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Abstract

In the intensive care units, hyperglycaemia among the critically ill is associated

with poor outcomes. Many studies have been done on managing hyperglycaemia

in the critically ill. Patients in the ICU continue to benefit from the outcome of

extensive studies including several randomized clinical trials on glycaemic control

with intensive insulin therapy. Tight glycaemic control has now emerged as a

major research focus in critical care due to its potential to simultaneously reduce

both mortality and cost. Although the debate on tight glycaemic control is

on going, managing glycaemic level in ICUs is gaining widespread acceptance

as the adverse effects are well known. However, in the less acute wards, to

date there have only been a single randomized, controlled study to examine the

benefit of glycaemic control. Patients in the less acute wards do not receive the

same level of care, as glycaemic control is not regarded as important and not

a priority. Glycaemic goals in the less acute wards are often judged based on

clinical experience rather than adhering to a standard protocol or a treatment

guideline.

It is important that patients in the less acute wards received the level of care

as practised in the ICU. If hyperglycaemia worsens outcome in the ICU, a similar

effect is seen within less acute wards. Hence, tight glycaemic control needs to be

extended in the less critical setting as well. To support the establishment of a

control protocol for patients in less acute wards, a method that has been successful

in the critical care and can be adapted to the less acute wards, is the model-

based or model-derived control protocol. Model-based protocol can deliver a safe

and effective patient-specific control, which means the glycaemic control protocol

can be devised to each individual patient. Hence, a physiological model that

represents the glucose-insulin regulatory system is presented in this thesis. The

developed model, Intensive Control Insulin-Nutrition-Glucose (ICING) is based

on the best aspects of two previous clinically-validated glucose-insulin models.



xxviii ABSTRACT

Glucose utilisation and its endogenous production are more distinctly expressed.

A more realistic model for gastric glucose absorption accounting for the stomach,

gut and saturable glucose appearance is also introduced. Finally, the model also

includes explicit pathways of insulin clearance and transport from plasma, which

reflects biological mechanisms.

The ICING model is capable of accurately capturing long term dynamics and

evolution of a critically ill patient’s glucose-insulin response. The model achieved

low fitting and, most importantly, low prediction error when fitted to blood glu-

cose data from critically ill patients. Fitting errors and the 75th percentile pre-

diction errors were all well below measurement error for 173 patients and 42,941

hours of data. The new model outperforms its critical care predecessors, and has

greater physiological relevance and more detailed insulin kinetics.

A subcutaneous insulin absorption model for Glargine is also developed.

Glargine, a new type of insulin analog is incorporated in the study due to its

unique once or twice a day basal coverage. Glargine has been used for Type

1 and Type 2 diabetic patients and the take of Glargine for the basal coverage

of recovering critically ill patients is an interesting and promising approach. If

Glargine can be used successfully in less acute wards, the high nursing effort fre-

quently associated with tight glycaemic control can be greatly reduced. Hence,

an improved pharmacokinetics and pharmacodynamics of subcutaneous Glargine

model is developed and validated in this thesis. A further measure of validation is

performed in which the model output of Glargine plasma insulin curve is validated

using data from external independent studies. To account for intra- and inter-

patient variability in the absorption kinetics of Glargine, variability is introduced

to Glargine-specific parameters. The impact of variability is assessed with Monte

Carlo analysis and increases the potential of the subcutaneous absorption model

to be used effectively in a glycaemic control protocol.

Virtual trial provides a safe mean to develop and analyze glycaemic control

protocols prior to clinical validation in pilot trials. Protocols may be optimised

virtually to save time, save money and, most important of all, yield a better

patient outcome in clinical implementation. Employing the ICING and subcu-

taneous Glargine insulin absorption model, in silico virtual trials were done on

15 metabolically stable ICU patients. Glargine’s efficacy in this patient popula-

tion was tested by comparing simulation results to SPRINT clinical data, dose
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to dose. No control measure was adapted at this stage. Further virtual trials on

30 metabolically stable patients, combined an intravenous insulin protocol prac-

tised in the Christchurch ICU Hospital, New Zealand with subcutaneous Glargine

doses as a basal background. This approach is targeted for patients in transition,

from the ICU to less acute wards. It is expected that Glargine daily doses would

eventually replace the intravenous insulin bolus, once patients insulin sensitivity

is high and stable.

The transition protocol, with nutrition adjustments further looks into the

efficacy in terms of nursing intervention frequency. Aside from managing patient’s

glycaemic level, which is the main priority, this research looks further into the

nursing effort as the success of TGC protocol largely depends on human factor,

specifically the nursing resources. Current guidelines for switching patients to a

subcutaneous insulin are adhoc and often fail. A system is required to maintain

good blood glucose control outside of the ICU and allows a smooth transition

of patients from the ICU to less acute wards, while keeping nursing effort to

a minimum – a major and heretofore an insoluble task. Thus, a protocol that

does not burden nurses which is often limited in the less acute wards is highly

required and practical. The solution created in this thesis will be the first attempt

to generalize tight glycaemic control to less acute wards.

Monte Carlo analysis provide a further valuable approach to test the robust-

ness of the control protocol and robustness is achieved with the ability of the

control protocol accounting for possible blood glucose concentrations and varia-

tions of Glargine absorption. Overall, the results meet the primary goal of the

analysis to justify a clinical pilot study to fully validate these in silico results.

Hence, a protocol ‘Proof of Concept Study of Insulin Glargine in the Intensive

Care and the High Dependency Units’ which has been granted ethics is presented

in this thesis. Having taken the modeling approach to a successful analytical

endpoint, it is a critical and unique opportunity to clinically validate these in

silico results.





Chapter 1

Introduction

Stress-induced hyperglycaemia is prevalent in critical care and can occur in pa-

tients with no history of diabetes [Krinsley, 2004; Capes et al., 2000; Van Den

Berghe et al., 2001]. Hyperglycaemia occurs when the glucose concentration in

the blood plasma is higher than a basal level of 5.5 mmol/L or 99 mg/dL [Mizock,

1995]. In which therapy should be initiated, hyperglycaemia is defined as being

consistently higher than fasting blood sugars of >7mmol/L ( >126 mg/dL) or

random blood sugars of >11mmol/L (>200 mg/dL) as adapted from the Ameri-

can Diabetes Association Expert Committee on the Diagnosis and Classification

of Diabetes Mellitus [Care, 2003]. Critically ill patients exhibit increased endoge-

nous glucose production, erratic insulin production, and significantly increased

insulin resistance [Capes et al., 2000; Esposito et al., 2003; Finney et al., 2003;

Krinsley, 2003; McCowen et al., 2001; Van Den Berghe et al., 2001; Van den

Berghe et al., 2003].

The occurrence of hyperglycaemia in critically ill patients is associated with

increases in counter regulatory hormones such as catecholamines, growth hor-

mone, cortisol and cytokines [McCowen et al., 2001; Barth et al., 2007a]. These

counter-regulatory hormones antagonize insulin production and stimulate endoge-

nous glucose production. They also decrease immune function response at high

blood glucose levels [Marik and Raghavan, 2004; Turina et al., 2005; Weekers

et al., 2003]. In addition, a combination of other factors also affect the patient’s

glycaemic level, mainly the severity of the patients underlying illness itself. Their

underlying glucose tolerance may also play a role with individuals with Type 2

diabetes having a higher incidence of ICU-related hyperglycaemia [Irwin and

Rippe, 2009].
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Other than that, the administration of some medications play a role. In

particular, steroids [Bradley, 2002], noradrenaline [Lewis et al., 2004] and beta

blockers [Freeman et al., 2001] are commonly used drugs that have been recog-

nized to exacerbate hyperglycaemia. Thus all these factors significantly increase

effective insulin resistance. Finally, high glucose content nutritional regimes exac-

erbate hyperglycemia and thus mortality [Weissman, 1999; Krishnan et al., 2003;

Elia et al., 2005], whereas reducing glucose intake from all sources has reduced

glycemic levels [Patiño et al., 1999; Elia et al., 2005; Ahrens et al., 2005; Krajicek

et al., 2005] and can alleviate the impact of the hyperglycemic counter-regulatory

response that drives the problem [McCowen et al., 2001; Mizock, 2001; Thorburn

et al., 1995; Larsen et al., 2002].

Extensive studies have therefore linked hyperglycaemia to worse outcomes

[Krinsley, 2004] and higher hospital care cost [Furnary et al., 2004]. It is strongly

associated with increased mortality [Krinsley, 2003; Laird et al., 2004; Jeremit-

sky et al., 2005]. Increament in fasting plasma glucose for every 1 mmol/L, is

related with 33% increase in mortality in a study by Baker et al. [2006]. In par-

ticular, hyperglycaemic patients are at a higher risk of severe infection [Bistrian,

2001], myocardial infarction [McCowen et al., 2000] and critical illnesses such as

polyneuropathy and multiple organ failure [Chase et al., 2010b; Van Den Berghe

et al., 2001]. Hyperglycaemia has also been known to induce damage at a cel-

lular level including immunosupression, inflammation, thrombosis and increased

oxidative stress [Brownlee, 2001; Hirsch and Brownlee, 2005; Preiser and Devos,

2007]. Although not conclusive, several studies suggested that patients with no

prior history of diabetes are even at a higher risk for adverse complications com-

pared to patients with existing diabetes [Smiley and Umpierrez, 2008; Dungan

et al., 2009; Tonks et al., 2010]. Hence, hyperglycaemia has a significant phys-

iological impact via multiple routes on the critically ill patient that can by this

impact add significant difficulty and complexity to their care and management.

A number of studies have investigated the effects on patient outcomes when

blood glucose levels are controlled with insulin, and revealed markedly mixed re-

sults with some very positive reports showing the clear potential of this approach.

Hyperglycaemia used to be seen as a positive adaptive response in the critically

ill [Mesotten and Van den Berghe, 2009]. Since the landmark study in surgical

intensive care unit (ICU) patients by Van Den Berghe et al. [2001], which reduced

mortality by 18-45% using tight glycaemic control (TGC), the attitude towards
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tolerating hyperglycaemia in critically ill patients has changed. Insulin, with

TGC, can ameliorate inflammatory responses and improve insulin sensitivity and

glycemic response [Weekers et al., 2003; Jeschke et al., 2004; Vanhorebeek et al.,

2005; Langouche et al., 2005]. Van Den Berghe et al. [2001], obtained significant

mortality reductions for a cardiovascular surgery cohort, as well as reducing other

outcomes and treatments. It was matched by the retrospective study of Krinsley

[2004]. TGC has now emerged as a major research focus in critical care due

to its potential to simultaneously reduce both mortality and costs. Specifically,

TGC is defined as having blood glucose range between 4.4–6.1 mmol/L (80-110

mg/dL). This is the normal range of blood glucose level of a healthy individual.

Table 1.1 lists the glycaemic target range employed by several different studies to

achieve normoglycaemia. The various glycaemic targets portray the widespread

acceptance of TGC, yet at the same time questions on the best TGC target still

remain. The final TGC band is yet to be established, with each study having its

own approach on protocol implementation and target goal.

In contrast to the physiological impact noted, other benefits demonstrated

from implementing TGC are lower rates of bacteremia, multiorgan failure, surgi-

cal site infection, renal failure and shorter duration of ventilation [Chase et al.,

2010b; Van Den Berghe et al., 2001, 2006b]. The anti-inflammatory effects of

insulin in reducing cellular level damage have also been noted [Van Den Berghe

et al., 2001, 2006b].

However, repeating these results that reduced mortality and other outcomes

has been difficult [Griesdale et al., 2009]. Several large trials [Finfer and Heritier,

2009; Brunkhorst et al., 2008; Preiser et al., 2009] were unable to repeat the early

results of Van Den Berghe et al. [2001] or other success by Krinsley [2004] and

Chase et al. [2008c]. For example, Brunkhorst et al. [2008] was stopped for safety

due to hypoglycaemia while Preiser et al. [2009] had unintended protocol viola-

tions. Thus, the role of tight glyceamic control during critical illness and suitable

glycaemic ranges have been under scrutiny in recent years [Schultz et al., 2008;

Kalfon and Preiser, 2008; Preiser, 2009; Moghissi et al., 2009; Chase and Shaw,

2007; Van Den Berghe et al., 2006b]. Overall, conclusions are varied with both

success [Van Den Berghe et al., 2001; Chase et al., 2007, 2008c; Krinsley, 2004],

failure, [Finfer and Heritier, 2009] and, primarily, no clear outcome [Van Den

Berghe et al., 2006b; Chase and Shaw, 2007; Preiser and Devos, 2007; Vanhore-

beek et al., 2007; Brunkhorst et al., 2008; De La Rosa et al., 2008; Schultz et al.,
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2008; Wiener et al., 2008; Treggiari et al., 2008], as summarised in Griesdale et al.

[2009].

Below are few important methodological differences identified to be the cause

of deficiency or varying level of success and failure among TGC studies.

• Differences in target range of BG between control and intervention groups.

• Differences in routes of insulin administration.

• Differences in sampling sites.

• Differences in types of instrument for BG measurements.

• Differences in nutritional strategies.

• Differences in level of expertise among ICU nurses.

The study by Chase et al. [2010a] states that all the controversy surrounding

around TGC and its application are due to lack of understanding of both the

problem and the patient-specific dynamics that hinder clarity on the issues. More

specifically, the study reviews the basic known physiological and clinical aspects

of TGC, in terms of their impact on glycemia and thus outcome.

Table 1.1 Tight glycaemic control range in ICU

Reference TGC Range (mmol/L) TGC Range (mg/dL)

Chase et al. [2008c] 4.4–6.1 80–110
Krinsley [2004] <7.7 <140
Saager et al. [2008] 5.0–8.3 90–150
Rood et al. [2005] 4.0–7.0 72–126
Dortch et al. [2008] 4.4–6.1 80–110
Hermayer et al. [2007] 4.4–7.1 80–129
Thomas et al. [2005] 5.4–7.1 97–128
Vogelzang et al. [2005] 4.0–7.5 72–135
Davidson et al. [2005] 5.5–7.7 100–140
Meynaar et al. [2007] 4.5–7.5 81–135
Pachler et al. [2008] 4.4–6.1 80–110

While many ICU patients are benefiting from extensive research, moderate to

high levels of hyperglycaemia are still tolerated within the less acute wards, such
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as high-dependency (HDU) and post-surgical units. The management of TGC in

this area, remains under the influence of ineffective standards characterized by

tolerance to moderate hyperglycaemia and reluctance to use insulin intensively.

A major roadblock leading to this outcome is the reduced clinical manpower

available in these units to implement sometimes intensive protocols [Aragon, 2006;

Chase et al., 2008b]. Moreover, not all hospitals have HDU unit, with the numbers

of HDU and staffing are generally insufficient [Garfield et al., 2000; Leeson-Payne

and Aitkenhead, 1995; Jones et al., 1999]. Therefore patients who were discharged

from the ICU often were transferred directly to wards where TGC would even

be more difficult to implement. In general wards, the staffing ratio is 1:6, yet a

nurse usually may have to care for more [Aiken et al., 2008]. Hence, the use and

benefits of insulin protocols within these units (HDU or less critical wards) have

not yet been widely addressed in the literature [Whitehorn, 2007].

Based on current evidence from studies in medical and surgical ICUs, it is

logical to expect that the maintenance of normoglycaemia within less acute ward

patients would limit potential complications associated with elevated blood glu-

cose levels [Chase et al., 2010a]. This assumption is not unreasonable as patients

in the ICU and less acute wards share an accelerated catabolic, hyperglycaemic

state that also reduces the immune response. Extending tight control to these

wards could minimise rebound hyperglycaemia on discharge to the wards [Gold-

berg et al., 2004b] and minimize the development of (new) infections or further

complications, thus improving overall patient care. Furthermore, the workload

associated with patients who return to the ICU would be reduced. Studies on fac-

tors contributing to ICU rebound or readmission have increased in recent years,

evident with more studies being published [Bardell et al., 2003; Utzolino et al.,

2009; Rosenberg et al., 2001]. A review on ICU readmisson and rebound can be

found from Elliott [2006].

However, to fully implement TGC in less acute wards posed significant chal-

lenges. These wards do not have the same nursing resources compared to ICU,

making constant monitoring and titration difficult. In addition, patients do not

have arterial or (often) intravenous lines for regular blood sampling. IV insulin

has the advantages of administering accurate doses and provide a faster response

than subcutaneous insulin. Hence, there is a pressing need for insulin delivery

protocols that can be successfully implemented with minimal clinical effort, bur-

den and resources. This necessitates an entirely different approach in engineering
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a TGC protocol from that which is used in an ICU. More succinctly, while the

avenue of providing TGC remains the same in these wards (insulin), the means

and resources by which it is implemented will have to be very different.

1.1 Hyperglycaemia in less acute wards

Although it is now becoming an unacceptable practice to allow hyperglycaemia

and its associated effects [Preiser and Devos, 2007; Brownlee, 2001; Hirsch and

Brownlee, 2005; Egi et al., 2006], moderately elevated blood glucose levels are

tolerated or recommended [Moghissi et al., 2009] because of the fear of hypo-

glycaemia [Egi et al., 2010; Bagshaw et al., 2009a] and higher nursing effort

frequently associated with TGC [Mackenzie et al., 2005; Aragon, 2006; Preiser

and Devos, 2007; Vanhorebeek et al., 2007; Chase et al., 2008a]. It was hoped

that [Finfer and Heritier, 2009] would clear some of these confounding issues

about setting appropriate glycaemic targets. This study, better known as the

NICE-SUGAR (Normoglycaemia in intensive care evaluation and survival us-

ing glucose algorithm regulation) multi-centre study, had statistical power with

6100 patients. However, the control group with target range of 7.7–10.0 mmol/L

(140–180 mg/dL) had lower 90 day mortality rate compared to the interventional

group with strict lower range target of 4.5–6.0 mmol/L (81–108 mg/dL). More

significantly, they failed to separate their cohorts glycaemically, and had other

methodological issues [Chase et al., 2010a]. Hence, the study failed to answer

these questions, as did the similar Glucontrol study [Preiser et al., 2009].

Table 1.2 lists the established recommended glycaemic targets for patients in

non-critical settings. These glycaemic targets were established for patients with

Type 1 and Type 2 diabetes on the basis of growing evidence that tight glycaemic

control improves outcome [Nathan et al., 2005]. However, many patients in less

acute wards still do not meet these glycaemic goals and the glycaemic target has

been seen as too stringent, given the lack of study to support general inpatients

[Inzucchi and Rosenstock, 2005]. The fear of hypoglycaemia has led to raising

glycaemic target bands [Moghissi et al., 2009]. Moreover, with the result of NICE-

SUGAR study [Finfer and Heritier, 2009], reconsideration of glycaemic targets in

the critically ill meant target range in the less acute patients were reconsidered

as well. The American Diabetes Association [2008] and Garber et al. [2004] state
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that inpatient hyperglycaemia is common, harmful, and with better blood glucose

control, mortality can be decreased along with complications, length of hospital

stay and health care costs.

Table 1.2 Glycaemic target in less acute wards. Convert mg/dl to mmol/L; multiply by
0.055.

Resources Preprandial Postprandial

American Diabetes Association [2008] <126 mg/dl <180-200 mg/dl
American College of Endocrinology [2007] < 110 mg/dl <180 mg/dl

Patients in less acute wards, share more similarity in metabolic status to

patients recovering from critical illness than to critical care patients in general.

In Chase et al. [2008a, 2010a] as critically ill patients recover, their insulin sen-

sitivity rises, but is still low compared to ambulatory individuals with Type 2

diabetes. Consequently, their insulin requirements decrease and the hourly doses

are generally more consistent. Hence, it is likely that this patient population

would benefit from intensive insulin therapy being transferred from the ICU set-

ting to a less acute ward. However, there are several factors which hampered

the effort to apply the same level of control seen in the ICU to less acute wards,

namely:

• Fear of hypoglycaemia and method of TGC

• Clinical burden and lack of access for samples

• Lower nursing resources for intensive therapy and monitoring

These issues are very different from the ICU setting and thus necessitates a

different approach of tight glycaemic control.

1.1.1 Fear of Hypoglycaemia and TGC Method

Among practitioners, fear of hypoglycaemia is a major limiting factor in im-

plementing tight glycaemic control. Due to higher incidence of hypoglycaemia

among patients, two major studies were terminated early [Brunkhorst et al., 2008;
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Preiser et al., 2009]. In Brunkhorst et al. [2008], the incidence of severe hypo-

glycaemia <2.2 mmol/L (<40 mg/dL) was 17% in the intensive therapy group

compared to 4.1% in the conventional group. The study [Brunkhorst et al., 2008]

was supposed to include 600 septic patients, but was stopped after 488 patients,

with the conclusion that septic patients were put at an increased risk of serious

events related to hypoglycaemia. The multicentre mixed ICU Glucontrol study

of Preiser et al. [2009] had severe hypoglycaemia in 8.7% of the patients receiving

insulin therapy compared to 2.7% treated to a higher target. Hypoglycaemia in

Van Den Berghe et al. [2006b] is reported to be as high as 18.7% in the medical

ICUs. Results from the largest randomized trial to date, [Finfer and Heritier,

2009] also showed much higher incidence of severe hypoglycaemia in intensively

treated patients versus the control group, with 6.8% and 0.5% respectively. This

study, NICE-SUGAR study [Finfer and Heritier, 2009] also reported an increase

in the TGC arm with a lower glycemic target, but was also subject to criticism

of its treatment approach, analysis and randomisation methods [Henderson and

Finfer, 2009; Myburgh and Chittock, 2009; Preiser, 2009; Van den Berghe et al.,

2009]. The meta-analysis that followed the publication of the NICE-SUGAR

study showed that most studies failed to achieve a result either way, but also had

significantly variable numbers of centres, patients, target cohorts and ICU types

[Griesdale et al., 2009]. Thus, overall comparisons are difficult, making it almost

impossible to assess which factors are associated with successful TGC.

Due to hypoglycaemia, the neonatal NIRTURE TGC study [Beardsall et al.,

2007] was also terminated. Almost all studies report increased hypoglycemia with

intensive TGC [Griesdale et al., 2009], excepting SPRINT [Chase et al., 2008c].

One recent study links hypoglycemia in the first 24h of stay, for those patients

who stay longer than 24h, as a factor for increased risk of death [Bagshaw et al.,

2009b] although this was not the case in SPRINT [Chase et al., 2008c]. Thus,

hypoglycemia and hyperglycemia are risk factors, and fear of hypoglycemia in

particular has thus driven recent doubts about the role of TGC.

Hypoglycaemia may be described as having blood glucose level lower than

2.2 mmol/L (40 mg/dL)[Van Den Berghe et al., 2001], 3.3 mmol/L (60 mg/dL)

[Kagansky et al., 2003] or 3.9 mmol/L (70 mg/dL) [Cryer et al., 2003]. The

differences are attributed towards hospital targets and whether it is categorized as

mild or severe hypoglycaemia. The symptoms include sweating, dizziness, fatigue,

blurred vision, confusion and convulsions [Cryer et al., 2003; Whitehorn, 2007].
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These clinical symptoms are often masked by patient’s own critical condition

and sedation. Seizures, coma, irreversible brain damage and in extreme cases

death, are among the major consequences of hypoglycaemia [Cryer et al., 2003;

Whitehorn, 2007; Bagshaw et al., 2009a; Egi et al., 2010]. Some physicians are

still unsure whether the benefit of tight glycaemic control outweighs the risk of

hypoglycaemia, making the issue of tight control still unresolved. However, from

an engineering perspective this issue is more about the means by which TGC is

implemented [Chase et al., 2010b] to manage patient variability.

Although these results were from the critically ill populations, physicians are

still apprehensive to implement tight glycaemic control in less acute wards. This

issue is partly due to insufficient studies in the area. To date there has only been

1 randomized controlled trial in the non-critical settings. The RABBIT-2 trial,

was a prospective, multicentre, randomized trial conducted in patients admitted

to a general medical service with blood glucose values between 7.7 mmol/L and

22.2 mmol/L (140 mg/dL and 400 mg/dL). Patients were randomized to receive

Glargine and Glulisine, and sliding-scale insulin. The study did not demonstrate

differences in mortality or clinical outcome between both groups. Hypoglycaemia

was observed to be low in both groups [Umpierrez et al., 2007]. However, the

study has its own significant limitations, where patients with hyperglycaemia

without pre-existing diabetes were excluded from the study. This group of pa-

tients are thus more likely to benefit from tight glycaemic control and see less

hypoglycaemia, which may have skewed the results.

As noted, the mixed results seen imply that best methods of providing TGC

have not yet been disseminated. In particular, of 3 successful studies [Van Den

Berghe et al., 2001; Krinsley, 2004; Chase et al., 2008c], only the SPRINT protocol

by Chase et al. [2008c] reduced hypoglycaemia by 50% versus it’s conventional

group. This protocol was unique in its approach by controlling both insulin and

nutritional inputs to metabolic balance. Uniquely, it was also the only protocol

engineered using model-based methods [Lonergan et al., 2006b,a; Chase et al.,

2008c, 2010c]. In Lonergan et al. [2006a] and Chase et al. [2008c], these studies

showed reductions of 17-42% in mortality for patients whose length of ICU stay

was 3-5 days or longer. They were matched by equally impressive reductions in

cost per patient treated [Van den Berghe et al., 2006; Krinsley and Jones, 2006],

and in reduced clinical incidence of sepsis, polyneuropathy and organ failure

[Chase et al., 2010b; Van den Berghe et al., 2003].
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Hence, SPRINT’s [Chase et al., 2008c] unique design and approach was able

to rise above issues of workloads and patient variability to provide a better, more

consistent control and outcome than any other study. However, these methods

have not yet been used for less acute wards at this time.

In particular, many ICUs and less acute wards use sliding scale methods, that

titrates insulin on a simple proportional scale. Golightly et al. [2006]; Arnold and

Keller [2009]; Hirsch [2009] and [Schnipper et al., 2006] are among many other

studies that revealed outcomes associated with worse glycaemic control using

sliding-scale insulin method. Umpierrez et al. [2007] is the only study to date con-

ducted in non-critical settings, and clearly established that sliding-scale insulin

failed to provide adequate glycaemic control. Hence, scheduled subcutaneous in-

jection has been found to be better in these settings without the increased risk of

hypoglycaemia. Sliding-scale should not be used in management of hospitalized

patients with elevated blood glucose level. It is erratic, widely variable, often in-

effectual, and prone to deficiencies in monitoring, documentation, and prescribing

soundness [Golightly et al., 2006]. There have been suggestions to abolish the

use of sliding-scale [Queale et al., 1997; Umpierrez and Maynard, 2006].

Efforts to improve glycaemic control in this population of patients that are

less critically ill are thus clearly needed. A serious solution will account for

important factors such as patient specific insulin resistance, meals, weight, illness

and/or basal requirements [Moghissi, 2008]. Clearly, patients will not have the

same insulin sensitivities resulting in blood glucose variability and difficulty in

control. Hence, new engineered methods are required that can manage these

factors.

1.1.2 Clinical Burden and Lack of Access

When an ICU patient is transferred to a less acute ward, several things change

that impact glycaemic control. The most significant change have to do with

access lines to blood. This change affects both input infusions and drug delivery,

as well as blood samples.

More specifically, only ICU patients have arterial lines. Arterial lines are

commonly used in TGC for removing small amounts of blood to measure blood
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glucose with a glucometer or blood gas analyser. The alternative is a typical

pin-stick glucometer, which causes minor discomfort or a time consuming and

invasive venous blood draw via syringe. Neither is an option for measuring more

than 4x per day in a less acute ward.

Similarly, intravenous (IV) lines are also typically removed on leaving ICU.

Hence, insulin infusions (and other drugs) must be given in long acting doses.

For TGC this change necessitates the use of much more variable and difficult to

manage subcutaneous (SC) insulins, which increases the difficulty and variability

of TGC in these wards.

1.1.3 Nursing Resources and Less Intense Monitoring

Differences in routine, environments and loss of invasive monitoring [Coyle, 2001]

are among the factors that make nurses in less acute wards feel that caring for

recently discharged patients from the ICU is stressful [Hall-Smith et al., 1997].

Achieving tight glycaemic control is labour intensive [Aragon, 2006; Mackenzie

et al., 2005], and some patients who were discharged from ICU still need one-to-

one care. However, less acute wards are not well resourced to provide this level

of care with demand for ICU increasing annually [Wild and Narath, 2005; Green,

2002; Swenson, 1992].

High workloads often result in patient care being delayed in these situations.

However, to provide better glycaemic control care to patients, coordination and

timing of blood glucose monitoring, meals, administration of insulin must be be

done in timely manner. Missing any of these could result in hypo/hyperglycaemia.

Van Den Berghe et al. [2001, 2006a] used extra staff to accommodate the addi-

tional work required for intensive therapy in the ICU. In Goldberg et al. [2004b]

it is stated that every hour, a nurse should locate a glucose metre, perform a

fingerstick, record and properly document the readings and perform the appro-

priate insulin rate adjustments. This process would take around 5 minutes per

patient [Whitehorn, 2007]. For a protocol that optimizes nutritional intake as

well as insulin, the process would be even longer. Such monitoring is possible

in the ICU but not in less acute wards. Hence, methods for less acute wards

must be non-invasive in terms of workload, resuscitation and less monitoring and

oversight by stretched nursing resources.
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In general, there is lack of concern over good glycaemic control in non-critical

settings. The result can include an unwillingness to treat and frequent inter-

ruptions to treatment during meal times, medications, examinations and other

procedures. All of these issues can prevent a protocol that can maintain a good

glycaemic control from achieving success [Moghissi, 2008; Deepak et al., 2003].

Hence, a pervasive feeling still exists that blood glucose control is not important

other than preventing hypoglycaemia.

Additionally, clinical data to support tight glycaemia control in this arena

is still lacking, and there is little agreement on how tight the control should be.

Although the debate on these issues continues, there should be no debate that

patients in less acute wards should continue to receive the level of control they

received in the ICU. The benefit of TGC should not be limited to the ICU. As a

result, patients often move from a clinical setting where glycaemic management

is a priority to one where it is ignored or receives less attention. Hence, it is not

uncommon to see stabilised patients moving to the less acute wards and then

returning in 1-3 days to the ICU with deteriorated condition and renewed high

blood glucose levels.

The challenge is to find and implement glycaemic goals with a standardized,

safe and effective protocol. There is a need for a system that can maintain good

blood glucose control outside of the ICU that can support patients transferring

from ICU to less acute wards, while addressing the differences in the environment.

Most importantly, the system or protocol must minimize the number of frequent

interventions and nursing effort to match the staffing available in these wards,

while simultaneously providing a quality care.

1.2 Model-based Glycaemic Control

Clinically validated glucose-insulin models that are clinically applicable and have

good predictive performance can eliminate potential for hypoglycaemia [Chase

et al., 2006, 2010c]. Interestingly, some TGC studies that reported a mortality

reduction also had reduced and relatively low hypoglycaemic rates [Chase et al.,

2008c], whereas those reporting no change or higher mortality had excessive hy-

poglycaemia [Finfer and Heritier, 2009; Brunkhorst et al., 2008]. This latter set of
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‘point’ also effectively divides model-based or model-derived protocols (SPRINT)

from all others. More specifically, model-based and model-derived TGC meth-

ods have shown significant ability to provide very tight control with little or no

hypoglycaemia [Chase et al., 2006, 2007, 2008c; Hovorka et al., 2007; Le Compte

et al., 2009].

Many studies have developed glucose-insulin models with varying degrees of

complexity for a wide range of uses, primarily in research studies of insulin sensi-

tivity [Chase et al., 2007; Mari and Valerio, 1997; Bergman et al., 1981; Parker and

Doyle, 2001; Hovorka et al., 2008, 2004b; Wong et al., 2006b]. These studies were

developed primarily on different glucose intolerant but otherwise healthy cohorts

and relied on a range of different assumptions. The common and ultimate goal is

to develop model-based insulin therapy for tight glycaemic regulation, albeit for

different purposes in some cases. More importantly, depending on the context of

how the model is to be used, real-time identification of a patient-specific model

may or may not be a prerequisite.

TGC methods should directly account for patient-specific insulin sensitiv-

ity and its potential to vary hour to hour when determining a given intervention,

something only model-based approaches might currently provide [Lin et al., 2008;

Le Compte et al., 2009]. Patients are individual and dynamic in their condition.

To be patient-specific, a TGC protocol must directly (e.g. model-based) or in-

directly (model-derived) account for both intra- and inter- patient variability.

Currently, only a very few protocols either directly or indirectly adapt their in-

tervention based on patient insulin sensitivity [Chase et al., 2008c; Wong et al.,

2006b; Le Compte et al., 2009]. Most of these are model-based or, in the case

of SPRINT, model-derived [Lonergan et al., 2006a; Chase et al., 2007; Lonergan

et al., 2006a]. As a result, they are able to explicitly and directly account for

variations in the patients metabolic response, as they have greater insight than

typical clinically derived protocols without these computations.

Most other reported protocols, do not account for or assess insulin sensitivity

in any way [Van Den Berghe et al., 2001; Krinsley, 2004; Van Den Berghe et al.,

2006a; Treggiari et al., 2008; De La Rosa et al., 2008; Goldberg et al., 2004b;

Inzucchi and Rosenstock, 2005; Goldberg et al., 2004a; Finfer and Heritier, 2009;

Brunkhorst et al., 2008; Preiser et al., 2009], including the recent, major RCTs.

Other protocols, adjust based on surrogate response to insulin decreases (e.g
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resistance increases) [Davidson et al., 2005], but do so in fixed multiples, rather

than via an explicit or patient-specific algorithm. None account for the hour to

hour variability, or the risks it imposes.

For a model to be successful when used in the delivery of TGC, it needs

to reflect observable physiology, as well as known biological mechanisms. In

addition, it should be uniquely identifiable in clinical real-time, and thus the type

and number of parameters to be identified should reflect the clinically available

data. Finally, the most important aspect for a model to be used in model-based

TGC is its predictive ability. Most studies provide only fitting error as validation,

for example [Hovorka et al., 2007; Parker and Doyle, 2001]. Fitting and prediction

error are due to model being able to capture patient’s dynamics. How well a model

captures a patient’s dynamics is related to the fitting error, and if the model is

able to predict the future glycaemic changes, that verifies the model parameters

used do reflect clinical physiology. Therefore, prediction accuracy is significant

as it validates the fitting method used and that the model parameters were not

simply molded to fit the collected data.

1.3 Preface

In summary, the problem of critically ill or recovering critically ill patient is

summarised as a strong counter-regulatory hormone driven stress response that

induces significant insulin resistance and can antagonise insulin production and

action. Coupled with unsuppressed endogenous glucose production, EGP and

potentially excessive nutritional inputs, high blood glucose is inevitable. Dy-

namic patients whose condition, and thus insulin resistance, evolves regularly

and sometimes acutely, provide a further challenge to providing consistently tight

TGC across every individual patient in a cohort. Coupled with clinical burden

in measuring frequently, and large swings in blood glucose are inevitable with-

out the ability to adapt. Thus, the overall problem becomes one of managing a

highly dynamic cohort, with minimal effort or intervention, which also displays

significant variability both between and within patients. Considered generically,

this definition is a classic dynamic systems and control problem definition that

can be readily addressed if the major driving factors can be accurately modeled

and understood.
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Hence, the goal of this research is to develop a model-based protocol that is

clinically practical and tailored for glycaemic control in the less acute wards. It

will provide TGC by controlling insulin delivery in both the subcutaneous and/or

intravenous route (if available). Optimizing nutritional requirements intake may

also be a (lesser) option in this environment. The protocol design incorporates

physiological modeling and engineering techniques and must be able to adapt to

individual patient clinical requirements. By doing so, the protocol will produce

accurate patient-specific recommendations for each insulin interventions. It will

be a comprehensive protocol that follows insulin-resistant patients from ICU to

less acute wards, transitioning from intravenous insulin to subcutaneous insulin,

while maintaining normo-glycaemia and minimising clinical effort, and thus re-

ducing ICU rebound and cost.

