopt a lognormal distribution automat-
ically limits variations in model parameters to be non-negative values as seen in
the Figure 4.10. Figure 4.10 shows the randomly selected model parameter vari-
ability of the Glargine pharmacokinetics parameters Kp,ep gia, k1,10, and ag, for
1000 Monte Carlo simulations. The theoretical lognormal functions from which

they were sampled are also shown in Figure 4.10.

The results in Figure 4.9 illustrate how Glargine pharmacokinetics parameter
variability yields expected variability in maximal plasma insulin, C,,,,. The range
produced in Figure 4.9 is the best achieved to replicate the reported values by
studies in the literature for similar injection doses [Heinemann et al., 2000; Scholtz
et al., 2005; Owens et al., 2000; Lepore et al., 2000]. The published values of C,,,,
is shown in Table 4.7. For example, a 24U of subcutaneous Glargine as reported
by [Lepore et al., 2000], has variations of C,,,, from 7+1.3 mU/L, and this is
presented by the boxed area in Figure 7.1(b). The range of C,,,, produced covers

the reported area.

The plot of C),,. is expressed as a log normal distribution. This distribution
maximizes the likelihood of accounting for variability among patients receiving
the subcutaneous injection. As absorption rate is dose dependent, where a small
dose is absorbed faster than a larger dose [Sgeborg et al., 2009], variability of
Cnaz s portrayed in Figure 4.9 increases at higher volume of Glargine injection,

as expected.

Figure 4.10 shows the randomly selected model parameter variability of the
Glargine pharmacokinetics parameters, Eprep gia; K1,gia; and ag, for 1000 Monte

Carlo simulations. The theoretical lognormal functions are also shown in Figure

4.10.
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4.4 RESULTS
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4.5 Discussion

In this study, an extended compartmental model for the absorption kinetics of
Glargine is presented. The model is developed from Wong et al. [2008a] with
new physiologically based Michaelis-Menten saturation terms introduced in the
precipitate and hexameric compartment, replacing empirical non-linear functions.
The model paramaters associated with Glargine at the two mentioned states
were identified and validated, while maintaning the overall model’s physiological
consistency with other insulin types, as in the original work Wong et al. [2008a,b].
Hence, this new, more complete and physiological model is consistent with other
insulin models of Wong et al. [2008a], and could be used directly within that

framework.

The ability of the NRLS method to effectively identify Glargine model pa-
rameters, is highly dependent on the initial selection of parameter values. This
choice posed a significant limitation in the beginning when the initial selection
from [Wong et al., 2008a] was insufficient and yielded poor results. The method
also became extremely time-consuming, as unique identifiability is essential for
model identification. However, the NRLS managed to converge to an area of ‘true

parameters’ after a few sets of initial parameter values were (empirically) tried.

Identification of the model parameters were based upon 4 main literature
studies, Heinemann et al. [2000]; Scholtz et al. [2005]; Owens et al. [2000] and
Lepore et al. [2000] which provided 6 sets of data. In previous chapter, the ICING
model was developed from data of ICU patients. The reason that literature
review of Glargine model development is not from ICU patients as well, is due to
unavailable data. However, individuals with Type 1 and Type 2 diabetes may be
the closest to represent patients with stress hyperglycaemia in the ICU. Average
values over each of these studies are used as a final model parameter value. To
best assess the validity of the identified model parameters, data from 4 further
different, independent studies, Klein et al. [2007]; Danne et al. [2003]; Becker
et al. [2008] and Heise et al. [2004], were utilised. By covering several studies

with different cohorts, the validation set provides a significant challenge.

In particular, the study by [Danne et al., 2003] provides data for group of
patients belonging to different age groups. Hence, it was interesting to see if this

population would give a different behaviour in comparison to adult populations.
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Validation of the Glargine pharmacokinetic model profile for these younger pa-
tients conforms with Lantus [2001]. Specifically, it showed that, as reported there
is no significant difference in the Glargine profile between children, adolescents
and adults with Type 1 diabetes. Thus, the model was validated by providing
Traz and Ci,q, values within 1 standard deviation of a range of reported values,
in these independent published studies. Glargine is known to be reproducible,
constant and predictable. Hence, eventhough different data was used for ICING
and Glargine model, it is expected that the same Glargine PK profile would be

seen for less critically ill patients.

An equally important outcome/result of this study is the assessment and
analysis of parameter variability on the pharmacokinetics model outputs. Clin-
ical experience has found that subcutaneous administration of insulin does not
result in highly reproducible metabolic effects, even when the same dose is ad-
ministered Heise et al. [2004]. Thus, designing any protocol (clinical or model-
based) for efficient subcutaneous insulin dosing in an attempt to achieve good
blood glucose control has always been a challenge. The major limitation is in
the pharmacokinetics profile of subcutaneous insulin and its intra- subject vari-
ability. Variable absorption and day to day variability are major factors that
contribute to the instability of resulting intra-subject glycaemic levels. Glargine,
in comparison to other long acting basal analogues, like NPH and Ultralente, has
the lowest reported intrasubject variability [Campbell et al., 2001]. However, its
variability is still considered a significant aspect in insulin treatment, affecting

glycaemic control and the risk of developing hypoglycaemia Klein et al. [2007].

A reliable system for insulin dosing should thus be able to consider all sources
of variation. The decision to vary only three model parameters, kprep.gia, Figia,
and ag, is deemed sufficient, as these parameters most influence the modelled
variability of Glargine absorption kinetics. In addition, they are Glargine-specific
parameters and their variability is thus independent, in this model, of other in-
sulin types, which may have a different variability for the same subjects. Phys-
iologically and clinically, the rate of dissolution and absorption of Glargine can
be affected by the state of Glargine forming an amarphous microprecipitate at
the injection site. The resulting observed and considerable variability of insulin

action is considered here with a Monte Carlo analysis.

The outcome of the Monte Carlo analysis portrays the likely intra- individual



100 CHAPTER 4 GLARGINE MODEL DEVELOPMENT

and inter- individual variability that could be expected clinically. Thus, the result
of the Monte Carlo analysis defines a range of distribution of variation to consider
in designing a glycaemic control protocol using Glargine. These ranges are seen to
(broadly) capture those reported in the literature, further validating the overall
model and approach. Hence, the main target is to develop control protocol that

would be feasible to all the variations often see among patients.

Models used for insulin therapy deal with non-linearities, multiple inputs,
and are thus often quite complex. Dealing directly with a patient’s outcome,
model-based therapies require rigorous analysis and validation. One of the main
criteria in model validation is the basic validation associated with variations seen
in model parameters [Dartois et al., 2007]. Inter- or intra- individual variability,
represented as random effects from model parameters, are often modeled as being
normally distributed [Lemenuel-diot et al., 2007]. However, this choice does not
accurately represent the actual variations seen in clinical patients. By opting
for random effects as a lognormal distribution, instead of being normally dis-
tributed, this step immediately constraints the variability of model parameters
to be physiologically realistic, non-negative values. Furthermore, as mentioned in
Thomaseth et al. [2006], model robustness is improved as a lognormal distribu-
tion can designate heavier tails than normal distributions, thus better capturing
observed behaviours. Hence, there would be higher probabilities of very large
deviations from the mean parameters, which would also be more easily limited
in modeling only to physiologically realistic and reported variations from clinical

studies.

Specifically, by defining what might be expected, the overall glycaemic control
system model can be adapted to the observed insulin variability encountered
clinically among patients. More importantly, such validated model variations
may also be used to aid therapy selection and decision support [Lin et al., 2008].
The ability to predict subcutaneous insulin absorption using these results based
on glycaemic response at the bedside would thus allow further patient-specific
optimization of insulin treatment, with the potential to reduce or better manage

the patient-specific outcome glycaemic variability.
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4.6 Conclusions

A detailed pharmacokinetics model of the subcutaneous absorption of Glargine
is developed with variability introduced to the identified model parameters. The
model is more physiologically valid compared to a prior model used as funda-
mental structure with the introduction of Michalis-Menten saturation. External
evaluation further confirms the validity of the model with independent data sets.
The impact of variability assessed with Monte Carlo increases the potential of
the subcutaneous absorption model to be used effectively in a Glycaemic control
protocol. The resulting Glargine absorption time-action with expected variability
seen intra- and inter- individually would help in designing dosage regimens. Un-
derstanding the pharmacokinetic properties of insulin is one of the major source
in dosage designs. It is intended that this model development with introduced
parameter variability would eventually offer a safe means to develop and compare

control algorithms for the less critically ill patients, prior to a clinical testing.






Chapter 5

Virtual Trials

5.1 Introduction

Virtual trial methods have played a substantial part in TGC by providing safe
means to develop and analyze glycaemic control protocols prior to clinical vali-
dation in pilot trials [Chase et al., 2010c, 2007]. With validated virtual patient
simulations, a patient’s immediate response towards a known intervention, either
from insulin administration alone or combination of insulin and nutrition, can be
assessed. Virtual methods and simulations are also able to account for physio-
logical variability, clinical compliance and/or sensor errors, thus offering a close
view of behaviour seen typically in clinical settings. Hence, protocols may be
optimised virtually to save time, save money and, most important of all, yield a

better patient outcome in clinical implementation.

In [Chase et al., 2007], any glycaemic control protocol must reduce elevated
blood glucose levels in a controlled, predictable manner, and hold them in a tight
range in the presence of any pertubations. It must be adaptive, and/or able to
identify changes in patient metabolic status, particularly with respect to insulin
sensitivity [Lin et al., 2011, 2008]. More importantly, the protocol needs to be
simple enough to be easily implemented and effective enough to be essentially

automated to minimise the consumption of clinical time and expertise.

This chapter presents the application of the developed Glargine compart-
mental model in Chapter 4 and the ICING model in Chapter 3. It is more of an
engineering view of control before an actual clinical control protocol is developed

from the results in Chapter 6. The main targets of this chapter are:
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e Assess the effectiveness of Glargine as basal insulin replacement for TGC

in less critical patients.

e Comparison of glycaemic performance from using Glargine in virtual trials

against the clinical results from SPRINT protocol.

Adequate basal insulin is essential for the regulation of glucose in the liver,
muscle and adipose tissue. It controls and maintains blood glucose levels, partic-
ularly during nocturnal periods by suppression of hepatic glucose output to de-
crease occurrence of ketogenesis and unchecked gluconeogenesis [Arif and Escano,
2010; Rossetti et al., 2003]. Basal insulin support using long-acting insulin is
the key component for treatment of patients with Type 1 and Type 2 diabetes
who require insulin with or without a combination of oral agents [Wong et al.,
2008a,b,c|.

Glargine is a new long-acting insulin that has been proven to be an effective
basal insulin preparation for patients with Type 1 and Type 2 diabetes, including
pediatric patients [Schober et al., 2002; Chase et al., 2003; Hathout et al., 2003;
Massi Benedetti et al., 2003; Rossetti et al., 2003; Porcellati et al., 2004; Raskin
et al., 2000; Rosenstock et al., 2010; Swinnen et al., 2010]. It has been associ-
ated with a reduced incidence of hypoglycaemia [Rosenstock et al., 2000, 2010]
in comparison to other long-acting insulin namely NPH and Ultralente, lower
fasting plasma glucose (FPG), [Rosenstock et al., 2000; Raskin et al., 2000] and
lower glycosylated hemoglobin (HbA;.) [Gerich, 2004; Gillies et al., 2000; Swin-
nen et al., 2010]. Its primary unique dynamic is its very flat pharmacokinetic
profile [Lantus, 2001; Campbell et al., 2001]

Hence, analysing the efficacy and safety of using Glargine in a TGC pro-
tocol for patients in less acute wards is worthwhile and an interesting step. In
particular, if Glargine can be used effectively for stable ICU and less critical
patients, nursing workload could significantly be decreased, which has added
benefits [Chase et al., 2008a] as discussed in Chapter 1. Thus, a primary goal is
to determine whether less acute patients with no intravenous access and lesser
insulin requirements can have insulin delivered using subcutaneous Glargine, that

works effectively.
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5.2 Method

The effectiveness of Glargine for blood glucose control is assessed in silico. Pa-
tient data were selected retrospectively for the simulation study from a cohort of
patients who received insulin therapy under the SPRINT protocol during their
stay in the Christchurch Hospital ICU [Chase et al., 2008c]. SPRINT uses insulin
boluses and modulates feed rate hourly to maintain blood glucose levels within a
desirable range of 4.0-6.1 mmol/L. It takes into account an estimate of the spe-
cific patient’s insulin sensitivity at any given time to determine the subsequent

insulin bolus size and feed rate.

To see how well the selected patient cohort would respond towards glycaemic
control using Glargine, clinically validated virtual patient simulation results are
compared to actual clinical data. The data is from patients treated using the
SPRINT protocol [Chase et al., 2008c|]. A brief explanation of the SPRINT

protocol follows first.

5.2.1 SPRINT Protocol

Since its first implementation at the Christchurch Hospital Department of Inten-
sive Care in August 2005, SPRINT has been used on over 1000 patients [Chase
et al., 2008¢c|. SPRINT is a model-derived TGC protocol developed from clini-
cally validated computer models used for real-time control in the ICU [Lonergan
et al., 2006a,b; Wong et al., 2006b; Chase et al., 2007, 2010c|. It is unique in
the way it uses explicit control of both nutrition and insulin inputs to maintain
blood glucose levels within a goal range of 4.0-6.1 mmol/L. SPRINT specifies
carbohydrate intake, formula and/or goal feed rates [Lonergan et al., 2006a,b].
Carbohydrate intake in other TGC protocols is often left to local standards, and
only insulin is solely used to control patient’s glycaemic level despite the risk
factors associated with various levels of carbohydrate intake in the critically ill
[Krishnan et al., 2003; Elia and De Silva, 2008; Der Voort et al., 2006]. Nutrition
levels and their variations are a pre-disposing factor for hypoglycaemia. Hence, a
lack of knowledge of carbohydrate administration, coming from a range of possi-
ble sources in the ICU, can multiply the impact of patient-specific variability on

the glycemic outcomes of a TGC protocol.
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More specifically, TGC protocols are designed with underlying assumptions of
carbohydrate administration that thus guide the insulin dosing recommended at
a given blood glucose level. Deviation from this implicit level by a given clinician
or unit will result in a different metabolic balance, and thus a wider range of
patient-specific glycemic outcomes. These more variable glycemic outcomes will
therefore further enhance the overall glycemic variability seen from the protocol,

as well as result indifferent insulin dosing.

For successful TGC, carbohydrate administration must be known, if not ac-
tually specified, by the algorithm. Without knowledge of carbohydrate adminis-
tration it will be difficult for the protocol to estimate insulin sensitivity directly,
except as a value relative measure, which could thus limit some important aspects
of patient-specific, adaptive TGC. The impact of nutrition and implications on
TGC protocol is discussed in Chase et al. [2010a].

SPRINT determines the insulin and nutrition intervention based on an esti-
mate of patient-specific insulin sensitivity, Sy, which is also a unique approach.
Any patient with a random blood glucose measurement over 8 mmol/L is put on
the SPRINT protocol. At entry a patient specific feed level sticker is attached
to the feed wheel of Figure A.1(a) in Appendix A. This sticker relates absolute
percentage goal feed (e.g. 30-100%) requested by SPRINT to an absolute enteral
feed pump rate in mL /hr. These feed rates are patient specific and thus the wheel
is patient specific. The values on the feed conversion sticker are computed based
on the patients age, body frame size and gender. Weighting factors are assigned
to each group of each variable (eg: Male = 1.0, Female = 0.8, Large body size =
1.1, Small body size= 0.8), which are then multiplied together to scale the feed
rates on a per-patient basis [Lonergan et al., 2006a]. Normally, when patients
are received at the ICU, the weight is unknown. Hence, patient’s weight is not
directly considered in the model-derived protocol. The range of patient-specific
goal nutrition rates is 50 mL/hr to 100 mL/hr.

A further unique feature of SPRINT is the one or two hourly measurement
and intervention intervals, which are also determined by patient’s own insulin
sensitivity, S;. More importantly, to ensure glycaemic control is not lost in pa-
tients who are often metabolically variable, SPRINT does not allow a four-hour
measurement like many other protocols [Lonergan et al., 2006a]. All the unique

features of SPRINT in comparison to other protocols are thoroughly discussed
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in [Chase et al., 2010a,b].

5.2.2 Virtual Trial Patient Cohort

The 15 patient cohort used to create the virtual cohort for simulation covers a
more stable portion of the general ICU population. These patient data are a
small subset of the full SPRINT cohort [Chase et al., 2008c]. For this study
cohort, patients were considered stable based on measurement frequency of 2
hours with no significant change in intervention or glucose levels. These patients
are considered to represent a more stable patient group ready for transition to a
less acute ward and subcutaneous insulin. Hence, they are the type of patients
who might not have intravenous access and for whom a less intensive protocol

would prove clinically useful.

The APACHE II score (Median: 19, IQR: 15-21.5), age, sex and mortality
for the selected cohort are shown in Table 5.1. The average length of each patient
data is 4.3 days (Range: 1.9-11.7 days). It is worth noting that the APACHE
IT scores have a much higher median and range than the larger cohorts in the
glycaemic control research of Van Den Berghe et al. [2001] and Krinsley [2004],
but is more similar to Van Den Berghe et al. [2006a] more recent study. This
latter point reflects the general medical ICU cohort in SPRINT from which these

patients were selected.

5.2.3 Virtual Trial Simulations

Virtual analysis, and clinical, model-based TGC both require a clinically vali-
dated patient-specific glucose-insulin model. The patients time-varying insulin
sensitivity, S7, a critical dynamic parameter was fitted hourly to the clinical pa-
tient data using Equations (2.38)-(2.44) and an integral fitting method [Hann
et al., 2005]. The fitting method uses integrals of differential equations to reduce
the nonlinear estimation problem to a set of linear equations that can be easily
solved. The method has the advantage as being convex and not starting point
dependent. It effectively matches the area under the measured response curve,

rather than matching the response trajectory. Hence, this approach converts a
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Table 5.1 Long-term virtual trial patient cohort

Patient ID Medical Group APACHE II score Age Sex Mortality

5004 Burns 11 43 F N
5008 Respiratory Failure 23 44 F N
5020 Pancreatitis 19 68 M N
5023 Unknown NA 75 M N
5028 Respiratory Failure 15 67 M N
5032 Pneumonia 31 70 M N
5034 Pancreatitis 20 68 M N
5050 Trauma 15 20 M N
5063 Pancreatitis 15 80 M N
5070 Dissecting Aorta 20 76 F N
5079 Unknown NA 50 F N
5092 Unknown NA 76 M N
5102 Sepsis 17 49 M N
5111 Cardio. Shock 29 58 M N
5118 Haemorrhage 19 50 F N
Median 19 57
IQR [15-21.5] [20-80]

computationally intense non-convex problem into a much simpler convex prob-
lem, resulting in speed thus, saving significant computational time. The method
has been used in a variety of clinical glycaemic control studies [Hann et al., 2005;
Wong et al., 2006b; Chase et al., 2005; Chase and Shaw, 2007; Le Compte et al.,
2009].

