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all homogeneous universes are alike;

every inhomogeneous universe is inhomogeneous in its own way.





ABSTRACT

We introduce a generalization of the 4−dimensional averaging window function of

Gasperini, Marozzi and Veneziano (2010) that may prove useful for a number of ap-

plications. The covariant nature of spatial scalar averaging schemes to address the

averaging problem in relativistic cosmology is an important property that is implied by

construction, but usually remains implicit. We employ here the approach of Gasperini

et al. for two reasons. First, the formalism and its generalization presented here are

manifestly covariant. Second, the formalism is convenient for disentangling the de-

pendencies on foliation, volume measure, and boundaries in the averaged expressions

entering in scalar averaging schemes. These properties will prove handy for simplifying

expressions, but also for investigating extremal foliations and for comparing averaged

properties of different foliations directly. The proposed generalization of the window

function allows for choosing the most appropriate averaging scheme for the physical

problem at hand, and for distinguishing between the role of the foliation itself and

the role of the volume measure in averaged dynamic equations. We also show that

one particular window function obtained from this generalized class results in an av-

eraging scheme corresponding to that of a recent investigation by Buchert, Mourier

and Roy (2018) and, as a byproduct, we explicitly show that the general equations for

backreaction derived therein are covariant.

Parameters that quantify the acceleration of cosmic expansion are convention-

ally determined within the standard Friedmann-Lemâıtre-Robertson-Walker (FLRW)

model, which fixes spatial curvature to be homogeneous. Generic averages of Einstein’s

equations in inhomogeneous cosmology lead to models with non-rigidly evolving aver-

age spatial curvature, and different parametrizations of apparent cosmic acceleration.

The timescape cosmology is a viable example of such a model without dark energy.

Using the largest available supernova data set, the Joint Light-curve Analysis (JLA)

catalogue, we find that the timescape model fits the luminosity distance-redshift data

with a likelihood that is statistically indistinguishable from the standard spatially

flat Lambda Cold Dark Matter (ΛCDM) cosmology by Bayesian comparison. In the

timescape case cosmic acceleration is non-zero but has a marginal amplitude, with

best-fitting apparent deceleration parameter, q0 = −0.043+0.004
−0.000. Systematic issues re-

garding standardization of supernova light curves are analysed. Cuts of data at the

statistical homogeneity scale affect light curve parameter fits independent of cosmology.



A cosmological model dependence of empirical changes to the mean colour parameter is

also found. Irrespective of which model ultimately fits better, we argue that as a com-

petitive model with a non-FLRW expansion history, the timescape model may prove a

useful diagnostic tool for disentangling selection effects and astrophysical systematics

from the underlying expansion history.

We also perform a further analysis using the JLA catalogue. We examine the

fit of a class of exact scaling solutions with dynamical spatial curvature formulated

in the framework of a scalar averaging scheme for relativistic inhomogeneous space-

times. In these models, global volume acceleration may emerge as a result of the

non-local variance between expansion rates of clusters and voids, the latter gaining

volume dominance in the late-epoch Universe. We find best-fit parameters for a scaling

model of backreaction that are reasonably consistent with previously found constraints

from SNIa, CMB, and baryon acoustic oscillations data. The quality of fit of the

scaling solutions is indistinguishable from that of the ΛCDM model and the timescape

cosmology from an Akaike Information Criterion (AIC) perspective. This indicates

that a broad class of models can account for the z . 1 expansion history.

We develop methods for investigating baryon acoustic oscillation (BAO) features in

cosmological models with non-trivial (but slowly varying) averaged spatial curvature:

models that are not necessarily flat, close to flat, nor with constant spatial curva-

ture. The class of models to which our methods apply include Lemâıtre-Tolman-Bondi

models, modified gravity cosmologies, and inhomogeneous cosmologies with backre-

action – in which we do not have a prediction of the shape of the spatial 2-point

correlation function, but where we nevertheless expect to see a BAO feature in the

present-day galaxy distribution, in the form of an excess in the galaxy 2-point correla-

tion function. We apply our methods to the Baryon Oscillation Spectroscopic Survey

(BOSS) dataset, investigating both the ΛCDM and timescape cosmological models as

case studies. The correlation functions measured in the two fiducial models contain

a similarly-pronounced BAO feature. We use the relative tangential and radial BAO

scales to measure the anisotropic Alcock-Paczyński distortion parameter, ε, which is

independent of the underlying BAO preferred scale. We find that ε is consistent with

zero in both fiducial cosmologies, indicating that models with a different spatial curva-

ture evolution can account for the relative positions of the tangential and radial BAO

scale. We validate our methods using ΛCDM mock catalogoues.

We investigate – in a generic setting – the regime of applicability of the Alcock-



Paczyński (AP) scaling conventionally applied to test different cosmological models,

given a fiducial measurement of the BAO characteristic scale in the galaxy 2-point cor-

relation function. We quantify the error in conventional AP scaling methods, for which

our ignorance about the true cosmology is parameterised in terms of two constant AP

scaling parameters evaluated at the effective redshift of the survey. We propose a new,

and as it turns out, improved version of the constant AP scaling, also consisting of two

scaling parameters. The two constant AP scaling methods are almost indistinguishable

when the fiducial model used in data reduction, and the ‘true’ underlying cosmology

do not differ substantially in terms of metric gradients or when the redshift range of

the measurements is small. When the fiducial model and the ‘true’ model differ sub-

stantially in terms of metric gradients, the two AP scaling methods differ in general.

Our new methods can be applied to existing analysis through a reinterpretation of the

results of the conventional AP scaling. This reinterpretation might be important in

model universes where curvature gradients above the scale of galaxies are significant

(and cannot be ignored by a suitable smoothing process).

We test our theoretical findings on ΛCDM mock catalogues where the underlying

space-time model is known. The conventional constant AP scaling methods are sur-

prisingly successful for pairs of large-scale metrics, but eventually break down when

pathological models which allow for large metric gradients are tested. The new constant

AP scaling methods proposed in this paper are efficient for all test models examined.

We find systematic errors of ∼1% in the recovery of the BAO scale when the true

model is distant from the fiducial, which are not attributed to any constant AP ap-

proximation. The level of systematics is robust to the exact fitting method employed.

This indicates that the error budget of the BAO acoustic scale measurements in the

standard literature is underestimated.
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6.1.2 Alcock-Paczyński scaling . . . . . . . . . . . . . . . . . . . . . . 152

6.1.3 Empirical model for the correlation function . . . . . . . . . . . 154

6.2 Theoretical investigation of the redshift-dependent Alcock-Paczyński
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CHAPTER 1

Introduction

Cosmology is the discipline of describing overall dynamic properties of the Universe in

an averaged or statistical sense. We have limited observational access to the Universe

which we inhabit. Our information about the Universe is obtained indirectly, primarily

through photons but also through neutrinos and gravitational waves. Thus the primary

cosmological data comes in the form of a two-dimensional snap shot of energy and

polarisation of photons arriving from different points of our past light cone. This

picture has a depth in ‘time’ of approximately 14 billion years. The task is to work

our way backwards from this picture to gain an understanding of our Universe.

For a cosmology founded on general relativistic principles, this aim is hard to obtain

for at least three reasons:

(i) In General Relativity a global and canonical notion of time is not in general

expected to exist. There is no unique and general way of extending the eigen-

time of a world line to a global time parameter at each point in space-time.

Thus, global dynamics is not easily defined since a natural ‘laboratory frame’

is missing. A cosmological model would usually describe congruences of funda-

mental observers following source fluid flows, and would naturally attempt to

build global frames based on such a family of observers. However, the identifi-

cation of observer congruences in our space-time, that ‘at present day’ involves

a complicated hierarchy of structure, is a difficult task. Moreover, a congruence

of fluid-comoving observers does not build global rest frames in the presence of

vorticity (expected to appear on small scales), so that alternative definitions of

observers-based spatial sections may be required.

(ii) Averages and statistical descriptions are not naturally formulated within General

Relativity. Tensor quantities are intrinsic to the tangent-space in which they live;

while there are ways of mapping tensor quantities between tangent-spaces, such
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mappings are not unique. Furthermore, point particles as matter sources are

not compatible with the formulation of General Relativity. For these reasons

statistical matter descriptions are highly involved in General Relativity.

(iii) Cosmological data are limited in quantity and precision due to our single world-

line section – which has close to zero extension when compared to the age of the

Universe – from which we can perform observations, and due to the conditions

for viewing the Universe from this world-line section. Einstein’s equations as

formulated as an initial value problem demand data as prescribed on spatial

hypersurfaces, which include the interior of the light cone. The overwhelming

complexity of General Relativity (GR) on the one hand and the poor constraining

power of data on the other, make simplifying assumptions crucial for building a

general relativistic model which can be constrained by data.

Many of the conceptual difficulties of macroscopic general relativity have historically

been avoided in cosmology by assuming approximate decoupling of scales and imposing

exact spatial homogeneity and isotropy for the assumed general relativistic solution for

space-time valid on the largest scales. Such assumptions date back to the very founding

of general relativistic cosmology.

When Albert Einstein first applied the theory of general relativity to cosmology

in 1917 [1], he noted that ‘on account of the lack of uniformity in the distribution of

matter, the metrical structure of this continuum must necessarily be extremely com-

plicated’, but further made the remark that for the purpose of modelling the largest

scales we might think of the matter distribution as being uniformly distributed. In the

same paper he noted that ‘the most important fact that we draw from experience as

to the distribution of matter is that the relative velocities of the stars are very small

as compared with the velocity of light. So I think that for the present we may base our

reasoning upon the following approximative assumption’. Einstein’s first approxima-

tion was to model the matter distribution of the Universe as a perfect dust source –

with all matter being at rest in some appropriate frame of reference – and to further

model the matter distribution and the corresponding metric as spatially homogenous

and isotropic.

The initial investigations of Einstein made within a static universe assumption laid

the groundwork of many later important theoretical contributions in the 1920s and

2



1930s by Friedman, Lemâıtre, Robertson, Walker, Milne, Einstein, de Sitter, and oth-

ers, e.g., [2, 3, 4, 5, 6, 7, 8] on dynamical space-time generalisations1 – which attracted

much attention after the important discovery2 [9, 10] that the recorded redshift of

distant objects was consistent with being proportional to their distance from us, indi-

cating expansion of space itself. These theoretical contributions formed the Friedman-

Lemâıtre-Robertson-Walker (FLRW) class of cosmological models which constitute the

foundation of most modern cosmology. The FLRW class of space-times obey the same

translational and rotational symmetries as the original class of static space-times in-

vestigated by Einstein.

At the time of the pioneering paper by Einstein galactic structures were not known,

massive gravitational objects such as black holes and neutron stars had not been ob-

served (directly or indirectly), and the matter distribution of the Universe was believed

to be similar to the distribution of stars in our galaxy. The discovery in the 1920s by

Edwin Hubble [11] that many distant objects previously classified as ‘nebulae’ were

in fact galaxies beyond the Milky Way changed how astronomers perceived the Uni-

verse. Based on his own investigations on the statistical distribution of galaxies (or

‘extra-galactic nebulae’) Hubble concluded that ‘The counts with large reflectors con-

form rather closely with the theory of sampling for a homogeneous population’ and that

‘There are as yet no indications of a super-system of nebulae analogous to the system

of stars’ [12]. Hubble’s conclusions were artefacts of sparse sampling though, and it

turned out that super-systems of galaxies do exist in the form of galaxy clusters and

filaments. The mapping of structure in our Universe has become still more refined over

the past century, and modern maps reveal a rich hierarchy of structure known as the

‘cosmic web’ [13, 14].

The continued unraveling of the complicated matter distribution of our Universe

since the foundation of FLRW cosmology might cast into doubt the accuracy of the

modelling assumptions about homogeneity and isotropy of the ‘large-scale metric struc-

ture’ initially made by Einstein in 1917. In modern cosmology the high level of isotropy

of the cosmic microwave background (CMB) [15] together with the Copernican princi-

1 Milne’s universe, which is the hyperbolic slicing of Minkowski space-time, is perhaps better de-
scribed as a ‘kinematical’ model.

2 Georges Lemâıtre [9] was the first to fit the distance–redshift relation to available data, but his
contribution was not noticed by most of the scientific community. After the widespread attention
given to the paper of Edwin Hubble [10], Lemâıtre’s paper was translated and republished.
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ple [16] is – rather than Einstein’s original arguments relying on the distribution of stars

in our galaxy – taken as justification of modelling the largest scales by a space-time

with exact spatial translational and rotational symmetries.

The first measurement of the CMB was done by Penzias and Wilson3 in 1965 [15].

The discovery of the CMB as a snapshot of the early Universe epoch ∼14 billion

years ago known as recombination is one of the most remarkable discoveries done in

physics. In addition to carrying information about the epoch of recombination, the

photons of the CMB carry projected information about all epochs of our Universe

from recombination until today. The high degree of isotropy of the CMB as revealed

in later detailed measurements – which when adjusting for the dipole structure is only

broken with fluctuations of order 10−5 – is remarkable in its own right. It does not

only suggest that the Universe started out in a very simple state, it also reveals that

the isotropic temperature distribution of photons as initialised during the epoch of

recombination has to a large degree been preserved despite the complicated structure

of the cosmic web that the photons have travelled through. The CMB remains the

most compelling observational argument for (statistical) homogeneity and isotropy to

date.

It is naturally of interest what conclusions can be rigorously drawn about the geo-

metric properties of the Universe – and in particular whether the historical assumption

of modelling the Universe by an FLRW geometry can be rigorously justified – based

on the CMB. In 1968 Ehlers, Geren, and Sachs proved that for a solution of Einstein’s

equations with the only matter source being a radiative fluid with an isotropic distri-

bution function, the space-time is either stationary, given by an FLRW solution, or

a special solution with non-zero rotation and acceleration of the radiation fluid [18].

Thus, in the investigated idealised case with a perfectly isotropic CMB as seen by

fundamental observers in a non-static universe, the FLRW ansatz about homogeneity

and isotropy is rigorously justified.

While the Ehlers–Geren–Sachs theorem is an interesting result in the literature it is

not applicable to our Universe where the CMB radiation is not perfectly isotropic in any

frame, and where the present epoch is dominated by an irregular matter distribution

of non-zero rest mass. Attempts have been made to generalise the Ehlers–Geren–Sachs

theorem to situations with more generic matter content and where the distribution

3 The CMB had already been detected by McKellar in 1941 [17] but not recognised as being of
cosmic origin.
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function of the radiation is almost isotropic with respect to a class of observers –

where in some cases it might be proved that the space-time is ‘almost’ FLRW (or

‘almost’ stationary). Such a theorem was given by Stoeger, Maartens, and Ellis [19] who

assumed a matter source composed of a dust fluid source in addition to the radiation

fluid, and again generalised by Räsänen [20] to generic matter content. However,

while the settings in such generalisations are more realistic, they still suffer from very

restrictive assumptions on the derivatives of the radiation energy as measured by a

class of observers. As discussed in [20], the derivatives of the energy distributions of

the photons – which are not directly observed – are related to the local geometry which

can realistically exhibit large local variations. The extent to which the mathematical

idealisation of exact symmetries usually made in cosmology are compatible with the

Universe we inhabit is still an open question.

The modern paradigm of cosmology, the Lambda Cold Dark Matter (ΛCDM)

model, is an FLRW model beginning in a hot big bang which contains four energy

components: a cosmological constant denoted by Λ and associated with dark energy;

cold dark matter (abbreviated CDM); and ordinary matter and radiation known in the

standard model of particle physics. In ΛCDM cosmology the approach for describing

structure on cosmological scales involves linear perturbations around an FLRW model

[21, 22, 23, 24] and is often referred to as ‘standard model perturbation theory’. The

fields of physical interest in standard model perturbation theory are gauge-invariant

perturbation degrees of freedom of the physical space-time defined relative to a back-

ground space-time, where the gauge freedom represents a family of first-order changes

of the diffeomorphism between the background space-time and the physical space-time.

Newtonian N -body simulations are most often invoked in describing structure forma-

tion beyond the linear regime [25, 26, 27].

Standard model perturbation theory can be used for calculating the anticipated

structure at different epochs and scales within the ΛCDM model. Other examples

of predictions of the standard model perturbation theory are the Sachs-Wolfe effect

and the integrated Sachs-Wolfe effect [28]. The Sachs-Wolfe effect describes anisotropy

in the temperature distribution of photons arising from the inhomogeneities in the

matter distribution at the epoch of recombination due to the additional redshift or

blueshift of photons exiting over- and underdensities. The integrated Sachs-Wolfe effect

is due to the integrated effect of inhomogeneities along the null rays from the epoch

of recombination to the present epoch – the relative wavelength of photons traversing
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respectively potential wells and hills change due to the ‘stretch’ of potentials caused

by the expansion of space – and is a probe of dark energy in the standard model of

cosmology.

Some of the main observational probes which have lead to the paradigm of the

ΛCDM model and the current constraints on its parameters are the CMB, supernovae

of type Ia (SNIa), and baryon acoustic oscillation (BAO) measurements. We briefly

review these cosmological probes. We shall discuss SNIa and BAO measurements in

more detail in chapters 3, 4, and 5.

In the decades leading up to the discovery of the CMB as being of cosmic origin

studies of physical processes in expanding plasma and the abundance of light elements

were carried out. In the 1920s and 1930s theoretical studies for understanding the

relative abundance of hydrogen and helium observed were carried out [29, 30, 31]

and the notion of a thermal expansion history within the FLRW class of models was

formulated in [32] as well as the prediction that expansion of space would cool but

preserve an initial blackbody radiation spectrum. However, these early works were

focusing mainly on a single thermodynamic equilibrium for understanding abundances

of light elements. In 1942 it was proposed that non-equilibrium processes had to be

studied in order to account for abundances [33]. A few years later the theory of big bang

nucleosynthesis was founded [34, 35, 36, 37, 38]. It was proposed from these studies

that the Universe must have been radiation dominated by the time of nucleosynthesis

[36] – changing the perception up to that point that the Universe around the epoch of

the formation of the first light isotopes was dominated by ordinary matter with non-

zero rest mass. A background radiation which would be observable today at around

a temperature of 5◦K was furthermore predicted as a consequence of the decoupling

of photons and electrons4 [37, 38] – this prediction is impressively close to the today

known mean temperature of the CMB of 2.725◦K.

The measurement of the CMB and the identification of it as being of cosmic origin

[15] thus established the theory of nucleosynthesis and the hot big bang model. Since

the initial measurement the precision and angular resolution of the CMB temperature

map has been improved tremendously [39, 40, 41, 42, 43, 44], including mapping of the

polarisation of the photons as well. These improvements have allowed for an abundance

4 Gamow and others were unaware of McKellar’s 1941 observations of the absorption spectra of
interstellar molecules [17], with a feature which in the benefit of hindsight was realised to arise from
the CMB.
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of cosmological investigations. An important realisation which came out of studying

the temperature variations of the CMB was that these were not large enough to account

for the structure of the present day epoch [39]. This conclusion was in line with the

already noted seemingly lack of matter to account for rotation curves of stars in the

outskirts of galaxies as modelled by Newtonian gravity. This established the need for

introducing the cold dark matter component in the ΛCDM model.

In 185 CE Chinese astronomers recorded the observation of a new bright star on

the sky, and noted that it remained in the sky for approximately eight months. This

‘guest star’ is believed to be the first recorded supernova event by humans. The Danish

astronomer Tycho Brahe was the first to carefully document a supernova event (not

knowing at the time that it was a supernova). In 1572 he noted the appearance of a new

star in the constellation Cassiopeia. Since it was at that time believed that everything

beyond the moon and planets was fixed, other observers at the time assigned the event

to be within the Earth’s atmosphere. However, Tycho Brahe noted that the object

remained in the same spot night after night, and that ‘it must lie far away’.

Modern supernovae observation was initiated in the 1960s where astronomers dis-

covered that the maximum magnitude of supernovae could be used as approximate

standard candles [45] and thus as a probe of astronomical distances. SNIa events are

believed to be due to matter accreted from a binary companion onto a white dwarf

star. Since the resulting explosion involves exceeding the Chandrasekhar mass limit,

the energy emitted in the explosion is largely insensitive to the initial conditions. The

intrinsic scatter of the peak apparent magnitude as measured in individual frequency-

bands is too large for supernovae to be directly used as precise standard candles and

standardisation techniques are in practice required. In 1993 a breakthrough was made

when an empirical relation – the Philips relation – was discovered [46] between the

peak of the supernova light curve in the rest frame B-band and its decay over 15 days

for a subclass of SNIa, allowing to standardise supernovae.

The dark energy component Λ – introduced already in the first general relativistic

cosmology paper by Einstein [1] but later rejected by himself as his ‘biggest blunder’ – of

the ΛCDM paradigm first became an established part of the concordance cosmology in

1998, when one of the most important discoveries in cosmology was made [47, 48]: the

luminosity distances and redshifts of SNIa are well matched to the expansion history of

a spatial homogeneous and isotropic Friedmann-Lemâıtre-Robertson-Walker (FLRW)

model only if the Universe began an epoch of accelerated expansion late in cosmic
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history. Since gravity with matter obeying the strong energy condition5 is universally

attractive, this demands a cosmological constant, Λ, or some other unknown source of

spatially homogeneous dark energy violating the strong energy condition.

It should be noted that there are large systematics (systematic errors) involved

in supernovae analysis and that the use of supernovae as standard candles relies on

empirical methods of standardisation, as will be discussed in more detail in chapters

3 and 4. Complementary observations are therefore desirable. Independently of SNIa,

since the late 1990s maps of the CMB and galaxy catalogues have been found to

independently require late epoch cosmic acceleration in the FLRW model. Despite

this success in terms of consistency, the nature of dark energy remains a mystery for

fundamental physics.

The study of BAO features in the recent-epoch matter distribution is, together with

the CMB and supernovae, a cornerstone of observational cosmology. In the ΛCDM

cosmology, sound waves in the primordial plasma, and the subsequent decoupling of

photons from the baryons, produce a characteristic scale in the distribution of the

baryons at the drag epoch [49, 50], which is predicted to be visible in the matter

distribution of today. The characteristic scale in the matter distribution can be used

as a ‘standard ruler’, and can provide a complementary mapping of the expansion

history to that of standard candles.

The basic object typically used to study BAOs in the matter distribution is the

2-point correlation – which is an autocorrelation in spatial separation of the matter

distribution. Formulations of 2-point correlation function statistics for galaxies were

studied before the theory of BAOs was formulated. Hubble considered statistical counts

of galaxies or ‘extra-galactic nebulae’ in circles defined from central nebulae [12]. Such

unnormalised number counts results in irregular number counts for modern galaxy

catalogoues, which is generally ascribed to galaxy evolution and observational biases6.

The version of the 2-point correlation function used in most modern cosmology was

formulated Peebles in the 1970s [52] – with corresponding estimators formulated in

the following years, see, e.g., [53]. For estimators based on the work of Peebles, the

5 The strong energy condition stipulates that the projection of the Ricci tensor Rµν onto a any time-
like vector field Uµ must satisfy RµνU

µUν ≥ 0, which through Raychaudhuri’s equation ensures
that gravity focuses bundles of matter.

6 However, see the discussions in [51] where it is argued that the irregularities in number counts are
signatures of the violation of FLRW assumptions.
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number counts are normalised by analogous number counts in artificial random Poisson

catalogues to correct for observational biases and systematics in unnormalised number

counts.

The BAO feature, in the form of an excess in the spatial 2-point correlation function

of the matter distribution [54, 55] was first detected in the distribution of galaxies by

[56, 57] and, since then, more precisely measured by large-volume galaxy surveys such

as the WiggleZ Dark Energy Survey [58] and the Baryon Oscillation Spectroscopic Sur-

vey [59]. The BAO feature has also been detected using the Lyman-α absorption line

of hydrogen as a tracer of the matter distribution [60, 61]. The visibility of a charac-

teristic scale in the 2-point matter distribution, at around the expected acoustic scale

from CMB constraints [62], is a success of the ΛCDM cosmology as a self-consistent

framework for the interpretation of cosmological observations.

The ΛCDM cosmological model is overall successful in describing available data.

However, it has foundational mysteries as described in the above – physically unex-

plained dark components must account for 95% of the energy content of the universe

– and observational tensions between different probes [63, 64, 65, 66, 67, 68], that mo-

tivate a continued exploration of alternative models. The statistical and systematic

errors in current data, and the observational degeneracy of different physical phenom-

ena, makes it difficult to discriminate between ΛCDM and alternative cosmologies.

With next-generation surveys by facilities such as the Large Synoptic Survey Tele-

scope (LSST), Gaia, Euclid, the Dark Energy Spectroscopic Instrument (DESI) and

the Square Kilometre Array (SKA), we will enter a new level of precision in data, that

must be matched by theoretical precision in order to improve our understanding of the

Universe.

Inhomogeneous cosmology is a field within cosmology in which solutions to the

foundational mysteries of the ΛCDM paradigm are sought within the gravitational

physics of general relativity, with focus on the complexities in space-time dynamics that

arises when matter is not perfectly homogeneously distributed over spatial sections of

our Universe. In the field of inhomogeneous cosmology we are interested in studying

the failure of the FLRW idealisation as an accurate description of geometry on the

largest scales and as a global background metric for the structure in our Universe –

meaning the failure of it to describe averaged matter dynamics and the motions of

test particles, and its failure to serve as a background space-time for all ‘cosmological

matter fields’.
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Investigations of inhomogeneous and/or anisotropic general relativistic universe

models go back to the early days of general relativistic cosmology. Space-times which

are spatially homogeneous but not necessarily isotropic are known as the Bianchi class

of models. The relevant 3-dimensional Riemanian spaces were classified by Bianchi [69]

before general relativity was founded – for early applications in general relativity, see

for instance [70, 71, 72]. In the 1930s Lemâıtre [4] and Tolman [73] developed particular

classes of spherically symmetric models. In 1947 Bondi discussed spherically symmet-

ric and pressure-free space-times [74] and extended work done by Lemâıtre and others

– these space-times are in the literature referred to as Lemâıtre-Tolman-Bondi (LTB)

models. One of the first frameworks introduced for addressing inhomogeneous and

anisotropic models in cosmology was the Swiss cheese class of space-times developed in

1945 by Einstein and Straus [75]. The Swiss cheese models allow one to consider non-

perturbative structure in a general relativistic framework, albeit in a highly idealised

setting with the Schwarzschild solution representing compact objects embedded in an

FLRW space-time. Exact space-time solutions which preserve the axial symmetry of

the LTB models, but which are not in general spherically symmetric were formulated

by Szekeres in 1975 [76], and are denoted the Szekeres models. The Swiss cheese models

can be generalised by replacing the Schwarzschild solution with any Szekeres solution

– for instance an LTB model – provided that the Israel junction conditions are satisfied

[77, 78].

Some early approaches to applying averaging operations to study statistical space-

time properties in general relativistic cosmology are found in the work by Isaacson in

1968 [79, 80]. Such work relies on limiting procedures around a pre-defined background

cosmological model, and are thus only useful if a background which is everywhere

close to the physical metric tensor in the way prescribed by the procedure indeed

exists as a good approximation. The work on limiting procedures around a pre-defined

background space-time was developed further in 1989 by Burnett in a vacuum-setting

[81]. A recently proposed generalisation of the work of Burnett to non-vacuum space-

times by Green and Wald [82] has received attention in the cosmological community.

There are many possible specifications and approaches which could be taken for

addressing various aspects of the broad problems posed in the field of inhomogeneous

cosmology. A central concept in the field of inhomogeneous cosmology is the that of

backreaction – i.e., the way that physics on small and intermediate scales affects or is

‘reacting back’ on the large scale dynamical description of the Universe. Different ap-

10



proaches to the field of inhomogeneous cosmology in general have different operational

definitions of backreaction, which can be hard to directly compare.

The problem of finding the best smoothed cosmological model description of an

inhomogeneous universe is sometimes referred to as the ‘fitting problem’ [83]. In one

of the earliest papers discussing the fitting problem in detail [84], the fitting problem

is defined as follows.

Definition 1. The issue facing us then is as follows: we contemplate on the one

hand, a (‘lumpy’) cosmological model U = {M, gab, ua, µ, n} comprising a manifold

M, metric tensor gab(x
i), normalised 4-velocity ua(x

i) : uagabu
b = −1 (see, e.g., Ellis

1971), dynamical matter variables symbolised here by the energy density µ (but in

general including other quantities such as the pressure p), and other matter variables

symbolised here by the galaxy number density n (but in general including more detailed

specification of the distribution of luminous matter in the Universe), which together

give a realistic representation of the Universe including all inhomogeneities down to

some specified length scale L; and on the other an idealised, completely smoothed-out

(...) model U ′ = {M ′, g′ab, u
′
a, µ

′, n′}. Our problem is how to determine a ‘best fit’

between these two cosmological models.

As opposed to the limiting procedures outlined by Isaacson, Burnett, Green, and

Wald [79, 80, 81, 82], the aim as outlined in the above formulation of the fitting problem

is not to characterise small scale behaviour relative to a pre-defined background space-

time. The formulation of the fitting problem as proposed by Ellis defines the very

task as obtaining the best fit background or average effective cosmological model given

a physical inhomogeneous space-time. While the fitting problem could be formulated

more broadly than in definition 1, most modern work done in inhomogeneous cosmology

on formulating large scale dynamical equations for our Universe largely follows this

definition.

The stating of the fitting problem in definition 1 presupposes a ‘local’ general

relativistic cosmological solution with a well defined fluid description with ‘local’ matter

density degrees of freedom µ and a well defined ‘local’ time-direction and time-measure

of the matter given by ua and gab. Consequently most of the work done in the fitting

problem of cosmology does not deal with the coarse-graining that allows us to actually

write the Universe in a hydrodynamic description on the largest scales. (However,

see [85, 86] for relevant discussions on this issue.) Most work assumes an underlying
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general relativistic manifold with a hydrodynamic cosmic matter source, and focuses

on the last part of smoothing in order to obtain homogeneous evolution equations on

the form of Friedmann’s equations of standard cosmology with additional source terms

due to backreaction of small scale inhomogeneities in the accurate description, U , on

the large scale effective description U ′ [84, 87, 88, 89, 90, 91, 92, 93, 94]. In this thesis,

we shall mainly approach the fitting problem in the spirit of its classical formulation

in definition 1. However, we shall also discuss observational tests of the timescape

scenario [95, 96, 97, 98], which approaches the fitting problem in a different spirit.

The choice of mathematical framework in which to address fundamental questions in

inhomogeneous cosmology is closely related to the interpretation of the fitting problem.

All frameworks for addressing the fitting problem are designed for replacing ‘micro-

scopic’ degrees of freedom of a given universe with statistical ‘macroscopic’ or ‘cos-

mological’ degrees of freedom through some prescription. The notion of ‘microscopic’

and ‘macroscopic’ must be specified and depends on which levels of the cosmological

hierarchy of structure are addressed.

Modern non-perturbative theoretical approaches to cosmological averaging and the

fitting problem rely on either considering averages of simplified exact model space-

times – for instance Swiss cheese, LTB, or Szekeres models – or to consider averaging

operations for almost generic space-times and to apply simplifying assumptions on

the resulting averaged equations directly. There are advantages to both procedures.

Considering exact model cosmologies is useful for studying phenomena and observables

in a well defined setting where symmetries potentially allow for analytic and intuitive

results. Averaging of exact solutions can provide insight into how well defined average

quantities relate to the microscopic properties of the given space-time. Studies of exact

general relativistic solutions have the disadvantage that the simplifying assumptions

imposed might greatly limit the applications of the results to the actual Universe.

Making simplifying assumptions on the macroscopic variables of an already aver-

aged micro-state instead, has the advantage that one need not impose exact symmetries

on the micro-state in order to obtain simple results for the macroscopic dynamical sys-

tem of equations. A given macroscopic constraint might be compatible with several

micro-states with very different properties. A disadvantage of macroscopic simplifying

assumptions is that it might turn out not to be consistent with a realistic micro-state

description. In this sense, assumptions made on the macro-state are associated with

the danger of being arbitrary and physically uncontrolled with respect to local physics.
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Here, we shall briefly introduce a few of the most discussed averaging operations in

the literature. Each of these averaging schemes can be applied in different spirits and

with different simplifying assumptions.

An example of a concrete approach to relativistic averaging in cosmology is the

tensor averaging scheme of Zalaletdinov [99, 100, 101], where the full tensorial Einstein

field equation Gµν = 8πG
c4
Tµν , where Gµν = Rµν − 1

2
gµνR is the Einstein tensor, is

averaged in order to yield a new set of covariant equations on a given scale 〈G〉µν =
8πG
c4
〈T 〉µν , where 〈〉 denotes a particular averaging operation designed to preserve the

covariance of any averaged tensorial field. The averaged metric 〈g〉µν resulting from

the same averaging procedure is in general not a solution to the averaged Einstein

equations. One might denote the difference between the Einstein tensor of 〈g〉µν and the

average of the local Einstein tensor 〈G〉µν the backreaction term. While the averaging

scheme of Zalaletdinov preserves the tensorial form of the Einstein equations, the price

for doing so is to introduce additional structure in the averaging operation, which

might have little physical justification. The rather complicated averaging procedure

also makes it hard to apply the theoretical results to concrete examples.

Another tensorial averaging scheme proposed is that of Korzyński [94]. The ten-

sorial averaging procedure assigns coarse–grained expansion, shear and vorticity to a

finite–sized comoving domain of a predefined fluid in a coordinate–independent man-

ner. Because of the divergence theorem, the coarse grained fluid variables are only

sensitive to the properties of the boundary surrounding the given domain. The av-

eraging procedure by Korzyński avoids the additional structure which is introduced

by Zalaletdinov, and thus appears simpler and perhaps more physically grounded and

intuitive.

The most well studied averaging scheme in the field of inhomogeneous cosmology

is the scalar averaging scheme proposed by Buchert [87, 88]. Here, the Einstein field

equation is projected according to a ‘physically preferred’ time-like vector field, which

is usually dictated by a four-velocity field of a fundamental congruence of observers.

A spatial scalar averaging scheme is then employed for averaging the projected equa-

tions. The spatial hypersurfaces on which the averaging operation is applied are again

determined by a physically preferred time-like vector field (which must be irrotational

in order to properly define the spatial surfaces).

The disadvantage of Buchert’s scheme is that averaged tensorial objects are not

defined, and thus objects which would have been natural to define, such as aver-
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aged tensorial fluid variables or an averaged metric tensor, can never be formulated in

Buchert’s scheme. However, see chapter 4 where we discuss the possibility of formu-

lating an effective metric or ‘template metric’ within which to interpret cosmological

observations in Buchert’s scheme. The timescape scenario [95, 96] proposes another

form of an effective metric within which to interpret statistical averages of Buchert’s

scheme when a single space-time solution is not appropriate for describing all cosmic

space-time dynamics, and bimetric or multiple-metric models must be invoked.

The advantage of Buchert’s scheme is that it provides a simple and intuitive set

of equations of averaged space-time variables. The dynamical equations can easily

be recasted into a form similar to the FLRW equations of standard cosmology, and

therefore provide the opportunity to directly study differences with FLRW dynamical

behaviour. Terms affecting the dynamics of the volume of a domain – which can be

thought of as an effective scale-factor in the language of FLRW cosmology – which

have no FLRW counterpart are denoted backreaction terms. This quantification of

backreaction has received attention as it formalises the possibility of emergent effective

energy sources with dark energy-like signature from structure on smaller scales [102].

Buchert’s averaging scheme has been generalised in various ways, for instance in

[90, 91] where spatial averaging is defined in a more general way than initially done

in Buchert’s scheme and where the formulation is done in a manifestly covariant way

(meaning non-coordinate based). We shall consider the generalised framework pro-

posed in [90, 91] as a starting point of our analysis on covariant scalar averaging

in chapter 2. We test a particular class of models, the ‘scaling solutions’, built from

Buchert’s averaging scheme in chapter 4, where Buchert’s equations for a dust universe

are presented in (4.1)–(4.4).

The work by Korzyński and Buchert primarily focuses on fluid variables and the

assignment of averaged variables to physically motivated spatial domains of space-time.