The target would be to provide TGC for each individual patient, as in the

study by [Chase et al., 2010a]. Hence, the analysis of TGC from the developed

control model protocol besides from cohort analysis, would be on per-patient

analysis. A move that is not commonly reported in TGC trials apart from [Chase

et al., 2008c; Van den Berghe et al., 2003; Goldberg et al., 2004a].

The goal is pursued by further developing and linking physiological models

of each part for the whole system, from glucose regulation and the interaction

between glucose and plasma insulin to the absorption kinetics of long acting

subcutaneous insulin. All the models are validated before being used for protocol

analysis and design. Variability is introduced in the identified Glargine model

parameters to account for intra- and inter- patient variability, and simulated via

Monte Carlo analysis. The overall thesis preface is outlined:

Chapter 2 reviews previous glucose-insulin models that have been applied for

glycaemic control in the critical care settings. As computational capability

and access improve, there are avenues of further improvement where better

models or methods can be developed. This chapter presents an updated

glucose-insulin control model for use in real-time glycaemic control. The

developed model, ICING (Intensive Control Insulin-Nutrition Glycaemic

Model) is a comprehensive, more physiologically relevant glucose-insulin

dynamic system model. The ICING model is an integration and improve-

ment of two clinically validated glucose-insulin physiological models.
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Chapter 3 presents the parameter identification method for the critical pop-

ulation parameters in the developed glucose-insulin, ICING model. The

updated model with it’s fitting and predictive virtual patient validation is

also presented in this chapter. The results confirm that the ICING model is

suitable for developing model-based insulin therapies, and capable of deliv-

ering real-time model-based TGC with a very tight prediction error range.

Chapter 4 presents the development and validation of a detailed pharmacoki-

netics model of the subcutaneous absorption kinetics of Glargine. Glargine

will cover the basal need for patients in the less acute wards. If Glargine

can be successfully used for TGC, nursing effort can be greatly reduced as

Glargine only needs once or twice injection daily. Hence, in order to use

a model-based method, Glargine pharmacokinetics and pharmacodynam-

ics need to be modeled. The fundamental structure of the model is taken

from a prior model but new development is made to better capture the

physiological aspect. Critical pharmacokinetics measures, maximal plasma

insulin concentration, Cmax and time to maximal plasma insulin concen-

tration, Tmax were used for validation purposes. A Monte Carlo study was

performed on identified model parameters to account for patients variability

often seen clinically.

Chapter 5 presents simulated virtual control trials adapting the glucose-insulin

pharmacokinetics, ICING model developed in Chapters 2 and 3, as well as

the validated subcutaneous Glargine absorption kinetics developed in Chap-

ter 4. Virtual trials were performed to assess the effectiveness of Glargine

as basal insulin replacement for TGC in less critical patients. Efficacy

of Glargine was evaluated by comparison of glycaemic performance using

Glargine in virtual trials against the clinical results from SPRINT protocol.

The overall results show an approach to managing the intravenous to sub-

cutaneous insulin transition that occurs as patients leave intensive care for

less acute wards during their hospital stay. Safe, effective approaches to this

transition will ensure that clinical burden and workload are not increased,

while maintaining the benefits of tight glycemic control.

Chapter 6 presents simulated virtual control trials to seek the optimum con-

troller by using Glargine as basal insulin and SPRINT protocol. The goal

is to seek a protocol that can aid patient recovery, and seamlessly transition

IV insulin in the intensive care unit to subcutaneous insulin that will be
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the sole form of TGC input used in less acute wards. A transition protocol

would enable a relatively labour intensive intravenous insulin with frequent

measurement in the ICU to less intensive, longer acting, subcutaneous in-

sulin in less acute wards with consequently fewer measurements. The op-

timal protocol, SPRINT-1U+Glargine, has the potential to be effectively

employed in a clinical pilot study.

Chapter 7 presents Monte Carlo analysis to quantify the performance and ro-

bustness of the SPRINT-1U+Glargine protocol developed in Chapter 6.

The protocol is analyzed to assess its robustness towards physiological vari-

ability and sensor errors. For clinical implementation, it is crucially im-

portant to ensure the protocol is robust towards a wide range of expected

variability seen in a clinical setting.

Chapter 8 presents the conclusions of the thesis.

Chapter 9 presents the future avenues for the study with a focus on the pilot

clinical trial to be conducted at Christchurch Hospital’s ICU and High

Dependency Ward.





Chapter 2

Model Development

Metabolic modeling has been a useful tool for the understanding of glucose-insulin

dynamics. During the last decade, a wide variety of models have been proposed.

These models provide better insight, and serve as a platform to understand a

complex physiology with varying degrees of complexity. The primary use of

metabolic models has been the development of model-based measures to assess

metabolic parameters, with a focus on measuring insulin sensitivity [Docherty

et al., 2009; Lotz et al., 2008; Chase et al., 2007; Mari and Valerio, 1997; Bergman

et al., 1981; Parker and Doyle, 2001; Hovorka et al., 2008, 2004b; Wong et al.,

2006a,b].

Models can be grouped into two classes, simple models and comprehensive

models. A simple model has the advantage of having less identifiable parameters,

but at the potential expense of being less physiologically accurate or specific. A

comprehensive model on the other hand, may represent the true or more exact

nature of a system, but can be too complex and generally not identifiable without

extensive data that is not readily available in a clinical setting.

According to American Diabetes Association (ADA), among the two kinds

of models in healthcare are:

• Biological Modeling

• Clinical Medicine

Clinical glycaemic control modeling is a model that includes both of the above

compartments, biological modeling and clinical medicine, and requires a complete



20 CHAPTER 2 MODEL DEVELOPMENT

knowledge of the dynamic system. There is a need for physiological accuracy to

ensure accurate prediction from a known clinical intervention. However, given the

lesser amount of data typically available to fit patient-specific model parameters

for predicting outcomes, it may require less physiological resolution. Hence, most

clinical model-based control applications look for the simplest physiologically

relevant model to be effective.

This chapter examines several forms of existing clinical glycaemic control

models. Intensive insulin therapy and TGC, particularly in ICU, are the sub-

jects of increasing and controversial debate in recent years. Model-based TGC

has shown potential in delivering safe and tight glycaemic management, all the

while limiting hypoglycaemia. A comprehensive, more physiologically relevant

Intensive Control Insulin-Nutrition-Glucose (ICING) model is presented and val-

idated using data from critically ill patients. Two existing glucose-insulin models

are reviewed and formed the basis for the ICING model. Model limitations are

discussed with respect to relevant physiology, pharmacodynamics and TGC prac-

ticality. Model identifiability issues are carefully considered for clinical settings.

This chapter also contains significant reference to relevant physiology and

clinical literature, as well as some references to the modeling efforts in this field.

It then presents a more comprehensive model, ICING (Intensive Control Insulin-

Nutrition Glycaemic Model) from this context. ICING is designed specifically for

use in glycaemic control, particularly in the ICU and beyond.

2.1 Physiological Basis of Glucose-Insulin System

Metabolic modeling has been used to estimate glucose disappearance and insulin

glucose-dynamics for relatively 50 years now. Bolie [1961] is one of the pioneers

in modeling the linear glucose disappearance and glucose-insulin dynamics, in the

simplest form. This model although may be oversimplified, provided the base for

many research on diabetes modeling such as the work by [Ackerman et al., 1964].

With ordinary differential equations to represent the insulin and glucose system,

Bolie [1961] proposed the following model:
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Glucose disappearance:

Ġ = −a1G(t)− a2I(t) + p (2.1)

İ = −a3G(t)− a4I(t) (2.2)
Insulin Kinetics:

where Gt represents glucose concentration, I is the insulin, a1 is rate of liver accu-

mulation of glucose, a2 is rate of tissue utilisation, a3 is rate of insulin destruction,

a4 is rate of insulin production, and p is glucose feed.

However, the starting point of glucose-insulin dynamics modeling, and per-

haps the best known, is the Minimal Model of Bergman et al. [Bergman et al.,

1981]. The equation presented below is not the originally published but the most

commonly known. This simple compartment model has two equations for glucose

disappearance, and one for insulin kinetics:

Glucose disappearance:

Ġ = (X − P1)G(t) + P1Gb + P (t) (2.3)

Ẋ = −P2X(t) + P3(I(t)− Ib) (2.4)

İ = −nI(t) +
u(t)
V

(2.5)
Insulin Kinetics:

where t is the time, G(t) is the total plasma glucose concentration at time t, X(t)

is proportional to insulin action in a remote compartment, and I(t) is the plasma

insulin concentration. Inputs to the system include P (t), glucose appearance from

external glucose sources, and u(t), exogenous insulin. There are two terms that

define the steady state or basal plasma glucose and insulin levels under no external

influences, Gb and Ib. Three patient-specific parameters, P1, P2 and P3, arise from

this model, with the ratio P3/P2 being the insulin sensitivity index. Signs of P1

and P2 are changed from the original publication in Equations (2.3) and (2.4) to

have these parameters numerically positive valued per accepted sign conventions

[Carson and Cobelli, 2001]. A graphical representation of this Minimal Model

definition is shown in Figure 2.1.

The model is primarily used in clinical studies. In Bergman [2002], it is men-
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Figure 2.1 Minimal Model of Bergman et al. [1981] as defined by Equations (2.3)–(2.5).

tioned that more than 500 studies can be linked to the Minimal Model [Bergman

et al., 1981]. A major contribution from this model is it provides mean of esti-

mating insulin sensitivity, SI . The model clearly illustrates the three main basic

dynamics that must be captured in a glycaemic control problem:

1. Insulin pharmacokinetics and distribution — from exogenous input to ac-

tion in the periphery

2. Glucose pharmacokinetics and/or appearance, where meal models for P (t)

in Equation (2.3) would add compartments

3. Glucose-insulin pharmacodynamics accounting for the insulin-mediated re-

moval of glucose

However, the model does have some drawbacks particularly in regard to be

used as a clinical glycaemic control [Doran et al., 2004a,b]. Specifically, it does not

account for saturation of glucose removal by insulin [Prigeon et al., 1996; Natali

et al., 2000; Rizza et al., 1981], saturation of insulin transport [Thorsteinsson,

1990; Frost et al., 1973; Ellemann et al., 1987; Prigeon et al., 1996], measurable

and unmeasurable glucose compartments [Cobelli et al., 1992, 1999; Vicini et al.,
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1997; Caumo et al., 1999], or the dynamics of insulin receptors and their mass

[Hovorka et al., 2004a], to name a few. All of these issues have been raised in

the extensive physiological modelling literature, and several modified versions of

this model developed as a result. It is also not identifiable for individuals who

are highly insulin resistant when there is assay error or noise, creating significant

problems for use at the bedside.

After more than 3 decades, the minimal model analysis continues to evolve

and widely studied. Table 2.1 lists several studies that could be linked to Minimal

Model [Bergman et al., 1981].

One of these versions is the study by Van Herpe et al. [2007]. It is a fourth

order model which retains the fundamental structure of the Minimal Model

Bergman et al. [1981]. The model uses an optimized adaptive minimal mod-

eling approach, specifically designed for blood glucose prediction in the critically

ill. The equations that govern the model with parameter descriptions below are

taken from Van Herpe et al. [2007].

Ġ = (P1 −X(t))G(t)− P1Gb +
FG
VG

(2.6)

Ẋ = P2X(t) + P3(I(t)− Ib) (2.7)

İ1 = αmax(0, I2)− n(I1(t)− Ib) +
F1

V1

(2.8)

İ2 = βγ(G(t)− h)− nI2(t) (2.9)

where G is the glucose, I1 is the insulin concentrations in the blood plasma,

X describes the effect of insulin on net glucose disappearance proportional to

insulin in the remote compartment. Ib does not have a clinical interpretation

but introduced for mathematical reasons-fraction of insulin concentration derived

from endogenous insulin secretion. Gb is the basal value of plasma glucose and

Ib is the plasma insulin. Inputs to the model are F1 the exogenous insulin flow

and FG the carbohydrate calories flow, where both are administered intravenously.

Glucose distribution space and insulin distribution volume are denoted by VG and

VI respectively. P1 represents the glucose effectiveness when insulin remains at the
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basal level. P2 and P3 are the fractional rates of net remote insulin disappearance

and insulin-dependent increase, respectively. Endogenous insulin is represented

as the insulin flow that is released in proportion (by γ) to the degree by which

glycaemia exceeds a glucose threshold level h. Additionally, n denotes the time

constant for insulin disappearance. In cases where glycaemia does not surpass the

glucose threshold level, h the part that represents endogenous insulin production

from the first part of the equation I1 is equal to 0. Finally, α is the scaling factor

for I2, while β serves to keep the units checked.

To represent typical features of patients seen in the ICU, where intra- and

inter- patient variability are high, the model of Van Herpe et al. [2007] is re-

estimated at frequent intervals. By frequent re-estimation, the model should

better capture the patient’s dynamics. In contrast to the original Minimal Model,

this model introduces endogenous and exogenous insulin, where exogenous insulin

is not presented in the original Minimal Model. In particular, most patients in the

ICU do not have prior diabetes, which means their endogenous insulin secretion

capability is still functioning. In their case, with increased insulin resistance,

exogenous insulin is required. Hence, endogenous and exogenous insulin must

be modelled to capture the unique hyperglycaemic and hyperinsulinamic ICU

patient case.

The Minimal Model [Bergman et al., 1981] performs well during the intra-

venous glucose tolerance test (IVGTT) with a single glucose shot. IVGTT is a

test in which glucose, is given through an IV to test the response of the body in

releasing insulin into blood. This would correspond to how well the body reacts

to glucose and in turn, to insulin. The method is used to test for resistance to

insulin and ability to reduce insulin. However, in the ICU, this carbohydrate

appearance in the Minimal Model [Bergman et al., 1981] is not valid. Hence,

the model is developed with a goal for continuous flow of glucose. To portray

this dynamic, the endogenous insulin section of the Minimal Model [Bergman

et al., 1981] is transformed into two sections, as seen in Equation (2.8– 2.9) in

Van Herpe et al. [2007]’s model.

This predictive control model has not been clinically validated, and only

tested on a simulation basis using the first 48 hours after admission data for 19

critically ill patients. In-silico results, in terms of control behaviour with reference

tracking and suppression of unknown disturbance factors show the potential of
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the model based control algorithm to be used in the ICU [Van Herpe et al., 2009].

However, its predictive performance in validating the intervention chosen has not

been reported.

There have been several other metabolic models used in clinical examination

of critical care patients and glycaemic control [Wong et al., 2006a; Chase et al.,

2006, 2007, 2008c; Hovorka et al., 2007; Le Compte et al., 2009]. The first model

as reviewed by Chase et al. [2006] is of [Chee et al., 2003, 2004], who used an

optimized PID (proportional-integral-derivative) and sliding mode control, and

focused on applying continuous glucose sensors. Although [Chee et al., 2003,

2004] is a control algorithm and not a physiological model, but the projected

glucose is a control model.

The PID control model from Chee et al. [2003, 2004] is defined:

Additional Insulin infusion =


4U/h, if ‖W̄Zone‖ > 4.5

2U/h, if 3.6 ≤ ‖W̄Zone‖ ≤ 4.5

2U/h, if 2.7 ≤ ‖W̄Zone‖ < 3.6

2U/h, if ‖W̄Zone‖ < 2.7

(2.10)

where

‖W̄Zone‖ =
1∑24
i=1 i

(
24∑
n=1

nWZone [n]

)
(2.11)

and

Insulin bolus =


6U/h, if ∆yproj ≥ 2 mmol/L

4U/h, if 1 ≤ ∆yproj < 2 mmol/L

0U/h, if ∆yproj < 1 mmol/L

(2.12)

where

∆yproj =

(∑6
i=1XiYi∑6
i=1Xi

2

)
∆x (2.13)

Xi = xi − x̃ (2.14)

Yi = yi − ỹ (2.15)

x̃ =
xmax + xmin

2
(2.16)

ỹ =
ymax + ymin

2
(2.17)
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xmax and xmin are the maximum and the minimum time values in the 30-min

window, and ymax and ymin are the maximum and the minimum blood glucose

levels in the 30-min window.

The integral control Equation (2.10) is implemented when sliding tables do

not provide adequate glycemic reduction, and the amount of additional insulin

is calculated using Equation (2.11), a normalized weighted average of the blood

glucose level (BGL) zones using a 2-hour triangular window. Derivative control

is implemented using Equations (2.12)–(2.17). Expert control is implemented

by keeping an active sliding table and ‘offsetting’ the recommended sliding table

input according to several conditions, based on Equations (2.10)–(2.12), in order

to determine a the control input.

Another model is that of Hovorka et al. [2002] that forms the basis of MPC

model. However, it is more of a physiological research, specifically a tracer study

on healthy adults. Hence, a better reference of models that have been used for

clinical control is of Hovorka et al. [2004a], which was used for controlling Type

1 diabetes.
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Q̇1(t) = −
[

F c
01

VGG(t)
+ x1(t)

]
Q1(t) + k12Q2(t)

−FR + UG(t) + EGP0[1− x3(t)]

(2.18)

Q̇2(t) = x1(t)Q1(t)− [k12 + x2(t)]Q2(t)y(t)G(t) =
Q1(t)

VG
(2.19)

F c
01 =

 F01 if G ≥ 4.5 mmol/L

F01G

4.5
otherwise

(2.20)

FR =

{
0.003(G− 9)VG if G ≥ 9 mmol/L

0 otherwise
(2.21)

UG(t) =
DGAGte

−t/tmax,G

t2
(2.22)

Ṡ1(t) = u(t)− S1(t)

tmax,I
(2.23)

Ṡ2(t) =
S1(t)

tmax,I
− S2(t)

tmax,I
(2.24)

İ(t) =
UI(t)

VI
− keI(t) (2.25)

where

UI(t) =
S2(t)

tmax,I
(2.26)

ẋ1(t) = −ka1x1(t) + kb1I(t) (2.27)

ẋ2(t) = −ka2x2(t) + kb2I(t) (2.28)

ẋ3(t) = −ka1x3(t) + kb3I(t) (2.29)

where Q1 and Q2 represent masses of glucose in the accessible and inaccessible

compartments, k12 the transfer rate between the inaccessible and accessible com-

partments, VG the distribution volume of the accessible compartment, y and G

the measurable glucose concentration, and EGP0 the endogenous glucose produc-

tion extrapolated to the zero insulin concentration. F c
01 is the total non-insulin-

dependent glucose flux corrected for the ambient glucose concentration and FR is

the renal glucose clearance above the glucose threshold of 9 mmol/L. UG(t) is the

gut absorption rate, dependent upon the carbohydrates digested, DG, carbohy-

drate bioavailability, AG, and the time-of-maximum appearance rate of glucose
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in the accessible compartment, tmax,G. The insulin subsystem is described by

Equations (2.23)–(2.29). S1 and S2 are a two-compartment chain for absorp-

tion of subcutaneously administered rapid-acting insulin, u(t) the insulin input

(bolus/infusion), and tmax,I the time-to-maximum insulin absorption. I(t) is the

plasma insulin concentration, ke is the fractional elimination rate and VI the dis-

tribution volume. The insulin action subsystem consists of three components,

endogenous glucose production, transport/distribution and disposal (x1, x2 and

x3). Finally, kai and kbi (i = 1, . . . , 3) represent the activation and deactivation

rate constants of insulin action, respectively. A graphical representation is shown

in Figure 2.2.

Figure 2.2 Glucose-insulin compartmental model of Hovorka et al. [2004a] as defined by
Equations (2.18)–(2.29).

The MPC approach is most suitable for systems with long delays and open-

loop characteristics. However, a similar version of this approach is used for ICU

patients in the eMPC approach [Plank et al., 2006; Hovorka et al., 2007]. It

has been trialled for 48 hours on cardiovascular surgery ICU patients with good

results. Again, its predictive ability and validity have not been reported.
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2.2 Glucose-Insulin Physiology Model

Two clinically validated glucose-insulin physiology models set the basis for this

study. The model from Chase et al. [2007] was developed and validated specifi-

cally for glycaemic level management in the ICU. It is very loosely based on the

Minimal Model [Bergman et al., 1987] with additional non-linear terms and a

grouped term for insulin sensitivity. Unlike the Minimal Model, this model cap-

tures the fundamental dynamics seen in critically ill patients, yet has a relatively

simple mathematical structure enabling rapid identification of patient-specific pa-

rameters [Hann et al., 2005]. This model only requires measurements in blood

glucose levels. Therefore, it can be used for identification of 1-2 critical parame-

ters at the bedside for clinical real-time identification and control. This structure

has been widely used in clinical TGC studies and other analysis [Wong et al.,

2006a; Lonergan et al., 2006a,b; Lin et al., 2006, 2008; Le Compte et al., 2009].

The second model is from Lotz et al. [2008] and was developed for high resolu-

tion diagnosis of insulin resistance with minimal clinical intensity and effort. The

modeled insulin sensitivity has high correlation to the euglycaemic hyperinsu-

linemic clamp (EIC) and high repeatability [Lotz et al., 2008, 2006]. This model

has more patient-specific parameters, but is not suitable for real-time patient-

specific parameter identification because it also requires non-real time plasma

insulin and C-peptide assays [Lotz et al., 2009]. The laboratory turnaround time

for plasma insulin and C-peptide levels is typically overnight which is not prac-

tical for supporting therapy selection. Recent work has sought to eliminate this

issue in healthy subjects while using this model, but at a less of model precision

[Docherty et al., 2009].

This section quickly reviews both models, and presents a new combined model

that is more comprehensive and has a stronger physiological relevance for use in

the ICU and less acute wards.

2.2.1 Critical Care Glucose-Insulin Model

Equations (2.30)–(2.34) presents the model used for glycaemic control in intensive

care from Chase et al. [2007], hereafter referred to as the “ICU Model”.
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ICU Model

Ġ = −pGG(t)− SI(G(t) +GE)
Q(t)

1 + αGQ(t)
+
P (t)

VG
(2.30)

Q̇ = −kQ(t) + kI(t) (2.31)

İ = − nI(t)

1 + αII(t)
+
uex(t)

VI
(2.32)

P (ti < t < ti+1) = P̄i+1 + (P (ti)− P̄i+1)e
−kpd(t−ti) where P̄i+1 < P (ti) (2.33)

P (ti < t < ti+1) = P̄i+1 + (P (ti)− P̄i+1)e
−kpr(t−ti) where P̄i+1 > P (ti) (2.34)

A schematic of the model is shown in Figure 2.3. The symbols G [mmol/L] de-

notes the glucose above an equilibrium level, GE [mmol/L]. Plasma insulin is

I [mU/L] and exogenous insulin input is uex(t). The effect of previously infused

insulin being utilized over time in the interstitium is represented by Q [mU/L],

with k [1/min] accounting for the effective life of insulin in the system. Pa-

tient endogenous glucose removal and insulin sensitivity are pG [1/min] and

SI [L/mU/min] respectively. The parameter VI [L] is the insulin distribution

volume and n [1/min] is the constant first order decay rate for insulin from

plasma. External nutrition is P (t) [mmol/min]. In Equations (2.33)–(2.34),

kpr [1/min] and kpd [1/min] are the rise and decay rates of exogenous (enteral)

plasma glucose appearance, and P̄i and P̄i+1 are the stepwise consecutive enteral

glucose feed rates used to model dextrose control. The glucose distribution vol-

ume is VG [L]. Michaelis-Menten functions are used to portray saturations, with

parameter αI [L/mU] used for saturation of plasma insulin disappearance, and

αG [L/mU] for saturation of insulin-stimulated glucose removal.

This model was developed explicitly for critical care glycaemic control [Chase

et al., 2007; Wong et al., 2006b; Chase et al., 2005; Lin et al., 2008], and its

fundamental structure was validated on clinical data from critically ill patients

[Chase et al., 2008c, 2010c; Suhaimi et al., 2010]. All the compartmental transport

and utilisation rates are treated as constants except insulin sensitivity, SI . Insulin

sensitivity SI is the critical dynamic parameter, and is typically fitted to patient

data hourly [Hann et al., 2005], producing a step-wise hourly varying profile.

The SPRINT glycaemic control protocol [Chase et al., 2008c; Lonergan et al.,
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Figure 2.3 Schematic of Critical Care Glucose-Insulin Model defined in Equations (2.30)–
(2.34). The model is adopted from Chase et al. [2007] and referred to as the “ICU Model”.
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2006a,b] was developed using this model. Importantly, the pre-trial virtual trial

simulation of SPRINT gave very similar results to the subsequent actual clinical

implementation results [Chase et al., 2007], providing a further measure of model

validation.

However, this model does not describe the gastric uptake of glucose in a

completely realistic way. Equations (2.33) and (2.34) express simple exponential

rises and decays of glucose absorption, which eventually reach the steady state

equals to the feeding rate. This simple expression works well in critical care,

where nasogastric feeding rate is not adjusted frequently. If the feeding rate is

changed more frequently than once every hour, Equations (2.33) and (2.34) fail

to describe the gastric absorption correctly. In particular, the amount of glucose

fed does not equate the area under the glucose appearance curve. Figure 2.4

demonstrates this issue graphically.

This model also uses an “equilibrium blood glucose level” term, GE, which is

usually set to the patient’s blood glucose level at the start of insulin therapy or

a long moving average. This term effectively addresses the endogenous balance

of glucose and insulin. Hence, this model does not explicitly express endogenous

insulin production. Thus, when there is a significant shift in this balance in a

patient, for any number of reasons [Chase et al., 2005; Wong et al., 2006b; Doran

et al., 2004a], GE often needs to be adjusted to capture the patient’s (then)

current clinical glucose-insulin dynamics. Hence, the term is non-physiological,

unidentifiable and ignored in later versions of this model [Chase et al., 2007; Le

Compte et al., 2009; Lin et al., 2008; Blakemore et al., 2008; Suhaimi et al., 2010].

These latter models also includes endogenous insulin terms in the same form.

This model also has relatively simple insulin kinetics compared to other more

extensive models [Thorsteinsson, 1990; Ferrannini and Cobelli, 1987a,b; Toffolo

et al., 2006]. It does not explicitly express different routes of insulin clearance and

transport from plasma. Instead, the lumped out-flux from plasma is expressed by

a saturable term −nI/(1 + αII). In addition, as only kI appears as an input to

interstitial insulin Q, the difference between n and k, (n-k) is implicitly the insulin

clearance by liver and kidneys, which was clinically validated in Lotz et al. [Lotz

et al., 2006]. The insulin flux between plasma and interstitial is also only one way

in this model, ignoring the diffusion from interstitium back to plasma, as it was

designed for IV TGC using bolus delivery. Therefore, the insulin concentration
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Figure 2.4 Gastric glucose absorption issues with the Critical Care Glucose-Insulin model of
Equations 2.33 and 2.34 depicted in red dots, (· · · ). The model does not realistically describe the
gastric uptake of glucose, portraying simple exponential rises and decays of glucose absorption.
This model works well in the ICU where feed, P (t) is not adjusted frequently. The solid blue
line, (–) shows the ICING feed model of Equations (2.41)–(2.43). This model is suitable for
modeling meal ingestion over a short period of time as it conserves ingested glucose.
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gradient between plasma and the interstitium using bolus delivery is always large

enough that diffusion back to plasma is negligible. However, this case and mode

of insulin delivery is less typical in the ICU in general and will introduce error

no matter the delivery mode.

2.2.2 Glucose-Insulin Model for Insulin Sensitivity Test

Equations (2.35)–(2.37) presents the model used for insulin sensitivity testing

from Lotz et al. [2008], hereafter referred to as the “SI Test Model”.

SI Test Model

Ġ = −pGG(t)− SI(G(t) +GE)
Q(t)

1 + αGQ(t)
+
P (t)

VG
+ EGP (t) (2.35)

Q̇ =
nI
VQ

(I(t)−Q(t))− nCQ(t) (2.36)

İ = −nKI(t)− nLI(t)

1 + αII(t)
− nI
VP

(I(t)−Q(t)) +
uex(t)

VP

+(1− xL)
uen(t)

VP
(2.37)

where the nomenclature for this model is largely the same as that for the critical

care model from Chase et al. [2007] in Section 2.2.1 and Equations (2.30)–(2.34).

This model has more parameters and more extensive insulin kinetics. It includes

the endogenous glucose production rate EGP [mmol/min], as well as the endoge-

nous insulin production uen [mU/min]. The endogenous insulin production can be

calculated from C-peptide measurements using a well validated insulin-C-peptide

kinetics model [Van Cauter et al., 1992]. Endogenous insulin goes through first

pass hepatic extraction, where xL is the fraction of extraction. This model also

has more physiologically specific insulin transport parameters compared to Chase

et al. [Chase et al., 2007], where nK is the kidney clearance rate of insulin from

plasma [1/min], nL is the liver clearance rate of insulin from plasma [1/min],

nI is the diffusion constant of insulin between compartments [L/min], and nC

is the cellular insulin clearance rate from interstitium [1/min]. Finally, it also
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Figure 2.5 A schematic of glucose-insulin sensitivity test as defined in the Equations (2.35)–
(2.37). The schematic and its pharmacodynamic interaction is adopted from Lotz et al. [2008].
In this study, the model is referred to as the “SI Test Model”.

uses different volumes for each compartment, where VP is the plasma volume

(+Fast exchanging tissues) [L] and VQ is the interstitial fluid volume [L]. The

experimental VP and VQ are however very close [Lotz et al., 2008].

In [Lotz et al., 2008; Van Cauter et al., 1992], measurements from insulin and

C-peptide are used to identify nL and xL for each person. SI and VG are then cal-

culated for each person using blood glucose measurements. All other parameters

are treated as population constants. The insulin sensitivity SI identified using

this model correlates highly to EIC results [Lotz et al., 2008, 2006]. Therefore,

this model is effective as a diagnostic tool for insulin resistance, but considered

too complex for use in TGC for ICU patients.

2.2.3 Intensive Control Insulin-Nutrition Glycaemic Model-

ICING

The new and more physiologically comprehensive model developed from the best

aspects of both models [Chase et al., 2007; Lotz et al., 2008] is defined:



2.2 GLUCOSE-INSULIN PHYSIOLOGY MODEL 37

Ġ = −pGG(t)− SIG(t)
Q(t)

1 + αGQ(t)
+
P (t) + EGPb − CNS

VG
(2.38)

Q̇ = nI(I(t)−Q(t))− nC
Q(t)

1 + αGQ(t)
(2.39)

İ = −nKI(t)− nLI(t)

1 + αII(t)
− nI(I(t)−Q(t)) +

uex(t)

VI

+(1− xL)
uen
VI

(2.40)

Ṗ1 = −d1P1 +D(t) (2.41)

Ṗ2 = −min(d2P2, Pmax) + d1P1 (2.42)

P (t) = min(d2P2, Pmax) (2.43)

uen(t) = k1e
I(t)k2

k3 (2.44)

A schematic of the model is shown in Figure 2.6. The nomenclature for this

model is largely the same as defined in Sections 2.2.1 and 2.2.2. However, this

model does not use “equilibrium blood glucose level” GE anymore, and G(t)

is now the absolute (total) blood glucose level, per more recent works [Wong

et al., 2008c; Suhaimi et al., 2010; Blakemore et al., 2008; Le Compte et al.,

2009]. This model has an additional insulin independent [Hasselbalch et al.,

1999] central nervous system glucose uptake, CNS, as well, with value between

0.29–0.38 mmol/min [Hasselbalch et al., 1996, 1998, 1999; Baron et al., 1988;

Takeshita et al., 1972; Cohen et al., 1967; Strauss et al., 2003; Hattori et al., 2003;

Bingham et al., 2002]. Finally, the model also has a constant “basal” endogenous

glucose production term EGPb, for the theoretical maximum endogenous glucose

production for a patient with no exogenous glucose or insulin.

This EGPb term is the theoretical endogenous glucose production for a pa-

tient under no presence of exogenous glucose or insulin. Endogenous glucose

production is difficult to obtain in clinical setting without extensive clinical test-

ing. The testing involves euglycaemic clamp for insulin sensitivity measure, and

radioactively labelled glucose is given intravenously 120-180 mins before clamp

begins. Multiple samples are drawn at baseline (before clamp) and after steady

state is achieved, to measure specific plasma glucose activity. The testing is labo-
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rious and time-consuming thus the value of EGPb can’t be obtained in real-time.

Moreover, the actual value of clinical testing can be affected since radioactively

labeled glucose is lost in metabolic pathways. The actual quantification of the en-

dogenous glucose production is beyond the scope of this thesis but it is described

extensively in Radziuk [1987].

Therefore, the term EGPb is a constant in this model, whereas the EGP

in Lotz et al. [2008] is a function of time. Experimentally, endogenous glucose

production (i.e., time-varying measurements) would be suppressed in normal in-

dividuals with increasing blood glucose level G(t) and increasing insulin in the

interstitial space Q(t) [DeFronzo and Ferrannini, 1991]. However, as noted in

Chapter 1, one feature of the ICU patients studied is unsuppressed EGP can

increase with G(t) instead of decrease. In this case, EGPb is taken as a constant

and modulated by glucose using the pG term of Equation (2.38). Any variation

in the actual value of EGPb would be described by the combining effect of EGPb,

pG and SI . These three parameters represent the whole body insulin sensitivity

of the patient. For instance, if EGP is high, this would be reflected with lower

values of SI , which in turn would mean a higher value of glucose. The decision

to keep EGPb as a constant and within a physiological range is justified, since at

any instant the term is undermodeled, it will be reflected in pG and SI .

As in Equation (2.38), insulin independent glucose removal, excluding central

nervous system uptake CNS and the suppression of endogenous glucose produc-

tion from EGPb with respect to G(t) are represented by pG. Insulin mediated

glucose removal and the suppression of EGP from EGPb is represented by SI . SI ,

thus effectively represents the whole-body insulin sensitivity, which includes tissue

insulin sensitivity and the action of Glucose Transporter-4 (GLUT-4). The action

of GLUT-4 is associated with the compounding effect of receptor-binding insulin

and blood glucose, and its signaling cascade is also dependent on metabolic con-

dition and can be affected by medication [McCarthy and Elmendorf, 2007; Foster

and Klip, 2000; Bryant et al., 2002; Andersen et al., 2004]. Therefore, SI is time

varying and can reflect evolving patient condition. Its variation through time can

be significant, particularly for critically ill patients whose metabolism is extreme

and highly dynamic [Lin et al., 2006, 2008].

Equations (2.39) and (2.40) define the insulin pharmacokinetics similarly to

Lotz et al. [2008] and Equations (2.36)–(2.37). Insulin flux from plasma is sat-
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urable, as its degradation after binding in the interstitium [Duckworth et al.,

1998]. The receptor-bound insulin Q/(1 + αGQ) is also the insulin effective for

glucose removal to cells. Hence this term also appears in Equation (2.38) for

glucose dynamics. Note that nI in Equations (2.39) and (2.40) has unit [1/min]

rather than [L/min] as in Equations (2.36) and (2.37). This is because the new

model in Equations (2.38)–(2.44) does not use different volumes for plasma and

interstitial insulin distribution, since the experimental values are very similar in

Lotz et al. [2008]; Lotz [2007]. To compare and convert nI from Lotz el al., its

value needs to be divided by VP from Lotz et al., to obtain the same units.