Constraints are placed on insulin sensitivity, Sy, in the identification process
to ensure it is within a physiologically valid range. Insulin sensitivity, S; is a
primary factor in which it determines the resulting glucose level for any given
inputs, and thus how much insulin is required to achieve tight control, at least to
the dose where insulin effect saturates [Natali et al., 2000; Prigeon et al., 1996;
Sowell et al., 2003]. More specifically, in the model used in this study, it accounts
for the net effect of any suppression or increase in endogenous insulin and glucose
production, and the rate of peripheral glucose uptake. Finally, the cytokines and
hormones that drive these affects that result in hyperglycemia are physiologically
linked to lowered insulin sensitivity and vary continuously overtime as patient
condition evolves. Hence, this overall effective insulin sensitivity is dynamic and
time-varying [Lin et al., 2006, 2008; Hann et al., 2005].

The resulting time-varying S profiles represent time-varying metabolic sta-

tus for individual patients. The insulin sensitivity metric, Sy is a well validated
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metric and has also shown significant correlation to gold standard research as-
sessments of insulin sensitivity [Lotz et al., 2006; Lotz, 2007; Lotz et al., 2008;
Docherty et al., 2009], and in comparison to steady states achieved in these gold
standard tests [Chase et al., 2009]. Thus, these profiles of S; can act as “virtual
patients” and patient-specific blood glucose levels for different insulin and nu-
trition inputs can be determined. More importantly, these virtual patients can
be used for testing different glycaemic control protocols for the same patient, a
clear advantage in developing new protocols. This “virtual patient” simulation
method had been shown to be an accurate way of predicting the effect of different
insulin therapies [Chase et al., 2010c, 2007; Lin et al., 2008]. The study by [Chase
et al., 2010c| provide the first rigorous validation of a virtual in-silico patient and
virtual trials methodology. It fully validates the independence of virtual patients.
This shows that the method can accurately simulate clinical results of a TGC
protocol. Moreover, it provides added assurance of protocol efficacy and a sig-
nificant insight into the clinical impact, before a clinical control protocol takes

place.

With respect to applying TGC, insulin sensitivity is critical. The varia-
tion due to patient condition will drive inter-patient differences and variability.
Variation in this value as patient condition evolves will then drive intra-patient
variability. As a result, insulin sensitivity, lies behind the main driving factors
behind the significant glycemic variability seen in critically ill patients and the

success (or lack of it) of TGC protocols.

5.2.4 Control Protocol with Glargine

In this study, the effect of Glargine was first tested where the sum of the clini-
cal daily boluses for a patient is substituted by a single dose of Glargine. This
approach assumes the overall stability of Glargine’s PK profile can replicate that
required with stable patient, as selected here. Virtual trial results are then com-
pared to the clinical SPRINT results to evaluate the performance of Glargine in
place of intravenous insulin. This is a first step towards a true Glargine TGC

protocol, in that it determines the potential for this insulin type in hospital TGC.
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5.3 Virtual Trial Result

Simulation results from Patient 5092 are shown in Figure 5.1. The top panel
shows the blood glucose profile throughout the length of stay used. Glargine dose
given is the same as SPRINT boluses. With the administration of Glargine alone,
it can be seen that Patient 5092’s glycaemic level is not well controlled for the first
100 hours, equivalent to approximately 4 days. The median blood glucose level
for this first 100 hours is 8.03 [IQR:7.53, 8.81] mmol/L. As blood glucose levels
over 7.0-8.0 mmol/L reduce and/or eliminate the effectiveness immune response
to infection [Chase et al., 2010al, this patient needs to be better managed in

terms of glycaemic level quality.

This result occurs due to the fact that the effective interstitial insulin takes a
longer ‘build up’ time to achieve the same concentration level as when intravenous
insulin injections are used in SPRINT protocol [Chase et al., 2008¢c|. As shown
in the second panel of Figure 5.1, depicted by the solid olive line (=), the build
up of Glargine’s effective interstitial insulin only begins to achieve relatively the
same level as the IV insulin in SPRINT around 150th hour (6th day). Hence, an
immediate conclusion is that a direct translation to Glargine is not possible due

to this build-up period.

The logic behind Glargine’s build up is explained through the characteristic
of Glargine itself. Since the typical, reported time-action profile of Glargine is
24-26 hours long [Heinemann et al., 2000; Lantus, 2001; Campbell et al., 2001],
Glargine is bound to accumulate between each dose interval until it reaches steady
state. One study reported a time-action profile of up to 30 hours [Lepore et al.,
2000]. Hence, it is unlikely that Glargine would clear up to zero exactly upon
each 24 hour interval. This excess leads to an accumulation in the following 24
hour interval of subcutaneous injection. In Luzio et al. [2003], the absorption
characteristics of Glargine are compared with NPH in Type 2 patients and it was
found that 50% of the residual radioactivity of Glargine was still present at the
injection site even after 24 hour, indicating a potential for long term build-up

with regular use.

Beginning from the 150th hour until the end of hospital stay, the glycaemic
level is well managed with a median BG of 6.29 [IQR:5.61, 6.93] mmol/L. The
overall BG performance level throughout the whole stay is 7.02 [IQR:6.14, 7.89]
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mmol/L. These results correlate well with Glargine’s reported slow absorption
rate and the clinical effect seen after the first few days of intensive insulin treat-

ment.

The third panel of Figure 5.1 shows the amount of Glargine used daily
throughout the stay, where the amount of Glargine equals to the daily amount
administered in the actual clinical data. Since this simulation is more focused on
analysing the efficacy of Glargine in place of IV insulin, there is no dose adap-
tation from day to day. A different amount of Glargine may be seen, when an
actual control protocol is developed where previous dose, previous and current
glycaemic level as well as nutrition are taken into account. Although not shown
in Figure 5.1, the amount of nutrition for all the patients selected in this cohort
is kept at the same feed level as in the clinical data. Finally, Patient 5092 in
Figure 5.1 is typical of the cohort.

Table 5.2 summarizes the virtual trial results of using Glargine replacing
the intravenous insulin administered in the selected patient cohort of SPRINT
by showing the glycaemic level performance. The performance measurement is
categorized by median and IQR of blood glucose, amount of insulin used per day
and percentage in desired band, on a per-patient basis. Overall, the per-patient
median BG is 8.34 [IQR:7.57, 8.55] mmol/L. Median percentage spent in desired
time band of 4.0-6.1 mmol/L is a very low 2.49% [IQR: 0.0, 11.0]. The lowest
median BG, 7.02 [IQR:6.14, 7.89] mmol/L and the best time in band are achieved
by Patient 5092 who had the longest stay with 323 hours long, equivalent to 13

days. This patient was shown previously as the simulation example in Figure 5.1.

It can also be seen that Patients 5004, 5008, 5028 and 5092, all of whom had
a stay of more than 168 hours (7 day), had better control than other patients.
The range of median BG for this group of patients is from 7.02-7.59 mmol/L.
This result suggests that control quality for this cohort simulation is associated

with patient’s length of stay.

This outcome is directly attributed to Glargine’s effective interstitial build
up mentioned previously, which requires 5 days to reach full effect, during which

control is poor.

A similar outcome is that Glargine is less effective when the usage is less
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Figure 5.1 Virtual trial simulation result for Patient 5092. The top panel displays the blood
glucose profile simulated with the usage of Glargine alone, represented by the solid blue line ().
The dashed red line (- -) represents the patient’s blood glucose profile from the actual clinical
data while Patient 5092 was under intensive treatment with the SPRINT protocol [Chase et al.,
2008c]. The second panel shows the effective interstitial insulin, where solid olive line (—) depicts
Glargine and dashed olive line (- -) represents SPRINT clinical data. The third panel displays
the total unit of Glargine used daily, replacing the sum of insulin bolus given intravenously in
SPRINT protocol. The bottom panel displays the model-fitted insulin sensitivity, St.
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than 24 hours. A group of patients with less than 24 hour stay, have a BG range
between 7.96-9.06 mmol /L. Considering the build-up time, these results indicate
that Glargine use should only be considered for long stay protocols, over 3-5 days.
This is not to be mistaken that Glargine’s administration is decided upon length
of stay. Rather, the simulation shows that Glargine is more effective with longer
stay. Any stay of less than 24 hours in the simulation showed the ineffectiveness
of Glargine. In real life, patient is considered stable once they are extubated, not

on inotropes and removed of IV lines.

Finally, the worst case was Patient 5070. This patient also used the largest
amount of Glargine per day with median 82U and [IQR:75.4, 89.7] U, which
indicates the high insulin resistance of the cohort. In patients who are ageing,
hyperglycaemia may be even more severe along with patients who suffer from
diabetes, obesity, and liver cirrhosis [Desai et al., 1989; Schwartz and Porte Jr,
2005; Garcia-Compean et al., 2009]. From [Rolan and Molnar, 2006], age related
differences in pharmacokinetics are primarily due to among others, diminished
renal function, altered proportions of body fat and water, and reduced cardiac
output. Age could therefore also be one of many other factors that contributed to
Patient 5070’s loss of glycaemic control who at 76 years of age, is at the cohort’s

lower end of age upper quartile.

Table 5.2 also shows high BG median values in part due to the Glargine build
up time. In the first 3-5 days, some glycaemic control is lost and BG rises using
the straight (unit to unit) translation of IV insulin to Glargine. After this point,
as seen with Patient 5092, BG levels stabilize but at slightly higher levels than
with IV insulin. Hence, the use of Glargine will require a more advanced dosing

than a straight, simple 1:1 translation.

5.3.1 Comparison with SPRINT protocol

To see the effect of using Glargine in comparison to the SPRINT protocol, Figure
5.2 compares CDFs of the blood glucose level for the entire cohort used (1,689
hours). The distribution of BG level is significantly different between the two
protocols. In SPRINT, the median and IQR for BG achieved is 5.86 [IQR:5.35,
6.51] mmol/L. A much lesser control performance along with a wider BG range
are the result from using Glargine, with median BG 7.84 [IQR:6.93, 8.77] mmol/L.
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Studies have shown that variability in blood glucose is also potentially harmful
[Dossett et al., 2008; Egi et al., 2006; Ali et al., 2008]. As in [Chase et al.,
2010a], one of the well reported facts between the interrelationship of glycaemia,
TGC, patients and outcome is, mortality increases with blood glucose variability,
independent of the mean or median value achieved by any form of glycaemic
control [Egi et al., 2006; Bagshaw et al., 2009a).
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Figure 5.2 Comparison of cumulative distribution functions for BG in SPRINT and by using
Glargine. The solid red line () represents BG concentration under SPRINT protocol [Chase
et al., 2008¢] and solid blue line () represents BG concentration under Glargine protocol.

To further assess the performance comparison, Figures 5.3 and 5.4 summarise
the glycaemic control performance obtained as cumulative distribution functions
on per-patient basis for the median, 5th and 95th percentile patients. The CDFs
indicate the tightness across patients in the cohort. Results clearly show the
differences in the tightness and variability of the glycaemic control performance
resulting from the different protocols. Glargine alone shows a significant loss of
control for the median and 90% confidence interval patient results due to the

lower effective insulin levels it achieves initially.

The median patient with Glargine has less than 15% measurements below
7mmol/L compared to 100% achieved by the SPRINT protocol median patient.
Median blood glucose levels should be less than 7.0 mmol/L, and thus allow for

reasonable variation in control as patient condition evolves. This goal will also
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have lesser impact on immune response to infection, thus reducing the potential
for sepsis, multi-organ dysfunction and failure, and thus death [Chase et al.,
2010b; Vincent et al., 1998; Moreno et al., 1999] .

At the 5th percentile, around 65% of measurements are below 7mmol/L for
Glargine, with none of the 95th percentile having any measurements between
4-7Tmmol/L. This compared poorly with SPRINT protocol, with 100% of blood
glucose values below 7mmol/L at the 5th percentile and 20% of the 95th percentile

patient having readings below 7mmol/L.

Hence, the straight 1:1 translation of Glargine, while implied in the literature

as a potential solution, results in significant variability across patients.

Curnulative Distribution Function

ath percentile
Glargine per patient median
A5th percentile

. I - 1 1 1 l
2 4 f g 10 12 14 16 16
Blood Glucose [mmaldl]

Figure 5.3 Glargine per-patient blood glucose cumulative distribution function (CDF).
Dashed box shows 4-7 mmol/L band. The median patient has less than 15% of measure-
ments below 7mmol/L in this case. None of the 95th percentile patient has measurements
between 4-7 mmol/L band while around 65% of the 5th percentile has blood glucose values
below 7mmol /L.

5.3.2 Interstitial Insulin Build Up

Interstitial insulin in the model portrays the insulin signal at cellular level and the
dynamics of glucose uptake are directly correlated with insulin concentration in
the interstitial fluid rather than in plasma [Castillo et al., 1994; Yang et al., 1994;
Bergman, 1997; Sjostrand et al., 2002; Bodenlenz et al., 2005]. Studies on glucose
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Figure 5.4 Clinical (SPRINT) per-patient blood glucose cumulative distribution function
(CDF). Dashed box shows 4-7 mmol/L band. The median patient has 100% of measurements
below 7 mmol/L in this case. The 95th percentile patient has only 20% below this value,
and the 5th percentile patient has 100% of blood glucose values below 7 mmol/L. Overall, the
per-patient CDFs indicate the tightness across patients in the cohort.

correlation with interstitial insulin begin with studies on animals, which provided
the essential data [Rasio et al., 1968; Camu and Rasio, 1972; Yang et al., 1992;
Bradley et al., 1993; Getty et al., 1998], and have now moved on to human studies
including direct measurement on human skeletal muscle tissues [Bodenlenz et al.,
2005; Sjostrand et al., 2002; Sjostrand et al., 2000; Sjostrand et al., 1999; Jansson
et al., 1993]. All of the mentioned studies, came to the same result, despite a
range of differences in which included comparing plasma and lymph, which is
reflective of the interstitial fluid, or by microdialysis, or by direct measurement
in the interstitial fluid. In particular, all these studies concluded that interstitial
insulin is significantly lower than plasma insulin. Sjéstrand et al. [1999] reported
that it is as significant as 40% lower, while [Bergman, 1997] reported a ratio 3:2

between plasma insulin to interstitial insulin.

In the interstitium, due to the restricted pathway of insulin to the interstitial
fluid, the kinetics of insulin are slower than plasma [Yang et al., 1994; Bergman,
1997; Sjostrand et al., 2002]. Some studies suggested an endothelial barrier that
delays the transcapillary transport of insulin, which itself is a time-consuming
process resulting in a lag in the interstitial fluid concentration [Jansson et al.,
1993; Sjostrand et al., 1999, 2002]. For patients who are have Type 2 diabetes or
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obese, and are thus likely to display significant insulin resistance [Bastard et al.,
2002], the delay is even more pronounced [Sjostrand et al., 2002]. Therefore,
in these simulations of Glargine, a slow and long acting insulin that has to go
through 4 compartments (precipitate, hexameric, monomeric/dimer and intersti-
tium) before appearing in plasma, the longer build up in the interstitium should
be expected. Figure 5.5, shows the stages of a 40U subcutaneous Glargine from
precipitate to hexameric, monomeric/dimer, interstitium and lastly appearing as

plasma insulin.

This analysis partly explains how TGC is achieved in the SPRINT proto-
col [Chase et al., 2008¢c|. In particular, boluses of intravenous insulin, given one
or two-hourly, quickly raised the interstitial insulin rapidly. This approach thus
promoted a more rapid rate of glucose uptake than would be found using subcu-

taneous long acting insulin.

4 ' ! ! : :
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Figure 5.5 A sample of 40U subcutaneous Glargine, as precipitate depicted as solid blue line
(=), hexameric (- -), monomeric/dimer (---), interstitium (--) and appearing as plasma insulin,
in solid red line (-). The 4 stages of Glargine from the subcutis before appearing as plasma
insulin, contributed to the delay and losses. This explains why IV insulin in SPRINT raised
interstitial insulin, @) rapidly compared to subcutaneous Glargine.

Hence, from an engineering perspective, to raise the concentration of the
effective interstitial insulin, @), in the virtual trials, a few supraphysiological sim-
ulations of Glargine were run. Effective insulin is actually unutilized insulin that
has crossed the plasma through a capillary wall, before appearing in the intersti-

tium. It could also be insulin that had bound and unbound to cell walls, tissues
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or insulin receptors [Duckworth and Kitabchi, 1981; Duckworth et al., 1998]. Re-
sponses for using Glargine with increasing doses are shown in Figure 5.6. This
analysis done for a time frame of 24 hours, clearly shows how the effective inter-
stitial insulin, @) has a different magnitude of build up depending on the amount
of Glargine used. Only with doses fourfold greater than the initial amount of
Glargine, did the effective interstitial insulin, ¢, builds up quickly enough to
achieve a relatively similar profile of @), to that of the identified and simulated
SPRINT clinical data on the first day.

Another approach that can be used to raise the effective interstitial is a
priming bolus. Using this method, intravenous insulin boluses are maintained
throughout the first day with a background of Glargine to raise the concentra-
tion of effective interstitial insulin, ). Figure 5.7 shows the responses of the
priming bolus in comparison to SPRINT data and Table 5.3 summarised the co-
hort results, detailing the BG performance on the first day, the rest of stay and
the whole stay. In this specific cohort, only ten patients were simulated, omitting
patients with less than 24 hour stay since the comparison between first, rest and
whole stay cannot be performed for the patients with a short duration in hospital

stay.

In Figure 5.7, the effective interstitial insulin for the first 24 hours is higher
compared to SPRINT clinical data resulting in slightly better gycaemic perfor-
mance with all hourly BG within the 4.0-6.1mmol/L band. However, after the
first day, without the IV bolus the effective interstitial insulin quickly drops to
the same level as a second day dose of Glargine. The result is thus, a smaller loss

of control.

Over the entire cohort, the highest median value of the glucose concentra-
tion for all four categories occurred on the first day. The blood glucose levels
achieved using Glargine alone is a lot higher compared to the rest, with median
BG 10.40 [IQR:8.58, 10.74] mmol/L. However, in terms of blood glucose vari-
ability, Glargine alone shows a tighter range with a 90% CI of [7.22, 11.22], as
Glargine is known to be less variable in profile [Raskin et al., 2000; Lepore et al.,
2000; Scholtz et al., 2005]. The other three categories have a much wider 90% CI

interval range, as can be seen in Table 5.3.

Increasing Glargine fourfold, achieved the goal of matching the effective inter-
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stitial insulin build up of the IV boluses. However, it carries risk with such large
doses and compromised patient safety with 3 episodes of hypoglycaemia. Hypo-
glycaemia in this trial is defined as blood glucose level lower than <2.2 mmol/L.
Finally, the simple priming bolus method resulted in one hypoglycaemic episode.
Therefore, in terms of safety and efficacy, only SPRINT protocol performed well
during the first day, and attempts to mimic it simply with switching to Glargine

carried significant potential patient risk.

For the rest of stay, the three protocols of Glargine only, Glargine fourfold
and Priming, all perform relatively the same, with little discrepancy in BG con-
centration and no occurrences of hypoglycaemia. SPRINT has the best glycaemic
control with median BG of 5.69 [IQR:5.28, 6.80] mmol/L. In terms of efficacy in
glycaemic control, for the whole duration of stay, the Glargine only protocol is
still disadvantaged compared to the other protocols. However, the protocol using

a priming bolus, and Glargine fourfold both resulted in hypoglycaemia.