A different starting point that is more observational in spirit is to consider light cone

averaging, where the light cone of a single observer or a class of observers is studied

and where observational quantities such as redshift, flux of photons, the size of physical

objects as they appear on the sky, etc., are of primary interest. An attempt to define

observer based averaging is for instance made in [92, 103], where averaging over null

surfaces – physically representing light cones of observers – is defined. An advantage

of this scheme is that it can be formulated within the same overall framework as

the spatial scalar averaging [90, 91], which might result in interesting combinations or
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comparisons of the light cone and the spatial averaging scheme. However, it is not clear

how the various null cone averages defined in [92, 103] are related to observables, and

the scheme is perhaps mainly a mathematically interesting idea, and not necessarily the

most useful scheme for providing physical insight relevant for cosmological observation.

Work has been done on relating global variables of Buchert’s scheme to the mea-

surements of ‘typical observers’ in statistically homogeneous and isotropic universes

[104, 105]. Here the averaged redshift and averaged angular diameter distance for mul-

tiple typical observers are considered. The procedure provides physical insight for how

average quantities defined on spatial surfaces can be expected to relate to typical mea-

surements of observers – even though the results are not derived fully rigorously and

rely on arguments about statistical homogeneity and isotropy and the rate of evolution

of structure.

The timescape scenario [95, 96] employs the Buchert averaging scheme in a bimetric

scenario partitioning space-time into tubes of overdense wall regions and underdense

void regions. Average observables are hypothesized to be given by an effective metric

arising from matching radial null lines of an effective volume average metric and the

‘local’ metric of the overdense wall regions where observers are situated.

Another interesting procedure for light cone averaging has been suggested by Uzun

[106] where a particular representation of the propagation of a bundle of null rays is

given. It is argued that phase space averaging of null bundles might be formulated in

this setting. The exact procedure has yet to be developed.

The few of many possible tools for defining a macroscopic cosmological theory of

our universe discussed here, should hopefully give an idea about the complexity and the

richness of the issues faced in inhomogeneous cosmology in formulating a macroscopic

dynamical theory of our Universe.

The outline of this thesis is as follows. In chapter 2 we will introduce a gener-

alisation of the 4−dimensional averaging window function of Gasperini, Marozzi and

Veneziano (2010) [91] that may prove useful for a number of applications. The pro-

posed generalisation of the window function allows one to choose the most appropriate

averaging scheme for the physical problem at hand, and to distinguish between the

role of the foliation itself and the role of the volume measure in averaged dynamic

equations. The manifestly covariant form of the averaging scheme introduced, allows

one to write already existing results in the literature on explicitly covariant form.
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In chapter 3 we use the the Joint Light-curve Analysis (JLA) SNIa catalogue to test

luminosity distance-redshift relation of the timescape model. We test the quality of fit

of the timescape model against that of the standard spatially flat ΛCDM model by both

frequentist and Bayesian comparison. Systematic issues regarding standardisation of

supernova light curves are discussed in the analysis. Systematics at and around an

approximate statistical homogeneity scale are of special interest in our analysis.

In chapter 4 we perform yet another model test on the JLA SNIa catalogue. We

examine the fit of a class of exact scaling solutions with dynamical spatial curvature

formulated in the framework of Buchert’s averaging scheme [87, 88] for smoothing

over inhomogenieties. We examine best-fit parameters of the scaling solutions and

investigate consistency with previously found constraints from SNIa, CMB, and BAO

data. We examine the quality of fit of the scaling solutions relative to the ΛCDM

model, the timescape model, and the Milne model.

In chapter 5 we develop methods for investigating BAO features in cosmological

models with non-trivial curvature. We apply our methods to the Baryon Oscillation

Spectroscopic Survey (BOSS) dataset, investigating both the ΛCDM and timescape

cosmological models as case studies.

In chapter 6 we use the methods developed in chapter 5 to investigate the regime

of applicability of the Alcock-Paczyński (AP) scaling conventionally applied in BAO

analysis to measure distance scales using a fiducial cosmological model. We propose a

new and more efficient version of the conventional AP scaling. We test our theoretical

findings for specific test cases using ΛCDM mock catalogues.
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CHAPTER 2

On the covariance of scalar averaging and

backreaction in relativistic inhomogeneous

cosmology

In this chapter we focus on quantifications of the non-linear backreaction of smaller

scales on the large scale evolution that involves averaging of ‘local’ quantities. We shall

focus only on averaging schemes for space-time scalars as done in [87, 88], and later

generalized by many authors (see, e.g. the reviews [89, 107] and references therein).

The use of such averaging schemes presupposes the existence of a ‘local’ fluid descrip-

tion in a ‘local’ metric theory. However, we do not assume an averaged homogeneous

and isotropic fluid as a source for a large-scale statistical geometry: geometry and

matter couple at the fluid resolution scale. The average behaviour is formulated di-

rectly from the physics at this ‘local’ scale, and inhomogeneities at local scales appear

explicitly in the resulting generalizations of the Friedmann equations, reflecting the

non-commutativity of averaging and evolution in time.

In this chapter we introduce a 4−dimensional averaging window function that gen-

eralizes the window function presented in [90, 91] for integration over hypersurfaces.

There are multiple purposes in doing so. First, we shall often be interested in a fluid-

intrinsic averaging operation (when a fundamental fluid exists in our space-time); such

intrinsic formulation will in general not be compatible with the class of window func-

tions considered in [90, 91]. Second, the generalized scheme allows for maximal freedom

in the choices of averaging domain and volume measure, while still being compact and

easy to interpret. Covariance is built explicitly into the averaging scheme, guaranteeing

that any generalization of the Buchert scheme formulated from this will be coordinate-

independent by construction. Third, the introduction of the new window function has

applications for further investigations on extremal foliations and on the dependence of

averaged quantities on the foliation. Such studies are beyond the scope of this chapter,
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but will be considered in future work [108].

We are solely concerned with covariance here; we do not consider gauge-invariance

as defined in standard model perturbation theory.1 In standard model perturbation

theory the fields of interest are perturbation degrees of freedom of the space-time

metric defined relative to a background metric. These fields are defined in terms of

components of the metric and the background metric and do not transform as tensors

in the differential geometry definition of a tensor, i.e. they are not covariant. This

includes the Bardeen variables, which are ‘gauge-invariant’ in this context, i.e. they

are invariant under first-order changes of the diffeomorphism between the background

manifold and the physical space-time manifold, but they are not 4−scalars.

We emphasize that there is no reference to a background space-time in this chap-

ter, and that we use the conventional general relativistic wording throughout. When

referring to scalar degrees of freedom we mean quantities that do not transform under

arbitrary coordinate transformations. When we refer to ‘gauge’ degrees of freedom in

this chapter, this will be in the broad sense of the word, i.e. as redundant degrees of

freedom in the parameterization of a physical system.

This chapter is organized as follows. In section 2.1 we introduce the averaging

scheme as formulated in terms of a covariant window function. We discuss the inter-

pretation of the generalized adapted volume measure entering this scheme and we give

examples of relevant subcases. In section 2.2 we discuss the commutation rule for such

an averaging operation and apply it to the conservation of regional rest mass. The

averaged Einstein equations for a general fundamental fluid source are derived in sec-

tion 2.3 for a general window function, expressed in such a way that boundary terms

vanish by construction, except for the average energy conservation law. We consider

domains propagated along the fluid world lines as a special case that allow for a more

transparent interpretation of the averaged equations. We conclude in section 2.4.

2.1 The averaging scheme

We now introduce the averaging scheme used to quantify averaged dynamics in this

chapter. This averaging formalism is a direct generalization of that presented in [91],

1 We emphasize the focus of this chapter on covariant variables only, in distinction to [90] where
both covariance and standard model perturbation theory gauge invariance are discussed.
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the difference being that we allow for an arbitrary volume measure on the selected

hypersurfaces. We discuss the interpretation of the generalized volume measure, and

highlight several relevant subcases of the averaging scheme in relation to the existing

literature.

2.1.1 The window function

Following [90, 91] we consider scalar functions integrated over space-time domains that

are selected out of the space-time 4−manifold M by appropriate choices of window

functions. In the context of this chapter we shall consider window functions that

single out compact regions of 3−dimensional spatial hypersurfaces. Averaging over

3−dimensional hypersurfaces is natural when we want to describe the evolution of

averaged properties of spatial sections of the Universe.

Here we shall consider a slightly broader class of 3 + 1 window functions than in

[90, 91], to allow for arbitrary positive volume measures on the hypersurface of inte-

gration. Hence, we do not restrict ourselves to having the volume measure coincide

with the adapted volume measure in the frame of the foliation. Such a more general

volume measure is natural in several settings, some of which we shall investigate below.

This furthermore allows us to make explicit which properties of the averaged expres-

sions are related to the foliation and which are related to the volume measure. When

investigating foliation dependence [108] the separation of these contributions will be

useful.

We shall consider the broad class of window functions

WA,A0,B,B0,V = −V µ∇µ(H(A0−A))H(B0−B) = (V µ∇µA) δ(A0 − A)H(B0 −B) , (2.1)

where A is a scalar with time-like gradient that determines the spatial foliation of

integration (with hypersurfaces A = const.) and B is a scalar with space-like (or

possibly null) gradient that is used to bound the averaging domain. A0 and B0 are

constants that respectively select a specific hypersurface of the foliation (A = A0) and

the domain’s spatial boundary (B = B0). V is an arbitrary time-like vector field, that

need not be normalized, and that will in general not be normal to the hypersurfaces

defined by A. H is the unit step function; we use the convention H(0) = 1 throughout.

We shall call A the hypersurface scalar, B the boundary scalar, and V the volume

measure vector. We shall drop the subscripts denoting the dependencies of W in the
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following.

This form of the window function generalizes that of [91] through the freedom of

choice of the volume measure vector, which in [91] is restricted to being the unit normal

vector n to the hypersurfaces defined by A. V determines the volume measure on the

hypersurfaces defined by A. This corresponds to considering the usual oriented volume

element

dV λ = −nλ
√
g

6
nµεµν%σ dxν ∧ dx% ∧ dxσ ; nµ =

−∇µA

(−gνσ∇νA∇σA)1/2
, (2.2)

(where g ≡ − det (gµν), and ε is the Levi-Civita symbol) projected along the vector V .

Thus, the integration measure that we use on the surfaces defined by constant A is

dV ≡ Vµ dV µ . (2.3)

We can think of Vµ dV µ as the flux of V through the infinitesimal volume dV µ.

If V is taken to be the normal vector n to the A = const. hypersurfaces, we

simply recover the Riemannian volume measure of the hypersurfaces, dV = nµ dV µ.

Alternatively, we may take the volume measure vector V to be a 4−velocity field u

of physical interest, in general tilted with respect to the normal n. In this case, the

integration measure defined in (2.3) becomes

dV ≡ uµ dV µ = −uµnµ
√
g

6
nλελν%σ dxν ∧ dx% ∧ dxσ

= γ

√
g

6
nλελν%σ dxν ∧ dx% ∧ dxσ

= γ

√
g

6
(−∇νA∇νA)−1/2 ε ijk dx̄i ∧ dx̄j ∧ dx̄k = γ nµ dV µ , (2.4)

where x̄µ = (A, x̄i) is an adapted coordinate system to the foliation of A, and where

γ ≡ −u · n is the tilt, or Lorentz factor, between the normal of the hypersurfaces

and the 4−velocity u. The infinitesimal volume element dV measures the local proper

volume (around A = A0) of the fluid element defined by the infinitesimal fluid flow

tube that intersects the hypersurface {A = A0} at the points of the time coordinate (in

the x̄µ basis) A = A0 and of the spatial coordinates spanning the range [x̄i, x̄i + dx̄i].

The Riemannian volume measure nµ dV µ of this fluid element as it intersects the

hypersurface {A = A0}, is its volume measure in the frame defined by n, and it is thus
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Lorentz-contracted with respect to dV . Hence, the choice V = u introduces a local

proper volume measure of the fluid as the Riemannian volume measure multiplied by

the local Lorentz factor γ.

2.1.2 Averages of scalars

We define the integral over a scalar S over the space-time domain {A = A0, B ≤ B0}
singled out by the window function W as follows:

IW (S) ≡
∫
M

d4x
√
g S W , (2.5)

and we define the average of a scalar S as

〈S〉W ≡
∫
M d4x

√
g S W∫

M d4x
√
gW

=
IW (S)

V , (2.6)

where V ≡ IW (1) is the volume of the domain as measured by dV . The functional

dependencies of IW (S) and 〈S〉W on the variables of W are kept implicit for ease of

notation, and we shall also drop the window function index W in what follows.

2.1.3 Examples of window functions

We now present several possible choices for the window function, adapted to specific

descriptions.

2.1.3.1 Riemannian averages:

As discussed above, the choice V = n implies integration with respect to the Rieman-

nian volume element of the hypersurfaces determined by A in the definitions (2.5)–(2.6)

for integration and averages. This choice corresponds to the averaging formalisms that

are often used in the literature for general foliations, in addition to specific (not al-

ways covariantly defined) conditions on the propagation of the domain boundary (see

a comprehensive list of such general foliation extensions of [87, 88] in the literature

comparison investigated in [109]). This is the choice made in [91], where the propaga-

tion of the domain is in principle kept general, but is specified as following the normal

vector, n ·∇B = 0, when derivation of averaged Einstein equations is considered.
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2.1.3.2 Lagrangian window functions:

One can also use the integration measure arising from V = u, where u is the generator

of flow lines of a physical fluid, together with the requirement of a domain propagating

along the fluid flow, u ·∇B = 0. We do not at this point specify the time function

A. We call such a choice a Lagrangian window function, since the spatial domain

is comoving with the fluid, and the volume measure is defined as the proper volume

measure of the fluid elements.

The proper volume element of the fluid (2.4) and the associated volume and averages

as defined by (2.6) are equivalent to those of [110], here derived from a manifestly

covariant window function. This explicitly shows that all results derived from the

integration of scalars with this choice of volume element in [110] are covariant, as well

as the former results of [87, 88] obtained with the same volume element in the case of

a fluid-orthogonal foliation (V = u = n).

2.1.3.3 Mass-weighted averages:

Consider a fluid with 4−velocity u and with an associated conserved local rest mass

current M ,

Mµ = %uµ ; ∇µM
µ = 0 , (2.7)

where % is the rest mass density. We can define a mass-weighted Lagrangian average by

choosing V µ = Mµ in (2.1) and u ·∇B = 0. This mass-weighted average corresponds

to that formulated for irrotational dust in fluid-orthogonal foliations in [111], but here

expressed in the explicitly covariant formalism and extended to arbitrary fluids and

foliations.

2.1.3.4 Other weighted averages:

As illustrated by the previous example, the freedom of choice of V allows for any

weighting of the averages. One may thus use the window function (2.1) to define, e.g.,

averages weighted by curvature, or by other functions related to curvature degrees of

freedom in the spirit of the ‘q-average’ of Sussman [112, 113]2, writing the corresponding

2 Note that the ‘q-average’ is constructed for the specific metrics of the Lemâıtre-Tolman-Bondi and
Szekeres models by introducing a weighting in the average that is defined from metric degrees of
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window function under a manifestly covariant form.

2.1.3.5 Extensions to light cone averages:

One may choose a boundary scalar with null gradient such that {B = B0} defines the

past light cone of a given event, as studied in [92] in the case V = n. Integrals and

averages are then taken over the spatial region defined by the interior of the light cone

at time A = A0.

Because V is not constrained to be the unit normal vector to the A = const.

hypersurfaces, the formalism can also be straightforwardly extended to averaging over

past light cones by choosing A as the appropriate scalar with light-like gradient and V

as a fixed time-like vector, e.g. the 4-velocity u of a fluid source. One might then also

replace B by a scalar of time-like gradient; another averaging operator discussed in

[92] is recovered in this case if V is taken as the normalized gradient of B. For either

a space-like or a time-like ∇B, such a window function would then select a bounded

part of the past light cone of a given event. The variations of integrals or averages with

respect to A0 then provide information on drift effects as this event changes, while the

description of time evolution along a fixed past light cone would instead require an

analysis of variations with respect to B0.

2.2 The Buchert-Ehlers commutation rule

We now give a generalization of the commutation rule [114], [87, 88, 115, 116], and

the corresponding manifestly covariant version [91]. We focus on different possible

rewritings of the commutation rule, which can prove useful for interpretation and for

compactness of averaged equations. We then apply it to a Lagrangian window function

and to the evolution of the fluid rest mass within the integration domain.

freedom in a particular coordinate system. It is therefore not formulated in a manifestly covariant
way. However, we may simply extend the definition of the weighting to any other coordinate system,
by requiring the weighing to be invariant under the change of coordinates. With such an extension
the weighting function is per construction a 4−scalar, and the ‘q-average’ is covariant.
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2.2.1 General formulation

The essential insight of scalar averaging schemes is that time-derivatives and averaging

operations do not commute in general. The commutation rule for the integral can be

derived by differentiating the expression for I(S) in the form (2.5) with respect to A0:

I(S)′ =

∫
M

d4x
√
g S V ν∇νA

(
∂

∂A0

δ(A0 − A)

)
H(B0 −B)

=

∫
M

d4x
√
g S V ν∇νA

(
− ∂

∂A
δ(A0 − A)

)
H(B0 −B)

=

∫
M

d4x
√
g S V ν∇νA

(
− Zµ

Zν∇νA
∇µδ(A0 − A)

)
H(B0 −B)

=

∫
M

d4x
√
gW
∇µ

(
SZµ V κ∇κA

Zσ∇σA H(B0 −B)
)

V ν∇νA

= I

(
Zµ∇µS

Zσ∇σA

)
+ I

S∇µ

(
Zµ V κ∇κA

Zσ∇σA

)
V ν∇νA

− I (S Zµ∇µB δ(B0 −B)

Zσ∇σA

)
, (2.8)

with the notation ′ ≡ ∂/∂A0, and where Z is an arbitrary vector field obeying Z ·∇A 6=
0 everywhere. The third line of (2.8) follows fromZ·∇(δ(A0−A)) = (Z·∇A) ∂A(δ(A0−
A)), and the fourth line follows from partial integration, with the convention H(0) = 1

implying H(x)δ(x) = δ(x).

Z represents the freedom of the direction in which we define local time derivatives

with respect to A. Non-commutativity is given by the failure of the boundary to be

parallel-transported along Z/(Z ·∇A) and by the change of volume measure along

the flow lines of Z/(Z ·∇A). We denote the first term of (2.8) the evolution term, the

second term the expansion term, and the third term the boundary term.

The full result (2.8) is not dependent on Z, but different choices of Z allow us to

trade between the three terms in (2.8). For instance, we can make the boundary terms

disappear by choosing Z such that Z ·∇B = 0,3 i.e., the boundary term contribution

does not appear if the direction chosen for time derivation follows the propagation of

the boundary. Similarly, we might make the evolution term vanish by choosing a Z

such that Z ·∇S = 0. 4 The rate of evolution of the volume I(1) and the commutation

3 Taking Z to be time-like or null automatically ensures Z ·∇A 6= 0 if ∇A is time-like.

4 Note, however, that if ∇S ∝ ∇A, then this choice is not possible, and the evolution term cannot
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rule for the average follow from (2.8) and are given respectively by

I(1)′

I(1)
=

〈∇µ

(
Zµ V κ∇κA

Zσ∇σA

)
V ν∇νA

〉
−
〈
Zµ∇µB δ(B0 −B)

Zσ∇σA

〉
; (2.9)

〈S〉′ = I(S)′

I(1)
− 〈S〉 I(1)′

I(1)
=

〈
Zµ∇µS

Zσ∇σA

〉
+

〈(
S − 〈S〉

)
∇µ

(
Zµ V κ∇κA

Zσ∇σA

)
V ν∇νA

〉
−
〈(

S − 〈S〉
)
Zµ∇µB δ(B0 −B)

Zσ∇σA

〉
.

(2.10)

Again, we might trade between the three terms in (2.10) by changing Z, e.g., we can

still make the third term vanish by choosing Z to be a time-like vector field comoving

with the spatial boundaries of the domain.

When it is possible to choose a time-like Z such that ∇µ

(
Zµ V κ∇κA

Zσ∇σA

)
= 0, and

Zµ∇µB = 0 simultaneously, there is a sense in which time-derivative and the averaging

operation commute in (2.8) and (2.10): in this case it is possible to construct flow lines

along which the only contribution to the change of 〈S〉 is the change of S itself. This is

the case for a mass-weighted window function (see section 2.1.3.3). In this case, Z = u

satisfies the above requirements, so that the commutation rule (2.10) reduces to

〈S〉′ =
〈
uµ∇µS

uσ∇σA

〉
. (2.11)

Hence, there is commutation of this particular averaging operation and time-derivative

along the flow lines of u, generalizing this result obtained for irrotational dust in the

fluid-orthogonal foliation [111]. This commutation is, however, obtained at the expense

of a more complicated definition required for a physical volume (and associated scale

factor). In this setting, the ‘volume’ I(1) actually corresponds to a total rest mass

within the integration domain, as described in subsection 2.2.3. Thus, as noticed in

[111], defining a physical volume would require to compensate for the weighting by %,

e.g. by considering I(1/%).

We may choose Z to be the most convenient vector field for simplifying the com-

mutation rules, or may choose it from a geometric motivation as, e.g. in [91], where

be put to zero.
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Z is chosen to coincide with the normal to the hypersurfaces. Alternatively, one may

choose a physical vector field for Z, e.g. Z = u, where u is the 4−velocity of a physical

fluid of interest. In this formulation the terms in (2.8) and (2.10) can be interpreted

in terms of evolution along physical flow lines of a fluid and its expansion.

2.2.2 Application to the case of a Lagrangian window function

Let us consider a Lagrangian window function as defined in subsection 2.1.3.2. Writing

the commutation rule (2.8) with Z = u we have in this case

I(S)′ = I

(
uµ∇µS

uσ∇σA

)
+ I

(
S∇µu

µ

uσ∇σA

)
; I(1)′ = I

( ∇µu
µ

uσ∇σA

)
, (2.12)

where the first contribution comes from the change of S along the flow lines of u, and

the second contribution from the expansion ∇µu
µ of the fluid. Note the normalization

uσ∇σA, which is a change of measure between the proper time parameter τ of the fluid

and the foliation parameter A along each fluid flow line. Hence, this normalization

reduces to unity if and only if A is a proper time of u.

The analogous commutation rule for the average (2.10) yields

〈S〉′ =
〈
uµ∇µS

uσ∇σA

〉
+

〈
(S − 〈S〉)∇µu

µ

uσ∇σA

〉
. (2.13)

There are at least two natural ways of choosingA in the Lagrangian spirit of formulating

the window function. In cases where u is irrotational, it is then proportional to the

gradient of a scalar α, and we can choose A to define a foliation in the rest frame of

the fluid (i.e. fluid-orthogonal hypersurfaces) by A = α. An alternative natural choice

of A is a proper time parameter τ of u [110, 109]. This has the advantage of being

always possible, even if u has vorticity, and of providing a clear physical interpretation

of A as the time parameter in evolution equations for average quantities. However,

the time-like nature of ∇τ can in general not be guaranteed. Note that the above

conditions define classes of foliation scalars, i.e. further specifications are required to

determine them uniquely.5 A choice of proper time foliation can be simultaneously

5 The proper time foliation A = τ is only specified up to an additive function β obeying u ·∇β = 0.
The fluid frame foliation A = α is only specified up to a reparametrization, A = f(α), for any
non-decreasing function f of α. This freedom can be denoted a gauge freedom, since it can be
viewed as a time reparametrization within the original foliation itself. See 2.A for further details
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fluid-orthogonal only when the fluid is irrotational and geodesic.6

2.2.3 Total rest mass of the averaging domain

Consider a conserved local rest mass current Mµ = ρuµ as in (2.7). We can define a

total rest mass within the domain at A = A0 as

M(A0) ≡
∫
M

d4x
√
gMµ∇µ(H(A− A0))H(B0 −B) , (2.14)

i.e., as I(1) for a window function with V µ = Mµ (e.g. the mass-weighted window

function, see subsection 2.1.3.3). Applying (2.8) gives the evolution of M(A0) which,

due to the local conservation of Mµ, reduces to a single boundary term

M(A0)′ = −
∫
M

d4x
√
gMµ∇µB H(A− A0) δ(B0 −B) , (2.15)

i.e. the evolution of mass is given by the flux of the mass current Mµ out of the

averaging domain. Thus, M(A0) is constant in A0 when the domain is comoving with

the fluid elements, u ·∇B = 0. For such a comoving integration domain, M = M(A0)

(for any A0), as defined by (2.14), corresponds to the total conserved rest mass of

the fluid within the domain. In this case, the additional requirement V = u sets a

Lagrangian window function (as defined in subsection 2.1.3.2). The conserved total

rest mass within the domain then takes the natural form M = I(%). For other volume

measures, in general, I(%) would not correspond to the rest mass within the domain and

would not be conserved, due to a weighting or due to the volume not being measured

in the fluid’s local rest frames. (For instance, for the hypersurfaces Riemannian volume

measure, V = n, and still for a comoving domain, the integrated rest mass would have

to be written M = I(γ%) with γ = −n · u.) A Lagrangian window function {V = u,

u ·∇B = 0} thus appears as a particularly natural choice to follow and characterize a

given collection of fluid elements, if a preferred fluid frame with an associated rest mass

on gauge freedom in the labelling of hypersurfaces.

6 A fluid-orthogonal foliation implies that u = n = −N∇A with the lapse N = (−∇A ·∇A)−1/2.
The vorticity of u thus has to vanish, which is part of Frobenius’ theorem. It also implies that the
4−acceleration a of the fluid relates to the lapse variations as aµ = N−1 bµν∇νN [117, 110], with
b the fluid-orthogonal projector. If A is additionally required to be a proper time function for the
fluid, u ·∇A = 1, then N = 1 everywhere and a = 0. This shows that the fluid flow must also be
geodesic.
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current is present in the model universe. We shall focus again in subsection 2.3.3.1 on

domains that follow the propagation of the fluid—hence preserving the associated rest

mass—as a subcase of particular interest of more general averaged evolution equations,

to which we turn now.

2.3 The averaged Einstein equations

The general averaging formalism and the commutation rule are applied below to scalar

projections of the Einstein equations. The resulting system of averaged evolution

equations allows for a covariant definition of cosmological backreaction terms. We shall

then explicitly provide the simpler form taken by these equations for a domain that

follows the fluid world lines, and we discuss the natural choices V = n and V = u.

2.3.1 Local variables and relations

In this subsection we consider an averaging domain defined by a time-like propagation

of its boundary. We thus assume that a unit time-like propagation vector field P

can be defined such that it satisfies P ·∇B = 0, at least on the domain’s boundary

{B = B0}. Applying the commutation rules (2.8)–(2.10) with the choice Z = P will

then ensure the vanishing of the boundary terms in these equations.

Kinematic variables may then be defined for this vector field by decomposing its

gradient with respect to P and its null-space as follows, using the orthogonal projector

k with components kµν = gµν + PµPν :

∇µPν = −PµaPν +
1

3
ΘP kµν + σPµν + ωPµν ;

aPµ = P ν∇νPµ ; ΘP = kµν∇µPν ; σPµν = kα(µk
β
ν)∇αPβ −

1

3
ΘP kµν ; ωPµν = kα[µk

β
ν]∇αPβ ;

σ2
P =

1

2
σPµν σ

P,µν ; ω2
P =

1

2
ωPµν ω

P,µν . (2.16)

Assuming the presence of a preferred non-singular fluid flow as a source, with 4−velocity

u, the (fully general) energy-momentum tensor is naturally decomposed with respect
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to u and its null-space:

Tµν = ε uµuν + 2 q(µuν) + p bµν + πµν ;

ε ≡ uµuνTµν ; qµ ≡ −bαµuβTαβ ; p ≡ 1

3
bµνTµν ; πµν ≡ bαµb

β
νTαβ − p bµν , (2.17)

where b is the projector onto the fluid’s rest frames, with components bµν = gµν+uµuν .

It may alternatively be decomposed using P . In particular, one can define the energy

density EP and pressure SP/3, in the frames defined by P , from, respectively:

EP ≡ P µP νTµν ; SP = kµνTµν . (2.18)

These variables are related to the fluid rest frame energy density ε, pressure p, and to

the non-perfect fluid contributions via

EP − ε =
1

2

[
EP +SP − (ε+ 3p)

]
= (ε+ p)

[
(uµPµ)2 − 1

]
+ 2 (uµPµ)(P νqν) + πµνP

µP ν .

(2.19)

The following Raychaudhuri equation for P is then obtained by combining the Einstein

equation projected twice along P , and its trace:

P µ∇µΘP = −1

3
Θ2
P − 2σ2

P + 2ω2
P +∇µaPµ − 4πG(EP + SP ) + Λ . (2.20)

We define an effective scalar 3−curvature for the null-space of P (which is not hyper-

surface forming if ω2
P 6= 0) as follows:

RP ≡ ∇µP
ν ∇νP

µ −∇µP
µ∇νP

ν +R + 2RµνP
µP ν . (2.21)

This definition of effective 3−curvature reduces to the scalar 3−curvature of the P -

orthogonal hypersurfaces when they exist (i.e., for ω2
P = 0, by Frobenius’ theorem).

Such a generalization of the hypersurface-based notion is not unique; here we follow a

similar definition as that of, e.g. [118]. This convention implies the following relation

in the form of an energy constraint:

2

3
Θ2
P = −RP + 2σ2

P − 2ω2
P + 16πGEP + 2Λ . (2.22)
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2.3.2 Averaged evolution equations

We use the general window function (2.1) and define an effective ‘scale factor’ a as

a = (I(1)/I(1)i)
1/3, where the subscript i denotes a value on some initial hypersurface

A = Ai.

As noted for the example of the mass-weighted average [111], it should be kept in

mind that this definition is only relevant as a scale factor if it can be interpreted as a

typical length derived from a volume, i.e. only when the choice of integration measure

defined by V allows for the interpretation of I(1) as a volume. Another definition of

‘scale factor’ that does relate it to a physical volume (e.g. to I(1/%) in the case of the

mass-weighted average) may otherwise be more appropriate. It should also be noted,

that the effective ‘scale factor’ a in general does not have an interpretation in terms

of mean redshift of null bundles (the averaging scheme presented in this chapter is too

general to make a direct link to statistical light propagation). However, when I(1)

does measure a volume, and under the assumptions that (i) the frame of averaging

is associated with statistical homogeneity and isotropy, that (ii) structures are slowly

evolving (allowing null-rays to probe the statistical homogeneity scale), and that (iii)

typical emitters and observers of light are reasonably close to being in the averaging

frame, a might be interpreted as the inverse of a ‘statistical redshift’ averaged over

many observers and emitters [119]. More generally, only assuming a choice of window

function such that I(1) measures a physical volume, a should merely be interpreted as

an effective length scale of an averaging region defined in a given foliation.

Averaging the above equations (2.22) and (2.21) with the averaging definition (2.6),

and making use of the volume evolution rate (2.9) and the commutation rule (2.10)

with the choice Z = P , implying Z ·∇B = 0, yields the following evolution equations

for a:

3

(
a′

a

)2

= 8πG

〈
ε

(P µ∇µA)2

〉
+ Λ

〈
1

(P µ∇µA)2

〉
− 1

2

〈 RP

(P µ∇µA)2

〉
− 1

2
Q− 1

2
T ;

(2.23)

3
a′′

a
= −4πG

〈
ε+ 3p

(P µ∇µA)2

〉
+ Λ

〈
1

(P µ∇µA)2

〉
+Q+ P +

1

2
T . (2.24)

These equations feature three backreaction terms, a kinematical backreaction Q, a

dynamical backreaction P , and an energy-momentum backreaction T that captures the
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difference of the energy densities as measured in two different frames (see [109]). These

backreaction terms are defined as follows:

Q ≡ 2

3

[〈
Θ2
P

(P ρ∇ρA)2

〉
−
〈

ΘP + Γ−1
P P µ∇µΓP

P ρ∇ρA

〉2
]
−
〈

2σ2
P

(P µ∇µA)2

〉
+

〈
2ω2

P

(P µ∇µA)2

〉
;

P ≡
〈
∇µaPµ

(P µ∇µA)2

〉
+

〈
ΘP

(P ρ∇ρA)2

(
2
P µ∇µΓP

ΓP
− P µ∇µ(P ν∇νA)

P σ∇σA

)〉
+

〈
Γ−1
P P µ∇µ(P ν∇νΓP )

(P µ∇µA)2

〉
−
〈

Γ−1
P P µ∇µΓP
(P ρ∇ρA)2

P ν∇ν(P
κ∇κA)

P σ∇σA

〉
;

T ≡ −16πG

〈
EP − ε

(P µ∇µA)2

〉
, (2.25)

with the energy difference EP−ε given by (2.19), and with the ratio of ‘Lorentz factors’

ΓP ≡ (V µ∇µA)/(P ν∇νA) = (−V µnµ)/(−P νnν), −V µnµ being a Lorentz factor when

V is normalized.

From the requirement of (2.23) being the integral of (2.24) we get the integrability

condition:

Q′ + 6
a′

a
Q+ 2

〈 RP

(P σ∇σA)2

〉′
+ 2

a′

a

〈 RP

(P σ∇σA)2

〉
+ T ′ + 4

a′

a
T + 4

a′

a
P

= 16πG

(〈
ε

(P σ∇σA)2

〉′
+ 3

a′

a

〈
ε+ p

(P σ∇σA)2

〉)
+ 2Λ

〈
(P σ∇σA)−2

〉′
. (2.26)

Defining the kinematic variables of the fluid from the decomposition of the 4−velocity

gradient,

∇µuν = −uµaν +
1

3
Θ bµν + σµν + ωµν ;

aµ = uν∇νuµ ; Θ = bµν∇µuν ; σµν = bα(µb
β
ν)∇αuβ −

1

3
Θ bµν ; ωµν = bα[µb

β
ν]∇αuβ ;

σ2 =
1

2
σµνσ

µν ; ω2 =
1

2
ωµνω

µν , (2.27)

we can express the energy-momentum conservation equation projected onto the fluid

frame as follows:

− uµ∇νT
ν
µ = uµ∇µε+ Θ(ε+ p) + aµqµ +∇µq

µ + πµν σ
µν = 0 . (2.28)
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One can then divide this relation by (P µ∇µA)2, take the average and apply the com-

mutation rule (2.8) with Z = u. This yields the average energy conservation law

satisfied by the right-hand side of (2.26):〈
ε

(P σ∇σA)2

〉′
+ 3

a′

a

〈
ε+ p

(P σ∇σA)2

〉
= −

〈
Θ

Ȧ

p

(P σ∇σA)2

〉
+

〈
Θ

Ȧ

〉〈
p

(P σ∇σA)2

〉
+

〈
Γ̇/Γ

Ȧ
− (uµ∇µB) δ(B0 −B)

Ȧ

〉〈
p

(P σ∇σA)2

〉
−
〈

ε

(P σ∇σA)2

(uµ∇µB) δ(B0 −B)

Ȧ

〉

+

〈
ε

(P σ∇σA)2

2(Γ̇P/ΓP )− (Γ̇/Γ)− 2(Ä/Ȧ)

Ȧ

〉
−
〈
aµq

µ +∇µq
µ + πµνσ

µν

Ȧ (P σ∇σA)2

〉
, (2.29)

with Γ ≡ (V µ∇µA)/(uν∇νA) = (−V µnµ)/γ, and using the shorthand notation Ṡ

for the proper-time covariant derivative along u of a scalar S, Ṡ ≡ uµ∇µS. This

average conservation equation features two boundary terms that provide the variations

in volume and average energy density due to the flux of fluid elements across the

domain’s boundary if uµ∇µB 6= 0.