These two equations are largely similar to that of Lotz et al. [2008]. The

insulin degradation from interstitial space is saturable in this model. It was

found that insulin degradation from interstitial space is by interaction with insulin

degrading enzyme after receptor binding [Duckworth et al., 1998]. Therefore, it

is the receptor bound insulin that is degraded from interstitium. Since insulin

binding is a saturable process due to limited number of receptor available, the

amount of bound insulin is expressed by Q/(1 + αGQ). It is also this receptor

bound portion of insulin that is capable of mobilizing GLUT-4 and remove glucose

from plasma. Hence, this term is the part responsible for insulin-mediated glucose

removal in Equation (2.38).

Equations (2.41)–(2.43) present the gastric absorption of glucose-a model

that describes compartments of stomach, gut and the rate of glucose appearance.

Specifically, P1 [mmol] represents the glucose in the stomach while P2 [mmol]

represents the gut. The complex process of digestion is assumed to be linear

and presented by linear transport rates between the compartments, d1 [1/min]

and d2 [1/min]. Amount of dextrose from enteral feeding is D(t) [mmol/min].

Glucose appearance, P (t) [mmol/min] from enteral food intake D(t), is the glu-

cose flux out of the gut P2. This flux is saturable, and the maximal out flux

is Pmax = 6.11 [mmol/min]. The addition of this saturable gut absorption rate,

Pmax effectively makes the gut absorption a non-linear process, hence more physi-

ologically true. Typically, for ICU patients on enteral feeding, Pmax is not reached.

Any additional parenteral dextrose is represented by PN(t). This dextrose ab-

sorption model conserves ingested glucose, and therefore is also suitable for mod-

eling meal ingestion over a short period of time in contrast to the simpler model

of Equations (2.33) and (2.34). The previous feed model describe by Equations

(2.33) and (2.34) is only a simple mathematical approximation suitable for model-
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ing relatively constant enteral feeding. This meal model which describes the main

compartments of digestion with respect to patients who are either on enteral feed

or TPN, is sufficient. However, once patients start to eat a more extensive model

is required.

Equation (2.44) is a generic representation of endogenous insulin production

when C-peptide data is not available from the patient for specific identification

of its production. Endogenous insulin production, with the base rate being k1

[mU/min], is suppressed with elevated plasma insulin levels. The exponential

suppression is described by generic constants k2 and k3. Model parameters as-

sociated with endogenous insulin production, eventhough are not identifiable in

real-time, can be kept at population constants which is within justifiable phys-

iological range. To ensure its robustness, sensitivity test must be performed.

Therefore, eventhough the model of Lotz et al. [2008] required non-real time

plasma-insulin and C-peptide data, it will not affect the efficacy of the Intensive

Control Insulin-Nutrition Glycaemic Model, as the endogenous insulin production

for critical and less critical patients will be suppressed with exogenous insulin.

The major difference between this model and the models of Chase et al. [2007]

and Lotz et al. [2008] is the elimination of GE. The concept of “equilibrium blood

glucose level” is ambiguous and hard to determine in a dynamic situation. For

the experimental setting in Lotz et al. [2008], patients are subjected to overnight

fast before insulin sensitivity testing. Therefore GE can be assumed and obtained

as the first blood glucose measurement in insulin sensitivity test. However, it is

not possible to determine GE correctly for a patient just admitted to the ICU

needing insulin therapy as they are under an extreme metabolic state. This model

eliminates GE but uses a constant EGPb. This allows the model to adapt to the

patient’s dynamic through pG and SI , which represent insulin-independent and

insulin-dependent glucose removal respectively. Because of this change, pG, SI

and EGPb need to be identified for this model. Parameter identification method

is discuss in detail in the following chapter.
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2.3 Summary

Focusing on concept and development of a model, a comprehensive, more physio-

logically relevant glucose-insulin dynamic system model, ICING (Intensive Con-

trol Insulin-Nutrition Glycaemic Model) is developed in this chapter. The IC-

ING model is an integration and improvement of two clinically validated glucose-

insulin physiological models. The new model has more explicit physiological

relevance. Glucose utilisation and its endogenous production in particular, are

more distinctly expressed. A more realistic model for gastric glucose absorption

accounting for the stomach, gut and saturable glucose appearance is also intro-

duced. Finally, the model also includes explicit pathways of insulin clearance and

transport from plasma, which reflects biological mechanisms.



Chapter 3

Parameter Identification and Dynamic System

Model Validation

This chapter presents the parameter identification method used to identify critical

constant population parameters in the developed ICING model of the previous

chapter. The methodology (rigorous) on finalising model parameter values and

thus, which dynamics are important is discussed in this chapter. The validation

outcome goals on prediction and fitting error are part of the methodology. Iden-

tification of critical constant population parameters was performed in two stages,

thus addressing model identifiability issues. It is a critical aspect of this modeling

approach to ensure clinical utility.

Model predictive performance is the primary factor for optimizing population

parameter values. The use of population values are necessary due to the lim-

ited clinical data available at the bedside in the clinical control scenario [Hann

et al., 2005; Lotz et al., 2008]. To validate these choices, a sensitivity study to

confirm the validity of limiting time-varying parameters to hourly identified in-

sulin sensitivity, SI is also presented. Insulin sensitivity, SI , the only dynamic,

time-varying parameter, is identified hourly for each individual. All population

parameters are justified physiologically and with respect to values reported in the

clinical literature. The parameter sensitivity study confirms the validity of limit-

ing time-varying parameters to SI only, as well as the choices for the population

parameters.

The ICING model is validated against clinical data from critically ill patients.

It is assessed for both its fitting and, more critically for model-based tight gly-

caemic control, its predictive performance. The outcome goal is a next generation

TGC control method suitable for developing model-based insulin therapies, and
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capable of delivering real-time model-based TGC with a very tight prediction

error range.

3.1 Validation Cohort

The total number of patients that were on SPRINT glycaemic control protocol

study [Chase et al., 2008c], is 394 patients. SPRINT is a model-derived protocol

implemented at the Christchurch Hospital Department of Intensive Care. From

these 394 patient records, patients who stayed less than 72 hours in the ICU,

were excluded from model validation. It has been identified that patients with

length of stay greater than 3 days were to benefit more from intensive insulin

therapy than short-stay patients [Van Den Berghe et al., 2006a]. Moreover, for

model parameter identification sufficient data measurements are needed for model

parameter evaluation. Patient with a short stay would not fit in this criteria.

Hence, this cohort (> 3 days) is of a greater interest for validating the glucose-

insulin pharmacodynamics models for glycaemic control.

Model validation was thus performed on data from 173 patients (42,941 to-

tal hours) that were on the SPRINT TGC protocol for 3 or more days, from

August 2005 to September 2007 [Chase et al., 2008c]. Validation is performed

on data of critically ill patients instead of patients in a high-dependency unit as

Christchurch Hospital does not until recently have patients in the step down unit.

Data was collected for all BG measurements, insulin administered and nutrition

given. Insulin used was Actrapid while Resource Diabetics Norvatis or Glucerna

was used for nutrition. This cohort had statistically significant hospital mortal-

ity reductions of 25–40% depending on length of ICU stay, as well as significant

reductions in the rate and severity of organ failure [Chase et al., 2010b]. These

patients had long enough stays to exhibit periods of both dynamic evolution and

metabolic stability. Hence, they usually reached a more stable condition and were

responding to the glycaemic control protocol used in the Christchurch Hospital

ICU, New Zealand.

Partition of test and validation were not performed since the method works

well with modest or small data sets, where few patients may dominate results

one way or another. With more than 42,000 hours worth of data, any outliers
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would not be significant. Thus, performing data partitioning would only add

complexity and unnecessary in this context.

To evaluate the severity of patient’s disease and for comparison of cohort,

particularly to assess the efficacy of different protocols with different settings,

an APACHE II (Acute Physiology And Chronic Health Evaluation) ICU scoring

system is used. Patient is more severe and at a higher risk of death with higher

scores. The median APACHE II score for this cohort is 19 [IQR:16, 25] and the

median age is 64 [IQR:49, 73] years old. The percentage of operative patients is

33%. This cohort broadly represents the cross-section of patients often seen in

the ICU. Table 3.1 shows the cohort characteristics covering medical condition,

sex, APACHE II score and age.

Table 3.1 Model Validation Cohort Summary
N 173
Age (median [IQR]) 64 [49,73]
Percentage of Males 63.58%
APACHE II Score (median [IQR]) 19 [16,25]
Total Length of SPRINT (hours) 42941

Operative
Cardiovascular 10.40%
Respiratory 1.73%
Gastrointestinal 13.87%
Neurological 1.73 %
Sepsis 0
Trauma 4.04%
Other(Renal,metabolic,orthopaedic) 1.15%

Non-Operative
Cardiovascular 6.93%
Respiratory 24.27%
Gastrointestinal 7.51%
Neurological 5.78 %
Sepsis 8.67%
Trauma 9.82%
Other(Renal,metabolic,orthopaedic) 4.04%
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3.2 Parameter Identification

The introduction of EGPb and its implied relationship with pG and SI in the new

ICING Model in Chapter 2.2.3 compared to the ICU Model in Chapter 2.2.1,

requires EGPb, pG and SI to be identified. Apart from pG and EGPb, model

parameters associated with insulin kinetics, primarily nK , nL, nC and nI also

need to be evaluated for validation and use with ICU patient data. Since ICU

patient data only contains blood glucose levels, feed rates (via enteral nasogastric

or parenteral routes) and insulin inputs (infusion and/or bolus), the parameter

identification and model validation in this study were performed in two stages to

avoid identifiability issues.

The first stage focuses on glucose dynamics and substitutes the glucose equa-

tion in the ICU model Equations (2.30), (2.33) and (2.34) with Equations (2.38)

and (2.41)–(2.43). Identification of pG and EGPb as model constants in Equa-

tion (2.38) is performed in this stage. The model used in this stage, (Equations

(2.31), (2.32), (2.38) and (2.41)–(2.43)) is referred to as the ‘Intermediate Model’.

The second stage focuses on insulin kinetics and transforms the model into its

final form defined by Equations (2.38)–(2.44). Identification of insulin kinetics

parameters is performed in this stage.

Insulin sensitivity, SI , the critical dynamic parameter, is identified hourly us-

ing an integral based method for a grid of pG and EGPb values [Hann et al., 2005].

Optimal parameter values for pG, EGPb and insulin kinetics are chosen accord-

ing to the model’s goodness of fit and, more importantly, the one hour forward

prediction accuracy. The goodness of fit is simply the error between the clinical

blood glucose measurements and the identified model generated blood glucose

levels. The predictive ability looks at how accurately the model can forecast clin-

ical blood glucose levels for known interventions one hour ahead. The prediction

is made by assuming the current fitted hourly SI for the next hour, and calcu-

lating the model predicted blood glucose level for the next hour using Equation

(2.38) and the clinical records of insulin and feed. Importantly, better predictive

performance implies better model-based clinical glycaemic control performance.

Therefore, predictive performance is the primary criterion, with goodness of fit

second, in determining the best parameter values. Finally, a sensitivity study is

performed on the other parameters treated as population constants. This verifies
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the validity of using population constants for these parameters.

Intra- and inter- patient variabilities are examined by looking at the data on

a by-cohort or per-patient basis. By-cohort analysis looks at the statistics on all

the available hourly fitting and prediction errors (weighting each hour equally),

whereas per-patient analysis looks at the statistics on each individual patient

(weighting each patient equally).

Essentially the model improvements from the ICU model to the ICING model

are made in two stages: firstly on the glucose compartment, secondly on the

insulin pharmacokinetics. During each stage, the important population constant

parameters are optimised using grid-search methods. The grid-search approach

is robust to measurement noise and can provide an assessment of parameter

sensitivity. Moreover, if the decision space or range to be set up is known and

sufficiently covers the physiological range, then grid-search approach is the best

method. Furthermore, since the cost function being minimized is multi-variable

(fit, predict, median and 90% interval) the variable space may be non-convex.

Thus, grid-search will ensure all minima is located and the best value would be

chosen. The only drawback is the computational burden, as each grid point will

be evaluated.

During the first stage of improvements on the glucose compartment, EGPb

and pG are optimised as a pair. The insulin pharmacodynamics are kept as

in Equations (2.31) and (2.32) during this stage-as the constant parameters in

Equations. (2.39) and 2.40 are yet to be optimised. In the second stage of model

improvement, the ICING model takes its complete form and the constant insulin

pharmacokinetics parameters are optimised. Finally a re-assessment of pG and

EGPb, as well as a parameter sensitivity using the completed ICING model is

performed.

The following section describes in detail the parametric grid identification of

pG, EGPb and the insulin kinetics parameters. The cost function being minimized

is effectively the median and 90% interval of fitting error, as well as median and

90% of prediction error where prediction precedes fitting error. The goal is to find

the best population parameters. The overall parameter identification process and

the stages of model transformation are shown as a flowchart in Figure 3.1. Note

that the second stage has three components, which thus include the validation
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of Stage 1 values after the Stage 2 to ensure the overall integrity of the resulting

model.

Figure 3.1 Flowchart of the parameter identification process for the ICING model develop-
ment.

3.2.1 Identification of pG and EGPb – Stage 1

In the first stage of model improvement, pG and EGPb are optimised as a pair.

Constant parameter values used in this stage of parameter identification can be

seen in Table 3.2. These constant parameters are consistent with values found

in surveys of population studies [Wong et al., 2006b; Lin et al., 2008; Wong

et al., 2008c]. These values have been verified for their suitability of being set

to population constants in a previous parameter sensitivity study [Hann et al.,

2005], as well as in clinical glycaemic control and analysis studies [Le Compte

et al., 2009; Wong et al., 2006b; Chase et al., 2005; Blakemore et al., 2008].

The same integral fitting method used for SI cannot be applied to either pG
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or EGPb. In particular, pG and SI are both coupled to the first order solution

of G(t). Consequently, a unique solution cannot be identified. In addition, pG

trades off with EGPb. Therefore, a grid analysis of pG and EGPb is used to find

the most suitable combination of parameter values.

More specifically, patient blood glucose data are fitted by integral identi-

fication of SI , while holding pG and EGPb constant at a selected grid coordi-

nate. The grid covers pG = 0.001 → 0.1 [1/min] with increments of 0.001, and

EGPb = 0.0 → 3.5 [mmol/min] with increments of 0.1. These values more than

span the clinically relevant range. The resulting fitting and prediction error are

calculated for each patient at each pG, EGPb coordinate. The resulting errors are

than analysed across all 173 patients at each grid coordinate to find an optimal

combination.

3.2.2 Identification of Insulin PK Parameters – Stage 2

Model improvements on insulin pharmacokinetics (PK) are made in the second

stage, and the model takes its final form as defined in Equations (2.38)–(2.44).

Parameters associated with insulin kinetics are identified in this stage. Lotz

et al. [2008] uses measurements from insulin and C-peptide to identify patient-

specific liver clearance nL, and first pass endogenous insulin hepatic uptake, xL,

in Equations (2.36)–(2.37). In particular, the value for kidney clearance, nK ,

was taken from a well validated population model of C-peptide kinetics, and the

transcapillary diffusion rate, nI , was calculated by a method proposed by the

same authors [Van Cauter et al., 1992].

For this study, ICU patient data does not contain the insulin measurements

to allow for unique identification of nL and xL. However, the transition from

Equations (2.31) and (2.32) to Equations (2.39) and (2.40) makes nI the critical

parameter to be investigated.

The interstitial insulin transfer rate, k, in Equation (2.31) was calculated to

correspond to the active interstitial insulin half-life [Chase et al., 2005]. Effec-

tively, Equation (2.31) thus represents a delay compartment for insulin action in
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the interstitium, and can be re-written:

Q(t) = k

∫ t

0

I(τ)e−k(t−τ)dτ (3.1)

On the other hand, the analytical solution of Q in Equation (2.39) is:

Q(t) = nI

∫ t

0

I(τ)e−(nI+nC)(t−τ)dτ (3.2)

Therefore, the decay rate of interstitial insulin is nI +nC in Equation (2.39), and

this rate should be comparable to k in Equation (2.31).

Studies indicated that the steady state interstitial to plasma insulin ratio is

between 0.4− 0.6 [Gudbjörnsdóttir et al., 2003; Sjöstrand et al., 1999; Sjostrand

et al., 2000]. Lotz et al. [2008] uses a population value of 0.5 for this ratio. There-

fore nI = nC can be assumed from the steady state calculation using Equation

(2.39) provided the steady state Q is low so that Q/(1 + αGQ) ≈ Q.

In this study, a grid search of nI is used to obtain a suitable model value.

Again, integral fitting is used to identify hourly SI . The grid covers nI = nC =

10−4 → 0.02 [1/min]. The fitting and prediction error are calculated at each

grid point for each patient. Other constant parameter values are listed in Table

3.2. The value for nK is taken from Van Cauter et al. [1992] and nL is the mean

fitted value found in Lotz et al. [2008] and Lotz [2007]. First pass hepatic insulin

uptake, xL, was also a fitted parameter in Lotz et al. [2008], and is coupled with

liver clearance nL. In this study, xL is assumed to be 0.67, which is within the

range reported by Lotz et al. [2008] and Lotz [2007]. More specifically, xL has

a relatively insignificant role in this study compared to Lotz et al. [2008] and

Lotz [2007], as patients on intensive insulin therapy can be assumed to have their

endogenous insulin production suppressed due to elevated plasma insulin levels

[Chiasson et al., 1980; Insel et al., 1975]. The other constant parameters are kept

the same as in the identification of pG and EGPb.
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3.2.3 Re-assessment of pG and EGPb–Stage 2b

Following the Stage 2 identification of nI , a re-assessment of the population con-

stant values of pG and EGPb from Stage 1 is performed using the complete IC-

ING model. The grid analysis covers pG = 0.005 → 0.025 [1/min] and EGPb=

0.5 → 2.5 [mmol/min] with an increment step of 0.0033 and 0.33 respectively.

The analysis is performed as before with prediction and fitting error assessed.

The goal is to ensure the values used in Stage 2a are still justified. Note that, if

necessary, Stage 2a and 2b can be iterated to convergence.

3.2.4 Parameter sensitivity analysis–2c

Finally, the robustness of model population parameters nL, nK , nC and αG on

the model fit and predictive performance of the ICING model are tested by

modifying individual model values (summarized in Table 3.2) by ±50%. While

one parameter is being altered, the rest of the parameters are kept at their original

values in Table 3.2. Changes in model performance can indicate the suitability

of their assumed values, and whether or not they should be used as population

constants. This last stage is the final model validation to ensure robustness of

the optimised parameters.

3.3 Results

3.3.1 pG and EGPb – Stage 1

The per-patient median fitting and prediction errors over the ranges

pG = 0.001 → 0.1 [min−1] and EGPb = 0 → 3.5 [mmol/min] are shown in

Figure 3.2. Sub-figures 3.2(a) and 3.2(c) show the median of all median hourly %

errors for each patient. Sub-figures 3.2(b) and 3.2(d) show the median range of

the 90% confidence interval in hourly % error for each patient. Smaller (tighter)

ranges mean a tighter distribution with less outliers. In general, lower fitting and

prediction errors and error ranges are produced in the lower pG and lower EGPb

regions, where the plot is darkest.
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(a) Median % fitting error (b) 90% confidence interval in % fitting error

(c) Median % prediction error (d) 90% confidence interval in % prediction er-
ror

Figure 3.2 Per-patient percentage fitting and prediction error with respect to pG and EGPb.
Each coordinate plots the median of the results from individual patients. 3.2(a) and 3.2(c) show
the median of the median hourly % error for each patient. 3.2(b) and 3.2(d) show the median
range of the 90% confidence interval in hourly % error for each patient. Smaller (tighter) range
means tighter distribution with less outliers.
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(a) By cohort: Prediction error (%)

(b) By cohort: Fitting error (%)

Figure 3.3 Cumulative distribution functions (cdf) of by-cohort prediction and fitting errors
with different combinations of pG and EGPb. The following values of pG and EGPb were
tested; [pG, EGPb] = [0.002, 0.5], [0.006, 0.8], [0.006, 1.16] and [0.006, 2.3] Every hourly error
contributes to the cdf. The performances are quite similar for all combinations excepting pG

and EGPb= [0.006, 2.3], which were tested as a supra-physiological value across the cohort.

Figure 3.3(a) shows the cumulative distribution function of the prediction

error over all available hourly data for the selected pG and EGPb combinations.

The performance is very similar for [pG, EGPb] = [0.002, 0.5], [0.006, 0.8] and

[0.006, 1.16]. However, the predictive performance is significantly worse for EGPb

= 2.3 mmol/min, where this value is tested to demonstrate the impact of applying



3.3 RESULTS 55

an extreme, supra-physiological value across the entire cohort. In contrast, Figure

3.3(b) shows the cumulative distribution function of the fitting error for the same

combinations of pG and EGPb values. The model clearly delivers the best fitting

error with [pG, EGPb] = [0.006, 1.16].

From the figures of percentage prediction and fitting error generated, it can

be observed that the best balance between fitting and prediction is achieved by

the combination [pG, EGPb] = [0.006, 1.16]. Glucose metabolism studies reported

EGP values range from 0.91 → 1.4 [mmol/min] [Blakemore et al., 2008; Tappy

et al., 1999; Chambrier et al., 2000]. The value for EGPb identified in this study

is therefore physiologically valid. Reported values for pG from studies have been

shown to range between 0.004→ 0.047 min−1 [Bergman et al., 1981; Cobelli et al.,

1999; McDonald et al., 2000; Pillonetto et al., 2002]. Therefore, the identified pG

= 0.006 [1/min] is also physiologically valid.

3.3.2 Insulin Kinetics Parameters – Stage 2a

The median of the 25th, 50th and 75th percentile fitting and prediction errors for

each patient across nI = 10−4 → 0.02 min−1 in the full ICING model are shown

in Figure 3.4. It can be seen that nI = 0.003 min−1 provides the best predictive

performance while fitting error is low through the entire range.

The value for nI identified for the new model is very low compared to that

of [Lotz et al., 2008; Lotz, 2007] (0.003 v.s. ∼0.0476 min−1). Lotz et al. [2008]

and Lotz [2007] used a method to calculate nI adopted from Van Cauter et al.

[1992]. This method estimates nI from an individual’s age, sex, weight, BSA,

BMI and diagnosis of type 2 diabetes, developed using a model for C-peptide

and its measurements. However, the nI population value calculated using this

method fails to capture long term blood glucose-insulin dynamics. The interstitial

insulin peaks and decays a lot faster and does not accumulate over a few hours

compared to having nI at its newly identified value, as shown in Figure 3.5.

Specifically, insulin “pooling” and delayed utilization effects have been ob-

served in critically ill patients by [Doran et al., 2004a]. With nI at such a high

value, these features are lost from the model because the modeled insulin degra-

dation is too fast. Note that given nI = nC = 0.0476 min−1, the interstitial
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(a) Fitting Error (%) (b) Prediction Error (%)

Figure 3.4 Fitting and prediction errors from the nI grid search, showing the median of the
25th, 50th and 75th percentile for each patient (N=173) across nI = 10−4 → 0.02 min−1 in
the full ICING model. The green-dashed line (- -) depicts the 25th percentile, the solid blue
line (–) represent the 50th percentile while the 75th percentile is represented by the dotted-red
line (· · · ). nI = 0.003 min−1 provides the best predictive performance while fitting error is low
through the entire range.

Figure 3.5 Dose response curves of plasma insulin and receptor bound interstitial insulin
from an insulin injection of 3U at the beginning of each hour.
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half life of insulin from Lotz et al. [2008] is more than 3 times shorter than the

shortest reported time [Natali et al., 2000].

“Effective” insulin half lives have been reported to be between 25–130 mins

(k in Equation (3.1) or nI + nC in Equation (3.2) to be between 0.0277–0.0053

min−1) [Mari and Valerio, 1997; Natali et al., 2000; Turnheim and Waldhausl,

1988]. The value for k in the Critical Care Model of Equation (2.30)–(2.34) was

0.0198 min−1, which corresponds to a interstitial half life of 35 mins based on

the same references. The value for nI + nC in the ICING model is 0.006 since

nI = nC = 0.003 min−1, and corresponds to a half life of 115.5 mins. The half

lives from both models, although both within the reported ranges, were on the

opposite ends of the spectrum. However, when k was chosen for the Critical Care

Model, clinical data were limited for its optimization [Chase et al., 2007; Wong

et al., 2006b; Chase et al., 2005]. The grid search on nI performed in this study

clearly optimized this value for model performance using currently available data.

Patient 5004 is shown in Figure 3.6 as an example of typical model fit using the

fully identified ICING model. The results show the model is capable of capturing

the patient’s highly variable dynamics during critical illness, particularly from the

50th hour to the end of the patient’s stay, where the insulin requirement varied

significantly from hour to hour.

In Figure 3.6, only the end-of-hour insulin levels in plasma, I and interstitial

insulin, Q are plotted for readability. Plasma insulin is depicted in the second

panel while interstitial and effective interstitial insulin, Q are in the third panel.

The response curves from insulin injections plotted by the minute can be seen in

Figure 3.5. The impact of nI on modeled insulin can be seen with two different

values used. The receptor bound insulin using nI = 0.0476 min−1 from Lotz

et al. [2008] peaks and decays a lot faster than having the smaller nI = 0.003

min−1 found in grid search. More importantly, the large nI value does not allow

receptor-bound insulin levels to accumulate over time. In addition, it also means

there is a lot of unbound insulin that is diffused back to plasma. Hence, the slower

decay in plasma concentrations. Applying this large nI value, the model fails to

capture a patient’s long term glucose-insulin response. The per-patient fitting

error also increases to 5.32 [IQR: 0.98, 9.70]% from 2.80 [IQR: 1.18, 6.41]%.

More specifically, over 25% of the hourly modeled BG fails to capture clinical

measurements, which typically have a minimum measurement error of 7% based
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Figure 3.6 Model simulation results on Patient 5004 using the parameters identified for the
ICING model. Only end-of hour data are plotted for readability. In the top panel, the solid
line (–) illustrates the blood glucose model simulation while crosses (×) represents the actual
blood glucose measurements. The second panel demonstrates the plasma insulin appearance
(–) and plasma glucose appearance (· · · ). The third panel shows the interstitial insulin (–)
and the effective (receptor-bound) interstitial insulin (· · · ). Model fitted insulin sensitivity is
displayed in the bottom panel.
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on the glucometres used in the SPRINT [Chase et al., 2008c] study [Arkray,

2001].

Figure 3.7 shows the model fit on Patient 5004 using nI = 0.0476 min−1 in

the ICING model. Values for nK and nL are the same, but nI is 0.0476 min−1

instead of the value of 0.003 min−1 used in Figure 3.6. The model clearly failed to

capture the patient’s glucose-insulin dynamics as can be observed with the poor

blood glucose fit in the top panel. The fitted insulin sensitivity, SI profile in the

bottom panel also contains unphysiological spikes.

Figure 3.8 shows the effect of ignoring receptor binding saturation on insulin

degradation on Patient 5004. The term Q/(1 + αGQ) was taken out of Equation

(2.39) to produce this figure by setting αG=0, with all other parameters as before.

The quality of fit for the blood glucose measurements is similar to Figure 3.6

when saturation is included in insulin degradation from interstitium. However,

noticeably lower insulin concentrations in plasma are achieved and are likely not

physiologically realistic given the dosing given and reported insulin half lives in

the literature. Hence, there is a need for saturable receptor binding degradation.

With the introduction of receptor binding saturation in the ICING model, there

is a limit for receptor bound insulin degradation. In return, the plasma insulin

level would be higher as noticeable in the third panel of Figure 3.6, since insulin

that do not bind with receptors would diffuse back into plasma.

The improvements in model performance from the ICU model of Equations

(2.30)–(2.34), through improvements in glucose compartment of Equations (2.38)

and (2.41)–(2.44) (Stage 1), and finally the ICING model in Equations (2.38)–

(2.44) are shown in Table 3.3. The table shows the median and IQR for absolute

percentage model fit and predictive error for the total 42,941 hours of clinical

data from 173 patients. Results are shown on both per-patient and by cohort

basis to highlight any inter- and intra- patient variability in model performance.

The final model achieved improvements in performance compared to the ICU

model in Equations (2.30)–(2.34). The predictive ability of the ICING model

improved significantly with much lower median prediction errors. More impor-

tantly, the spread of error is tighter, evident by a much lower upper quartile (75th

percentile) error, which is now within measurement error for both by-cohort and

per-patient results. The main reduction is in the upper quartile cohort predic-
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Figure 3.7 Model simulation results on Patient 5004 using insulin kinetics parameters values
from Lotz et al. Lotz et al. [2008]. In the top panel, the solid line (-) illustrates the blood glucose
model simulation while crosses (×) represents the actual blood glucose measurements. The
second panel demonstrates the plasma insulin appearance (-) and plasma glucose appearance
(· · · ). The third panel shows the interstitial insulin (-) and the effective (saturated) interstitial
insulin (· · · ). Model fitted insulin sensitivity is displayed in the bottom panel.
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Figure 3.8 Model simulation results on Patient 5004 using the Intensive Control Insulin-
Nutrition Glycaemic Model but without saturation in insulin degradation from interstitium.
In the top panel, the solid line (-) illustrates the blood glucose model simulation while crosses
(×) represents the actual blood glucose measurements. The second panel demonstrates the
plasma insulin appearance (-) and plasma glucose appearance (· · · ). The third panel shows the
interstitial insulin (-) and the effective (saturated) interstitial insulin (· · · ). Model fitted insulin
sensitivity is displayed in the bottom panel.
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tion error, which is reduced to 6.47% from 10.64%, indicating significantly better

management of inter-patient variability in the final model.

The main results in Table 3.3 show:

1. Improvement in glucose compartment reduces intra- patient variability

with lower per-patient upper quartile prediction.

2. Finalised ICING model reduces inter- patient variability with lower upper

quartile by-cohort prediction errors.

Table 3.3 Comparison of median and IQR for prediction and fitting error
Prediction Error (%) median [IQR]

Improved Glucose
Original ICU Model Compartment ICING Model

Per-Patient# 5.90 [4.75,7.51] 5.23 [4.20,6.36] 2.80 [1.18,6.41]
By Cohort+ 5.59 [2.46,10.64] 5.02 [2.11,10.34] 2.81 [1.08,6.47]

Fitting Error (%) median [IQR]
Per-Patient# 1.11 [0.84,1.63] 0.86 [0.58,1.18] 0.50 [0.21,0.99]
By Cohort+ 1.02 [0.41,1.94] 0.71 [0.23,1.44 ] 0.47 [0.20,0.97]

SI (10−3 L/mU/min) median [IQR]
Per-Patient# 0.25 [0.11,0.45] 0.21 [0.13,0.41] 0.31 [0.23,0.40]
By Cohort+ 0.24 [0.14,0.40] 0.21 [0.14,0.32] 0.31 [0.20,0.48]

# Per-patient analysis weights each patient equally, indicating inter-patient variability.
+ By-cohort analysis weights each hour of data equally, indicating intra-patient variability.

3.3.3 Re-Identification of pG and EGPb–2b

Results for the re-identification process of pG and EGPb by grid analysis covering

pG= 0.005→ 0.025 [1/min] and EGPb= 0.5→ 2.5 [mmol/min] with an increment

step of 0.0033 and 0.33 respectively, are shown in Figure 3.9. The result, in terms

of per patient median percentage fitting and prediction error conveys that the

initial coordinate selection of pG and EGPb as identified in Section 3.3.1 is justified

and is therefore left unchanged. The combination of pG= 0.006 [1/min] and

EGPb= 1.16 [mmol/min] by employing the model described in Equations (2.38)–

(2.43) produces a result that is within the same range of fitting and prediction

error as obtained in Section 3.3.1. Hence, no adjustments to the model are

required after this added validation stage.
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(a) Median (%) Fitting Error (b) Median (%) Prediction Error

Figure 3.9 Per-Patient Median Percentage Fitting and Prediction Error with respect to pG

and EGPb in the final ICING model.

3.3.4 EGP in Other Models

Many models have tried to include an estimated time-varying function for endoge-

nous glucose production, EGP typically for use in experimental tracer studies

[Dalla Man et al., 2004; Avogaro et al., 1996; Caumo and Cobelli, 1993b; Mari

et al., 1994]. Others developed functions based on study data [Hovorka et al.,

2008; Araujo-Vilar et al., 1998; Picchini et al., 2005; Ruiz-Velázquez et al., 2004;

Silber et al., 2007]. Many other models simply assume total suppression of en-

dogenous glucose production by either exogenous insulin, exogenous glucose, or

both [Chase et al., 2005; Bergman et al., 1987; Wong et al., 2008b], based on

research studies in Type 1 and Type 2 diabetes [Mittelman et al., 1997; Ader and

Bergman, 1990; Shah et al., 2000; Thomaseth et al., 2008; Cherrington et al.,

1998].

In reality, tracer studies require different assumptions depending on exper-

imental settings. The results are thus highly variable between individuals and

influenced by different conditions [Chambrier et al., 2000; Cherrington et al., 1998;

Mevorach et al., 1998; Monzillo and Hamdy, 2003; Cherrington, 1999; Elahi et al.,

1989]. Models focusing on a particular group of patients typically choose to treat

endogenous glucose production as a constant, particularly in considering diabetic
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individuals [Jauslin et al., 2007; Hovorka et al., 2002; Wong et al., 2008b].

Parameters for endogenous glucose removal, pG, and basal endogenous glucose

production, EGPb, in the ICING model, trade off with each other. Therefore,

it is important that they are identified as a pair as was done in Stage 1. The

definition for EGPb implies this parameter stays constant for any given patient.

Hence, this study uses a basal endogenous glucose production EGPb as a constant

in the mathematical model. This choice allows the variation in actual endogenous

glucose production be described by combining EGPb, variable suppression via pG

and G, and also SI and I. More importantly, the approach allows SI be uniquely

identified given the available data is limited to 1-2 hourly BG measurements.

The value for pG found in this study is somewhat at the lower end of the range

found in other studies [Bergman et al., 1981; Cobelli et al., 1999; McDonald et al.,

2000; Pillonetto et al., 2002]. It is suspected for hyperglycaemic ICU patients

that the suppression of EGP by plasma glucose levels is minimized compared

to otherwise healthy subjects, which has been reported elsewhere due to high

levels of circulating catecholamines, thus reducing the suppression of EGP from

elevated G and I [Bistrian, 2001; McCowen et al., 2000; Mizock, 2001; Thorell

et al., 2004; Dungan et al., 2009]. Hence, this lower value appears justified on

physiological grounds.

The decision to keep pG as a constant in this study is based on its relatively

constant behaviour in ICU patients in prior analysis [Hann et al., 2005]. Grid

analysis for the identification of pG and EGPb as constants population parameters

found the most suitable combination of parameter values in reported physiological

ranges [Bergman et al., 1981; Blakemore et al., 2008; Tappy et al., 1999; Cobelli

et al., 1999]. Hence, this choice is left since no new evidence arose from this

analysis to contradict this choice.

