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Abstract: Abnormal blood glucose (BG) concentrations have been associated with negative outcomes in 

critically ill adults and infants. Diagnosis of hyperglycaemia and hypoglycaemia is by BG measurements, 

which are typically taken several hours apart due to the clinical effort required. Continuous glucose 

monitoring (CGM) devices, which take measurements every 5 minutes, have the potential to improve the 

detection and diagnosis of these glycaemic abnormalities. There have been relatively few successful 

investigations of CGM devices in the ICU, and one study reported significant sensor noise. If CGM 

devices are going to be used in the clinical setting to monitor, diagnose and potentially treat critical 

illness, clinicians need to know data are reliable and accurate. This study uses CGM data from neonatal 

infants to develop a tool that will aid clinicians in identifying unusual CGM behaviour. A stochastic 

model was created to classify CGM measurements with the aim of highlighting unusual CGM behaviour. 

In addition, the method uses a colour coded CGM trace to convey the information quickly and efficiently, 

either retrospectively or in real-time. The method has been used to detect unusual hypoglycaemic events 

and potential sensor degradation, both of which need to be interpreted with care. Overall, while BG 

measurements are required to make definitive conclusions about glycaemic events, the stochastic model 

provides another level of information to aid users in interpretation and decision making. 
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1. INTRODUCTION 

Abnormal blood glucose (BG) concentrations have been 

associated with increased morbidity and mortality in both 

critically ill adults and infants. Patients in the intensive care 

unit (ICU) often experience high levels of insulin resistance 

and stress-induced hyperglycaemia, which can negatively 

impact outcomes (Capes et al., 2000, Finney et al., 2003, 

Krinsley, 2003, Bistrian, 2001, Van den Berghe et al., 2001). 

Further complicating the matter, hypoglycaemia and 

glycaemic variability have both been independently linked to 

mortality in critically ill patients (Egi et al., 2006, Egi et al., 

2010, Hermanides et al., 2010, Krinsley, 2008). 

Diagnosis of hyperglycaemia and hypoglycaemia in critically 

ill patients is by blood glucose (BG) measurements, which 

are typically taken several hours apart.  More frequent BG 

measurements are not clinically practical due to the 

additional nursing workload (Carayon and Gurses, 2005, 

Chase et al., 2008, Mackenzie et al., 2005) and consequently, 

important glycaemic events between BG measurements can 

go undetected. Continuous Glucose Monitoring (CGM) 

devices have the potential to improve the detection and 

diagnosis of these glycaemic abnormalities. The continuous 

glucose monitoring system (CGMS® System Gold™ 

Medtronic, Minimed, Northridge, CA, USA) provides a 

glucose value every 5 minutes or 288 measurements per day, 

with only 4 BG measurements per day required for device 

calibration. 

There have been relatively few successful investigations of 

CGMs in critical care use (Goldberg et al., 2004), although 

they are well studied in Type 1 diabetes (Breton and 

Kovatchev, 2008, Klonoff, 2005a, Klonoff, 2005b). In 

particular, one set of tight glycaemic control trials using 

CGM technology was not particularly successful due, in part, 

to significant sensor noise (Chee et al., 2003a, Chee et al., 

2003b). Added sensor noise is a trade off (in some cases) for 

the CGMs far higher, automated sampling rate (Goldberg et 

al., 2004, Clarke et al., 2005) and must be effectively 

managed for these devices to be used successfully. However, 

these sensor and algorithm technologies are also constantly 

evolving with every new generation offering improvements 

(Klonoff, 2005b, Skyler, 2009). 

If CGM devices are going to be used in the clinical setting to 

monitor, diagnose and potentially treat critical illness, 

clinicians need to know the data is reliable and accurate. 

Consider a scenario in which CGM data are retrospectively 

analysed to classify hypoglycaemia in neonates, where 

frequent BG measurements are not available. Three 

consecutive measurements in a CGM trace read 4mmol/L, 

2.5mmol/L, followed by 4mmol/L. If hypoglycaemia was 

classified as a measurement below 2.6mmol/L, then this 



 

 

     

 

would be recorded as a hypoglycaemic event. However, if the 

rest of the CGM trace was very stable with low variability, 

intuition would suggest this 'event' is potentially a sensor 

artefact.  