The above system of averaged equations (2.23,2.24,2.26,2.29) is covariant since it

only features explicitly covariant terms. The form of these equations is moreover

globally preserved under a change of the parametrization of the foliation (using a non-

decreasing function of A instead of A, preserving the set of hypersurfaces), but the

individual terms they contain are not. This is no different from the time-parameter

dependence of the expansion and acceleration terms of the Friedmann equations in

homogeneous and isotropic cosmologies. This freedom of relabelling the hypersurfaces

is important to keep in mind when interpreting averaged evolution equations: as for

any parametric equations, e.g. acceleration terms (as second derivatives with respect

to a parameter) can be tuned in any desirable way, including the change of sign, by an

appropriate change of the parameter. This is discussed in more detail in the specific

context of the above averaged equations in 2.A. This interpretation issue is simply

solved by the choice of a time label with a clear physical meaning for the hypersurfaces.

Such a choice can be made specifically for the physical model considered, or from more

general conditions, such as taking τ itself as the parameter A when working within

a foliation at constant fluid proper time τ (see the related remarks that conclude

subsection 2.2.2).

This general set of averaged equations is naturally expressed in terms of geometric
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variables such as the extrinsic curvature or the intrinsic scalar 3−curvature of the

A = const. hypersurfaces for a domain propagation along the normal vector field,

i.e., for P = n. In this case, and for V = n (i.e. for Riemannian averages), this

system corresponds to the averaged system derived in [91], with the addition of the

integrability condition and the general form of the averaged energy conservation law.

For a general propagation vector P , the explicit contribution of the geometric

variables in the above equations can also be recovered by an alternative writing. It

can be done by splitting P into a component along n and a component orthogonal to

n, P = γP (n + vP ) with γP = −P · n and n · vP = 0. The contributions from the

decomposition of the gradient of P to the averaged equations can then be expressed

in terms of the extrinsic curvature of the hypersurface, e.g. by applying the following

split in the commutation rule:

∇µ

(
P µ V

ρ∇ρA
Pσ∇σA

)
V ν∇νA

=
ΘP + Γ−1

P P µ∇µΓP
P ρ∇ρA

= −NK +N
∇µ(V νnν v

µ
P )

V ρnρ
+
Nnµ∇µ(V νnν)

V ρnρ
,

with the lapse function N ≡ (∇µA∇µA)−1/2 and the trace of the extrinsic curvature

K ≡ −∇µn
µ. The set of equations using this decomposition will then simplify when

using the Riemannian volume measure of the hypersurfaces, V = n. In the comoving

domain case, P = u, this returns one of the sets of equations obtained in [109] when

geometric variables–based expressions for the spatial Riemannian volume measure and

a domain comoving with the fluid flow are considered.

2.3.3 Examples of applications

2.3.3.1 Comoving domains:

We now specify the above results to the case of a domain comoving with the fluid, i.e.

for which u ·∇B = 0. One can thus take P = u. The adapted local Raychaudhuri

equation (2.20) and energy constraint (2.22) are then expressed in terms of rest frame

variables of the fluid:

Θ̇ = −1

3
Θ2 − 2σ2 + 2ω2 +∇µa

µ − 4πG(ε+ 3p) + Λ ; (2.30)

2

3
Θ2 = −R+ 2σ2 − 2ω2 + 16πGε+ 2Λ , (2.31)
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with the effective scalar 3−curvature of the rest frames of u [118],

R ≡ ∇µu
ν∇νu

µ −∇µu
µ∇νu

ν +R + 2Rµνu
µuν . (2.32)

The corresponding evolution equations for the effective ‘scale factor’ a (which may

still not be the most appropriate definition in cases where I(1) is not interpreted as a

volume) are then written as follows:

3

(
a′

a

)2

= 8πG

〈
ε

Ȧ
2

〉
+ Λ

〈
1

Ȧ
2

〉
− 1

2

〈
R
Ȧ

2

〉
− 1

2
Q ; (2.33)

3
a′′

a
= −4πG

〈
ε+ 3p

Ȧ
2

〉
+ Λ

〈
1

Ȧ
2

〉
+Q+ P . (2.34)

The energy-momentum backreaction vanishes since P = u, and the kinematical and

dynamical backreaction terms reduce to the following:

Q ≡ 2

3

〈Θ2

Ȧ
2

〉
−
〈

Θ + Γ̇/Γ

Ȧ
2

〉2
− 2

〈
σ2

Ȧ
2

〉
+ 2

〈
ω2

Ȧ
2

〉
; (2.35)

P ≡
〈
∇µa

µ

Ȧ
2

〉
+

〈
Θ

Ȧ
2

(
2

Γ̇

Γ
− Ä

Ȧ

)〉
+

〈
Γ̈/Γ

Ȧ
2

〉
−
〈(

Ä/Ȧ
) (

Γ̇/Γ
)

Ȧ
2

〉
. (2.36)

The integrability condition (2.26) now becomes

Q′ + 6
a′

a
Q+ 2

〈
R
Ȧ

2

〉′
+ 2

a′

a

〈
R
Ȧ

2

〉
+ 4

a′

a
P

= 16πG

〈 ε

Ȧ
2

〉′
+ 3

a′

a

〈
ε+ p

Ȧ
2

〉+ 2Λ

〈
1

Ȧ
2

〉′
, (2.37)
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where the right-hand side obeys the averaged energy conservation law (2.29) that

reduces to 〈
ε

Ȧ
2

〉′
+ 3

a′

a

〈
ε+ p

Ȧ
2

〉
= −

〈
Θ

Ȧ

p

Ȧ
2

〉
+

〈
Θ + Γ̇/Γ

Ȧ

〉〈
p

Ȧ
2

〉

+

〈
ε

Ȧ
2

 Γ̇/Γ− 2Ä/Ȧ

Ȧ

〉−〈qµaµ +∇µq
µ + πµνσ

µν

Ȧ
3

〉
. (2.38)

Remarks: The requirement u·∇B = 0 in the choice of the window function corresponds

to the definition of an averaging domain that follows the fluid flow. It thus ensures

by construction the preservation over time of the collection of fluid elements to be

averaged, in particular preserving their total rest mass (as shown in subsection 2.2.3)

when it can be defined. For a non-weighted average that allows for the interpretation of

I(1) as a volume (e.g. for a Lagrangian window function, V = u, or for a Riemannian

volume measure, V = n), the scale factor a corresponds to a typical spatial scale

related to the domain volume.

2.3.3.2 Lagrangian window function:

The above equations for a comoving domain, u · ∇B = 0, simplify further when

in addition the fluid proper volume measure is used, V = u, yielding a Lagrangian

window function. This corresponds to setting Γ = 1 in equations (2.33)–(2.38) above,

dropping all terms that depend on its evolution. The system of averaged equations in

the framework corresponding to the Lagrangian window function in [110, 109] is thus

recovered, under an equivalent, here manifestly covariant form. As discussed in the

above references, it becomes particularly transparent in a foliation by hypersurfaces of

constant fluid proper time, A = τ .

Remarks: The Lagrangian window function choice, based on a preferred fluid

4−velocity field, is especially adapted to analyzing average properties within single-

fluid cosmological models. This could apply, e.g. to the description of a dark matter-

dominated late Universe within a dust model, or to the radiation-dominated era within

a model of a pressure-supported fluid. It can as well be used in a model involving sev-

eral non-comoving fluids, e.g. to describe a mixture of dark matter and radiation with

different 4−velocities. In this case, it would require choosing one of the fluids to be
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followed through its evolution together with its proper volume measure. The total

energy-momentum tensor would then have to be decomposed with respect to the cor-

responding frame, in which contributions from the other fluids will generally appear in

the form of non-perfect fluid terms [120].

2.3.3.3 Riemannian volume averages:

As discussed at the end of subsection 2.3.2, the choice of a Riemannian volume mea-

sure (V = n) is the most adapted for analyzing averaged geometric properties of the

hypersurfaces themselves, e.g. by providing expressions of the averaged equations in

terms of the extrinsic curvature of the hypersurfaces. This is expected since the scale

factor and averages are then based on the intrinsic spatial volume form of the hyper-

surfaces. The evolution equations for the scale factor with such a choice and for a

comoving domain (u ·∇B = 0) may be obtained from equations (2.33)–(2.38) by set-

ting Γ = 1/γ. This gives a manifestly covariant system of equations equivalent to that

given in Appendix B of [109], also expressed in terms of the rest frame fluid variables.

Recovering the dependence in the geometric variables such as the trace of extrinsic

curvature then requires rewriting these local quantities along the lines suggested at the

end of subsection 2.3.2.

Remarks: The choice of a Riemannian volume measure (V = n) is especially suited

for studying the behaviour of hypersurfaces defined from geometric conditions, such as

the (in General Relativity frequently used) Constant Mean Curvature requirement.

The averaged equations for this volume measure take their simplest form for a

propagation of the domain along the normal vector n (n ·∇B = 0). The evolution

equations for such a choice of propagation of the domain can be directly obtained

in terms of the geometric variables from the general equations of subsection 2.3.2,

recovering the framework and results of [91].

The geometric propagation of the domain (n ·∇B = 0) does in general not preserve

volume elements associated with a fluid four-velocity field u. Preservation of fluid

elements holds, for instance, for an irrotational fluid model with averaging defined in

the corresponding global fluid rest frames, with n = u. In a more general cosmological

setting, one may assume on large scales that vorticity effects may be neglected, at least

near the domain boundary, allowing for a foliation where a propagation of the domain

boundary along the normal vector would approximate a comoving propagation (u ·
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∇B = 0). One may also assume a choice of hypersurfaces where statistical homogeneity

holds for all observables, effectively leaving the evolution equations defined over such a

choice of hypersurfaces invariant under the increase of scale of the domain B0 above a

suitable homogeneity scale cut-off. This would then allow for a computation of averages

over a global range (B0 −→ +∞), effectively eliminating the need for distinguishing

the possible propagations of the domain boundary for this choice; see [119] for an

investigation of this framework.

2.3.3.4 Light propagation:

As discussed in subsection 2.1.3.5, an alternative choice for the domain boundary would

be that of binding it to the past light cone of a given event by choosing the appropriate

scalar B with light-like gradient, covering the evolution of the average properties of

spatial sections in the interior of this light cone.

Alternatively one might consider the case where A has light-like gradient such that

A = A0 singles out a null surface that might be associated with the light cone of an

observer, and where B has time-like or space-like gradient (e.g. ∇B being proportional

to an irrotational fluid 4-velocity u). Variation of average properties with respect

to emitting times of the sources along a given cone then requires a variation of the

parameter B0, while the above results for the dependence in A0 would provide insight

on drift effects as the observer changes. These situations have been investigated in

detail with similar covariant averaging schemes and their application in an adapted

coordinate system in [92], see also [103].

Remarks: Averaging domains defined from the light cone are natural candidates

for connecting the averaging formalism discussed in this chapter with observations. It

is important to keep in mind that the formalism presented in this chapter is general,

allowing for averaging over hypersurfaces of arbitrary globally hyperbolic space-times.

In particular, the average equations only implicitly depend on the metric of space-time.

While we consider this being an advantage, as it allows to express average properties

independently of a specific form of the space-time metric, it implies the need for further

specifications and assumptions in order to connect the general result to observations.

For example, assumptions must be made in order to interpret averaged quantities

defined over spatial hypersurfaces in terms of (averaged) energy, flux, etc., of photon

bundles emitted by matter sources and absorbed by specified classes of observers.
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Such an interpretation may become more natural if the formalism is specified to light

cone averaging [92], but further assumptions would still be needed in order to close the

system of averaged equations (e.g. by specifying a model for the inhomogeneous metric

[103]), and to relate the obtained averages to observational results obtained within an

inhomogeneous geometry. It is beyond the scope of this chapter to go into details about

the difficult task of establishing connections between averaged cosmological evolution

equations and (statistical) observations of selected observers. For papers addressing

the link between the averaging formalism and its observational interpretation, see e.g.

[121, 119] (with a covariant formalism for global spatial averages in the second case),

and [106, 122] for local and bi-local investigations.

2.4 Discussion

Covariance is a requirement for any physical theory, and a cornerstone in the for-

mulation of General Relativity. In this chapter we have investigated scalar covariant

formulations of global dynamics relevant for the description of backreaction effects in

cosmology. We have considered a generalized window function, allowing for arbitrary

foliation, spatial boundary, and volume measure.

We provided an explicitly covariant form for the commutation rule and for the

spatially averaged scalar parts of Einstein’s equations, with the associated integrability

condition, using this general window function. The absence of restrictions imposed on

the energy-momentum tensor of the fluid sources allows us to apply these schemes to

the early Universe as well as to the matter-dominated later stages, and they cover

all spatial scales down to which the fluid approximation can be considered as valid.

Backreaction terms are introduced from these equations, and are thus also expressed

under a manifestly covariant form. We then applied these results to the physically

relevant subcase of a comoving domain.

We have given a procedure for providing several possible decompositions of the

commutation rule and the resulting averaged equations. This allows us, for example,

to get rid of boundary terms, or to keep them as transparent boundary flux terms, for

any choice of domain propagation. We have discussed the effect on averaged equations

of a relabelling of the hypersurfaces in a given foliation, and we have stressed the

importance of being able to physically interpret the chosen label.

The formalism used in this chapter provides a unifying framework encompassing
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various scalar averaging schemes that have been suggested or could be used for the

description of averaged properties of cosmological models. It can be straightforwardly

adapted to a given specific scheme by suitably choosing the window function. Several

examples of such possible applications were given. In particular, we have shown that

the manifestly covariant averaging scheme used in this chapter reduces to the averag-

ing scheme considered in [109] for a so-called Lagrangian window function, providing

covariant formulas for the latter scheme. The explicit selection of the foliation by a

scalar function in the scheme used in this chapter also makes it suitable for the forth-

coming investigation of foliation dependence of averaged expressions [108], and it may

be helpful for other related considerations.
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Appendix 2.A Freedom of labelling hypersurfaces

Here we investigate in more detail the consequences of a change of the hypersurfaces’

label A (without change of the hypersurfaces) for the terms appearing in the evolution

equations for the effective scale factor a.

Any transformation of the form

A 7→ f(A), (2.39)

where f is a strictly monotonically increasing function, is a transformation of the

foliation of A onto itself (i.e. the same set of hypersurfaces is considered, with a

different parametrization), since

nµ = − ∇µf(A)√
−∇νf(A)∇νf(A)

= − ∇µA√−∇νA∇νA
. (2.40)

The class of transformations (2.39) is thus a gauge of the foliation.

This seemingly innocent parametrization freedom can cause issues if we are naively

evaluating averaged quantities without paying attention to the interpretation on what

the time label A represents in the equations. As an example, the interpretation of the

Friedmann equations under their usual form relies on the fact that their time parameter

has a transparent meaning as the eigentime of ideal fundamental observers.

Let us consider an integrand

SW = −SV µ∇µ(H(A0 − A))H(B0 −B) , (2.41)

where the vector SV µH(B0 − B) is invariant under reparametrizations (2.39) of A.

(This is for instance the case if S, V and B,B0 are independent of A or only depend

on it via the normal vector n.) Under such a reparametrization, the integral I(S) =

I(S)A,A0 (recovering provisionally an explicit indication of the dependence in A and
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A0 of the window function) becomes

I(S)A,A0 7→ I(S)f(A),f(A0) = I(S)A,A0 , (2.42)

where we have used that

H(f(A0)− f(A)) = H(A0 − A) , (2.43)

for strictly increasing functions f . Such an integral thus only depends on the chosen

foliation and the selected slice, but not on the parametrization, and we can remove the

subscript notation A,A0 in the following.

Derivatives with respect to the parameter transform as

∂I(S)

∂A0

7→ ∂I(S)

∂(f(A0))
=

1

f ′(A0)

∂I(S)

∂A0

, (2.44)

while second derivatives become

∂2I(S)

∂A2
0

7→ ∂2I(S)

∂(f(A0))2
=

1

f ′(A0)2

∂2I(S)

∂A2
0

− f ′′(A0)

f ′(A0)3

∂I(S)

∂A0

. (2.45)

We can therefore tune first derivatives by any positive rescaling f ′(A0) through the

transformations (2.39), while second derivatives may even be canceled or change sign,

since f ′′(A0) is not constrained in its sign. The above results similarly apply to the

average 〈S〉 and its derivatives with respect to A0.

We conclude that, without a physical interpretation of the hypersurface label A,

statements about the magnitude of first-order derivatives (2.44), as well as any state-

ments (about magnitude or sign) about second-order derivatives (2.45), are degen-

erate with the choice of A. This applies for instance to the left-hand sides of the

averaged dynamical equations (2.23)–(2.24), or (2.33)–(2.34), that are proportional to

(∂I(1)/∂A0)2 and ∂2I(1)/∂A2
0, assuming that V , B and B0 are defined independently

of A or only depend on it via the normal vector n.

Under the same assumption, the conclusions about parametrization-dependence

also hold for the terms on the right-hand sides of (2.23)–(2.24). Most of them can be

written as 〈S/(P σ∇σA)2 〉 with a scalar S that is unchanged under the reparametriza-

tion (2.39), even when it depends on A, such as ΓP , and would thus rescale by a

factor f ′(A0)2, as does (∂I(1)/∂A0)2. The only exception is the combination of terms
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〈
−(ΘP + Γ−1

P P µ∇µΓP )P ν∇ν(P
σ∇σA) (P ρ∇ρA)−3

〉
appearing in P in (2.24), which

would transform as〈
−(ΘP + Γ−1

P P µ∇µΓP )P ν∇ν(P
σ∇σA)

(P ρ∇ρA)3

〉
7→

1

f ′(A0)2

〈
−(ΘP + Γ−1

P P µ∇µΓP )P ν∇ν(P
σ∇σA)

(P ρ∇ρA)3

〉
− f ′′(A0)

f ′(A0)3

∂I(1)

∂A0

, (2.46)

i.e. in the same way as ∂2I(1)/∂A2
0. These identical transformations of both sides of

the averaged evolution equations ensure the preservation of the form of these equations

under a reparametrization. The same remarks hold for the equations (2.33)–(2.34) with

P = u in this case.
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CHAPTER 3

Apparent cosmic acceleration from

supernovae Ia

In this chapter we test the timescape model [95, 96, 97] on the Joint Light-curve

Analysis (JLA)[123] catalogue of type Ia supernovae. We compute constraints on

cosmological parameters, and compare the quality of the fit to that of the ΛCDMmodel

and the empty universe. We investigate robustness of our results to cut-offs in data

conditioned on redshift. Of special interest is the stability of the results at and around

an approximate statistical homogeneity scale of around >∼ 70–120h−1Mpc as estimated

within the ΛCDMframework.

The timescape model has passed a number of independent observational tests [124,

125, 126, 98, 127]. Its distance–redshift relation is very close to that of particular Λ

cold dark matter (ΛCDM) models over small redshift ranges, but effectively interpolates

[97, 128] between spatially flat ΛCDM cosmologies with different values of ΩM0 and

ΩΛ0 over larger redshift ranges. In particular, when the timescape model is fit to

the angular diameter distance of the sound horizon in the CMB then the spatially

flat ΛCDM model with the closest comoving distance at redshifts z >∼ 100 has a value

of ΩM0 15–27% lower than that of the spatially flat ΛCDM model with the closest

comoving distance at redshifts z < 1.2 [97, 128].

Geometric tests of the timescape expansion history are most developed [97], and give

rise to measures [129, 130] which will definitely distinguish both the timescape model

and other alternatives [131, 132] from the standard FLRW model using Euclid satellite

data [133]. On the other hand, tests of the CMB anisotropy spectrum in the time-

scape model are at present limited by systematic uncertainties of 8–13% in parameters

which relate to the matter content [127]. This is a consequence of backreaction schemes

having not yet been applied to the primordial plasma.

43



3.1 Supernova redshift-distance analysis

In the case of the redshift range probed by SNIa the difference between the time-

scape and ΛCDM cosmologies is comparable to the systematic uncertainties that arise

between different methods for fitting the light curves of SNIa to obtain “standard can-

dles”. In particular, in the last full analysis of the timescape model (using data avail-

able in 2010) [125] found significant differences between data reduced by the MLCS2k2

(Multicolor Light-Curve Shape) fitter [134] and the SALT/SALT2 (Spectral Adaptive

Light-curve Template) fitters [135, 136]. While the relative Bayesian evidence was

sometimes ‘positive’ (but not very strong), the conclusion as to which cosmological

model fitted better depended on the light-curve fitting method. Consequently the em-

pirical nature of light-curve fitting may mask effects due to the underlying expansion

history if this deviates from the FLRW geometry.

The significantly larger Joint Light-curve Analysis (JLA) SNIa catalogue [123] now

makes possible a renewed comparison of the timescape and ΛCDM models, as well as

further investigation of the systematics of light-curve fitting. Recently, [137] (NGS16)

have used the JLA catalogue to reinvestigate systematic issues associated with SNIa

light-curve fitting within FLRW cosmologies using the SALT2 method. They adopted

maximum likelihood estimators (MLE) that take into account the underlying Gaussian-

ity of particular light-curve parameters [138]. NGS16 concluded that the significance

for cosmic acceleration, as compared to an empty Milne model (or any cosmology with

constant expansion), is “marginal” (at <∼ 3σ significance). This conclusion was chal-

lenged by [139] (RH16), who introduced 12 additional light-curve parameters to allow

for possible unaccounted systematics, concluding that the 2.8σ significance found by

NGS16 increased to 3.7σ for a general FLRW model, or to 4.2σ for the spatially flat

case. However, RH16 did not consider whether the increased model complexity was

justified from a Bayesian standpoint.

In the SALT2 method each observed supernova redshift is used to determine a

theoretical distance modulus,

µ ≡ 25 + 5 log10

(
dL

Mpc

)
, (3.1)

where dL is the luminosity distance for each cosmological model. This is then compared
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to the observed distance modulus, which is related to the supernova light-curve by

µSN = m∗B −MB + αx1 − βc, (3.2)

where m∗B is the apparent magnitude at maximum in the rest-frame B band, MB is

the corresponding absolute magnitude of the source, x1 and c are empirical parameters

that describe the light-curve stretch and colour corrections for each supernova, while

α and β are parameters that are assumed to be constant for all SNIa.

The theoretical distance modulus (3.1) is determined for a bolometric flux, which

is not directly measured. The SALT2 [135, 136] relation (3.2) can thus be viewed as a

model for a band correction, ∆µB, that is linear in the variables x1 and c,

∆µB ≡ (m−M)− (m∗B −MB) = αx1 − βc, (3.3)

where m and M are the bolometric apparent and absolute magnitudes in the observer

and emitter rest frames respectively.

In the SALT2 method, the light-curve parameters are simultaneously fit together

with the free cosmological parameters on the entire data set.

NGS16 assumed that all SNIa in the JLA catalogue [123] are characterized by

parameters, MB, x1 and c, drawn from the same independent global Gaussian dis-

tributions, with means MB,0, x1,0 and c0, and standard deviations σMB,0
, σx1,0 and

σc0 respectively. These 6 free parameters were then fitted along with the light-curve

parameters α, β and the cosmological parameters.

RH16 claimed that the mean light-curve stretch and colour parameters, x1,0 and c0,

of the Gaussian distributions analysed by NGS16 show some redshift dependence. This

may be partially due to astrophysical effects in the host population, or – particularly

for the colour parameter – may arise from the colour–luminosity relation combined

with redshift–dependent detection limits. In other words, Malmquist type biases may

not be completely corrected for in the JLA catalogue [123]. In the absence of a known

astrophysical model for such corrections, RH16 introduced 12 additional empirical

parameters by replacing the global Gaussian means according to

x1,0 → x1,0,J + xz,Jz, and c0 → c0,J + cz,Jz, (3.4)

where the index J runs over the four independent subsamples in the JLA catalogue: (1)
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SNLS (SuperNova Legacy Survey); (2) SDSS (Sloan Digital Sky Survey); (3) nearby

supernovae; (4) HST (Hubble Space Telescope), with xz,4 = 0, cz,4 = 0 on account of

limited HST data. The widths σx1,0 , σc0 were still treated as global parameters.

0.2 0.4 0.6 0.8 1.0 1.2
Redshift z

0.10

0.05

0.00

0.05

0.10
Em

pt
y

Timescape
Spatially flat CDM

Figure 3.1: The residual distance moduli µΛCDM(z)− µempty(z) and µTS(z)− µempty(z)
with the same H0. The best-fitting parameters of Table 3.2 are assumed: ΩM0 = 0.365
for spatially flat ΛCDM and fv0 = 0.778 for timescape. For redshifts z < 0.927 over
which µTS(z) < µΛCDM(z), the maximum difference between the ΛCDM and timescape
distance moduli is µΛCDM(z)− µTS(z) = 0.031 at z = 0.372.

We perform a Bayesian comparison of fits of the JLA catalogue [123] to the luminos-

ity distance-redshift relation for the spatially flat ΛCDM model, and for the timescape

model [95, 96, 97, 98]. We first use the MLE methodology of NGS16 directly, and then

investigate the effect of changes to light-curve fitting suggested by RH16. An empty

universe with constant expansion rate is also analysed, as a convenient demarcation of

accelerating from non-accelerating expansion in the FLRW case.

Details of the theoretical luminosity distances used in (3.1) are given in Appendix

3.A. The model differences that we are testing are best appreciated by comparing

the distance moduli of the timescape and spatially flat ΛCDM models relative to an

empty universe, as shown in Fig. 3.1. The timescape distance modulus, µTS(z), is

closer to ΛCDM than the empty case. Nonetheless, µTS(z) is always closer to µempty(z)

than µΛCDM(z) is, a consequence of cosmic acceleration being an apparent effect in the

timescape model.

Further technicalities about systematic issues in implementing the SALT2 method

are discussed in Appendix 3.B.
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Cosmological parameter Prior distribution Range
Timescape: fv0 Uniform [0.500, 0.799]

Flat ΛCDM: ΩM0 = 1− ΩΛ0 Uniform [0.143, 0.487]

Nuisance parameters Prior distribution Range
α Uniform [0, 1]

x1,0 Uniform [−20, 20]

σx1,0 Uniform on log10 σx1,0 [−5, 2]

β Uniform [0, 4]

c0 Uniform [−20, 20]

σc0 Uniform on log10 σc0 [−5, 2]

MB,0 Uniform [−20.3,−18.3]

σMB,0
Uniform on log10 σMB,0

[−5, 2]

Additional stretch and colour
Uniform [−20, 20]

parameters for models II-VIII

Table 3.1: All nuisance parameters in each model have identical priors. In the time-
scape model ΩM0 is defined in terms of fv0 hence we take the latter to be the more
‘fundamental’ parameter and assign the prior to it.

3.2 Statistical methods

3.2.1 The likelihood construction

We adopt the likelihood construction [138] used by NGS16. The likelihood, L, is the

probability density of the observed data – here (ẑ, m̂∗B, x̂1, ĉ)i, i = 1, 2, . . . , N on N

supernovae – given a model, M. The likelihood can be written as [138]

L ≡ P
[
(ẑ, m̂∗B, x̂1, ĉ)i |M

]
=

∫
dMN

B dxN1 dcN P
[
(ẑ, m̂∗B, x̂1, ĉ)i | (MB, x1, c)i,M

]
P [(MB, x1, c)i |M] , (3.5)

where hatted quantities denote measured data values including all experimental noise,

and unhatted quantities are intrinsic parameters that characterize the statistical dis-

tributions from which the supernovae are drawn. Only the intrinsic parameters satisfy

the SALT2 relation (3.2). The empirical light-curve model (3.2) and the theoretical

distance modulus (3.1) together constitute the model, M.
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The expansion in (3.5) allows one to explicitly model the intrinsic scatter of the

supernovae. For the NGS16 model (I) we assume that the intrinsic parameters of each

supernova are drawn from identical independent Gaussian distributions

P [(MB, x1, c)i |M] =
N∏
i

P [(MB,i, x1,i, ci) |M]

=
N∏
i

N (MB,i ; MB,0, σMB,0
)N (x1,i ; x1,0, σx1,0) N (ci ; c0, σc0), (3.6)

where N (y ; y0, σ) ≡ (2πσ2)−1/2 exp [−(y − y0)2/(2σ2)] for each triple {y, y0, σ}, with

3N × 3N diagonal covariance matrix Σl = diag
(
σ2
MB,0

, σ2
x1,0

, σ2
c0
, σ2

MB,0
, . . .

)
. The ex-

perimental part of the likelihood (3.5), P
[
(ẑ, m̂∗B, x̂1, ĉ)i | (MB, x1, c)i,M

]
is assumed

to be a Gaussian in the intrinsic supernova parameters, and the covariance matrix of

experimental statistical and systematic uncertainties is denoted Σd. Performing the

integral in (3.5) one obtains the final expression of the likelihood [137]

L = P
[
(ẑ, m̂∗B, x̂1, ĉ)i |M

]
= P

[
(m̂∗B − µ(ẑ), x̂1, ĉ)i |M

]
=
[
(2π)3N det (Σd + AᵀΣlA)

]−1/2

× exp
[
−1

2

(
Ẑ − Y0A

)
(Σd + AᵀΣlA)−1

(
Ẑ − Y0A

)ᵀ ]
(3.7)

where Ẑ = (m̂∗B,1−µ(ẑ1), x̂1,1, ĉ1, m̂
∗
B,2−µ(ẑ2), . . . ) is a 3N -dimensional row vector con-

taining the distance modulus residual and light-curve data, Y0 = (MB,0, x1,0, c0, MB,0,

. . . ) is a 3N -dimensional row vector of the intrinsic Gaussian means, and A is the block

diagonal matrix that propagates Y0 to

Y0A = (MB,0 − αx1,0 + βc0, x1,0, c0, . . . ).

Note that the cosmological model enters only explicitly through the conversion µ(ẑ) of

the observed redshift to a distance modulus. There can, however, be implicit model

dependence in the experimental covariance matrix1 Σd or in corrections made to data

prior to the analysis.

1 The propagation of the error σz to σµ depends on the model. However, by (3.24)–(3.26), to leading
order for small z, σµ ' 5σz/(z ln 10) for all cases.
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To implement the RH16 parametrization (3.4) we replace (3.6) by

P [(MB, x1, c)i |M]

=
4∏

J=1

NJ∏
i=1

N (MB,i, MB,0, σMB,0
)

×N (x1,i, x1,0,J + xz,J ẑ, σx1,0) N (ci, c0,J + cz,J ẑ, σc0). (3.8)

We recover (3.7) with the one difference: in place of three repeated entries, the vector Y0

is now partitioned into different pieces for each subsample,

Y0 = (MB,0, x1,0,1 + xz,1ẑ1, c0,1 + cz,1ẑ1, . . . , MB,0, x1,0,2 + xz,2ẑi, c0,2 + cz,2ẑi, . . . , . . . ,

MB,0, x1,0,4, c0,4).

From the likelihood (3.7) we can define frequentist confidence regions and good-

ness of fit measures or alternative Bayesian versions of these, following conventional

statistical procedures summarized in Appendix 3.C.

In practice, estimating the Bayesian evidence is a computationally intensive task,

much more so than what is required to obtain parameter estimates. We use standard

Markov Chain Monte Carlo (MCMC) methods to sample parameter space. We esti-

mate the evidence using the publicly available MultiNest [140] code,2 with Python

interface PyMultinest [142], for the efficient evaluation of the evidence integral (3.34)

with likelihood (3.7). The accuracy of the Bayesian evidence estimate is controlled

by the number of ‘live’ points, nlive, with an error σ ∼ O(n
−1/2
live ). In our analysis we

choose 1000 points for the 8 or 9 parameter base model and add 100 more points for

each additional parameter.

3.2.2 Choice of priors

Given the sensitivity of the Bayes factor to priors it is important these are chosen as

objectively as possible. The choice of priors are summarized in Table 3.1.

2 This package is based on the Nested sampling algorithm [141].
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Model ΩM0 α x1,0 σx1,0 β c0 σc0 MB,0 σMB,0

Timescape 0.309
+0.070 (1σ) 0.127 (2σ)
−0.088 (1σ) 0.210 (2σ) 0.134 0.1050 0.899 3.13 -0.0211 0.0689 -19.1 0.104

Spatially flat ΛCDM 0.365
+0.033 (1σ) 0.066 (2σ)
−0.031 (1σ) 0.060 (2σ) 0.134 0.1061 0.899 3.14 -0.0215 0.0688 -19.0 0.104

Empty universe − 0.133 0.1013 0.900 3.13 -0.0204 0.0690 -19.0 0.106

Table 3.2: Best-fitting MLE parameters corresponding to the likelihood L(Data|M)
with the model M representing the cosmological model, the SALT2 procedure and
the intrinsic distributions of SNIa parameters. SNIa at redshifts z < 0.033 (statistical
homogeneity scale) are excluded. Confidence limits are given for the one free cosmolog-

ical parameter. In the timescape case this corresponds to fv0 = 0.778
+0.063 (1σ) 0.155 (2σ)
−0.056 (1σ) 0.104 (2σ).

The value of MB,0 is obtained for h = 0.668 for the timescape, and h = 0.7 for the
two FLRW models. The difference of parameters from NGS16 is principally due to the
SHS cut at zmin = 0.033, the effect of which is seen in Fig. 3.2.

3.2.2.1 Nuisance parameters

All nuisance parameters are common to both timescape and ΛCDM models and we

therefore assign the same priors to both models. Where possible,3 we adopt priors

that have been used in previous Bayesian studies of the SALT2 method [138, 143].

The standard deviations {σx1,0 , σc0 , σMB,0
} are ‘scale’ parameters (of the residuals) and

so it is more appropriate to assign a log-uniform prior to these parameters. The priors

for the nuisance parameters are wide to ensure the most likely regions of parameter

space are supported, and provided they are wide enough, this will have no overall effect

on the Bayes factor (as the evidence of each model will be similarly scaled).

3.2.2.2 Cosmological parameters

Only one free cosmological parameter can be constrained by supernovae: ΩM0 for

spatially flat ΛCDM or fv0 for the timescape model. Conventionally, the combination

of ΩM0 and H0 for the standard cosmology is strongly constrained by the CMB acoustic

peaks [144]. Measurements of the Baryon Acoustic Oscillation (BAO) scale in galaxy

clustering statistics [145, 59] at low redshifts and the Lyman α forest [61, 145] provide

independent constraints. In the case of the timescape model, however, our ability to

model the CMB is still limited by systematic uncertainties of 8–13% [127].

We therefore determine priors for fv0 in the timescape model using best present

3 Given the complications introduced by empirical changes (3.4) to x1,0, c0, we adopt uniform priors
for for these parameters.
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knowledge. For the CMB we use results of a model-independent analysis of the acoustic

peaks [146] with Planck satellite data, and choose a prior from a 95% confidence fit of

the angular scale of the sound horizon. To date BAO studies all implicitly assume the

FLRW model, and do not yet provide an equivalent model independent constraint. We

therefore adopt a prior using FLRW-model estimates of the angular diameter of the

BAO scale, including the full range of values which are currently in tension [61, 145, 59].

We take generous 95% confidence limits determined by assuming that either the low

redshift galaxy clustering results [145, 59] or the z = 2.34 Lyman-α results [61] are

correct. Priors for the spatially flat ΛCDM model are determined by an identical

methodology. Further details are given in Appendix 3.D.

3.3 Results

3.3.1 Analysis with supernova parameters drawn from global

Gaussian distributions

Since there is a degeneracy between the Hubble constant, H0, and the magnitude,

MB,0, we fix H0 for each model. The value of MB,0 then depends on this choice.

We are then left with one free cosmological parameter, the matter density parameter

ΩM0 in the spatially flat ΛCDM model, and the present epoch void fraction fv0 in

the timescape model. We can alternatively define an effective “dressed matter density

parameter” ΩM0 = 1
2
(1− fv0)(2 + fv0) [95, 97], which takes similar numerical values to

the concordance ΛCDM model, allowing likelihood functions to be plotted on the same

scale. (This parameter does not obey the Friedmann equation sum rule, however.) The

9 parameters {ΩM0, α, x1,0, σx1,0 , β, c0, σc0 ,MB,0, σMB,0
} are then fit for each model by

determining the likelihood function with all parameters other than ΩM0 (or fv0) treated

as nuisance parameters. The empty universe has 8 parameters since ΩM0 = 0.