3.3.5 Parameter Sensitivity–2c

The parameter sensitivity study results for nK , nL, nC and αG are shown in Table

3.4. Changes of ±50% from their final parameter values for the ICING model in

Table 3.2 have no clinically (as opposed to statistically) significant effect on sim-

ulation results in terms of prediction error, fitting error and identified insulin sen-
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sitivity, SI . The values for pG, EGPb and nI are 0.006 [1/min], 1.16 [mmol/min]

and 0.003 [1/min] respectively. These sensitivity study results suggest nK , nL, nC

and αG can be fixed at their current population values without over simplifying

the model. However, αG does produce a notable shift in insulin sensitivity, SI

as expected, given their trade-off relationship mathematically. A previous study

showed changes in αG produce a magnification in insulin sensitivity SI without

compromising model performance, unless it approaches non-physiological levels

Chase et al. [2004].

3.4 Model Limitations and Justification

This model would benefit from further investigation into some parameters. The

critical parameters are those that influence the shape of Q/(1 + αGQ), as this

level is the ultimate unknown (being unmeasurable) and the critical link between

insulin and BG response. These parameters are effectively nI and αG, as the

parameters that only appear in the plasma insulin equation (Equation (2.40))

can be more readily identified given insulin and C-peptide measurements. αG

in this model is assumed to be 1/65, which is the highest saturation level. The

reason is purely for safety, as to avoid excessive insulin from being administered.

Hence, it is more of a conservative choice. Simulation studies had been car-

ried out to investigate the impact of these parameters, namely “effective” insulin

half life and insulin-stimulated glucose removal saturation [Chase et al., 2005,

2004]. Both variables have direct impact on SI . However, given that both pa-

rameters are kept in reported range of physiological levels, their variation simply

creates a shift or magnification in the identified SI profiles and do not compromise

model fitting or prediction performance. Ultimately, it is the control, or predic-

tion performance, that is the most critical for a model designed for model-based

therapeutics. However, further studies where plasma insulin and C-peptide was

measured would provide unique raw data on these parameters and their variation

in the critically ill patient.

The discrepancy between nI found in this study and Lotz et al. [2008] may

have several explanations. These explanations include inherently different plasma-

interstitium diffusion rates under critical illness and insulin diffusion across bar-

rier being a saturable process. The latter possibility arises because the experimen-
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tal diffusion rates are determined by using C-peptide measurements. Although

C-peptide has very similar molecular properties to insulin, it does not go through

a high and variable degree of first pass extraction in the portal vein [Van Cauter

et al., 1992]. Therefore its concentration is several folds higher than insulin in

plasma. If the diffusion process is to any level saturable [Thorsteinsson, 1990], the

rates determined using C-peptide measurements will not be reflective of insulin.

In addition, the plasma concentration achieved in critically ill patients is very

different to that in EIC experiments or otherwise healthy diabetic individuals.

The relatively low value of nI identified in this study may indicate a significantly

impaired transcapillary transport for patients who are critically ill, which is a

unique result. In particular, sepsis causes a dysfunction in micro-circulation as

well as cell metabolism, which is a condition prevalent in critical care. Patients

in [Lotz, 2007] were subjected to an overnight fast. Hence, their plasma concen-

trations are relatively low and diffusion rates are faster for the short, very low

insulin dose tests used in that research. In contrast, critically ill patients are often

hyperinsulinaemic and infused with large amount of insulin. Therefore, it is ex-

pected that the value of nI for patients in less critical ward would increase. These

ideas need to be further investigated with more insulin and C-peptide studies.

Glucose uptake is strongly correlated with interstitial insulin [Poulin et al.,

1994]. However, interstitial insulin concentrations and dynamics are difficult or

impossible to measure experimentally. This study attempted to find a realis-

tic description of interstitial insulin by linking plasma insulin and BG response

through known biological mechanisms and parameter identification. The dif-

fusion rate between plasma and the interstitial space nI , was identified as the

critical parameter, and its population value is chosen using grid search. The

identified optimal parameter value provided low fitting and prediction error in

BG and particularly reduced inter-patient variability in prediction error. Hence,

the established shape of interstitial insulin can be concluded as realistic, bridging

the link between plasma insulin and blood glucose response.

Any attempt to improve the shape of interstitial insulin should be continued

once additional data from C-peptide and plasma insulin are available, justifying a

clinical study. For now, the model is more than satisfactory since the percentage

of fitting and prediction errors are predominantly below the measurement error

of 7–12%. The data used for the development of the model covers a broad cohort
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of what is typically seen in ICU patients, both highly dynamic and stable.

3.5 Model Identifiability

A further important issue addressed throughout this study is model identifiability.

Given the limited data available, it is crucial to maintain a model that is uniquely

identifiable with relatively infrequent (hourly at most frequent) bedside blood

glucose measurements. Although the model presented in this study requires many

population assumptions, and resulted in a much simpler structure compared to

many others [Sorensen, 1985; Parker and Doyle, 2001; Hovorka et al., 2008, 2004b;

Parker et al., 2001], it is able to accurately capture the highly dynamic response

in critical illness. With limited data in a noisy and highly variable environment,

such as critical care, a model that requires the minimal number of parameters

to be identified will potentially cope most successfully both mathematically and

clinically. All the parameters kept as population constants have been carefully

studied and their sensitivity analysed.

Eventhough the model parameters were fitted and validated using data of

patients in the ICU, this would not be an issue. Data of patients from step

down unit weren’t used simply because it is not available. However, patients in

the intensive care and step-down unit do share similarities in metabolic status.

Sensitivity analysis up to 50% was performed on model parameters to ensure the

robustness. In Le Compte et al. [2009], the model used for glycaemic control of

neonates in ICU was developed from the model of Chase et al. [2007]. Most of the

model parameters for neonates were kept at same values as in Chase et al. [2007],

and to ensure the validity, a 20% sensitivity analysis was performed. Hence, for

this study, sensitivity analysis of up to 50% should be more than sufficient as it

is not expected that the model parameters for the critically ill and less critically

ill patients, would vary much more than 50%.

The study thus presents a clinically applicable yet comprehensive glucose-

insulin model that is uniquely identifiable for each patient at any given time.

Eventhough data of 173 patients (translates to 42 000 hours of data) may seem

to be limited, but the patients cover a broad cohort of what is typically seen in

the ICU. Virtual simulation is the best method to assess clinical control protocol-
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saves time, cost and a number of protocols can be tested. Therefore, having a

large amount of data is appreciated, a clear benefit for in-silico trials. However,

as for now assessing future protocol performance and controller’s adaptability

would work well on these 173 patients. Long stay patient (> 3 days) may exhibit

both periods of dynamic evolution and metabolic stability. The low, and more

importantly tightly distributed, prediction errors of the model, where few fail to

be within the clinical measurement error of 7-12% [Chase et al., 2008c, 2007],

indicates the model is well suited for use in real-time, patient-specific TGC.

3.6 Summary

The new ICING model presented and validated in this study chapter is an inte-

gration and improvement of two clinically validated glucose-insulin physiological

models [Chase et al., 2007; Lotz et al., 2008]. This new model has more explicit

physiological relevance without increasing the number of patient-specific parame-

ters to be identified. In particular, the insulin kinetics is expressed with distinctive

routes for insulin clearance and transport from plasma, which reflects biological

mechanisms. A more realistic model for gastric glucose absorption accounting for

the stomach, gut and saturable glucose appearance is also introduced.

The model is capable of accurately capturing long term dynamics and evo-

lution of a critically ill patient’s glucose-insulin response. Insulin sensitivity SI

is the only parameter that is identified hourly for each individual. Its identifi-

cation is guaranteed to be unique given the integral fitting method used in this

study. Population constant parameters pG, EGPb and nI have been identified in

steps to avoid model identifiability issues. Parameter sensitivity analysis further

confirms the validity of limiting time-varying parameters to SI only. The model

achieved low fitting and, most importantly, low prediction error when fitted to

blood glucose data from critically ill patients. Fitting errors and the 75th per-

centile prediction errors were all well below measurement error for 173 patients

and 42,941 hours of data. The new model outperforms its critical care predeces-

sors, and has greater physiological relevance and more detailed insulin kinetics.

It is also, unlike almost all other similar models in the literature, predictively

validated against a very large range of clinical data, which is critical for a model
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to be used in designing or applying real-time TGC at the bedside. This model

therefore offers a platform to develop robust insulin therapies for tight glycaemic

control.



Chapter 4

Glargine Model Development

This chapter presents the development and validation of a detailed pharmacoki-

netics model of the subcutaneous absorption kinetics of Glargine. Model param-

eters associated with Glargine-specific precipitate decomposition and transport

were identified using 6 sets of plasma insulin time-course absorption curves from

4 Glargine studies found in a larger literature review [Scholtz et al., 2005; Heine-

mann et al., 2000; Lepore et al., 2000; Owens et al., 2000]. Four additional,

independent studies [Klein et al., 2007; Danne et al., 2003; Becker et al., 2008;

Heise et al., 2004], were used as independent validation test to show the validity

of the model and parameters found. The identified model is validated by com-

parison to reported values for maximum plasma insulin concentration, Cmax, and

time to maximum plasma insulin, Tmax.

Absorption kinetics often show significant intra- and inter- individual variabil-

ity. To add this variability to the pharmacokinetics model of Glargine, ranges of

variation for the identified Glargine model parameters were introduced into 1000

Monte Carlo simulations. This assessment and analysis portray the likely intra-

individual and inter- individual variability that could be expected clinically. The

Monte Carlo analysis thus defines a range and distribution of identified and val-

idated model parameter variations to consider in designing a glycaemic control

protocol using Glargine.
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4.1 Introduction

Basal insulin therapy, has gained renewed interest since the introduction of Glargine

[Campbell et al., 2001]. Glargine, a human insulin analogue is prepared by re-

combinant DNA technology in which the amino acid asparagine at position A21

is replaced by glycine and two arginines are added to the C-terminus of the B-

chain at position B31 and B32 [Lantus, 2001]. It is these 3 amino acids that

make Glargine different from the human insulin. The addition of two molecules

at the B-chain shifts the isoelectric point from 5.4 to 7.4 which makes Glargine a

soluble insulin at a slightly acidic pH and less soluble at physiological pH levels

[Heinemann et al., 2000; Campbell et al., 2001; Dunn et al., 2003]. The positively

charged amino acids ionizes the insulin analogue, hence allowing it to remain sol-

uble at acidic pH of the injection medium and less soluble at the physiologic

pH [Campbell et al., 2001; Wang et al., 2003]. Figure 4.1 shows the structural

formula of Glargine, and how it differs from the human insulin:

Figure 4.1 Glargine structural formula from [Lantus, 2001]. Asparagine has been replaced by
glycine at position A21. At the end of C-terminus of the insulin B-chain, 2 arginine molecules
are added. This modification shifts the isoelectric point from pH 5.4 to 7.4. This makes Glargine
more soluble at slightly acidic pH and less soluble at physiologic pH [Heinemann et al., 2000;
Campbell et al., 2001; Dunn et al., 2003; Wang et al., 2003].

Most conventional basal insulin types have pharmacodynamic (PD) profiles

that poorly approximate the flat, basal insulin secretion of a non-diabetic, healthy
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individual. Figure 4.2 shows the plasma insulin profile of several rapid, regular

and long acting insulins taken from [Hirsch, 2005]. NPH and ultralente are such

insulins that are used as basal insulin therapy despite having pharmacokinetics

that do not match the endogenous insulin secretion [Scholtz et al., 2005]. Ultra-

lente, for example has a large day to day absorption variability [Binder, 1969]

that will caused large swings or fluctuations in blood glucose level. Ideally, basal

insulin should mimic the basal insulin secretion of a healthy pancreas, with no

distinct peak, a continuous effect over 24 hours, and an absorption pattern that is

slow, constant, predictable and reproducible [Campbell et al., 2001]. Glargine, a

recombinant insulin analogue appears to mimic this behaviour with its relatively

flat time-action profile and more predictable effects [Rosenstock et al., 2001]. This

unique property allows Glargine to be given once daily. Thus, this is what makes

Glargine the insulin of choice in this thesis.

Other therapy such as CSII (continuous subcutaneous insulin infusion), an

insulin pump therapy is not considered as few obstacles are commonly associated

with CSII [Wesorick et al., 2008]. Mainly, there is a constant need for pump

management which most hospitals lack in expertise. The issue is lack of exposure

on CSII among nurses. CSII also involves patient participation, and thus it is

limited by patient’s level of consciousness. Plus, a physician order must be placed

each time insulin dosage is adjusted, and this does not go along with the target

of this thesis to develop a nurse-driven protocol. Furthermore, cost is also a big

obstacle to CSII therapy and it is the most expensive option for insulin pump

[Bruttomesso et al., 2009].

Owens et al. [2000]; Heinemann et al. [2000]; Lepore et al. [2000]; Scholtz et al.

[2005] and Luzio et al. [2003] are few literatures that studied the pharmacokinetics

and pharmacodynamics of Glargine, comparing it to NPH or ultralente insulin.

To find the absorption rate of Glargine from the subcutaneous site, the studies

used either euglycaemic glucose clamp technique or external gamma-counting.

The time to disappearance of 25% from the administered radioactivity, after

subcutaneous injection and residual radioactivity 24 hours after radiolabelled

injection, is then measured.

In [Scholtz et al., 2005], the day to day variability in the time-concentration

and time-action profiles of Glargine were compared to NPH and ultralente. The

result of the study showed that Glargine is associated with low variability and
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Figure 4.2 Ideal insulin time-action profiles of several insulins reproduced from [Hirsch, 2005].

reproducible activity. NPH on the other hand, had a definite early peak ex-

posure while ultralente with no pronounced peak is highly variable in terms of

glucose lowering effect among subjects. Meanwhile, Lepore et al. [2000] found

that both NPH and ultralente had a peak concentration and action. Intersubject

variability is found to be greater in ultralente compared to Glargine and NPH.

A study by Heinemann et al. [2000], also compared the pharmacodynamic prop-

erties of Glargine to NPH with the result confirming a smoother metabolic effect

in Glargine in comparison to NPH. Lastly, Owens et al. [2000] found that the

subcutaneous absorption of Glargine is delayed compared to NPH.

However, limited research has been done in terms of modelling the absorption

process of Glargine, since its introduction in 2000. Pharmacokinetics and pharma-

codynamics modeling analysis have been used to support licensing dose of drugs.

The FDA (US Food and Drug Administration) states that PK/PD might be the

supporting evidence of clinical trial efficacy [Rolan and Molnar, 2006]. Hence,

there is a definite importance of PK/PD modeling with the widespread confi-

dence. To date, only Taŕın et al. [2005] and Wong et al. [2008a,b] reported com-

prehensive pharmacokinetic models. Mosekilde et al. [1989] proposed an absorp-

tion kinetics model for subcutaneous injected insulin. It was the first mechanism

based model utilising chemical relationships between insulin polymers to explain
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the absorption kinetics. This model was refined and simplified by Trajanoski

et al. [1993]. Taŕın et al. [2005] later extended the model to cover Glargine’s

peakless time action profile. Finally, Wong et al. [2008a,b] constructed an exten-

sive physiologically consistent ten-compartment model for the pharmacokinetics

of several rapid acting, regular and long acting insulins including Glargine.

Critical reviews of other available studies with general models of subcuta-

neously injected insulin are reported in Nucci and Cobelli [2000].

Using such deterministic models to determine the pharmacokinetics of in-

sulin, physicians and nurses can better overcome barriers to effective glucose

management. The use of model-based methods in Type 1 and Type 2 diabetes

has shown the potential for developing successful therapeutic methods for effec-

tive glycaemic control [Wong et al., 2008a,b,c; Hovorka et al., 2007; Lehmann,

2001; Tudor et al., 1998]. However, models can not give meaningful prediction

or portray the underlying physiology unless their parameters are determined and

justified with clinical data. In addition, significant intra- and inter- patient vari-

ability in the PK and PD of insulin offer further barriers to model-based control.

To capture the dynamics of Glargine’s absorption kinetics, this chapter presents

a more comprehensive physiological compartmental model specifically developed

for this insulin class. As insulin action is a saturable process, there is a need to

model the saturation in Glargine’s pharmacokinetics which was not accounted for

in the prior model of Wong et al. [2008a,b]. The model structure of Wong et al.

[2008a,b] is re-analyzed and re-identified with new parameters, with the addition

of Michaelis-Menten saturation thus better capturing the physiological aspects.

The model is further validated with several independent studies, thus providing

external validation aspect to confirm the validity of the developed model. In

particular, intra- or inter- individual variation in insulin absorption can range

from 35%-50% [Heinemann et al., 2000]. Thus, a robust model that can capture

these variations is equally important. Hence, the model developed in this study

accounts for variability seen clinically among patients under Glargine therapy.

By having a robust model, it will give sufficient time for intervention and ad-

justment of insulin before glucose concentrations drift from desired ranges. As a

result, hypo/hyperglycaemia can be better avoided. It is intended that this sub-

cutaneous absorption model development would eventually offer a safe means to

develop and compare control algorithms using Glargine prior to clinical testing.
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4.2 Glargine Compartmental Model

Upon subcutaneous injection, Glargine forms a depot from which absorption into

the systemic circulation occurs. The unique pharmacology of Glargine due to the

isoelectric shift that alters the association properties stated earlier, makes it pre-

cipitate into stable hexamers within the physiologically pH-neutral environment

[Guerci and Sauvanet, 2005]. Hexameric dynamics are one of the main processes

in a model that determines the onset time and action curve of different insulin

preparations [Lehmann et al., 2009]. The addition of zinc as hexamer-stabilizing

agent improves the time-action profile [Campbell et al., 2001; Wang et al., 2003].

Insulin hexamers dissociate further over time into dimers or monomers, which are

the forms easily absorbed into the bloodstream. It is this unique dissociation pro-

cess, and the unique very flat and long acting profile of Glargine that it creates,

which determines the onset time and action curve [Campbell et al., 2001]. Figure

4.3 describes the disassociation process from hexamer to dimers and monomers.

Figure 4.3 The pathway describing the process of insulin hexamers, dimers and monomers.
Image sourced from www.endotext.org.

A four compartment description of subcutaneous insulin kinetics is presented,

where Glargine is modelled to appear in its precipitate, hexameric, dimeric /

monomeric, and (local) insterstitium states. The underlying structure of this
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pharmacokinetics model is adopted from Wong et al. [2008a,b]. The model de-

scribes the pharmacokinetics processes following subcutaneous administration of

Glargine:

Precipitate State:

˙pgla(t) =
−kprep,glapgla(t)

1 +
kprep,gla

rdis,max
pgla(t)

+ up,gla(t) (4.1)

up,gla(t) = αglautotal,gla(t) (4.2)

Hexameric State:

˙xh,gla(t) = −(k1,gla + kd)xh,gla(t) +
kprep,glapgla(t)

1 +
kprep,gla

rdis,max
pgla(t)

+uh,gla(t) (4.3)

uh,gla(t) = utotal,gla(t)(1− αgla)− um,gla(t) (4.4)

Dimeric/Monomeric State:

˙xdm(t) = −(k2 + kd)xdm(t) + k1,glaxh,gla(t) + um,gla(t) (4.5)

Interstitium:

˙xi(t) = −(k3 + kdi)xi(t) + k2xdm(t) (4.6)

where all variables in Equations (4.1)–(4.6) are defined in Table 4.1 and the model

is shown schematically in Figure 4.4:
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Table 4.1 Description of Glargine compartmental parameters.

Parameters Description
xh,gla(t) Mass in glargine hexameric compt. [mU]
pgla(t) Mass in glargine precipitate compt. [mU]
xdm(t) Mass in dimer/monomer compartment [mU]
xi(t) Mass in the interstitium compartment [mU]
rdis,max(t) Max glargine precip. dissolution rate [mU/min]
utotal,gla(t) Insulin glargine input [mU/min]
up,gla(t) Glargine precipitate state insulin input [mU/min]
uh,gla(t) Glargine hexamer state insulin input [mU/min]
um,gla(t) Glargine dimer/monomer state insulin input
kprep,gla Glargine precipitate dissolution rate [min-1]
k1 Hexamer dissociation rate [min-1]
k1,gla Glargine hexamer dissociation rate [min-1]
k2 Dimeric/monomeric insulin transport rate into interstitium [min-1]
k3 Interstitium transport rate into plasma [min-1]
kdi Rate of loss from interstitium [min-1]
kd Rate of diffusive loss from hexameric and dimeric/monomeric

state compartments [min-1]
αgla Fraction of glargine as precipitate

Equations (4.1) and (4.3) differ from the original non-linear model in Wong

et al. [2008a,b] with the introduction of the Michaelis-Menten saturation terms

in these equations. The rate of Glargine precipitate dissolution, kprep,gla, is a

saturable process and is slower with the introduction of the Michaelis-Menten

saturation function. There is a need to model this saturation as the solubility of

the Glargine precipitate is limited due to the shifted pH of Glargine molecules

[Taŕın et al., 2005]. Glargine injection is completely soluble at a pH of 4.0, and

once injected in a neutral subcutaneous state with pH 7.4, Glargine is neutralized

and formed microprecipitates [Campbell et al., 2001]. Specifically, this model

adds a non-linear transport saturation based on the impact of Glargine molecule’s

own pH on the surrounding depot pH, which limits and extends the process to

give Glargine its characteristically flatter profile. Hence, the model development

with Michealis-Menten saturation has a greater physiological relevance.

Subcutaneous absorption kinetics are predominantly concentration and vol-

ume dependent [Søeborg et al., 2009]. To account for the volume effects of injected

insulin volume, the rate of diffusive loss from the hexameric and dimeric/monomeric

state, kd, represents this physiology of the injection site as:
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kd =
3D

r2
(4.7)

r = (
3

4

Vinj
π

)
1
3 (4.8)

kd is the rate of diffusive loss from hexameric and dimeric /monomeric com-

partments [min-1], D is the diffusion constant [cm2/min], r is the radius of the

subcutaneous depot [cm], and Vinj is the dose injection volume [ml or cm3].

4.2.1 Glargine Sub-model structure

Once Glargine precipitates, it is slowly released from this form to hexamerics.

The Glargine sub-model structure is used to model the maximum dissolution

rate, rdis,max of the precipitate pgla(t), into a hexameric form in Equations (4.1)

and (4.3), xh,gla(t), which is unique to Glargine compared to other insulin [Taŕın

et al., 2005; Dunn et al., 2003]. This process is defined:

rdis,max(t) = Brdis,max(αglautotal,gla < Utres) +
Brdis,maxαglautotal,gla

Utres(αglautotal,gla >= Utres)
;

(4.9)

where Brdis,max is the baseline value of rdis,max for a given dose and Utres is the

dose threshold value. Thus, this term in Equations (4.1) and (4.3) limits the

precipitate to hexameric change, and is unique to this model.
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4.2.2 Plasma Insulin Model Structure

To portray insulin absorption into the overall plasma and interstitium, the ICING

glucose-insulin model in Chapter 2.2.3 is used. From the interstitium, exogenous

insulin which is from the administration of Glargine will appear in Equation 4.11

as uex after multiplication with k3, the interstium transport rate into plasma.

The action of insulin, as developed before in Chapter 2 is described:

Q̇ = nI(I(t)−Q(t))− nC
Q(t)

1 + αGQ(t)
(4.10)

İ = −nKI(t)− nLI(t)

1 + αII(t)
− nI(I(t)−Q(t)) +

uex(t)

VI

+(1− xL)
uen
VI

(4.11)

uen(t) = k1e
− I(t)k2

k3 when C-peptide data are

not available (4.12)

where all variables in Equation (4.10)–(4.12) are defined in Chapter 2: Model

Development.

4.3 Model Identification and Analysis Method

4.3.1 Model Parameter Identification

The parameters for the Glargine Compartmental Model in Section 4.2 are iden-

tified a priori from clinical results in the literature except for kprep,gla, k1,gla,

Brdis,max and Utres, the latter 2 of which define rdis,max in Equation (4.9). For

the plasma insulin model structure of the ICING model, the complete parameters

can be referred to in Chapter 3: Parameter Identification and Model Validation.

Overall, the model in Wong et al. [2008a,b] has been converted from a non-

linear function of hexameric and precipitate compartments into a saturated, lin-

ear differential form in Equations (4.1) and (4.3). This change means that the
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Glargine precipitation model parameters must be re-identified and re-validated.

The model parameters associated with this process are the Glargine precipitate

dissolution rate [min−1], kprep,gla and Glargine hexamer dissociation rate [min−1],

k1,gla. Since rdis,max is the maximum dissolution rate of the precipitate into the

hexameric form unique to Glargine, this parameter also needs to be identified

and validated for this study.

The constant parameters defined in Wong et al. [2008a,b] are given in Table

4.2. The parameters are kept because they are common to, and validated for,

to multiple insulin types in the overall model for multiple insulin types in [Wong

et al., 2008a,b]. Hence, this study examines only those model parameters specific

to Glargine, thus maintaining the physiological consistency of the combined model

if this version of the Glargine model were used.

The remaining parameters associated with the Glargine Compartmental Model,

kprep,gla, k1,gla, Brdis,max and, Utres were identified using 6 sets of plasma insulin

time-course absorption curves from Glargine studies found in a larger literature

review [Heinemann et al., 2000; Scholtz et al., 2005; Owens et al., 2000; Lepore

et al., 2000]. The corresponding pharmacokinetic parameters are calculated from

each study and the final population values were taken as the average of all studies.

This method is typical of conventional pharmacokinetic study [Rolan and Mol-

nar, 2006]. The Glargine parameters are identified using a standard non-linear

recursive least squares (NRLS) fitting method.

NRLS requires initial search values for the optimisation since the method

is starting point dependent, which were taken or estimated from those used in

[Wong et al., 2008a,b]. In Wong et al. [2008a,b], the parameter values used as

starting point for optimisation were obtained from [Shimoda et al., 1997].

The ability of the NRLS method to effectively identify Glargine model pa-

rameters, is highly dependent on the initial selection of parameter values. This

posed as a limitation in the beginning when the initial selection from Wong

et al. [2008a] was not sufficient to give a good data fitting. The method became

time-consuming as a unique identifiability is essential for model identification.

However, the NRLS managed to converge to an area of ‘true parameters’ after a

few sets of initial parameter values.
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Model parameter values resulting in the closest fit to the plasma insulin time-

course data in the literature in terms of sum squares of error (SSE) are regarded

as the best Glargine model parameters. The SSE function relative to time-course

absorption curves data is defined [Wong et al., 2008a,b]:

SSEj =

Nj∑
i=1

(Ij,i−Ij(tj,i ))2 (4.13)

where Nj is the number of plasma insulin data points in the jth data set, Ij,i is

the ith plasma insulin concentration data point in the jth data set, and Ij(t,j) is

the modeled plasma insulin concentration for the jth data set at tj,i, the time at

the ith plasma insulin concentration data point.

Table 4.2 Glargine constant population parameters [Wong et al., 2008a,b]

Parameters Values
k2 0.0106 [min-1]
k3 0.0618 [min-1]
kdI 0.0029 [min-1]
αgla 0.9462
D 0.00009 [cm2/min]

4.3.2 Independent Pharmacokinetics Validation

The model with identified parameter values is validated by simple pharmacoki-

netic measures. Specifically, the time to maximal concentration, Tmax, and maxi-

mal concentration reached, Cmax as shown in Figure 4.5. In this example, Cmax is

equivalent to 4.8 mU/L while Tmax occurs at 762.9 minutes. A validation compar-

ison was made to equivalent Cmax and Tmax from reported data where available.

In cases where Cmax and Tmax are not reported, an estimate is made from best

model fit (SSE) alone. To further improve the validity of the model, four fur-

ther independent published studies were utilized for validation [Klein et al., 2007;

Danne et al., 2003; Becker et al., 2008; Heise et al., 2004]. Validation with these

additional independent studies provides a broader cohort, as seen in Table 4.3,

and illustrates the robustness and the validity of the model to be used for a wider
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population. In particular, the independent study by [Danne et al., 2003] pro-

vides data for children and adolescents as compared to adults. Hence, this data

set provides a direct comparison on the behaviour of Glargine pharmacokinetics

profile between three different age groups.

Figure 4.5 An individual model fit example of [Owens et al., 2000] to show the plasma insulin
curve with Tmax and Cmax, the important criteria used as a model validation. The solid blue
line (–) is the plasma curve of Owens et al. [2000] model fit while the dotted red line (· · · )
corresponds to each maximal plasma insulin, Cmax, and time to reach maximal plasma insulin,
Tmax.

4.3.3 Monte Carlo Study

Subcutaneous insulin absorption varies from one person to another, and can

also be influenced by temperature, exercise, depth of injection, and many other

insulin-dependent/independent factors [Berger et al., 1982; Binder et al., 1984].

Clinical experience has shown that under comparable patient conditions, the

same injected subcutaneous dose often does not produce the same metabolic

effect [Heise et al., 2004]. Studies on variability of insulin absorption after a

subcutaneous administration began several decades earlier [Moore et al., 1959;

Binder, 1969]. However, our knowledge on this topic is still limited [Heinemann,

2002].

To model Glargine absorption variability in this study, lognormal distribu-

tions in several critical parameters are combined to produce variability matching
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reported ranges in Glargine dose-response studies. Lognormal distributions are

used because the varied model parameters must be positive, which using a normal

distribution does not guarantee.

The lognormal propability density function is given:

p(x|µ, σ) = 1
xσ
√

2π
exp

[
−(ln(x)−µ)2

2σ2

]
(4.14)

where µ and σ are the mean and standard deviation of the variable’s natural

logarithms.

A lognormal distribution is defined with reference to a normal distribution.

To determine µ and σ we need to use this relationship. If X is lognormally dis-

tributed, the following describes the algebraic relationship:

Mean [X]:

= eµ+0.5σ2

(4.15)

Standard Deviation [X]:

= eµ+0.5σ2
√
eσ2 − 1 (4.16)

Parameters kprep,gla, k1,gla and αgla are the critical parameters given lognormal

distribution in this study, producing variations in Cmax matching published data.

These parameters are critical as they partly define the hexameric compartment.

As mentioned previously, hexameric dynamics are one of the main processes that

determines the onset time and action curve. Figure 4.6 shows the effect on

plasma-insulin curve of Glargine with different tested values for kprep,gla, k1,gla
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and αgla. Final parameters chosen were those that produced the closest variations

up to one standard deviation to reported Cmax. The other parameters are kept

constant in the Monte Carlo simulations at their a priori values. The Glargine

pharmacokinetic responses are computed for 1000 Monte Carlo simulations to

produce the expected variability distribution.

4.4 Results

4.4.1 Glargine Model Parameters

The identified model parameters for the Glargine subcutaneous absorption model,

kprep,gla, k1,gla and rd,max function, Brdis,max and Utres are shown in Table 4.4.

Final values are chosen as the mean of each parameter identified individually for

each of the 6 studies used [Heinemann et al., 2000; Scholtz et al., 2005; Owens

et al., 2000; Lepore et al., 2000]. Figure 4.7 depicts the individual model fit from

Scholtz et al. [2005] and Lepore et al. [2000] using fitted parameter values from

Table 4.4, along with the reported experimental data.

Aside from minimizing error between model fit and data, the estimation of

model parameters needs to consider the elimination of experimental noise. Ex-

perimental noise, as can be seen in Figure 4.7(b) is defined here as the variation

between data points in each data set, which can influence the identified model pa-

rameters. This is apparent around minutes 200, where there are 2 plasma insulin

concentration points at 8 mmol/L. These data points are inaccurate in respect

to the subcutaneous Glargine concentration due to the presence of a significant

rate of IV insulin infusion for the first 3 hours. A specific assay for measurement

of Glargine at this first 3 hours is not available in the study [Lepore et al., 2000].

A portion of data from 820-1170 minutes, were missed in the model. However, it

is not significant as the model approximates the supposed plateau concentration

as expected from subcutaneous Glargine. The time from 820-1170 minutes were

thus treated as a smooth plateau. The final identified pharmacokinetics model

parameters, averaged over the 6 studies used in this study, show good agreement

with the data. Good agreement is quantified with SSE and can be referred in

Table 4.4. Model parameters that produced model with lowest SSE are selected.
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(a) Effect of different αgla

(b) Effect of different kprep,gla

(c) Effect of different k1,gla

Figure 4.6 The effect of different tested values for αgla, kprep,gla, and k1,gla.
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(a) Model Fit and Model Output of a 32U injection.

(b) Model Fit and Model Output of a 24U injection.

Figure 4.7 Glargine model response of plasma insulin with injection amount of 32U and
24U incorporating the average parameter values fitted to Scholtz et al. [2005] and Lepore et al.
[2000]. Solid line (-) corresponds to the model generated output while model fit to experimental
data is represented by (· · · ). Crosses (x) present the measured experimental data from Scholtz
et al. [2005] and Lepore et al. [2000].
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4.4.2 Independent Pharmacokinetics Validation

The subcutaneous Glargine absorption model with the identified mean param-

eters is validated against external experimental data presented by Klein et al.

[2007]; Danne et al. [2003]; Becker et al. [2008] and Heise et al. [2004]. These

independent, additional studies provide a measure of external validation as their

data was not used for model parameter identification. Table 4.5 shows that the

reported Cmax and Tmax from the model generated curves are within one standard

deviation of Cmax and Tmax from the published data of [Klein et al., 2007; Danne

et al., 2003; Becker et al., 2008; Heise et al., 2004].

By covering several studies in cohort difference, the quality of mean parame-

ter estimates for Glargine model parameters will increase. The study by [Danne

et al., 2003] provides data for group of patients belonging to different age groups.

Hence, it is interesting to see if this population would give a different behaviour

in comparison to adults population. Validation of the Glargine pharmacokinetic

profile in this younger patients conform with Lantus [2001] that there is no differ-

ence in the Glargine profile between children, adolescents and adults with Type

1 diabetes. The model is validated by computing Tmax and Cmax, the critical

clinical parameters modeled to those published in the literature.

To see the performance of the identified model parameters, the dynamics

of the model in simulating different Glargine doses of 10U, 20U, 30U, 40U and

50U are shown in Figure 4.8. The clinically flat insulin concentration profile of

Glargine with no pronounced peak can be observed. Lepore et al. [2000] reported

a duration of action of 20-24 hours after a single dose and 24 to 25.6 hours at

steady state. As can be observed, all model curves in Figure 4.8 conform to these

existing reports [Lepore et al., 2000; Campbell et al., 2001; Dunn et al., 2003]

and maintained the delayed onset of action and a prolongation of action with no

pronounced peak, as expected from the pharmacokinetics of Glargine. Note that

it is this lack of specific peak that also yields the large variability in Cmax and

Tmax in Table 4.5.
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Figure 4.8 Glargine dose responses from model generated output. The slopes over the first
60 mins are different (different rate of absorption). As expected from the time-action profile
of Glargine, there is a flat basal period with no pronounced peak. At this basal part, the
rate of absorption is the same. The dashed line (–) is for the injection amount of 10U. Dot-
dashed line (· · · -) portrays the dose response with injection amount of 20U. The dotted line
(· · · ) represents injection amount of 30U. The solid line (-) represents injection amount of 40U.
Finally, the weighted solid line (-) is Glargine dose response with the injection amount of 50U.

Table 4.6 Specifications of lognormal distribution for Glargine model parameters

Glargine Model Parameters Lognormal Distribution Specifications
µ σ

kprep,gla -3.49 0.3
k1,gla -5.1855 0.8330

alphagla -0.081 0.019
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4.4.3 Monte Carlo Analysis and Variability

Table 4.6 shows the assumed µ and σ in Equations (4.14)–(4.16). These val-

ues specify the lognormal distribution of Glargine pharmacokinetics parameters,

kprep,gla, k1,gla, and αgla. The decision to adopt a lognormal distribution automat-

ically limits variations in model parameters to be non-negative values as seen in

the Figure 4.10. Figure 4.10 shows the randomly selected model parameter vari-

ability of the Glargine pharmacokinetics parameters kprep,gla, k1,gla, and αgla for

1000 Monte Carlo simulations. The theoretical lognormal functions from which

they were sampled are also shown in Figure 4.10.