Table 5.3 Cohort comparison for 10 patients with length of hospital stay over 24 hours,
between Glargine and SPRINT performance on first day, rest of stay and whole stay.

Blood Glucose 90% CI Hypoglycaemia
[mmol /L] [mmol /L] [N]
First Day Glargine 10.40 [IQR:8.58,10.74] | [7.22, 11.22] 0
SPRINT | 8.53 [[QR:6.36,9.23] | [4.73, 10.33] 0
Glargine 4x | 8.93 [IQR:6.50, 10.04] | [4.85, 10.72] 3
Priming | 8.29 [IQR:5.98, 9.02] | [4.44, 10.21] 1
Rest of Stay | Glargine 6.90 [IQR:6.27, 7.54] | [4.95, 8.79] 0
SPRINT | 5.69 [IQR:5.28,6.01] | [4.67, 6.80] 0
Glargine 4x | 6.14 [IQR:5.62, 6.71] [4.47, 7.77] 0
Priming | 6.75 [IQR:6.16, 7.41] | [4.95, 8.78] 0
Whole Stay | Glargine | 7.02 [IQR:6.36, 7.67] | [4.99, 9.23] 0
SPRINT | 5.71 [IQR:5.33, 6.06] | [4.67, 7.36] 0
Glargine 4x | 6.18 [IQR:5.64, 6.83] | [4.48, 8.22] 3
Priming | 6.83 [IQR:6.16, 7.48] | [4.84,8.91] 1

5.4 Discussion

Glargine is an effective basal support on a daily basis for patients with Type
1 and Type 2 diabetes, including pediatric patients [Rosenstock et al., 2000;
Rossetti et al., 2003; Porcellati et al., 2004; Raskin et al., 2000]. However, for a
hyperglycaemic patient in the ICU or HDU with no prior history of diabetes, the
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Figure 5.6 Effect of Glargine with increasing doses on the effective interstitial insulin con-
centration Q(t), which determines the final glucose lowering effect observed. The first panel
displays the Blood Glucose level with dotted black line (---) representing the BG effect from
IV SPRINT. The solid red line (- -) is the BG lowering effect from Glargine protocol, while
solid pink, purple and olive lines (-), are BG levels utilising Glargine with increasing doses.
The second panel displays the effective interstitial insulin. The goal is to match the IV insulin

only line for equal control.
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Figure 5.7 Effect of priming bolus with Glargine and intravenous insulin bolus combined,
to raise the effective interstitial insulin concentration Q(t), which determines the final glucose
lowering effect observed. The first panel displays the Blood Glucose level with solid light
blue line (-) representing the BG effect from priming bolus. The dashed blue line (- -) is the
BG lowering effect from SPRINT protocol and solid pink line (-) is by the administration of
Glargine alone. The second panel displays the effective interstitial insulin. The goal is to match
the IV insulin only line for equal control.
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benefit of Glargine has not been clinically tested by any group. Virtual trials are
thus used in this research to demonstrate the efficacy of using Glargine. Overall,
it was found that Glargine alone cannot readily maintain tight control nor can
it significantly reduce the elevated glycaemic levels, despite the relatively stable

cohort used.

The SPRINT protocol utilizes intravenous insulin injections on an hourly
basis to manage glycaemic levels for critically ill patients. Many critically ill
patients are metabolically volatile from hour to hour as a result of their critical
illness and the medical interventions and drug therapies they receive (Chase et al.,
2008). Therefore, intravenous insulin injections suit this situation well because
the response is fast and does not linger when patient metabolic status changes.
Importantly, if a patient is being weaned from inotropes or other medications that
suppress insulin sensitivity, any lingering effect of insulin is undesirable because
insulin sensitivity may quickly recover and result in hypoglycaemia. However,
the resulting rapid and tight glycaemic control offered by SPRINT comes with

an added cost of higher nursing effort.

For the 15 patient cohort in this chapter, their insulin requirement was gen-
erally very stable, relatively low and consistent from one hour to the next. These
patient’s insulin requirements should therefore be able to be directly substituted
by Glargine successfully, as they need only a constant and stable supply of ef-
fective insulin in the interstitial compartment. The peakless time-action profile
of Glargine is thus ideal for such a basal insulin regimen. However, through the
virtual patient simulations, it was found that by using Glargine alone, the effec-
tive insulin in the interstitial compartment does not build up quickly enough. As
a result, patients blood glucose rise significantly and are not well controlled on
the beginning of the treatment, particularly on the first day. Subsequent days
with similar dosing are thus not able to reduce these levels without adding more

insulin which carries risk with long acting subcutaneous insulin.

For any insulin that is given subcutaneously, it takes a while to reach the cir-
culatory systems. Glargine itself is a slow, long acting insulin that goes through
4 compartments before reaching plasma [Campbell et al., 2001; Tarin et al.,
2005]. Therefore, its effect in the interstitial compartment builds up very slowly
compared to intravenous insulin. Thus, the efficacy of subcutaneously injected

Glargine as basal insulin support in the virtual patients will only be demonstrated
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in patients with a longer stay.

Glargine is reported to reach a steady state 2-4 days after the first dose
[Lantus, 2001; Heise et al., 2002; Lehmann et al., 2009]. Under a single-dose con-
ditions, the time-action profile of Glargine is reported to be 22-26 hours [Lantus,
2001; Heise et al., 2004; Porcellati et al., 2007}, even up to 30 hours in some cases
[Lepore et al., 2000]. While under steady-state conditions, the duration is around
24-25.6 hours [Klein et al., 2007; Porcellati et al., 2007]. There has always been
concern on the cumulative effect of Glargine with the slow absorption and build
up process. However, in Heise et al. [2002], it is reported that there is no evidence
of accumulation in Glargine during the 12 day trial. The study was performed
on 15 Type 1 Diabetic patients and steady state was reached as early as the 2nd
day. However, in a review article by the same author, [Heise and Pieber, 2007],
it is acknowledged that a slight increase in Glargine’s time-action profile under

steady-state conditions is due to accumulation of Glargine.

In this chapter, the superposition or accumulation of Glargine is very slow.
The slow cumulative effect did not have any negative side effect on the patients
in terms of hypoglycaemia. According to Gerich et al. [2006], it has been difficult
for patients and physicians to sufficiently titrate basal long-acting insulin therapy
for the fear of hypoglycaemia associated with (NPH) or Ultralente due to their
near flat pharmacokinetic profiles. Glargine, however, enables attainment of near
normoglycaemia with lesser risk. This study successfully demonstrated a safe ap-
proach to use Glargine with regard to hypoglycaemia in the less acute wards. The
only condition when hypoglycaemia occurred, is through the simulations of the
priming bolus approach as well as the instance where supraphysiological Glargine
dose is given to quickly raise the effective interstitial insulin, (). However, in this

study, safety traded off with significant losses in control performance.

Hence, any design of a control protocol using Glargine should consider the
possible variable absorption kinetics of Glargine, and the day to day variability
that often result in patient’s glycaemic levels instability. Virtual trials allow this
task to be done by providing a validated simulation environment, thus offering
additional safety factor to patients before any control protocol could be developed
for clinical practice. In particular, a safe means of gradually substituting IV
insulin for Glargine will need to be developed, and will likely require a measure

of patient-specificity, as enabled by model-based control.
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The virtual trials done in this chapter in general, display that the use of
Glargine in the long term recovering stable patients, results in blood glucose
levels somewhat higher compared to using intravenous insulin injections only.
The virtual trial results thus show that this choice is a safe and conservative. It
is also less labour intensive. However, the elevation of BG in some cases were

significant enough to warrant further analysis into better methods.

The patient cohort for this study was patients that received intensive insulin
treatment under the SPRINT protocol in the ICU [Chase et al., 2008c]. Although
these patients are considered metabolically stable, and may be reflective of pa-
tients in the less acute wards, the results obtained in-silico, may not be fully
representative of the the actual units. Sufficient data is still needed. However, in
these less acute wards, retrospective data is not usually available with the density
required for virtual trials. Hence, the need to develop a cohort from the more

stable ICU population to begin this study and research area.

Moreover, there are still several issues that need to be addressed. In less acute
wards, patients often have meals, rather than the constant naso-gastric feed used
in the ICU. It is known for healthy individuals, endogenous insulin is secreted
upon consumptions of food (Woods et al. 1998). However it is not known to
what degree that less critically ill patients are able to support their own prandial
insulin requirements. In addition, the variability in patient endogenous insulin
responses will need to be addressed. Endogenous glucose production for these
less critically ill patients may be different from ICU patients as well. Hence, any
method to quickly raise the effective interstitial insulin, () could result in a less
favourable incident of hypoglycaemia given patients known variability. All these

issues should ideally be investigated through clinical data gathering.

All of these aspects will introduce potential further variability. Hence, these
results necessitates the use of a more conservative approach prior to clinical test-
ing to ensure both efficacy and patient safety. In the following chapters, Monte
Carlo simulations that account for Glargine’s and blood glucose variability will

be run to better ascertain the impact of these variabilities.
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5.5 Conclusion

This chapter presented a validated Glargine compartmental model and an in-
travenous insulin-glucose pharmacodynamic, ICING model both developed in
Chapters 2, 3 and 4. The in silico virtual trial results for 15 metabolically stable
ICU patients showed that Glargine can provide effective blood glucose manage-
ment for these long term recovering patients when their stay is longer than 7
days. Differences in Glargine PK made the straightforward 1:1 dosing calcula-
tion, from SPRINT boluses to Glargine doses, not the best method. Glargine
needs to go through 4 states after subcutaneous injection;precipitate, hexameric,
monomeric/dimer and interstitum before reaching plasma insulin, thus explain-
ing the slow absorption kinetics. In IV boluses, the response is much faster as
insulin gets to blood stream quickly without having to go through subcutis. A
combination of initial intravenous injection and Glargine dosing, or a supraphys-
iological Glargine amount is required for the first day to quickly lower elevated
blood glucose level. Once the patients blood glucose levels are within a desirable
range, Glargine alone can provide effective glycaemic management. However, this
method is relatively high risk, and resulted in some hypoglycaemia. The overall
results show an approach to managing the intravenous to subcutaneous insulin
transition that occurs as patients leave intensive care for less acute wards during
their hospital stay. Safe, effective approaches to this transition will ensure that
clinical burden and workload are not increased, while maintaining the benefits of

tight glycemic control.



Chapter 6

Virtual Trials: SPRINT+Glargine Protocol

Virtual trials performed in this chapter, are the first clinical validation step to-
wards developing a comprehensive system for maintaining TGC outside of the
ICU. In particular, the focus is on transition from relatively labour intensive in-
travenous insulin with frequent measurement in the ICU to less intensive, longer
acting, subcutaneous insulin in less acute wards with consequently fewer measure-
ments, adjustments and effort. The current standard protocol, SPRINT [Chase
et al., 2008c] uses intravenous (IV) insulin injections every 1-2 hours and con-
trols blood glucose levels effectively [Chase et al., 2008c, 2010b]. However, once
patients leave the ICU, the standard protocols are to use subcutaneous insulin,
often due to lack of intravenous lines or access to deliver insulin. Lower nursing
resource means SPRINT would also not be feasible even if intravenous access
were available. With no clear switching guidelines, from one scenario (ICU) to
the next (less acute wards), the changeover and protocols used are often adhoc
and not patient specific. The result is inconsistent levels of care, which can leave

ward patients at a disadvantage and result in so-called rebound hyperglycaemia.

Goldberg et al. [2004b] and Barth et al. [2007b] have expressed the need
to develop a protocol that could minimize rebound hyperglycaemia once an IV
insulin protocol is discontinued. As expressed in Barth et al. [2007b], from their
retrospective review of several ICUs, a marked variability in glucose control is seen
within 48 hours of protocol discontinuation once patients were transferred to a
general medical floor. The patients in that study had a statistically significant
increase in mean percent of BG values > 8.3 mmol/L or 150 mg/dL. In Goldberg
et al. [2004b], for the first 12 hour after an IV protocol is stopped, mean blood
glucose levels climbed to 9.9 £+ 3.2 mmol/L (178 + 57 mg/dL), well above the

original target range. By the second 12 hour period, or 13-24 hours, mean blood
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glucose levels rose to 11.1 £ 3.9 mmol/L (200 + 70 mg/dL). Both studies came
to the conclusion that there is a significant need for a protocol following patients

transferring out of the ICU to less acute wards.

Another study by [Olansky et al., 2009] evaluated the safety and efficacy of a
protocol using transition to subcutaneous Glargine from IV insulin in preparation
for transfer to a regular nursing floor. In this prospective analysis, from 99
patients included in the study only 1 patient developed hypoglycaemia. From
the aspect of efficacy, 70% of the patients had blood glucose level maintained
within 3.8-8.3 mmol/L (70-150 mg/dL). This study concludes that efficacy could
further be improved if the maximum limit of a 30U Glargine dose was increased,

and that this change was not likely to affect protocol safety.

This chapter, as a continuation from the previous chapter, strives to develop
a validated, model-based system to maintain good blood glucose control outside
of the ICU. The overall goal is to enable a smooth transition of patients from
ICU to less acute wards, while keeping nursing effort to a minimum, reflecting
the much lower nursing resource available. In Moghissi et al. [2009] the con-
sensus statement of AACE and ADA, the preferred treatment for non-critically
ill patients is one that has a scheduled subcutaneous insulin, basal component,
nutritional component and correctional component where insulin analogs are the
preferred insulin of choice. The said components are thus incorporated in the

glycaemic control protocol developed in this chapter.

Because SPRINT [Chase et al., 2008c]| operates on the basis of estimating the
patient’s ‘apparent’ insulin sensitivity, which is effectively how much glucose can
be removed by the amount of insulin bolus given, the protocol is still applicable
when there is a background insulin infusion or a dose of Glargine. Hence, in
this chapter, to assess the quality or performance of control, virtual trials are
performed using SPRINT with daily doses of Glargine. Each performance mea-
sure of the protocols will indicate the associated benefit or disadvantage for both

patients and nursing effort.

The performance of each protocol will be quantified by comparison of clin-
ically validated virtual trial [Chase et al., 2010c]| results to clinical data for the
goodness of control. Performance is based on duration of blood glucose levels

within a clinically desirable range, amount of insulin and nutrition given, safety
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or lack of hypoglycaemic events, and nursing effort intensity. Specifically, nurs-
ing effort intensity is measured by the number of interventions required, which
includes measuring blood glucose levels, adjusting feed rates, giving SPRINT IV

insulin boluses, and giving subcutaneous Glargine doses.

From [Chase et al., 2006; Eslami et al., 2008], time in a glycaemic band is
calculated as the time or percentage in a specific band and provides an indication
of the tightness of the glycaemic control result computed from all patients. It
reflects the proportion of patients being in a target band. In this study, 4.0
6.1 mmol/L band is used as a tighter performance measure and 4.0-7.0 mmol/L
band, a less tighter choice but still a good acceptable range. The median and
IQR of glycaemic levels measure the tightness of blood glucose control and is
unaffected if data is skewed as normally seen from blood glucose data. IQR is
the difference between the 75th and 25th percentile, and does not depend on
the largest or lowest data. Hence, data evaluation by median and IQR is more
robust. A further explanation on performance analysis and data interpretation
of blood glucose levels can be found in Rodbard [2007]. Lastly, hypoglycaemic
episode is measured as the number of percentage or measurements that are below
a defined hypoglycaemic threshold. As defined in Chapter 5 previously, the lowest
threshold adopted in this study is 2.2 mmol/L. This performance measure is a

critical indicator on the safety of the protocol used.

6.1 Method

The effectiveness of Glargine for blood glucose control is assessed in silico. Pa-
tient data were selected retrospectively for the simulation study from a cohort of
patients who received insulin therapy under the SPRINT protocol [Chase et al.,
2008c| during their stay in the Christchurch Hospital ICU. The use of Glargine
is intended for patients who are recovering from their critical illness, and hemo-

dynamic stability had been regained.

Because the virtual trials method used is patient-specific, in silico trials can
be run using only clinically relevant patients. The patients selected for simulation
are those who exhibit metabolic stability within 30 hours of ICU admission.

Metabolic stability in patients in terms of stable blood glucose-insulin response
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is defined by:

e Stable hourly insulin boluses requirement, < 3U of insulin per hour, for at

least 12 hours.

e Stable feed rate of > 60% of the calculated individual patient’s goal feed
rate. Goal feed is calculated using individual patient’s age, gender and

frame size.
e No acute renal failure [Vincent et al., 1996].

e Less than 1000ml of fluid given as intravenous boluses in the past 24 hours,
indicating hemodynamic or circulating stability and a stable interstitial

volume.

e Resolving multiple organ failure (Sequential Organ Failure Assessment (SOFA)
Score < 6) [Vincent et al., 1996].

In total 30 patients from the entire SPRINT cohort [Chase et al., 2008c] met
the inclusion criteria, and are detailed in Table 6.1. They total to 184.2 patient-
days, equivalent to 4,420 hours. The cohort represents a general cross-section of
the medical ICU population, as well as by diagnosis or medical group, APACHE
IT score, age, sex and mortality. Males make up 60% of the patients selected
for the in silico assessments, which also mutates the overall ICU population on
SPRINT [Chase et al., 2008c]. Median age of these patients is 56 [IQR: 42,
72] years old, which is slightly younger than SPRINT, as might be expected
given the expectation of stability. Median Acute Physiology And Chronic Health
Evaluation (APACHE II) score is 18 with IQR=[16,20]. The average length of
stay is 5.7 [IQR:4.3, 6.7] days. Since the average stay of patients after ICU in a
non-critical setting is less than 6 days, this group of patients represents patients
normally seen in those wards. Mortality is 0 for the selected patients, further

reflecting these criteria and clinical expectations.

Three different protocols involving the use of Glargine are tested to evaluate
their potential for a clinical pilot study. Table 6.2 lists the full descriptions of
simulation protocols examined in this study. The simulated protocol with reduced
SPRINT boluses of 1U and 2U are considered for safety. The frequency of blood

glucose measurements, changes in feed rates and IV insulin boluses are governed
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Table 6.1 Long-term virtual trial patient cohort (N=30, 4,420 total hours equivalent to 184.2
day)

Patient ID  LOS (hrs) Medical Group APACHE II score  Age (years) Sex Mortality

5006 161 Respiratory Failure 23 44 F N
5013 90 Respiratory 18 56 F N
5033 100 Trauma 29 66 F N
5054 158 Respiratory Failure 18 75 M N
5060 271 Gastrointestinal 15 79 M N
5061 140 Trauma 16 22 M N
5071 107 Trauma 12 49 M N
5076 240 Gastrointestinal 12 32 M N
5086 127 Respiratory 32 64 M N
5101 280 Neurological 19 50 F N
5104 113 Trauma 18 18 M N
5122 159 Trauma 19 73 M N
5124 147 Respiratory 16 74 M N
5149 325 Surgical 21 60 M N
5158 103 Neurological 22 68 F N
5173 295 Respiratory 19 67 F N
5188 129 Trauma 14 73 F N
5207 155 Respiratory 19 42 F N
5233 39 Gastrointestinal 16 76 M N
5276 87 Septic Shock 18 18 M N
5279 85 Septic Shock 24 45 M N
5280 141 Trauma 18 45 M N
5288 77 Meningococcus 23 21 F N
5299 103 Respiratory 20 56 F N
5310 34 Neurological 19 60 F N
5315 196 Respiratory 18 19 M N
5317 136 Toxicology 19 23 M N
5322 136 Respiratory 15 72 F N
5351 166 Respiratory 12 76 M N
5376 120 Surgical 16 56 F N
Median 137 18 56

IQR [103-161] [16-20] [42-72]
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by the SPRINT protocol. SPRINT requires current and previous blood glucose
measurements, the amount of previous hour IV insulin bolus and nutrition given
in the previous hour, all to determine nutrition and insulin bolus for the next
interval. For patient comfort in the clinical environment, blood samples are taken
from the arterial cannula hourly until patient becomes metabolically stable. This
is defined as having 3 consecutive hourly measurements within 4.0-6.1 mmol/L
band. In which case, measurement frequency is changed to 2 hourly until blood

glucose levels fail to stay in the 4.0-6.1 mmol/L band.