3.3.1.1 Statistical homogeneity scale cuts

An important systematic issue in the timescape cosmology is the fact that an average

expansion law only holds on scales greater than the statistical homogeneity scale (SHS)

>∼ 70–120h−1Mpc [147, 148]. This corresponds to a CMB rest frame redshift of order

z∼ 0.023–0.04. In fact, SNIa analyses using the MLCS method have typically excluded
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SNIa below a cutoff at z = 0.024 [149]. However, the JLA catalogue [123] includes 53

SNIa, with z < 0.024.

Following [125] we determine cosmological model distances in the CMB frame, but

make a redshift cut at the SHS, taken at ∼ 100h−1Mpc. Furthermore, to examine the

effect of the SHS cut on the fit of light-curve parameters, we perform the entire analysis

while progressively varying the minimum redshift in the range 0.01 ≤ zmin < 0.1; i.e.,

up to a redshift 3 times larger than the SHS. Systematic effects associated with the

SHS can then be revealed. Our key results will be quoted for a cut at zSHS = 0.033 in

the CMB rest frame. The best-fitting MLE parameters with zmin = 0.033 are presented

in Table 3.2.

For the priors given in Table 3.1 the Bayesian evidence in favour of the time-

scape model relative to the spatially flat ΛCDM model is lnB = 0.085 ± 0.01 with

zmin = 0.033, or lnB = 0.600 ± 0.007 with zmin = 0.024. Since | lnB| < 1 the two

models4 are statistically indistinguishable. This conclusion is insensitive to O(1σ)

changes to the width of the uniform priors on fv0 and ΩM0, or to variations of the

minimum redshift as shown in Fig. 3.2(e).

While the Bayes factors do not show significant variation with zmin, the values of

particular best-fitting light-curve parameters show a marked change at the SHS. As

shown in Fig. 3.2, there is a marked 30% jump in c0 as zmin is varied from 0.01 up

to z ' 0.033, when compared to the subsequent fluctuations if zmin is increased up

to 0.1. For x1,0 there is a similar jump, although a linear trend remains in the range

0.033 < zmin < 0.1. The parameter β parameter shows a small (3%) jump up to the

SHS followed by ±1% fluctuations, while α remains relatively constant, fluctuating by

±2% over the whole range.

Since the light-curve parameters are remarkably close for all three cosmologies while

showing a jump as the SHS emerges (distinct from the residual c0 trend for the empty

model with zmin >∼ 0.05) there is clear evidence for some systematic effect at precisely

the scale where we expect it.

4 Both models have positive relative Bayesian evidence compared to the empty model. Although
the evidence is not particularly strong, | lnB2| ∼ 2.2 incorporates priors which demand standard
recombination for both ΛCDM and timescape. By that criterion the empty model is simply ruled
out.
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Timescape k ΩM0 〈x1,0〉 〈c0〉 〈xz〉 〈cz〉 BIC ∆BIC lnE Cb lnB1 fv0

I (NGS16) 9 0.309 0.105 -0.021 -185.0 80.38 8.53 0.778
II 10 0.278 -0.073 -0.021 0.511 -199.6 -14.6 81.67 9.28 -1.28 0.802
III 15 0.278 -0.183 -0.021 0.806 -169.9 15.1 66.46 14.11 13.93 0.801
IV 10 0.000 0.104 0.002 -0.065 -249.9 -64.9 78.52 9.19 1.86 1.000
V 15 0.010 0.092 0.054 -0.351 -157.7 27.3 81.29 14.15 -0.91 0.993
VI 11 0.000 -0.071 0.001 0.499 -0.062 -189.7 -4.7 79.35 10.21 1.94 1.000
VII (RH16) 21 0.000 -0.123 0.054 0.490 -0.348 -200.0 -15.0 65.85 19.47 14.53 1.000
VIII 16 0.000 -0.085 0.061 0.501 -0.348 -229.3 -44.3 82.03 15.30 -1.65 1.000

Flat ΛCDM k ΩM0 〈x1,0〉 〈c0〉 〈xz〉 〈cz〉 BIC ∆BIC lnE Cb lnB1 lnB2

I (NGS16) 9 0.365 0.106 -0.021 -192.5 80.30 8.93 0.08
II 10 0.353 -0.069 -0.021 0.503 -241.2 -48.7 81.64 10.01 -1.34 0.03
III 15 0.353 -0.186 -0.021 0.847 -159.8 32.7 66.62 14.60 13.68 -0.16
IV 10 0.303 0.106 -0.002 -0.057 -192.9 -0.4 79.60 9.98 0.70 -1.08
V 15 0.296 0.093 0.052 -0.354 -228.5 -36.0 83.77 14.87 -3.47 -2.47
VI 11 0.292 -0.069 -0.002 0.501 -0.057 -179.1 13.4 80.87 10.97 2.89 -1.52
VII (RH16) 21 0.286 -0.127 0.051 0.534 -0.352 -155.3 37.2 68.97 20.58 11.33 -3.12
VIII 16 0.286 -0.080 0.059 0.499 -0.354 -232.8 -40.3 84.95 15.89 -4.65 -2.92

Empty k ΩM0 〈x1,0〉 〈c0〉 〈xz〉 〈cz〉 BIC ∆BIC lnE Cb lnB1 lnB2

I (NGS16) 8 - 0.101 -0.020 -181.5 78.18 8.11 2.20
II 9 - -0.078 -0.019 0.517 -190.1 -8.6 79.92 9.02 -1.74 1.75
III 14 - -0.095 -0.020 0.749 -218.9 -37.4 64.43 13.75 13.76 2.03
IV 9 - 0.098 0.002 -0.054 -185.7 -4.2 78.56 9.05 -0.37 -0.03
V 14 - 0.087 0.054 -0.336 -180.4 1.1 79.85 14.19 -1.66 1.45
VI 10 - -0.072 0.002 0.489 -0.051 -186.3 -4.8 79.62 10.17 0.23 -0.27
VII (RH16) 20 - -0.122 0.054 0.460 -0.332 -198.7 -17.2 64.31 18.68 13.88 1.55
VIII 15 - -0.081 0.061 0.482 -0.334 -221.4 -39.9 80.74 14.89 -2.55 1.30

Table 3.3: Selected parameters fit for zmin = 0.033, with the following empirical models
for light-curve parameters: (I) constant x1,0, constant c0; (II) global linear x1,0, constant
c0; (III) split linear xI,1,0, constant c0; (IV) constant x1,0, global linear c0; (V) constant
x1,0, split linear c0,I ; (VI) global linear x1,0, global linear c0; (VII) split linear x1,0,
split linear c0; (VIII) global linear x1,0, split linear c0. Notes: k ≡ number of free

parameters; quantities 〈Φ〉 ≡ (
∑
NI ΦI)/(

∑4
I=1NI) denote an average over subsamples

with I = 1 . . . 4 for x1,0,I , c0,I and I = 1 . . . 3 for xz,I , cz,I for split models or 〈Φ〉 ≡
Φ otherwise; BIC = Bayesian Information Criterion; E = Bayesian evidence; Cb =
Bayesian complexity; ∆BIC = BICmodel−BICI and lnB1 = ln(EI/Emodel) are evaluated
with cosmological model fixed; lnB2 = ln(ETS/Emodel) is evaluated with light-curve
model fixed.
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3.3.2 Analysis with linear redshift variation for mean stretch

and colour parameters

Although RH16 considered four distinct subsamples, the mean stretch parameter ac-

tually shows a global increasing trend in the ΛCDM case evident in [139, Fig. 1, left

panels]. Our procedure of varying the minimum redshift cut on the whole sample also

isolates any global trend. Such a trend is indeed evident in Fig. 3.2(c) beyond the SHS,

with x1,0 increasing 40% as the minimum sample redshift increases from zmin = 0.033

to zmin = 0.1. Beyond zmin = 0.034 an equivalent global trend in the mean colour

parameter, c0, is not evident in Fig. 3.2(d), however, except in the case of the empty

universe, which shows a 13% decrease in c0 between zmin = 0.034 and zmin = 0.1. A

global shift in x1,0 would seem more consistent with an astrophysical systematic in the

source population, rather than sampling biases with different thresholds for different

samples.

To fully understand the differences that arise on making the RH16 changes (3.4),

we have also investigated the effect of adding a smaller number of free parameters,

by considering linear z relations in just one of the parameters x1,0 or c0, and the

difference between global linear relations and a split by subsamples. The advantage

of our fully Bayesian approach is that not only can we compare the relative Bayesian

evidence for different cosmological models with the same light-curve parameters, but

we can also compare the merits of different empirical light-curve models. The values

of the Bayesian evidence are shown in Table 3.3, along with a selection of parameters.

The changes to the parameters α and β are negligible between models, and are not

tabulated. We do not tabulate all additional (up to 12) parameters for the case of the

split subsamples, but an average.

3.3.2.1 Stretch parameter x1,0

Consistent with remarks above, relative to the baseline NGS16 model I, light curve

model II provides positive (but not strong) Bayesian evidence for a global linear trend in

x1,0 independent of cosmological model, with lnB1 = 1.28, 1.34, 1.74 for the timescape,

ΛCDM and empty models respectively. The BIC evidence for the same conclusion is

very strong (timescape, ΛCDM models) or strong (empty model). By contrast model

III gives strong evidence | lnB1| > 13 against a split linear law in x1,0 independent of

cosmological model. The Bayesian penalty for introducing new empirical parameters
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depends on the choice of the priors, but our conclusion is robust to reasonable changes.

Furthermore, the frequentist BIC statistic ∆BIC also strongly disfavours model III

relative to models I, II in the ΛCDM and timescape cases.

3.3.2.2 Colour parameter c0

In contrast to the stretch parameter, results involving the colour parameter vary greatly

with cosmological model. Despite model IV having the global minimum BIC statistic

for timescape, lnB1 shows no significant evidence5 for any global linear redshift law.

Relative Bayesian evidence for a split linear law in c0 is marginal for timescape, positive

for the empty universe, and strong for ΛCDM, with lnB1 = -0.91, -1.66 and -3.47

respectively.

The original RH16 model VII suffers similar problems to model III in terms of

Bayesian evidence, evidently on account of the split linear law in x1,0. However, model

VIII has the strongest Bayesian evidence of all models. It adds a global linear redshift

law in x1,0 to model V. The improvement in Bayesian evidence for model VIII relative

to model V is marginal for timescape and the empty universe, and positive for ΛCDM,

with ∆ lnB1 = −0.74, −0.89 and −1.18 respectively.

Although lnB2 for model VIII gives positive (but not strong) relative evidence for

ΛCDM over timescape, any conclusion drawn from this depends on additional empirical

light-curve parameters which now depend on the cosmological model6. Furthermore,

since the maximum likelihoods are comparable, the difference in Bayesian evidence is

primarily due to the timescape maximum likelihood being driven to the unphysical

limit fv0 → 1 for any light-curve model with linear variations in c0, as is shown in

Fig. 3.3, which compares likelihoods in ΩM0 (or fv0) for the NGS16 and RH16 models

for two choices of zmin.

Very similar results were found by [125] in applying SALT2 without the method-

ology of NGS16, leading to a large discrepancy in the predictions of the SALT2 and

MLCS2k2 fitters for timescape. Since direct application of the NGS16 methodology

to the JLA catalogue agrees with some previous MLCS2k2 fits to smaller data sets

[124, 125], we conclude that systematics similar to linear redshift variations in c0 may

5 The empty universe has marginal evidence, consistent with Fig. 3.2(d) for zmin > 0.05.

6 Some of the largest differences occur in the SNLS subsample: c0,ΛCDM = 0.0483 and c0,TS = 0.0565,
a 17% difference. For the NGS16 model, by contrast, differences are 2%.
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be the key to earlier discrepancies.

3.3.2.3 Cosmological model dependency of linear redshift changes to SALT2

methodology

To understand the origin of such differences consider the Taylor series expansions

(3.24)–(3.26) for the timescape, spatially flat ΛCDM and empty universe models, as

given in Appendix 3.A. Leading coefficients for (3.24) and (3.25) are shown graphically

in Fig. 3.4 as a function of the free cosmological parameter.

All cosmologies show improvement to a global increase in x1,0 with redshift and

piecewise decreases in c0, including the empty model which has no free parameter

to adjust. However, if we incorporate linear corrections xzz to x1,0, or czz to c0, in

the SALT2 relation, then the difference of (3.2) and (3.24)–(3.26) gives a potential

degeneracy between empirical parameters xz or cz and changes in the free cosmological

parameter if the linear term in (3.24)–(3.26) can be changed without greatly altering

the next most important O(z2) term. Such a possibility is admitted by ΛCDM but not

timescape.

For ΛCDM, the O(z) term in (3.25) is linear in ΩM0, and the O(z2) term is quadratic

in ΩM0 with a minimum at ΩM0 = 8
27

= 0.296. For model V with split linear redshift

laws in c0 only, the best-fitting ΩM0 coincides precisely with this minimum. The

decrease in ΩM0 by adding a global linear z dependence to x1,0 is approximately the

same, ∆ΩM0 = −0.01, in going from model V to VIII, or from model I to II. The

difference in (3.25) between models I and VII/VIII,

µΛCDM(0.286)− µΛCDM(0.365) = 0.1287 z − 0.0085 z2

− 0.0481 z3 + 0.0249 z4 + 0.0161 z5 − 0.0232 z6 + . . . (3.9)

is dominated by the linear redshift changes, with negligible changes in the O(z2) term.

By contrast the terms in the Taylor series (3.24) for timescape are very slowly

varying monotonic functions of fv0 on the range 0.6 < fv0 ≤ 1.0 (as shown in Fig. 3.4),

so changes in µTS are much more constrained. The difference in (3.24) between models
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I and VII/VIII, is

µTS(1.0)− µTS(0.778) = 0.0674 z + 0.0444 z2

− 0.0242 z3 + 0.0190 z4 − 0.0193 z5 + 0.0173 z6 + . . . (3.10)

A large change in fv0 is required make changes in µTS comparable to the ΛCDM case,

and the effect of increasing fv0 increases both the O(z) and O(z2) terms. As seen in

Fig. 3.5, the likelihood is consequently peaked along narrow ridges in the (xz,fv0) and

(cz,J ,fv0) planes, with almost constant values of xz and cz,J and no upper bound on

fv0.

3.4 Discussion

Our study has a number of important consequences. Firstly, the timescape and spa-

tially flat ΛCDM model luminosity distance–redshift fits to the JLA catalogue are sta-

tistically indistinguishable using either the approach of NGS16, or with modifications

to only the mean stretch parameter. As shown in Table 3.3 the Bayesian complex-

ity, Cb, is lower (better) for timescape than for ΛCDM, for every choice of light-curve

model.

This completely reframes a debate [137, 139, 143, 150, 151] about whether cos-

mic acceleration is marginal or not, within the confines of a FLRW expansion history.

Current supernova data does not distinguish between the standard ΛCDM model and

the non-FLRW expansion history of the timescape model, which has non-zero appar-

ent cosmic acceleration but with a marginal amplitude. The apparent deceleration

parameter (3.23) for the best-fitting value of Table 3.2 is q0 ≡ q(fv0) = −0.043+0.004
−0.000.

Within the class of FLRW models the significance of cosmic acceleration is often

assessed by comparison to the empty universe model. That model is unphysical, since

standard nucleosynthesis and recombination can never occur in a universe with a(t) ∝ t

regardless of its matter content.7 The timescape model has positive lnB2 compared

to the empty universe.8 Nonetheless, |µTS(z) − µempty(z)| < |µΛCDM(z) − µempty(z)|
(c.f. Fig. 3.1) at late epochs, for a simple physical reason. The timescape model is

7 In particular, the Rh = ct model is unphysical for this reason [152].

8 This is true for the NGS16 model I and all light-curve models for which lnB1 shows an improvement
independent of cosmology, viz. models II, V, VIII.

57



void dominated at z < 1, and the expansion of individual voids is close to an empty

universe. While the timescape model has apparent acceleration at late epochs, its

expansion law is closer to that of an empty universe than that of the ΛCDM model.

The second important consequence of our study is that allowing linear changes

with redshift to the mean colour parameter, c0, produces cosmological model depen-

dency. Since the redshift–distance relation of the timescape model effectively interpo-

lates [97, 128] between those of spatially flat ΛCDM models with different values9 of

ΩM0, particular care must be taken with piecewise linear relations in redshift.

The improved 16 parameter model VIII (this being a better fit than the original

21 parameter RH16 model) has positive Bayesian evidence for ΛCDM relative to the

timescape model. However, this is contingent on degeneracies in the likelihood function

between the free cosmological parameter and additional empirical parameters. The

RH16 parametrization allows the ΛCDM deceleration parameter q0 = −1 + 3
2
ΩM0

contained in the O(z) term of the Taylor series (3.25) to be adjusted10 near the global

minimum ΩM0 = 0.296 of the O(z2) term in (3.25). However, the same procedure

drives the timescape free parameter to an unphysical limit, fv0 → 1. No fundamental

model underlies the empirical parametrization (3.4). Variations in c0 are most plausibly

related to selection effects, given we cannot fit them by a global law. However, selection

effects would be more correctly modelled by removing the tail of a Gaussian distribution

rather than shifting its mean linearly in redshift.

Our results show that NGS16 did not account for every possible selection bias that

remains in the JLA catalogue, consistent with some comments of RH16. Nonetheless,

NGS16 are correct to point out the possible pitfalls in fitting SNIa data when empirical

light-curve parameters are mixed with the cosmological parameters of a single class

of cosmological models. If SNIa are to be used to distinguish cosmological models,

then systematic uncertainties and selection biases should be corrected in as model

independent manner as possible before the data is reduced.

A related issue which remains to be explored is the extent to which the corrections

for selection biases that have already been made in the JLA catalogue depend on the

9 Note that the Planck best-fitting value ΩM0 = 0.3175 [144] is lower than the best-fitting value for
the spatially flat ΛCDM model value ΩM0 = 0.365 from Table 3.2, consistent with the timescape
expectation.

10 For the NGS16 model I and models VII/VIII one has best fits q0 = −0.453 and q0 = −0.571
respectively. The respective spatially flat ΛCDM values quoted by [139], namely q0 = −0.412,
−0.552, (or ΩM0 = 0.392, 0.299), differ mostly on account of our SHS cut at zmin = 0.033.
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FLRW model. [123] follow a procedure of [153, Sec. 6.2], who used the SNANA package

to estimate selection biases. Simulated data (using the FLRW model) is used in such

estimates. While efforts have been made to consider different dark energy equations of

state [153], models which do not satisfy the Friedmann equation fall outside the scope

of such analyses.

Whether or not the timescape model is ultimately a better fit than the standard

FLRW model, it may provide a useful diagnostic tool in comparing methods for SNIa

light-curve reduction purely at the empirical level. In particular, it has an analytic

non-FLRW redshift–distance relation which is very close to that of the ΛCDM model,

but which is considerably more constrained in the free parameter fv0 than the ΛCDM

model is in ΩM0.

Finally, Figs. 3.2(b),(c),(d) show evidence for a ' 100h−1Mpc statistical homogene-

ity scale which has an effect on global fits of light-curve parameters – most notably

a 30% shift of c0 – independent of the cosmological model. These systematics, which

occur at a scale relevant from independent observations [147, 148], must be explained

irrespective of the cosmological model.

The analysis of this chapter has been repeated in [154] after the publication of the

Pantheon catalogue of SNIa [155]. The Pantheon catalogue, consisting of 1048 SNIa,

include the majority of the SNIa from the JLA catalogue with the addition of a subset

of the Pan-STARRS1 survey of SNIa. Distance moduli in the Pantheon catalogue are

determined by a modification of the SALT2 relation [135, 136], in which additional

corrections are made for for the mass of the host galaxy and where a ‘bias correction’

is made using ΛCDM N -body simulations.

There are no publicly available data from Pantheon similar to the (almost) model-

independent publicly available JLA catalogue, which makes repeating the analysis of

this chapter with the Pantheon catalogue impossible. What is provided in the Pantheon

catalogue are distance moduli obtained using assumptions intrinsic to ΛCDM models.

In [154] the following steps were adopted: (i) use the publicly available ΛCDM reduced

data in the form ΛCDM deduced distance moduli from Pantheon to produce Bayes

factors similar to those reported in this chapter, but keeping in mind that the statistical

analysis is not fully consistent because of the strong model assumptions used to reduce

data; (ii) repeat the analysis of this chapter with the SNIa contained in both the JLA

and the Pantheon catalogue – i.e. using the JLA catalogue with the 94 SNIa unique

to the JLA sample removed.
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The common subsample of 646 SNIa present in both the JLA and the Pantheon

catalogue was analysed in order to directly compare the difference in data reported

for the same supernovae and the impact on cosmological data analysis. For a redshift

cut of zmin = 0.24 the logarithm of the Bayes factor, lnB = ln(ETS/EΛCDM), for the

common subsample of JLA was found to be lnB = 1.4 in favour of the timescape

model (whereas lnB = 0.6 for the full JLA sample with the same redshift cut). For

the common subsample of Pantheon it was found that lnB = −1.6 in favour of the

ΛCDM model. The large difference in Bayes factor for the same set of SNIa when

employing the Pantheon and the JLA data reduction methods respectively highlight

the importance of model independent data reduction.

The results using the subset of the JLA catalogue induced changes of order ∼ 10%

for all best fits parameters of the analysis, and for some parameters also significantly

changed the systematics in redshift with respect to the results in figure 3.2 found for

the full JLA sample. The best fit parameters and their trends as a function of redshift

cut zmin as found in [154] are shown in figure 3.6. Some trends in redshift cut seem

to be reduced when removing the 94 SNIa unique to the JLA sample – see, e.g., the

trend in x1,0 below and around the ΛCDM estimated homogenate scale of z ∼ 0.03.

Other trends seem to be introduced or enhanced, as for instance an additional trend in

c0 for redshifts of z >∼ 0.05. Best fit values of ΩM decrease by roughly 10% for ΛCDM

when the full sample with no cut in redshift is considered, and thereby gets closer to

the latest inferred value ΩM = 0.315± 0.007 reported by Planck [62].

No arguments have been presented in [155] as to why 94 SNIa of the JLA sample

were removed. The order 10% changes induced by removing a subset of supernovae

are in line with the indications of this chapter, that unknown and poorly quantified

systematics are strongly dominating the error budget of supernovae analysis.
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Figure 3.2: MLE best-fitting parameters, and Bayes factor, for the NGS16 model as
zmin is varied: (a) α; (b) β; (c) x1,0; (d) c0; (e) ΩM0 (or fv0) with 1σ bounds; (f)
lnB = ln(ETS/Emodel). Vertical dotted lines at zmin = 0.024 and zmin = 0.033 indicate
the expected rough redshift range of an emerging statistical homogeneity scale.
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Figure 3.3: Profile likelihoods in ΩM0 and fv0 for model I (NGS16) and model VII
(RH16): (a) NGS16, zmin = 0.024; (b) NGS16, zmin = 0.033; (c) RH16, zmin = 0.024;
(d) RH16, zmin = 0.033. Model IV, V, VI and VIII results are very similar to model
VII.

62



0.0 0.1 0.2 0.3 0.4 0.5
M0

1.3

1.4

1.5

1.6

1.7

O
(z

) c
oe

ffi
ci

en
t 

1

CDM, 1

TS, 1

TS, 1

CDM, 1

1.0 0.93 0.86 0.78 0.7 0.62
fv0

0.0 0.1 0.2 0.3 0.4 0.5
M0

1.2

1.1

1.0

0.9

0.8

O
(z

2 )
 c

oe
ff

ic
ie

nt
 

2

TS, 2

CDM, 2

TS, 2

CDM, 2

1.0 0.93 0.86 0.78 0.7 0.62
fv0

0.0 0.1 0.2 0.3 0.4 0.5
M0

0.5

0.6

0.7

0.8

O
(z

3 )
 c

oe
ffi

ci
en

t 
3

CDM, 3

TS, 3TS, 3

CDM, 3

1.0 0.93 0.86 0.78 0.7 0.62
fv0

0.0 0.1 0.2 0.3 0.4 0.5
M0

0.75

0.65

0.55

0.45

0.35

O
(z

4 )
 c

oe
ff

ic
ie

nt
 

4

TS, 4

CDM, 4

TS, 4

CDM, 4

1.0 0.93 0.86 0.78 0.7 0.62
fv0

Figure 3.4: Coefficients in the Taylor series (3.24), (3.25), µ = µ0(z) +
∑

n=1 µnz
n, of

the spatially flat ΛCDM and timescape models, as a function of the free cosmological
parameter, ΩM0 or fv0. For timescape the coefficients µTS,n are very slowly varying
monotonic functions of fv0 on the range 0.6 < fv0 ≤ 1, whereas the coefficients µΛCDM,n

are polynomials of order n. For each n, |µTS,n| < |µΛCDM,n|, reflecting the “flatter”
distance modulus (cf. Fig. 3.1). Linear changes of ΩM0 can become degenerate with
empirical light-curve parameters linear in z for parameters close to the minimum of
µΛCDM,2 at ΩM0 = 0.296. The change in the coefficients between NGS16 model I and
models VII/VIII is indicated.
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Figure 3.5: Likelihood function contours for model VIII with zmin = 0.033 projected in
the planes: (a) (xz,ΩM0); (b) (cz,1,ΩM0) (SNLS sample, mean redshift 〈z〉 = 0.636);
(c) (cz,2,ΩM0) (SDSS sample, mean redshift 〈z〉 = 0.199); (d) (cz,3,ΩM0 (low z sample
with z > 0.033, mean redshift 〈z〉 = 0.0495). 67.3%, 95.5%, and 99.7% confidence
contours are shown. In panel (a) xz contours for model II are also shown to demonstrate
the effect of adding the cz,J parameters. For spatially flat ΛCDM the maximum
likelihood is driven to the vicinity of the minimum ΩM0 = 8

27
of the O(z2) Taylor series

term (3.25). The timescape Taylor series (3.24) consists of slowly varying monotonic
functions of fv0, and the maximum likelihood is driven to the edge of parameter space,
fv0 → 1.
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Figure 3.6: MLE best-fitting parameters for the NGS16 model as zmin is varied for
ΛCDM (green) and timescape (red). Full drawn lines represent the analysis with the
full JLA catalogue of this paper (740 SNIa), and dashed lines represent the JLA subset
(646 SNIa).
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Appendix 3.A Luminosity distances in the FLRW

and timescape cosmologies

We compare SNIa observations to distance moduli (3.1) for theoretical luminosity

distances determined from the FLRW and timescape models. Regardless of the matter

content of the universe, the distance modulus for any general FLRW model can be

expanded as a Taylor series of derivatives of the scale factor a(t) for small redshifts, z.

This leads to a distance modulus [156]

µFLRW = 25 + 5 log10

(
c z

H0 Mpc

)
+

5

ln 10

{
1
2
(1− q0)z + 1

24

[
9q0

2 − 10q0 − 7− 4j0 − Ωk0

]
z2

+ 1
24

[
s0 + 5− 10q0

3 − 16q0
2 − 9q0 + j0 (8q0 + 7)

− 4Ωk0 (q0 + 1)
]
z3 + . . .

}
, (3.11)

where c is the speed of light, and H0, q0, j0, s0 and Ωk0 are the present values of

the Hubble, deceleration, jerk, snap and spatial curvature parameters: H(t) ≡ a−1∂ta;

q(t) ≡ −a−1H−2∂2
t a; j(t) ≡ a−1H−3∂3

t a; s(t) ≡ a−1H−4∂4
t a; Ωk(t) ≡ −kc2(Ha)−2.

The luminosity distance-redshift relation in the ΛCDM model is given exactly by

dL =
(1 + z)c

H0

√
|Ωk0|

sinn

√|Ωk0|
1∫

1/(1+z)

dy

H(y)

 ,

H(y) ≡
√

ΩR0 + ΩM0y + Ωk0y
2 + ΩΛ0y

4 ,

sinn(x) ≡


sinh(x), Ωk0 > 0

x, Ωk0 = 0

sin(x), Ωk0 < 0

, (3.12)

where ΩR0, ΩM0 and ΩΛ0 are respectively the present epoch values of the radiation,
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non-relativistic matter and cosmological constant density parameters, which at all

epochs obey the Friedmann equation sum rule ΩR + ΩM + Ωk + ΩΛ = 1. Since ΩR0 =

4.15×10−5h−2, the radiation term can be neglected on the distance scales of supernovae.

Furthermore, for FLRW models Ωk0 is constrained to be close to zero by the angular

diameter distance of the sound horizon in the CMB. Thus we will restrict attention

to the spatially flat ΛCDM model, with two effective free parameters, H0 and ΩM0 '
1− ΩΛ0. We use eq. (3.12) with Ωk0 = 0, ΩR0 = 0, for computations but note that in

the Taylor series (3.11), q0 = −1 + 3
2
ΩM0, j0 = 1, s0 = 1− 9

2
ΩM0.

We also consider the FLRW model with linear expansion a(t) ∝ t. This solution

is obtained by setting Ωk0 = 1, ΩR0 = ΩM0 = ΩΛ0 = 0 in (3.12) or Ωk0 = 1, q0 =

j0 = s0 = · · · = 0 in (3.11). Following NGS16 we denote this the empty universe,

but note any matter content is admissible as long as the luminosity distance is exactly

dL = c z(1 + 1
2
z)/H0.

The timescape model [95, 96, 97, 98], does not evolve by the Friedmann equation,

and its distance modulus does not yield a Taylor series that coincides with (3.11)

beyond the leading Hubble term. Instead observables are determined by conformally

matching radial null geodesics of the regional “finite infinity” geometry of observers

in gravitationally bound systems to a statistical geometry determined by fitting a

spherically symmetric metric to a solution [96, 97, 98] of the Buchert equations [87, 88].

For the purpose of supernova distance analysis, the radiation density parameter

(though somewhat differently calibrated to the CMB [98]) is negligible at the present

epoch. To an accuracy of 0.3% the expansion history at late epochs is then given

analytically [96, 97]. The “dressed” luminosity distance, dL, and angular diameter

distance, dA, are given by

dL =(1 + z)2dA, (3.13)

dA =c t2/3
∫ t0

t

2 dt′

(2 + fv(t′))(t′)2/3
= c t2/3(F(t0)−F(t)), (3.14)

F(t) ≡ 2t1/3 +
b1/3

6
ln

(
(t1/3 + b1/3)2

t2/3 − b1/3t1/3 + b2/3

)
+
b1/3

√
3

tan−1

(
2t1/3 − b1/3

√
3 b1/3

)
, (3.15)

where the volume-average time parameter, t, is defined implicitly in terms of the red-

shift by

z + 1 =
(2 + fv)fv

1/3

3f
1/3
v0 H̄0t

=
24/3t1/3(t+ b)

f
1/3
v0 H̄0t(2t+ 3b)4/3

, (3.16)
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b ≡ 2(1 − fv0)(2 + fv0)/(9fv0H̄0), fv0 is the present epoch value of the void volume

fraction,

fv(t) =
3fv0H̄0t

3fv0H̄0t+ (1− fv0)(2 + fv0)
, (3.17)

and H̄0 is the “bare Hubble constant” related to the observed Hubble constant by

H̄0 = 2(2 +fv0)H0/(4fv0
2 +fv0 + 4). The parameter t is related to the time parameter,

τ , measured by typical observers in bound structures by

τ = 2
3
t+

2(1− fv0)(2 + fv0)

27fv0H̄0

ln

(
1 +

9fv0H̄0t

2(1− fv0)(2 + fv0)

)
. (3.18)

While the void volume fraction, fv, 3.17 is a natural parameter in the timescape cos-

mology, it is often useful to consider the reparametrisation

ΩM = ΩM = 1
2
(1− fv)(2 + fv) , (3.19)

where ΩM is the dressed matter parameter of the timescape model.

The effective dressed scale factor a(τ) is given by

a ≡ γ̄−1ā, (3.20)

where ā is the bare or volume-average scale factor and γ̄ is the phenomenological

lapse function. These have simple analytic forms in terms of the volume-average time

parameter, t, namely

ā =
ā0

(
3H̄0t

)2/3

2 + fv0

[
3fv0H̄0t+ (1− fv0)(2 + fv0)

]1/3

(3.21)

and

γ̄ = 1
2
(2 + fv) =

3(t+ b)

(2t+ 3b)
(3.22)

respectively [96, 97]. The bare Hubble parameter, H̄ ≡ ∂tā/ā, and dressed Hub-

ble parameter, H ≡ ∂τa/a, are given respectively by H̄ = (2 + fv)/(3t) and H =(
4fv

2 + fv + 4
)
H̄/[2(2 + fv)]. The bare deceleration parameter, q̄ ≡ −ā−1H̄−2∂2

t ā, is

always positive. However, on account of the different time parameters (3.18) the dressed

deceleration parameter inferred by observers in bound systems, q ≡ −a−1H−2∂2
τa, may
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change sign from positive to negative, indicating apparent acceleration. The dressed

deceleration parameter is given by

q =
− (1− fv) (8fv

3 + 39fv
2 − 12fv − 8)(

4 + fv + 4fv
2
)2 . (3.23)

The onset of apparent acceleration is determined by a root of the cubic in fv in the

numerator of (3.23), and begins when fv ' 0.587.

One may substitute (3.13)–(3.15) in (3.1) and then invert (3.16) as a series in z
using an algebraic computing package to arrive at a low redshift Taylor series for the
distance modulus, µTS, equivalent to (3.11) for the FLRW model. The first terms are
given below, along with equivalent expressions for the spatially flat ΛCDM and empty
universe models as determined from (3.11):

µTS = µ0(z) +
5

ln 10

{[
24 f4

v0 − 23 f3
v0 + 99 f2

v0 + 8

2 (4 f2
v0 + fv0 + 4)

2

]
z −

[
F8

24 (4f2
v0 + fv0 + 4)

4

]
z2 + . . .

}
(3.24)

µΛCDM = µ0(z) + 5
ln 10

{
(1− 3

4ΩM0)z −
[

1
2 + 1

2ΩM0 − 27
32Ω2

M0

]
z2

+
[

1
3 − 1

8ΩM0 + 21
16Ω2

M0 − 45
32Ω3

M0

]
z3 + . . .

}
(3.25)

µempty = µ0(z) + 5
ln 10

{
1
2z − 1

8z
2 + 1

24z
3 + . . .

}
, (3.26)

where

F8 ≡ 1984 f8
v0 − 4352 f7

v0 + 16515f6
v0 + 14770 f5

v0 + 7819 f4
v0 − 11328f3

v0 + 32080 f2
v0 − 128 fv0 + 960 .

(3.27)

Here the term µ0(z) ≡ 25 + 5 log10[cz/(H0 Mpc)] = 25 + 5 log10(2997.9h−1) + 5 log10 z

is common to all models, the Hubble constant being H0 = 100h km sec−1 Mpc−1.

Appendix 3.B Implementation of the SALT2 method

The SALT relation (3.2) refers to the actual emitter (em) and observer (obs), but the

luminosity distance relations (3.12) and (3.14) refer to ideal observers who determine

an isotropic distance–redshift relation. Consequently, the theoretical relations (3.12)

and (3.14) must be transformed to the frame involving the actually measured redshift

ẑ = (λobs − λem)/λem before the SALT relation is applied. The luminosity distance
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entering (3.1) is then

d̂L(ẑ) =
1 + ẑ

1 + z
dL(z) = (1 + ẑ)D(z), (3.28)

where for each cosmological model, D(z) = dL/(1 + z) = (1 + z)dA is the (effective)

comoving distance, and

1 + ẑ = (1 + z)(1 + zpec
obs)(1 + zφobs)(1 + zpec

em )(1 + zφem) (3.29)

gives the measured redshift, ẑ, in terms of the cosmological redshift, z, the local Doppler

redshifts of observer, zpec
obs , and emitter, zpec

em , and gravitational redshifts at the two

locations, zφobs and zφem.

For our observations, ẑ, is the heliocentric redshift as the Earth’s annual motion is

averaged to the rest frame of the Sun. In the standard cosmology gravitational potential

effects are assumed to be small, and the only relevant terms on the r.h.s. of (3.29) are

assumed to be local boosts of order v/c∼ 10−3. This leads to 0.1% corrections to the

luminosity distance which are often neglected. However, as noted by [157] differences

of 0.1% in dL lead to order 1% corrections to cosmological parameters, which we have

confirmed in our analysis.