Our manuscript describes a tool that will aid clinicians in 

identifying unusual CGM behaviour, retrospectively or in 

real-time, and highlight sections of the CGM glucose trace 

that potentially need to be interpreted with care.   

2. SUBJECTS AND METHODS 

2.1  Subjects 

This study uses CGM data from 50 babies at risk of 

hypoglycaemia who were admitted to the Waikato Hospital 

Newborn Intensive Care Unit (NICU). Table 1 presents the 

cohort demographics for the 50 patients. Demographics are 

presented as median [interquartile range] where applicable. 

Table 1: Patient demographics 

Cohort Demographics

Number of CGM traces 50

Sex (M/F) 26/24

Gestational Age (weeks) 34 [33 - 37]

Birthweight (g) 2172 [1880 - 2990]

Primary Risk (# infants):

Diabetes 15

Premature 19

Small or Large for gestational age 14

Other 2  

2.2  Continuous Glucose Monitoring 

All patients had interstitial glucose monitoring using the 

CGMS® System Gold™. Monitoring began on admission to 

the NICU and finished after 7 days or earlier if the baby was 

no longer considered at risk of hypoglycaemia. During the 

monitoring period nurses were asked to record all blood 

glucose concentrations, feeding and medication for the 

management of hypoglycaemia. However, they remained 

blind to the glucose concentrations determined by the device. 

The device was calibrated as per the manufacturer’s 

recommendations and all of the data entered into the device 

were checked against clinical records for accuracy. Upon 

completion of continuous glucose monitoring, data were 

downloaded to a PC using CGMS system solutions software 

version 3.0C, which calibrated the CGM readings 

retrospectively. 

2.3  Calibration Measurements 

All BG calibration measurements were determined by a 

blood gas analyser (Radiometer, ABL800Flex, Copenhagen) 

using the glucose oxidase method. This device has a reading 

range of 0.0 to 60.0mmol/L and a coefficient of variation of 

2.1% (Harris et al., 2010). Due to the location of the blood 

gas analyser, a short time delay (estimated < 25mins 

maximum) was possible between taking the blood sample 

and entering the calibration glucose level into the device. 

2.4  Stochastic Model and CGM Classification 

A stochastic model based on the kernel density method was 

used to classify CGM measurements as expected or 

unexpected, using the previous CGM measurement and 

information about the history of CGM behaviour. The model 

is an extension to the methods described by Lin et al (Lin et 

al., 2008) who developed a stochastic model for insulin 

sensitivity prediction. 

The CGM data sets are broken down into paired, consecutive 

CGM measurements (CGMn-1, CGMn). Kernel density 

estimation methods are used to create a smooth, continuous, 

non-parametric model surface that reflects the data pattern. 

For every possible CGMn-1, the stochastic model provides a 

continuous, empirical estimate of the conditional probability 

density function (pdf) for the next CGM measurement, 

CGMn. These conditional pdf’s provide the basis for 

classifying CGM measurements and identifying unusual 

CGM behaviour.  

Using the stochastic model, a given CGM measurement, 

CGMn, would be classified as follows:  

1. The previous measurement, CGMn-1, is used to find 

the corresponding conditional pdf from the model.  

2. CGMn is located in the pdf and its percentile value 

in the conditional pdf is determined.  

3. The percentile is used to classify CGMn, where a 

very high or very low percentile is indicative of an 

outlier. These outliers are classified as unusual 

CGM measurements. 

The measurement-to-measurement sections of the CGM trace 

were colour coded based on the percentile value, to highlight 

areas of unusual CGM behaviour quickly and effectively. 

Three confidence intervals (CI’s) were used to specify the 

colour: within 80% CI (10
th

-90
th

 percentile) was blue, within 

90% CI (5
th

-95
th

 percentile) was cyan, within 99% CI (0.5
th

-

99.5
th

 percentile) was yellow, and outside 99% CI was red. 