Table 6.2 Description of protocol simulations

Protocol Description
Clinical Records SPRINT Clinical data from [Chase et al., 2008¢]
SPRINT+Glargine Simulation of SPRINT protocol with Glargine as a basal

insulin replacement therapy

SPRINT+Glargine-1U  Simulation of SPRINT protocol with Glargine where
the boluses calculated using SPRINT are reduced by 1U

SPRINT+Glargine-2U  Simulation of SPRINT protocol with Glargine where
the boluses calculated using SPRINT are reduced by 2U

The dosing frequency of Glargine is approximately 24 hours, but can vary
form 22-27 hours in several studies [Heinemann et al., 2000; Lepore et al., 2000;
Porcellati et al., 2007]. The first dose is given in these protocols and virtual
trials at 12 hours after ICU admission. The size of the initial Glargine bolus is
the sum of SPRINT insulin boluses administered during the previous 12 hours.
The 12 hour period is chosen to ensure patients are in stable condition as would
be practiced in real condition (not simulated). The following Glargine boluses
are calculated as being half of the total daily insulin (IV boluses + Glargine)
from the previous day. This is for safety and Glargine is more effective per unit
given than insulin due to insulin like action of other precipitate products from
Glargine. Each Glargine dose is given as a bolus of the very long acting insulin

and is capped at 40U for safety against hypoglycaemia.

For example, consider an admitted patient who received 2U of insulin hourly
for the first 12 hours during the first day of stay. The sum of this IV insulin
bolus, equals to the sum of the first subcutaneous Glargine dose of 24U given
at 12 hours and is expected to last around 24 hours. If the patient continues to
receive 2U per hour from SPRINT on top of the Glargine given for the next 24

hours the subsequent Glargine dose given 24 hours later at hour 36, will be half of
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48U+-24U or 36U. Importantly, Glargine dose has a ceiling rate of 40U, which is
not reached in this example but ensures that excessive Glargine is not given. The
goal of this limit it to minimise the risk of hypoglycaemia if insulin requirements
drop significantly over one day. Thus, this approach limits the daily change to
50% or 1.75 U/hr (max) before reaching the point where the Glargine dose was
too large. The protocol is outlined step by step below:

First Glargine Dose.

1. Add up the amount of insulin given to a patient during last 12 hours. This
U.

sum 1is

2. Give Glargine dose equals to the amount calculated in step 1. This sum is
U

3. This dose is capped at 40U.
4. SPRINT injection is not given the following hour.

5. SPRINT continues.

Each Glargine Interval.

1. Add up the amount of total insulin (SPRINT boluses+ Glargine) given to
the patient during the last 24 hours. This sumis ___ U.

2. Divide this amount by 2. This sum is U.

3. Daily Glargine is prescribed from the amount calculated in step 2.
4. This dose is capped at 40U.
5. SPRINT injection is not given in the following hour.

6. SPRINT continues.

Hypoglycaemia is a major safety concern thus any control protocol should
consider immediate recognition and necessary treatment whenever blood glucose

drops to an alarming level. For each given Glargine dose, no IV insulin bolus is
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given in the following hour, as the rate of uptake to a peak value (rise time), can
be variable and the pharmacokinetic’s fluctuations could lead to hypoglycaemia
[Cryer et al., 2003; Heinemann, 2002].

For clarity, it is important to reiterate the main goals of the protocol studied
here. Specifically, these virtual trials and protocols are designed to accomplish

the following goals:

1. Learn more about the efficacy of Glargine in ICU cohorts. Studies in nor-
mal patients have reported it to have both greater [Murphy et al., 2003;
Massi Benedetti et al., 2003; Ratner et al., 2000] and lesser [Fahlen et al.,
2005; Hirsch and Brownlee, 2005; Ciaraldi et al., 2001] efficacy than other

insulin types. Hence, its total dose is limited here.

2. Learn more about the variability of Glargine pharmacokinetics in ICU pa-

tients to understand other sources of variability.

3. Safely test the use of Glargine and it’s potential use in weaning patients

entirely to Glargine.

Hence, these protocols are safe, first learning steps that are not guaranteed

to be finished protocols or products for clinical uptake.

6.2 Virtual Trial Results

A summary of the results for all 30 patients is shown in Table 6.3. The results are
given in per-patient median and IQR. As summarized in [Chase et al., 2010a], a
TGC cohort may have acceptable median and variability, but the clinical outcome
will be highly dependent on how each patient is treated. As some patients are
more variable than others, failure to directly identify and account for patient
variability means that some patients will receive, all else equal, more variable
TGC. Simulated protocol is not compared to SPRINT simulation, for the reason

of obtaining a good correlation of the proposed protocol to actual clinical results.

The median blood glucose concentration level from the simulation of SPRINT-+

Glargine is relatively the same as the Clinical data. However, this result comes
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with a greater amount of total insulin used, which is the combination of IV bo-
luses and Glargine with 83.34 [IQR:74.90, 92.78] U/day. Clinical SPRINT daily
amount of insulin is 52.86 [IQR:37.22, 57.31] U/day. Feed rate is also higher
compared to the Clinical data with 125 [IQR:141, 109] g/day vs 118 [IQR:100,
140] g/day. In a clinical situation, feed rate is often turned off during various

medical procedures. Hence, that is one possible source of the slightly higher rate.

Based on these performance measurements, the protocol seems to be less ef-
fective with the larger amount of total insulin used. Equally, they could be also
seen as a difference in effect based on the different, much smoother, pharmacoki-
netic profile that results compared to the bolus driven clinical data from SPRINT
[Chase et al., 2008c]. The most noticeable difference as well as a positive effect,
that could be seen is the reduction in nursing effort, expressed in intervention fre-
quency. The highest intervention frequency (N/day) in SPRINT is recorded at
41 [IQR:36, 50] interventions per day. With SPRINT-1U~+Glargine protocol, the
intervention frequency drops to 36 [IQR:34, 38| interventions/day. Importantly,
the 75th percentile is 24% lower, from 50 measurements to 38. Hence, at this
point there is a good indication that Glargine will be beneficial in terms related

to nursing resources.

On top of the usual clinical interventions in ICU, such as using corticosteroids
or vasopressers, the 1-2 hourly measurements of blood glucose levels, and the ad-
justment of IV insulin and dextrose feed, for TGC, require additional work. The
additional work for a 24 hour stay is up to 4 hours per patient with SPRINT at the
75th percentile, where the mean time taken for hourly blood glucose monitoring
and adjustment of insulin doses alone was 4.72 minutes [Aragon, 2006]. Hence,
the reduction from 50-38 is a savings of 1 hour of workload on a more difficult
or intensive patient. 1 hour of time saved is a significant amount of time reduced,
which would be much appreciated by the nursing staffs. This estimation is done
by calculating the highest upper-quartile for SPRINT and SPRINT-1U+Glargine
with the mean time of 4.72 mins, which gives to 236 mins (50 x 4.72 mins) and

179 mins (38 x 4.72 mins), respectively.

With the amount of insulin prescribed from SPRINT protocol reduced by
1U, while Glargine doses are given daily, a much lesser amount of IV insulin
boluses is administered with 35.91 [IQR:32.11, 36.84] U/day. However, with

additional basal insulin from Glargine, the total amount of insulin used is higher
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by 18.3 U/day (0.75 U/hr) in comparison to Clinical SPRINT data. The 0.75
U/hr difference in rate may be clinically insignificant given the difference in PK
profiles between SPRINT boluses of SPRINT with Glargine. In particular, the
long term infusion from Glargine may suffer greater losses to the liver and kidney

as it is more consistently present in plasma.

The median BG of SPRINT-1U+Glargine is 5.62 [IQR:5.12, 6.28] mmol/L,
where the tightness of blood glucose concentration is slightly reduced with a
higher upper quartile. Percentage of BG levels spent within 4.0-6.1 mmol/L
band drops almost 20%, although time spent in a less tighter control of 4.0-7.0
mmol/L is relatively maintained with 86.46% [IQR:83.4, 90.7] compared to 92.30
% [IQR:89.7, 95.1] from Clinical. Clinically, this result shows slightly greater, but
clinically insignificant difference in variability [Chase et al., 2010b]. Equally, 4.0
7.0 mmol/L is an acceptable range and a much tighter band compared to other
clinical standards [Moghissi et al., 2009]. The slight loss of control particularly in
having glycaemic level within the desirable band of 4.0-6.1 mmol /L is made up by
low intervention frequency with 36 [IQR:34, 38| adjustments/day. In comparison
to Clinical data, this 12% reduction of intervention is significant when translated
to the time saved in performing the required adjustments either in feed rate,
administering SPRINT IV boluses, measuring BG levels or giving subcutaneous

Glargine doses.

In the last simulated protocol, SPRINT-2U+Glargine, reducing the pre-
scribed SPRINT IV boluses by 2U compromised the overall TGC performance.
This protocol, with daily doses of Glargine is not sufficient to provide effective
glycaemic management for these patients eventhough the total amount of insulin
used is comparable to Clinical data with 48.83 [IQR: 43.78, 52.41] U/day and
52.86 [IQR:37.22, 57.31] U/day respectively. The percentage of BG spent within
4.0-6.1 mmol/L band is a low 43.80 [IQR:32.43, 47.66] %. Overall, this last
protocol, along with the prior two, shows the impact of pharmacokinetics for a
different approach and implies that a direct 1:1 translation of insulin dose will

not work effectively and completely.

To further understand how the combination protocol used higher insulin com-
pared to SPRINT protocol, the explanation is illustrated in Figures 6.1 and 6.2.
Figure 6.1(a) shows the plasma insulin level of a random patient from the cohort
under SPRINT-1U+Glargine protocol while Figure 6.1(b) is the same patient re-
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ceiving insulin from SPRINT protocol [Chase et al., 2008c]. With the SPRINT-
1U+Glargine protocol, the patient (Patient 5276), received 4 Glargine doses in
total, beginning with a low 10.5U, to 40U for each of the following 3 cycles. The
overall plasma insulin level in SPRINT-1U+Glargine protocol is slightly higher
than SPRINT protocol, with the ‘minimal boost’” of basal Glargine.

Figure 6.2(a) is the plot of interstitial insulin, @), where the first cycle of
subcutaneous Glargine dose is given at 720 minutes. Comparing Figures 6.2(a)
and 6.2(b), it is clearly observed there is a drop in the interstitial insulin an
hour after Glargine is given, since no IV bolus is given during this hour. The
very conservative dose of Glargine at 10.5U is not able to sustain the level of @),
hence the drop. The level of interstitial insulin, () only picks up again from the
rapid bolus effect of SPRINT, which was continued at minute-840 with 1U of IV
insulin. At minutes 960 and 1020, a 3U of IV bolus is administered each and the
level of (), quickly picks up. The amount of IV boluses and Glargine doses are
not shown in the plot but are taken from the simulation results. The low level of
Q@ for around 200 minutes, explains why in the SPRINT-1U+Glargine protocol
more insulin is eventually used in total. Glucose uptake is strongly promoted by
insulin in the interstitial, hence insulin action is less when concentration in the
interstitial drops [Castillo et al., 1994].

Figure 6.3 compares the plasma insulin between the two protocols, at a por-
tion after the second dose of Glargine is administered, to get a closer look. The
Glargine dose is 40U for this second cycle, which provides a better aspect of com-
parison rather than the first cycle of Glargine dose with only 10.5U. The insulin
clearance rate for IV boluses in SPRINT protocol [Chase et al., 2008¢| depicted
as red, solid line in Figure 6.3 is slightly faster compared to the clearance rate
from SPRINT-1U+Glargine protocol. This could be explained by the fact that
high insulin boluses are close to reach saturation level of the modelled insulin
clearance. Thus, the effect of Glargine with its own degradation from the subcu-
taneous site is very minimal. However, clearance rate is slightly faster in SPRINT
protocol which means more insulin could bind with the insulin binding receptors,
resulting in better glucose-lowering effect as seen with better glycaemic level in

clinical data.

Importantly, with respect to protocol safety, none of the simulated protocols

had resulted in episodes of hypoglycaemia.



6.2 VIRTUAL TRIAL RESULTS 139

1000 ; : ; ! ;
aook--oeeeeeeees R ............ ............. T ............. -
gooF--o- o R ............ .......................... ............. -
F{N1 ) CEEREERRETRRY | R \ \ ..............

600 -

500 -

[l

40

=

i | | |
| | ! i |
0 1000 2000 3000 4000 5000 G000
Time (mins)

Plasma Insulin

30

=

20

=

100

=

(a) SPRINT-1U+Glargine protocol.
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(b) SPRINT protocol.

Figure 6.1 Comparison of plasma insulin levels [mU/L] between two different protocols,
SPRINT-1U+Glargine protocol in 6.1(a) and SPRINT protocol [Chase et al., 2008¢] in 6.1(b),
for a randomly selected Patient 5276 during the whole stay consisting of 5,160 mins.
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(a) SPRINT-1U+Glargine protocol
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(b) SPRINT protocol.

Figure 6.2 Comparison of interstitial insulin, ) with two different protocols, SPRINT-
1U+Glargine protocol in 6.2(a) and SPRINT protocol [Chase et al., 2008c] in 6.2(b). The
plot is shown for the interval of 36 hours (2160 mins) when the first Glargine subcutaneous
dose is given to the patient. The subcutaneous dose is a very low 10.5U.
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Figure 6.3 Comparison of plasma insulin level between the two protocols, SPRINT and
SPRINT-1U+Glargine. The solid red line depicts plasma insulin concentration from SPRINT
protocol while the blue solid line is plasma concentrations from SPRINT-1U+Glargine protocol.
The plot is during the second interval of Patient 5276’s stay, where 2nd Glargine dose of 40U is
administered. The plot provides a better insight of plasma insulin differences with a higher level
of Glargine dose. The first dose of Glargine is 10.5U, hence given Glargine’s slow absorption
kinetics and the high bolus effect from IV, a comparison would be difficult to make.
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6.2.1 Intervention Frequency

Table 6.4 compares the total number of nursing interventions or actions required
by each protocol during the patients stay. The nursing workload strictly relates
to the workload associated with implementing TGC. The total number of inter-
ventions are the summation of BG measurements made, IV insulin bolus given
as prescribed by SPRINT protocol, feed rate adjustments and the daily subcuta-
neous Glargine doses. All these work relates to TGC protocol and not any other
on-going work that may occur in less acute ward. Hence, any reductions in the
simulated protocol would exemplify the workload reduced in less critical ward.
There would not be an issue that the result would not hold in these less critical

wards eventhough data used were from ICU patients.

The actual clinical data from SPRINT protocol has the highest number of
measurements with 8331 measurements in total. SPRINT has the highest number
of BG measurements and injection from IV insulin boluses, a known aspect of

SPRINT protocol that requires higher nursing effort.

With SPRINT operating on top of Glargine, namely protocols of SPRINT
+ Glargine, SPRINT-1U+Glargine and SPRINT-2U-+Glargine, the total num-
ber of interventions is greatly reduced. Having Glargine as a basal background,
managed to decrease the high nursing effort required, specifically from IV insulin
injection and the number of one or two hourly BG measurements. However, no-
ticeable from Table 6.4, this reduction is followed with a higher number of feed
adjustments. Modulating nutritional input is necessary to regulate blood glucose
concentrations within the desirable range and with these protocols due to the
fixed and irrecoverable Glargine dose given that cannot be turned off once given.
Hence, with Glargine’s fixed dose and different profile, more feed rate adjustments

are needed with these first protocol attempts.

A closer look at the estimated time spent in monitoring a TGC protocol for
each designated protocol is tabulated in the same Table 6.4. Using the mean
time taken in performing hourly adjustments of blood glucose levels and insulin
doses of 4.72 mins as stated by Aragon [2006], the total time is calculated by
multiplying the total number of adjustments by 4.72 mins. The mean 4.72 mins
may be lower than the actual time required in making the total adjustments as

additional interventions in this study, which are adjustments of nutritional feed



143

6.2 VIRTUAL TRIAL RESULTS

2

ov

4

0
(surur) poaeg

o,

6¢T
€LT
691
€1¢

(surr) Ae(q 10d
quedg ewiLT,

816G
7S6°'T¢E
60T°TE
Te'6¢

(surur) guoadg
oW, T®10L

617S
0429
1699
T€EY

SUOTJUIAIDUT

12301,

P81

V81

V8T
0

soso(]

QUIBIR[Y)

8T.L
T¢L
294
9€9

syuouIysn(py
Pooyq

6661

1vee

89¢¢

a16¥
snjog

Al

814¢
14444
¢L4C
08L¢

JUOUIOINSBITA]

od

QUISIRD+NZ-LNIHMJIS
ouISIe[DH+N T-LNIMJIS
ouIsIe[H+ [ NTHJS
ejR(] [eITU) INIMJS

[020301J

PUISIRID+ NG~ INIHMJS Pue ousIe[D+N - INIHJS OUIBIe[D)+TNTH S POye[nuls “eyep [eoruro [NTHJS
[enjoe usamiaq sjusryed oqris A[eorjoqeiew ()¢ I0J JI0pe Sursinu Surjussalder Aduenbaly UOIUSAILIUL JO JoquuNU [RJ0} o) Jo uostredwo)) F°9 o[qel,



144 CHAPTER 6 VIRTUAL TRIALS: SPRINT+GLARGINE PROTOCOL

and Glargine subcutaneous doses are not accounted for. However, the mean time

of 4.72 mins is used for lack of better estimate that could be found in literature.

The highest time spent required from the total nursing interventions in the
SPRINT protocol is 39,322 minutes. Averaged to time spent per day, this is
equivalent to 213 minutes or 3 hour and 33 minutes for the average patient each
day. Clearly, SPRINT protocol requires a high nursing effort and looking at the
high effort required in this context sheds light at how a protocol with less nursing
effort is significantly needed in less acute wards which do not have the same
nursing resources. The total time spent per day, in the SPRINT+Glargine and
SPRINT-1U+Glargine protocol is 169 and 173 mins. Around 20% cut in nursing
effort, this is a good indicator that protocols with a background Glargine have a
potential to work in the area where nursing resources are an issue. The protocol
SPRINT-2U+Glargine requires just over 2 hours of daily interventions. However,

this protocol has shown to result in loss of control.