In the timescape model, as in any inhomogeneous cosmology, expansion below the

∼ 100h−1Mpc SHS will generally differ from that of a global average geometry plus local

boosts. Equivalently, very slowly varying time-dependent gravitational potentials also

make a contribution to (3.29). Such terms encode non-kinematic differential expansion

[158] from inhomogeneities below the SHS. Spatial variations in the term zφem may have

significant consequences for interpreting the local “peculiar velocity field” for sources

within <∼ 100h−1Mpc of our location [159, 160] but any net anisotropy on SNIa redshifts

on larger scales should only make a small correction to the standard boost between

the heliocentric and CMB frames. Indeed, it could be a source for a small systematic

redshift uncertainty of the type considered by [157]. However, we do not investigate

that possibility in the present chapter as the RH16 empirical light-curve models we

study are already very complex. The peculiar velocity and gravitational potential

terms in (3.29) that we are unable to determine will be assumed to contribute to

statistical uncertainties in measured redshifts only.

We therefore compute cosmological luminosity distances is the CMB rest frame,
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exclude data below the SHS, and study the effect of different choices for this cutoff.11

Furthermore, we apply the SALT2 relation in the heliocentric frame using the values

tabulated in the JLA catalogue [123], and calculate the corresponding CMB rest frame

redshifts ourselves.12

We do not use the JLA tabulated CMB frame redshifts [123] since in addition to

our zpec
obs correction, these values also already include a correction, zpec

em , for the peculiar

velocity field [164, 165] of galaxies up to z = 0.071, implicitly assuming the FLRW

model.

Appendix 3.C Model comparison

3.C.1 Frequentist approach

We are interested in the dependence of the likelihood (3.7) on the model parameters,

Θ. We write L(Θ) ≡ L(Data|Θ,M). We are interested in a subset of parameter-

space Θ1 ⊂ Θ, for which we construct a profile likelihood Lp(Θ1) ≡ maxΘ2 [L(Θ)],

where maximization is over the nuisance parameters Θ2 = Θ \ Θ1. In our case Θ1 is

usually the free parameter(s) of the cosmological model, and Θ2 the intrinsic supernovae

parameters and the empirical parameters, α, β, of the light-curve fitter.

Confidence regions for the parameters of interest are estimated from the coverage

probability pcov of a region in the k-dimensional slice of parameter space, k ≡ dim Θ1,

given asymptotically by the integral

pcov(region) =

∫ −2 ln(Lp(Θ1)/Lmax)

0

fχ2(Θ′1, k)dΘ′1 (3.30)

where Lmax ≡ maxΘ1
[Lp(Θ1)], and fχ2(x, k) is the probability density function of a χ2

distributed variable with k degrees of freedom. Having constructed confidence intervals

from (3.30), one can compare nested models.

11 Since we do not constrain H0, we do not specifically investigate the relationship between light-curve
parameters and determinations of the local Hubble constant, which have been discussed in the past
[134, 161, 162, 125, 159, 160]. In the timescape model higher average values of H0 are expected
below the SHS.

12 We use the NASA/IPAC Extragalactic Database standard, 371 km sec−1 in the direction (`, b) =
(264.14◦, 48.26◦) [163].
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Since we wish to compare independent non-nested models,13 we need to go beyond

the procedure of (3.30). The Akaike Information Criterion (AIC) [166] and Bayesian

Information Criterion (BIC) [167] are two widely used measures of the relative infor-

mation loss for non-nested models, given respectively by

AIC = 2k − 2 ln (Lmax) (3.31)

BIC = k lnN − 2 ln (Lmax) (3.32)

where k is the number of independent model parameters, and N the number of data

points fit. The AIC estimate of relative probability of minimal information loss for

two models is PAIC ≡ exp
[
−1

2
(AIC1 − AIC2)

]
, and similarly for BIC. The BIC gives a

greater penalty for introducing additional parameters than AIC if N ≥ 8. Differences

of at least 2, 6 and 10 are considered to be respectively ‘positive’, ‘strong’ and ‘very

strong’ evidence [168] for the model with the lower IC value. Both tests reduce to a

maximum likelihood comparison when k1 = k2, as is the case for the timescape and

spatially flat ΛCDM models.

3.C.2 Bayesian approach

The frequentist methods place emphasis on the maximum likelihood, which is of limited

use. We therefore perform a fully Bayesian analysis of the JLA data set to determine the

relative statistical support for each cosmological model, as well as for the introduction

of additional redshift dependent light curve parameters.

Given data, D, and a model, M, determined by a set of n parameters Θ =

(θ1, θ2, . . . , θn), by Bayes theorem the posterior probability distribution, p(Θ|D,M),

is given by

p(Θ|D,M) =
L(Θ)π(Θ|M)

p(D|M)
, (3.33)

where L(Θ) ≡ p(D|Θ,M) is the likelihood, π(Θ|M) is the prior distribution and p(D|M)

is the Bayesian evidence. The prior represents a subjective initial state of belief in the

parameters based on external information or previous experiments, while the evidence

13 We note that only models II, IV, VI are extensions of the 9 parameter base model, i.e., model I is
nested in II, IV and VI, while II and IV are nested models of VI. Model V is nested in model VIII.
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is a normalization constant,

E ≡ p(D|M) =

∫
L(Θ)π(Θ|M) dΘ, (3.34)

to ensure the posterior is a probability distribution. It is independent of parameters

and as such does not play a role in parameter estimation, but becomes important for

model comparison.

Given two models, M1 and M2, for the same data D, the Bayes factor [168]

B ≡ E1

E2

=
p(D|M1)

p(D|M2)
, (3.35)

gives a measure for which model is more probable in view of the data. The Bayes

factor implicitly applies the principle of Occam’s razor14 with a penalty for adding

extra parameters. This makes model selection natural in the Bayesian framework.

Values of B > 1 indicate preference for model 1, B < 1 for model 2. On a standard

scale, evidence with | lnB| < 1 is ‘not worth more than a bare mention’ [168] or

‘inconclusive’ [169], while 1 ≤ | lnB| < 3, 3 ≤ | lnB| < 5 and | lnB| ≥ 5 indicate

‘positive’, ‘strong’ and ‘very strong’ evidences respectively [168].

In the Bayesian approach the nuisance parameters are marginalized over, i.e., inte-

grated out from the posterior p(Θ|D,M). E.g., the marginal posterior of θ1 is obtained

from the n-dimensional posterior by

p(θ1|D,M) =

∫
p(θ|D,M) dθ2 dθ3 . . . dθn, (3.36)

and from this 1-dimensional distribution parameter inferences can be made. The pos-

terior mean value is given by

θ̄1 =

∫
θ1 p(θ1|D,M) dθ1, (3.37)

and more generally

f̄ =

∫
f(θ1) p(θ1|D,M) dθ1, (3.38)

14 The AIC and BIC statistics also include a penalty using simple approximations to Bayesian methods
which derive from different assumptions about the priors. The factor of two difference in the IC
evidence scale [168] reflects the factor of 2 multiplying ln (Lmax) in the definitions (3.31), (3.32).
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for some parameter dependent quantity f . Credible intervals, or uncertainties in pa-

rameters, can also be obtained from the marginal posterior. E.g., a 68% equal-tailed

credible interval is defined in such a way that (1 − 0.68)/2 = 0.16 of the probability

lies on either side of the interval.

In cases where the Bayes factor is close to unity giving no clear preference for either

model, the Bayesian complexity [170] can provide a secondary measure to the model

selection process. It is defined as

Cb ≡ −2
(
DKL(p, π)− D̂KL

)
, (3.39)

where

DKL(p, π) ≡
∫
p(Θ|D,M) ln

[
p(Θ|D,M)

π(Θ|M)

]
dΘ, (3.40)

is the Kullback-Leibler divergence measuring the information gain of the inference, and

D̂KL is a point estimator evaluated at the posterior mean Θ̄ measuring the expected

information gain:

D̂KL ≡ p(Θ̄|D,M) ln

[
p(Θ̄|D,M)

π(Θ̄|M)

]
= lnL(Θ̄)− ln p(D|M), (3.41)

where we have used Bayes theorem in the second equality. As the data may not be able

to constrain all parameters, the Bayesian complexity determines the effective number

of parameters supported by the data. Thus for models with | lnB| < 1, the model

with the lower Cb indicates the simpler model and is therefore preferred. By defining

the effective chi-squared χ2(Θ) ≡ −2 lnL and invoking Bayes theorem (3.33), we can

rewrite (3.39) as

Cb = χ2(Θ)− χ2(Θ̄), (3.42)

with χ2 being the posterior mean of χ2.

Appendix 3.D Cosmological model priors

We construct priors for the timescape model [95, 96, 97, 98] based on CMB and BAO

observations, to the best of our knowledge. We will also construct equivalent priors

for the ΛCDM model based on the same assumptions. The resulting priors are wider

than in conventionally assumed, but do not unfairly weight a Bayesian comparison by
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integrating the ΛCDM model likelihood function over a narrow parameter range as

compared to the timescape case.15

3.D.1 CMB acoustic scale constraint

In the case of the CMB, a cosmology independent analysis of the angular scale and

heights of the acoustic peaks has been undertaken by [146] from the Planck data. We

use the information resulting from the angular scale of the acoustic peaks alone. The

angular scale depends on the angular diameter distance of the sound horizon alone,

which is constrained in the timescape model. By contrast, the relative peak heights

are related to the baryon–to–photon ratio, ηBγ, and the spectral index, ns, which are

parameters with the largest systematic uncertainties in the timescape case.

A non-parametric fit of the acoustic scale alone gives 286 ≤ `A ≤ 305 at 95%

confidence [146]. Our CMB prior is then determined by demanding that the angular

diameter distance of the sound horizon at decoupling matches the corresponding an-

gular scale θA = π/`A; i.e., 0.01030 ≤ θA ≤ 0.01098. In earlier work [124, 125, 98],

given that non-parametric fits had not been performed, we had demanded a match to

the FLRW parametric estimate of the acoustic scale θA = 0.01041 to within 2%, 4% or

6%. The non-parametric fit represents a considerable improvement, particularly since

the FLRW model value is not in the mid-range of the non-parametric 95% confidence

interval.

To constrain the angular diameter distance of the sound horizon dA dec = D̄s(zdec)/θA

in the timescape model, we determine the redshift of decoupling, zdec, and the co-

moving distance of the sound horizon D̄s at that epoch [98, 127], which require the

baryon–to–photon ratio to be specified. In the FLRW model this ratio is very tightly

constrained by the ratio of CMB peak heights, as first measured by WMAP [43]. How-

ever, to achieve a similarly precise constraint in the timescape model we would need

to include backreaction in the primordial plasma [127], which is beyond the scope

of current investigations. In previous work [98, 124, 125] we used a range of pre-

WMAP baryon–to–photon ratios [171], 4.6 < 1010ηBγ < 5.6, for which all light element

15 If we were to use conventional narrower priors for ΛCDM then the timescape model is either
unfairly advantaged or disadvantaged, depending on whether the maximum likelihood lies within
the range of the narrower prior or not. For the NGS16 model, for example, this is not the case for
the spatially flat ΛCDM model, and the timescape model is unfairly advantaged. For model VIII
the situation is reversed.
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abundance measurements are within 2σ, i.e., with no primordial lithium abundance

anomaly. In the present analysis, we wish to use the same priors on ηBγ for both

the timescape and ΛCDM models, and thus need to include the standard model value

ηBγ = 2.736 × 10−8ΩM0h
2 = (6.08 ± 0.07) × 10−10 for which the primordial lithium

abundance is problematic. We therefore adopt the more conservative pre-WMAP range

given by [172], namely 4.2 < 1010ηBγ < 6.3.

Figure 3.7: Cosmological parameter constraint priors from on the timescape model (left
panel) and the spatially flat ΛCDM model (right panel). Independent 2σ constraints
are determined for: (i) the angular scale of sound horizon in the CMB (contours from
top left to bottom right); (ii) the fit of the angular BAO scale from BOSS galaxies
at low redshift (contours from bottom left to top right); (iii) the angular BAO scale
from one measurement of the Lyman-α forest at z = 2.34 (wide contours). A range of
possible baryon–to–photon ratios are allowed, with the extremes indicated. The joint
confidence region is determined by applying the CMB constraint and allowing one or
other BAO constraint.

3.D.2 Baryon Acoustic Oscillation constraints

Determinations of the BAO scale from galaxy clustering at low redshifts and Lyman

alpha forest statistics at z = 2.34 provide complementary constraints on the expan-

sion history. In previous work [98, 124, 125] we simply demanded that the timescape

effective comoving BAO scale match a single estimate determined from the FLRW

cosmology to within ±2%, ±4% or ±6%, which was a crude method but the best

available given the earlier precision of measurements. The number and precision of

measurements has now improved.
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For the present investigation, we have considered estimates of the BAO scale at

different redshifts [61, 145, 59] using the best available data from the BOSS survey.

Unfortunately the standard FLRW cosmology plays an implicit role in the data re-

duction, and limits the extent to which bounds can be placed on non-FLRW models.

The systematic issues can be most directly understood by noting that the BAO scale

is determined separately in the angular and radial directions, by converting angular

separations and redshift separations in the galaxy–galaxy correlation function into the

displacements

α⊥ =
[dA(z)/rd]

[dA(z)/rd]fid

and α‖ =
[dH(z)/rd]

[dH(z)/rd]fid

(3.43)

where rd is the present comoving scale of the sound horizon at the baryon drag epoch,

dH(z) ≡ c/H(z), and the subscript “fid” refers to quantities computed in a fiducial

FLRW model that is used to convert the raw angular and redshift displacements into

3-dimensional comoving space. (Here we neglect the effect of redshift–space distortions

which are also often modelled with N -body Newtonian simulations based on the ΛCDM

model.)

The conversion to 3-dimensional comoving space can be problematic for a non-

FLRW model. While use of purely angular results should pose no problems for

the timescape cosmology, the conversion of redshift increments to a radial comov-

ing distance involves different assumptions about spatial curvature in the FLRW and

timescape models. One could in principle use the values determined by a fiducial

ΛCDM model [61, 145, 59] to recompute the radial comoving distance except for an

additional problem: in particular redshift ranges the relative Alcock–Paczyński fac-

tor
[
α⊥/α‖

]
ΛCDM

/
[
α⊥/α‖

]
TS

= [H(z)dA(z)]
ΛCDM

/ [H(z)dA(z)]
TS

between a fiducial

ΛCDM model and the timescape model varies over the redshift slices ∆z∼ 0.2 used in

the BOSS survey [59] by an amount similar in magnitude to the uncertainty. Conse-

quently, to have any confidence in radial measurements, one really needs to recompute

the radial BAO scale from the raw data assuming a fiducial timescape model. That is

beyond the scope of the present chapter.

For the present analysis we will consequently restrict constraints on the BAO scale

to 2σ bounds obtained from the angular estimates of BOSS data [59] at low redshifts

0.38 <∼ z <∼ 0.61 and in the Lyman-α forest [61] at z = 2.34. In the former case, the

radial and angular measurements are actually also somewhat correlated. Consequently,
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and also in view of the fact that the measurements at low and high redshifts are

in tension in the ΛCDM model, we will take bounds that result from the union of

the constraints at low and high redshifts, rather than their intersection. In practice,

the bounds are mostly set by the Lyman-α measurement since it has a much larger

uncertainty.

3.D.3 Joint constraints

The joint 2σ confidence regions from applying the CMB constraint and either the low-z

or z = 2.34 BAO constraint is shown in Fig. 3.7. Since a range of possible baryon–

to–photon ratios are admitted, with no information from the relative heights of the

acoustic peaks used in either model, the width of the allowed regions is larger than in

conventional analyses for ΛCDM.

For timescape the confidence regions are fv0 ∈ (0.588, 0.765) at 1σ, fv0 ∈ (0.500, 0.799)

at 2σ, fv0 ∈ (0.378, 0.826) at 3σ. The corresponding effective dressed ΩM0 = 1
2
(1 −

fv0)(2 + fv0) is ΩM0 ∈ (0.325, 0.534) at 1σ, ΩM0 ∈ (0.281, 0.625) at 2σ, and ΩM0 ∈
(0.245, 0.740) at 3σ. For spatially flat ΛCDM the corresponding confidence regions are

ΩM0 ∈ (0.162, 0.392) at 1σ, ΩM0 ∈ (0.143, 0.487) at 2σ, and ΩM0 ∈ (0.124, 0.665) at

3σ. We adopt the 2σ bounds as priors.
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CHAPTER 4

Dynamical spatial curvature as a fit to

type Ia supernovae

In this chapter we consider a class of ‘scaling solutions’ [173, 131, 174], which forms

a closure condition for the system of averaged cosmological equations of Buchert’s

scheme [87, 88]. These solutions have average spatial curvature evolution which is fun-

damentally different from that of the FLRW class of space-times. We test this class

of models on the Joint Light-curve Analysis (JLA)[123] catalogue of type Ia super-

novae. Some observational tests have already been made with these scaling solutions

in Ref. [131], using CMB data and a sparse SNIa sample, and in Ref. [175], using BAO

measurements and the differential age method.

Another model built from the same scalar averaging scheme as the scaling solutions,

the ‘timescape model’,1 has been tested on the JLA catalogue of type Ia supernovae and

showed an equally good fit to that of the spatially flat ΛCDM model. The successful

fit of the timescape model suggests that spatial curvature evolution has the potential

of mimicking dark energy in the late epoch Universe. Curvature evolution in the late

epoch Universe has first been applied to supernova data by Kasai [176] by dividing the

supernova sample into early- and late-type subsamples and fitting these two subsamples

with different FLRW models, treating the respective FLRW curvature parameters as

free parameters in the analysis. While it is known that the FLRW model with negative

constant curvature does not successfully fit cosmological data, nothing in this result

prevents non-FLRW curvature evolution towards present-epoch negative curvature—

as expected from general considerations of averaged inhomogeneous universe models

[115].

In this chapter we use the JLA catalogue to test a family of scaling solutions for the

average variables entering in the scalar averaging scheme using the Spectral Adaptive

1 For a review of the timescape model see Ref. [97].
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Lightcurve Template 2 (SALT2) relation. We will compare the resulting fit to that of

the ΛCDM model, the empty universe model,2 and the timescape model.

In Sec. 4.1 we review the scalar averaging scheme and the scaling solutions em-

ployed in this chapter, and we provide the distance modulus–redshift relation for the

scaling solutions. In Sec. 4.2 we briefly describe the SALT2 method for standardising

supernovae, and we review the likelihood-function used in the statistical analysis of the

JLA catalogue. In Sec. 4.3 we present the results of our analysis: constraints on model

parameters of the investigated scaling solutions, and the quality of fit as compared

to that of the ΛCDM model, the empty Milne model (i.e. the FLRW model with-

out sources, but negative constant curvature), and the timescape model. In Sec. 4.4

we examine a FLRW curvature consistency measure, compute the analogous measure

for the best-fit results for the scaling solutions, and discuss the potential use of this

measure for the discrimination between FLRW models and backreaction models with

emerging deviations from the FLRW constant curvature geometry in future surveys.

We conclude in Sec. 4.5.

4.1 The scalar averaging scheme and scaling solu-

tions

We now recall the class of scaling solutions of the scalar averaging scheme and provide

an associated distance modulus–redshift relation, which we are going to test in this

chapter.

We base our analysis on a scheme for averaging of scalar variables in a self-gravitating

dust-fluid, recalled in Sec. 4.1.1, and formulated in terms of effective cosmological pa-

rameters in Sec. 4.1.2. In Sec. 4.1.3 we introduce the scaling solutions, and in Sec.

4.1.4 we describe our procedure for constructing an effective metric, a so-called tem-

plate metric, to match an effective light cone structure to the large-scale model defined

in the averaging scheme. From this prescribed metric we finally obtain the expressions

for the distance modulus–redshift relation in Sec. 4.1.5.

2 While the empty universe model is unphysical and ruled out by combined constraints from CMB,
SNIa, and BAO data, it is an interesting idealization for the late-epoch Universe in which matter is
highly clustered within tiny volumes and photons primarily propagate in large, empty void-regions.
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4.1.1 Irrotational dust averages

We consider a Lorentzian manifold with a self-gravitating irrotational dust fluid as the

energy-momentum source in the Einstein equations. The aim is to describe average

dynamical properties of this system, and to determine an effective description of light

propagation on cosmological scales without knowing the metric of the lumpy space-time

in detail.

We employ the Buchert averaging scheme [87] as a method for obtaining global dy-

namical equations for such a space-time, without knowledge of its ‘micro state’. The

averaging scheme as detailed in sections 2.1, 2.2, and 2.3 is a generalisation of the av-

eraging scheme described in this section, where the matter content is restricted to that

of dust and where volume averaging is performed in the frame orthogonal to the mat-

ter flow with the unweigted Riemannian volume element as volume measure. Here we

provide the relevant dynamical equations for this analysis with a short explanation of

the relevant variables. Precise definitions of the variables and the averaging operation,

and the full derivation of the below equations can be found in Ref. [87]. Throughout

this chapter we work in units of c = 1, c being the speed of light in vacuum.

Let u = −∇t be the 4−velocity field of the fluid source, with t being a proper

time function of the fluid, and let % be its rest mass density. From averaging the local

Raychaudhuri equation in the fluid rest frame over a spatial domain D comoving with

the fluid (no net-flux of particle world-lines through the boundaries of the averaging

domain), we obtain the averaged Raychaudhuri equation,

3
äD
aD

+ 4πG 〈%〉D − Λ = QD , (4.1)

where aD is the volume scale factor, 〈.〉D denotes covariant averaging in the fluid frame

over the comoving spatial domain D, Λ is the cosmological constant,3 and the overdot

denotes the covariant time-derivative: ˙≡ d
dt

.

Note that in general 〈S〉.D 6= 〈Ṡ〉D, where 〈S〉.D is the time-derivative of the averaged

variable 〈S〉D, and 〈Ṡ〉D is the average of the time-derived local scalar Ṡ = uµ∇µS.

For details on the averaging operation and the non-commutativity of averaging and

time-derivative, see Ref. [87].

3 We set Λ = 0 in the investigations of this chapter, as we investigate averaged models without dark
energy, but keep Λ in the equations of this section for completeness.
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QD is the ‘kinematical backreaction’ which is defined from the variance of the rate

of expansion of the fluid congruence and the averaged shear of the fluid congruence

over the domain D.

The local energy constraint equation can be averaged in a similar way to obtain

the averaged energy constraint equation,

3

(
ȧD
aD

)2

− 8πG 〈%〉D − Λ = − 〈R〉D + QD
2

, (4.2)

where 〈R〉D is the averaged spatial scalar curvature. Finally, we have the average of

the local energy-momentum conservation equation,

〈%〉.D + 3
ȧD
aD
〈%〉D = 0 . (4.3)

All of the global variables aD, 〈%〉D, QD, and 〈R〉D entering in the averaged equa-

tions depend on the proper time slice parameterized by t and the spatial domain of

integration D.

Note that when positive, QD can act as an effective source for global acceleration

in (4.1). QD will in general depend on cosmic time t, and on spatial scale through the

dependence on the domain of averaging.

Combining (4.1), (4.2), and (4.3), the variables have to obey the following integra-

bility condition:
1

a6
D

(QD a6
D ). +

1

a2
D

( 〈R〉D a2
D ). = 0 , (4.4)

where the notation (.). means differentiation with respect to t of the entire content

of the parenthesis. Eq. (4.4) shows that kinematical backreaction and the averaged

spatial curvature are coupled. This equation is key to understanding the evolution of

global curvature as a consequence of structure formation. Note that by demanding

QD ∝ 1/a6
D (including the trivial case QD = 0), the averaged curvature obeys a sep-

arate (scale-dependent) conservation equation corresponding to the FLRW curvature

constraint ( 〈R〉D a2
D ). = 0.

4.1.2 Cosmological parameters

It shall be convenient to write the averaged energy constraint equation (4.2) in terms

of effective cosmological parameters [177]. Dividing (4.2) by (3H2
D), where we call the
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functional HD ≡ ȧD/aD ‘the global Hubble parameter’, we have:

ΩDm + ΩDΛ + ΩDR + ΩDQ = 1 , (4.5)

where the four cosmological ‘parameters’ ΩDm,Ω
D
Λ ,Ω

D
R, and ΩDQ constitute the ‘cosmic

quartet’ and are defined by:

ΩDm ≡ 8πG

3H2
D
〈%〉D ; ΩDΛ ≡ Λ

3H2
D

; (4.6)

ΩDR ≡ − 〈R〉D
6H2
D

; ΩDQ ≡ − QD
6H2
D
. (4.7)

As we wish to see whether the averaged spatial curvature ΩDR and backreaction ΩDQ
cosmological parameters can mimic dark energy without a local energy component

violating the strong energy condition, we set ΩDΛ = 0. We can further rewrite (4.5) in

terms of deviations from a spatially flat Friedmannian parametrization,

ΩDm + ΩDX = 1 ; ΩDX ≡ ΩDR + ΩDQ , (4.8)

where X stands for ‘X−matter’: an effective ‘matter’ cosmological component that

has the potential to mimic dark energy and/or dark matter signatures as they appear

in the standard ΛCDM model.

4.1.3 Scaling solutions to the averaged Einstein equations

In order to uniquely determine the solutions to the four unknown functions aD, 〈%〉D,

〈R〉D, and QD satisfying the equations (4.1)–(4.4) (where one of the equations in the

set is redundant), we must specify one additional equation as a closure condition.

We shall consider space-times which are consistent with the exact scaling solutions

for the averaged spatial curvature and kinematical backreaction variables as formulated

in Ref. [173, 131],

〈R〉D = 〈R〉Di
anD ; QD = QDi

apD , (4.9)

as an ansatz for the needed closure condition, with n and p being real numbers, and

Di denoting an initial domain for which the definition aDi
≡ 1 is imposed. Plugging
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the ansatz (4.9) into the integrability condition (4.4) we have that either n = − 2 and

p = − 6 or n = p must be satisfied.

The solution n = − 2 and p = − 6 leads to a quasi-Friedmannian model in which

the backreaction variable QD is negligible today (due to its rapid fall-off as a function

of volume), and which is the only case where structure formation, encoded in QD, is

decoupled from the averaged spatial curvature, such that the quasi-FLRW curvature

constraint ( 〈R〉D a2
D ). = 0 is satisfied.

In the present analysis we will consider the class of solutions n = p, which im-

plies coupling of structure formation and averaged scalar curvature. For this class of

solutions we have the proportionality relation

QD = − n + 2

n + 6
〈R〉D (4.10)

between kinematical backreaction and averaged spatial curvature. Thus, positive

kinematical backreaction (dominance of the variance in the fluid expansion rate over

shear[87]) implies negative spatial curvature when n > −2.

It is convenient to introduce the following effective deceleration parameter for char-

acterizing the different possible scaling solutions in terms of their acceleration:4

qD ≡ −
äD aD
ȧ2
D

=
ΩDm − (n+ 2) ΩDX

2
=

ΩD0
m − (n+ 2) ΩD0

X

(
aD
aD0

)n+3

2 ΩD0
m + 2 ΩD0

X

(
aD
aD0

)n+3 , (4.11)

analogous to the definition of the FLRW deceleration parameter. The second equality

follows from combining (4.1) and (4.2), and using the definitions of the cosmological pa-

rameters given in Sec. 4.1.2. The last equality follows from the scaling conditions (4.9)

with n = p, and from (4.8). From (4.11), we can formulate the following acceleration

condition:

qD < 0 ⇔ (n+ 2)

(
aD
aD0

)n+3

>
ΩD0
m

1 − ΩD0
m

, (4.12)

valid for 0 < ΩD0
m < 1. Thus, for n ≤ −2, volume acceleration does not occur at

any epoch, as the kinematical backreaction QD is negative in this case. For n > −2,

acceleration might be reached depending on the value of ΩD0
m . We note that n = 0

results in an acceleration condition formally similar to the flat FLRW model (ΩΛ =

4 Parameters evaluated at the present epoch are indexed with D0 throughout this chapter.
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1−Ωm) acceleration condition: 2 (a/a0 )3 > Ωm0 /(1−Ωm0 ), where a is the FLRW scale

factor. This is expected, since the backreaction term QD is constant in this case, and

thus acts as an effective cosmological constant in the averaged Raychaudhuri equation

(4.1) (cf. Ref. [177] [Sec. 3.3.2]).

We note that the timescape model, which we also investigate in this analysis, is

not part of the scaling solutions discussed here (even though it is solution to the set

of averaged equations discussed in Sec. 4.1.1). Rather it is a two-scale model with

volume partitioning into over-dense flat regions and under-dense ‘void regions’. For

details about the formulation of the timescape model, see Ref. [97].

4.1.4 The template metric

In order to translate physical observables of redshift and photon flux into ‘measure-

ments’ of the free parameters n and ΩD0
m of the scaling solutions outlined in Sec. 4.1.3,

we must parameterize predictions of the observables in terms of n and ΩD0
m .

With knowledge of the entire hierarchy of structure in the Universe and the cor-

responding inhomogeneous metric, one would in principle be able to do general rela-

tivistic ray-tracing, and properly describe the measurements of an observer at a given

location without the need for an averaging scheme. In practice we do not have ac-

cess to such information, and the aim here is to formulate an effective model for light

propagation over cosmic scales D & 100 Mpc/h given knowledge of the functions aD,

〈%〉D, 〈R〉D, and QD describing the Universe on such scales. These global parameters

are built from averages of local space-time variables fulfilling the Einstein equations,

but are not themselves solutions to any ‘global Einstein equations’ valid on the scale

D. Rather, they are solutions to the set of equations (4.1), (4.2), and (4.3). Thus,

aD is not to be thought of as a scale factor in a local metric, and 〈R〉D is not to be

thought of as the spatial Ricci curvature built from such a metric. We can nevertheless

conjecture that light sampling the Universe in a volume averaged sense is, on aver-

age, propagating according to null-geodesics of an effective metric which reduces to an

FLRW 3−metric described with spatial curvature 〈R〉D at each leaf of the space-time

normal to the fluid flow, but which has non-trivial union between such leaves due to

the non-commutativity of the averaging and time-evolution operations.

Based on this conjecture, we introduce a template metric for describing light prop-

agation on cosmic scales as a constant-curvature metric but which, unlike the FLRW
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solution, allows for curvature evolution in ‘cosmic time’. We stress that the intro-

duction of such a template metric, which is not a solution to Einstein’s equations, is

not a violation of general relativity. On the contrary, in a general relativistic universe

model, any metric theory describing average light propagation on large scales must be

effective.5

The form of the effective metric follows the proposal of Ref. [131]:

4gD ≡ − dt2 + L2
HD0

a2
D

(
dr2
D

1 − κD(t) r2
D

+ r2
D dΩ2

)
, (4.13)

with t being the proper time function of the dust fluid, such that t = const. selects

hypersurfaces orthogonal to the fluid flow, and rD is a dimensionless radial coordinate,

which also has the interpretation as a comoving distance; aD is the dimensionless

volume scale factor governed by (4.1)–(4.4), and aD0LHD0
≡ H−1

D0
is the present-day

Hubble horizon; dΩ2 ≡ (dθ2 + sin(θ)2 dφ2) is the angular element on the unit sphere,

and κD is a dimensionless spatial constant-curvature function related to the averaged

spatial Ricci scalar through

κD(t) ≡ 〈R〉D (t)

|〈R〉D0
|
a2
D(t)

aD0
2
. (4.14)

For the class of scaling solutions described in Sec. 4.1.3, with n = p, one can rewrite

κD using (4.8) and (4.10):

κD(aD) = − (n+ 6) ΩD0
X

|(n+ 6) ΩD0
X |

a
(n+2)
D

a
(n+2)
D0

. (4.15)

In what follows we advance the idealizing conjecture that light propagation over cos-

mological scales is effectively described by null geodesics in the template metric (4.13).

This is an assumption that follows the homogeneous-geometry approximation of the

standard model, but corrects for the evolution of curvature to comply with the exact

average properties. We also note that more insight and work is needed to improve on

5 We refer the reader to Ref. [131] for further motivations for introducing the template metric,
where it is discussed how constant-curvature metrics can be obtained via Ricci flow smoothing of
Riemannian hypersurfaces[115]. Even though the template metric described in this section is not
solution to Einstein’s equations, local metrics of the same form have been studied as solutions to
the Einstein equations (see the recent paper by Stichel [178] and references therein).
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this first-step template metric.

4.1.5 Distance modulus

In order to constrain the scaling solutions with supernova data we must make a pre-

diction for the distance modulus within this class of models. We will compute the

distance modulus as a function of redshift in the template metric of Sec. 4.1.4.

The distance modulus is defined in terms of the luminosity distance dL in the

following way:

µ(zD) = 5 log10

(
dL(zD)

10 Mpc

)
, (4.16)

where zD is the redshift as inferred from the domain-dependent scale factor (see the be-

low equation (4.19)). By Etherington’s theorem (see Ref. [106] and references therein),

dL(zD) = (1 + zD)2 dA(zD) , (4.17)

where dA is the angular diameter distance. The angular diameter distance is given via

the metric (4.13) as

dA(zD) =
1

HD0

aD(zD) rD(zD) . (4.18)

From the geodesic equation of (4.13) we have that light emitted and absorbed by

observers comoving with the dust, and propagating radially with respect to the central

observer, is redshifted by6

zD(aD) =
k̂0(aD)

aD
− 1 , (4.19)

with k̂0 given by

d ln(k̂0)

daD
= − r2

D(aD)

2 (1 − κD(aD)r2
D(aD))

dκD(aD)

daD
. (4.20)

The dimensionless coordinate distance rD along the null rays is

drD
daD

= − 1

a2
D

√
1 − κD(aD) r2

D(aD)

ΩD0
m a−3

D + ΩD0
X anD

, rD (aD = 1) ≡ 0 , (4.21)

6 We henceforth drop the domain index for the redshift.
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where the expression for κD (4.15) has been used.7

4.2 Methods

As in chapter 3 we use the Joint Light-curve Analysis (JLA) sample[123] containing

740 supernovae to test the scaling solutions described in Sec. 4.1. The JLA catalogue

gathers data from four independent studies: SuperNovae Legacy Survey (SNLS), Sloan

Digital Sky Survey (SDSS), nearby supernovae (Low–z), and Hubble Space Telescope

(HST).

We follow the methods discussed in chapter 3 for standardising supernovae and

model testing. In this section we briefly review the SALT2 method and the likelihood

function used. For details we refer to section 3.1 and section 3.2.1.

4.2.1 The SALT2 method

The Spectral Adaptive Lightcurve Template 2 (SALT2) method for making supernovae

standard candles consists in fitting the supernovae light-curves to an empirical tem-

plate, and subsequently using the parameters of the light-curve fit in the empirical

model for band correction:

µSN = m∗B − MB + αx1 − β c , (4.22)

where m∗B is the peak of the apparent magnitude in the B-band, MB is the intrinsic

magnitude in the rest frame of the supernova, x1 is the light-curve stretch parameter,

and c is the colour correction parameter for each supernova in the sample. m∗B, x1,

and c are obtained from template fitting of the supernovae light-curves[123]; α and β

are global regression parameters that are determined in the fit.

4.2.2 The Likelihood function

We now briefly review the likelihood function L(X̂ | θ) used in this analysis, where X̂ =

{m̂∗B,1 , x̂1,1, ĉ1, ..., m̂
∗
B,N , x̂1,N , ĉN} are the ‘observed’ parameters for the supernovae

7 The expression (4.21) for drD/daD is different from that in Eq. (41) of Ref. [131], which is due to
minor typos in Ref. [131]; see also the remarks in Ref. [175].
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labelled 1, ..., N , and θ is short for all model assumptions (cosmological model, model

for band correction, etc.).

The hats over the parameters in X̂ indicate that these parameters are inferred

from data, whereas the corresponding parameters without hats represent the ‘true’

underlying (or intrinsic) parameters.