The results in Figure 4.9 illustrate how Glargine pharmacokinetics parameter

variability yields expected variability in maximal plasma insulin, Cmax. The range

produced in Figure 4.9 is the best achieved to replicate the reported values by

studies in the literature for similar injection doses [Heinemann et al., 2000; Scholtz

et al., 2005; Owens et al., 2000; Lepore et al., 2000]. The published values of Cmax

is shown in Table 4.7. For example, a 24U of subcutaneous Glargine as reported

by [Lepore et al., 2000], has variations of Cmax from 7±1.3 mU/L, and this is

presented by the boxed area in Figure 7.1(b). The range of Cmax produced covers

the reported area.

The plot of Cmax is expressed as a log normal distribution. This distribution

maximizes the likelihood of accounting for variability among patients receiving

the subcutaneous injection. As absorption rate is dose dependent, where a small

dose is absorbed faster than a larger dose [Søeborg et al., 2009], variability of

Cmax as portrayed in Figure 4.9 increases at higher volume of Glargine injection,

as expected.

Figure 4.10 shows the randomly selected model parameter variability of the

Glargine pharmacokinetics parameters, kprep,gla, k1,gla, and αgla for 1000 Monte

Carlo simulations. The theoretical lognormal functions are also shown in Figure

4.10.
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4.5 Discussion

In this study, an extended compartmental model for the absorption kinetics of

Glargine is presented. The model is developed from Wong et al. [2008a] with

new physiologically based Michaelis-Menten saturation terms introduced in the

precipitate and hexameric compartment, replacing empirical non-linear functions.

The model paramaters associated with Glargine at the two mentioned states

were identified and validated, while maintaning the overall model’s physiological

consistency with other insulin types, as in the original work Wong et al. [2008a,b].

Hence, this new, more complete and physiological model is consistent with other

insulin models of Wong et al. [2008a], and could be used directly within that

framework.

The ability of the NRLS method to effectively identify Glargine model pa-

rameters, is highly dependent on the initial selection of parameter values. This

choice posed a significant limitation in the beginning when the initial selection

from [Wong et al., 2008a] was insufficient and yielded poor results. The method

also became extremely time-consuming, as unique identifiability is essential for

model identification. However, the NRLS managed to converge to an area of ‘true

parameters’ after a few sets of initial parameter values were (empirically) tried.

Identification of the model parameters were based upon 4 main literature

studies, Heinemann et al. [2000]; Scholtz et al. [2005]; Owens et al. [2000] and

Lepore et al. [2000] which provided 6 sets of data. In previous chapter, the ICING

model was developed from data of ICU patients. The reason that literature

review of Glargine model development is not from ICU patients as well, is due to

unavailable data. However, individuals with Type 1 and Type 2 diabetes may be

the closest to represent patients with stress hyperglycaemia in the ICU. Average

values over each of these studies are used as a final model parameter value. To

best assess the validity of the identified model parameters, data from 4 further

different, independent studies, Klein et al. [2007]; Danne et al. [2003]; Becker

et al. [2008] and Heise et al. [2004], were utilised. By covering several studies

with different cohorts, the validation set provides a significant challenge.

In particular, the study by [Danne et al., 2003] provides data for group of

patients belonging to different age groups. Hence, it was interesting to see if this

population would give a different behaviour in comparison to adult populations.
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Validation of the Glargine pharmacokinetic model profile for these younger pa-

tients conforms with Lantus [2001]. Specifically, it showed that, as reported there

is no significant difference in the Glargine profile between children, adolescents

and adults with Type 1 diabetes. Thus, the model was validated by providing

Tmax and Cmax values within 1 standard deviation of a range of reported values,

in these independent published studies. Glargine is known to be reproducible,

constant and predictable. Hence, eventhough different data was used for ICING

and Glargine model, it is expected that the same Glargine PK profile would be

seen for less critically ill patients.

An equally important outcome/result of this study is the assessment and

analysis of parameter variability on the pharmacokinetics model outputs. Clin-

ical experience has found that subcutaneous administration of insulin does not

result in highly reproducible metabolic effects, even when the same dose is ad-

ministered Heise et al. [2004]. Thus, designing any protocol (clinical or model-

based) for efficient subcutaneous insulin dosing in an attempt to achieve good

blood glucose control has always been a challenge. The major limitation is in

the pharmacokinetics profile of subcutaneous insulin and its intra- subject vari-

ability. Variable absorption and day to day variability are major factors that

contribute to the instability of resulting intra-subject glycaemic levels. Glargine,

in comparison to other long acting basal analogues, like NPH and Ultralente, has

the lowest reported intrasubject variability [Campbell et al., 2001]. However, its

variability is still considered a significant aspect in insulin treatment, affecting

glycaemic control and the risk of developing hypoglycaemia Klein et al. [2007].

A reliable system for insulin dosing should thus be able to consider all sources

of variation. The decision to vary only three model parameters, kprep,gla, k1,gla,

and αgla is deemed sufficient, as these parameters most influence the modelled

variability of Glargine absorption kinetics. In addition, they are Glargine-specific

parameters and their variability is thus independent, in this model, of other in-

sulin types, which may have a different variability for the same subjects. Phys-

iologically and clinically, the rate of dissolution and absorption of Glargine can

be affected by the state of Glargine forming an amarphous microprecipitate at

the injection site. The resulting observed and considerable variability of insulin

action is considered here with a Monte Carlo analysis.

The outcome of the Monte Carlo analysis portrays the likely intra- individual
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and inter- individual variability that could be expected clinically. Thus, the result

of the Monte Carlo analysis defines a range of distribution of variation to consider

in designing a glycaemic control protocol using Glargine. These ranges are seen to

(broadly) capture those reported in the literature, further validating the overall

model and approach. Hence, the main target is to develop control protocol that

would be feasible to all the variations often see among patients.

Models used for insulin therapy deal with non-linearities, multiple inputs,

and are thus often quite complex. Dealing directly with a patient’s outcome,

model-based therapies require rigorous analysis and validation. One of the main

criteria in model validation is the basic validation associated with variations seen

in model parameters [Dartois et al., 2007]. Inter- or intra- individual variability,

represented as random effects from model parameters, are often modeled as being

normally distributed [Lemenuel-diot et al., 2007]. However, this choice does not

accurately represent the actual variations seen in clinical patients. By opting

for random effects as a lognormal distribution, instead of being normally dis-

tributed, this step immediately constraints the variability of model parameters

to be physiologically realistic, non-negative values. Furthermore, as mentioned in

Thomaseth et al. [2006], model robustness is improved as a lognormal distribu-

tion can designate heavier tails than normal distributions, thus better capturing

observed behaviours. Hence, there would be higher probabilities of very large

deviations from the mean parameters, which would also be more easily limited

in modeling only to physiologically realistic and reported variations from clinical

studies.

Specifically, by defining what might be expected, the overall glycaemic control

system model can be adapted to the observed insulin variability encountered

clinically among patients. More importantly, such validated model variations

may also be used to aid therapy selection and decision support [Lin et al., 2008].

The ability to predict subcutaneous insulin absorption using these results based

on glycaemic response at the bedside would thus allow further patient-specific

optimization of insulin treatment, with the potential to reduce or better manage

the patient-specific outcome glycaemic variability.
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4.6 Conclusions

A detailed pharmacokinetics model of the subcutaneous absorption of Glargine

is developed with variability introduced to the identified model parameters. The

model is more physiologically valid compared to a prior model used as funda-

mental structure with the introduction of Michalis-Menten saturation. External

evaluation further confirms the validity of the model with independent data sets.

The impact of variability assessed with Monte Carlo increases the potential of

the subcutaneous absorption model to be used effectively in a Glycaemic control

protocol. The resulting Glargine absorption time-action with expected variability

seen intra- and inter- individually would help in designing dosage regimens. Un-

derstanding the pharmacokinetic properties of insulin is one of the major source

in dosage designs. It is intended that this model development with introduced

parameter variability would eventually offer a safe means to develop and compare

control algorithms for the less critically ill patients, prior to a clinical testing.





Chapter 5

Virtual Trials

5.1 Introduction

Virtual trial methods have played a substantial part in TGC by providing safe

means to develop and analyze glycaemic control protocols prior to clinical vali-

dation in pilot trials [Chase et al., 2010c, 2007]. With validated virtual patient

simulations, a patient’s immediate response towards a known intervention, either

from insulin administration alone or combination of insulin and nutrition, can be

assessed. Virtual methods and simulations are also able to account for physio-

logical variability, clinical compliance and/or sensor errors, thus offering a close

view of behaviour seen typically in clinical settings. Hence, protocols may be

optimised virtually to save time, save money and, most important of all, yield a

better patient outcome in clinical implementation.

In [Chase et al., 2007], any glycaemic control protocol must reduce elevated

blood glucose levels in a controlled, predictable manner, and hold them in a tight

range in the presence of any pertubations. It must be adaptive, and/or able to

identify changes in patient metabolic status, particularly with respect to insulin

sensitivity [Lin et al., 2011, 2008]. More importantly, the protocol needs to be

simple enough to be easily implemented and effective enough to be essentially

automated to minimise the consumption of clinical time and expertise.

This chapter presents the application of the developed Glargine compart-

mental model in Chapter 4 and the ICING model in Chapter 3. It is more of an

engineering view of control before an actual clinical control protocol is developed

from the results in Chapter 6. The main targets of this chapter are:
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• Assess the effectiveness of Glargine as basal insulin replacement for TGC

in less critical patients.

• Comparison of glycaemic performance from using Glargine in virtual trials

against the clinical results from SPRINT protocol.

Adequate basal insulin is essential for the regulation of glucose in the liver,

muscle and adipose tissue. It controls and maintains blood glucose levels, partic-

ularly during nocturnal periods by suppression of hepatic glucose output to de-

crease occurrence of ketogenesis and unchecked gluconeogenesis [Arif and Escaño,

2010; Rossetti et al., 2003]. Basal insulin support using long-acting insulin is

the key component for treatment of patients with Type 1 and Type 2 diabetes

who require insulin with or without a combination of oral agents [Wong et al.,

2008a,b,c].

Glargine is a new long-acting insulin that has been proven to be an effective

basal insulin preparation for patients with Type 1 and Type 2 diabetes, including

pediatric patients [Schober et al., 2002; Chase et al., 2003; Hathout et al., 2003;

Massi Benedetti et al., 2003; Rossetti et al., 2003; Porcellati et al., 2004; Raskin

et al., 2000; Rosenstock et al., 2010; Swinnen et al., 2010]. It has been associ-

ated with a reduced incidence of hypoglycaemia [Rosenstock et al., 2000, 2010]

in comparison to other long-acting insulin namely NPH and Ultralente, lower

fasting plasma glucose (FPG), [Rosenstock et al., 2000; Raskin et al., 2000] and

lower glycosylated hemoglobin (HbA1c) [Gerich, 2004; Gillies et al., 2000; Swin-

nen et al., 2010]. Its primary unique dynamic is its very flat pharmacokinetic

profile [Lantus, 2001; Campbell et al., 2001]

Hence, analysing the efficacy and safety of using Glargine in a TGC pro-

tocol for patients in less acute wards is worthwhile and an interesting step. In

particular, if Glargine can be used effectively for stable ICU and less critical

patients, nursing workload could significantly be decreased, which has added

benefits [Chase et al., 2008a] as discussed in Chapter 1. Thus, a primary goal is

to determine whether less acute patients with no intravenous access and lesser

insulin requirements can have insulin delivered using subcutaneous Glargine, that

works effectively.
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5.2 Method

The effectiveness of Glargine for blood glucose control is assessed in silico. Pa-

tient data were selected retrospectively for the simulation study from a cohort of

patients who received insulin therapy under the SPRINT protocol during their

stay in the Christchurch Hospital ICU [Chase et al., 2008c]. SPRINT uses insulin

boluses and modulates feed rate hourly to maintain blood glucose levels within a

desirable range of 4.0–6.1 mmol/L. It takes into account an estimate of the spe-

cific patient’s insulin sensitivity at any given time to determine the subsequent

insulin bolus size and feed rate.

To see how well the selected patient cohort would respond towards glycaemic

control using Glargine, clinically validated virtual patient simulation results are

compared to actual clinical data. The data is from patients treated using the

SPRINT protocol [Chase et al., 2008c]. A brief explanation of the SPRINT

protocol follows first.

5.2.1 SPRINT Protocol

Since its first implementation at the Christchurch Hospital Department of Inten-

sive Care in August 2005, SPRINT has been used on over 1000 patients [Chase

et al., 2008c]. SPRINT is a model-derived TGC protocol developed from clini-

cally validated computer models used for real-time control in the ICU [Lonergan

et al., 2006a,b; Wong et al., 2006b; Chase et al., 2007, 2010c]. It is unique in

the way it uses explicit control of both nutrition and insulin inputs to maintain

blood glucose levels within a goal range of 4.0–6.1 mmol/L. SPRINT specifies

carbohydrate intake, formula and/or goal feed rates [Lonergan et al., 2006a,b].

Carbohydrate intake in other TGC protocols is often left to local standards, and

only insulin is solely used to control patient’s glycaemic level despite the risk

factors associated with various levels of carbohydrate intake in the critically ill

[Krishnan et al., 2003; Elia and De Silva, 2008; Der Voort et al., 2006]. Nutrition

levels and their variations are a pre-disposing factor for hypoglycaemia. Hence, a

lack of knowledge of carbohydrate administration, coming from a range of possi-

ble sources in the ICU, can multiply the impact of patient-specific variability on

the glycemic outcomes of a TGC protocol.



106 CHAPTER 5 VIRTUAL TRIALS

More specifically, TGC protocols are designed with underlying assumptions of

carbohydrate administration that thus guide the insulin dosing recommended at

a given blood glucose level. Deviation from this implicit level by a given clinician

or unit will result in a different metabolic balance, and thus a wider range of

patient-specific glycemic outcomes. These more variable glycemic outcomes will

therefore further enhance the overall glycemic variability seen from the protocol,

as well as result indifferent insulin dosing.

For successful TGC, carbohydrate administration must be known, if not ac-

tually specified, by the algorithm. Without knowledge of carbohydrate adminis-

tration it will be difficult for the protocol to estimate insulin sensitivity directly,

except as a value relative measure, which could thus limit some important aspects

of patient-specific, adaptive TGC. The impact of nutrition and implications on

TGC protocol is discussed in Chase et al. [2010a].

SPRINT determines the insulin and nutrition intervention based on an esti-

mate of patient-specific insulin sensitivity, SI , which is also a unique approach.

Any patient with a random blood glucose measurement over 8 mmol/L is put on

the SPRINT protocol. At entry a patient specific feed level sticker is attached

to the feed wheel of Figure A.1(a) in Appendix A. This sticker relates absolute

percentage goal feed (e.g. 30-100%) requested by SPRINT to an absolute enteral

feed pump rate in mL/hr. These feed rates are patient specific and thus the wheel

is patient specific. The values on the feed conversion sticker are computed based

on the patients age, body frame size and gender. Weighting factors are assigned

to each group of each variable (eg: Male = 1.0, Female = 0.8, Large body size =

1.1, Small body size= 0.8), which are then multiplied together to scale the feed

rates on a per-patient basis [Lonergan et al., 2006a]. Normally, when patients

are received at the ICU, the weight is unknown. Hence, patient’s weight is not

directly considered in the model-derived protocol. The range of patient-specific

goal nutrition rates is 50 mL/hr to 100 mL/hr.

A further unique feature of SPRINT is the one or two hourly measurement

and intervention intervals, which are also determined by patient’s own insulin

sensitivity, SI . More importantly, to ensure glycaemic control is not lost in pa-

tients who are often metabolically variable, SPRINT does not allow a four-hour

measurement like many other protocols [Lonergan et al., 2006a]. All the unique

features of SPRINT in comparison to other protocols are thoroughly discussed
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in [Chase et al., 2010a,b].

5.2.2 Virtual Trial Patient Cohort

The 15 patient cohort used to create the virtual cohort for simulation covers a

more stable portion of the general ICU population. These patient data are a

small subset of the full SPRINT cohort [Chase et al., 2008c]. For this study

cohort, patients were considered stable based on measurement frequency of 2

hours with no significant change in intervention or glucose levels. These patients

are considered to represent a more stable patient group ready for transition to a

less acute ward and subcutaneous insulin. Hence, they are the type of patients

who might not have intravenous access and for whom a less intensive protocol

would prove clinically useful.

The APACHE II score (Median: 19, IQR: 15–21.5), age, sex and mortality

for the selected cohort are shown in Table 5.1. The average length of each patient

data is 4.3 days (Range: 1.9-11.7 days). It is worth noting that the APACHE

II scores have a much higher median and range than the larger cohorts in the

glycaemic control research of Van Den Berghe et al. [2001] and Krinsley [2004],

but is more similar to Van Den Berghe et al. [2006a] more recent study. This

latter point reflects the general medical ICU cohort in SPRINT from which these

patients were selected.

5.2.3 Virtual Trial Simulations

Virtual analysis, and clinical, model-based TGC both require a clinically vali-

dated patient-specific glucose-insulin model. The patients time-varying insulin

sensitivity, SI , a critical dynamic parameter was fitted hourly to the clinical pa-

tient data using Equations (2.38)–(2.44) and an integral fitting method [Hann

et al., 2005]. The fitting method uses integrals of differential equations to reduce

the nonlinear estimation problem to a set of linear equations that can be easily

solved. The method has the advantage as being convex and not starting point

dependent. It effectively matches the area under the measured response curve,

rather than matching the response trajectory. Hence, this approach converts a
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Table 5.1 Long-term virtual trial patient cohort

Patient ID Medical Group APACHE II score Age Sex Mortality
5004 Burns 11 43 F N
5008 Respiratory Failure 23 44 F N
5020 Pancreatitis 19 68 M N
5023 Unknown NA 75 M N
5028 Respiratory Failure 15 67 M N
5032 Pneumonia 31 70 M N
5034 Pancreatitis 20 68 M N
5050 Trauma 15 20 M N
5063 Pancreatitis 15 80 M N
5070 Dissecting Aorta 20 76 F N
5079 Unknown NA 50 F N
5092 Unknown NA 76 M N
5102 Sepsis 17 49 M N
5111 Cardio. Shock 29 58 M N
5118 Haemorrhage 19 50 F N

Median 19 57
IQR [15–21.5] [20–80]

computationally intense non-convex problem into a much simpler convex prob-

lem, resulting in speed thus, saving significant computational time. The method

has been used in a variety of clinical glycaemic control studies [Hann et al., 2005;

Wong et al., 2006b; Chase et al., 2005; Chase and Shaw, 2007; Le Compte et al.,

2009].

Constraints are placed on insulin sensitivity, SI , in the identification process

to ensure it is within a physiologically valid range. Insulin sensitivity, SI is a

primary factor in which it determines the resulting glucose level for any given

inputs, and thus how much insulin is required to achieve tight control, at least to

the dose where insulin effect saturates [Natali et al., 2000; Prigeon et al., 1996;

Sowell et al., 2003]. More specifically, in the model used in this study, it accounts

for the net effect of any suppression or increase in endogenous insulin and glucose

production, and the rate of peripheral glucose uptake. Finally, the cytokines and

hormones that drive these affects that result in hyperglycemia are physiologically

linked to lowered insulin sensitivity and vary continuously overtime as patient

condition evolves. Hence, this overall effective insulin sensitivity is dynamic and

time-varying [Lin et al., 2006, 2008; Hann et al., 2005].

The resulting time-varying SI profiles represent time-varying metabolic sta-

tus for individual patients. The insulin sensitivity metric, SI is a well validated
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metric and has also shown significant correlation to gold standard research as-

sessments of insulin sensitivity [Lotz et al., 2006; Lotz, 2007; Lotz et al., 2008;

Docherty et al., 2009], and in comparison to steady states achieved in these gold

standard tests [Chase et al., 2009]. Thus, these profiles of SI can act as “virtual

patients” and patient-specific blood glucose levels for different insulin and nu-

trition inputs can be determined. More importantly, these virtual patients can

be used for testing different glycaemic control protocols for the same patient, a

clear advantage in developing new protocols. This “virtual patient” simulation

method had been shown to be an accurate way of predicting the effect of different

insulin therapies [Chase et al., 2010c, 2007; Lin et al., 2008]. The study by [Chase

et al., 2010c] provide the first rigorous validation of a virtual in-silico patient and

virtual trials methodology. It fully validates the independence of virtual patients.

This shows that the method can accurately simulate clinical results of a TGC

protocol. Moreover, it provides added assurance of protocol efficacy and a sig-

nificant insight into the clinical impact, before a clinical control protocol takes

place.

With respect to applying TGC, insulin sensitivity is critical. The varia-

tion due to patient condition will drive inter-patient differences and variability.

Variation in this value as patient condition evolves will then drive intra-patient

variability. As a result, insulin sensitivity, lies behind the main driving factors

behind the significant glycemic variability seen in critically ill patients and the

success (or lack of it) of TGC protocols.

5.2.4 Control Protocol with Glargine

In this study, the effect of Glargine was first tested where the sum of the clini-

cal daily boluses for a patient is substituted by a single dose of Glargine. This

approach assumes the overall stability of Glargine’s PK profile can replicate that

required with stable patient, as selected here. Virtual trial results are then com-

pared to the clinical SPRINT results to evaluate the performance of Glargine in

place of intravenous insulin. This is a first step towards a true Glargine TGC

protocol, in that it determines the potential for this insulin type in hospital TGC.
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5.3 Virtual Trial Result

Simulation results from Patient 5092 are shown in Figure 5.1. The top panel

shows the blood glucose profile throughout the length of stay used. Glargine dose

given is the same as SPRINT boluses. With the administration of Glargine alone,

it can be seen that Patient 5092’s glycaemic level is not well controlled for the first

100 hours, equivalent to approximately 4 days. The median blood glucose level

for this first 100 hours is 8.03 [IQR:7.53, 8.81] mmol/L. As blood glucose levels

over 7.0-8.0 mmol/L reduce and/or eliminate the effectiveness immune response

to infection [Chase et al., 2010a], this patient needs to be better managed in

terms of glycaemic level quality.

This result occurs due to the fact that the effective interstitial insulin takes a

longer ‘build up’ time to achieve the same concentration level as when intravenous

insulin injections are used in SPRINT protocol [Chase et al., 2008c]. As shown

in the second panel of Figure 5.1, depicted by the solid olive line (–), the build

up of Glargine’s effective interstitial insulin only begins to achieve relatively the

same level as the IV insulin in SPRINT around 150th hour (6th day). Hence, an

immediate conclusion is that a direct translation to Glargine is not possible due

to this build-up period.

The logic behind Glargine’s build up is explained through the characteristic

of Glargine itself. Since the typical, reported time-action profile of Glargine is

24-26 hours long [Heinemann et al., 2000; Lantus, 2001; Campbell et al., 2001],

Glargine is bound to accumulate between each dose interval until it reaches steady

state. One study reported a time-action profile of up to 30 hours [Lepore et al.,

2000]. Hence, it is unlikely that Glargine would clear up to zero exactly upon

each 24 hour interval. This excess leads to an accumulation in the following 24

hour interval of subcutaneous injection. In Luzio et al. [2003], the absorption

characteristics of Glargine are compared with NPH in Type 2 patients and it was

found that 50% of the residual radioactivity of Glargine was still present at the

injection site even after 24 hour, indicating a potential for long term build-up

with regular use.

Beginning from the 150th hour until the end of hospital stay, the glycaemic

level is well managed with a median BG of 6.29 [IQR:5.61, 6.93] mmol/L. The

overall BG performance level throughout the whole stay is 7.02 [IQR:6.14, 7.89]
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mmol/L. These results correlate well with Glargine’s reported slow absorption

rate and the clinical effect seen after the first few days of intensive insulin treat-

ment.

The third panel of Figure 5.1 shows the amount of Glargine used daily

throughout the stay, where the amount of Glargine equals to the daily amount

administered in the actual clinical data. Since this simulation is more focused on

analysing the efficacy of Glargine in place of IV insulin, there is no dose adap-

tation from day to day. A different amount of Glargine may be seen, when an

actual control protocol is developed where previous dose, previous and current

glycaemic level as well as nutrition are taken into account. Although not shown

in Figure 5.1, the amount of nutrition for all the patients selected in this cohort

is kept at the same feed level as in the clinical data. Finally, Patient 5092 in

Figure 5.1 is typical of the cohort.

Table 5.2 summarizes the virtual trial results of using Glargine replacing

the intravenous insulin administered in the selected patient cohort of SPRINT

by showing the glycaemic level performance. The performance measurement is

categorized by median and IQR of blood glucose, amount of insulin used per day

and percentage in desired band, on a per-patient basis. Overall, the per-patient

median BG is 8.34 [IQR:7.57, 8.55] mmol/L. Median percentage spent in desired

time band of 4.0–6.1 mmol/L is a very low 2.49% [IQR: 0.0, 11.0]. The lowest

median BG, 7.02 [IQR:6.14, 7.89] mmol/L and the best time in band are achieved

by Patient 5092 who had the longest stay with 323 hours long, equivalent to 13

days. This patient was shown previously as the simulation example in Figure 5.1.

It can also be seen that Patients 5004, 5008, 5028 and 5092, all of whom had

a stay of more than 168 hours (7 day), had better control than other patients.

The range of median BG for this group of patients is from 7.02–7.59 mmol/L.

This result suggests that control quality for this cohort simulation is associated

with patient’s length of stay.

This outcome is directly attributed to Glargine’s effective interstitial build

up mentioned previously, which requires 5 days to reach full effect, during which

control is poor.

A similar outcome is that Glargine is less effective when the usage is less
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Figure 5.1 Virtual trial simulation result for Patient 5092. The top panel displays the blood
glucose profile simulated with the usage of Glargine alone, represented by the solid blue line (–).
The dashed red line (- -) represents the patient’s blood glucose profile from the actual clinical
data while Patient 5092 was under intensive treatment with the SPRINT protocol [Chase et al.,
2008c]. The second panel shows the effective interstitial insulin, where solid olive line (–) depicts
Glargine and dashed olive line (- -) represents SPRINT clinical data. The third panel displays
the total unit of Glargine used daily, replacing the sum of insulin bolus given intravenously in
SPRINT protocol. The bottom panel displays the model-fitted insulin sensitivity, SI .
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than 24 hours. A group of patients with less than 24 hour stay, have a BG range

between 7.96–9.06 mmol/L. Considering the build-up time, these results indicate

that Glargine use should only be considered for long stay protocols, over 3–5 days.

This is not to be mistaken that Glargine’s administration is decided upon length

of stay. Rather, the simulation shows that Glargine is more effective with longer

stay. Any stay of less than 24 hours in the simulation showed the ineffectiveness

of Glargine. In real life, patient is considered stable once they are extubated, not

on inotropes and removed of IV lines.

Finally, the worst case was Patient 5070. This patient also used the largest

amount of Glargine per day with median 82U and [IQR:75.4, 89.7] U, which

indicates the high insulin resistance of the cohort. In patients who are ageing,

hyperglycaemia may be even more severe along with patients who suffer from

diabetes, obesity, and liver cirrhosis [Desai et al., 1989; Schwartz and Porte Jr,

2005; Garcia-Compean et al., 2009]. From [Rolan and Molnar, 2006], age related

differences in pharmacokinetics are primarily due to among others, diminished

renal function, altered proportions of body fat and water, and reduced cardiac

output. Age could therefore also be one of many other factors that contributed to

Patient 5070’s loss of glycaemic control who at 76 years of age, is at the cohort’s

lower end of age upper quartile.

Table 5.2 also shows high BG median values in part due to the Glargine build

up time. In the first 3–5 days, some glycaemic control is lost and BG rises using

the straight (unit to unit) translation of IV insulin to Glargine. After this point,

as seen with Patient 5092, BG levels stabilize but at slightly higher levels than

with IV insulin. Hence, the use of Glargine will require a more advanced dosing

than a straight, simple 1:1 translation.

5.3.1 Comparison with SPRINT protocol

To see the effect of using Glargine in comparison to the SPRINT protocol, Figure

5.2 compares CDFs of the blood glucose level for the entire cohort used (1,689

hours). The distribution of BG level is significantly different between the two

protocols. In SPRINT, the median and IQR for BG achieved is 5.86 [IQR:5.35,

6.51] mmol/L. A much lesser control performance along with a wider BG range

are the result from using Glargine, with median BG 7.84 [IQR:6.93, 8.77] mmol/L.
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Studies have shown that variability in blood glucose is also potentially harmful

[Dossett et al., 2008; Egi et al., 2006; Ali et al., 2008]. As in [Chase et al.,

2010a], one of the well reported facts between the interrelationship of glycaemia,

TGC, patients and outcome is, mortality increases with blood glucose variability,

independent of the mean or median value achieved by any form of glycaemic

control [Egi et al., 2006; Bagshaw et al., 2009a].

Figure 5.2 Comparison of cumulative distribution functions for BG in SPRINT and by using
Glargine. The solid red line (–) represents BG concentration under SPRINT protocol [Chase
et al., 2008c] and solid blue line (–) represents BG concentration under Glargine protocol.

To further assess the performance comparison, Figures 5.3 and 5.4 summarise

the glycaemic control performance obtained as cumulative distribution functions

on per-patient basis for the median, 5th and 95th percentile patients. The CDFs

indicate the tightness across patients in the cohort. Results clearly show the

differences in the tightness and variability of the glycaemic control performance

resulting from the different protocols. Glargine alone shows a significant loss of

control for the median and 90% confidence interval patient results due to the

lower effective insulin levels it achieves initially.

The median patient with Glargine has less than 15% measurements below

7mmol/L compared to 100% achieved by the SPRINT protocol median patient.

Median blood glucose levels should be less than 7.0 mmol/L, and thus allow for

reasonable variation in control as patient condition evolves. This goal will also
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have lesser impact on immune response to infection, thus reducing the potential

for sepsis, multi-organ dysfunction and failure, and thus death [Chase et al.,

2010b; Vincent et al., 1998; Moreno et al., 1999] .

At the 5th percentile, around 65% of measurements are below 7mmol/L for

Glargine, with none of the 95th percentile having any measurements between

4-7mmol/L. This compared poorly with SPRINT protocol, with 100% of blood

glucose values below 7mmol/L at the 5th percentile and 20% of the 95th percentile

patient having readings below 7mmol/L.

Hence, the straight 1:1 translation of Glargine, while implied in the literature

as a potential solution, results in significant variability across patients.

Figure 5.3 Glargine per-patient blood glucose cumulative distribution function (CDF).
Dashed box shows 4-7 mmol/L band. The median patient has less than 15% of measure-
ments below 7mmol/L in this case. None of the 95th percentile patient has measurements
between 4-7 mmol/L band while around 65% of the 5th percentile has blood glucose values
below 7mmol/L.

5.3.2 Interstitial Insulin Build Up

Interstitial insulin in the model portrays the insulin signal at cellular level and the

dynamics of glucose uptake are directly correlated with insulin concentration in

the interstitial fluid rather than in plasma [Castillo et al., 1994; Yang et al., 1994;

Bergman, 1997; Sjöstrand et al., 2002; Bodenlenz et al., 2005]. Studies on glucose



5.3 VIRTUAL TRIAL RESULT 117

Figure 5.4 Clinical (SPRINT) per-patient blood glucose cumulative distribution function
(CDF). Dashed box shows 4-7 mmol/L band. The median patient has 100% of measurements
below 7 mmol/L in this case. The 95th percentile patient has only 20% below this value,
and the 5th percentile patient has 100% of blood glucose values below 7 mmol/L. Overall, the
per-patient CDFs indicate the tightness across patients in the cohort.

correlation with interstitial insulin begin with studies on animals, which provided

the essential data [Rasio et al., 1968; Camu and Rasio, 1972; Yang et al., 1992;

Bradley et al., 1993; Getty et al., 1998], and have now moved on to human studies

including direct measurement on human skeletal muscle tissues [Bodenlenz et al.,

2005; Sjöstrand et al., 2002; Sjostrand et al., 2000; Sjöstrand et al., 1999; Jansson

et al., 1993]. All of the mentioned studies, came to the same result, despite a

range of differences in which included comparing plasma and lymph, which is

reflective of the interstitial fluid, or by microdialysis, or by direct measurement

in the interstitial fluid. In particular, all these studies concluded that interstitial

insulin is significantly lower than plasma insulin. Sjöstrand et al. [1999] reported

that it is as significant as 40% lower, while [Bergman, 1997] reported a ratio 3:2

between plasma insulin to interstitial insulin.

In the interstitium, due to the restricted pathway of insulin to the interstitial

fluid, the kinetics of insulin are slower than plasma [Yang et al., 1994; Bergman,

1997; Sjöstrand et al., 2002]. Some studies suggested an endothelial barrier that

delays the transcapillary transport of insulin, which itself is a time-consuming

process resulting in a lag in the interstitial fluid concentration [Jansson et al.,

1993; Sjöstrand et al., 1999, 2002]. For patients who are have Type 2 diabetes or
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obese, and are thus likely to display significant insulin resistance [Bastard et al.,

2002], the delay is even more pronounced [Sjöstrand et al., 2002]. Therefore,

in these simulations of Glargine, a slow and long acting insulin that has to go

through 4 compartments (precipitate, hexameric, monomeric/dimer and intersti-

tium) before appearing in plasma, the longer build up in the interstitium should

be expected. Figure 5.5, shows the stages of a 40U subcutaneous Glargine from

precipitate to hexameric, monomeric/dimer, interstitium and lastly appearing as

plasma insulin.

This analysis partly explains how TGC is achieved in the SPRINT proto-

col [Chase et al., 2008c]. In particular, boluses of intravenous insulin, given one

or two-hourly, quickly raised the interstitial insulin rapidly. This approach thus

promoted a more rapid rate of glucose uptake than would be found using subcu-

taneous long acting insulin.

Figure 5.5 A sample of 40U subcutaneous Glargine, as precipitate depicted as solid blue line
(–), hexameric (- -), monomeric/dimer (· · · ), interstitium (·-) and appearing as plasma insulin,
in solid red line (–). The 4 stages of Glargine from the subcutis before appearing as plasma
insulin, contributed to the delay and losses. This explains why IV insulin in SPRINT raised
interstitial insulin, Q rapidly compared to subcutaneous Glargine.

Hence, from an engineering perspective, to raise the concentration of the

effective interstitial insulin, Q, in the virtual trials, a few supraphysiological sim-

ulations of Glargine were run. Effective insulin is actually unutilized insulin that

has crossed the plasma through a capillary wall, before appearing in the intersti-

tium. It could also be insulin that had bound and unbound to cell walls, tissues
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or insulin receptors [Duckworth and Kitabchi, 1981; Duckworth et al., 1998]. Re-

sponses for using Glargine with increasing doses are shown in Figure 5.6. This

analysis done for a time frame of 24 hours, clearly shows how the effective inter-

stitial insulin, Q has a different magnitude of build up depending on the amount

of Glargine used. Only with doses fourfold greater than the initial amount of

Glargine, did the effective interstitial insulin, Q, builds up quickly enough to

achieve a relatively similar profile of Q, to that of the identified and simulated

SPRINT clinical data on the first day.