These intervals were chosen based on the data used in this 

study and can be customised for different patient groups 

and/or different CGM sensors. As the scale starts at 80% CI, 

the focus here is on classifying outliers, rather than the full 

range. 

3. RESULTS 

Figure 1 shows a plot all of the CGM data (CGMn-1, CGMn). 

The contour lines represent the 5th, 25th, 50th, 75th, and 95th 

percentiles of the stochastic model surface. Figure 2 shows a 

distribution of the data density by glycaemic level. Figure 3 

shows a surface plot of the stochastic model. Conditional 

probability density functions are slices parallel to the CGMn 

axis, and each slice has an area under the curve of 1.0. Figure 

4 shows a comparison of the pdf's obtained from the model 

versus the pdf's obtained directly from the CGM data. Each 

pdf shows the expected distribution of CGMn given a 



 

 

     

 

previous measurement (CGMn-1) of 2, 4, 6, 8 or 10mmol/L. It 

should be noted that the pdf's could be generated for any 

value of CGMn-1 within the bounds of the model; Figure 4 

shows just five examples.  

Figures 5-7 show three examples of CGM traces that have 

been coloured using the stochastic classification method. 

Figure 5 shows a stable trace, which is almost entirely dark 

blue, indicating the measurement-to-measurement change 

 

 

 

 

Figure 1: Plot of CGM measurement pairs (CGMn-1, CGMn) 

with contour lines representing the 5
th

 to 95
th

 percentiles, 

from the bottom of the plot up. 
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Figure 2: Density of the data set by glycaemic level. Density 

is shown as a percent of the total data set (67,438 

measurements). 

throughout the trace is not unusual. Figure 6 shows a trace 

with several potentially unusual measurements throughout 

the trace. The hypoglycaemic event that occurs at 

approximately one day after monitoring began is coloured red 

and classified as very unusual. Figure 7 shows a trace with a 

few potentially unusual measurements for the first three days 

of monitoring. After day 3 a high proportion of the CGM 

measurements are classified as very unusual and are coloured 

red. 

 

 

 

 

 
Figure 3: Stochastic model surface for this data set 
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Figure 4: Comparison of conditional probability density 

functions at different CGMn-1. Pdf's from the model are solid 

lines and empirical pdf's from actual CGM data are dotted
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Figure 5: Stable CGM trace with no yellow or red measurements indicating no CGM measurements were classified unusual. 
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Figure 6: CGM trace with several measurements classified as mildly unusual. Note the hypoglycaemic event at ~1 day which 

has been classified as very unusual (red). 
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Figure 7: CGM trace with several measurements classified as mildly unusual. After day 3 the trace is classified as very 

unusual (red) and could be indicative of sensor malfunction. 

Very unusual 

behaviour 

Very unusual 
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4. DISCUSSION 

The aim of this study was to design a tool that could aid 

clinicians in identifying unusual CGM behaviour that should 

potentially be interpreted with care. Stochastic modelling 

methods from (Lin et al., 2008) and a method of colouring 

CGM traces were used to highlight unusual CGM behaviour 

clearly and efficiently, in either real-time or retrospectively. 

Figures 1 and 2 give information about the raw data used to 

create the stochastic model. More than 99% of the data is 

within 2-10mmol/L range, shown in Figure 2. There are 

several outliers in Figure 1 that have a very large change in 

glycaemia over the 5 minute measurement interval. The high 

data density means these outliers have little effect on the 

model fit, shown by the smooth and tight percentile lines in 

Figure 1. However, below 2mmol/L there are 97 CGM 

measurements and due to the relatively low density of data 

the outliers have more impact on the model fit. This effect is 

shown by the 95th percentile line of the model, which strays 

upward at levels below 2mmol/L. Similarly, above 

10mmol/L there are only 232 measurements and the 

percentile lines all have a wave-like shape, again showing the 

effect of outliers where data density is low. A greater data 

density would alleviate these issues without changing the 

approach in this proof-of-concept. 