We use the likelihood function as formulated in Ref. [138] and discussed in section

3.2.1 of this thesis, with the model for the distribution of intrinsic supernovae parame-

ters proposed in Ref. [137], where the intrinsic parameters MB, x1, c of each supernova

are assumed to be drawn from identical and independent Gaussian distributions with

means M0, x1,0, c0 and standard deviations σM0 , σx1,0 , σc0 . Using the SALT2 relation

(4.22) and the assumptions presented in Ref. [137], the final expression of the likelihood

function is

L = | 2π (Σd +ATΣlA) |−1/2

× exp
[
− (Ẑ − Y0A) (Σd + ATΣlA)−1 (Ẑ − Y0A)T/2

]
, (4.23)

where | . | denotes the determinant of a matrix, Σd is the estimated experimental co-

variance matrix (including statistical and systematic errors), and Σl is the ‘intrin-

sic covariance matrix’ diag(σ2
M0
, σ2

x1,0
, σ2

c0
, σ2

M0
, σ2

x1,0
, σ2

c0
, ...) of dimension 3N × 3N ;

Ẑ ≡ {m̂∗B,1 − µ1, x̂1,1, ĉ1, ..., m̂
∗
B,N − µ1, x̂1,N , ĉN}, where µ1, ..., µN are the distance

moduli evaluated at the measured redshifts ẑ1, ..., ẑN of the supernovae, and Y0 ≡
{M0, x1,0, c0,M0, x1,0, c0, ...}; A is the blog diagonal matrix

A =


1 0 0 0

−α 1 0 0

β 0 1 0

0 0 0
. . .

 . (4.24)

The final likelihood thus contains the following eight free parameters: α, β, M0, x1,0, c0,

σM0 , σx1,0 , and σc0 in addition to the cosmological parameters entering the expression

for the distance modulus µ.

In chapter 3 we discussed the introduction of empirical parameters for modelling

redshift-dependence in the intrinsic supernovae parameters and observational biases.

In this chapter we stick to the likelihood function (4.23) based on a minimal number of
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empirical parameters. We focus on the constraint of cosmological parameters and on

the relative quality of fit provided by different cosmological models. For an assessment

of the fit of the likelihood function (4.23) to data, and in particular of the ability to fit

the distributions of the measured supernovae parameters x̂1 and ĉ, see Ref. [138].

4.3 Data analysis

We now constrain the parameter space of the scaling solutions with the JLA catalogue

using the SALT2 relation and the likelihood model specified in Sec. 4.2.2. We then

compare the quality of fit to that of the ΛCDM model, the Milne universe model with

no sources and a negative constant curvature (henceforth named the ‘empty universe

model’), and the timescape model. We discuss the scales of application of the scaling

solutions in relation to the application of a redshift cut in the data in Sec. 4.3.1. In

Sec. 4.3.2 we present our results.

4.3.1 Statistical homogeneity scale and cut-off in redshift

Any model describing light propagation on a given scale should, for the sake of self-

consistency, only be applied to light-rays propagating over at least that scale.

Since all the models tested in this analysis have, per construction, structureless

geometry and are designed to hold above an approximate statistical homogeneity scale,

it is natural (or even mandatory) to impose a cut-off in radius relative to the observer

corresponding to the approximate homogeneity scale. Light emitted by supernovae

below such a radius is probing scales below which the cosmological averaged metric

description applies.

The largest scales of second-order correlations between structures (applying a cut-off

of ∼ 1% in the two-point correlation function)[148] is estimated to be ∼ 70−120 Mpc/h

in ΛCDM.8 Following Ref. [180] we apply a cut-off at a redshift radius in the CMB

frame zCMB,min = 0.033 relative to a central observer, corresponding to a comoving

distance of ∼ 100 Mpc/h, when computing parameter constraints. This choice is a bit

more conservative than that imposed in Ref. [149] of zCMB,min = 0.024, corresponding

8 Note that higher-order correlations are still significant on Gpc scales. Probed through Minkowski
functionals containing all orders of correlation functions, the analysis of SDSS LRG samples revealed
more than 2σ deviations from ΛCDM mock catalogues on scales beyond 600 Mpc/h [179].
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to ∼ 70 Mpc/h. The slight difference in choice of cut-off does not strongly affect the

parameter estimates. We shall examine a few different choices of redshift cut-off when

comparing the quality of fit of the tested models, in order to establish the degree of

robustness of the results to the subsetting of data.

4.3.2 Results

We use the likelihood function given in Sec. 4.2.2 and the equation for the distance

modulus (4.16) to constrain the scaling solutions.

The 1 σ confidence bounds on the cosmological parameters of the scaling solution

(with fixed scaling index n = −1 and free scaling index respectively) are shown in Table

4.1, together with the corresponding results for the ΛCDM model (with imposed spatial

flatness and free curvature parameter Ωk respectively), the empty universe model, and

the timescape model (see Table 2 of Ref. [180]). It should be noted that the matter

cosmological parameters ΩD0
m of all the models cannot be directly compared (even

though they are represented by the same symbol to ease the notation). The scaling

solutions, the ΛCDM model, and the timescape model are non-nested (i.e. none of the

models can be obtained from any of the other models by parameter space constraints),

and their expansion history depend on ΩD0
m in different ways.

The constrained versions of the scaling solution and the ΛCDM model, with n =

−1 and Ωk = 0 respectively, are associated with much less uncertainty in the ΩD0
m

parameter than the corresponding unconstrained models. This is due to the coupling

of the cosmological parameters in the likelihood function.

In addition to the cosmological parameters, we quote the best-fit ‘nuisance param-

eters’ α, β, M0, x1,0, c0, σM0 , σx1,0 , and σc0 , described in Sec. 4.2.2. Our best-fit

findings are similar to those found in Ref. [138, 180], and typical differences between

the parameters inferred when assuming the respective cosmological models are within

a few percent. For typical 1 σ constraints on the regression coefficients α and β of

the SALT2 relation (4.22) and on the mean M0 and width σM0 of the distribution of

intrinsic magnitudes, see Ref. [123].

The frequentist 1σ and 2σ confidence contours for the scaling solutions are shown

in Fig. 4.1. Our results are consistent with positive present-epoch volume acceleration,

ruling out deceleration at the > 2σ level, for the class of scaling solutions tested.

A striking result is that the best-fit scaling index n = − 1.0
+0.7 (1σ)
−0.6 (1σ) is consistent with

91



Table 4.1: Best-fit parameters with a redshift cut-off at zCMB,min = 0.033. For the
cosmological parameters we also quote ‘1 σ’= 68.27...% confidence bounds. Note that
x1,0, c0, MB,0, σx1,0 , σc0 , and σMB,0

are the mean and width parameters of the assumed
Gaussian distributions from which the intrinsic parameters of each supernova are as-
sumed to be drawn (see Sec. 4.2.2). Thus, the numbers quoted for σx1,0 , σc0 , and σMB,0

are best-fit values of the widths of these Gaussian distributions and not error bars on
the best-fit determinations of x1,0, c0, and MB,0.

Models Scaling solution Scaling solution ΛCDM ΛCDM Empty Timescape
n = − 1 Ωk = 0 Universe

ΩD0
m or Ωm0

0.24+0.13
−0.24 0.25+0.04

−0.04 0.30+0.10
−0.11 0.37+0.03

−0.03 0 0.31+0.07
−0.09

n − 1.0+0.7
−0.6 − 1 - - - -

Ωk - - 0.17+0.28
−0.26 - - -

α 0.13 0.13 0.13 0.13 0.13 0.13

x1,0 0.11 0.11 0.11 0.11 0.10 0.11

σx1,0
0.90 0.90 0.90 0.90 0.90 0.90

β 3.1 3.1 3.1 3.1 3.1 3.1

c0 − 0.021 − 0.021 − 0.021 − 0.022 − 0.020 − 0.021

σc0 0.069 0.069 0.068 0.069 0.069 0.069

MB,0 − 19 − 19 − 19 − 19 − 19 − 19

σMB,0
0.10 0.10 0.10 0.10 0.11 0.10

the results obtained in Ref. [181] in a perturbative framework around an Einstein-de

Sitter background9, where the leading-order (or largest-scale) backreaction was found

to obey the scaling law QD ∝ a−1
EdS. The best-fit scaling index is thus compatible with

a perturbative evaluation of backreaction (extrapolating the perturbative scaling law).

Notice also that the best-fit scaling index is consistent with n = 0 at the 2σ level (but

not at the 1σ level). For this value of n, backreaction is mimicking a cosmological

constant, cf. Ref. [177] [Sect. 3.3.2].

Comparing Fig. 4.1 with the contour plot of Ref. [131] showing the constraints

of the scaling solutions from CMB data from WMAP3-yr data and 71 SNIa from

the SNLS Collaboration, there is a significant amount of overlap of the 2σ contours.

9 Einstein-de Sitter (flat ‘matter only’ FLRW model with Ωm = 1 and ΩΛ = 0) exhibits volume
deceleration, and constitutes an interesting background model for studying the possible emergence
of spatial curvature and volume acceleration from an initially decelerating and (almost) spatially
flat universe model.
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Figure 4.1: 1σ and 2σ confidence contours of the parameters ΩD0
m and n of the scaling

solutions. The best-fit, {ΩD0
m = 0.24 , n = −1.0}, is marked by a dot. The shaded area

represents models with present-epoch volume deceleration qD0 > 0, and the remaining
area of the parameter space has positive present-epoch volume acceleration. Thus,
deceleration is ruled out at the > 2σ level for the class of scaling solutions tested.

However, the volume of the likelihood in the present analysis is shifted towards lower

values of ΩD0
m and n as compared to Ref. [131].10

Comparing the results of Table 4.1 with the constraints on the scaling solutions from

Ref. [175], obtained from measurements of the Hubble parameter from the differential

age method and radial baryon acoustic oscillation data, we find agreement within 1 σ

of both the scaling index n and the matter cosmological parameter ΩD0
m .

We compare the quality of fit of the scaling solutions with that of the ΛCDM model,

10 It is difficult to compare with the results of Ref. [131] because of the sparse supernova sample used
and since the best-fit is obtained from a combination of the supernova and CMB data. Moreover, the
error-bars on the best-fit parameters are not quoted. Generally, we refer to Ref. [131] with respect
to the theoretical foundations and methods, the results obtained therein are by now outdated.
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the empty universe model, and the timescape model using the Akaike Information

Criterion11 (AIC)[166]. As discussed in appendix 3.C.1, the AIC is a measure of the

relative probability of minimal information loss between two models:

p1

p2

=
exp(−AIC1 / 2)

exp(−AIC2 / 2)
; AICi ≡ 2 qi − 2 ln(Li) , (4.25)

where qi is the number of parameters and Li is the maximum likelihood of model i,

where pi is the probability that model i minimizes the (estimated) information loss, and

where the two models are labelled i = 1, 2, respectively. The AIC relative likelihood

measure (4.25) can be viewed as a generalization of the likelihood ratio to non-nested

models.

The interpretation of the relative numerical estimates of the AIC measure for dif-

ferent models is context-dependent. As a rough guideline, differences in AIC between

two models of at least 2, 6, and 10 (corresponding to the AIC relative likelihood with

the most likely model in the denominator not exceeding 0.4, 0.05, and 0.007, respec-

tively) are characterized as providing ‘positive’, ‘strong’, and ‘very strong’ evidence,

respectively, in favour of the model with minimal AIC[168].12

We show the results of the AIC values and the AIC relative likelihood measure in

Table 4.2. We use both the spatially flat ΛCDM model and the ΛCDM model with

free curvature parameter Ωk as references, and quote pmodel/p
Ωk= 0
ΛCDM and pmodel/pΛCDM

for each of the models. The results are shown for data excluded below redshift cuts,

zCMB,min, of 0.024, 0.033, 0.07, and 0.15, respectively, to examine the robustness of the

AIC results to different redshift cuts in data. The values of zCMB,min of 0.024 and 0.033

are two different estimates of the statistical homogeneity scale as discussed in Sec. 4.3.1.

zCMB,min = 0.07 and zCMB,min = 0.15 correspond to ∼ 200 Mpc/h and ∼ 500 Mpc/h,

respectively, in the concordance ΛCDM model. These scales might be motivated as

conservative homogeneity scale estimates based on the studies of convergence of bulk

flow [183] and of higher order correlation functions [179].

In addition to the scaling solution with two free cosmological parameters, n and

11 The Akaike Information Criterion is one of many methods valid for model selection. For an overview
of some common methods and their interpretations see Ref. [182].

12 When the AIC likelihood is bigger than one – i.e. the most likely model is in the numerator –
the interpretation reverses such that models with AIC relative likelihood not smaller than 1/0.4,
1/0.05, and 1/0.007 are characterized as providing ‘positive’, ‘strong’, and ‘very strong’ evidence,
respectively, in favour of the model with minimal AIC.
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ΩD0
m , the AIC is also computed for the nested solution within this class with the scaling

index n fixed to its large-scale theoretical expectation, n = −1, from Lagrangian

perturbation theory studies.13

From Table 4.2 we see that all tested models are relatively close in AIC probability.

No model has ‘strong’ evidence (i.e. AIC relative likelihood of ≤ 0.05) over another

from an AIC perspective for any given redshift cut. Some models are weakly preferred

over others. For example, the spatially flat ΛCDM model, the scaling solution with

n = −1 and the timescape model are all weakly preferred (AIC relative likelihood of

≤ 0.4) over the empty universe model.

For the values zCMB,min = 0.033 and zCMB,min = 0.15, the spatially flat ΛCDM is

weakly preferred (AIC relative likelihood of ≤ 0.4) over the scaling solution. However,

this conclusion is not robust to the choice of redshift cut, as can be seen in Table

4.2. Furthermore, these weak preferences vanish when we instead compare the scaling

solution to the ΛCDM model with curvature, which is perhaps the more natural choice,

since the models compared in this case have the same number of free parameters and

a ‘curvature’ parameter each (n and Ωk respectively).

The AIC relative likelihoods are in general smaller when quoted with the spatially

flat ΛCDM model as reference than for the ΛCDM model with curvature as reference,

since the likelihood does not increase sufficiently in ΛCDM by adding the curvature

parameter to account for the AIC punishment factor for adding an additional param-

eter. We note, however, that the best-fit ΛCDM model has negative curvature (see

Table 4.1), which is also a feature of the scaling solution.

We conclude that the ΛCDM model, the scaling solution, and the timescape model

provide adequate fits to data. The spatially flat ΛCDM model, the scaling solution

with n = −1 and the timescape model overall have the highest AIC likelihoods. The

empty universe model is mildly disfavoured as compared to the other models.

It is important to point out, that the comments made here on the quality of fit

are valid for the luminosity distance probed at z . 1 only. For example, the empty

universe model is not viable as a cosmological model (for physical reasons and from a

13 We refer here to Lagrangian perturbations on an Einstein-de Sitter background investigated in
Ref. [181], as discussed above in this section, where n = −1 was found to describe the large-
scale behaviour of kinematical backreaction and averaged scalar curvature. In this study, the
backreaction functionals were derived using the averaged Einstein equations without restricting
assumptions together with a closure condition for the averaged system in terms of a first-order
Lagrangian perturbation scheme as a realistic model for structure formation.
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quality of fit perspective) for describing CMB physics.

Our findings align with the conclusions in the recent investigation of Ref. [184] in

which it is found that the Pantheon sample probing the z . 1 range is little con-

straining, allowing for possibly large deviations from ΛCDM, and with the results of

Ref. [137] reporting marginal evidence for acceleration from supernovae alone within

the FLRW framework.

We emphasize that neither the scaling solutions, the timescape model, nor the

empty universe model have any local energy-momentum component violating the strong

energy condition.

4.3.3 Discussion

Further studies are needed in order to assess the quality of fit of the scaling solutions

to a broader range of cosmological data probing different regimes of the expansion

history.

A comment is in order in relation to the combined analysis of cosmological data

probing a hierarchy of scales for models that include backreaction. Within the standard

model it is relatively straightforward to constrain the ‘background’ FLRW model with

data on various scales: by assumption, the Universe — apart from in the immediate

vicinity of compact objects with GM/(rc2) & 1, where M is the mass of the object, and

r is its proper physical radius — is described by a single FLRW background solution

with Newtonian potentials, even in the regime where typical density contrasts are

highly non-linear.

In inhomogeneous cosmology, such assumptions are not made. Rather, it is consid-

ered a possibility that non-linear structure, through its coupling to the inhomogeneous

geometry, can significantly impact the appropriate averaged model for describing col-

lective dynamics of a given space-time domain.14

Because of the failure of one simple global metric to serve as a ‘background’ cosmo-

logical solution for all structure with GM/(rc2) � 1 in inhomogeneous cosmology, a

coherent scaling solution framework for interpreting physics on a hierarchy of scales is

14 Note that the hierarchical structure of our space-time can lead to non-trivial general relativistic
phenomena, even though each level of the hierarchy is well described as a ‘weak field’ perturbation of
the previous level [185]. Note also, that even though regions containing general relativistic compact
sources are negligible in terms of volume measure as compared to the total volume of a given spatial
domain, the domain can exhibit non-trivial general relativistic behaviour [186].

96



not within immediate reach. For space-times with a notion of statistical homogeneity

and isotropy, we might nevertheless expect convergence of the scaling solutions on the

largest scales, such that the cosmological parameters (4.6) and the associated template

metric (4.13) are effectively independent of the spatial scale D above an appropriate

cutoff in physical size of the domain D. Thus, the scaling solution being valid on

the largest scales might be constrained with complementary cosmological data such as

supernovae, galaxy surveys, and CMB data, as long as the given survey probes large

enough spatial domains.

As is well-known, joint fits of the FLRW model with perturbations face the problem

of ‘tensions’, e.g. with respect to different values of the Hubble parameter, a problem

that we trace back to naive extrapolation of the model from high to low redshifts and

from large to small scales. In particular, insufficient modelling of differential expansion

of space might be the cause of the ‘tension’ related to the Hubble parameter, cf.

Refs. [68, 181, 93, 187, 188].

4.4 Testing curvature dynamics with upcoming sur-

veys

It is of observational interest to investigate possible signatures distinguishing between

models with dynamical spatial curvature and FLRW models (with rigid spatial curva-

ture).

To test the FLRW constant spatial curvature hypothesis, we can consider the useful

curvature statistic:[129]

kH =
1

D2

(
1−

(
dD

dz

H

H0

)2
)

, (4.26)

where D is the dimensionless FLRW comoving transverse distance related to the an-

gular diameter distance dA by

D = H0/c (1 + z)dA

, and where H is the FLRW Hubble parameter. From the expression for the FLRW

comoving distance D = 1/
√

Ωk0 sinh(
√

Ωk0

∫ z
0
dz′ H0

H(z′)
) it follows that kH = −Ωk0
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per construction. Note that the equality kH = −Ωk0 is based purely on geometrical

identities valid for the FLRW class of models, and thus does not depend on details of

the matter content, dark matter equation of state, or other tuneable features within

FLRW cosmology.

For any other model with a prediction of angular diameter distance and volume

expansion as a function of redshift, we might also construct the function kH (4.26). In

general, kH is not interpreted as a spatial curvature density parameter, but simply as

the combination of distance measures given by the right-hand side of (4.26), and it is

in principle allowed to vary arbitrarily with redshift.

The function kH(z) is derivable from H(z) and D(z), and thus, it contains no

new information with respect to these two functions. However, kH(z) is a particularly

powerful combination of distance measures, as a kH(z) 6= const. detection would be a

‘smoking gun’ for FLRW geometry violation.

Computing rD and HD for the best-fit scaling solution, {ΩD0
m = 0.24 , n = −1.0},

and substituting D = HD0 /c (1+z)dA = HD0 /c k̂
0 rD and H = HD in (4.26), we obtain

kH and dkH/dz as a function of redshift as shown in Fig. 4.2. We also show the 1σ

confidence bounds on n while keeping ΩD0
m fixed. (The functions kH and dkH/dz are

relatively robust to varying ΩD0
m within its 1σ confidence bounds.) Note that the JLA

sample contains supernovae at redshifts z . 1.3. We nevertheless show the prediction

of kH for higher redshifts.

The evolution of kH of the best-fit scaling solution is far from the constant-kH sig-

nature of an FLRW model. The effective curvature parameter kH tends to increasingly

negative values when approaching the present epoch z → 0, and tends to a constant

close to zero in the early universe limit.

The deceleration parameter (4.11) decreases with decreasing redshift and becomes

negative at z ∼ 0.7 for the best-fit scaling solution, {ΩD0
m = 0.24 , n = −1.0}, marking

the transition between volume deceleration to volume acceleration in the best-fit model.

This redshift of transition is comparable to that predicted by the best-fit ΛCDM model.

Interestingly, our results for the scaling solutions show tendencies similar to those

of Ref. [189] (see their Fig. 6) where model-independent fitting functions are used to

determine the best-fit shape of kH from the JLA sample, SDSS-III BOSS BAO mea-

surements, and differential age measurements of galaxies. In the model-independent

determination of kH in Ref. [189], negative values of kH are favoured towards lower

redshifts as shown in their Fig. 6, consistent with our Fig. 4.2a. Despite these best-fit
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(a) The function kH , equation (4.26), predicted by the best-fit scaling solution found in this
chapter. For a FLRW model universe kH = −Ωk0 , where Ωk0 is the spatial curvature density
parameter evaluated at the present epoch.
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(b) dkH/dz as predicted by the best-fit scaling solution found in this chapter. In a FLRW
model universe dkH/dz = −dΩk0 /dz = 0.

Figure 4.2: kH and dkH/dz as a function of redshift for the best-fit scaling solution,
{ΩD0

m = 0.24, n = −1.0}. The scaling index upper and lower 1σ confidence bounds,
n = −1.0+0.7

−0.6, are shown for fixed ΩD0
m . The solution for {ΩD0

m = 0.24, n = 0} is shown
as well as a reference. The vertical grey line marks the redshift of transition from
volume deceleration to volume acceleration as predicted by the best-fit model.

tendencies in Ref. [189], the ΛCDM kH = 0 curvature constraint is still satisfied within
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the 2 σ confidence intervals of their analysis using present data.

We emphasize that the best-fit scaling index n = −1.0 is obtained when assuming

the model to be a single-scaling solution. More refined modeling of inhomogeneities,

e.g. in terms of two-scale volume partitioning into overdense and underdense regions

[190, 191], feature an additional effect due to the expansion variance between the two

regions that adds volume acceleration. This feature tends to push the best-fit overall

scaling index to values closer to 0, at which backreaction acts as a cosmological constant

in the averaged Raychaudhuri equation (4.1).

Although the distance modulus–redshift relation of multi-scale models is different,

and thus these refined models cannot be directly compared with the single-scaling

solution, we show the reference line n = 0 in Fig. 4.2 to illustrate that the n = 0 solution

closely resembles the solution upper limit of the 1σ confidence interval n = −0.3 found

in this analysis.

The transition from zero FLRW curvature signature kH ∼ 0 to negative FLRW

curvature signature kH . −1 becomes sharper when n tends to zero; it may therefore

be easier to observationally distinguish this case from the constant kH signature of a

FLRW model.

One might estimate kH(z) cosmology-independently by fitting an empirical func-

tion, such as a polynomial truncated at some order, with sufficient freedom for luminosity-

distance measurements (from e.g. supernova light-curves) and expansion rate mea-

surements (from e.g. BAO analysis and differential age data), respectively, as done in

Ref. [189]. It is especially important for this consistency test that the distance and

expansion measurements are indeed cosmology-independent and do not rely on fiducial

FLRW assumptions, as the procedure might otherwise circularly confirm the FLRW

consistency relation.

With next generation data (such as upcoming surveys from LSST and Euclid 15)

the predictions of Fig. 4.2 and complementary distance combinations will be useful

for discriminating between the ΛCDM model, the scaling solutions, as well as other

models with non-trivial curvature evolution.

15 See Ref. [192] for performance forecasts for the Euclid satellite and for a discussion of testable
alternative frameworks, hereunder backreaction models, to that of the ΛCDM model.
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4.5 Discussion

We have investigated the fit of the scaling solutions, which are a class of solutions

for the evolution of averaged cosmological variables, constrained by the exact average

properties of Einstein’s equations and supplemented with a compatible but idealized

template metric, to the Joint Light-curve Analysis (JLA) sample of 740 SNIa.

We find constraints that are in good agreement with previously found constraints

for the scaling solutions based on SNIa, CMB, the differential age method, and baryon

acoustic oscillation measurements in Ref. [131, 175]. Thus, the scaling solutions provide

a self-consistent fit to current and complementary cosmological data.

Our result for the scaling index n is consistent with theoretical expectations on

the large-scale behaviour of backreaction within an averaged Lagrangian perturbation

approach, Ref. [181].

Comparing the quality of fit of the scaling solutions, the ΛCDM model and the

timescape model, we find no significant preference of one model over the other from an

Akaike Information Criterion (AIC) perspective. The empty universe model is mildly

disfavoured when compared to the fit of the other models. This suggests that a broad

variety of models of the recent epoch expansion history can match currently available

supernova data. More work is needed in order to assess the quality of fit of the scaling

solutions relative to that of ΛCDM for complementary cosmological data to that of

supernovae.

Backreaction models, exemplified by scaling solutions that match JLA data, predict

a clear signature in terms of a particular FLRW curvature consistency measure if

compared with the FLRW class of space-times. This indicates that one might be able

to significantly discriminate between models with evolving curvature and models with

constant-curvature geometry with upcoming surveys using this measure.
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Table 4.2: Number of parameters, AIC value, and the AIC relative likelihood for the
cosmological models tested, quoted for four different redshift cuts of data. The AIC
relative likelihood is shown with the spatially flat ΛCDM model as reference and with
the ΛCDM model with free curvature parameter Ωk as reference respectively. For each
redshift cut, the corresponding approximate ΛCDM comoving distance to that redshift
is shown in parenthesis. The number of supernovae left in the sample after each redshift
cut is also shown.

Models Scaling solution Scaling solution ΛCDM ΛCDM Empty Timescape
n = − 1 Ωk = 0 Universe

Number of pa-
rameters

10 9 10 9 8 9

Redshift cut: 0.024 (∼ 70 Mpc/h) - 687 SNIa

AIC − 213 − 215 − 214 − 216 − 217 − 215

pmodel/p
Ωk= 0
ΛCDM 0.5 1.3 0.6 1.0 0.1 1.3

pmodel/pΛCDM 0.8 2.3 1.0 1.8 0.2 2.4

Redshift cut: 0.033 (∼ 100 Mpc/h) - 655 SNIa

AIC − 225 − 227 − 226 − 228 − 229 − 227

pmodel/p
Ωk= 0
ΛCDM 0.4 1.0 0.5 1.0 0.1 1.0

pmodel/pΛCDM 0.8 2.1 1.0 2.2 0.2 2.1

Redshift cut: 0.07 (∼ 200 Mpc/h) - 613 SNIa

AIC − 233 − 235 − 233 − 235 − 236 − 235

pmodel/p
Ωk= 0
ΛCDM 0.5 1.4 0.6 1.0 0.4 1.5

pmodel/pΛCDM 0.9 2.5 1.0 1.8 0.7 2.6

Redshift cut: 0.15 (∼ 500 Mpc/h) - 514 SNIa

AIC − 197 − 199 − 197 − 199 − 195 − 199

pmodel/p
Ωk= 0
ΛCDM 0.3 0.8 0.4 1.0 0.1 0.7

pmodel/pΛCDM 0.8 2.1 1.0 2.7 0.3 1.8
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CHAPTER 5

Baryon acoustic oscillation methods for

generic curvature: Application to the

SDSS-III Baryon Oscillation Spectroscopic

Survey

BAO analysis is usually performed assuming a fiducial spatially flat ΛCDM cos-

mology to transform data into a ‘comoving grid’, from which the galaxy 2-point cor-

relation function can be estimated and the BAO scale extracted by fitting a fiducial

ΛCDM power spectrum [193, 194]. Additional fiducial cosmology analysis steps, such

as ΛCDM density-field reconstruction [195], are also often applied. A priori, results

based on fiducial data-reduction procedures are not valid beyond the given fiducial

model, and any extension of such results must be carefully examined for the particular

class of models of interest. The extent to which the fiducial ΛCDM results can be

applied when considering models with non-trivial spatial curvature is not clear, as the

regime of application is usually investigated for FLRW models close to the original

fiducial cosmology.

In this chapter we develop methods for using generic metrics to transform galaxy

data into a correlation function. Furthermore, we propose and test an empirical fitting

procedure with no model assumptions to extract a characteristic scale in the 2-point

correlation function. Our fitting procedure can be applied to a large class of cosmo-

logical models. We focus on probing a statistical volume-averaged BAO feature. This

does not mean that local environmental effects in the BAO feature are unexpected (see,

e.g., [196, 197, 198]), but in this chapter we probe the volume-averaged BAO scale for

which local effects are marginalised.

We apply our new methods to the CMASS and LOWZ galaxy surveys of the Baryon
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Oscillation Spectroscopic Survey 12th Data Release (BOSS DR12). Testing our empir-

ical procedure on ΛCDM BOSS mocks, we recover the BAO scale as the characteristic

scale in our empirical fitting function. Our fits to the data using a ΛCDM fiducial cos-

mology also agree with the results of previous fiducial ΛCDM analyses [193, 194]. We

then demonstrate our new methods by self-consistently re-analysing the BOSS dataset

assuming the timescape cosmological model.

We summarize the structure of our chapter as follows. In section 5.1.1 we extend

the notion of FLRW comoving distances to geodesic distances on preferred spatial

hypersurfaces in generic globally hyperbolic space-times in order to calculate the spatial

2-point correlation function for generic models. A restriction to spherical symmetry

is then made in order to be able to split small spatial distances into angular and

transverse parts, and to associate the redshift with a radial coordinate. The class of

models we investigate is detailed in section 5.1.2, and in section 5.1.3 we define an

Alcock-Paczyński scaling equivalent to that used in standard BAO analyses for FLRW

models (see e.g., [199]). This allows us to parameterise the model cosmology in terms

of an underlying ‘true’ spherically-symmetric metric. The accuracy of the Alcock-

Paczyński scaling depends on the models tested and the size of the survey domain. In

section 5.2 we present the DR12 CMASS and LOWZ galaxy surveys, random catalogues

and simulated mocks used in this analysis. In section 5.3.1 we propose an empirical

fitting function for BAO analysis, and in section 5.3.2 we use the ΛCDM mocks to

test that we recover the BAO scale for a ΛCDM fiducial cosmology. In section 5.4

we analyse the BOSS DR12 LOWZ and CMASS surveys in both the timescape and

ΛCDM cosmologies. We discuss our results and possible extensions in section 5.5.

5.1 Theory

5.1.1 Generalising the comoving distance definition to non-

FLRW space-times

In BAO analysis we consider the spatial 2-point correlation function, which describes

the excess probability of two galaxies being a certain spatial distance apart as compared

to a Poisson point process. We are thus concerned with the spatial separation of

galaxies, even though we are observing galaxies from a wide range of ‘cosmic times’

when creating our galaxy catalogues.
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However, if we know the (statistical) extension of the galaxy world-lines from the

cosmic time of observation, we can map the galaxy distribution on our null cone to

a spatial hypersurface of reference. In FLRW cosmology this is done by tracking the

galaxies through their comoving coordinates. One can then define spatial comoving

distances between the galaxies at the present epoch, and recover the distances at

any other reference hypersurface via multiplication by the homogeneous scale factor.

For general globally hyperbolic space-times we can also track the galaxy distribution

in comoving coordinates to a reference hypersurface, on which we can compute the

shortest spatial distances between galaxy pairs that are analogous to FLRW comoving

separations.

We consider a globally hyperbolic space-time, and assume that the vorticity of

the matter distribution in this space-time can be ignored1, and that caustics in the

matter distribution can be ignored at the coarse-graining level and over the timescale

considered. The metric can then in general be written in Gaussian normal coordinates,

xµ = (t, xi),

ds2 = −α2c2 dt2 + gij dx
i dxj (5.1)

where xi are comoving coordinates labelling the fluid elements of the matter distribu-

tion, t labels the hypersurfaces normal to the fluid flow,2 gij is the metric adapted to

the hypersurfaces defined by t = constant, and α dt is the proper time measure on the

particle worldlines.

Consider two particles (galaxies) at space-time events P1 and P2 with coordinates

xµ1(P1) = (t1, x
i
1) and xµ2(P2) = (t2, x

i
2). We would like to define the shortest spatial

distance between the two particles on a reference hypersurface t = T . Since the

particles are by construction moving on lines of constant comoving coordinates, we

can extend the particles to the reference hypersurface t = T . We keep the comoving

coordinates xi1 and xi2 fixed, and consider the new space-time events P1,T and P2,T with

1 This assumption is made in order to define reference hypersurfaces orthogonal to the fluid frame.
However, nothing prevents us from mapping the galaxy distribution to generic spatial hypersurfaces
of the given space-time, allowing for a generalisation of the present procedure to the case of vorticity
in the matter distribution.

2 For simplicity we consider model universes where all relevant matter is in the same rest frame. This
is never entirely true. The present procedure can easily be generalised to handle multicomponent
fluids by simply choosing one of the fluids as a reference fluid for constructing hypersurfaces of
reference.
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coordinates xµ1,T (P1,T ) = (T, xi1) and xµ2,T (P2,T ) = (T, xi2). From the metric eq. (5.1) we

can compute the shortest spatial distance between P1,T and P2,T on the surface t = T

from the geodesic equation of the adapted metric

ds2
T = gij(t = T, xk)dxidxj. (5.2)

We denote the resulting shortest distance, DT (P1, P2), the Lagrangian distance between

P1 and P2 at the reference surface t = T . This Lagrangian distance definition reduces to

the comoving distance definition in FLRW cosmology, when the matter frame coincides

with the surfaces of homogeneity and isotropy.

5.1.2 Models under investigation

In this section we outline the assumptions regarding the class of cosmological models

for which the procedures outlined in sections 5.1.3 and 5.3.1 apply. The motivation

for restricting the class of models is to be able to parameterise different cosmological

models in terms of each other through an Alcock-Paczyński scaling, as outlined in

section 5.1.3 (see e.g., [199]). We note that the results of the data analysis in the

present chapter can be applied only to the class of models discussed here.3

As in section 5.1.1, we consider globally hyperbolic average space-times, in which

vorticity and caustics of the matter distribution can be neglected. We can write the

metric in such a space-time as in eq. (5.1). We are interested in using this metric

to describe the distances between galaxies within a given survey in a statistical sense.

Thus, we need to write the metric in terms of coordinates (z, θ, φ) of the average model

to which the observed redshifts, and angular positions of galaxies are mapped.

Suppose that we have a set of comoving coordinates (r, θ, φ), where θ and φ are

mapped to the observed angles, and where r is a radial coordinate. For simplicity we

shall assume spherical symmetry in (θ, φ) such that the adapted metric eq. (5.1) can

be written

ds2 = −α(t, r)2c2dt2 + grr(t, r) dr
2 + gθθ(t, r)

(
dθ2 + cos2(θ)dφ2

)
(5.3)

where cos2(θ) comes from the convention in the definition of the declination angle. The

3 The standard BAO results such as [194, 193] are also limited by the regime of applicability of the
AP-scaling.
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redshift z of radially propagating null rays, α(t, r)2dt2 = grr(t, r)dr
2, can therefore be

considered as a function of either t or r (since t and r are monotonic functions of each

other on radial null lines). Note that since the metric (5.3) only applies to average light

propagation over large cosmic distances, z is an average model parameter. Although

z is not directly observable, it is assumed to be a good approximation for the mean

observed redshift. We consider universes that are overall expanding, and neglect the

small scale collapse of structures that can cause the redshift to be multivalued along

the null rays4. In such model-universes it is reasonable to assume that z is a strict

monotonic function in t (and therefore also in r)5. In this case, we can treat z as a

radial coordinate on the spatial sections t = T and write the adapted metric (5.2) as6

ds2
T = gzz(t = T, r)dz2 + gθθ(t = T, r)

(
dθ2 + cos2(θ)dφ2

)
, (5.4)

where7

gzz(t = T, r) ≡ grr(t = T, r)

(
dr

dz

)2

. (5.5)

The BAO scale is a statistical standard ruler, and in practice the 2-point correlation

function probing the BAO scale is obtained by summing over many galaxy pairs. Thus,

it is reasonable to consider models with large smoothing scale compared to galaxy pair

separations of order the BAO scale ∼ 100Mpc/h. In particular, we only discuss models

in which the typical pair separation of galaxies surveyed is small compared to variations

of the adapted spatial metric (5.2), as detailed in appendix 5.A. In these cases we can

approximate the Lagrangian distance DT (P1, P2) for two galaxies with coordinates

4 See section 3 of [200] for relevant calculations of mean redshift in statistically homogeneous and
isotropic space-times, and section 3.2 in particular for a discussion of multivaluedness of redshift
along light cones in relation to statistical homogeneity and isotropy.