Another approach that can be used to raise the effective interstitial is a

priming bolus. Using this method, intravenous insulin boluses are maintained

throughout the first day with a background of Glargine to raise the concentra-

tion of effective interstitial insulin, Q. Figure 5.7 shows the responses of the

priming bolus in comparison to SPRINT data and Table 5.3 summarised the co-

hort results, detailing the BG performance on the first day, the rest of stay and

the whole stay. In this specific cohort, only ten patients were simulated, omitting

patients with less than 24 hour stay since the comparison between first, rest and

whole stay cannot be performed for the patients with a short duration in hospital

stay.

In Figure 5.7, the effective interstitial insulin for the first 24 hours is higher

compared to SPRINT clinical data resulting in slightly better gycaemic perfor-

mance with all hourly BG within the 4.0–6.1mmol/L band. However, after the

first day, without the IV bolus the effective interstitial insulin quickly drops to

the same level as a second day dose of Glargine. The result is thus, a smaller loss

of control.

Over the entire cohort, the highest median value of the glucose concentra-

tion for all four categories occurred on the first day. The blood glucose levels

achieved using Glargine alone is a lot higher compared to the rest, with median

BG 10.40 [IQR:8.58, 10.74] mmol/L. However, in terms of blood glucose vari-

ability, Glargine alone shows a tighter range with a 90% CI of [7.22, 11.22], as

Glargine is known to be less variable in profile [Raskin et al., 2000; Lepore et al.,

2000; Scholtz et al., 2005]. The other three categories have a much wider 90% CI

interval range, as can be seen in Table 5.3.

Increasing Glargine fourfold, achieved the goal of matching the effective inter-
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stitial insulin build up of the IV boluses. However, it carries risk with such large

doses and compromised patient safety with 3 episodes of hypoglycaemia. Hypo-

glycaemia in this trial is defined as blood glucose level lower than <2.2 mmol/L.

Finally, the simple priming bolus method resulted in one hypoglycaemic episode.

Therefore, in terms of safety and efficacy, only SPRINT protocol performed well

during the first day, and attempts to mimic it simply with switching to Glargine

carried significant potential patient risk.

For the rest of stay, the three protocols of Glargine only, Glargine fourfold

and Priming, all perform relatively the same, with little discrepancy in BG con-

centration and no occurrences of hypoglycaemia. SPRINT has the best glycaemic

control with median BG of 5.69 [IQR:5.28, 6.80] mmol/L. In terms of efficacy in

glycaemic control, for the whole duration of stay, the Glargine only protocol is

still disadvantaged compared to the other protocols. However, the protocol using

a priming bolus, and Glargine fourfold both resulted in hypoglycaemia.

Table 5.3 Cohort comparison for 10 patients with length of hospital stay over 24 hours,
between Glargine and SPRINT performance on first day, rest of stay and whole stay.

Blood Glucose 90% CI Hypoglycaemia
[mmol/L] [mmol/L] [N]

First Day Glargine 10.40 [IQR:8.58,10.74] [7.22, 11.22] 0
SPRINT 8.53 [IQR:6.36,9.23] [4.73, 10.33] 0

Glargine 4x 8.93 [IQR:6.50, 10.04] [4.85, 10.72] 3
Priming 8.29 [IQR:5.98, 9.02] [4.44, 10.21] 1

Rest of Stay Glargine 6.90 [IQR:6.27, 7.54] [4.95, 8.79] 0
SPRINT 5.69 [IQR:5.28,6.01] [4.67, 6.80] 0

Glargine 4x 6.14 [IQR:5.62, 6.71] [4.47, 7.77] 0
Priming 6.75 [IQR:6.16, 7.41] [4.95, 8.78] 0

Whole Stay Glargine 7.02 [IQR:6.36, 7.67] [4.99, 9.23] 0
SPRINT 5.71 [IQR:5.33, 6.06] [4.67, 7.36] 0

Glargine 4x 6.18 [IQR:5.64, 6.83] [4.48, 8.22] 3
Priming 6.83 [IQR:6.16, 7.48] [4.84,8.91] 1

5.4 Discussion

Glargine is an effective basal support on a daily basis for patients with Type

1 and Type 2 diabetes, including pediatric patients [Rosenstock et al., 2000;

Rossetti et al., 2003; Porcellati et al., 2004; Raskin et al., 2000]. However, for a

hyperglycaemic patient in the ICU or HDU with no prior history of diabetes, the
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Figure 5.6 Effect of Glargine with increasing doses on the effective interstitial insulin con-
centration Q(t), which determines the final glucose lowering effect observed. The first panel
displays the Blood Glucose level with dotted black line (· · · ) representing the BG effect from
IV SPRINT. The solid red line (- -) is the BG lowering effect from Glargine protocol, while
solid pink, purple and olive lines (–), are BG levels utilising Glargine with increasing doses.
The second panel displays the effective interstitial insulin. The goal is to match the IV insulin
only line for equal control.
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Figure 5.7 Effect of priming bolus with Glargine and intravenous insulin bolus combined,
to raise the effective interstitial insulin concentration Q(t), which determines the final glucose
lowering effect observed. The first panel displays the Blood Glucose level with solid light
blue line (–) representing the BG effect from priming bolus. The dashed blue line (- -) is the
BG lowering effect from SPRINT protocol and solid pink line (–) is by the administration of
Glargine alone. The second panel displays the effective interstitial insulin. The goal is to match
the IV insulin only line for equal control.
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benefit of Glargine has not been clinically tested by any group. Virtual trials are

thus used in this research to demonstrate the efficacy of using Glargine. Overall,

it was found that Glargine alone cannot readily maintain tight control nor can

it significantly reduce the elevated glycaemic levels, despite the relatively stable

cohort used.

The SPRINT protocol utilizes intravenous insulin injections on an hourly

basis to manage glycaemic levels for critically ill patients. Many critically ill

patients are metabolically volatile from hour to hour as a result of their critical

illness and the medical interventions and drug therapies they receive (Chase et al.,

2008). Therefore, intravenous insulin injections suit this situation well because

the response is fast and does not linger when patient metabolic status changes.

Importantly, if a patient is being weaned from inotropes or other medications that

suppress insulin sensitivity, any lingering effect of insulin is undesirable because

insulin sensitivity may quickly recover and result in hypoglycaemia. However,

the resulting rapid and tight glycaemic control offered by SPRINT comes with

an added cost of higher nursing effort.

For the 15 patient cohort in this chapter, their insulin requirement was gen-

erally very stable, relatively low and consistent from one hour to the next. These

patient’s insulin requirements should therefore be able to be directly substituted

by Glargine successfully, as they need only a constant and stable supply of ef-

fective insulin in the interstitial compartment. The peakless time-action profile

of Glargine is thus ideal for such a basal insulin regimen. However, through the

virtual patient simulations, it was found that by using Glargine alone, the effec-

tive insulin in the interstitial compartment does not build up quickly enough. As

a result, patients blood glucose rise significantly and are not well controlled on

the beginning of the treatment, particularly on the first day. Subsequent days

with similar dosing are thus not able to reduce these levels without adding more

insulin which carries risk with long acting subcutaneous insulin.

For any insulin that is given subcutaneously, it takes a while to reach the cir-

culatory systems. Glargine itself is a slow, long acting insulin that goes through

4 compartments before reaching plasma [Campbell et al., 2001; Taŕın et al.,

2005]. Therefore, its effect in the interstitial compartment builds up very slowly

compared to intravenous insulin. Thus, the efficacy of subcutaneously injected

Glargine as basal insulin support in the virtual patients will only be demonstrated
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in patients with a longer stay.

Glargine is reported to reach a steady state 2-4 days after the first dose

[Lantus, 2001; Heise et al., 2002; Lehmann et al., 2009]. Under a single-dose con-

ditions, the time-action profile of Glargine is reported to be 22-26 hours [Lantus,

2001; Heise et al., 2004; Porcellati et al., 2007], even up to 30 hours in some cases

[Lepore et al., 2000]. While under steady-state conditions, the duration is around

24-25.6 hours [Klein et al., 2007; Porcellati et al., 2007]. There has always been

concern on the cumulative effect of Glargine with the slow absorption and build

up process. However, in Heise et al. [2002], it is reported that there is no evidence

of accumulation in Glargine during the 12 day trial. The study was performed

on 15 Type 1 Diabetic patients and steady state was reached as early as the 2nd

day. However, in a review article by the same author, [Heise and Pieber, 2007],

it is acknowledged that a slight increase in Glargine’s time-action profile under

steady-state conditions is due to accumulation of Glargine.

In this chapter, the superposition or accumulation of Glargine is very slow.

The slow cumulative effect did not have any negative side effect on the patients

in terms of hypoglycaemia. According to Gerich et al. [2006], it has been difficult

for patients and physicians to sufficiently titrate basal long-acting insulin therapy

for the fear of hypoglycaemia associated with (NPH) or Ultralente due to their

near flat pharmacokinetic profiles. Glargine, however, enables attainment of near

normoglycaemia with lesser risk. This study successfully demonstrated a safe ap-

proach to use Glargine with regard to hypoglycaemia in the less acute wards. The

only condition when hypoglycaemia occurred, is through the simulations of the

priming bolus approach as well as the instance where supraphysiological Glargine

dose is given to quickly raise the effective interstitial insulin, Q. However, in this

study, safety traded off with significant losses in control performance.

Hence, any design of a control protocol using Glargine should consider the

possible variable absorption kinetics of Glargine, and the day to day variability

that often result in patient’s glycaemic levels instability. Virtual trials allow this

task to be done by providing a validated simulation environment, thus offering

additional safety factor to patients before any control protocol could be developed

for clinical practice. In particular, a safe means of gradually substituting IV

insulin for Glargine will need to be developed, and will likely require a measure

of patient-specificity, as enabled by model-based control.
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The virtual trials done in this chapter in general, display that the use of

Glargine in the long term recovering stable patients, results in blood glucose

levels somewhat higher compared to using intravenous insulin injections only.

The virtual trial results thus show that this choice is a safe and conservative. It

is also less labour intensive. However, the elevation of BG in some cases were

significant enough to warrant further analysis into better methods.

The patient cohort for this study was patients that received intensive insulin

treatment under the SPRINT protocol in the ICU [Chase et al., 2008c]. Although

these patients are considered metabolically stable, and may be reflective of pa-

tients in the less acute wards, the results obtained in-silico, may not be fully

representative of the the actual units. Sufficient data is still needed. However, in

these less acute wards, retrospective data is not usually available with the density

required for virtual trials. Hence, the need to develop a cohort from the more

stable ICU population to begin this study and research area.

Moreover, there are still several issues that need to be addressed. In less acute

wards, patients often have meals, rather than the constant naso-gastric feed used

in the ICU. It is known for healthy individuals, endogenous insulin is secreted

upon consumptions of food (Woods et al. 1998). However it is not known to

what degree that less critically ill patients are able to support their own prandial

insulin requirements. In addition, the variability in patient endogenous insulin

responses will need to be addressed. Endogenous glucose production for these

less critically ill patients may be different from ICU patients as well. Hence, any

method to quickly raise the effective interstitial insulin, Q could result in a less

favourable incident of hypoglycaemia given patients known variability. All these

issues should ideally be investigated through clinical data gathering.

All of these aspects will introduce potential further variability. Hence, these

results necessitates the use of a more conservative approach prior to clinical test-

ing to ensure both efficacy and patient safety. In the following chapters, Monte

Carlo simulations that account for Glargine’s and blood glucose variability will

be run to better ascertain the impact of these variabilities.
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5.5 Conclusion

This chapter presented a validated Glargine compartmental model and an in-

travenous insulin-glucose pharmacodynamic, ICING model both developed in

Chapters 2, 3 and 4. The in silico virtual trial results for 15 metabolically stable

ICU patients showed that Glargine can provide effective blood glucose manage-

ment for these long term recovering patients when their stay is longer than 7

days. Differences in Glargine PK made the straightforward 1:1 dosing calcula-

tion, from SPRINT boluses to Glargine doses, not the best method. Glargine

needs to go through 4 states after subcutaneous injection;precipitate, hexameric,

monomeric/dimer and interstitum before reaching plasma insulin, thus explain-

ing the slow absorption kinetics. In IV boluses, the response is much faster as

insulin gets to blood stream quickly without having to go through subcutis. A

combination of initial intravenous injection and Glargine dosing, or a supraphys-

iological Glargine amount is required for the first day to quickly lower elevated

blood glucose level. Once the patients blood glucose levels are within a desirable

range, Glargine alone can provide effective glycaemic management. However, this

method is relatively high risk, and resulted in some hypoglycaemia. The overall

results show an approach to managing the intravenous to subcutaneous insulin

transition that occurs as patients leave intensive care for less acute wards during

their hospital stay. Safe, effective approaches to this transition will ensure that

clinical burden and workload are not increased, while maintaining the benefits of

tight glycemic control.



Chapter 6

Virtual Trials: SPRINT+Glargine Protocol

Virtual trials performed in this chapter, are the first clinical validation step to-

wards developing a comprehensive system for maintaining TGC outside of the

ICU. In particular, the focus is on transition from relatively labour intensive in-

travenous insulin with frequent measurement in the ICU to less intensive, longer

acting, subcutaneous insulin in less acute wards with consequently fewer measure-

ments, adjustments and effort. The current standard protocol, SPRINT [Chase

et al., 2008c] uses intravenous (IV) insulin injections every 1-2 hours and con-

trols blood glucose levels effectively [Chase et al., 2008c, 2010b]. However, once

patients leave the ICU, the standard protocols are to use subcutaneous insulin,

often due to lack of intravenous lines or access to deliver insulin. Lower nursing

resource means SPRINT would also not be feasible even if intravenous access

were available. With no clear switching guidelines, from one scenario (ICU) to

the next (less acute wards), the changeover and protocols used are often adhoc

and not patient specific. The result is inconsistent levels of care, which can leave

ward patients at a disadvantage and result in so-called rebound hyperglycaemia.

Goldberg et al. [2004b] and Barth et al. [2007b] have expressed the need

to develop a protocol that could minimize rebound hyperglycaemia once an IV

insulin protocol is discontinued. As expressed in Barth et al. [2007b], from their

retrospective review of several ICUs, a marked variability in glucose control is seen

within 48 hours of protocol discontinuation once patients were transferred to a

general medical floor. The patients in that study had a statistically significant

increase in mean percent of BG values > 8.3 mmol/L or 150 mg/dL. In Goldberg

et al. [2004b], for the first 12 hour after an IV protocol is stopped, mean blood

glucose levels climbed to 9.9 ± 3.2 mmol/L (178 ± 57 mg/dL), well above the

original target range. By the second 12 hour period, or 13–24 hours, mean blood
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glucose levels rose to 11.1 ± 3.9 mmol/L (200 ± 70 mg/dL). Both studies came

to the conclusion that there is a significant need for a protocol following patients

transferring out of the ICU to less acute wards.

Another study by [Olansky et al., 2009] evaluated the safety and efficacy of a

protocol using transition to subcutaneous Glargine from IV insulin in preparation

for transfer to a regular nursing floor. In this prospective analysis, from 99

patients included in the study only 1 patient developed hypoglycaemia. From

the aspect of efficacy, 70% of the patients had blood glucose level maintained

within 3.8–8.3 mmol/L (70–150 mg/dL). This study concludes that efficacy could

further be improved if the maximum limit of a 30U Glargine dose was increased,

and that this change was not likely to affect protocol safety.

This chapter, as a continuation from the previous chapter, strives to develop

a validated, model-based system to maintain good blood glucose control outside

of the ICU. The overall goal is to enable a smooth transition of patients from

ICU to less acute wards, while keeping nursing effort to a minimum, reflecting

the much lower nursing resource available. In Moghissi et al. [2009] the con-

sensus statement of AACE and ADA, the preferred treatment for non-critically

ill patients is one that has a scheduled subcutaneous insulin, basal component,

nutritional component and correctional component where insulin analogs are the

preferred insulin of choice. The said components are thus incorporated in the

glycaemic control protocol developed in this chapter.

Because SPRINT [Chase et al., 2008c] operates on the basis of estimating the

patient’s ‘apparent’ insulin sensitivity, which is effectively how much glucose can

be removed by the amount of insulin bolus given, the protocol is still applicable

when there is a background insulin infusion or a dose of Glargine. Hence, in

this chapter, to assess the quality or performance of control, virtual trials are

performed using SPRINT with daily doses of Glargine. Each performance mea-

sure of the protocols will indicate the associated benefit or disadvantage for both

patients and nursing effort.

The performance of each protocol will be quantified by comparison of clin-

ically validated virtual trial [Chase et al., 2010c] results to clinical data for the

goodness of control. Performance is based on duration of blood glucose levels

within a clinically desirable range, amount of insulin and nutrition given, safety
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or lack of hypoglycaemic events, and nursing effort intensity. Specifically, nurs-

ing effort intensity is measured by the number of interventions required, which

includes measuring blood glucose levels, adjusting feed rates, giving SPRINT IV

insulin boluses, and giving subcutaneous Glargine doses.

From [Chase et al., 2006; Eslami et al., 2008], time in a glycaemic band is

calculated as the time or percentage in a specific band and provides an indication

of the tightness of the glycaemic control result computed from all patients. It

reflects the proportion of patients being in a target band. In this study, 4.0–

6.1 mmol/L band is used as a tighter performance measure and 4.0–7.0 mmol/L

band, a less tighter choice but still a good acceptable range. The median and

IQR of glycaemic levels measure the tightness of blood glucose control and is

unaffected if data is skewed as normally seen from blood glucose data. IQR is

the difference between the 75th and 25th percentile, and does not depend on

the largest or lowest data. Hence, data evaluation by median and IQR is more

robust. A further explanation on performance analysis and data interpretation

of blood glucose levels can be found in Rodbard [2007]. Lastly, hypoglycaemic

episode is measured as the number of percentage or measurements that are below

a defined hypoglycaemic threshold. As defined in Chapter 5 previously, the lowest

threshold adopted in this study is 2.2 mmol/L. This performance measure is a

critical indicator on the safety of the protocol used.

6.1 Method

The effectiveness of Glargine for blood glucose control is assessed in silico. Pa-

tient data were selected retrospectively for the simulation study from a cohort of

patients who received insulin therapy under the SPRINT protocol [Chase et al.,

2008c] during their stay in the Christchurch Hospital ICU. The use of Glargine

is intended for patients who are recovering from their critical illness, and hemo-

dynamic stability had been regained.

Because the virtual trials method used is patient-specific, in silico trials can

be run using only clinically relevant patients. The patients selected for simulation

are those who exhibit metabolic stability within 30 hours of ICU admission.

Metabolic stability in patients in terms of stable blood glucose-insulin response
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is defined by:

• Stable hourly insulin boluses requirement, ≤ 3U of insulin per hour, for at

least 12 hours.

• Stable feed rate of ≥ 60% of the calculated individual patient’s goal feed

rate. Goal feed is calculated using individual patient’s age, gender and

frame size.

• No acute renal failure [Vincent et al., 1996].

• Less than 1000ml of fluid given as intravenous boluses in the past 24 hours,

indicating hemodynamic or circulating stability and a stable interstitial

volume.

• Resolving multiple organ failure (Sequential Organ Failure Assessment (SOFA)

Score ≤ 6) [Vincent et al., 1996].

In total 30 patients from the entire SPRINT cohort [Chase et al., 2008c] met

the inclusion criteria, and are detailed in Table 6.1. They total to 184.2 patient-

days, equivalent to 4,420 hours. The cohort represents a general cross-section of

the medical ICU population, as well as by diagnosis or medical group, APACHE

II score, age, sex and mortality. Males make up 60% of the patients selected

for the in silico assessments, which also mutates the overall ICU population on

SPRINT [Chase et al., 2008c]. Median age of these patients is 56 [IQR: 42,

72] years old, which is slightly younger than SPRINT, as might be expected

given the expectation of stability. Median Acute Physiology And Chronic Health

Evaluation (APACHE II) score is 18 with IQR=[16,20]. The average length of

stay is 5.7 [IQR:4.3, 6.7] days. Since the average stay of patients after ICU in a

non-critical setting is less than 6 days, this group of patients represents patients

normally seen in those wards. Mortality is 0 for the selected patients, further

reflecting these criteria and clinical expectations.

Three different protocols involving the use of Glargine are tested to evaluate

their potential for a clinical pilot study. Table 6.2 lists the full descriptions of

simulation protocols examined in this study. The simulated protocol with reduced

SPRINT boluses of 1U and 2U are considered for safety. The frequency of blood

glucose measurements, changes in feed rates and IV insulin boluses are governed
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Table 6.1 Long-term virtual trial patient cohort (N=30, 4,420 total hours equivalent to 184.2
day)

Patient ID LOS (hrs) Medical Group APACHE II score Age (years) Sex Mortality
5006 161 Respiratory Failure 23 44 F N
5013 90 Respiratory 18 56 F N
5033 100 Trauma 29 66 F N
5054 158 Respiratory Failure 18 75 M N
5060 271 Gastrointestinal 15 79 M N
5061 140 Trauma 16 22 M N
5071 107 Trauma 12 49 M N
5076 240 Gastrointestinal 12 32 M N
5086 127 Respiratory 32 64 M N
5101 280 Neurological 19 50 F N
5104 113 Trauma 18 18 M N
5122 159 Trauma 19 73 M N
5124 147 Respiratory 16 74 M N
5149 325 Surgical 21 60 M N
5158 103 Neurological 22 68 F N
5173 295 Respiratory 19 67 F N
5188 129 Trauma 14 73 F N
5207 155 Respiratory 19 42 F N
5233 39 Gastrointestinal 16 76 M N
5276 87 Septic Shock 18 18 M N
5279 85 Septic Shock 24 45 M N
5280 141 Trauma 18 45 M N
5288 77 Meningococcus 23 21 F N
5299 103 Respiratory 20 56 F N
5310 34 Neurological 19 60 F N
5315 196 Respiratory 18 19 M N
5317 136 Toxicology 19 23 M N
5322 136 Respiratory 15 72 F N
5351 166 Respiratory 12 76 M N
5376 120 Surgical 16 56 F N

Median 137 18 56
IQR [103–161] [16–20] [42–72]
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by the SPRINT protocol. SPRINT requires current and previous blood glucose

measurements, the amount of previous hour IV insulin bolus and nutrition given

in the previous hour, all to determine nutrition and insulin bolus for the next

interval. For patient comfort in the clinical environment, blood samples are taken

from the arterial cannula hourly until patient becomes metabolically stable. This

is defined as having 3 consecutive hourly measurements within 4.0–6.1 mmol/L

band. In which case, measurement frequency is changed to 2 hourly until blood

glucose levels fail to stay in the 4.0–6.1 mmol/L band.

Table 6.2 Description of protocol simulations

Protocol Description

Clinical Records SPRINT Clinical data from [Chase et al., 2008c]

SPRINT+Glargine Simulation of SPRINT protocol with Glargine as a basal
insulin replacement therapy

SPRINT+Glargine-1U Simulation of SPRINT protocol with Glargine where
the boluses calculated using SPRINT are reduced by 1U

SPRINT+Glargine-2U Simulation of SPRINT protocol with Glargine where
the boluses calculated using SPRINT are reduced by 2U

The dosing frequency of Glargine is approximately 24 hours, but can vary

form 22-27 hours in several studies [Heinemann et al., 2000; Lepore et al., 2000;

Porcellati et al., 2007]. The first dose is given in these protocols and virtual

trials at 12 hours after ICU admission. The size of the initial Glargine bolus is

the sum of SPRINT insulin boluses administered during the previous 12 hours.

The 12 hour period is chosen to ensure patients are in stable condition as would

be practiced in real condition (not simulated). The following Glargine boluses

are calculated as being half of the total daily insulin (IV boluses + Glargine)

from the previous day. This is for safety and Glargine is more effective per unit

given than insulin due to insulin like action of other precipitate products from

Glargine. Each Glargine dose is given as a bolus of the very long acting insulin

and is capped at 40U for safety against hypoglycaemia.

For example, consider an admitted patient who received 2U of insulin hourly

for the first 12 hours during the first day of stay. The sum of this IV insulin

bolus, equals to the sum of the first subcutaneous Glargine dose of 24U given

at 12 hours and is expected to last around 24 hours. If the patient continues to

receive 2U per hour from SPRINT on top of the Glargine given for the next 24

hours the subsequent Glargine dose given 24 hours later at hour 36, will be half of
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48U+24U or 36U. Importantly, Glargine dose has a ceiling rate of 40U, which is

not reached in this example but ensures that excessive Glargine is not given. The

goal of this limit it to minimise the risk of hypoglycaemia if insulin requirements

drop significantly over one day. Thus, this approach limits the daily change to

50% or 1.75 U/hr (max) before reaching the point where the Glargine dose was

too large. The protocol is outlined step by step below:

First Glargine Dose.

1. Add up the amount of insulin given to a patient during last 12 hours. This

sum is U.

2. Give Glargine dose equals to the amount calculated in step 1. This sum is

U.

3. This dose is capped at 40U.

4. SPRINT injection is not given the following hour.

5. SPRINT continues.

Each Glargine Interval.

1. Add up the amount of total insulin (SPRINT boluses+ Glargine) given to

the patient during the last 24 hours. This sum is U.

2. Divide this amount by 2. This sum is U.

3. Daily Glargine is prescribed from the amount calculated in step 2.

4. This dose is capped at 40U.

5. SPRINT injection is not given in the following hour.

6. SPRINT continues.

Hypoglycaemia is a major safety concern thus any control protocol should

consider immediate recognition and necessary treatment whenever blood glucose

drops to an alarming level. For each given Glargine dose, no IV insulin bolus is
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given in the following hour, as the rate of uptake to a peak value (rise time), can

be variable and the pharmacokinetic’s fluctuations could lead to hypoglycaemia

[Cryer et al., 2003; Heinemann, 2002].

For clarity, it is important to reiterate the main goals of the protocol studied

here. Specifically, these virtual trials and protocols are designed to accomplish

the following goals:

1. Learn more about the efficacy of Glargine in ICU cohorts. Studies in nor-

mal patients have reported it to have both greater [Murphy et al., 2003;

Massi Benedetti et al., 2003; Ratner et al., 2000] and lesser [Fahlen et al.,

2005; Hirsch and Brownlee, 2005; Ciaraldi et al., 2001] efficacy than other

insulin types. Hence, its total dose is limited here.

2. Learn more about the variability of Glargine pharmacokinetics in ICU pa-

tients to understand other sources of variability.

3. Safely test the use of Glargine and it’s potential use in weaning patients

entirely to Glargine.

Hence, these protocols are safe, first learning steps that are not guaranteed

to be finished protocols or products for clinical uptake.

6.2 Virtual Trial Results

A summary of the results for all 30 patients is shown in Table 6.3. The results are

given in per-patient median and IQR. As summarized in [Chase et al., 2010a], a

TGC cohort may have acceptable median and variability, but the clinical outcome

will be highly dependent on how each patient is treated. As some patients are

more variable than others, failure to directly identify and account for patient

variability means that some patients will receive, all else equal, more variable

TGC. Simulated protocol is not compared to SPRINT simulation, for the reason

of obtaining a good correlation of the proposed protocol to actual clinical results.

The median blood glucose concentration level from the simulation of SPRINT+

Glargine is relatively the same as the Clinical data. However, this result comes
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with a greater amount of total insulin used, which is the combination of IV bo-

luses and Glargine with 83.34 [IQR:74.90, 92.78] U/day. Clinical SPRINT daily

amount of insulin is 52.86 [IQR:37.22, 57.31] U/day. Feed rate is also higher

compared to the Clinical data with 125 [IQR:141, 109] g/day vs 118 [IQR:100,

140] g/day. In a clinical situation, feed rate is often turned off during various

medical procedures. Hence, that is one possible source of the slightly higher rate.

Based on these performance measurements, the protocol seems to be less ef-

fective with the larger amount of total insulin used. Equally, they could be also

seen as a difference in effect based on the different, much smoother, pharmacoki-

netic profile that results compared to the bolus driven clinical data from SPRINT

[Chase et al., 2008c]. The most noticeable difference as well as a positive effect,

that could be seen is the reduction in nursing effort, expressed in intervention fre-

quency. The highest intervention frequency (N/day) in SPRINT is recorded at

41 [IQR:36, 50] interventions per day. With SPRINT-1U+Glargine protocol, the

intervention frequency drops to 36 [IQR:34, 38] interventions/day. Importantly,

the 75th percentile is 24% lower, from 50 measurements to 38. Hence, at this

point there is a good indication that Glargine will be beneficial in terms related

to nursing resources.

On top of the usual clinical interventions in ICU, such as using corticosteroids

or vasopressers, the 1–2 hourly measurements of blood glucose levels, and the ad-

justment of IV insulin and dextrose feed, for TGC, require additional work. The

additional work for a 24 hour stay is up to 4 hours per patient with SPRINT at the

75th percentile, where the mean time taken for hourly blood glucose monitoring

and adjustment of insulin doses alone was 4.72 minutes [Aragon, 2006]. Hence,

the reduction from 50–38 is a savings of 1 hour of workload on a more difficult

or intensive patient. 1 hour of time saved is a significant amount of time reduced,

which would be much appreciated by the nursing staffs. This estimation is done

by calculating the highest upper-quartile for SPRINT and SPRINT-1U+Glargine

with the mean time of 4.72 mins, which gives to 236 mins (50 x 4.72 mins) and

179 mins (38 x 4.72 mins), respectively.

With the amount of insulin prescribed from SPRINT protocol reduced by

1U, while Glargine doses are given daily, a much lesser amount of IV insulin

boluses is administered with 35.91 [IQR:32.11, 36.84] U/day. However, with

additional basal insulin from Glargine, the total amount of insulin used is higher
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by 18.3 U/day (0.75 U/hr) in comparison to Clinical SPRINT data. The 0.75

U/hr difference in rate may be clinically insignificant given the difference in PK

profiles between SPRINT boluses of SPRINT with Glargine. In particular, the

long term infusion from Glargine may suffer greater losses to the liver and kidney

as it is more consistently present in plasma.

The median BG of SPRINT-1U+Glargine is 5.62 [IQR:5.12, 6.28] mmol/L,

where the tightness of blood glucose concentration is slightly reduced with a

higher upper quartile. Percentage of BG levels spent within 4.0–6.1 mmol/L

band drops almost 20%, although time spent in a less tighter control of 4.0–7.0

mmol/L is relatively maintained with 86.46% [IQR:83.4, 90.7] compared to 92.30

% [IQR:89.7, 95.1] from Clinical. Clinically, this result shows slightly greater, but

clinically insignificant difference in variability [Chase et al., 2010b]. Equally, 4.0–

7.0 mmol/L is an acceptable range and a much tighter band compared to other

clinical standards [Moghissi et al., 2009]. The slight loss of control particularly in

having glycaemic level within the desirable band of 4.0–6.1 mmol/L is made up by

low intervention frequency with 36 [IQR:34, 38] adjustments/day. In comparison

to Clinical data, this 12% reduction of intervention is significant when translated

to the time saved in performing the required adjustments either in feed rate,

administering SPRINT IV boluses, measuring BG levels or giving subcutaneous

Glargine doses.

In the last simulated protocol, SPRINT-2U+Glargine, reducing the pre-

scribed SPRINT IV boluses by 2U compromised the overall TGC performance.

This protocol, with daily doses of Glargine is not sufficient to provide effective

glycaemic management for these patients eventhough the total amount of insulin

used is comparable to Clinical data with 48.83 [IQR: 43.78, 52.41] U/day and

52.86 [IQR:37.22, 57.31] U/day respectively. The percentage of BG spent within

4.0–6.1 mmol/L band is a low 43.80 [IQR:32.43, 47.66] %. Overall, this last

protocol, along with the prior two, shows the impact of pharmacokinetics for a

different approach and implies that a direct 1:1 translation of insulin dose will

not work effectively and completely.

To further understand how the combination protocol used higher insulin com-

pared to SPRINT protocol, the explanation is illustrated in Figures 6.1 and 6.2.

Figure 6.1(a) shows the plasma insulin level of a random patient from the cohort

under SPRINT-1U+Glargine protocol while Figure 6.1(b) is the same patient re-
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ceiving insulin from SPRINT protocol [Chase et al., 2008c]. With the SPRINT-

1U+Glargine protocol, the patient (Patient 5276), received 4 Glargine doses in

total, beginning with a low 10.5U, to 40U for each of the following 3 cycles. The

overall plasma insulin level in SPRINT-1U+Glargine protocol is slightly higher

than SPRINT protocol, with the ‘minimal boost’ of basal Glargine.

Figure 6.2(a) is the plot of interstitial insulin, Q, where the first cycle of

subcutaneous Glargine dose is given at 720 minutes. Comparing Figures 6.2(a)

and 6.2(b), it is clearly observed there is a drop in the interstitial insulin an

hour after Glargine is given, since no IV bolus is given during this hour. The

very conservative dose of Glargine at 10.5U is not able to sustain the level of Q,

hence the drop. The level of interstitial insulin, Q only picks up again from the

rapid bolus effect of SPRINT, which was continued at minute–840 with 1U of IV

insulin. At minutes 960 and 1020, a 3U of IV bolus is administered each and the

level of Q, quickly picks up. The amount of IV boluses and Glargine doses are

not shown in the plot but are taken from the simulation results. The low level of

Q for around 200 minutes, explains why in the SPRINT-1U+Glargine protocol

more insulin is eventually used in total. Glucose uptake is strongly promoted by

insulin in the interstitial, hence insulin action is less when concentration in the

interstitial drops [Castillo et al., 1994].

Figure 6.3 compares the plasma insulin between the two protocols, at a por-

tion after the second dose of Glargine is administered, to get a closer look. The

Glargine dose is 40U for this second cycle, which provides a better aspect of com-

parison rather than the first cycle of Glargine dose with only 10.5U. The insulin

clearance rate for IV boluses in SPRINT protocol [Chase et al., 2008c] depicted

as red, solid line in Figure 6.3 is slightly faster compared to the clearance rate

from SPRINT-1U+Glargine protocol. This could be explained by the fact that

high insulin boluses are close to reach saturation level of the modelled insulin

clearance. Thus, the effect of Glargine with its own degradation from the subcu-

taneous site is very minimal. However, clearance rate is slightly faster in SPRINT

protocol which means more insulin could bind with the insulin binding receptors,

resulting in better glucose-lowering effect as seen with better glycaemic level in

clinical data.

Importantly, with respect to protocol safety, none of the simulated protocols

had resulted in episodes of hypoglycaemia.
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(a) SPRINT-1U+Glargine protocol.

(b) SPRINT protocol.

Figure 6.1 Comparison of plasma insulin levels [mU/L] between two different protocols,
SPRINT-1U+Glargine protocol in 6.1(a) and SPRINT protocol [Chase et al., 2008c] in 6.1(b),
for a randomly selected Patient 5276 during the whole stay consisting of 5,160 mins.
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(a) SPRINT-1U+Glargine protocol

(b) SPRINT protocol.