Figure 3 shows the surface of the stochastic model. The 

colour gradient shows how the shape of the model changes in 

the domain of CGMn-1 and that a single, global probability 

density function is not applicable to this data set. Figure 4 

further reinforces this with 5 pdf’s taken from the model at 

different CGMn-1 values, resulting in 5 different shaped 

density functions. These pdf’s are also used to show that the 

model fits the empirical data well. The model pdf’s (solid 

lines) overlay the empirical data (dotted lines) with only 

minor discrepancies.  

Figures 5-7 show 3 different CGM data sets and how the 

stochastic model classified the individual CGM 

measurements within them. Figure 5 shows a very stable, flat 

CGM trace with only small variations over the 3.5 days of 

monitoring. The CGM trace passes near all calibration 

measurements and there doesn’t appear to be any unusual 

CGM behaviour. The stochastic model classified almost the 

entire trace as dark blue indicating no unusual CGM 

behaviour. The interpretation of this trace would not likely be 

influenced with the additional information provided by the 

model. 

Figure 6 shows a less stable CGM trace with a lot more 

variability. This trace contains a few yellow and red sections 

that potentially need to be interpreted with care. The focus of 

this discussion is the hypoglycaemic event that occurs at 

~day 1. In the sequence of 5 measurements that lead up to the 

1.8mmol/L minimum, there are two drops of ~1mmol/L per 5 

minute measurement interval. The model has determined 

these are extreme outliers and consequently they have been 

coloured red. The trace then rises to above 4mmol/L in 5 

measurements, similarly with two rises of ~1mmol/L per 5 

minute measurement interval. Although the physiological 

limits of glucose rate-of-change are still unknown, the level 

of sensor error that has been reported in previous CGM 

studies (Breton and Kovatchev, 2008, Goldberg et al., 2004) 

suggest that this hypoglycaemic event could potentially be 

either glycaemia or sensor error.  

It is important to note that the aim of the stochastic model 

presented is not to try and determine the cause of the drop in 

CGM glucose, but rather to highlight the fact it should be 

interpreted with care. Furthermore, if the stochastic model 

was implemented in a real-time clinical setting and the 

downward CGM measurements were observed, it would be 

beneficial for the clinician to know whether the sequence of 

measurements is typical of CGM devices and that patient 

cohort. It should also be noted that without an accurate BG 

measurement at ~1 day, no exact conclusion can be drawn 

about the whether the hypoglycaemic event in this data was 

due to sensor error, or a true glycaemic event. 

However, this lack of confirmation is often the reality with 

CGMs. Clinical protocols might use stochastic information to 

justify an added calibration measurement to clarify a 

potentially significant event. After an event, such traces 

would yield insight not present at the bedside.  

Figure 7 shows an example of CGM data that becomes 

increasingly more variable and unstable at approximately day 

3 of monitoring. Before day 3, the CGM trace is 

predominantly blue and cyan with only small patches of 

yellow and occasionally red. However, after day the 3 the 

CGM trace is almost entirely red indicating the stochastic 

model has classified these measurements as very unusual. 

The sudden apparent degradation of reliable CGM 

measurements could be due to a sensor failure. This is not an 

unreasonable hypothesis, given the sensors used in this study 

were validated for 3 days of continuous monitoring. Again, 

without more frequent, accurate BG measurements during the 

period after day 3 no definitive conclusions can be drawn. 

However, this example represents another potential use of 

this stochastic model classification method that might be 

useful to users of CGM devices.  

5.  CONCLUSIONS 

This study has produced a stochastic model capable of 

classifying CGM measurements with the aim of highlighting 

unusual CGM behaviour. The method uses a colour coded 

CGM trace to convey the information quickly and efficiently 

and it is computationally light enough to be used 

retrospectively or in real-time. 

There are several potential uses for the stochastic 

classification which include, but are not limited to, 

classification of hypoglycaemia and detection of potential 

sensor failure. Equally, they can augment alarming methods 

or be used to more optimally time BG measurements in 

cohorts, such as neonates, where blood draws are restricted. 

Overall, while BG measurements are required to make 

definitive conclusions about glycaemic events, the stochastic 

model provides another level of information to aid users in 

interpretation and decision making. 
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