5 The monotonicity assumption is independent of the exact parameterisation, t, of the fluid-adapted
foliation. Since t labels surfaces normal to the averaged fluid flow, we have u ∝∇t, where u is the
averaged fluid 4-velocity, and t is unique up to transformations t → f(t) by a monotonic function
f . Any function z that is monotonic in t will be monotonic in f(t).

6 Since the redshift, z, is only defined along the radial null geodesics it is important to realise that
(5.4), (5.5) is a projection from the null cones onto fiducial spatial hypersurfaces, not a global
coordinate transformation in the original space-time (5.3).

7 In any spatially flat FLRW model, with t = T corresponding to the ‘present time’ hypersurface,

we have grr(t = T, r) = a(t = T )2 = 1 and gzz(t = T, r) =
(
dr
dz

)2
= (c/H)

2
, where a(t) is the scale

factor, and we have used the convention a(t = T ) = 1.
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(z1, θ1, φ1) and (z2, θ2, φ2) separated by redshift δz = z2 − z1 and angle δΘ

δΘ = arccos [sin(θ1) sin(θ2) + cos(θ1) cos(θ2) cos(φ2 − φ1)] (5.6)

≈
√

(θ2 − θ1)2 + cos2(θ̄)(φ2 − φ1)2, θ̄ = (θ1 + θ2)/2

as

D2
T (P1, P2) ≈ gzz(t = T, z̄)(δz)2 + gθθ(t = T, z̄)(δΘ)2, (5.7)

where z̄ = (z1 + z2)/2 is the intermediate redshift.

The validity of the approximation of eq. (5.7) is cosmology-dependent8, and must

be assessed for the particular class of model cosmologies of interest. In appendix 5.A

we give the explicit expansion of the geodesic path integral up to third order, and in

appendix 5.A.1 we apply our results to spherically-symmetric metrics. For the FLRW

and timescape models with reasonable model parameters, we find that higher-order

corrections to eq. (5.7) are of order <∼ 10−3 for Lagrangian galaxy separations of order

100 Mpc/h.

It will be convenient to define

µT (P1, P2) =

√
gzz(t = T, z̄)(δz)2

DT (P1, P2)
(5.8)

as the ‘radial fraction’ of the separation. Note that such a splitting into the radial and

transverse components of a geodesic distance is not meaningful for general metrics.

However, when the approximation of eq. (5.6) is valid, such an Euclidean notion still

applies.

Conventionally, the surface of evaluation t = T is taken to be the present day.

Whenever we refer to evaluation at the present day we shall omit the T subscript on

eq. (5.7) and (5.8). For ease of notation the dependence on the points of the galaxies

8 The validity of the approximation relies on second order variations of the metric (curvature de-
grees of freedom) being small as compared to the metric and its first order variations in the adapted
coordinate-system (z, θ, φ) over scales of the galaxy pair separations of interest (see appendix 5.A).
Examples of models with significant spatial curvature for which eq. (5.7) apply to a good approxi-
mation for galaxy pair separations of order ∼ 100Mpc/h are the empty Milne universe (FLRW with
ΩM = ΩΛ = 0, Ωk = 1) and the timescape model, which have significant metric variations only on

scales 3R−1/2∼ c/H0∼ 3 Gpc/h at the present epoch, where 3R is the spatial Ricci scalar of the
given model.
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will also be implicit, and we will just write D and µ respectively.

5.1.3 Alcock-Paczyński scaling

In the later analysis it will be convenient to parameterise the model cosmology in terms

of an unknown ‘true’ cosmology. We will assume that the universe is well-described by

a ‘true’ metric of the form in section 5.1.2, and that we have a model cosmology also of

the form outlined in section 5.1.2, but not necessarily with the same adapted metric.

We can write the model Lagrangian distance between two galaxies eq. (5.7) at mean

redshift z̄i and separation δzi, δΘi on the sky in terms of the ‘true’ distance measures

(DT,i)
2 ≈ gzz(t = T, z̄i)(δzi)

2 + gθθ(t = T, z̄i)(δΘi)
2 (5.9)

=
1

α2
‖,i
gtr
zz(t

tr = T tr, z̄i)(δzi)
2 +

1

α2
⊥,i
gtr
θθ(t

tr = T tr, z̄i)(δΘi)
2

where ‘tr’ stands for the ‘true’ cosmology, the index i labels the galaxy pair, and

α‖,i ≡
√
gtr
zz(t

tr = T tr, z̄i)

gzz(t = T, z̄i)
, α⊥,i ≡

√
gtr
θθ(t

tr = T tr, z̄i)

gθθ(t = T, z̄i)
(5.10)

are the Alcock-Paczyński (AP) scaling parameters. Note that we are comparing a refer-

ence hypersurface of the ‘true’ cosmology ttr = T tr to the reference hypersurface t = T

of the model cosmology, by associating points of the same observational coordinates

(z, θ, φ).

Each galaxy pair will be associated with its own unique scalings of eq. (5.10). For

sufficiently small volume of the galaxy survey considered, we might approximate the

individual distortion parameters by one global scaling α‖, α⊥ to lowest order. This

is a reasonable approximation if the survey volume has a relatively narrow redshift

distribution, and if both the ‘true’ and the model metric are slowly changing in red-

shift. As a rule of thumb, the narrower the redshift distribution, and the larger the

curvature scales of the models of interest, the better the global scaling approximation

is. In the present chapter we use the global AP-scaling as a rough tool for testing

consistency of the investigated fiducial cosmologies, keeping in mind the limitations of

this approximation.
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We can define the ‘isotropic scaling’ α and the ‘anisotropic scaling’ ε

α ≡ (α2
⊥α‖)

1/3, (1 + ε)3 ≡ α‖
α⊥

. (5.11)

Such a decomposition will be useful in the following analysis, since in an isotropically-

sampled galaxy distribution we expect the BAO feature to be degenerate with α and

not ε. (See section 5.3.1 for explicit expressions in the context of the particular fitting

function used in this analysis.) We note that α and ε as defined in eq. (5.11) are

analogous to the AP-scaling parameters outlined in, e.g., [199], when associating gzz

with the inverse Hubble parameter multiplied by the speed of light c/H and gθθ with

the angular diameter distance DA.

The isotropic scaling α describes how the volume measure of a small coordinate

volume δz cos(θ) δθ δφ differs to lowest order between the ‘true’ and the model cosmol-

ogy,

α ≈
(
δV tr

i (ttr = T tr, z̄i)

δVi(t = T, z̄i)

)1/3

=

(
gtr
zz(t

tr = T tr, z̄i) (gtr
θθ(t

tr = T tr, z̄i))
2

gzz(t = T, z̄i) (gθθ(t = T, z̄i))
2

)1/6

(5.12)

with

δVi(t = T, z̄i) ≡
√

det(g)(t = T, z̄i) δz δθ δφ, (5.13)

where det(g) is the determinant of the spatial metric (5.4) in the coordinate basis

(z, θ, φ).

It will prove convenient to parameterise α and ε of two model cosmologies in terms

of the relative transverse and radial distance measures of the models

α1 = α2

(
g2,zz(t2 = T2, z̄)

g1,zz(t1 = T1, z̄)

)1/6(
g2,θθ(t2 = T2, z̄)

g1,θθ(t1 = T1, z̄)

)1/3

(5.14)

ε1 = (1 + ε2)

(
g2,zz(t2 = T2, z̄)

g1,zz(t1 = T1, z̄)

)1/6(
g2,θθ(t2 = T2, z̄)

g1,θθ(t1 = T1, z̄)

)−1/6

− 1.

Knowing α (ε) within a reference/fiducial cosmology, we can calculate α (ε) within

a different cosmology from the known model distance measures using the identity in

eq. (5.14).

From the assumption of slowly varying α⊥ and α‖ over the survey volume we can
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approximate

(DT,i)
2 ≈ 1

α2
‖
gtr
zz(t

tr = T tr, z̄i)(δzi)
2 +

1

α2
⊥
gtr
θθ(t

tr = T tr, z̄i)(δΘi)
2, (5.15)

which we can invert to Dtr
T tr approximated in terms of DT , µT , and the global Alcock-

Paczyński scaling parameters α‖, α⊥.

(Dtr
T tr,i)

2 ≈ gtr
zz(t

tr = T tr, z̄i)(δzi)
2 + gtr

θθ(t
tr = T tr, z̄i)(δΘi)

2 (5.16)

≈ α2
‖gzz(t = T , z̄i)(δzi)

2 + α2
⊥gθθ(t = T , z̄i)(δΘi)

2

= α2
⊥(DT,i)

2

(
1 +

(
α2
‖

α2
⊥
− 1

)
µT,i

)

= α2(DT,i)
2

(
α⊥
α‖

)2/3
(

1 +

(
α2
‖

α2
⊥
− 1

)
µ2
T,i

)
,

where the definition of µT in eq. (5.8) has been used. Similarly we have for µtr

µtr
T tr,i =

√
gtr
zz(t

tr = T tr, z̄i)(δzi)2

Dtr
T,i

≈ α‖
α⊥

µT,i
1√

1 +

(
α2
‖

α2
⊥
− 1

)
µ2
T,i

. (5.17)

5.1.4 Overview of the timescape model

In the present analysis we apply our methods to the spatially flat ΛCDM and the

timescape cosmologies. Both models are part of the class described in section 5.1.2,

and we can therefore test them with the procedures outlined in this chapter.

The relevant distance measures in the ΛCDM model and the timescape model are

given in appendix 3.A. Here we wish to illustrate these distance measures for the

parameter values used in this analysis.

In the present chapter we aim to demonstrate feasibility of the method, by making

just one choice of the timescape dressed present epoch matter density parameter (see

3.19) and the ΛCDM present epoch matter density parameter respectively. We denote

both parameters by the symbol ΩM0 and choose the value of investigation to be ΩM0 =

0.3. It should be stressed that the matter density parameters of timescape and ΛCDM

do not have identical interpretation, and the common symbol is for convenience in

the notation. For instance, the dressed matter parameter in the timescape case does
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not enter any Friedmann-like Hamiltonian constraint equation. The value ΩM0 = 0.3

chosen for this analysis is a reasonable one in the timescape case [98, 127], but not

singled out as a best fit in other tests [180].

Figure 5.1 shows
√
gθθ and

√
gzz of eq. (5.4) for the timescape and ΛCDM models

with ΩM0 = 0.3 relative to the empty universe. The same global Hubble parameter

H0 is assumed for all three models. Since dA ≡
√
gθθ(t = t0, r(t))/(1 + z) is the angular

diameter distance, while dH ≡
√
gzz(t = t0, r(t))/(1+z) represents the projected radial

proper distance between two particles separated by a small distance δz in redshift

(in FLRW cosmology known as the ‘Hubble distance’), these quantities represent the

standard angular and radial distance measures.

The timescape model redshift–distance relation is closer to that of the empty uni-

verse than to ΛCDM for redshifts z <∼ 1. While the timescape model distance measures

are within ∼ 2% of the empty universe case, the ΛCDM model differs from the empty

universe by up to ∼ 15% in the redshift range 0.15 ≤ z ≤ 0.7.9 The low-redshift prox-

imity of the timescape model expansion history to that of the empty universe reflects

the late-epoch volume dominance of voids relative to gravitationally-bound structures,

which in the timescape model gives rise to a present-day on average negatively-curved

universe. Given this comparison, BOSS large-scale structure data has the potential to

distinguish between these scenarios.

The timescape model is currently much less experimentally constrained than the

ΛCDM model [98, 127], since a perturbation theory describing structure formation

within the timescape model has yet to be developed. As a consequence CMB con-

straints on the BAO scale are much less precise for timescape as compared to ΛCDM.

(One can fit the angular positions of the acoustic peaks CMB using conservative priors

for the baryon-to-photon ratio, following an equivalent procedure to that described in

appendix D of [180].) This makes the ε parameter the most powerful discriminator

between the timescape model and ΛCDM, in the context of the present analysis.

9 These percentage estimates would in general change for distances measured in units of Mpc (rather
than units of Mpc/h) for reasonable values of H0 of the individual models. Typical values of H0

for the timescape model are around 10% smaller than for the ΛCDM model.
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Figure 5.1: ΛCDM ΩM0 = 0.3 and timescape dressed ΩM0 = 0.3 radial and transverse
distance measures, relative to the empty universe distance measures, as a function
of redshift z. The axis (

√
gXX − √gXX,empty)/

√
gXX,empty represents the fractional

difference of the angular diameter distance and radial Hubble distances for ΛCDM
and timescape relative to an empty universe for an observer at the present epoch,
assuming the same value of the Hubble parameter for all three models. I.e., when
X = θ it corresponds to δdA ≡ (dA−dA,empty)/dA,empty and when X = z it corresponds
to δdH ≡ (H−1 −H−1

empty)/H−1
empty.

5.1.5 The Landy-Szalay estimators

The 2-point correlation function in cosmology (see for example [52]) describes the excess

in correlation between structure in a spatial section of the universe, relative to the case

in which matter is distributed according to an uncorrelated Poisson process. Thus the

2-point correlation function describes characteristic scales in the matter distribution.

The spatial 2-point correlation function is defined as

ξ(X, Y ) =
f(X, Y )

f(X)f(Y )
− 1 (5.18)

where f(X, Y ) is the ensemble probability density of finding two galaxies at points X

and Y , and f(X) is the uncorrelated probability density of finding a galaxy at point

X. By assuming that the galaxy distribution is well-described by a homogeneous and
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isotropic point process, eq. (5.18) reduces to

ξ(D) =
f(D)

fPoisson(D)
− 1, (5.19)

where D is the Lagrangian distance of the ‘true’ underlying metric between the points

X, Y defined in section 5.1.1, f(D) represents the probability density of finding two

objects with the mutual distance D, and fPoisson(D) represents the analogous proba-

bility density in the uncorrelated case. Note that we can define a correlation function

with a similar form to eq. (5.19) for an inhomogeneous and anisotropic point process

by marginalising over the position and direction degrees of freedom in f(X, Y ) (see

appendix 5.B). For a given spherically-symmetric metric, where in addition to the La-

grangian distance D we can define the radial fraction of the separation µ (see section

5.1.2), it will be convenient to define the correlation function analogous to eq. (5.19),

ξ(D,µ) =
f(D,µ)

fPoisson(D,µ)
− 1, (5.20)

parameterised by µ and D. (See appendix 5.B for details.)

Various estimators of the 2-point correlation function have been tested within

ΛCDM [201]. An efficient estimator is found to be the Landy-Szalay (LS) estima-

tor [202]

ξ̂LS(D,µ) =
DD(D,µ) +RR(D,µ)− 2DR(D,µ)

RR(D,µ)
, (5.21)

where DD is the binned normalised number count

DD(D,µ) =
1

ND(ND − 1)

ND∑
a,b

1D±∆D(D(xia, x
i
b))1µ±∆µ(µ(xia, x

i
b)) (5.22)

over galaxies in the survey, where ND is the total number of galaxies, and ∆D and ∆µ

are the binning size, and 1A(y) is the indicator function, having the value 1 for y ∈ A
and 0 for y /∈ A. RR is defined in the same way

RR(D,µ) =
1

NR(NR − 1)

NR∑
a,b

1D±∆D(D(xia, x
i
b))1µ±∆µ(µ(xia, x

i
b)), (5.23)
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except that the sum is now over NR artificial galaxies in a random Poisson catalogue,

designed to match the galaxy density of the galaxy survey. We also define DR, the

normalised cross pair-count between the galaxy catalogue and the random sample, by

DR(D,µ) =
1

NDNR

ND∑
a

NR∑
b

1D±∆D(D(xia, x
i
b))1µ±∆µ(µ(xia, x

i
b)) (5.24)

We will use the LS estimator (5.21) to estimate the underlying 2-point correlation

function in this chapter. It will be convenient to average this estimator in µ to obtain

the wedge LS estimator,

ξ̂LS[µ1,µ2](D) =
1

µ2 − µ1

∫ µ2

µ1

dµ ξ̂LS(D,µ). (5.25)

We define the isotropic wedge ξ̂(D), the transverse wedge ξ̂⊥(D) and radial wedge

ξ̂‖(D) estimator as respectively

ξ̂(D) ≡ ξ̂LS[0,1](D), ξ̂⊥(D) ≡ ξ̂LS[0,0.5](D), ξ̂‖(D) ≡ ξ̂LS[0.5,1](D) (5.26)

where we have dropped the subscript LS.

5.2 Galaxy surveys, random catalogues, and mocks

In this section we describe the datasets (observed and simulated) used in this anal-

ysis. Since the 2-point correlation function is defined as an excess probability of the

correlation of galaxies compared to an unclustered Poisson distribution, we also use a

random catalogue to construct the Landy-Szalay estimators (5.26). We use mock cat-

alogues to test our analysis methods in a fiducial ΛCDM cosmology, and to estimate

the covariance of our measurements.

5.2.1 The galaxy surveys

The Sloan Digital Sky Survey (SDSS) III [203] is a large spectroscopic redshift survey

performed at the Apache Point Observatory in New Mexico. SDSS contains the Baryon

Oscillation Spectroscopic Survey (BOSS) [204] of Luminous Red Galaxies (LRGs),

which constitutes the current largest-volume map of large-scale structure, spanning
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the approximate redshift range 0.1 ≤ z ≤ 0.7 across 10,000 deg2 of sky. Different

colour and magnitude cuts are used to select homogeneous galaxy types across redshift

ranges 0.15 ≤ z ≤ 0.43 (the LOWZ sample) and 0.43 ≤ z ≤ 0.7 (the CMASS sample).

The samples are split into disconnected sub-surveys containing the galaxies from the

North Galactic Cap (NGC) and South Galactic Cap (SGC).

We use the BOSS Data Release 12 (DR12) [205] in this analysis. Each of the galaxies

is labelled by observed coordinates (z, θ, φ), where z is the observed redshift, θ is the

angle of declination and φ is the angle of right ascension. The redshift distribution

of the surveys is shown in figure 5.2. The total number of galaxies contained in our

selected redshift intervals is 361,762 for LOWZ and 777,202 for CMASS.

We do not use a reconstruction procedure of peculiar motions of galaxies such as

the one described in [195]. Such a procedure reconstructs the displacements of galaxies

relative to a ΛCDM background based on the density field of the survey, using the

relation between the linear density field and velocity fields in ΛCDM perturbation

theory. Such a perturbation theory has not yet been developed for the timescape

cosmology, so we do not apply it in our analysis.
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Figure 5.2: Redshift distribution of CMASS (red) and LOWZ (blue).

In computing the spatial 2-point correlation function, we make use of the cosmology-

independent ‘total galaxy weights’ (or completeness weights) described by [206]. These

weights are designed to account for observational biases, in order to make the observed
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galaxy distribution an unbiased estimate of the underlying galaxy distribution. For

example, neighbours to galaxies for which redshift determination failed are up-weighted

in order to compensate for the missing galaxy in the sample. We do not use Feldman,

Kaiser & Peacock (FKP) weights (see [207, 206]), since they are derived in the context

of a fiducial cosmological model. However, the application of FKP weights does not

significantly affect acoustic peak measurements in BOSS.

5.2.2 The random catalogues

We use random catalogues generated from the CMASS and LOWZ galaxy distribu-

tions as described by [206]. The random catalogues are generated independently of a

cosmological model and are based solely on the distribution of the galaxies in observed

coordinates (z, θ, φ). The random catalogue uniformly samples the angular coverage

of the data, and random redshifts are assigned from the redshift probability distribu-

tion of the survey. We use a random catalogue 10 times the size of the given galaxy

catalogue or mock.

5.2.3 The mocks

The errors in the correlation function used in BAO analysis can be estimated in the

context of a fiducial ΛCDM cosmology using theory or simulations. Alternatively,

non-parametric methods such as jack-knife estimation can be applied.

The assumption of a fiducial cosmology in error analysis is not satisfying from the

point of view of investigating a broader class of models than the fiducial cosmology.

However, in practice non-parametric methods are hard to implement, as the assump-

tions underlying them cannot be satisfied for current galaxy surveys. To apply jack-

knife variance estimation we must be able to divide our sample into a (large) number

of subsamples that are well approximated as resulting from identical and independent

probability distributions, i.e., we must be able to view the regions as realisations of an

ensemble. Furthermore, jack-knife regions must be sufficiently large to contain enough

galaxy pairs separated by the relevant scales, which conflicts with the requirement that

the number of jack-knife regions must be sufficiently large to allow an accurate inverse

covariance matrix to be constructed.

We instead use the Quick Particle Mesh (QPM) mocks as described in detail in

[208] for error analysis. These mocks are based on ΛCDM N -body simulations, and
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are generated specifically for the BOSS clustering analysis. The number density in

the mock catalogues is designed to match the observed galaxy number density of the

BOSS catalogues, and to follow the radial and angular selection functions of BOSS.

The fiducial ΛCDM cosmology of the QPM simulations is

ΩM0 = 0.29, ΩΛ0 = 0.71, Ωb0 = 0.048, σ8 = 0.8, h = 0.7, (5.27)

where ΩM0, ΩΛ0 and Ωb0 are the present epoch matter density parameter, dark energy

density parameter, and baryonic matter density parameter respectively, σ8 is the root

mean square of the linear mass fluctuations at the present epoch averaged at scales

8 Mpc/h given by the integral over the ΛCDM power spectrum, and H0 = 100h

km/s/Mpc is the Hubble parameter evaluated at the present epoch. The sound horizon

at the drag epoch within this model is rs = 103.05 Mpc/h.

There are 1000 QPM mocks available. We use all of these to construct an approxi-

mate covariance matrix of the measured galaxy correlation function. Furthermore, we

use these mocks to test how well our empirical procedure can recover the input acoustic

scale and the anisotropic distortion in the fiducial ΛCDM cosmology with parameters

(5.27).

5.3 Empirical model for the correlation function,

and extraction of the BAO characteristic scale

Conventional ΛCDM BAO fitting procedures [194, 193] involve the construction of a

template power spectrum model motivated by ΛCDM perturbation theory. We cannot

necessarily apply these techniques in more general cosmological models. In this section

we therefore develop an empirical approach for fitting the baryon acoustic oscillation

feature in models with non-trivial curvature, where we do not have a model for the

shape of the correlation function, but where we nevertheless expect a characteristic

scale in the matter distribution to be sourced from early-universe oscillations of the

baryonic plasma.

In our analysis we will leave the Hubble constant free to vary and extract the BAO

scale in units Mpc/h, rather than fixing h independently to some particular value. Our

key fitted parameter, ε, is dimensionless and independent of H0. In future analysis we
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aim to obtain independent constraints on both ΩM0 and H0 from joint BAO and CMB

observations; ΩM0 is just fixed in the present chapter to develop the methodology.

5.3.1 The fitting function

The simplest model-independent form we might consider for the BAO correlation func-

tion is the superposition of a Gaussian and a featureless (e.g., polynomial) fitting func-

tion. Such empirical models have been considered in e.g., [209, 210, 211]. For a universe

with statistical homogeneity and isotropy, we expect the BAO characteristic scale to

be statistically independent of the direction of separation of the galaxies relative to

our position, up to observational biases such as redshift-space distortions and non-

representative sampling of the underlying galaxy distribution. These considerations

motivate the following empirical model as a function of the Lagrangian separation D

and radial fraction µ:

ξFit(D
tr, µtr) = (Dtr)2A exp

[
− (Dtr − rBAO)

2

2σ2

]
+ C0(µtr) +

C1(µtr)

Dtr
+
C2(µtr)

(Dtr)2
(5.28)

where the superscript ‘tr’ refers to the underlying ‘true’ cosmology. The polynomial

terms model the underlying featureless shape of the correlation function without the

BAO feature and are equivalent in form to those of [193]. The scaled Gaussian em-

pirically models the BAO feature, and replaces the ΛCDM power spectrum model of

[193].

We note that the local maximum of the 2-point correlation function at the BAO

peak does not in general correspond to the BAO scale in a particular cosmological model

(for example, these two characteristic scales differ by ∼ 2 − 3% in ΛCDM cosmology,

a systematic difference which is significantly larger than the statistical measurement

error in the scale). This is a significant issue for empirical modelling, if we wish to

incorporate predictions of the underlying BAO scale.

To partially address this issue, we include a factor (Dtr)2 multiplying the Gaussian

term in eq. (5.28), which changes the position of the local maximum in order to produce

a closer match to the expected fiducial characteristic scale rBAO of the ΛCDM mock

catalogues, within the current level of statistical precision. This calibration would need

119



to be re-assessed in the context of other cosmological models.10 Furthermore, we do not

assume any calibration of rBAO in this study, instead quoting results for rBAO/α, and

focus our investigation on the significance of the BAO feature and the self-consistency

of the radial and transverse wedges.

We allow for µtr dependence in the polynomial terms of the fitting function (5.28)

since observational biases such as redshift-space distortions can depend on the sepa-

ration of the galaxies relative to the line of sight. We assume that the BAO feature

is independent of µtr, although asymmetric biases might enter here as well. However,

from our mock investigations (see section 5.3.2) we find that we successfully recover the

BAO scale and the distortion parameter ε with the fitting function (5.28), justifying

this form at least for the ΛCDM model.

We can approximate eq. (5.28) in terms of the model cosmology through the Alcock-

Paczyński scaling explained in section 5.1.3. Substituting Dtr with the approximation

(5.16) and µtr with the approximation (5.17), the empirical model (5.28) can be written

ξFit(D
tr, µtr) ≈ ξFit

(
D̃tr(D,µ;α‖, α⊥), µ̃tr(D,µ;α‖, α⊥)

)
(5.29)

= (D)2α2
⊥
(
1 + ψµ2

)
A e
−
(
Dα⊥
√

1+ψµ2−rBAO

)2
/(2σ2)

+C0(µ) +
C1(µ)

D
+
C2(µ)

(D)2
,

with

ψ ≡
(
α‖
α⊥

)2

− 1 = (1 + ε)6 − 1, (5.30)

and where D̃tr(D,µ;α‖, α⊥) is the approximation of Dtr given by (5.16) and

µ̃tr(D,µ;α‖, α⊥) is the approximation of µtr given by (5.17). Thus, when ξFit(D
tr, µtr)

is expressed in terms of D and µ through the approximation of the Alcock-Paczyński

scaling, it has the form of a Gaussian in D scaled by D2 plus first and second order

polynomial terms in D−1. The coefficients of the Gaussian in the basis of the model

cosmology eq. (5.29) are now dependent on µ.

As discussed in section 5.1.5, we construct two wedge correlation functions and the

angle-averaged correlation function, by averaging eq. (5.29) over µ-ranges. For current

10 Models that are not developed with respect to perturbation theory cannot be tested against the full
information in the CMB anisotropies, and are consequently more weakly constrained than ΛCDM
scenarios.
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galaxy surveys, it is in practice not useful to consider finer binning in µ, as the noise

in the 2-point correlation function increases with decreasing bin-size, and two wedges

already capture the information on α and ε.

In the regime of ψD/σ � 1, we may expand the Gaussian part of the fitting

function (5.29) to linear order in ψD/σ before performing the averaging in µ. This

has the advantage of providing an analytic expression for the average. Expanding the

Gaussian part of ξFit,N (5.29) to linear order in ψD/σ we have

ξFit,N (D,µ) ≈ (D)2α2
⊥
(
1 + ψµ2

)
A e−(Dα⊥−rBAO)2/(2σ2)−ψµ2Dα⊥(Dα⊥−rBAO)/(2σ2) (5.31)

≈ (D)2α2
⊥A e−(Dα⊥−rBAO)2/(2σ2)

(
1− ψµ2Dα⊥ (Dα⊥ − rBAO)

2σ2
+ ψµ2

)
,

and taking the average in µ over the range [µ1, µ2] we have

1

µ2 − µ1

∫ µ2

µ1

dµ ξFit,N (D,µ) (5.32)

≈ (D)2α2
⊥A e−(Dα⊥−rBAO)2/(2σ2)

[
1 +

1

3
ψ
µ3

2 − µ3
1

µ2 − µ1

(
1− Dα⊥ (Dα⊥ − rBAO)

2σ2

)]
≈ (D)2α2

⊥ (1 + κ)A e
−
[
Dα⊥

(
1+

1
2
κ
)
−rBAO

]2
/(2σ2)

≈ (D)2Ã e−(D−r̃BAO)2/(2σ̃2),

where

κ ≡ 1

3
ψ
µ3

2 − µ3
1

µ2 − µ1

, (5.33)

we have neglected terms O(κ2) at each step, and in the final line the distorted Gaussian

parameters are defined by

r̃BAO ≡
1− 1

2
κ

α⊥
rBAO, σ̃ ≡ 1− 1

2
κ

α⊥
σ, Ã ≡ α2

⊥(1 + κ)A. (5.34)

The final wedge fitting function thus yields

ξFit,[µ1,µ2](D) = (D)2Ã e−(D−r̃BAO)2/(2σ̃2) +C̄0 +
C̄1

D
+

C̄2

(D)2
, (5.35)

where C̄0, C̄1, and C̄2 are unspecified coefficients depending on the interval [µ1, µ2]. In
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the following, we investigate some limits of the wedge fitting function eq. (5.35).

We emphasise that the applicability of the expansion in eq. (5.31) and the resulting

expression for the wedge fitting function (5.35) must be checked for a given application.

When ψD/σ � 1 is not satisfied over the fitting range in D, one must average the

full expression (5.29) over µ in order to obtain the exact expression for the empirical

wedge fitting function. We use the approximation (5.35) in our analysis, and confirm

its validity by repeating our analysis using the exact expression. (See section 5.4.2 for

a discussion of this point.)

The ideal wedge limit . Let us consider the ideal wedge limit µ2 → µ1, in which the

bin width is reduced to zero. In this limit we have

κ = ψµ2
1 = ψµ2

2. (5.36)

Working to linear order in the anisotropic distortion parameter, so that by (5.30)

α‖/α⊥ ' 1 + 3ε, the distorted Gaussian parameters (5.34) in this case read

r̃BAO =
rBAO

α
1−µ21
⊥ α

µ21
‖

, σ̃ ≡ σ

α
1−µ21
⊥ α

µ21
‖

, Ã ≡ α
2−2µ21
⊥ α

2µ21
‖ A, (5.37)

e.g., for the pure transverse wedge (µ2
1 = µ2

2 = 0) and pure radial wedge (µ2
1 = µ2

2 = 1),

one can check that this expression reduces to the expected scaling by α⊥ and α‖

respectively. For µ2
1 = µ2

2 = 1
2
, eq. (5.37) is symmetric in α⊥ and α‖, as expected.

The observational wedges. In practice we need to make a crude binning in µ

in order to increase the galaxy counts for each bin. Thus in the further analysis

we shall work with two µ-bins and denote µ1 = 0, µ2 = 1
2

the transverse wedge,

and µ1 = 1
2
, µ2 = 1 the radial wedge. For the transverse and radial wedges we find

respectively for κ

κ⊥ =
1

12
ψ, κ‖ =

7

12
ψ, (5.38)

which on substitution in eq. (5.34), to linear order in ε, yield the distorted Gaussian
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parameters

r̃BAO⊥ =
rBAO

α
11/12
⊥ α

1/12
‖

, σ̃⊥ ≡
σ

α
11/12
⊥ α

1/12
‖

, Ã⊥ ≡ α
11/6
⊥ α

1/6
‖ A, (5.39)

and

r̃BAO‖ =
rBAO

α
5/12
⊥ α

7/12
‖

, σ̃⊥ ≡
σ

α
5/12
⊥ α

7/12
‖

, Ã⊥ ≡ α
5/6
⊥ α

7/6
‖ A, (5.40)

for the transverse and radial wedges, respectively. Note that eq. (5.39) and (5.40) are

not symmetric under interchange α⊥ ↔ α‖. This asymmetry between the radial and

transverse wedges comes from the fact that we have defined the wedge as an unweighted

average in µ.

The isotropic wedge . For the isotropic wedge (µ1 = 0, µ2 = 1) we have κ = ψ/3

which to linear order in ε leads to the ‘isotropically distorted’ Gaussian parameters

r̃BAO =
rBAO

α
, σ̃ ≡ σ

α
, Ã ≡ α2A. (5.41)

Note that only the isotropic scaling parameter α enters here, and not the anisotropic

distortion parameter ε.

5.3.2 Testing on ΛCDM mocks

We now apply the fitting function (5.35) to ΛCDM mocks, to test if we recover the

fiducial BAO scale and distortion parameter. To do this we perform fits to the mean

correlation function of the QPM mocks based on the CMASS NGC and LOWZ NGC

galaxy distributions, assuming a fiducial flat ΛCDM model with ΩM0 = 0.3. First

we perform a fit to the isotropic correlation function ξ(D) with the fitting function

discussed in section 5.3.1. Next we perform a joint fit to estimates of the radial wedge

ξ‖(D) and transverse wedge ξ⊥(D) functions. We fit to correlation function measure-

ments in the range D ∈ [50; 150] Mpc/h with a bin size of 5 Mpc/h.

For the likelihood function L of the data given the model, we assume a Gaussian
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distribution ξFit

L
(

¯̂
ξ
∣∣∣ ξFit

)
∝ exp(−χ2/2), (5.42)

with

χ2 = Z
ᵀ
C−1

¯̂
ξ
Z, Z =

¯̂
ξ − ξFit, (5.43)

where ξ̂ is the binned estimate of the (isotropic or wedge) 2-point correlation function,

and
¯̂
ξ is its average over the mocks. For the wedge analysis, the transverse and radial

estimates are combined into a single vector ξ̂ in order to perform a combined fit, taking

into account the covariance between the wedges. ξFit is the fitting function prescribed

in eq. (5.35). The covariance matrix of
¯̂
ξ is given by the covariance of the individual

measurements ξ̂ scaled by the number of mocks over which we take the mean, Nmean

C ¯̂
ξ

=
1

Nmean

C
ξ̂
, C

ξ̂
= (ξ̂ − ¯̂

ξ)(ξ̂ − ¯̂
ξ)ᵀ, (5.44)

where the overbar represents the averages over the number of mocks, Nmocks. In this

analysis we have Nmocks = 1000 for both CMASS and LOWZ. Nmean is chosen such that

χ2/Ndof∼ 1 in order to not to go beyond the regime of applicability of the empirical

fitting function (Nmean = 40 for CMASS and Nmean = 80 for LOWZ), where Ndof is the

number of independent degrees of freedom.

We determine the parameters of ξFit in both a frequentist and Bayesian setting:

that is, we find frequentist best fit parameters as well as Bayesian median parameters

with conservative priors. The results of the fit to the isotropic correlation function

for the CMASS and LOWZ QPM mock mean are shown in figure 5.3, and the results

of the fit to the wedges are shown in figure 5.4. The estimates of the parameters

describing the isotropic BAO feature
(
rBAO

α
, σ
α
, Aα2

)
are in good agreement between

the isotropic and wedge analyses. The results for the estimated isotropic BAO scale

are rBAO

α
= 102.1±0.4 Mpc/h for CMASS and rBAO

α
= 101.8±0.5 Mpc/h for LOWZ, and

the results for the estimated anisotropic distortion parameter are ε = 0.0005± 0.0035

for CMASS and ε = 0.0008± 0.0043 for LOWZ.