Figure 6.2 Comparison of interstitial insulin, Q with two different protocols, SPRINT-
1U+Glargine protocol in 6.2(a) and SPRINT protocol [Chase et al., 2008c] in 6.2(b). The
plot is shown for the interval of 36 hours (2160 mins) when the first Glargine subcutaneous
dose is given to the patient. The subcutaneous dose is a very low 10.5U.
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Figure 6.3 Comparison of plasma insulin level between the two protocols, SPRINT and
SPRINT-1U+Glargine. The solid red line depicts plasma insulin concentration from SPRINT
protocol while the blue solid line is plasma concentrations from SPRINT-1U+Glargine protocol.
The plot is during the second interval of Patient 5276’s stay, where 2nd Glargine dose of 40U is
administered. The plot provides a better insight of plasma insulin differences with a higher level
of Glargine dose. The first dose of Glargine is 10.5U, hence given Glargine’s slow absorption
kinetics and the high bolus effect from IV, a comparison would be difficult to make.
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6.2.1 Intervention Frequency

Table 6.4 compares the total number of nursing interventions or actions required

by each protocol during the patients stay. The nursing workload strictly relates

to the workload associated with implementing TGC. The total number of inter-

ventions are the summation of BG measurements made, IV insulin bolus given

as prescribed by SPRINT protocol, feed rate adjustments and the daily subcuta-

neous Glargine doses. All these work relates to TGC protocol and not any other

on-going work that may occur in less acute ward. Hence, any reductions in the

simulated protocol would exemplify the workload reduced in less critical ward.

There would not be an issue that the result would not hold in these less critical

wards eventhough data used were from ICU patients.

The actual clinical data from SPRINT protocol has the highest number of

measurements with 8331 measurements in total. SPRINT has the highest number

of BG measurements and injection from IV insulin boluses, a known aspect of

SPRINT protocol that requires higher nursing effort.

With SPRINT operating on top of Glargine, namely protocols of SPRINT

+ Glargine, SPRINT-1U+Glargine and SPRINT-2U+Glargine, the total num-

ber of interventions is greatly reduced. Having Glargine as a basal background,

managed to decrease the high nursing effort required, specifically from IV insulin

injection and the number of one or two hourly BG measurements. However, no-

ticeable from Table 6.4, this reduction is followed with a higher number of feed

adjustments. Modulating nutritional input is necessary to regulate blood glucose

concentrations within the desirable range and with these protocols due to the

fixed and irrecoverable Glargine dose given that cannot be turned off once given.

Hence, with Glargine’s fixed dose and different profile, more feed rate adjustments

are needed with these first protocol attempts.

A closer look at the estimated time spent in monitoring a TGC protocol for

each designated protocol is tabulated in the same Table 6.4. Using the mean

time taken in performing hourly adjustments of blood glucose levels and insulin

doses of 4.72 mins as stated by Aragon [2006], the total time is calculated by

multiplying the total number of adjustments by 4.72 mins. The mean 4.72 mins

may be lower than the actual time required in making the total adjustments as

additional interventions in this study, which are adjustments of nutritional feed
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and Glargine subcutaneous doses are not accounted for. However, the mean time

of 4.72 mins is used for lack of better estimate that could be found in literature.

The highest time spent required from the total nursing interventions in the

SPRINT protocol is 39,322 minutes. Averaged to time spent per day, this is

equivalent to 213 minutes or 3 hour and 33 minutes for the average patient each

day. Clearly, SPRINT protocol requires a high nursing effort and looking at the

high effort required in this context sheds light at how a protocol with less nursing

effort is significantly needed in less acute wards which do not have the same

nursing resources. The total time spent per day, in the SPRINT+Glargine and

SPRINT-1U+Glargine protocol is 169 and 173 mins. Around 20% cut in nursing

effort, this is a good indicator that protocols with a background Glargine have a

potential to work in the area where nursing resources are an issue. The protocol

SPRINT-2U+Glargine requires just over 2 hours of daily interventions. However,

this protocol has shown to result in loss of control.

A further step is taken to evaluate the actual time saved between the combi-

nation protocols of SPRINT and Glargine, in comparison to the actual SPRINT

data [Chase et al., 2008c], and the results are shown in Table 6.4. In terms

of minutes, in the order of the listed protocols, SPRINT+Glargine, SPRINT-

1U+Glargine, and SPRINT-2U+Glargine, the reduced time required in making

the total nursing interventions is 44, 40 and, 74 minutes. Therefore, from spend-

ing a total of 3 hour and 33 minutes in the SPRINT TGC protocol, the protocols

targeted for the usage in less acute wards, are all similar in terms of the total

time spent in making the appropriate interventions per day, with just under 3

hour.

Figure 6.4 provides the daily per-patient nursing intervention frequency against

the number of hospital stays, beginning from Day 1 to the maximum number of a

patient’s stay, which is 13 days. The boxes represent the lower quartile, median,

and upper quartile values. While, the whiskers are the 5th and 95th percentile

values of the daily nursing intervention frequency. The maximum number of

per-patient nursing effort intensity is 43 [IQR:41, 45] interventions/day, which

occurs on the first day of hospital stay. This reflects well with clinical expecta-

tion since patient’s glycaemic level on the first day normally requires a higher

level of management before their glycaemic level could be stabilized.
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After the initial day of starting insulin therapy, the general pattern that

can be seen is, nursing effort intensity reduces as the number of hospital stays

increases. This trend is observable particularly from Day 1 to Day 7, apart from

Days 4 and 5 that have the same median of daily nursing interventions. Day 7

has the lowest intervention with 33.5 [IQR:33, 40] interventions per day. This

could be very well explained by the Glargine basal effect that has taken place

after 5–6 days, as seen and discussed previously in Chapter 5. After Day 7, the

nursing effort increases due to the small number of patients left, with 6 patients

in total. Generally, from Day 8 to 13, nursing intervention frequency does not

exceed 39 interventions per day. Patients who are still on SPRINT-1U+Glargine

protocol after a week, clearly are patients who still require higher level of care

which explains the number of nursing effort intensity. On the 13th day, only one

patient is left. The highest outlier is 50 interventions per day on Day 1 while

the lowest is 24 interventions per day on the third day. In overall, the results

not only reduce the clinical burden of nurses but more importantly it leads to a

better patient satisfaction and outcome. Less frequent interventions would mean

much comfort for the patients, all the while providing the same quality of clinical

results from TGC.

6.2.2 BG Measurement Frequency

Measurement frequency and clinical burden are major issues in implementing

TGC [Chase et al., 2008a; Aragon, 2006; Mackenzie et al., 2005]. As measurement

periods rise so does both glycemic variability and hypoglycemia [Chase et al.,

2006; Lonergan et al., 2006b]. The end result is a trade off between the quality of

control via measurement frequency and clinical workload or burden, which must

be managed to provide good TGC to each patient with minimum variability and

hypoglycemia in the glycemic outcome.

In this section, instead of blood glucose levels measured one or two hourly in

accordance to SPRINT, the measurement frequency is set apart at 3 and 4 hourly

when 3 recent measurements have been within 4.0–6.1 mmol/L. The simulated

virtual trial protocol is SPRINT-1U+Glargine. The cumulative distribution func-

tion results using these 1-4 hour measurement frequencies are shown in Figure

6.5 where the 1, 2 hourly case is what was previously tested. Interestingly, the 3

hourly measurement frequencies perform almost as well as the Clinical data with
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Figure 6.4 Box and whisker plot of daily per-patient nursing intervention frequency for 30
patients under SPRINT-1U+Glargine protocol during their hospital stay. The boxes represent
the lower quartile, median, and upper quartile of the daily nursing intensity. The whiskers show
the 5th and 95th percentile, while the crosses represent the outliers.
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almost identical median BG. Additionally, on a per-patient basis, the median BG

achieved is 8–10% lower than the Clinical data, which is significant, but not at

all unsafe clinically. Table 6.5 shows a further analysis of 3 hourly measurements,

examining the per-patient performance metrics.

Figure 6.5 Empirical cumulative distribution functions of BG concentrations with different
BG measurements for clinical data versus simulated SPRINT-1U+Glargine protocol with 1
and 2 hourly, 3, and 4 hourly measurement frequency. The x-axis refers to BG concentration
[mmol/L] while the y-axis is the cumulative distribution function.

Specifically, the 3 hourly measurements approach performs better with lower

nursing effort at 34 [IQR:33, 35] interventions per day compared to 36 [IQR:34,

38] interventions per day with 1,2 hourly BG measurements. With 72.86 %

[IQR:64.67, 77.35] time spent within 4.0–6.1 mmol/L band, it is 6.74% higher

(absolute) than when using a more frequent measurement. The total amount

of insulin is slightly higher with 74.82 [IQR:68.20, 79.42] U/day compared to

71.20 [IQR:62.50, 75.07] U/day. As insulin tends to saturate at 5-6 U/hour

[Natali et al., 2000; Prigeon et al., 1996], this amount is still relatively low, and

differences are likely attributed to the different PKs. Safety is further confirmed

with no hypoglycaemic episodes.
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Table 6.5 Per-patient comparison of BG intervention frequencies between 1,2 and 3 hourly
of the SPRINT-1U+Glargine protocol.

Protocol unit 1, 2 hourly 3 hourly

BG mmol/L 5.62 [5.12, 6.28] 5.16 [4.75, 5.90]

Time Band 4.0–6.1 % 66.12 [57.14, 74.21] 72.86 [64.67, 77.35]

Time Band 4.0–7.0 % 86.46 [83.38, 90.65] 86.01 [82.20, 91.13]

Hypoglycaemia % 0 0

Total Insulin U/day 71.20 [62.50,75.07] 74.82 [68.20, 79.42]

IV Insulin U/day 35.20 [29.11, 40.97] 38.29 [34.48, 43.85]

Glargine U/day 35.91 [32.11,36.84] 35.93 [32.55, 37.26]

Dextrose Feed g/day 109 [78.45, 125] 97.67 [ 61.76, 125.57]

Intervention Frequency N/day 36 [34, 38] 34 [33, 35]

The SPRINT protocol was designed [Lonergan et al., 2006a,b; Chase et al.,

2008c, 2010c] for glucose measurements every 1 or 2 hours, to suit the require-

ments of critically ill patients whose insulin sensitivity, SI , can change rapidly

hour to hour [Lin et al., 2006, 2008]. These virtual results simulating less critical

patients showed lowering measurement frequency at 3 hourly, or longer, does not

affect the glycaemic control performance. However, in an effort to bring the best

simulated protocol to the next step of a proof of concept trial, it is best to work

with more frequent BG measurements, if only for safety. This act ensures protocol

safety is not compromised in a first clinical trial. In particular, dynamic patients

need to be well monitored thus higher measurement frequency is essential.

A further statistical analysis performed on the time the number of BG mea-

surements are within desired band of 4.0–6.1 mmol/L between the 1,2 hourly and

3 hourly measurements showed that two-tailed p-value =0.15.

6.2.3 Sample Patient Analyses

Clinical records and simulation results of SPRINT-1U+Glargine on Patient 5061

are shown in Figure 6.6. The top panel of each subfigure shows the blood

glucose levels through time. BG is well controlled with median and IQR of

5.55 [IQR:4.70, 6.10] mmol/L and 5.79 [IQR:5.00, 6.38] mmol/L for clinical and

SPRINT-1U+Glargine respectively. The second panel describes the amount of
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IV insulin bolus administered as well as Glargine for Patient 5061 on SPRINT-

1U+Glargine protocol. The third panel depicts dextrose feed rate received by the

patient expressed in g/day while patient’s own insulin sensitivity, SI is shown in

the last panel.

The percentage of time spent within the 4.0–6.1 mmol/L band for the whole

duration of Patient 5061’s stay are quite similar between clinical records and

simulated SPRINT-1U+Glargine protocol with 68.8% and 68.3% respectively.

Difference can be seen with a wider band of 4.0–7.0 mmol/L where clinical records

show a higher percentage with 95.0% and 89.4% from SPRINT-1U+Glargine.

There is no occurrence of hypoglycaemia described at BG below <2.2 mmol/L at

any period. The median daily feed given in clinical records is 120 g/day against

125 g/day from the SPRINT-1U+Glargine protocol.

In Figure 6.6(a), as seen in the second panel, the frequency and amount of

insulin bolus in clinical data are higher than simulated SPRINT-1U+Glargine in

Figure 6.6(b). Clinical records showed almost 60% more IV insulin is adminis-

tered compared to SPRINT-1U+Glargine protocol. However, with Glargine as

basal insulin, eventually more insulin is used in SPRINT-1U+Glargine protocol.

In terms of nursing effort, clinical records have 239 interventions in total or 41

measurements/day on average, whereas the SPRINT-1U+Glargine protocol has

205 interventions, or 35 measurements/day, saving almost 30 minutes per day.

The higher intervention frequency can be mostly attributed to measuring BG.

The reduction in the number of IV boluses in SPRINT-1U+Glargine is clearly

observable between 40th to 60th hour where there’s a period where no injection

from IV insulin is required. With high insulin sensitivity, SI around this period,

Glargine alone is effective for Patient 5061’s basal coverage. Also in this period,

the patient gets the highest amount of dextrose depicted in the 3rd panel of Fig-

ure 6.6(b), indicating the patient’s recovery is likely going well. This result shows

that Glargine is more suitable for patients with higher insulin sensitivity and il-

lustrates how a later protocol might be effective with Glargine alone for some

patients. However, after the 60th hour, insulin sensitivity, SI quickly drops and

remains at a low level until the end of stay. This patient, instead of improving

over time, appears set for a different course in recovery. Therefore, the expected

effect of Glargine build up approaching the 6th day is not translated into reduced

insulin and nursing effort. With lower SI , the requirement for IV insulin boluses
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eventually increases and feed rate necessarily decreases to maintain normogly-

caemia. This result shows that the combination controller recognizes the periods

where patient condition evolves, and need sufficient compensation with insulin

and nutrition to maintain normoglycaemia.

Figure 6.7 is an example of Patient 5086 with high insulin sensitivity, SI

throughout the stay with median 0.58 [IQR:0.50, 0.66] x 10−3 L/(mU.min). To

evaluate if Glargine under the SPRINT-1U+Glargine protocol would perform

best in a patient with relatively high insulin sensitivity only, this sample patient

is examined. Insulin sensitivity, SI is shown in the last panel of Figure 6.7. In

this reduced protocol, from Figure 6.7(b) it is clear there are more periods where

IV boluses are not required, the longest being in the last day from the 113th to

120th hour. With 128 hours in length of hospital stay (5.3 days), the effect of

Glargine’s interstitial build up is translated into reduced insulin and intervention

requirements for at least the last day. This result shows the combination of

interstitial insulin build up, Q and patient’s level of insulin sensitivity, SI can

have a positive effect in lessening the burden of TGC among nurses and effectively

translating patients to Glargine alone, if given enough time.

Comparison of the effective interstitial insulin, Q between the two protocols

on Patient 5086 is shown in Figure 6.8. In the SPRINT protocol, the level of

effective interstitial insulin is highly dynamic with extreme high and lows due to

the bolus insulin delivery. Compared to the protocol with Glargine, the effective

interstitial insulin, Q is more stable as Glargine has a flat, infusion-like PK curve.

The effect of Glargine, while having SPRINT, is observed with the stability of

Q. Figure 6.9 plots the percentage of time spent within 4.0–6.1 mmol/L band

vs the median insulin sensitivity, SI . The plot shows almost all patients that

achieved 70% of time spent within 4.0–6.1 mmol/L have median SI of at least

0.35–0.4 x 10−3 L/(mU.min). Hence, this criteria could form a basis of when

to use Glargine, rather than specific clinical aspects alone. The sharp drop off

of time band below 3.5–4.0 x 10−3 L/(mU.min) further supports this criteria.

Thus, using a computerized TGC controller, this criteria could be used directly

and simply to determine when to switch to Glargine.

To examine if Patient 5086 exemplifies a patient who is ready to be transferred

out of the ICU, the SPRINT-1U+Glargine protocol is maintained until the 108th

hour. The final day is instead solely dosed with Glargine. The dose of Glargine
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Figure 6.8 Comparison of effective interstitial insulin, Q for Patient 5086 between the
SPRINT and SPRINT-1U+Glargine protocol. The solid red line (–) depicts effective insulin, Q
obtained from clinical data while solid blue line (–) shows the simulation of reduced SPRINT
protocol with background Glargine, SPRINT-1U+Glargine.

Figure 6.9 Percentage of time spent in 4.0–6.1 mmol/L vs median insulin sensitivity, SI for
all 30 patients under the SPRINT-1U+Glargine protocol.
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is simulated at 40U and 60U. Virtual simulation results are shown in Figure 6.10.

In the first panel, the performance of BG level with Glargine increased to 60U is

almost similar to the Clinical data. In contrast the use of 40U of Glargine results

in moderate loss of control. This result demonstrates that a transition protocol

can be applied once the patient is stable and that the patient could likely be

managed with subcutaneous insulin Glargine alone after the initial build up of

effective interstitial insulin over prior days. Thus, this result also shows the need

for a transitioning or a weaning buildup period.

This promising result is what is expected from the virtual simulations of

SPRINT-1U+Glargine protocol. Patients would gradually have their IV insulin

reduced and replaced by Glargine. However, because SPRINT is designed to

achieve a steady state of 3U of insulin [Lonergan et al., 2006a,b], the adjustments

of prescribed insulin are rather discretized [0,1,2,...6] U/hr. This discretisation

explains why IV boluses are continued to be given although with a lesser amount,

even while Glargine alone can be effective in controlling the glycaemic level.

6.3 Discussion

A consistent method or protocol is needed for insulin administration for non-

critical patients as recommended by AACE [American College of Endocrinology,

2007] and ADA [American Diabetes Association, 2008]. The protocols should be

as simple as possible, taking into account nursing resources and patient safety. It

should be effective, safe and simple enough to be fully automated by nurses, or

keeping expert intervention to a minimum.

The clinically validated virtual patient simulation methods used are an effec-

tive and realistic way to assess, evaluate and optimise different TGC protocols

safely, in-silico before clinical testing. The simulations of SPRINT+Glargine in

this study show that Glargine can be used in patients who are insulin resistant

but metabolically stable. The results showed significantly reduced nursing effort

during the IV to Glargine weaning period, while still delivering tight glycaemic

control. The blood glucose levels achieved with SPRINT+Glargine are compa-

rable to the clinical records with SPRINT alone, which was very successful in

reducing mortality and negative outcomes. The feed rates are also comparable in
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Figure 6.10 Simulation results from SPRINT-1U+Glargine on Patient 5086, where IV insulin
bolus is given until the 108th hour. For the last day of stay, patient’s BG level would be
controlled by Glargine alone. In the top panel, the solid red line (–) illustrates the modeled BG
with Glargine on last day administered with 60U. The (· · · ) line is Glargine on last day at 40U
while solid blue line (–) illustrates Clinical data. The second panel shows the insulin bolus and
Glargine. The amount of Glargine is to be multiplied by a factor of 10. The third and bottom
panel displays the feed and insulin sensitivity, SI .
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the two simulated protocols and clinical records. However, the amount of total

insulin used in SPRINT+Glargine, that is the sum of IV insulin boluses and sub-

cutaneous Glargine is greater than clinical records. This outcome is likely due to

the slow build up of Glargine, which could take 3 days or longer [Lehmann et al.,

2009] as has been discussed previously in Chapter 5, and equally, to the different

PK’s of Glargine versus IV boluses and the impact of clearance rates on these

different PK profiles.

By reducing the amount of bolus in SPRINT by 1U while still maintaining

Glargine (SPRINT-1U+Glargine), the control in blood glucose levels is not com-

promised and comparable to clinical records. Although percentage of time spent

within 4.0–6.1 mmol/L band drops in this protocol, the overall results make this

protocol the best option. This decision is made upon median BG, time within

4.0–6.1 mmol/L and 4.0–7.0 mmol/L band, and intervention frequency among

others, as listed in Table 6.3. Further analysis is performed, specifically in the

frequency of measuring blood glucose levels. Instead of 1 or 2 hourly measure-

ment frequency, as how SPRINT works, the frequency is set apart at 3 or 4

hourly. The virtual simulations showed that less measurement does not affect

the performance, instead it works potentially better. Nursing effort is thus also

further reduced, while the percentage of time spent in 4.0–6.1 mmol/L increased.

The overall result of this protocol achieved almost identical performance as in

the Clinical SPRINT data.

The simulations of SPRINT-2U+Glargine on the other hand, are not suffi-

cient to provide effective glycaemic management for these patients even though

the total insulin used is comparable to clinical data. This could be explained

by the slow build up of Glargine as mentioned above. The average ICU stay of

5.7 days may also not be adequately long for full adaptation to Glargine. Even

though the patients selected for this study are reasonably stable, critically ill pa-

tients in general appear to require more rigorous insulin therapy than using long

term insulin supplement such as Glargine. Thus, this protocol also indicates a

need for a graduated or longer weaning process, if it can be managed without

excessive complexity.

The goal of this study is to develop a protocol that can aid patient recovery,

and seamlessly transition IV insulin in the intensive care unit to subcutaenous

insulin that will be the sole form of TGC input used in less acute wards, all the
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while reducing the nursing workload imposed by TGC. The primary hypothesis is

Glargine can effectively act as a basal insulin support for stable ICU patients and

patients in less acute wards who only require a minimal basal boost. However, the

protocol SPRINT in the virtual simulations did not seem to be fully sensitive to

Glargine supplementing a patient’s insulin requirement. This result is likely due

to the Glargine buildup period noted in Chapter 5 and the differing PK profiles,

but remain to be proven. When IV boluses are stopped before the last day,

leaving BG control under 60U of Glargine, the simulations showed BG control

is just as effective as Clinical. This result may be due to the design of SPRINT

aiming to achieve a steady state of 3U insulin and 60% of feed in patients with

limited, discrete interventions preventing flexibility. Finally, the use of Glargine

is very conservative in this study, being less than or equal to half of the daily

insulin requirement from the previous day. This choice was made to address the

course of recovery for patients where they are expected to slowly regain normal

insulin sensitivity or basal insulin production, as well as to create a safe, easy

protocol for first clinical trials.

The virtual trials also indicate that a protocol using Glargine on top of

SPRINT is perhaps more suitable for patients who are consistently stable and

are reflective of those seen in less acute wards or ready to be transferred to them.

The analysis of this cohort results show that patients with relatively higher SI

were more likely to respond to Glargine and these protocols with good TGC per-

formance. However, an early, smooth transition from IV insulin to a combination

may also further help by reducing undesirable variations in blood glucose levels

[Egi et al., 2006]. It is clear the use of Glargine is shown to supplement patient’s

basal insulin requirement and has the potential to reduce nursing effort.

Finally, this study only included 30 patients. Therefore, its results are only a

positive ‘proof-of-concept’, and not conclusive. As mentioned in Chapter 5, the

volume of patients in less acute wards with useful clinical data were not enough

for virtual trials. Hence, the choice of cohort development from metabolically

stable ICU patients was made. Although the simulated patients met the inclusion

criteria for defined metabolic stability, virtual results may not necessarily be fully

representative of the behaviour of patients in actual less acute units. However,

patients who are ready for transition to less acute wards do have higher insulin

sensitivity, and Glargine is shown to be effective in the virtual simulations for the

period where patient’s SI improved. However, as these simulated patients were



158 CHAPTER 6 VIRTUAL TRIALS: SPRINT+GLARGINE PROTOCOL

ICU patients, albeit stable, their insulin sensitivity, SI did not always continue

to improve over time in these records, while they were on SPRINT. Hence the

insulin requirements did not always decrease throughout the stay, to a point

where Glargine alone was suitable. Thus, it is clear that there may be a missing

gap of relevant data that was not available for this study but not to the point

that it could invalidate the model. Rather, retrospective data with sample of

continuous improvement in SI would show the efficacy of administering Glargine

alone.

The fact that results of this study , given in per-patient median and IQR of

the glycaemic performance measure does have an importance. In [Chase et al.,

2010a], the foremost goal of effective TGC must be to obtain tight glycaemic

control for each patient in a cohort. It is the per-patient results that matter

the most and achieving successful outcomes, such as reduced mortality, is likely

going to be strictly a function of being able to manage patient variability across

a cohort to provide consistent TGC.

Based on the promising results from virtual trial simulations in Section 6.2, a

protocol tailored for the ‘ Proof of Concept Study of Insulin Glargine as Basal In-

sulin in the ICU and HDU’ is developed. This protocol, SPRINT-1U+Glargine,

has the potential to be effectively employed in a clinical pilot study. A clinical pi-

lot study will provide valuable information on the practicality and clinical benefit

of Glargine in stable ICU patients and the likelihood of its efficacy in less acute

wards. This trial will be the first step towards designing transition glycaemic

control protocols for patients from the ICU going to less acute wards. Because

SPRINT has been proven to provide safe TGC and gained considerable trust

in the Christchurch Hospital ICU, where it is first implemented, a clinical pilot

study incorporating SPRINT will be significantly easier to deploy compared to a

protocol without it. In the next chapter, the protocol’s robustness will be further

investigated and assessed in an effort to employ a successful transition protocol.

6.4 Conclusion

This study investigated the use of Glargine as basal insulin support in stable,

recovering ICU patients. A clinically validated insulin Glargine compartmen-
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tal kinetics model and an insulin-glucose pharmacodynamic model are used to

perform virtual patient simulations of protocols using Glargine. A cohort of 30

metabolically stable patients who received insulin therapy under SPRINT pro-

tocol during their stay in Christchurch Hospital ICU were selected for in silico

assessments. Protocols using daily injections of Glargine reduced nursing effort

provided blood glucose levels are largely maintained within a desirable range.

The total amount of insulin used is greater compared to the clinical data and

SPRINT is likely due to the buildup period of Glargine, a conservative protocol,

and different insulin PKs in plasma. Patients with relatively higher insulin sen-

sitivity were found to perform best, and a model-based SI limit of 3.5–4.0 x 10−3

L/mU.min was found to provide a suitable threshold. Finally, use of Glargine is

shown to safely supplement a patient’s basal insulin requirement without the risk

of hypoglycaemia, particularly after the first 3–5 days of stay. Although patients

data are limited, the virtual trials do provide an insight into the implementation

potential of this combination protocol for less critically ill patients. These results,

if robust, are enough to justify a clinical pilot trial.





Chapter 7

Monte Carlo Analysis

This chapter presents an in silico Monte Carlo analysis to quantify the perfor-

mance and robustness of the SPRINT-1U+Glargine protocol of Chapter 6. In

particular, it analyzed robustness to physiological variability and sensor errors.

For clinical implementation, it is crucially important to ensure the protocol is

robust towards a wide range of expected variability seen in a clinical setting.

Measurement error is characterized in terms of glucose sensor reliability. The

issue of using a reliable glucose meters device has been addressed before and

possible failure of TGC in some studies has been suggested to be linked with

a wrong choice in blood glucose measurements device [Ting and Nanji, 1988;

Critchell et al., 2007; Wahl, 2009]. In a study analysis by Wiener et al. [2008], it

found that many TGC studies with no mortality improvement used POC (point of

care) glucose meters or capillary blood samples. The NICE-SUGAR study Finfer

and Heritier [2009], used a variety of glucose meters, which most of the glucose

meters are unsuitable for used among the critically-ill patients [Scott et al., 2009].

Scott et al. [2009] also reported Van der Berghe’s study was successful partly due

to the use of arterial blood glucose instrument that gives precise blood glucose

measurements. In contrast, SPRINT [Chase et al., 2008c] was successful, but

used standard glucose meters, namely Glucocard Test Strip. Hence, it could be

argued that the impact of sensor error is protocol dependent and must be tested.

Equally, in critical care settings, frequent and accurate measurements in blood

glucose levels are important. The FDA stated that critically ill patients should

not be tested with blood glucose meters due to inaccuracies in results. However,

as noted SPRINT used POC glucose meters and reported the tightest control

and least hypoglycaemia. Equally, it had one of the more frequent measurement
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rates averaging 161 measurements per day.

However, faster return on blood glucose measurements is essential, partic-

ularly in TGC. Hence, bedside glucose measurement devices are typically used

instead of being clinically lab tested or using a blood gas analyzer. Moreover,

SPRINT requires one or two hourly BG measurements, which is not possible for

BG concentrations to be lab tested while providing rapid results. Due to these

drawbacks, the model-based glycaemic controller’s performance during adverse

events, such as sensor errors, should be thoroughly assessed to ensure the max-

imum benefit of a model-based control protocol. There is no consensus on how

to optimally assess accuracy of glucose sensors. According to ISO 15197, blood

glucose meters must provide results that are within 20% of a laboratory standard

95% of the time. Clarke Error Grid, is thus used here as elsewhere, to quantify

clinical accuracy of blood glucose estimates compared to a reference value. Hence,

it can equally be used to show sensor performance or in Monte Carlo simulation.

As a second source of significant variation, repeated doses of subcutaneous

insulin do not produce the same metabolic effect. This result is valid within

(intra- ) and between (inter- ) patients [Heinemann, 2002; Heise et al., 2004].

Insulin action and absorption vary considerably and this variability consistently

deters reproducible insulin therapy, as discussed previously in Chapter 4.

Unexpected highs or lows in patient glycaemic level are a major course of

concern. If factors influencing the pharmacokinetics and pharmacodynamics of

insulin are not well understood, the result will be a greater variability. Age, phys-

ical activity, smoking or non-smoking, injection site, injection depth are among

many other known factors that influence insulin absorption and action of a sub-

cutaneous insulin [Berger et al., 1982; Heinemann, 2008].

Failure to account for inter- and intra- patient variability would result in poor

TGC, particularly for the more dynamic patients (intra- patient variability) or

those for whom dosing is inappropriate due to inter- patient variability. Man-

aging variability means that any protocol must be able to adapt and provide

patient-specific interventions that evolve with patient condition. Thus, any con-

trol protocol should account for these significant, yet very common fundamental

errors or variability. Monte Carlo simulations allow these errors of variability

to be generated and safely tested in a clinically validated in silico environment
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[Chase et al., 2010c]. Hence, it can be used to test the accuracy and robustness

of any developed model-based glycaemic control protocol.

7.1 Method

Virtual patients are created from data of 30 patients data who met the inclusion

criteria. They were all selected from the SPRINT cohort based on periods of

long term stability and low insulin requirements, indicating patients who would

benefit from a transition to subcutaneous insulin administration. These are the

same patients simulated in Chapter 6.

The SPRINT-1U+Glargine protocol seeks to use Glargine, gradually replace

intravenous insulin. As noted, it is a first step and protocol towards developing

a complete, more final solution. To capture the impact of sensor error, normally

distributed error is added to each patient’s simulated glucose profile in virtual

trials of the protocol. Glucose measurement errors are assumed normally dis-

tributed with precision as reported in Kimberly et al. [2006]. Clarke Error Grid

analysis [Clarke et al., 1988] is used to evaluate the normally distributed sensor

noise to an accepted standard reported error of of 20% [Mann et al., 2007].

7.1.1 Monte Carlo Error

For each patient, 100 simulations were performed to generate statistics on per-

formance. Each virtual trial had an added sensor noise in the simulated blood

glucose measurement. In addition, variability in subcutaneous Glargine absorp-

tion was added to account for these variations. Sensor error is simulated to be

normally distributed with a standard deviation of 5%, and max error of ± 4 stan-

dard deviations, with a saturated max of ± 20%. The latest generation of glucose

meters are more advanced with greater accuracy [Chan et al., 2009; Cohen et al.,

2006]. Hence, the error simulated is typical of today’s devices or slightly larger.

The parameters kprep,gla, k1,gla, and αgla are the three Glargine pharmacoki-

netics parameters that were varied. Details on the variability of the Glargine

pharmacokinetics parameters is in Chapter 4. The impact of varying the three
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Glargine pharmacokinetics parameters generated a range of possible values of

maximal plasma insulin concentration, Cmax and time to maximal plasma in-

sulin, Tmax. These values are physiologically valid, as reported in literature and

as seen in Figure 7.1. Using a lognormal distribution in the Glargine model pa-

rameters eliminates the possibility of obtaining non-physiological values, as the

Glargine PK parameters can thus never exhibit a negative value.

Thus, variability is accounted for in Glargine PK parameters and glucose

sensor error. There are 3000 simulations in total ( 30 patients X 100 simulations),

each being unique due to different random errors generated. Simulated error

reflects the clinical variability, which gives a realistic feature to assess the model-

based control protocol. The main assessments taken into account are accuracy

and repeatability. Safety and performance are the two primary criteria of the

controller, evaluated by avoidance of hypoglycaemia (<2.2mmol/L), median and

IQR of blood glucose measurements, percentage in desired band (4.0-6.1mmol/L,

4.0-7.0mmol/L), amount of insulin prescribed (IV boluses+Glargine), amount of

nutrition given, and nursing effort intensity based on the number of interventions

required.

7.2 Results

The Clarke Error Grid analysis of a patient with the maximum measurement

error of 20% is shown in Figure 7.2. The analysis showed that, with five different

regions, 100% of a 200 reference data set is within the clinically acceptable regions,

with 92% in Zone A and the rest in Zone B. This outcome is in agreement with

the clinical accuracy defined in the grid analysis. High clinical accuracy should

result in a better patient outcome for a given protocol. The figure also shows that

the SPRINT-1U+Glargine control protocol leads to good clinical management in

the ICU or less acute wards because the BG range is relatively tight. Studies

have shown that most meters cannot achieve the high target of total error being

<5%, as set by ADA. Each zone as in Clarke et al. [1988] is defined:

Zone A: measured as measurements that deviate from the reference by no more

than 20% and all values determined to be in low range <70 mg/dL or 3.88

mmol/L. Blood glucose values in zones A result in appropriate treatment
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(a) 32U Injection of Glargine

(b) 24U Injection of Glargine

(c) 12U Injection of Glargine

Figure 7.1 Distribution of maximal plasma insulin concentration, Cmax, computed 1000
Monte Carlo runs with variability in kprep,gla, k1,gla, and αgla. 7.1(a) a 32U dose, boxed area
refers to range quoted in [Scholtz et al., 2005]. 7.1(b) a 24U dose, boxed area refer to range
quoted in [Lepore et al., 2000] and 7.1(c) a 12U dose. No quoted range [Owens et al., 2000].
This figure is repeated from Chapter 4, of Figure 4.9.
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and are therefore clinically accurate.

Zone B: include patient-determined values which deviate from the reference by

more than 20% but which result in benign treatment decisions.

Zone C: include patient-determined values which are outside the target range

when the reference is within the target range and therefore mandate treat-

ment which results in glucose levels outside the target range.

Zone D: patient-determined glucose values are within the target range when the

reference values would demand attention.

Zone E: patient-determined values are outside of the target range, but at the

opposite level of the reference values. Hence, measurements here would lead

to erroneous treatment decisions.

Figure 7.2 Clarke Error Grid analysis of the error distribution produced in a sample patient.
Error is shown for a normally distributed sample blood glucose reference data set of size 200.
To convert mg/dL values to mmol/L, multiply by 0.0555.

7.2.1 Monte Carlo Analysis

Table 7.1 shows the results of Monte Carlo simulations for the 30 patient cohort.

The result of each MC performance measurement is almost similar to the non-

error simulations. There is zero hypoglycaemia in any analysis. In the SPRINT-

1U+Glargine virtual trials, the per-patient median BG is 5.62 [IQR: 5.12, 6.28]
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mmol/L with 66.12% [IQR:57.14, 74.21], 86.46% [IQR:83.38, 90.65] time in the

4.0–6.1 and 4.0–7.0 mmol/L bands. Median insulin per-patient was 71.2 [IQR:

62.5, 75.07] U/day, with carbohydrate administration of 109 [IQR: 78.46, 125]

gram/day. Median nursing effort was 36 [IQR:34, 38] interventions/day . Monte

Carlo simulations show; 5.65 [IQR:5.27, 6.16] mmol/L, 65% [IQR:55.12, 72.72]

and 87.19% [IQR:81.39, 89.84] for blood glucose performance. Monte Carlo in-

sulin and nutrition were 70.8 [IQR:61.67, 74.47] U/day, 109 [IQR: 88.29, 145.19]

gram/day, requiring an identical 36 [IQR:34.6, 38] interventions/day.