A further step is taken to evaluate the actual time saved between the combi-
nation protocols of SPRINT and Glargine, in comparison to the actual SPRINT
data [Chase et al., 2008¢c|, and the results are shown in Table 6.4. In terms
of minutes, in the order of the listed protocols, SPRINT+Glargine, SPRINT-
1U+Glargine, and SPRINT-2U+Glargine, the reduced time required in making
the total nursing interventions is 44, 40 and, 74 minutes. Therefore, from spend-
ing a total of 3 hour and 33 minutes in the SPRINT TGC protocol, the protocols
targeted for the usage in less acute wards, are all similar in terms of the total
time spent in making the appropriate interventions per day, with just under 3

hour.

Figure 6.4 provides the daily per-patient nursing intervention frequency against
the number of hospital stays, beginning from Day 1 to the maximum number of a
patient’s stay, which is 13 days. The boxes represent the lower quartile, median,
and upper quartile values. While, the whiskers are the 5th and 95th percentile
values of the daily nursing intervention frequency. The maximum number of
per-patient nursing effort intensity is 43 [IQR:41, 45] interventions/day, which
occurs on the first day of hospital stay. This reflects well with clinical expecta-
tion since patient’s glycaemic level on the first day normally requires a higher

level of management before their glycaemic level could be stabilized.
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After the initial day of starting insulin therapy, the general pattern that
can be seen is, nursing effort intensity reduces as the number of hospital stays
increases. This trend is observable particularly from Day 1 to Day 7, apart from
Days 4 and 5 that have the same median of daily nursing interventions. Day 7
has the lowest intervention with 33.5 [IQR:33, 40] interventions per day. This
could be very well explained by the Glargine basal effect that has taken place
after 56 days, as seen and discussed previously in Chapter 5. After Day 7, the
nursing effort increases due to the small number of patients left, with 6 patients
in total. Generally, from Day 8 to 13, nursing intervention frequency does not
exceed 39 interventions per day. Patients who are still on SPRINT-1U+Glargine
protocol after a week, clearly are patients who still require higher level of care
which explains the number of nursing effort intensity. On the 13th day, only one
patient is left. The highest outlier is 50 interventions per day on Day 1 while
the lowest is 24 interventions per day on the third day. In overall, the results
not only reduce the clinical burden of nurses but more importantly it leads to a
better patient satisfaction and outcome. Less frequent interventions would mean
much comfort for the patients, all the while providing the same quality of clinical
results from TGC.

6.2.2 BG Measurement Frequency

Measurement frequency and clinical burden are major issues in implementing
TGC [Chase et al., 2008a; Aragon, 2006; Mackenzie et al., 2005]. As measurement
periods rise so does both glycemic variability and hypoglycemia [Chase et al.,
2006; Lonergan et al., 2006b]. The end result is a trade off between the quality of
control via measurement frequency and clinical workload or burden, which must
be managed to provide good TGC to each patient with minimum variability and

hypoglycemia in the glycemic outcome.

In this section, instead of blood glucose levels measured one or two hourly in
accordance to SPRINT, the measurement frequency is set apart at 3 and 4 hourly
when 3 recent measurements have been within 4.0-6.1 mmol/L. The simulated
virtual trial protocol is SPRINT-1U~+Glargine. The cumulative distribution func-
tion results using these 1-4 hour measurement frequencies are shown in Figure
6.5 where the 1, 2 hourly case is what was previously tested. Interestingly, the 3

hourly measurement frequencies perform almost as well as the Clinical data with
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almost identical median BG. Additionally, on a per-patient basis, the median BG
achieved is 8-10% lower than the Clinical data, which is significant, but not at
all unsafe clinically. Table 6.5 shows a further analysis of 3 hourly measurements,

examining the per-patient performance metrics.

: Clinical

S IRRRREE 1.2 hourly
| 3 hourly

: dhourly [

12 14

Figure 6.5 Empirical cumulative distribution functions of BG concentrations with different
BG measurements for clinical data versus simulated SPRINT-1U+Glargine protocol with 1
and 2 hourly, 3, and 4 hourly measurement frequency. The x-axis refers to BG concentration
[mmol /L] while the y-axis is the cumulative distribution function.

Specifically, the 3 hourly measurements approach performs better with lower
nursing effort at 34 [IQR:33, 35] interventions per day compared to 36 [[QR:34,
38| interventions per day with 1,2 hourly BG measurements. With 72.86 %
[IQR:64.67, 77.35] time spent within 4.0-6.1 mmol/L band, it is 6.74% higher
(absolute) than when using a more frequent measurement. The total amount
of insulin is slightly higher with 74.82 [IQR:68.20, 79.42] U/day compared to
71.20 [IQR:62.50, 75.07] U/day. As insulin tends to saturate at 5-6 U/hour
[Natali et al., 2000; Prigeon et al., 1996], this amount is still relatively low, and
differences are likely attributed to the different PKs. Safety is further confirmed

with no hypoglycaemic episodes.
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Table 6.5 Per-patient comparison of BG intervention frequencies between 1,2 and 3 hourly
of the SPRINT-1U+Glargine protocol.

Protocol unit 1, 2 hourly 3 hourly
BG mmol/L _ 5.62 [5.12, 6.28] 5.16 [4.75, 5.90]
Time Band 4.0-6.1 % 66.12 [57.14, 74.21]  72.86 [64.67, 77.35]
Time Band 4.0-7.0 % 86.46 [83.38, 90.65]  86.01 [82.20, 91.13]
Hypoglycaemia % 0 0
Total Insulin U/day  71.20 [62.50,75.07] 74.82 [68.20, 79.42]
IV Insulin U/day  35.20 [29.11, 40.97]  38.29 [34.48, 43.85]
Glargine U/day  35.91 [32.11,36.84]  35.93 [32.55, 37.26]
Dextrose Feed g/day 109 [78.45, 125] 97.67 [ 61.76, 125.57]
Intervention Frequency = N/day 36 [34, 38] 34 [33, 35]

The SPRINT protocol was designed [Lonergan et al., 2006a,b; Chase et al.,
2008c, 2010c] for glucose measurements every 1 or 2 hours, to suit the require-
ments of critically ill patients whose insulin sensitivity, S;, can change rapidly
hour to hour [Lin et al., 2006, 2008]. These virtual results simulating less critical
patients showed lowering measurement frequency at 3 hourly, or longer, does not
affect the glycaemic control performance. However, in an effort to bring the best
simulated protocol to the next step of a proof of concept trial, it is best to work
with more frequent BG measurements, if only for safety. This act ensures protocol
safety is not compromised in a first clinical trial. In particular, dynamic patients

need to be well monitored thus higher measurement frequency is essential.

A further statistical analysis performed on the time the number of BG mea-
surements are within desired band of 4.0-6.1 mmol/L between the 1,2 hourly and

3 hourly measurements showed that two-tailed p-value =0.15.

6.2.3 Sample Patient Analyses

Clinical records and simulation results of SPRINT-1U+Glargine on Patient 5061
are shown in Figure 6.6. The top panel of each subfigure shows the blood
glucose levels through time. BG is well controlled with median and IQR of
5.55 [IQR:4.70, 6.10] mmol/L and 5.79 [IQR:5.00, 6.38] mmol/L for clinical and
SPRINT-1U+Glargine respectively. The second panel describes the amount of
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IV insulin bolus administered as well as Glargine for Patient 5061 on SPRINT-
1U+Glargine protocol. The third panel depicts dextrose feed rate received by the
patient expressed in g/day while patient’s own insulin sensitivity, Sy is shown in

the last panel.

The percentage of time spent within the 4.0-6.1 mmol/L band for the whole
duration of Patient 5061’s stay are quite similar between clinical records and
simulated SPRINT-1U+Glargine protocol with 68.8% and 68.3% respectively.
Difference can be seen with a wider band of 4.0-7.0 mmol /L where clinical records
show a higher percentage with 95.0% and 89.4% from SPRINT-1U+Glargine.
There is no occurrence of hypoglycaemia described at BG below <2.2 mmol/L at
any period. The median daily feed given in clinical records is 120 g/day against
125 g/day from the SPRINT-1U+Glargine protocol.

In Figure 6.6(a), as seen in the second panel, the frequency and amount of
insulin bolus in clinical data are higher than simulated SPRINT-1U+Glargine in
Figure 6.6(b). Clinical records showed almost 60% more IV insulin is adminis-
tered compared to SPRINT-1U+Glargine protocol. However, with Glargine as
basal insulin, eventually more insulin is used in SPRINT-1U+Glargine protocol.
In terms of nursing effort, clinical records have 239 interventions in total or 41
measurements/day on average, whereas the SPRINT-1U+Glargine protocol has
205 interventions, or 35 measurements/day, saving almost 30 minutes per day.

The higher intervention frequency can be mostly attributed to measuring BG.

The reduction in the number of IV boluses in SPRINT-1U+Glargine is clearly
observable between 40th to 60th hour where there’s a period where no injection
from IV insulin is required. With high insulin sensitivity, S; around this period,
Glargine alone is effective for Patient 5061’s basal coverage. Also in this period,
the patient gets the highest amount of dextrose depicted in the 3rd panel of Fig-
ure 6.6(b), indicating the patient’s recovery is likely going well. This result shows
that Glargine is more suitable for patients with higher insulin sensitivity and il-
lustrates how a later protocol might be effective with Glargine alone for some
patients. However, after the 60th hour, insulin sensitivity, S; quickly drops and
remains at a low level until the end of stay. This patient, instead of improving
over time, appears set for a different course in recovery. Therefore, the expected
effect of Glargine build up approaching the 6th day is not translated into reduced

insulin and nursing effort. With lower S7, the requirement for IV insulin boluses
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eventually increases and feed rate necessarily decreases to maintain normogly-
caemia. This result shows that the combination controller recognizes the periods
where patient condition evolves, and need sufficient compensation with insulin

and nutrition to maintain normoglycaemia.

Figure 6.7 is an example of Patient 5086 with high insulin sensitivity, Sy
throughout the stay with median 0.58 [IQR:0.50, 0.66] x 1072 L/(mU.min). To
evaluate if Glargine under the SPRINT-1U+Glargine protocol would perform
best in a patient with relatively high insulin sensitivity only, this sample patient
is examined. Insulin sensitivity, S; is shown in the last panel of Figure 6.7. In
this reduced protocol, from Figure 6.7(b) it is clear there are more periods where
IV boluses are not required, the longest being in the last day from the 113th to
120th hour. With 128 hours in length of hospital stay (5.3 days), the effect of
Glargine’s interstitial build up is translated into reduced insulin and intervention
requirements for at least the last day. This result shows the combination of
interstitial insulin build up, () and patient’s level of insulin sensitivity, S; can
have a positive effect in lessening the burden of TGC among nurses and effectively

translating patients to Glargine alone, if given enough time.

Comparison of the effective interstitial insulin, ) between the two protocols
on Patient 5086 is shown in Figure 6.8. In the SPRINT protocol, the level of
effective interstitial insulin is highly dynamic with extreme high and lows due to
the bolus insulin delivery. Compared to the protocol with Glargine, the effective
interstitial insulin, @) is more stable as Glargine has a flat, infusion-like PK curve.
The effect of Glargine, while having SPRINT, is observed with the stability of
Q). Figure 6.9 plots the percentage of time spent within 4.0-6.1 mmol/L band
vs the median insulin sensitivity, S;. The plot shows almost all patients that
achieved 70% of time spent within 4.0-6.1 mmol/L have median S; of at least
0.35-0.4 x 107® L/(mU.min). Hence, this criteria could form a basis of when
to use Glargine, rather than specific clinical aspects alone. The sharp drop off
of time band below 3.5-4.0 x 1073 L/(mU.min) further supports this criteria.
Thus, using a computerized TGC controller, this criteria could be used directly

and simply to determine when to switch to Glargine.

To examine if Patient 5086 exemplifies a patient who is ready to be transferred
out of the ICU, the SPRINT-1U+Glargine protocol is maintained until the 108th
hour. The final day is instead solely dosed with Glargine. The dose of Glargine
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Figure 6.8 Comparison of effective interstitial insulin, @ for Patient 5086 between the
SPRINT and SPRINT-1U+Glargine protocol. The solid red line (-) depicts effective insulin, @
obtained from clinical data while solid blue line (—) shows the simulation of reduced SPRINT
protocol with background Glargine, SPRINT-1U+Glargine.
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Figure 6.9 Percentage of time spent in 4.0-6.1 mmol/L vs median insulin sensitivity, Sy for
all 30 patients under the SPRINT-1U+Glargine protocol.
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is simulated at 40U and 60U. Virtual simulation results are shown in Figure 6.10.
In the first panel, the performance of BG level with Glargine increased to 60U is
almost similar to the Clinical data. In contrast the use of 40U of Glargine results
in moderate loss of control. This result demonstrates that a transition protocol
can be applied once the patient is stable and that the patient could likely be
managed with subcutaneous insulin Glargine alone after the initial build up of
effective interstitial insulin over prior days. Thus, this result also shows the need

for a transitioning or a weaning buildup period.

This promising result is what is expected from the virtual simulations of
SPRINT-1U+Glargine protocol. Patients would gradually have their IV insulin
reduced and replaced by Glargine. However, because SPRINT is designed to
achieve a steady state of 3U of insulin [Lonergan et al., 2006a,b], the adjustments
of prescribed insulin are rather discretized [0,1,2,...6] U/hr. This discretisation
explains why IV boluses are continued to be given although with a lesser amount,

even while Glargine alone can be effective in controlling the glycaemic level.

6.3 Discussion

A consistent method or protocol is needed for insulin administration for non-
critical patients as recommended by AACE [American College of Endocrinology,
2007] and ADA [American Diabetes Association, 2008]. The protocols should be
as simple as possible, taking into account nursing resources and patient safety. It
should be effective, safe and simple enough to be fully automated by nurses, or

keeping expert intervention to a minimum.

The clinically validated virtual patient simulation methods used are an effec-
tive and realistic way to assess, evaluate and optimise different TGC protocols
safely, in-silico before clinical testing. The simulations of SPRINT+Glargine in
this study show that Glargine can be used in patients who are insulin resistant
but metabolically stable. The results showed significantly reduced nursing effort
during the IV to Glargine weaning period, while still delivering tight glycaemic
control. The blood glucose levels achieved with SPRINT+Glargine are compa-
rable to the clinical records with SPRINT alone, which was very successful in

reducing mortality and negative outcomes. The feed rates are also comparable in
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Figure 6.10 Simulation results from SPRINT-1U+Glargine on Patient 5086, where IV insulin

bolus is given until the 108th hour.

For the last day of stay, patient’s BG level would be

controlled by Glargine alone. In the top panel, the solid red line (-) illustrates the modeled BG
with Glargine on last day administered with 60U. The (---) line is Glargine on last day at 40U
while solid blue line (-) illustrates Clinical data. The second panel shows the insulin bolus and
Glargine. The amount of Glargine is to be multiplied by a factor of 10. The third and bottom
panel displays the feed and insulin sensitivity, S;.
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the two simulated protocols and clinical records. However, the amount of total
insulin used in SPRINT+Glargine, that is the sum of IV insulin boluses and sub-
cutaneous Glargine is greater than clinical records. This outcome is likely due to
the slow build up of Glargine, which could take 3 days or longer [Lehmann et al.,
2009] as has been discussed previously in Chapter 5, and equally, to the different
PK’s of Glargine versus IV boluses and the impact of clearance rates on these
different PK profiles.

By reducing the amount of bolus in SPRINT by 1U while still maintaining
Glargine (SPRINT-1U+Glargine), the control in blood glucose levels is not com-
promised and comparable to clinical records. Although percentage of time spent
within 4.0-6.1 mmol/L band drops in this protocol, the overall results make this
protocol the best option. This decision is made upon median BG, time within
4.0-6.1 mmol/L and 4.0-7.0 mmol/L band, and intervention frequency among
others, as listed in Table 6.3. Further analysis is performed, specifically in the
frequency of measuring blood glucose levels. Instead of 1 or 2 hourly measure-
ment frequency, as how SPRINT works, the frequency is set apart at 3 or 4
hourly. The virtual simulations showed that less measurement does not affect
the performance, instead it works potentially better. Nursing effort is thus also
further reduced, while the percentage of time spent in 4.0-6.1 mmol /L increased.
The overall result of this protocol achieved almost identical performance as in
the Clinical SPRINT data.

The simulations of SPRINT-2U+Glargine on the other hand, are not suffi-
cient to provide effective glycaemic management for these patients even though
the total insulin used is comparable to clinical data. This could be explained
by the slow build up of Glargine as mentioned above. The average ICU stay of
5.7 days may also not be adequately long for full adaptation to Glargine. Even
though the patients selected for this study are reasonably stable, critically ill pa-
tients in general appear to require more rigorous insulin therapy than using long
term insulin supplement such as Glargine. Thus, this protocol also indicates a
need for a graduated or longer weaning process, if it can be managed without

excessive complexity.

The goal of this study is to develop a protocol that can aid patient recovery,
and seamlessly transition IV insulin in the intensive care unit to subcutaenous

insulin that will be the sole form of TGC input used in less acute wards, all the
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while reducing the nursing workload imposed by TGC. The primary hypothesis is
Glargine can effectively act as a basal insulin support for stable ICU patients and
patients in less acute wards who only require a minimal basal boost. However, the
protocol SPRINT in the virtual simulations did not seem to be fully sensitive to
Glargine supplementing a patient’s insulin requirement. This result is likely due
to the Glargine buildup period noted in Chapter 5 and the differing PK profiles,
but remain to be proven. When IV boluses are stopped before the last day,
leaving BG control under 60U of Glargine, the simulations showed BG control
is just as effective as Clinical. This result may be due to the design of SPRINT
aiming to achieve a steady state of 3U insulin and 60% of feed in patients with
limited, discrete interventions preventing flexibility. Finally, the use of Glargine
is very conservative in this study, being less than or equal to half of the daily
insulin requirement from the previous day. This choice was made to address the
course of recovery for patients where they are expected to slowly regain normal
insulin sensitivity or basal insulin production, as well as to create a safe, easy

protocol for first clinical trials.

The virtual trials also indicate that a protocol using Glargine on top of
SPRINT is perhaps more suitable for patients who are consistently stable and
are reflective of those seen in less acute wards or ready to be transferred to them.
The analysis of this cohort results show that patients with relatively higher S
were more likely to respond to Glargine and these protocols with good TGC per-
formance. However, an early, smooth transition from IV insulin to a combination
may also further help by reducing undesirable variations in blood glucose levels
[Egi et al., 2006]. It is clear the use of Glargine is shown to supplement patient’s

basal insulin requirement and has the potential to reduce nursing effort.