The primary overall result is that the variations and errors considered do not

appear to have any great impact on the protocol design or its ability to manage

patients variability. It is important to note that median (IQR) results in Table

7.1 show the middle, much more likely the, 50% of the results. Hence, this result

should hold as a general trend across a wide range of possibilities. This Monte

Carlo virtual analysis result is parallel with Monte Carlo analysis of SPRINT

and other protocols using clinically validated virtual patients, which revealed

little difference with added measurement error [Lonergan et al., 2006b]. Overall,

it can be concluded that the robustness of the SPRINT-1U+Glargine protocol in

a noisy clinical environment is validated with this Monte Carlo analysis.

Table 7.1 Per-patient performance measurement with and without Monte Carlo

Performance MC Error Without MC Error

BG [mmol/L] 5.65 5.62
[IQR: 5.27,6.16] [IQR:5.12, 6.28]

Time Band 4–6.1mmol/L [%] 65.00 66.12
[IQR: 55.12, 72.72] [57.14, 74.21]

Time Band 4–7.0mmol/L [%] 87.19 86.46
[IQR:81.39, 89.84] [IQR:83.38, 90.65]

Nursing Effort 36 36
[IQR:34, 38] [IQR:34, 38]

Total Insulin [U/day] 70.84 71.2
[IQR:61.67,74.47] [IQR: 62.5, 75.07]

IV Daily [U/day] 37.23 35.20
[IQR:28.41, 40.11] [IQR:29.11, 40.97]

Glargine Daily [U/day] 35.84 35.91
[IQR:32.03, 36.81] [IQR:32.11, 36.84]

Feed [gram/day] 109.87 109.00
[IQR:88.29,145.19] [IQR:78.45,125.00]

Hypo 0 0



168 CHAPTER 7 MONTE CARLO ANALYSIS

Figure 7.3(a) is the BG profile comparison for a sample patient with median

of 100 MC simulations against the simulations without introduced error. This

sample patient is representative of the cohort. Both resulting BG profiles are

almost similar as expected, since the median would be expected to be as similar

as possible to the actual profile overall possible random variations and errors. The

largest differences would be seen at the 5th and 95th percentile. Hence, an upper

and lower envelopes representing the 5th and 95th percentile of all possible blood

glucose concentration are shown in Figure 7.3(b). The 5th and 95th percentile

range are quite tight particularly towards the end of Patient 5376’s stay from 6000

to 7500 mins. The results also show that BG values are more varied between the

values of 3–6 mmol/L, where the biggest difference between the 95th percentile

range and median MC simulations could be seen around 1500–5500 mins. These

results provide valuable information on the range of all possible BG values in the

presence of patient extreme variability in Glargine absorption and sensor error.

Interestingly, at higher BG concentrations, particularly over 7 mmol/L, the

possibilities of obtaining even higher BG concentrations are greatly reduced. This

outcome is depicted at three main peaks of minutes 1500, 6200 and 7200. It

occurs because larger errors in sensor values mean there is always a possibility of

incorrect dosing with the returned erroneous BG concentrations. Hypo- or hyper-

glycaemia and their consequences would thus be a result of too large or too small

doses being given. Therefore, this result provides a clear indication of the overall

protocol’s safety and lack of aggressiveness, since even with a range of possible

BG concentrations, hyperglycaemia and hypoglycaemia are both avoided at the

highest and lowest BG values seen. Note that hyperglycaemia here is defined

typically as blood glucose values more than 10 mmol/L (180 mg/dL). These

results are typical across all 30 patients and can be seen in Appendix 7.5. Thus,

the control protocol, SPRINT-1U+Glargine maintains the stability of the patient

despite dynamic variations in the physiological process.

In Figure 7.4, the rest of the profile for Patient 5376 is shown, comparing

the simulated trial with the median MC error and non-error. As can be seen,

the results are almost identical. Figure 7.5 shows the histogram plot of the

Glargine pharmacokinetics, kprep,gla, k1,gla, and αgla actual distributions from the

100 Monte Carlo simulations of Patient 5376. The overall results confirms the

validity of the SPRINT-1U+Glargine protocol and the approach taken in this

study.
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(a) Median MC Error

(b) 5th and 95th Percentile MC Error

Figure 7.3 Comparison of BG profile for Patient 5376 simulated 100 runs with and without
error. Errors introduced are normally distributed with standard deviation of 5% and max error
of ± 4 SDs, with a saturated max of ± 20% BG measurement sensor error and a lognormal
distribution variation in Glargine PK model parameters. Figure 7.3(a) compares the actual BG
profile in solid blue line, (-) against median of 100 MC error runs shown as blue dotted line,
(· · · ). Figure 7.3(b) compares the actual BG profile depicted in solid blue line (-) against the
5th and 95th percentile of 100 MC error. The 5th percentile error is shown in red dotted line,
(· · · ) while 95th percentile error is in red dashed line (- -).
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(a) Actual Profile

(b) Profile Simulated with MC Error

Figure 7.4 Comparison of Patient 5376’s profile for simulated 100 runs with and without MC
error. Errors introduced are normally distributed with standard deviation of 5% and max error
of ± 4 SDs, with a saturated max of ± 20% BG measurement sensor error and a lognormal
distribution variation in Glargine PK model parameters. Figure 7.4(a) shows the actual profile
without MC error with insulin bolus shown in first panel as solid red line, (-). The middle and
last panel are nutrition and Glargine. Figure 7.4(b) is the profile of Patient 5376 with MC
error runs. The first, middle and last panel are IV insulin bolus, nutrition and subcutaneous
Glargine.
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(a) αgla

(b) k1,gla

(c) kprep,gla

Figure 7.5 Histogram plot of the actual variability of Glargine pharmacokinetics parameters,
kprep,gla, k1,gla, and αgla, and the frequency they occurred in the 100 Monte Carlo simulations
for Patient 5376. Figure 7.5(a) shows the distributions of αgla, Figure 7.5(b) is the distribution
of k1,gla and Figure 7.5(c) is the distribution plot of kprep,gla.
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7.3 Discussion

With TGC protocol that highly depends on patient’s hourly glycaemic levels, fast

easy to use devices are often employed to read blood glucose level, along with

the accepted loss of sensor performance error compared to the gold-standard lab

tests. Some studies have cited measurement error as one factor in the difficulty

found in achieving adequate control of blood glucose levels [Wilinska et al., 2008;

Shulman et al., 2007] leading to a push for better or more frequent bedside sensors.

However, the experience of SPRINT [Chase et al., 2008c] and several others has

been that measurement error was not a factor or was not cited, despite using

bedside glucose meters with standard errors of 7-15% depending on blood glucose

level, or blood gas analysers with much lower errors of 1-3%.

With respect to designing and implementing TGC the analysis and results do

reinforce the need to account for variability in a patient-specific fashion, and to

do so in the protocol directly and by design. Inter-patient variability can be very

high across cohorts, especially in medical ICUs. Intra-patient variability can also

be significant as patients evolve dynamically. More specifically, while the 5–95%

range of results shown for one patient and typical of the others, was acceptable,

the range seen is still quite wide clinically. The rest of the simulated virtual

patients are shown in the Appendix section, comparing the BG profile with and

without MC error at the 5th, median and 95th percentile.

Hence, another outcome of this analysis is that successful TGC mandates a

protocol that is adaptive across a wide range of insulin resistance to provide equal

glycemic control to each patient. This variability requires any TGC algorithm to

be able to identify and manage these variations in their interventions to provide

TGC. More specifically, to obtain clinical and mortality benefits from TGC, a

protocol must provide tight control with minimal risk of hypo-or hyper-glycemia.

This goal must also be achieved for all patients from the 5th to the 95th percentile.

Monte Carlo simulations allow sensor errors to be generated in the data, as

well as adding valid physiological variances. Both are instrumental in portraying

the real and potentially quite different physiological conditions of patients, which

mix with sensor errors to yield the glycaemic variability observed clinically. In

particular, in any clinical environment, there is variability between and within

individuals, as well as measurement error in sensor devices. Importantly, only
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a validated in silico virtual patient environment offers the ability to include the

effect of parameter uncertainty and sensor error in the virtual simulations.

The specific Monte Carlo results presented confirm the robustness of SPRINT-

1U+Glargine protocol to realistic, physiological variations and sensor errors. The

results clearly define, quantitatively the impact of variability across the cohort

and for individual patients. Finally, the results provide a qualitative measure

robustness and confidence in the developed protocol.

However, in reality, it is reasonable to assume that more uncertainties could be

present. More parameters apart from the varied parameters in the simulation may

differ, varying from patient to patient. For example, patients who are transferred

to less acute wards, might start eating as their condition improves, which is

a clinical variation that is not in the scope of this protocol or analysis. Hence,

there would be definite uncertainties in the glucose absorption model as the exact

amount of nutrition would have to be an estimate. Even nutrition given enterally

or parenteral nutrition have different physiological response. Thus, for future

work MC analysis on nutrition would best to be considered. Equally, and more

relevantly, clinical changes in condition, such as the loss of intravenous access or

large intervention timing errors may play a risk. However, prior analysis have

shown that these are either unavoidable or secondary effects [LeCompte, 2009].

Overall, the varied model parameters and sensor error in this analysis, are the

most distinct to adequately represent a true physiological clinical environment

7.4 Conclusion

An effective, robust and safe subcutaneous transition protocol is presented. In

silico analysis allowed accurate quantification of nursing effort and other perfor-

mance measurements of the protocol. Monte Carlo analysis provide a further

valuable approach to test the robustness of the control protocol and robustness

is achieved with the ability of the control protocol accounting for possible BG

concentrations and variations of Glargine absorption. In particular, the middle

50% of likely outcomes indicates that there is no change of clinical significance

in control quality and nursing effort. The 5–95% range shows that safety and

acceptable control quality are guaranteed. Overall, the results meet the primary
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goal of the analysis to justify a clinical pilot study to fully validate these in silico

results.

7.5 Appendix
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(a) Patient 5006 (b) Patient 5013 (c) Patient 5033

(d) Patient 5054 (e) Patient 5060 (f) Patient 5061

(g) Patient 5071 (h) Patient 5076 (i) Patient 5086

(j) Patient 5101 (k) Patient 5104 (l) Patient 5122

(m) Patient 5124 (n) Patient 5149 (o) Patient 5158

Figure 7.6 Comparison of the actual BG profile for depicted in solid blue line (-) against the
5th and 95th percentile of 100 MC error. The 5th percentile error is shown in red dotted line,
(· · · ) while 95th percentile error is in red dashed line (- -).
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(a) Patient 5173 (b) Patient 5188 (c) Patient 5207

(d) Patient 5233 (e) Patient 5276 (f) Patient 5279

(g) Patient 5280 (h) Patient 5288 (i) Patient 5299

(j) Patient 5310 (k) Patient 5315 (l) Patient 5317

(m) Patient 5351

Figure 7.7 Comparison of the actual BG profile depicted in solid blue line (-) against the
5th and 95th percentile of 100 MC error. The 5th percentile error is shown in red dotted line,
(· · · ) while 95th percentile error is in red dashed line (- -)



Chapter 8

Conclusions

The use of intensive insulin therapy in less acute wards, or a transition protocol

following patients discharged from ICU to less acute wards, is not a common

practice in hospitals. Although it is generally agreed that better control of blood

glucose levels does improve patient outcome, most hospitals still take a relaxed

approach towards hyperglycaemia particularly in the less acute wards where nurs-

ing resources are at a premium. Elevated blood glucose levels in this area are not

considered a major issue. Nursing resources, non-standard glycaemic target and

hypoglycaemia are among the limiting factors.

However, there is significant room for improvement. Monitoring the transi-

tion of less critically ill patients requires systematic care to achieve normogly-

caemia without over burdening the nurses. Hospitals need to have a protocol

to address the management of hyperglycaemia and there are good clinical rea-

sons that less critically-ill patients should be given the same level of glycaemic

management as ICU patients received.

For TGC to provide equal control to all patients, the glycaemic control pro-

tocol must be patient-specific and able to directly account for patient-variation,

measurement frequency and nutritional intake. In essence, it is the interaction

between insulin sensitivity, SI , the insulin and nutrition administered, and the

patients variability over time that determines glycemic outcome in TGC in any

situation or ward. Not knowing or understanding any of these variables means

patient-specific control cannot be delivered.

This research developed a comprehensive, more physiologically relevant glucose-

insulin dynamic system, named the ICING (Intensive Control Insulin-Nutrition
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Glycaemic) model for this problem. It modified and added existing subcutaneous

insulin models to account for this low burden delivery avenue. The overall model

is the integration of two clinically-validated models created and/or extended in

this research.

The ICING model, compared to its predecessor is more distinctly expressed,

in particular with respect to glucose utilisation, endogenous production, and a

more robust glucose absorption model for digestion. To account for the body’s

ability to eliminate insulin, this model also includes explicit pathways of insulin

clearance and utilisation, namely liver, kidney and saturable cell degradation.

Specifying a specific clearance, instead of defining clearance as the sum of indi-

vidual clearances (hepatic, renal, cell, etc), is necessary in making accurate phys-

iological predictions, particularly if using slow release or infused insulins that the

prior ICU focused models did not manage as well. With the knowledge gained

of specific clearance values, a better informed decision can be made for insulin

dosage adjustments that maintain average plasma concentration.

Identification of critical constant population parameters is carried out para-

metrically, optimising one hour forward prediction error, thus avoiding model

identifiability issues. The identified population values are pG = 0.006 1/min,

EGPb = 1.16 mmol/min and nI = 0.003 1/min, all of which are within reported

physiological ranges. The relatively low value of nI may indicate a significantly

impaired transcapillary transport for patients who are critically ill, which is a

unique result. It is expected that the value of nI would increase once patients are

recovering. However, this would not affect the developed ICING model, since the

effect would simply be translated towards an increased SI . Hence, the model’s

fitting and prediction ability would not be compromised since ultimately the

prediction accuracy is critical. Even so, the range of nI must be within a physi-

ological range to ensure a good fitting and predictive ability. All these brings us

back to how studies on plasma insulin and C-peptide are needed.

Model validation was evaluated by fitting and prediction error. The model

achieves median fitting error <1% in data from 173 patients (N = 42,941 hours in

total) who received insulin while in the ICU and stayed for more than 72 hours.

More importantly, the median per-patient one-hour ahead prediction error is a

very low 2.80% [IQR: 1.18, 6.41%]. A sensitivity study, as part of an inter-

nal model validation to assess the reliability of the model, confirms the validity
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of limiting time-varying parameters to SI only. It is significant that the 75th

percentile prediction error is now within the lower bound of typical glucometer

measurement errors of 7–12%, which is better than any other reported model.

The result confirms that the new ICING model is suitable for developing model-

based insulin therapies, and capable of delivering tight blood glucose control, in

a real-time model based control framework with a tight prediction error range.

A TGC protocol should not burden nurses in any ward with round the clock

monitoring. Glargine, an insulin analogue known for its long acting time-action

profile, is incorporated in designing this glycaemic control protocol. The unique

peakless property of Glargine, with its once-daily administration makes it suit-

able for achieving normoglycaemia in less acute wards, where nursing resources

are often limited. Patients in the less acute wards might only require a minimal

boost for their impaired glucose-insulin regulatory system, thus Glargine is the

ideal basal choice for the basal insulin support of these less acute patients. Other

option, such as CSII is not favourable since it is not cost effective, expensive,

requires patient’s involvement and physicians need to place an order each time

dose needs to be adjusted. Moreover, Glargine is known for inducing less hypo-

glycaemia. Thus, a detailed pharmacokinetics/pharmacodynamics model of the

subcutaneous absorption of Glargine was developed.

The model is more physiologically valid compared to a prior model used as

fundamental structure with the introduction of Michalis-Menten saturation. An

advanced method of model validation is used with an external evaluation, using 4

data sets, apart from the 6 sets of data used to identify the three critical Glargine

PK parameters, kprep,gla, k1,gla, and αgla. The external evaluation method further

confirms the validity of the model with independent data sets ranging from data in

children to adults. Finally, to account for patient variability in Glargine absorp-

tion, a Monte Carlo simulation analysis produced a range of maximal plasma

insulin concentration, Cmax and time to maximal plasma concentration, Tmax

typically seen among patients. Including this variability ensured the model is

accurate and robust in protocol design. Hence, the glycaemic control protocol

designed with this model could be used to cater for a far broader and wider range

of patients.

With these two clinically-validated, physiologically linked models, a complete

system of glucose regulation and the interaction between glucose and plasma in-
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sulin is available. The source of insulin, either from IV injection or/and subcu-

taneous Glargine, create a complete system targeted for model-based tight gly-

caemic control in the less acute wards. The model is able to accurately capture

patient’s dynamics, and is clinically-validated.

The performance of the ICING and Glargine compartmental model in con-

trolling less critically-ill patient’s glycaemic levels are tested in silico. In silico

simulation is an important and integral aspect in the developments of any gly-

caemic control protocols. It provides the mean for safe and effective development,

evaluation and validation prior to a clinical testing. Hence, virtual trials serve

as the best platform and instrumental in testing a proposed control protocol for

any effects from a known intervention.

Virtual patients results using Glargine on 15 metabolically stable patients

totalling to 1,689 hours conclude that Glargine can provide effective blood glucose

management provided a patient’s stay is longer than 7 days. Glycaemic level on

first day alone, is poorly controlled as the concentration of effective interstitial

insulin, Q, takes a longer time to build up with Glargine. It is found that the

level of Q using Glargine, only reached to the same level as Q in IV boluses, after

several days. Methods to raise Q using supraphysiological values of Glargine and

priming boluses, resulted in a single case of hypoglycaemia. Although median

cohort BG levels improved, these methods are considered to pose a high risk given

patients variability and are a fundamental limit in transitioning to this type of

subcutaneous insulin.

The ability to achieve tight glycemic control and potentially reduce the risk

of death for a given patient will be a function of the ability of the TGC method to

manage that patient specifically. More specifically, the benefits of TGC work at

an individual level. Only patients who are tightly controlled will receive benefit

based on the physiological factors. Hence, TGC is effective at reducing mortality

and improving outcomes for a whole cohort, if and only if it is equally effective

for every patient in that cohort. Thus, based on this work it is critical to manage

Glargine and its effect in a patient-specific fashion.

In Chapter 6, performance assessment is concentrated upon per-patient anal-

ysis for a subcutaneous transition to Glargine from SPRINT. SPRINT has a

superior ability to adapt to inter- patient variability across the patient cohort.
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In a move to incorporate a proven clinical protocol, the IV insulin bolus pre-

scribed by SPRINT is combined with daily subcutaneous Glargine in a transition

protocol. This combination protocol is designed with the target that eventually

Glargine will be the sole insulin used, seamlessly replacing IV insulin bolus from

SPRINT as soon as the effective interstitial insulin concentration, Q reached a

steady-state. This approach is a first design to transitioning to Glargine in a

fashion that alleviates issues with its 3-7 days buildup of concentration in the

body.

From the virtual analysis, the SPRINT-1U+Glargine protocol, which is the

optimum protocol from all the tested protocols, showed that nursing effort in

comparison to the SPRINT clinical data, is significantly reduced while still de-

livering effective and safe TGC. The nursing effort intensity reduces as patient’s

stay increases. An hour of reduced work in the per-patient analysis, offers a bet-

ter opportunity for the nurses to provide better care for the patients. Primarily,

patient comfort and satisfaction are improved with less frequent interventions

that might disrupt patients sleep pattern, day rest or even patients who are gen-

erally uncomfortable having their blood drawn. Without background Glargine,

the time needed to provide TGC for the average patient is up to 4 hours. This

result provides a good insight into reducing nursing effort associated with labour

intensive TGC. The primary implication of this is simply that, Glargine works

well in recovering patients, who in real-life are characterized by improving insulin

sensitivity until issued discharge.

However, with the limited clinical data in this study, which is sourced from

metabolically stable ICU patients, virtual trials were performed on patients who

do not always continue to have improved SI overtime, representing also a realistic

scenario. Despite meeting the definition of metabolic stability, these patient’s

overall SI is still quite dynamic. In the period where SI is high and improving,

Glargine alone without SPRINT IV bolus can well manage patient’s glycaemic

level. However, once these periods deteriorate, the expected continuation to

Glargine alone did not materialize in the simulations. The continued requirement

from SPRINT IV insulin, is thus highly likely to be patient-specific and a function

of the TGC protocol, as well. However, in terms of safety, there is no incidence

of hypoglycaemia allowing safe management for all patients.

Undoubtly, there is a need to firmly establish the importance of TGC not
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only in the ICU, but extending TGC to less acute wards as well. Glycaemic

control should be a standard of care in hospitals and not an option based on the

physiological evidence to date of the negative effects of hyperglycaemia. Instead of

abandoning any work to improve glycaemic control in the less acute wards either

for fear of hypoglycaemia, or rather for viewing glycaemic control as not a major

cause of concern, there should be a growing effort to develop a clear strategy.

We need to bridge the gap between ICU and less critical wards. The intensity of

glycaemic management between critically ill and recovering critically ill patients

in from one setting to another should be maintained. A randomized controlled

study is pivotal to support the need of TGC in the less acute wards. A protocol

designed and pilot tested in a single unit, might not be solid enough to cover the

expected variability seen among patients. For example, different units (hospitals)

have different regimes and practice, which vary considerably. Nevertheless, any

move initiated towards reducing the risk and harm of hypo/hypergylcaamia while

at the same time reducing the clinical burden in less acute wards is pivotal.

This research thus, provides a first analysis and design of these type of pro-

tocols and clearly highlights both the potential for success, as well as the main

difficulties. Beginning from the model development of glucose-insulin regulatory

system, to the subcutaneous absorption model of Glargine, the overall results of

this thesis provide a promising approach to achieve and maintain normoglycaemia

from the ICU to the less acute wards.

To ensure the overall research will reached broader treatment, saving lives

and in future create potential commercial opportunity, the next important step

is to have the research clinically verified. Thus, in the following and final chapter

under ‘Future Avenues’, a ‘Proof-of-concept study of Glargine as basal insulin

support in the intensive care and the high dependency units and validation of an

Insulin Glargine pharmacokinetics model’ is presented.



Chapter 9

Future Avenues: Proof of Concept Clinical

Protocol

Ethics from Upper South B Regional Ethics Committee has been granted for a

pilot clinical trial based on this study, ‘Proof-of-concept study of Glargine as basal

insulin support in the intensive care and the high dependency units and validation

of an Insulin Glargine pharmacokinetics model’. The pilot trial will be conducted

in the near future at the Christchurch ICU Hospital, New Zealand. This proof-

of-concept study will be the first study to validate Glargine pharmacokinetics in

a clinical setting and thus the models developed in this research. In addition, it

will be the first study to test the effectiveness of Glargine as basal insulin support

for recovering critically ill patients. This research will be very valuable for future

development of TGC protocols in ICU and less acute wards.

Glargine pharmacokinetics in this study have been identified from 4 studies

consisting of 6 plasma insulin data sets. However, the model fitted and model

generated plasma insulin from Glargine have been made using a standard weight

of an 80kg patient. Hence, improvements can be made by fixing the Glargine

dose to each patient’s body weight, as it may be affected by patient’s physical

condition, either obese or lean. Insulin kinetics are delayed in obese patients.

Issues concerning the actual duration of Glargine’s basal effect and action can

also be resolved. The patient’s natural insulin released following a meal will also

be studied. This data alone will be valuable for future development of glycaemic

control protocols in the less acute wards.

Equally, it will treat patients who are eating meals as opposed to getting

constant nasogastric nutrition support in the ICU. Meal models in this study

accommodate nasogastric feed. Thus, models that could accommodate patients
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who started eating normally are clearly needed. Such models would be quite a

challenge since it would be difficult to estimate exactly how much food has been

consumed by the patient, thus presenting a significant variability issue.

The proposed proof-of-concept study will also be a first clinical step towards

developing a comprehensive sytem for maintaning tight glycaemic control out-

side of the ICU. The focus, as discussed in previous chapters, would be on the

transition from using relatively labour intensive intravenous insulin in the ICU

to less intensive, longer acting, subcutaneous insulin in the less acute wards.

Consequently, the benefit of tight glycaemic control can be extended from the

ICU to the less acute wards, improving overall inpatient health care. There have

been only 2-3 such studies and none have proven particularly successful. Thus,

the study outcomes will be an important contribution to knowledge in their own

right.

The potential significance of this proof-of-concept study, which basically ad-

dresses the limitations of the models developed in this study thus:

• Determination of the exact insulin pharmacokinetics of Glargine in the

critically ill.

• Knowledge on addressing the difficult transition between intravenous and

subcutaneous insulin.

• Better insight into the endogenous insulin production of critically ill pa-

tients, particularly upon meal consumption, of which almost nothing is

known.

To validate the Glargine pharmacokinetics model developed in this study,

plasma insulin and C-peptide levels in study participants following a subcuta-

neous Glargine injection will be studied. Blood samples will be collected by

nursing staffs while medical staff will assist in collecting non-routine laboratory

tests, such as C-peptide and insulin levels. Patient’s blood sample will be taken

for assays of plasma insulin and C-peptide levels on the first two days of them be-

ing given Glargine. Blood samples will be taken for a further 2 days once patients

start to receive meals (as oppose to nasogastric feed). Apart from patients bene-

fitting from intensive blood glucose monitoring, study of the endogenous insulin
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response may be of benefit for diagnostic of potential diabetes. Information such

as blood glucose, insulin and nutrition will be taken from patient charts. Photos

of meals will be taken before and after mealtime to estimate the actual nutritional

intake, particularly the amount of carbohydrate and non-carbohydrate calories

consumed. Although the method is not high-tech, it is the best that could be done

at this stage before an actual, reliable meal model can be developed. Equally, it

will help us understand the variability of (likely) consumption and thus the gly-

caemic variability one might need to robust to. The quality of glycaemic control

for patients transferring to less acute wards from ICU with and without Glargine

will be assessed based on the duration of blood glucose levels within a clinically

desirable range, safety or from hypoglycaemic events, amount of total insulin

given, and nutrition requirements.

The data collected will lead to a comprehensive glycaemic control system

that allows a smooth transition between intravenous and subcutaneous insulin

throughout a patient’s hospital stay. In addition, the study will examine the

current state of glycaemic control outside of ICU thus providing a platform from

which to improve.

Patients will be screened and consented for the study in the intensive care

unit. Patients will then be divided into the Glargine group and the Control group

using permuted block randomisation with 10 patients per block. All patients will

have blood glucose levels tested, naso-gastric feeding rate adjusted, and intra-

venous insulin injection given every 1–2 hours as per the standard ICU practice

using SPRINT. Figure 9.3 shows the recruitment invitation for interested patients

to participate in this proof-of-concept study.

The inclusion criteria include:

• Critically ill patients who are on SPRINT glycaemic control protocol.

• Presence of an arterial line.

• Stable hourly insulin requirement, equal or less than 3U of insulin per hour,

for at least 12 hours.

• Stable feed rate, equal or greater than 60% of the calculated goal feed.

(Goal feed is calculated using individual patient’s age, gender and frame

size.)
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Figure 9.1 Recruitment invitation to patients who are interested to participate in the ‘Proof-
of-concept study of Glargine as basal insulin support in the intensive care and the high depen-
dency units and validation of an Insulin Glargine pharmacokinetics model’.
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• No acute renal failure (creatinine <250 µmol/L)

• Equal to or less than 5000ml positive fluid balance given as intravenous

bolus in the past 24 hours, estimated from their original weight, indicating

stable interstitial volume.

• Resolving multiple organ failure (Sequential Organ Failure Score SOFA ≤
6) [Vincent et al., 1996].

Patients who are not expected to survive more than 48 hours will be excluded

from the study.

The Control group is for comparing blood glucose levels only and no non-

standard ICU blood samples will be taken. The overall protocol in flowchart

form is shown in Figure 9.2. Consistency is important in the administration of

Glargine. Hence, the first dose is always given in the morning, and the timing

has to be maintained until patient is discharged. After patients are discharged

from the ICU, data from less acute wards relating to blood glucose control will

be retrospectively gathered.

The study aims to obtain complete results from at least 10 ICU patients

in the Glargine group. Results will be considered complete if the patient has

completed Glargine+Meal study for 2 days. More than 20 patients (up to 60) are

expected to be enrolled in the study as patients might not complete the entire

study procedure. Patients can request withdrawal from the study at any time and

individual study may be terminated if there are unexpected clinical deterioration.

This is a proof-of-concept study. Hence, powered statistical significance is not a

concern and not applicable to this study.

All potential patients will be identified daily by the clinician according to

the entry criteria. When study patients are transferred to wards, a person-

nel will be arranged to continue the study in the wards. The intensive clini-

cians will approach the patient or if patient cannot consent him/herself a fam-

ily/representative will be approached. Study information sheet that explains the

study detail will be given to patient/family. Written consents are preferable from

the patients or any family members. If written consents are impractical, clinical

staff is to obtain oral consent and sign on behalf with a second signature from a

witness. Figure 9.3 is the Glargine consent form that will be given to patients,
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while Figure 9.4 is the consent form for relative/family or friend acting on behalf

of patients.

A variety of disciplines are brought together in this study, each bringing their

own expertise in the area to create a novel transition protocol that would benefit

ICU and less acute patients. These includes:

• Intensive Care Specialist, Surgeon.

• Engineering Professor and students of all levels.

• Physicians.

• Dietician.

• Nurses.

Results from this pilot study would enable an expansion of patient population

with a larger clinical trial. All the guidelines should be followed accordingly, with

caution. There is a risk of hypoglycaemia, as when any form of insulin is being

used. However, the current protocol, SPRINT is shown to be very safe regarding

low blood glucose levels. Glargine in this study is used conservatively, and it is

not expected to cause serious low blood glucose levels. If hypoglycaemia occurs

at any time, insulin will be stopped and an injection of glucose may be given to

quickly restore blood glucose level to a normal level.

The aim to investigate the use of Glargine in recovering intensive care pa-

tients will lead to the development of a sytematic protocol guiding the transition

between intravenous insulin in the ICU, to subcutaneous insulin in the less acute

wards, that will directly benefit to this particular group. The study will be con-

ducted using the paper-based SPRINT protocol, for ease of nurses. In the near

future, a computerized hand-held device protocol might replace the paper-based

protocol as pilot study incorporating the computerized SPRINT protocol is in

progress at the moment. The study, known as STAR trial uses a computer tablet

instead of a hand-held device.

Incorporating a computerized decision support would reduce the chances of

human error and protocol violations. Moreover, equipping the computerized pro-

tocols with alarms alerting dangerous blood glucose levels and such, would be
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Figure 9.3 Glargine consent form for patients to participate in the ‘Proof-of-concept study
of Glargine as basal insulin support in the intensive care and the high dependency units and
validation of an Insulin Glargine pharmacokinetics model’.
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Figure 9.4 Glargine consent form for relative/friend/family of patients to participate in the
‘Proof-of-concept study of Glargine as basal insulin support in the intensive care and the high
dependency units and validation of an Insulin Glargine pharmacokinetics model’.
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Figure 9.5 Glargine statement form for investigators approving patients to participate in the
‘Proof-of-concept study of Glargine as basal insulin support in the intensive care and the high
dependency units and validation of an Insulin Glargine pharmacokinetics model’.
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safer. Early recognition of hypo/hyperglycaemia would prevent adverse events.

Records of blood glucose measurements, amount of insulin administered and nu-

trition could be better managed by linking straight to hospital database for each

patient electronic records, another step to minimize human error. Handwritten

records might be misread if written or rather scribbled due to time constraint

as the measurements needed to be taken frequently. Significantly, a direct up-

loading to patient database would do wonders to future studies. Time spent in

extracting data from large number of patients involved in study would be greatly

reduced as there are substantial amount of data. Finally, a more important fac-

tor on the success of TGC implementation is educating staff, particularly nurses.

Each hospitals need to develop a program on equipping staff with the importance

of TGC and necessary responsibilities held by each nurses, so that they would

be better informed and would familiarize themselves around standards of care

with TGC. Particularly, with control protocols involving transition of care, there

needs to be a dynamic between the ICU nurses and less critical ward’s nurses. A

clinical practice change is not an easy task, people often resist being taken out

of their own comfort zone. A good example is the sliding-scale insulin, which

has continued to survive despite the well known fact, that more often than not,

sliding-scale doesn’t work. The reason is simply because of the hospital culture

that had developed for so many years. The doctors in charged learned from the

previous doctors, and the cycle continues.

However, there are other issues surrounding the study as well. Patients who

are discharged from the ICU show a sign in progress. Besides starting to eat

normally, these patients would also have more movement than before, either

assisted or own their own. Mild exercise, such as leg or arm movement, might be

performed to reduce muscle weakness. Patients would also begin to walk. These

physical rehabilitation activities would have an effect on patient’s own glucose

regulation as increased insulin sensitivity has been associated with exercise. To

what extent this effect of exercise will be seen, is still unknown. However, studies

have shown physical activities are linked with better management in blood glucose

among patients. Hence, in the future a model that could predict the changes or

improvement in glycaemic control associated with exercise, would benefit from

studies of the data from patients in this group. In fact, among the critically

ill, there have been physical rehabilitation performed on patients, thus avoiding

muscle wasting which is common as patients are confined to bed for a considerable

length of time.
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Overall, this study is the next major step forward from the research in this

thesis. The size and complexity of the design of this study and in its implementa-

tion precluded its inclusion in this thesis. Thus, it represents the main step nec-

essary in this overall research are for both modeling and clinical research aspects.

This thesis provide potential directions and goals for designing and implementing

the next generation of TGC protocols in the less acute wards. Proper treatment

and consideration of the issues surrounding TGC in the less acute wards, partic-

ularly in protocol design and implementation should result in increased success

of TGC protocols in practice.
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(a)

(b)

Figure A.1 The paper based SPRINT protocol used in this research in the transition pro-
tocol with long-acting subcutaneous Glargine, developed from computerized insulin-nutrition
glycaemic control implemented through 2 look-up tables. SPRINT feed wheel from [Lonergan
et al., 2006b] with (A.1(a)) and without dial (A.1(b)) .
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(a)

(b)

Figure A.2 The paper based SPRINT protocol used in this research in the transition pro-
tocol with long-acting subcutaneous Glargine, developed from computerized insulin-nutrition
glycaemic control implemented through 2 look-up tables. SPRINT insulin wheel [Lonergan
et al., 2006b] with (A.2(a)) and without dial (A.2(b)).
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Danne, T., Lüpke, K., Walte, K., von Schuetz, W., and Gall, M. (2003). Insulin

detemir is characterized by a consistent pharmacokinetic profile across age-

groups in children, adolescents, and adults with type 1 diabetes. Diabetes

Care, 26(11):3087.

Dartois, C., Lemenuel-Diot, A., Laveille, C., Tranchand, B., Tod, M., and Gi-

rard, P. (2007). Evaluation of uncertainty parameters estimated by different

population PK software and methods. Journal of Pharmacokinetics and Phar-

macodynamics, 34(3):289–311.

Davidson, P., Steed, R., and Bode, B. (2005). Glucommander A computer-

directed intravenous insulin system shown to be safe, simple, and effective in

120,618 h of operation. Diabetes Care, 28(10):2418–2423.

De La Rosa, G., Donado, J., Restrepo, A., Quintero, A., González, L., Sal-
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