Finally, this study only included 30 patients. Therefore, its results are only a
positive ‘proof-of-concept’, and not conclusive. As mentioned in Chapter 5, the
volume of patients in less acute wards with useful clinical data were not enough
for virtual trials. Hence, the choice of cohort development from metabolically
stable ICU patients was made. Although the simulated patients met the inclusion
criteria for defined metabolic stability, virtual results may not necessarily be fully
representative of the behaviour of patients in actual less acute units. However,
patients who are ready for transition to less acute wards do have higher insulin
sensitivity, and Glargine is shown to be effective in the virtual simulations for the

period where patient’s S; improved. However, as these simulated patients were
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ICU patients, albeit stable, their insulin sensitivity, S; did not always continue
to improve over time in these records, while they were on SPRINT. Hence the
insulin requirements did not always decrease throughout the stay, to a point
where Glargine alone was suitable. Thus, it is clear that there may be a missing
gap of relevant data that was not available for this study but not to the point
that it could invalidate the model. Rather, retrospective data with sample of
continuous improvement in S; would show the efficacy of administering Glargine

alone.

The fact that results of this study , given in per-patient median and IQR of
the glycaemic performance measure does have an importance. In [Chase et al.,
2010a], the foremost goal of effective TGC must be to obtain tight glycaemic
control for each patient in a cohort. It is the per-patient results that matter
the most and achieving successful outcomes, such as reduced mortality, is likely
going to be strictly a function of being able to manage patient variability across

a cohort to provide consistent TGC.

Based on the promising results from virtual trial simulations in Section 6.2, a
protocol tailored for the * Proof of Concept Study of Insulin Glargine as Basal In-
sulin in the ICU and HDU’ is developed. This protocol, SPRINT-1U+Glargine,
has the potential to be effectively employed in a clinical pilot study. A clinical pi-
lot study will provide valuable information on the practicality and clinical benefit
of Glargine in stable ICU patients and the likelihood of its efficacy in less acute
wards. This trial will be the first step towards designing transition glycaemic
control protocols for patients from the ICU going to less acute wards. Because
SPRINT has been proven to provide safe TGC and gained considerable trust
in the Christchurch Hospital ICU, where it is first implemented, a clinical pilot
study incorporating SPRINT will be significantly easier to deploy compared to a
protocol without it. In the next chapter, the protocol’s robustness will be further

investigated and assessed in an effort to employ a successful transition protocol.

6.4 Conclusion

This study investigated the use of Glargine as basal insulin support in stable,

recovering ICU patients. A clinically validated insulin Glargine compartmen-
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tal kinetics model and an insulin-glucose pharmacodynamic model are used to
perform virtual patient simulations of protocols using Glargine. A cohort of 30
metabolically stable patients who received insulin therapy under SPRINT pro-
tocol during their stay in Christchurch Hospital ICU were selected for in silico
assessments. Protocols using daily injections of Glargine reduced nursing effort
provided blood glucose levels are largely maintained within a desirable range.
The total amount of insulin used is greater compared to the clinical data and
SPRINT is likely due to the buildup period of Glargine, a conservative protocol,
and different insulin PKs in plasma. Patients with relatively higher insulin sen-
sitivity were found to perform best, and a model-based S; limit of 3.5-4.0 x 1073
L/mU.min was found to provide a suitable threshold. Finally, use of Glargine is
shown to safely supplement a patient’s basal insulin requirement without the risk
of hypoglycaemia, particularly after the first 3-5 days of stay. Although patients
data are limited, the virtual trials do provide an insight into the implementation
potential of this combination protocol for less critically ill patients. These results,

if robust, are enough to justify a clinical pilot trial.






Chapter 7

Monte Carlo Analysis

This chapter presents an in silico Monte Carlo analysis to quantify the perfor-
mance and robustness of the SPRINT-1U+Glargine protocol of Chapter 6. In
particular, it analyzed robustness to physiological variability and sensor errors.
For clinical implementation, it is crucially important to ensure the protocol is

robust towards a wide range of expected variability seen in a clinical setting.

Measurement error is characterized in terms of glucose sensor reliability. The
issue of using a reliable glucose meters device has been addressed before and
possible failure of TGC in some studies has been suggested to be linked with
a wrong choice in blood glucose measurements device [Ting and Nanji, 1988;
Critchell et al., 2007; Wahl, 2009]. In a study analysis by Wiener et al. [2008], it
found that many TGC studies with no mortality improvement used POC (point of
care) glucose meters or capillary blood samples. The NICE-SUGAR study Finfer
and Heritier [2009], used a variety of glucose meters, which most of the glucose
meters are unsuitable for used among the critically-ill patients [Scott et al., 2009].
Scott et al. [2009] also reported Van der Berghe’s study was successful partly due
to the use of arterial blood glucose instrument that gives precise blood glucose
measurements. In contrast, SPRINT [Chase et al., 2008c| was successful, but
used standard glucose meters, namely Glucocard Test Strip. Hence, it could be

argued that the impact of sensor error is protocol dependent and must be tested.

Equally, in critical care settings, frequent and accurate measurements in blood
glucose levels are important. The FDA stated that critically ill patients should
not be tested with blood glucose meters due to inaccuracies in results. However,
as noted SPRINT used POC glucose meters and reported the tightest control

and least hypoglycaemia. Equally, it had one of the more frequent measurement
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rates averaging 161 measurements per day.

However, faster return on blood glucose measurements is essential, partic-
ularly in TGC. Hence, bedside glucose measurement devices are typically used
instead of being clinically lab tested or using a blood gas analyzer. Moreover,
SPRINT requires one or two hourly BG measurements, which is not possible for
BG concentrations to be lab tested while providing rapid results. Due to these
drawbacks, the model-based glycaemic controller’s performance during adverse
events, such as sensor errors, should be thoroughly assessed to ensure the max-
imum benefit of a model-based control protocol. There is no consensus on how
to optimally assess accuracy of glucose sensors. According to ISO 15197, blood
glucose meters must provide results that are within 20% of a laboratory standard
95% of the time. Clarke Error Grid, is thus used here as elsewhere, to quantify
clinical accuracy of blood glucose estimates compared to a reference value. Hence,

it can equally be used to show sensor performance or in Monte Carlo simulation.

As a second source of significant variation, repeated doses of subcutaneous
insulin do not produce the same metabolic effect. This result is valid within
(intra- ) and between (inter- ) patients [Heinemann, 2002; Heise et al., 2004].
Insulin action and absorption vary considerably and this variability consistently

deters reproducible insulin therapy, as discussed previously in Chapter 4.

Unexpected highs or lows in patient glycaemic level are a major course of
concern. If factors influencing the pharmacokinetics and pharmacodynamics of
insulin are not well understood, the result will be a greater variability. Age, phys-
ical activity, smoking or non-smoking, injection site, injection depth are among
many other known factors that influence insulin absorption and action of a sub-

cutaneous insulin [Berger et al., 1982; Heinemann, 2008].

Failure to account for inter- and intra- patient variability would result in poor
TGC, particularly for the more dynamic patients (intra- patient variability) or
those for whom dosing is inappropriate due to inter- patient variability. Man-
aging variability means that any protocol must be able to adapt and provide
patient-specific interventions that evolve with patient condition. Thus, any con-
trol protocol should account for these significant, yet very common fundamental
errors or variability. Monte Carlo simulations allow these errors of variability

to be generated and safely tested in a clinically validated in silico environment
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[Chase et al., 2010c]. Hence, it can be used to test the accuracy and robustness

of any developed model-based glycaemic control protocol.

7.1 Method

Virtual patients are created from data of 30 patients data who met the inclusion
criteria. They were all selected from the SPRINT cohort based on periods of
long term stability and low insulin requirements, indicating patients who would
benefit from a transition to subcutaneous insulin administration. These are the

same patients simulated in Chapter 6.

The SPRINT-1U+Glargine protocol seeks to use Glargine, gradually replace
intravenous insulin. As noted, it is a first step and protocol towards developing
a complete, more final solution. To capture the impact of sensor error, normally
distributed error is added to each patient’s simulated glucose profile in virtual
trials of the protocol. Glucose measurement errors are assumed normally dis-
tributed with precision as reported in Kimberly et al. [2006]. Clarke Error Grid
analysis [Clarke et al., 1988] is used to evaluate the normally distributed sensor

noise to an accepted standard reported error of of 20% [Mann et al., 2007].

7.1.1 Monte Carlo Error

For each patient, 100 simulations were performed to generate statistics on per-
formance. Each virtual trial had an added sensor noise in the simulated blood
glucose measurement. In addition, variability in subcutaneous Glargine absorp-
tion was added to account for these variations. Sensor error is simulated to be
normally distributed with a standard deviation of 5%, and max error of + 4 stan-
dard deviations, with a saturated max of £+ 20%. The latest generation of glucose
meters are more advanced with greater accuracy [Chan et al., 2009; Cohen et al.,

2006]. Hence, the error simulated is typical of today’s devices or slightly larger.

The parameters Kpyep gia, Fi,g1a, and g, are the three Glargine pharmacoki-
netics parameters that were varied. Details on the variability of the Glargine

pharmacokinetics parameters is in Chapter 4. The impact of varying the three
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Glargine pharmacokinetics parameters generated a range of possible values of
maximal plasma insulin concentration, C,,, and time to maximal plasma in-
sulin, T},4.. These values are physiologically valid, as reported in literature and
as seen in Figure 7.1. Using a lognormal distribution in the Glargine model pa-
rameters eliminates the possibility of obtaining non-physiological values, as the

Glargine PK parameters can thus never exhibit a negative value.

Thus, variability is accounted for in Glargine PK parameters and glucose
sensor error. There are 3000 simulations in total ( 30 patients X 100 simulations),
each being unique due to different random errors generated. Simulated error
reflects the clinical variability, which gives a realistic feature to assess the model-
based control protocol. The main assessments taken into account are accuracy
and repeatability. Safety and performance are the two primary criteria of the
controller, evaluated by avoidance of hypoglycaemia (<2.2mmol/L), median and
IQR of blood glucose measurements, percentage in desired band (4.0-6.1mmol /L,
4.0-7.0mmol/L), amount of insulin prescribed (IV boluses+Glargine), amount of
nutrition given, and nursing effort intensity based on the number of interventions

required.

7.2 Results

The Clarke Error Grid analysis of a patient with the maximum measurement
error of 20% is shown in Figure 7.2. The analysis showed that, with five different
regions, 100% of a 200 reference data set is within the clinically acceptable regions,
with 92% in Zone A and the rest in Zone B. This outcome is in agreement with
the clinical accuracy defined in the grid analysis. High clinical accuracy should
result in a better patient outcome for a given protocol. The figure also shows that
the SPRINT-1U+Glargine control protocol leads to good clinical management in
the ICU or less acute wards because the BG range is relatively tight. Studies
have shown that most meters cannot achieve the high target of total error being
<5%, as set by ADA. Each zone as in Clarke et al. [1988] is defined:

Zone A: measured as measurements that deviate from the reference by no more
than 20% and all values determined to be in low range <70 mg/dL or 3.88

mmol /L. Blood glucose values in zones A result in appropriate treatment
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Figure 7.1 Distribution of maximal plasma insulin concentration, C),., computed 1000
Monte Carlo runs with variability in kprep gia, k1,910, and age. 7.1(a) a 32U dose, boxed area
refers to range quoted in [Scholtz et al., 2005]. 7.1(b) a 24U dose, boxed area refer to range
quoted in [Lepore et al., 2000] and 7.1(c) a 12U dose. No quoted range [Owens et al., 2000].
This figure is repeated from Chapter 4, of Figure 4.9.
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and are therefore clinically accurate.

Zone B: include patient-determined values which deviate from the reference by

more than 20% but which result in benign treatment decisions.

Zone C: include patient-determined values which are outside the target range
when the reference is within the target range and therefore mandate treat-

ment which results in glucose levels outside the target range.

Zone D: patient-determined glucose values are within the target range when the

reference values would demand attention.

Zone E: patient-determined values are outside of the target range, but at the
opposite level of the reference values. Hence, measurements here would lead

to erroneous treatment decisions.

Clarke's Error Grid Analysis
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Figure 7.2 Clarke Error Grid analysis of the error distribution produced in a sample patient.
Error is shown for a normally distributed sample blood glucose reference data set of size 200.
To convert mg/dL values to mmol/L, multiply by 0.0555.

7.2.1 Monte Carlo Analysis

Table 7.1 shows the results of Monte Carlo simulations for the 30 patient cohort.
The result of each MC performance measurement is almost similar to the non-
error simulations. There is zero hypoglycaemia in any analysis. In the SPRINT-

1U+Glargine virtual trials, the per-patient median BG is 5.62 [IQR: 5.12, 6.28]
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mmol/L with 66.12% [IQR:57.14, 74.21], 86.46% [IQR:83.38, 90.65] time in the
4.0-6.1 and 4.0-7.0 mmol/L bands. Median insulin per-patient was 71.2 [IQR:
62.5, 75.07] U/day, with carbohydrate administration of 109 [IQR: 78.46, 125]
gram/day. Median nursing effort was 36 [IQR:34, 38] interventions/day . Monte
Carlo simulations show; 5.65 [IQR:5.27, 6.16] mmol/L, 65% [IQR:55.12, 72.72]
and 87.19% [IQR:81.39, 89.84] for blood glucose performance. Monte Carlo in-
sulin and nutrition were 70.8 [IQR:61.67, 74.47] U/day, 109 [IQR: 88.29, 145.19]
gram/day, requiring an identical 36 [IQR:34.6, 38] interventions/day.

The primary overall result is that the variations and errors considered do not
appear to have any great impact on the protocol design or its ability to manage
patients variability. It is important to note that median (IQR) results in Table
7.1 show the middle, much more likely the, 50% of the results. Hence, this result
should hold as a general trend across a wide range of possibilities. This Monte
Carlo virtual analysis result is parallel with Monte Carlo analysis of SPRINT
and other protocols using clinically validated virtual patients, which revealed
little difference with added measurement error [Lonergan et al., 2006b]. Overall,
it can be concluded that the robustness of the SPRINT-1U+Glargine protocol in

a noisy clinical environment is validated with this Monte Carlo analysis.

Table 7.1 Per-patient performance measurement with and without Monte Carlo

Performance MC Error Without MC Error
BG [mmol/L] 5.65 5.62
[IQR: 5.27,6.16] [IQR:5.12, 6.28)

Time Band 4-6.1mmol/L [%] 65.00 66.12

[IQR: 55.12, 72.72] [57.14, 74.21]
Time Band 4-7.0mmol/L [%] 87.19 86.46

[IQR:81.39, 89.84]  [IQR:83.38, 90.65]
Nursing Effort 36 36

[IQR:34, 38] [IQR:34, 38]

Total Insulin [U/day] 70.84 71.2

[IQR:61.67,74.47]  [IQR: 62.5, 75.07]
IV Daily [U/day] 37.23 35.20

[IQR:28.41, 40.11]  [IQR:29.11, 40.97]
Glargine Daily [U/day] 35.84 35.91

[IQR:32.03, 36.81]  [IQR:32.11, 36.84]
Feed [gram/day] 109.87 109.00

[IQR:88.29,145.19]  [IQR:78.45,125.00]
Hypo 0 0
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Figure 7.3(a) is the BG profile comparison for a sample patient with median
of 100 MC simulations against the simulations without introduced error. This
sample patient is representative of the cohort. Both resulting BG profiles are
almost similar as expected, since the median would be expected to be as similar
as possible to the actual profile overall possible random variations and errors. The
largest differences would be seen at the 5th and 95th percentile. Hence, an upper
and lower envelopes representing the 5th and 95th percentile of all possible blood
glucose concentration are shown in Figure 7.3(b). The 5th and 95th percentile
range are quite tight particularly towards the end of Patient 5376’s stay from 6000
to 7500 mins. The results also show that BG values are more varied between the
values of 3-6 mmol/L, where the biggest difference between the 95th percentile
range and median MC simulations could be seen around 1500-5500 mins. These
results provide valuable information on the range of all possible BG values in the

presence of patient extreme variability in Glargine absorption and sensor error.

Interestingly, at higher BG concentrations, particularly over 7 mmol/L, the
possibilities of obtaining even higher BG concentrations are greatly reduced. This
outcome is depicted at three main peaks of minutes 1500, 6200 and 7200. It
occurs because larger errors in sensor values mean there is always a possibility of
incorrect dosing with the returned erroneous BG concentrations. Hypo- or hyper-
glycaemia and their consequences would thus be a result of too large or too small
doses being given. Therefore, this result provides a clear indication of the overall
protocol’s safety and lack of aggressiveness, since even with a range of possible
BG concentrations, hyperglycaemia and hypoglycaemia are both avoided at the
highest and lowest BG values seen. Note that hyperglycaemia here is defined
typically as blood glucose values more than 10 mmol/L (180 mg/dL). These
results are typical across all 30 patients and can be seen in Appendix 7.5. Thus,
the control protocol, SPRINT-1U+Glargine maintains the stability of the patient

despite dynamic variations in the physiological process.

In Figure 7.4, the rest of the profile for Patient 5376 is shown, comparing
the simulated trial with the median MC error and non-error. As can be seen,
the results are almost identical. Figure 7.5 shows the histogram plot of the
Glargine pharmacokinetics, Kprep gias F1,g1a, and oy, actual distributions from the
100 Monte Carlo simulations of Patient 5376. The overall results confirms the
validity of the SPRINT-1U-+Glargine protocol and the approach taken in this
study.
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Figure 7.3 Comparison of BG profile for Patient 5376 simulated 100 runs with and without
error. Errors introduced are normally distributed with standard deviation of 5% and max error
of + 4 SDs, with a saturated max of + 20% BG measurement sensor error and a lognormal
distribution variation in Glargine PK model parameters. Figure 7.3(a) compares the actual BG
profile in solid blue line, (-) against median of 100 MC error runs shown as blue dotted line,
(--+). Figure 7.3(b) compares the actual BG profile depicted in solid blue line (-) against the
5th and 95th percentile of 100 MC error. The 5th percentile error is shown in red dotted line,
(---) while 95th percentile error is in red dashed line (- -).
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Figure 7.4 Comparison of Patient 5376’s profile for simulated 100 runs with and without MC
error. Errors introduced are normally distributed with standard deviation of 5% and max error
of + 4 SDs, with a saturated max of + 20% BG measurement sensor error and a lognormal
distribution variation in Glargine PK model parameters. Figure 7.4(a) shows the actual profile
without MC error with insulin bolus shown in first panel as solid red line, (-). The middle and
last panel are nutrition and Glargine. Figure 7.4(b) is the profile of Patient 5376 with MC
error runs. The first, middle and last panel are IV insulin bolus, nutrition and subcutaneous
Glargine.
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Figure 7.5 Histogram plot of the actual variability of Glargine pharmacokinetics parameters,
Eprep.gia, k1,g1a, and agiq, and the frequency they occurred in the 100 Monte Carlo simulations
for Patient 5376. Figure 7.5(a) shows the distributions of a,, Figure 7.5(b) is the distribution
of k1 410 and Figure 7.5(c) is the distribution plot of kprep,gia-
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7.3 Discussion

With TGC protocol that highly depends on patient’s hourly glycaemic levels, fast
easy to use devices are often employed to read blood glucose level, along with
the accepted loss of sensor performance error compared to the gold-standard lab
tests. Some studies have cited measurement error as one factor in the difficulty
found in achieving adequate control of blood glucose levels [Wilinska et al., 2008;
Shulman et al., 2007] leading to a push for better or more frequent bedside sensors.
However, the experience of SPRINT [Chase et al., 2008c| and several others has
been that measurement error was not a factor or was not cited, despite using
bedside glucose meters with standard errors of 7-15% depending on blood glucose

level, or blood gas analysers with much lower errors of 1-3%.

With respect to designing and implementing TGC the analysis and results do
reinforce the need to account for variability in a patient-specific fashion, and to
do so in the protocol directly and by design. Inter-patient variability can be very
high across cohorts, especially in medical ICUs. Intra-patient variability can also
be significant as patients evolve dynamically. More specifically, while the 5-95%
range of results shown for one patient and typical of the others, was acceptable,
the range seen is still quite wide clinically. The rest of the simulated virtual
patients are shown in the Appendix section, comparing the BG profile with and
without MC error at the 5th, median and 95th percentile.

Hence, another outcome of this analysis is that successful TGC mandates a
protocol that is adaptive across a wide range of insulin resistance to provide equal
glycemic control to each patient. This variability requires any TGC algorithm to
be able to identify and manage these variations in their interventions to provide
TGC. More specifically, to obtain clinical and mortality benefits from TGC, a
protocol must provide tight control with minimal risk of hypo-or hyper-glycemia.

This goal must also be achieved for all patients from the 5th to the 95th percentile.

Monte Carlo simulations allow sensor errors to be generated in the data, as
well as adding valid physiological variances. Both are instrumental in portraying
the real and potentially quite different physiological conditions of patients, which
mix with sensor errors to yield the glycaemic variability observed clinically. In
particular, in any clinical environment, there is variability between and within

individuals, as well as measurement error in sensor devices. Importantly, only
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a validated in silico virtual patient environment offers the ability to include the

effect of parameter uncertainty and sensor error in the virtual simulations.

The specific Monte Carlo results presented confirm the robustness of SPRINT-
1U+Glargine protocol to realistic, physiological variations and sensor errors. The
results clearly define, quantitatively the impact of variability across the cohort
and for individual patients. Finally, the results provide a qualitative measure

robustness and confidence in the developed protocol.

However, in reality, it is reasonable to assume that more uncertainties could be
present. More parameters apart from the varied parameters in the simulation may
differ, varying from patient to patient. For example, patients who are transferred
to less acute wards, might start eating as their condition improves, which is
a clinical variation that is not in the scope of this protocol or analysis. Hence,
there would be definite uncertainties in the glucose absorption model as the exact
amount of nutrition would have to be an estimate. Even nutrition given enterally
or parenteral nutrition have different physiological response. Thus, for future
work MC analysis on nutrition would best to be considered. Equally, and more
relevantly, clinical changes in condition, such as the loss of intravenous access or
large intervention timing errors may play a risk. However, prior analysis have
shown that these are either unavoidable or secondary effects [LeCompte, 2009).
Overall, the varied model parameters and sensor error in this analysis, are the

most distinct to adequately represent a true physiological clinical environment

7.4 Conclusion

An effective, robust and safe subcutaneous transition protocol is presented. In
silico analysis allowed accurate quantification of nursing effort and other perfor-
mance measurements of the protocol. Monte Carlo analysis provide a further
valuable approach to test the robustness of the control protocol and robustness
is achieved with the ability of the control protocol accounting for possible BG
concentrations and variations of Glargine absorption. In particular, the middle
50% of likely outcomes indicates that there is no change of clinical significance
in control quality and nursing effort. The 5-95% range shows that safety and

acceptable control quality are guaranteed. Overall, the results meet the primary
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goal of the analysis to justify a clinical pilot study to fully validate these in silico

results.

7.5 Appendix



7.5 APPENDIX 175

85
8 85 \
H
75 8 h

3 T

7 75 A El
\ k £
A\ £
1 y E: 1

Blood Glucase
[mmoli]

5 55
4
5ih percentile MC Ertor ° °
3 95th percentile MC Erro 4 45
‘Without MC Error P
as 4
0 1000 2000 3000 4000 5000 60D 7000 800D 9000 10000 0 W00 2000 00 400 00 6owo (] 0 200 3000 4000 5000 6000
Time (mins) Time (mins)

Time (mins)

(a) Patient 5006 (b) Patient 5013 (c) Patient 5033

Blood Glucase
[mmoliL]

) HE
0 1000 2000 3000 4000 5000 BODO 700D 800D 9000 10000 0 2000 4000 600D 8000 10000 12000 14000 16000 18000 0 1000 2000 3000 4000 5000 60D 7000 €000 000
Time (mins) Tims (ming)

Tims (ming)

(d) Patient 5054 (e) Patient 5060 (f) Patient 5061

Blood Glucose
[mmoliL]

2000 3000 4000 G000 G000 7000 000

Tims (ming)

B !
(] 1000 2000 3000 4000 5000 6000 7000 (] 5000 10000 15000 0 100
Time (mins)

Tims (ming)

(g) Patient 5071 (h) Patient 5076 (i) Patient 5086

Blood Glucose
[mmoliL]

4
0 2000 4000 60D 000 10000 12000 14000 16000 18000 0 00 2000 G000 4000 G000 G000 7000 0 1000 2000 3000 4000 5000 6000 7000 6000 9000 10000
Time (mins) Tims (ming)

Tims (ming)

(j) Patient 5101 (k) Patient 5104 (1) Patient 5122

Blood Glucose.
[mmoliL]

8 2 (] 1000 2000 3000 4000 5000 6000 7000
Tims (ming)

4
0 1000 2000 3000 4000 5000 6000 7000 6000 9000
Tims (ming) Time (mins) 10

(m) Patient 5124 (n) Patient 5149 (o) Patient 5158

Figure 7.6 Comparison of the actual BG profile for depicted in solid blue line (-) against the
5th and 95th percentile of 100 MC error. The 5th percentile error is shown in red dotted line,

(+-+) while 95th percentile error is in red dashed line (- -).
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Figure 7.7 Comparison of the actual BG profile depicted in solid blue line (-) against the
5th and 95th percentile of 100 MC error. The 5th percentile error is shown in red dotted line,

(+-+) while 95th percentile error is in red dashed line (- -)



Chapter 8

Conclusions

The use of intensive insulin therapy in less acute wards, or a transition protocol
following patients discharged from ICU to less acute wards, is not a common
practice in hospitals. Although it is generally agreed that better control of blood
glucose levels does improve patient outcome, most hospitals still take a relaxed
approach towards hyperglycaemia particularly in the less acute wards where nurs-
ing resources are at a premium. Elevated blood glucose levels in this area are not
considered a major issue. Nursing resources, non-standard glycaemic target and

hypoglycaemia are among the limiting factors.

However, there is significant room for improvement. Monitoring the transi-
tion of less critically ill patients requires systematic care to achieve normogly-
caemia without over burdening the nurses. Hospitals need to have a protocol
to address the management of hyperglycaemia and there are good clinical rea-
sons that less critically-ill patients should be given the same level of glycaemic

management as ICU patients received.

For TGC to provide equal control to all patients, the glycaemic control pro-
tocol must be patient-specific and able to directly account for patient-variation,
measurement frequency and nutritional intake. In essence, it is the interaction
between insulin sensitivity, Sy, the insulin and nutrition administered, and the
patients variability over time that determines glycemic outcome in TGC in any
situation or ward. Not knowing or understanding any of these variables means

patient-specific control cannot be delivered.

This research developed a comprehensive, more physiologically relevant glucose-

insulin dynamic system, named the ICING (Intensive Control Insulin-Nutrition
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Glycaemic) model for this problem. It modified and added existing subcutaneous
insulin models to account for this low burden delivery avenue. The overall model
is the integration of two clinically-validated models created and/or extended in

this research.

The ICING model, compared to its predecessor is more distinctly expressed,
in particular with respect to glucose utilisation, endogenous production, and a
more robust glucose absorption model for digestion. To account for the body’s
ability to eliminate insulin, this model also includes explicit pathways of insulin
clearance and utilisation, namely liver, kidney and saturable cell degradation.
Specifying a specific clearance, instead of defining clearance as the sum of indi-
vidual clearances (hepatic, renal, cell, etc), is necessary in making accurate phys-
iological predictions, particularly if using slow release or infused insulins that the
prior ICU focused models did not manage as well. With the knowledge gained
of specific clearance values, a better informed decision can be made for insulin

dosage adjustments that maintain average plasma concentration.

Identification of critical constant population parameters is carried out para-
metrically, optimising one hour forward prediction error, thus avoiding model
identifiability issues. The identified population values are pg; = 0.006 1/min,
EGP, = 1.16 mmol/min and n; = 0.003 1/min, all of which are within reported
physiological ranges. The relatively low value of n; may indicate a significantly
impaired transcapillary transport for patients who are critically ill, which is a
unique result. It is expected that the value of n; would increase once patients are
recovering. However, this would not affect the developed ICING model, since the
effect would simply be translated towards an increased S;. Hence, the model’s
fitting and prediction ability would not be compromised since ultimately the
prediction accuracy is critical. Even so, the range of n; must be within a physi-
ological range to ensure a good fitting and predictive ability. All these brings us

back to how studies on plasma insulin and C-peptide are needed.

Model validation was evaluated by fitting and prediction error. The model
achieves median fitting error <1% in data from 173 patients (N = 42,941 hours in
total) who received insulin while in the ICU and stayed for more than 72 hours.
More importantly, the median per-patient one-hour ahead prediction error is a
very low 2.80% [IQR: 1.18, 6.41%]. A sensitivity study, as part of an inter-

nal model validation to assess the reliability of the model, confirms the validity
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of limiting time-varying parameters to S; only. It is significant that the 75th
percentile prediction error is now within the lower bound of typical glucometer
measurement errors of 7-12%, which is better than any other reported model.
The result confirms that the new ICING model is suitable for developing model-
based insulin therapies, and capable of delivering tight blood glucose control, in

a real-time model based control framework with a tight prediction error range.

A TGC protocol should not burden nurses in any ward with round the clock
monitoring. Glargine, an insulin analogue known for its long acting time-action
profile, is incorporated in designing this glycaemic control protocol. The unique
peakless property of Glargine, with its once-daily administration makes it suit-
able for achieving normoglycaemia in less acute wards, where nursing resources
are often limited. Patients in the less acute wards might only require a minimal
boost for their impaired glucose-insulin regulatory system, thus Glargine is the
ideal basal choice for the basal insulin support of these less acute patients. Other
option, such as CSII is not favourable since it is not cost effective, expensive,
requires patient’s involvement and physicians need to place an order each time
dose needs to be adjusted. Moreover, Glargine is known for inducing less hypo-
glycaemia. Thus, a detailed pharmacokinetics/pharmacodynamics model of the

subcutaneous absorption of Glargine was developed.

The model is more physiologically valid compared to a prior model used as
fundamental structure with the introduction of Michalis-Menten saturation. An
advanced method of model validation is used with an external evaluation, using 4
data sets, apart from the 6 sets of data used to identify the three critical Glargine
PK parameters, kprep gia, k1,910, a01d agq. The external evaluation method further
confirms the validity of the model with independent data sets ranging from data in
children to adults. Finally, to account for patient variability in Glargine absorp-
tion, a Monte Carlo simulation analysis produced a range of maximal plasma
insulin concentration, C,,; and time to maximal plasma concentration, 71,4,
typically seen among patients. Including this variability ensured the model is
accurate and robust in protocol design. Hence, the glycaemic control protocol
designed with this model could be used to cater for a far broader and wider range

of patients.

With these two clinically-validated, physiologically linked models, a complete

system of glucose regulation and the interaction between glucose and plasma in-
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sulin is available. The source of insulin, either from IV injection or/and subcu-
taneous Glargine, create a complete system targeted for model-based tight gly-
caemic control in the less acute wards. The model is able to accurately capture

patient’s dynamics, and is clinically-validated.

The performance of the ICING and Glargine compartmental model in con-
trolling less critically-ill patient’s glycaemic levels are tested in silico. In silico
simulation is an important and integral aspect in the developments of any gly-
caemic control protocols. It provides the mean for safe and effective development,
evaluation and validation prior to a clinical testing. Hence, virtual trials serve
as the best platform and instrumental in testing a proposed control protocol for

any effects from a known intervention.

Virtual patients results using Glargine on 15 metabolically stable patients
totalling to 1,689 hours conclude that Glargine can provide effective blood glucose
management provided a patient’s stay is longer than 7 days. Glycaemic level on
first day alone, is poorly controlled as the concentration of effective interstitial
insulin, @), takes a longer time to build up with Glargine. It is found that the
level of @ using Glargine, only reached to the same level as () in IV boluses, after
several days. Methods to raise () using supraphysiological values of Glargine and
priming boluses, resulted in a single case of hypoglycaemia. Although median
cohort BG levels improved, these methods are considered to pose a high risk given
patients variability and are a fundamental limit in transitioning to this type of

subcutaneous insulin.

The ability to achieve tight glycemic control and potentially reduce the risk
of death for a given patient will be a function of the ability of the TGC method to
manage that patient specifically. More specifically, the benefits of TGC work at
an individual level. Only patients who are tightly controlled will receive benefit
based on the physiological factors. Hence, TGC is effective at reducing mortality
and improving outcomes for a whole cohort, if and only if it is equally effective
for every patient in that cohort. Thus, based on this work it is critical to manage

Glargine and its effect in a patient-specific fashion.

In Chapter 6, performance assessment is concentrated upon per-patient anal-
ysis for a subcutaneous transition to Glargine from SPRINT. SPRINT has a

superior ability to adapt to inter- patient variability across the patient cohort.
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In a move to incorporate a proven clinical protocol, the IV insulin bolus pre-
scribed by SPRINT is combined with daily subcutaneous Glargine in a transition
protocol. This combination protocol is designed with the target that eventually
Glargine will be the sole insulin used, seamlessly replacing IV insulin bolus from
SPRINT as soon as the effective interstitial insulin concentration, () reached a
steady-state. This approach is a first design to transitioning to Glargine in a

fashion that alleviates issues with its 3-7 days buildup of concentration in the
body.

From the virtual analysis, the SPRINT-1U+Glargine protocol, which is the
optimum protocol from all the tested protocols, showed that nursing effort in
comparison to the SPRINT clinical data, is significantly reduced while still de-
livering effective and safe TGC. The nursing effort intensity reduces as patient’s
stay increases. An hour of reduced work in the per-patient analysis, offers a bet-
ter opportunity for the nurses to provide better care for the patients. Primarily,
patient comfort and satisfaction are improved with less frequent interventions
that might disrupt patients sleep pattern, day rest or even patients who are gen-
erally uncomfortable having their blood drawn. Without background Glargine,
the time needed to provide TGC for the average patient is up to 4 hours. This
result provides a good insight into reducing nursing effort associated with labour
intensive TGC. The primary implication of this is simply that, Glargine works
well in recovering patients, who in real-life are characterized by improving insulin

sensitivity until issued discharge.

However, with the limited clinical data in this study, which is sourced from
metabolically stable ICU patients, virtual trials were performed on patients who
do not always continue to have improved S overtime, representing also a realistic
scenario. Despite meeting the definition of metabolic stability, these patient’s
overall St is still quite dynamic. In the period where Sy is high and improving,
Glargine alone without SPRINT IV bolus can well manage patient’s glycaemic
level. However, once these periods deteriorate, the expected continuation to
Glargine alone did not materialize in the simulations. The continued requirement
from SPRINT IV insulin, is thus highly likely to be patient-specific and a function
of the TGC protocol, as well. However, in terms of safety, there is no incidence

of hypoglycaemia allowing safe management for all patients.

Undoubtly, there is a need to firmly establish the importance of TGC not
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only in the ICU, but extending TGC to less acute wards as well. Glycaemic
control should be a standard of care in hospitals and not an option based on the
physiological evidence to date of the negative effects of hyperglycaemia. Instead of
abandoning any work to improve glycaemic control in the less acute wards either
for fear of hypoglycaemia, or rather for viewing glycaemic control as not a major
cause of concern, there should be a growing effort to develop a clear strategy.
We need to bridge the gap between ICU and less critical wards. The intensity of
glycaemic management between critically ill and recovering critically ill patients
in from one setting to another should be maintained. A randomized controlled
study is pivotal to support the need of TGC in the less acute wards. A protocol
designed and pilot tested in a single unit, might not be solid enough to cover the
expected variability seen among patients. For example, different units (hospitals)
have different regimes and practice, which vary considerably. Nevertheless, any
move initiated towards reducing the risk and harm of hypo/hypergylcaamia while

at the same time reducing the clinical burden in less acute wards is pivotal.

This research thus, provides a first analysis and design of these type of pro-
tocols and clearly highlights both the potential for success, as well as the main
difficulties. Beginning from the model development of glucose-insulin regulatory
system, to the subcutaneous absorption model of Glargine, the overall results of
this thesis provide a promising approach to achieve and maintain normoglycaemia

from the ICU to the less acute wards.

To ensure the overall research will reached broader treatment, saving lives
and in future create potential commercial opportunity, the next important step
is to have the research clinically verified. Thus, in the following and final chapter
under ‘Future Avenues’, a ‘Proof-of-concept study of Glargine as basal insulin
support in the intensive care and the high dependency units and validation of an

Insulin Glargine pharmacokinetics model’ is presented.



Chapter 9

Future Avenues: Proof of Concept Clinical
Protocol

Ethics from Upper South B Regional Ethics Committee has been granted for a
pilot clinical trial based on this study, ‘Proof-of-concept study of Glargine as basal
insulin support in the intensive care and the high dependency units and validation
of an Insulin Glargine pharmacokinetics model’. The pilot trial will be conducted
in the near future at the Christchurch ICU Hospital, New Zealand. This proof-
of-concept study will be the first study to validate Glargine pharmacokinetics in
a clinical setting and thus the models developed in this research. In addition, it
will be the first study to test the effectiveness of Glargine as basal insulin support
for recovering critically ill patients. This research will be very valuable for future

development of TGC protocols in ICU and less acute wards.

Glargine pharmacokinetics in this study have been identified from 4 studies
consisting of 6 plasma insulin data sets. However, the model fitted and model
generated plasma insulin from Glargine have been made using a standard weight
of an 80kg patient. Hence, improvements can be made by fixing the Glargine
dose to each patient’s body weight, as it may be affected by patient’s physical
condition, either obese or lean. Insulin kinetics are delayed in obese patients.
Issues concerning the actual duration of Glargine’s basal effect and action can
also be resolved. The patient’s natural insulin released following a meal will also
be studied. This data alone will be valuable for future development of glycaemic

control protocols in the less acute wards.

Equally, it will treat patients who are eating meals as opposed to getting
constant nasogastric nutrition support in the ICU. Meal models in this study

accommodate nasogastric feed. Thus, models that could accommodate patients
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who started eating normally are clearly needed. Such models would be quite a
challenge since it would be difficult to estimate exactly how much food has been

consumed by the patient, thus presenting a significant variability issue.

The proposed proof-of-concept study will also be a first clinical step towards
developing a comprehensive sytem for maintaning tight glycaemic control out-
side of the ICU. The focus, as discussed in previous chapters, would be on the
transition from using relatively labour intensive intravenous insulin in the ICU
to less intensive, longer acting, subcutaneous insulin in the less acute wards.
Consequently, the benefit of tight glycaemic control can be extended from the
ICU to the less acute wards, improving overall inpatient health care. There have
been only 2-3 such studies and none have proven particularly successful. Thus,
the study outcomes will be an important contribution to knowledge in their own
right.

The potential significance of this proof-of-concept study, which basically ad-

dresses the limitations of the models developed in this study thus:

e Determination of the exact insulin pharmacokinetics of Glargine in the

critically ill.

e Knowledge on addressing the difficult transition between intravenous and

subcutaneous insulin.

e Better insight into the endogenous insulin production of critically ill pa-
tients, particularly upon meal consumption, of which almost nothing is

known.

To validate the Glargine pharmacokinetics model developed in this study,
plasma insulin and C-peptide levels in study participants following a subcuta-
neous Glargine injection will be studied. Blood samples will be collected by
nursing staffs while medical staff will assist in collecting non-routine laboratory
tests, such as C-peptide and insulin levels. Patient’s blood sample will be taken
for assays of plasma insulin and C-peptide levels on the first two days of them be-
ing given Glargine. Blood samples will be taken for a further 2 days once patients
start to receive meals (as oppose to nasogastric feed). Apart from patients bene-

fitting from intensive blood glucose monitoring, study of the endogenous insulin
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response may be of benefit for diagnostic of potential diabetes. Information such
as blood glucose, insulin and nutrition will be taken from patient charts. Photos
of meals will be taken before and after mealtime to estimate the actual nutritional
intake, particularly the amount of carbohydrate and non-carbohydrate calories
consumed. Although the method is not high-tech, it is the best that could be done
at this stage before an actual, reliable meal model can be developed. Equally, it
will help us understand the variability of (likely) consumption and thus the gly-
caemic variability one might need to robust to. The quality of glycaemic control
for patients transferring to less acute wards from ICU with and without Glargine
will be assessed based on the duration of blood glucose levels within a clinically
desirable range, safety or from hypoglycaemic events, amount of total insulin

given, and nutrition requirements.

The data collected will lead to a comprehensive glycaemic control system
that allows a smooth transition between intravenous and subcutaneous insulin
throughout a patient’s hospital stay. In addition, the study will examine the
current state of glycaemic control outside of ICU thus providing a platform from

which to improve.

Patients will be screened and consented for the study in the intensive care
unit. Patients will then be divided into the Glargine group and the Control group
using permuted block randomisation with 10 patients per block. All patients will
have blood glucose levels tested, naso-gastric feeding rate adjusted, and intra-
venous insulin injection given every 1-2 hours as per the standard ICU practice
using SPRINT. Figure 9.3 shows the recruitment invitation for interested patients

to participate in this proof-of-concept study.

The inclusion criteria include:

Critically ill patients who are on SPRINT glycaemic control protocol.

Presence of an arterial line.

Stable hourly insulin requirement, equal or less than 3U of insulin per hour,

for at least 12 hours.

Stable feed rate, equal or greater than 60% of the calculated goal feed.
(Goal feed is calculated using individual patient’s age, gender and frame

size.)
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Canterbury
District Health Board

Te Poari Hauora 6 Waitaha

Christchurch Hospital
Intensive Care Medicine Department

Research Project:

Proof-of-Concept Study of Insulin Glargine in the
Intensive Care and the High Dependency Units

High blood glucose levels are common in intensive care unit patients. These patients
may not necessarily have diabetes. Stress hormmones their bodies released during
critical illness can cause more glucose to be released, as well as making insulin less
effective in reducing blood glucose levels. As a result, they develop high blood glucose
levels, or "stress diabetes” while critically ill. High blood glucose levels compromise the
immune system and increase the chance of infection. Therefore, addition insulin is
given to these patients to maintain their blood glucose levels in a normal range.

There are many different types of insulin. In the intensive care unit, insulin is normally
diven intravenously, which means it goes straight into the veins and enters the
circulation immediately. When patients get better and mowve to the less acute wards, it
becomes more common to have insulin injected subcutaneously, which means injection
under the skin and insulin gets into the circulation slowly over time . Amongst different
types of insulin, glargine is currently the most long acting insulin. Itis usually injected
once or twice a day.

Currently, there is no clear, systematic protocol to smoothly transition patients from
intravenous to subcutaneous insulin when patients move from the intensive care unit to
the less acute wards. This can cause fluctuations in their blood glucose levels and slow

down their recovery. Through this study, we hope to develop a protocol that will guide
doctors on how to smoothly transition patients from intravenous to subcutanecous
insulin, so patients can receive the same good quality blood glucose control during the
entire hospital stay.

If you, your friend, or a member of your family/whanau are being
treated in the Department of Intensive Care, you, your relative or
friend may be invited to participate in this study.

If you have any questions or concerns about this study, please contact:

Dr. Geoff Shaw
Department of Intensive Care Medicine
Phone (03) 364-1077
Internal 89375 or 81077

Figure 9.1 Recruitment invitation to patients who are interested to participate in the ‘Proof-
of-concept study of Glargine as basal insulin support in the intensive care and the high depen-
dency units and validation of an Insulin Glargine pharmacokinetics model’.
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e No acute renal failure (creatinine <250 pmol/L)

e Equal to or less than 5000ml positive fluid balance given as intravenous
bolus in the past 24 hours, estimated from their original weight, indicating

stable interstitial volume.

e Resolving multiple organ failure (Sequential Organ Failure Score SOFA <
6) [Vincent et al., 1996].

Patients who are not expected to survive more than 48 hours will be excluded

from the study.

The Control group is for comparing blood glucose levels only and no non-
standard ICU blood samples will be taken. The overall protocol in flowchart
form is shown in Figure 9.2. Consistency is important in the administration of
Glargine. Hence, the first dose is always given in the morning, and the timing
has to be maintained until patient is discharged. After patients are discharged
from the ICU, data from less acute wards relating to blood glucose control will

be retrospectively gathered.

The study aims to obtain complete results from at least 10 ICU patients
in the Glargine group. Results will be considered complete if the patient has
completed Glargine+Meal study for 2 days. More than 20 patients (up to 60) are
expected to be enrolled in the study as patients might not complete the entire
study procedure. Patients can request withdrawal from the study at any time and
individual study may be terminated if there are unexpected clinical deterioration.
This is a proof-of-concept study. Hence, powered statistical significance is not a

concern and not applicable to this study.

All potential patients will be identified daily by the clinician according to
the entry criteria. When study patients are transferred to wards, a person-
nel will be arranged to continue the study in the wards. The intensive clini-
cians will approach the patient or if patient cannot consent him/herself a fam-
ily /representative will be approached. Study information sheet that explains the
study detail will be given to patient/family. Written consents are preferable from
the patients or any family members. If written consents are impractical, clinical
staff is to obtain oral consent and sign on behalf with a second signature from a

witness. Figure 9.3 is the Glargine consent form that will be given to patients,
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while Figure 9.4 is the consent form for relative/family or friend acting on behalf

of patients.

A variety of disciplines are brought together in this study, each bringing their
own expertise in the area to create a novel transition protocol that would benefit

ICU and less acute patients. These includes:

Intensive Care Specialist, Surgeon.

Engineering Professor and students of all levels.

Physicians.

Dietician.

Nurses.

Results from this pilot study would enable an expansion of patient population
with a larger clinical trial. All the guidelines should be followed accordingly, with
caution. There is a risk of hypoglycaemia, as when any form of insulin is being
used. However, the current protocol, SPRINT is shown to be very safe regarding
low blood glucose levels. Glargine in this study is used conservatively, and it is
not expected to cause serious low blood glucose levels. If hypoglycaemia occurs
at any time, insulin will be stopped and an injection of glucose may be given to

quickly restore blood glucose level to a normal level.

The aim to investigate the use of Glargine in recovering intensive care pa-
tients will lead to the development of a sytematic protocol guiding the transition
between intravenous insulin in the ICU, to subcutaneous insulin in the less acute
wards, that will directly benefit to this particular group. The study will be con-
ducted using the paper-based SPRINT protocol, for ease of nurses. In the near
future, a computerized hand-held device protocol might replace the paper-based
protocol as pilot study incorporating the computerized SPRINT protocol is in
progress at the moment. The study, known as STAR trial uses a computer tablet

instead of a hand-held device.

Incorporating a computerized decision support would reduce the chances of
human error and protocol violations. Moreover, equipping the computerized pro-

tocols with alarms alerting dangerous blood glucose levels and such, would be
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Canterbury

District Health Board

Te Poari Hauora 0 Waitaha

Statement by Patient

Proof-of-Concept Study of Insulin Glargine as Basal Insulin
Support in the Intensive Care and the High Dependency Units

Name of Participant

Ethnicity of Participant

English I'wish to have an interpreter Yes Mo

haor E hiahia ana ahau ki tetahi kaiwhakamaon/kamwhaka pakeha | Ae Kao
korero

Samoan | Qute mana'o e iai se fa'amatala upu log Leai

Tongan 'Oku fiema'u ha fakatonulea [ lkai

Cook ka inangaro au | tetai tangata uri reo Le Kare

Island

Milean Fia manako au ke fakaaoga e tagata fakahokohoko vagahau | E Mak

al

| have read and | understand the information sheet dated __ ~ _ for people taking

part in the study designed to help develop a insulin transition protocol for patients

transferring from the Intensive Care Unit to less acute wards. | have had the

opportunity to discuss this study. | am satisfied with the answers | have been given.

| understand that taking part in this study is voluntary and that | may withdraw from the
study at any time if I'wish. This will not affect my continuing health care.

I understand that my participation in this study is confidential and that no matenal which
could identify me will be used in any reports on this study.

| understand that the treatment will be stopped if it should appear to be harmmful.
l understand the compensation provisions for this study.

| know whom to contact if | have any side effects to the study or if anything occurs which
| consider a reason to withdraw from the study.

[ know whom to contact if | have any questions about the medication of the study.

This study has been given ethical approval by the Upper South B Regional Ethics
Committes. This means that the Committee may check at any time that the study is
following appropriate ethical procedures.

l'would like a copy of the results of the study. {circle) YES | NO

I agree to my GP being informed of my participation in this study. (circle) YES [ NQ

Signed: Date: i 20
dd  mm WYy

Printed Mame
Address for results:

Figure 9.3 Glargine consent form for patients to participate in the ‘Proof-of-concept study
of Glargine as basal insulin support in the intensive care and the high dependency units and
validation of an Insulin Glargine pharmacokinetics model’.
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Statement by Relative, Friend, Family/\\Whanau

Proof-of-Concept Study of Insulin Glargine as Basal Insulin
Support in the Intensive Care and the High Dependency Units

Name of Participant

Ethnicity of Participant

English | wish to have an interpreter YES (]
haor E hiahia ana ahau ki tetahi kaiwhakamaori/kaiwhaka pakeha korero AR kan
Samoan Jute mana'o eiai se fa'amatala Lipu [u]= Leai
TDngan 'CkU fiema'u ha fakatonulea [u] [kai
Cook Island | Ka inangaru aul teta tangata L reo AR kare
Milean Fia manako au ke fakaanga E tagata fakahokohokio vagahau E M akal

| have read and | understand the information sheet dated 14 July 2010 for people taking part in the study
designed to help dewvelop a insulin transition protocol for patients transterring from the Intensive Care Unit to
less acute wards. | hawe had the opportunity to discuss this study. | am satisfied with the answers | hawve
bheen given.

| beliewe my relative/friend would hawe chosen and consented to participate in this study if hefshe had been
able to understand the inform ation that | have received and understood.

| understand that taking part in this study is woluntary and that my relativedfiend may withdraw from the study
at any time If hefshe wishes. This will not affect his/her continuing health care.

| understand that hisfher participation in this study is corfidential and that no materal which could identify
him/her will be used in any reports on this study.

| understand that the treatrment will be stopped if it should appear to be harmful.
| understand the compensation provisions for this study.

| knowe wehorn to contact it my relative/friend has any side effects to the study or If anything occurs which |
think hesshe would consider a reason to withdraw from the study.

| know whorn to cortact if | have any guestions about the medication of the study.

This study has been given ethical approval by the Upper South B Regional Ethics Committee. This means
that the Committee may check at any time that the study is following appropriste ethical procedures.

I/rny relativesfiend would like a copy of the results of the study. (circle) YES / NO
| believe my relativefriend would agree to his/her GP being informed of his/her
participation in this study. (circle) YES / NO
Signed: Date: ¢ ¢ 20

dd  mm WY
Frinted Marne: Relationship to Participant:

Address for results:

Figure 9.4 Glargine consent form for relative/friend/family of patients to participate in the
‘Proof-of-concept study of Glargine as basal insulin support in the intensive care and the high
dependency units and validation of an Insulin Glargine pharmacokinetics model’.
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Statement by Investigator |

I (name of investigator) declare that this study is in the potential health
interest of the group of patients of which (name of participant) is a
member and that participation in this study is not adverse to 's (name of

participant) interests.

| confirm that if the paricipant becomes competent to make an informed choice and give an informed
cansent, full infarmation will be given to him/er as soon as possible, and hisésher participaton will be
explained. If the participant makes an informed choice to continue in the study, written consent will be
requested and if the participant does not wish to continue in the study, hefshe will be withdrawn.

Signed: Date: F F20
Ire/es tigator oo mm Wy

Statement by Participant (If applicable at a later stage)

I hiaving been fully informed about this studyy agree to continue

(ramme of participant)

taking part in it.

Signed, Participant: D ate:

Figure 9.5 Glargine statement form for investigators approving patients to participate in the
‘Proof-of-concept study of Glargine as basal insulin support in the intensive care and the high
dependency units and validation of an Insulin Glargine pharmacokinetics model’.
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safer. Early recognition of hypo/hyperglycaemia would prevent adverse events.
Records of blood glucose measurements, amount of insulin administered and nu-
trition could be better managed by linking straight to hospital database for each
patient electronic records, another step to minimize human error. Handwritten
records might be misread if written or rather scribbled due to time constraint
as the measurements needed to be taken frequently. Significantly, a direct up-
loading to patient database would do wonders to future studies. Time spent in
extracting data from large number of patients involved in study would be greatly
reduced as there are substantial amount of data. Finally, a more important fac-
tor on the success of TGC implementation is educating staff, particularly nurses.
Each hospitals need to develop a program on equipping staff with the importance
of TGC and necessary responsibilities held by each nurses, so that they would
be better informed and would familiarize themselves around standards of care
with TGC. Particularly, with control protocols involving transition of care, there
needs to be a dynamic between the ICU nurses and less critical ward’s nurses. A
clinical practice change is not an easy task, people often resist being taken out
of their own comfort zone. A good example is the sliding-scale insulin, which
has continued to survive despite the well known fact, that more often than not,
sliding-scale doesn’t work. The reason is simply because of the hospital culture
that had developed for so many years. The doctors in charged learned from the

previous doctors, and the cycle continues.

However, there are other issues surrounding the study as well. Patients who
are discharged from the ICU show a sign in progress. Besides starting to eat
normally, these patients would also have more movement than before, either
assisted or own their own. Mild exercise, such as leg or arm movement, might be
performed to reduce muscle weakness. Patients would also begin to walk. These
physical rehabilitation activities would have an effect on patient’s own glucose
regulation as increased insulin sensitivity has been associated with exercise. To
what extent this effect of exercise will be seen, is still unknown. However, studies
have shown physical activities are linked with better management in blood glucose
among patients. Hence, in the future a model that could predict the changes or
improvement in glycaemic control associated with exercise, would benefit from
studies of the data from patients in this group. In fact, among the critically
ill, there have been physical rehabilitation performed on patients, thus avoiding
muscle wasting which is common as patients are confined to bed for a considerable

length of time.



194 CHAPTER 9 FUTURE AVENUES: PROOF OF CONCEPT CLINICAL PROTOCOL

Overall, this study is the next major step forward from the research in this
thesis. The size and complexity of the design of this study and in its implementa-
tion precluded its inclusion in this thesis. Thus, it represents the main step nec-
essary in this overall research are for both modeling and clinical research aspects.
This thesis provide potential directions and goals for designing and implementing
the next generation of TGC protocols in the less acute wards. Proper treatment
and consideration of the issues surrounding TGC in the less acute wards, partic-
ularly in protocol design and implementation should result in increased success

of TGC protocols in practice.
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Feed Wheel

START:

1. Ui the feed conversion
sticker to find the cument
percertage feed lavel

2. Rotate wheesl to patient's,
current percentage feed
level marked in grey.

3, Has the glucose level
decreasad from the |ast
measwrEmeant by maore

than 1.5 mmoliL? Adtach feed
CONVErEDn
. Use side "B" of shcker hare
YES:
= wheel
2 Use side "A" of
i wheel

4. Using the selected side
of the wheel from 3, malch
ha eurrent glucose level
to the new feed level

5. Usze the feed conwersion
sticker to find the absolue
Tead in [rml'he].

B. Use Irsulin Wit if you
hewe not dons 5o already

SERNT - 1150008

Feed Wheel

START:

1. Ui the foed ConWersion
sticker to fngd ]e cument
percertage feed lavel

2. Rotate wheel to patient’s
current percentage feed
level marked in groy.

3 Has the glucoze level
decreasad from the last
measwrEmeant by maore

than 1.5 mmeliL? Attach feed
CONVERE0N
vES: | Useside "B" of ahickis hirs
wheel
. Use side 4" of
RO:
wieel

4. Using the selected side
of the wheel from 3, mabch
the current glucese level
o the new feed level

5. Use the feed conversion
sticker to find the absolute
lead in [fml'he].

B Llse Irsulin Wit il you
hewe not done =0 already

EPRIT - 10E0E

Figure A.1 The paper based SPRINT protocol used in this research in the transition pro-
tocol with long-acting subcutaneous Glargine, developed from computerized insulin-nutrition

glycaemic control implemented through 2 look-up tables. SPRINT feed wheel from [Lonergan
et al., 2006b] with (A.1(a)) and without dial (A.1(b)) .
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START:

1. Hes the bleod glucese level
decreasad from ths  prevous
measiraman by more than 1,57
yEs: | Do not give any insulin
this haur

NO: | Follow the steps balow

2. Fotee whesel to pebents
eurrent glucose level matad in
arey.

3. Determine  whather  the
glucose level nas inceased or
dacraassd  and  select  the
correct side of the wheel.

4, Ugsing the selected side of
the whesl from 3, match the
previous insulin balus o the
new insulin bolus

&, Adrminister mew Ingulin bolus
and b Collaagise SOUa chack

B. se Fead YWheel if you hawvs
not dons so alsady.

SPIEMT = 1 AU

START:

1. Has the blood glucoee level
decreased from the previous
rneasuramant by more than 1,57
vES | Do not give amy insulin
this hour

MO: Fallow the steps belaw

2. Rotate whaal o patient's
current glucese level markad in
grey.

3, Dwtermine  whethar  the
glucose level hac incrogsed or
dacreased  and select  the
correct slde of the wheel

4. Lsing the selected side of
the wheal from 3, match the
previous insulin belus w tha
new insulin bolus

5. Administer new insulin bolus:
and have colleague double check.

6, Use Fesd VWhes! il you i
not done 50 aleady.

AERNT - 1SS

Figure A.2 The paper based SPRINT protocol used in this research in the transition pro-
tocol with long-acting subcutaneous Glargine, developed from computerized insulin-nutrition
glycaemic control implemented through 2 look-up tables. SPRINT insulin wheel [Lonergan
et al., 2006b] with (A.2(a)) and without dial (A.2(b)).
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