As noted in section 5.2.3, the acoustic scale of the model underlying the QPM mocks

is rs = 103.05 Mpc/h. Since the QPM mocks are generated using ΩM0 = 0.29, and our
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Figure 5.3: Fit to the isotropic wedge ξ(DΛCDM) of the mean of the CMASS NGC and
LOWZ NGC QPM mocks respectively. DΛCDM is the Lagrangian distance evaluated
at present times for ΛCDM with ΩM0 = 0.3. The model fit includes 6 parameters(
rBAO

α
, σ
α
, Aα2, C0, C1, C2

)
. The best fit (green line) is the fit that maximises the like-

lihood function. The median fit (purple line) is based on the 50% quantiles of the
Bayesian posterior, resulting from conservative priors (meaning priors that span the
significant volume of the likelihood). Mean values of rBAO

α
, σ
α

, and Aα2 with 1σ equal
tail credible intervals are superimposed on the plots.

fiducial model has ΩM0 = 0.30, we have α(z̄ = 0.55) = 1.005, and α(z̄ = 0.32) = 1.003.

We thus compute expected fiducial values

rs
α(z̄ = 0.55)

= 102.5 Mpc/h,
rs

α(z̄ = 0.32)
= 102.7 Mpc/h (5.45)

ε(z̄ = 0.55) = 0.0013, ε(z̄ = 0.32) = 0.0008 (5.46)

As seen in the isotropic results in figure 5.3, the BAO scale is recovered to a precision

of 0.4% ± 0.4% for CMASS and 0.9% ± 0.5% for LOWZ. The difference between the

measured and the model ε-parameter is |∆ε| <∼ 0.0008, which is much smaller than

typical errors in ε in the context of ΛCDM template-fitting approaches to BAO.

We note that ∼ 1% systematic error is significant in standard BAO template-fitting

approaches, where the statistical errors in the BAO scale measurement from the latest

galaxy redshift surveys are around 1%, and the contribution from systematic errors in

a ΛCDM model universe are significantly less than 1% [212]. Systematic errors in a

empirical fitting procedure will inevitably be larger, and dependent on the cosmological
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Figure 5.4: Combined fit to the transverse wedge ξ⊥(DΛCDM) and radial wedge
ξ‖(DΛCDM) of the mean of the CMASS NGC and LOWZ NGC QPM mocks
respectively, where DΛCDM is the Lagrangian distance evaluated at present
times for ΛCDM with ΩM0 = 0.3. The model fit includes 10 parameters(
rBAO

α
, σ
α
, Aα2, ε, C̄0⊥, C̄1⊥, C̄2⊥, C̄0‖, C̄1‖, C̄2‖

)
. The best fit (green line) is the fit that

maximises the likelihood function. The median fit (purple line) is based on the 50%
quantiles of the Bayesian posterior, resulting from conservative priors (meaning priors
that span the significant volume of the likelihood). The numerical values superimposed
on the plot of ξ⊥ are the mean values with 1σ equal tail credible intervals.

model.11 However, the errors in the underlying calibration of the BAO scale from the

11 A fiducial ΛCDM fitting function per construction gives back the correct BAO scale when fitted
to mocks generated from that same fiducial ΛCDM model. Any empirical fitting model, aiming at
analysing BAO features for a broader class of models will yield larger systematics in the context of
ΛCDM model simulations than the fitting procedure adapted specifically to ΛCDM. The price to
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CMB are also larger in models with greater uncertainities in the underlying physical

parameters. In this chapter, we will mainly be interested in the ε parameter as a

consistency check of the tested fiducial cosmologies, and in comparing the significance

of the BAO feature between the tested models, and do not include a calibration of the

underlying BAO scale.

We experimented with modifications of eq. (5.35), allowing for a relative scaling of

the wedge amplitudes, wedge widths, or both. The resulting fits were of similar quality

to that of eq. (5.35) from an Akaike Information Criterion perspective. Thus we had

no ΛCDM-based motivation for introducing additional parameters in the analysis of

the galaxy survey. We note, however, that for models with more complicated curva-

ture evolution than ΛCDM, there might be physical effects equivalent to the ΛCDM

redshift-space distortions but possibly with stronger magnitude, distorting the relative

amplitude and width of the BAO feature in the two wedges.12

We also experimented with different scaling behaviour of the Lagrangian distance

Dtr in eq. (5.28) – for example, changing the scaling (Dtr)2 of the Gaussian function

to (Dtr)n with different values of n. The inferred peak of the Gaussian changed as

expected, in some cases being significantly different from the BAO scale. However, ε

was consistent with the expected values in eq. (5.46) for all investigated modifications

of the fitting function.

5.4 Data analysis

The empirical procedure developed in this chapter can be applied to a wide class of

cosmological models. In this analysis, we consider two fiducial model frameworks – the

timescape model and the spatially flat ΛCDM model, with ΩM0 = 0.3 in both cases.

pay for introducing a flexible fitting function adaptable to a large range of cosmologies, is exactly
that it is not adapted to a particular cosmology.

12 There is no obvious reason for this to be the case in the timescape model, however, since it im-
plements a “uniform quasilocal Hubble flow condition” [95, 97]. Calculations of the amplitude of
redshift-space distortions require the development of a framework analogous to standard cosmo-
logical perturbation theory, which is yet to be done for the timescape cosmology. Estimates of
the amplitude of non-kinematic differential expansion [158] have been made using the Lemâıtre-
Tolman-Bondi models for local structures on scales of order 10–60 Mpc [213], with the result that
differences from the standard model expectation are smaller than current measurement uncertain-
ties in peculiar velocities. Thus we would not expect substantial differences from the amplitude of
the standard Kaiser effect [214], at least within this class of models.
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We note that both the ΛCDM and timescape models have a spherically symmetric

effective adapted geometry with a large curvature scale proportional to the Hubble

distance ∼ c/H0, which is in both models of order 3 Gpc/h. Thus the curvature

scale is of order the survey diameter. The Lagrangian distance introduced in section

5.1.1 between two galaxies separated around ∼ 100 Mpc/h is thus well approximated

by eq. (5.7) with correction terms13 of order <∼ 10−3. We caution that our results

may not be suitable for extrapolation to other model cosmologies, depending on the

Alcock-Paczyński scaling.

We estimate the 2-point correlation function in each fiducial model for the CMASS

and LOWZ NGC and SGC regions using the LS estimator described in section 5.1.5.

We compute the isotropic correlation function estimator ξ̂(D), along with the radial

and transverse wedge correlation function estimators, ξ̂‖(D) and ξ̂⊥(D), defined in

eq. (5.26). We use the covariance matrix C
ξ̂

formulated in eq. (5.44), computed from

the QPM mocks described in section 5.2.3, to estimate the variance of the correlation

function over realisations of an imagined ensemble of galaxy catalogues, of which our

galaxy catalogue is a single realisation. We expect different models to ΛCDM, with

different models for structure formation and global geometry, to give rise to a dif-

ferent random process underlying our measured galaxy catalogue. However, we shall

assume that the ΛCDM estimate provides a reasonable lowest-order approximation of

the covariance.

We combine the estimated correlation functions for the NGC and SGC regions

using the inverse covariance weighting [58, 215]

ξ̂comb = C
comb

(
C−1

NGC
ξ̂NGC + C−1

SGC
ξ̂SGC

)
, (5.47)

where

C−1

comb
= C−1

NGC
+ C−1

SGC
, (5.48)

is the inverse covariance of the combined measurement, and where ξ represents either

the isotropic correlation functions ξ(D) or the combined wedge correlation function

(ξ‖(D), ξ⊥(D)). We experimented with different methods of combining the NGC and

SGC measurements, and found that our results were robust to the exact weighting

13 See appendix 5.A for an explicit derivation of the correction terms.
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scheme used.

5.4.1 Isotropic fitting analysis

The estimated isotropic correlation function and best fit and median models are dis-

played in figure 5.5 for ΛCDM and in figure 5.6 for the timescape cosmology, and

the results of the fits are summarised in table 5.1. The Gaussian peak component is

significant in the CMASS isotropic correlation function at the 4.6σ level for ΛCDM

and at the 3.8σ level for timescape. We quantify the significance of the peak as the

posterior probability of having α2A > 0.14 For the LOWZ correlation function, the

peak is significant at the 2.4σ level for ΛCDM and at the 1.9σ level for timescape.

We have used conservative priors for our fits to both timescape and ΛCDM, meaning

(log-)uniform priors that span all regions of parameter space of significant likelihood

volume. For the sake of comparing our ΛCDM results with the standard fiducial ΛCDM

analysis of [193] and [194], we have repeated the fit with narrow Gaussian error bars

on σBAO/α with mean and standard deviation as determined by the isotropic mock

fit of section 5.3.2. For both models, using this prior increases the significance of the

BAO feature and decreases the errors in rBAO/α. We only compare model fits when the

priors are equally restrictive for both models and, unless otherwise stated, we comment

on the analysis with conservative priors.

The results for rBAO/α and σBAO/α are consistent between the LOWZ and CMASS

samples for both timescape and ΛCDM. The results for the CMASS BAO peak posi-

tions for the conservative prior analysis are rBAO/α = 102.0±1.7 Mpc/h for ΛCDM and

95.4±1.8 Mpc/h for timescape. The equivalent results for LOWZ are 99.9±4.3 Mpc/h

for ΛCDM and 93.4± 4.9 Mpc/h for timescape. The sign and magnitude of the rela-

tive peak positions of timescape and ΛCDM are consistent with figure 5.1 within the

statistical error bars of the analysis. This can be realised by computing the relative

isotropic AP-scaling α (5.14) between ΛCDM and timescape based on figure 5.1 and

comparing it to the ratio of the measured peak positions rBAO/α of the models.

Values of the Hubble constant for the timescape model obtained from CMB con-

straints can be up to 10% smaller than for the ΛCDM model [98]. Thus for typical

14 We note that this is different to the typical way of quantifying BAO significance in ΛCDM-based
fitting, where a reference power spectrum with no BAO feature is used to assess the increase of
quality in fit when introducing the BAO feature [216].
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values of H0 the estimated isotropic peak position in units Mpc may in fact be slightly

larger for timescape than the analogous peak position for ΛCDM.

The fits are reasonably good, all with a minimum χ2 value of reasonable probability.

The most extreme value is χ2 = 22 for the timescape LOWZ fit, the probability of

χ2 > 22 being 8% for 14 degrees of freedom.

When we include a prior in σ, our ΛCDM results for the isotropic peak position

rBAO/α are in <∼ 1% agreement with those found in the fiducial ΛCDM analysis con-

sidered in e.g., [193] and [194]. The magnitude of the error bars are also comparable

to those found in standard analyses. As an example, we compare our results with

the isotropic pre-reconstruction DR12 results of table 8 in [194], derived assuming

the fiducial cosmology ΩM0,fid = 0.29 and rBAO,fid = 103.0 Mpc/h. The isotropic

CMASS measurement yields α̃ = α(ΩM0 = 0.29)
rBAO,fid

rBAO
= 1.015 ± 0.013, which to-

gether with the value of rBAO,fid yields rBAO

α(ΩM0=0.29)
= 101.4 ± 1.3 Mpc/h, and finally

scaling the result with the α-ratio of ΛCDM fiducial ΩM0,fid = 0.29 and ΩM0 = 0.3 we

have rBAO

α(ΩM0=0.30)
= 100.9 ± 1.3 Mpc/h. This result is within 1σ agreement with the

ΛCDM results in table 5.1 for both the conservative prior analysis and for the anal-

ysis with a narrow Gaussian prior in σBAO/α. The analogous isotropic LOWZ result

from table 8 in [194] reads α̃ = α(ΩM0 = 0.29)
rBAO,fid

rBAO
= 1.009 ± 0.030, which gives

rBAO

α(ΩM0=0.30)
= 101.7± 3.1 Mpc/h, in agreement with the ΛCDM results in table 5.1 for

the conservative prior analysis and for the narrow Gaussian prior in σBAO/α.

Isotropic fit ξ α2A · 104 rBAO/α σBAO/α χ2/Ndof

ΛCDM CMASS 0.0032 ± 0.0007 102.0 ± 1.7 9.7 ± 1.8 17/14
ΛCDM LOWZ 0.0034 ± 0.0014 99.9 ± 4.3 13.1 ± 3.3 19/14
Timescape CMASS 0.0034 ± 0.0009 95.4 ± 1.8 9.8 ± 2.8 21/14
Timescape LOWZ 0.0035 ± 0.0018 93.4 ± 4.9 13.1 ± 4.2 22/14
ΛCDM CMASS NσBAO/α 0.0037 ± 0.0007 100.4 ± 1.5 12.2 ± 0.3 17/14
ΛCDM LOWZ NσBAO/α 0.0035 ± 0.0011 100.6 ± 3.0 12.2 ± 0.3 19/14

Table 5.1: Results of fitting the isotropic correlation function of CMASS and LOWZ.
The parameter estimates shown are the Bayesian median with 1σ equal tail credible
intervals. Conservative priors (meaning priors that span the significant volume of the
likelihood) are used for all parameters in all fits, except for the ΛCDM fits labelled
NσBAO/α, which use a narrow Gaussian prior with mean and width as determined in the
mock analysis of section 5.3.2. The minimum χ2 value divided by number of degrees
of freedom Ndof is also quoted. rBAO/α and σBAO/α are in units of Mpc/h. A is in
units of (Mpc/h)2.
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Figure 5.5: Fit to the isotropic wedge ξ(DΛCDM) of the CMASS and LOWZ survey
respectively, where DΛCDM is the Lagrangian distance evaluated at present times for
ΛCDM with ΩM0 = 0.3. The model fit includes 6 parameters

(
rBAO

α
, σ
α
, Aα2, C0, C1, C2

)
.

The best fit (green line) is the fit that maximises the likelihood function. The median
fit (purple line) is based on the 50% quantiles of the Bayesian posterior, resulting from
conservative priors (meaning priors that span the significant volume of the likelihood).
Mean values of rBAO

α
, σ
α

, and Aα2 with 1σ equal tail credible intervals are superimposed
on the plots.

5.4.2 Anisotropic fitting analysis

We now turn to the wedge analysis, which is useful for examining the consistency of

the BAO feature in the transverse and radial separation of galaxy pairs. The results

of fitting the empirical parameters describing the BAO feature are shown in table

5.2. The measurements of the anisotropic distortion parameter in CMASS are ε =

−0.021± 0.017 for ΛCDM and ε = 0.021± 0.017 for timescape, and the LOWZ results

are ε = −0.022± 0.084 for ΛCDM and ε = 0.013± 0.110 for timescape. The CMASS

and LOWZ results for the peak position rBAO/α and the width σBAO/α are consistent

within 1σ for both ΛCDM and the timescape model.

The Gaussian peak in the CMASS wedge correlation functions has a significance of

∼ 4.8σ for ΛCDM and ∼ 3.9σ for timescape. For LOWZ, the peak has a significance of

∼ 1.4σ and ∼ 1.3σ for ΛCDM and timescape respectively. As above, the significance

of the peak is quantified as the posterior probability of having α2A > 0.

We note that the values of epsilon gives ψ ≈ 0.1, for which the expansion in

eq. (5.31) is not guaranteed to hold for the fitting range D ∈ [50; 150] Mpc/h. We
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Figure 5.6: Fit to the isotropic wedge ξ(Dtimescape) of the CMASS and LOWZ sur-
vey respectively, where Dtimescape is the Lagrangian distance evaluated at present
times for the timescape model with ΩM0 = 0.3. The model fit includes 6 parame-
ters

(
rBAO

α
, σ
α
, Aα2, C0, C1, C2

)
. The best fit (green line) is the fit that maximises the

likelihood function. The median fit (purple line) is based on the 50% quantiles of the
Bayesian posterior, resulting from conservative priors (meaning priors that span the
significant volume of the likelihood). Mean values of rBAO

α
, σ
α

, and Aα2 with 1σ equal
tail credible intervals are superimposed on the plots.

checked the validity of the approximate fitting model eq. (5.35) by comparing to the

exact wedge fitting functions calculated from the average of eq. (5.29) over µ, and found

that best fit parameter results derived in our linearised analysis receive corrections of

order ∼ 10% of the error bars on the same parameters. Since the corrections are an

order of magnitude smaller than the error bars, we ignore these corrections here and

quote the results from the linearised analysis.

The best fit and median models of eq. (5.35) are shown superimposed on the ξ⊥

and ξ‖ measurements for the spatially flat ΛCDM fiducial cosmology in figure 5.7 and

for the timescape fiducial cosmology in figure 5.8. The most extreme χ2 value is for

the timescape CMASS fit with χ2 = 49, with 2% probability of χ2 > 49 for 30 degrees

of freedom.

The significance and precision of the acoustic peak in the LOWZ sample is signif-

icantly increased by imposing a prior in σBAO/α, which is illustrated for the ΛCDM

case in table 5.2. Using narrow Gaussian priors with mean and width determined by

the mock analysis of section 5.3.2, the significance of the peak goes up to 2σ and the
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Figure 5.7: Combined fit to the transverse wedge ξ⊥(DΛCDM) and radial wedge
ξ‖(DΛCDM) of the CMASS and LOWZ survey respectively, where DΛCDM is the La-
grangian distance evaluated at present times for ΛCDM with ΩM0 = 0.3. The model
fit includes 10 parameters

(
rBAO

α
, σ
α
, Aα2, ε, C̄0⊥, C̄1⊥, C̄2⊥, C̄0‖, C̄1‖, C̄2‖

)
. The best fit

(green line) is the fit that maximises the likelihood function. The median fit (purple
line) is based on the 50% quantiles of the Bayesian posterior, resulting from conser-
vative priors (meaning priors that span the significant volume of the likelihood). The
numerical values superimposed on the plot of ξ⊥ are the mean values with 1σ equal
tail credible intervals.

errors in rBAO/α decrease by ∼ 30%. The measurements of α2A, rBAO/α, and σBAO/α

for the wedge analysis are in good agreement with those of the isotropic analysis in

table 5.1 for both timescape and ΛCDM. We note that the errors on α2A, rBAO/α, and

σBAO/α all decrease when going from the isotropic analysis to the anisotropic analysis
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Figure 5.8: Combined fit to the transverse wedge ξ⊥(DTimescape) and radial wedge
ξ‖(DTimescape) of the CMASS and LOWZ survey respectively, where DTimescape is the
Lagrangian distance evaluated at present times for the timescape model with ΩM0 =
0.3. The model fit includes 10 parameters

(
rBAO

α
, σ
α
, Aα2, ε, C̄0⊥, C̄1⊥, C̄2⊥, C̄0‖, C̄1‖, C̄2‖

)
.

The best fit (green line) is the fit that maximises the likelihood function. The median
fit (purple line) is based on the 50% quantiles of the Bayesian posterior, resulting from
conservative priors (meaning priors that span the significant volume of the likelihood).
The numerical values superimposed on the plot of ξ⊥ are the mean values with 1σ
equal tail credible intervals.

for CMASS, whereas they all increase for LOWZ. This might be because of the strong

correlation between σBAO/α and the remaining parameters of the analysis: a posterior

which widens in σ/α is likely to widen in the other parameters as well.

The results of our fiducial ΛCDM analysis displayed in table 5.2 are in good agree-
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ment with previous measurements reported by [193] and [194]. For example, table 8

of [194] reports ε = −0.016 ± 0.020 for a DR12 CMASS pre-reconstruction wedge

analysis which, when transformed through AP-scaling eq. (5.14) from the fiducial

model ΩM0 = 0.29 of [194] to the fiducial model ΩM0 = 0.3 of this chapter, pro-

duces ε = −0.015± 0.020. This is in agreement well within 1σ of our results listed in

table 5.2. The analogous result for the LOWZ sample in table 8 of [194] is 0.026±0.041,

which AP-scaled gives ε = 0.025±0.041, which is in agreement with our ΛCDM results

for LOWZ in table 5.2 at the 1σ level.

Wedge fit ξ⊥, ξ‖ α2A · 104 rBAO/α σBAO/α ε χ2/Ndof

ΛCDM CMASS 0.0029 ± 0.0006 102.6 ± 1.5 9.0 ± 1.6 -0.021 ± 0.017 48/30
ΛCDM LOWZ 0.0024 ± 0.0017 98.5 ± 7.2 12.9 ± 6.0 -0.022 ± 0.084 40/30
Timescape CMASS 0.0031 ± 0.0008 95.4 ± 1.6 8.2 ± 1.9 0.021 ± 0.017 49/30
Timescape LOWZ 0.0023 ± 0.0018 92.1 ± 7.6 10.8 ± 7.2 0.013 ± 0.110 38/30

ΛCDM CMASS NσBAO/α 0.0035 ± 0.0006 100.9 ± 1.8 12.3 ± 0.2 -0.022 ± 0.023 48/30

ΛCDM LOWZ NσBAO/α 0.0027 ± 0.0012 100.3 ± 4.6 12.3 ± 0.3 -0.008 ± 0.060 40/30

Table 5.2: Results of the combined fit to the transverse and radial wedge for CMASS
and LOWZ. The parameter estimates shown are the Bayesian median with 1σ equal
tail credible intervals. Conservative priors (meaning priors that span the significant
volume of the likelihood) are used for all parameters in all fits, except for the ΛCDM
fits labelled NσBAO/α, where a narrow Gaussian prior is used with mean and width as
determined in the mock analysis of section 5.3.2. The minimum χ2 value divided by
number of degrees of freedom Ndof is also quoted. rBAO/α and σBAO/α are in units of
Mpc/h. A is in units of (Mpc/h)2.

The anisotropic distortion parameter ε describes how the fiducial model is distorted

in a relative angular and radial sense compared to the ‘true’ underlying cosmology, to

lowest order. Since ε is consistent with zero at the < 2σ level for both timescape and

ΛCDM in the above data analysis, both models are in agreement with no anisotropic

distortion. We can formulate the ε = 0 consistency test in terms of the effective metric

combination g
1/2
θθ /g

1/2
zz (equal to dAH/c in ΛCDM, where dA is the angular diameter

distance, and H is the Hubble parameter), which from the AP-scaling of our results

can be formulated as

g
1/2
θθ

g
1/2
zz

≈ α⊥
α‖

g
1/2
fid,θθ

g
1/2
fid,zz

= (1 + ε)−3
g

1/2
fid,θθ

g
1/2
fid,zz

(5.49)

where gfid corresponds to the fiducial adapted metric of either ΛCDM or timescape,
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and where ε is the estimate quoted in table 5.2 for the respective fiducial cosmologies.

The results of the effective measurement of the metric combinations (5.49) for CMASS

and LOWZ are shown in figure 5.9. We see that that both effective measurements are

consistent with the respective fiducial lines, as expected since the estimated ε-parameter

is consistent with zero within both models. The precision in the measurements of

the metric combination is comparable to the difference between the fiducial metric

combination of the two cosmologies for the CMASS survey, potentially making this

metric combination a useful discriminator between the ΛCDM and timescape model

for future surveys. We also note that the systematics in the measurement arising

from the choice of fiducial cosmology is of order the distance between the cosmologies,

indicating that a careful analysis of the regime of application of the AP-scaling is

needed.

0.2 0.3 0.4 0.5 0.6 0.7
z

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

g1/
2

g1/
2

zz

CDM M = 0.3
Timescape M = 0.3

Figure 5.9: Effective measurement of the metric combination g
1/2
θθ /g

1/2
zz for LOWZ and

CMASS within the timescape model and ΛCDM respectively, with the fiducial ΛCDM
and timescape ΩM0 = 0.3 predictions superimposed. The timescape measurements are
artificially shifted slightly in redshift relative to the mean LOWZ and CMASS redshifts
z = 0.32 and z = 0.55, in order to see the measurements and their comparison more
clearly.

136



5.5 Discussion

In this chapter we have developed methods for examining BAO features in the 2-point

correlation function for cosmological models with non-trivial curvature: models that are

not necessarily spatially flat, close to spatially flat, nor with constant spatial curvature.

The methods outlined in section 5.1 and 5.3.1 are applicable for a broad class of large-

scale cosmological models. (see section 5.1.2 for precise statements about the regime of

applicability). Our assumptions on the model cosmology can be summarised as follows:

• We assume global hyperbolicity of the average space-time, and that the galaxies

can to a good approximation be described as particles in a non-caustic, vorticity-

free fluid description. These assumptions are made in order to formulate the re-

duced 2-point correlation function descriptive statistic in terms of the lagrangian

distance definition given in section 5.1.1, generalising the comoving distance def-

inition of FLRW cosmology.

• We further impose the assumptions outlined in section 5.1.2, such that the la-

grangian distance definition can be approximated as in eq. (5.7). The approx-

imation (5.7) is needed to: (i) define the ‘radial fraction’ of the separation µT

in (5.8); and (ii) make sense of the generalised AP-scalings α‖, α⊥ of the ‘radial’

and ‘transverse’ component of the metric introduced in section 5.1.3.

• Finally, we assume that the empirical fitting function described in section 5.3.1

is appropriate for extracting the isotropic BAO characteristic scale and the

anisotropic distortion between the radial and transverse scale. (This assump-

tion is tested and confirmed for a fiducial ΛCDM model using mocks catalogues,

but is left as an ansatz for other cosmologies.)

Our methods allow us to explicitly formulate the 2-point correlation function in

the context of a broad class of cosmologies and hence analyse the clustering statistics

for those cosmologies in detail, instead of relying on results extrapolated from ΛCDM.

The only ΛCDM estimate used in this chapter enters when estimating errors in the

observed 2-point correlation function, where we use mocks generated from a fiducial

ΛCDM model to give a rough estimate for the variance over ensembles of our sky.

When testing our methods on ΛCDM mocks we recover the isotropic peak position

to within one per cent of the fiducial value. This <∼ 1% discrepancy is due to a calibra-
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tion issue between the characteristic scale extracted in the fitting procedure and the

underlying BAO scale discussed in section 5.3. It should be noted that, while this level

of systematic error is somewhat higher than obtained by ΛCDM fitting procedures,

it can be considered low in (semi-)model independent analysis. Removing cosmology

dependence in data reduction necessarily comes at the price of increasing uncertainties.

The systematics related to the BAO scale extraction in the context of other models

must be assessed for each cosmology of interest. The anisotropic scaling parameter ε is

recovered to high precision; the systematics in our mock analysis on the determination

of ε are much smaller than the usual statistical errors in ΛCDM fitting procedures.

The estimation of the ε parameter is robust to the exact form of the fitting function

assumed, and is not associated with the calibration issues of the statistical BAO scale.

A shortcoming of this analysis is that a fiducial cosmology of choice is still needed

in order to reduce data into a 2-point correlation function. Model-independent analysis

has been proposed in, e.g., [211] and [210]. While such procedures are certainly relevant

for next-generation surveys, the signal strength is greatly reduced due to the split of

the fiducial spatial scale to a range of angular and redshift separations.

Another shortcoming of this analysis is the approximations of section 5.1.2, implying

that only effective cosmic metric theories which are averaged on scales of the order

of the BAO scale can be tested in our framework. While testing more complicated

models with a hierarchy of curvature scales, describing different scales of structure in

our universe, would be of interest, this is beyond the scope of this analysis.

We apply our fitting methods to the BOSS DR12 CMASS and LOWZ galaxy sur-

veys using two fiducial cosmologies: a spatially flat ΛCDM model and the timescape

model, which at the present epoch has a marginal apparent acceleration with a re-

cent expansion history closer to the empty FLRW universe. We recover the pre-

reconstruction results for the BAO peak position and the anisotropic distortion pa-

rameter ε based on ΛCDM template-fitting obtained in [194].

It should be noted, that since the parameter estimates of our empirical procedure

and of the standard ΛCDM template-fitting are based on the same datasets, any dif-

ference in the results can be attributed to systematic differences in the parameter

extraction procedures. For procedures with small systematic differences as compared

to the statistical errors, we would thus expect differences in parameter estimates much

smaller than 1σ. The systematic differences between the present procedure and the

standard ΛCDM procedure are smaller, but of order, the statistical errors. The main
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difference between the estimated BAO peak position of the present procedure and of

the standard ΛCDM power spectrum fitting procedure can be ascribed to the system-

atics related to the calibration of the BAO scale in the empirical fit (see discussion

in section 5.3). Other examples of systematics between the procedures that can lead

to differences in the parameter estimates are: choice of statistical framework, choice

of priors, and galaxy weights. For example, the σBAO/α prior in the present analysis

has a ∼ 1% effect on the peak position, which is comparable to the differences in our

inferred scale as compared to the results of [194].

Based on our empirical model for the shape of the 2-point correlation function, we

find that the BAO feature of the models is detected at a similar level of significance

in the two cosmologies, and that the distortion between the radial and transverse

directions, quantified by the ε parameter, is consistent with zero for both fiducial

models within 2σ. Thus, both models are consistent with no anisotropic distortion

with respect to the ‘true’ cosmological model, and thus provide self-consistent fits to

the BAO-data. This finding is interesting in light of the significant difference between

the timescape model and the ΛCDM model distance measures (see figure 5.1).

Our analysis suggests that a wide class of cosmological models can yield a statis-

tically isotropic BAO feature with ε = 0, consistent with the expectation of statistical

homogeneity and isotropy of our universe. In future work, we will combine these BAO

measurements with estimations of the standard ruler scale in timescape cosmology to

perform a full model comparison.

139



Appendix 5.A Taylor expansion of geodesic distances

In the present analysis we make use of a Taylor expansion of the spatial geodesic

distance between two points on a spatial hypersurface. Such an expansion is convenient

when the spatial geodesic equation (defined on spatial hypersurfaces of interest) of the

model under investigation has no analytic solution, and applicable when the curvature

scale of the model is much larger than the particle separation of interest.

We consider a metric on the form eq. (5.1)

ds2 = −α2c2dt2 + gijdx
idxj, (5.50)

where t defines a spatial foliation of interest (in the context of this analysis, t = constant

slices are taken to coincide with the matter frame, which can be done in the absence

of vorticity).

Consider a geodesic spatial line between two points P1 and P2 on the hypersurface

t = T , such that the line is required to lie in the t = T plane everywhere. The geodesic

distance between the points is given by

dT (P1, P2) ≡
∫ l2

l1

dl

√
gij
dxi

dl

dxj

dl
= l2 − l1 (5.51)

where l is the affine parameter along a spatial geodesic connecting P1 and P2, dxi

dl

is the tangent to the geodesic with gij
dxi

dl
dxj

dl
= 1, l1 = l(P1) and l2 = l(P2) is the

affine parameter evaluated at the endpoints. The function dT coincides with the La-

grangian distance DT defined in section (5.1.1), when the points P1 and P2 represent

the intersection of two particle worldlines with the surface t = T .

We expand the coordinate functions on the line in the affine parameter l

xi2 = xi1 +
dxi

dl

∣∣∣∣
l=l1

(l2 − l1) + f i, (5.52)

f i =
∞∑
n=2

f in, f in =
1

n!

dnxi

dln

∣∣∣∣
l=l1

(l2 − l1)n
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where xi1 = xi(P1) and xi2 = xi(P2) are the coordinate labels of the end points. The

higher-order terms f in can be expressed in terms of ∆xi = xi2 − xi1 up to a given order.

Here we shall keep terms up to O (f i3), where we assume ∆xjfk2 ∼O (f i3) etc. The

second order term yields

f i2 =
1

2

d2xi

dl2
(l2 − l1)2 = −1

2
Γijk

dxj

dl

dxk

dl
(l2 − l1)2 (5.53)

= −1

2
Γijk(∆x

j − f j)(∆xk − fk) = −1

2
Γijk ∆xj ∆xk + Γijk ∆xj fk2 +O

(
f i4
)

= −1

2
Γijk ∆xj ∆xk − 1

2
ΓijkΓ

k
st ∆xj ∆xs ∆xt +O

(
f i4
)
,

where the first line follows from the affine geodesic equation, the second line follows

from applying (5.52) and keeping terms up to O (f i3). The third line comes from

recursively plugging (5.53) into itself and again keeping terms up to O (f i3). The

evaluation at l = l1 is implicit.

With a similar derivation, the third-order term of the expansion eq. (5.52) yields

f i3 =

(
1

3
ΓijkΓ

k
st −

1

6
∂sΓ

i
jt

)
∆xj∆xs∆xt +O

(
f i4
)
. (5.54)

We can now expand the geodesic distance (5.51) in an adapted coordinate system xi

of choice. Keeping terms up to O (f i4) we have

dT (P1, P2) = l2 − l1 =

√
gij
dxi

dl

dxj

dl
(l2 − l1)2 (5.55)

=
√
gij(∆xi − f i)(∆xj − f j)

=

√
gij∆xi∆xj − 2gij∆xi(f

j
2 + f j3 ) + gijf i2f

j
2 +O (f i5)

=
√

(0)g + (1)g + (2)g +O (f i5),

where all terms are evaluated at l = l1. The first line follows from a convenient mul-

tiplication by 1 =
√
gij

dxi

dl
dxj

dl
. The following lines comes from applying the expansion

(5.52) and truncating the resulting terms at O (f i4). In the last line we have used the
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definitions

(0)g ≡ gij ∆xi∆xj, (1)g ≡ gij Γjst ∆xi∆xs∆xt (5.56)

(2)g ≡
[

1

3
gij
(
∂sΓ

j
tb + ΓjabΓ

a
st

)
+

1

4
gkj ΓkstΓ

j
ib

]
∆xi∆xs∆xt∆xb

The extent to which the coordinate expansion (5.55) is accurate at a given truncation of

the series depends on the space-time metric and the chosen events P1 and P2, but also

on the adapted coordinates used in the expansion. The convergence of the expansion

(5.55) must be examined for the particular problem at hand.

5.A.1 Spherically symmetric metrics

As a special case relevant for this chapter we consider the spherically-symmetric metric

(5.3) of section 5.1.2. The adapted metric on the spatial hypersurfaces given by eq. (5.4)

ds2
T = grr(t = T, r)dr2 + gθθ(t = T, r)

(
dθ2 + cos2(θ)dφ2

)
. (5.57)

In this case we have for the lowest-order term of eq. (5.55)

(0)g = grr(∆r)
2 + gθθ

(
(∆θ)2 + cos2(θ)(∆φ)2

)
. (5.58)

The first order correction yields

(1)g =
1

2

∂

∂xk
(gsm)∆xm∆xk∆xs (5.59)

=
1

2
∆grr(∆r)

2 +
1

2
∆gθθ

(
(∆θ)2 + cos2(θ)(∆φ)2

)
+

1

2
gθθ[∆ cos2(θ)](∆φ)2,

where we have defined

∆grr ≡
dgrr
dr

∆r, ∆gθθ ≡
dgθθ
dr

∆r, ∆ cos2(θ) ≡ d(cos2(θ))

dθ
∆θ. (5.60)

Combining the lowest order term and the first order correction we thus have for

eq. (5.55) up to O
(

(2)g
)

dT (P1, P2) =

√
grr(∆r)

2 + gθθ

(
(∆θ)2 + cos2(θ)(∆φ)2

)
+O ((2)g), (5.61)
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where we have used the definition

grr ≡ grr + 1
2
∆grr, gθθ ≡ gθθ + 1

2
∆gθθ, cos2(θ) ≡ cos2(θ) + 1

2
∆ cos2(θ), (5.62)

and a term −1
2
∆gθθ[∆ cos2(θ)](∆φ)2 is subsumed in the O

(
(2)g
)

terms in (5.61). Hence

the first order correction represents a shift of evaluation at xi1 to the mean coordinate

point x̄i = xi1 + 1
2
∆xi.

We can examine the accuracy of the approximation (5.61), truncated at first order,

by evaluating the second order correction terms of (2)g, which will contain terms of

order ∼ ((1)g)
2

(0)g
and terms involving the second derivatives of the metric. All of these

terms should be evaluated in the model of interest and in the desired coordinate system,

in order to examine the approximation (5.61). For observational coordinates (z, θ, φ)

in both the FLRW and timescape model with realistic model parameters, we find
(2)g
(0)g

<∼ 10−3, for separation distances ∆z, ∆θ, ∆φ around the BAO scale.

Appendix 5.B The 2-point correlation function

The spatial 2-point correlation function ξ describes the excess probability of finding

two galaxies at two given points on a spatial surface, relative to an uncorrelated sample.

The typical formulation of the 2-point correlation function in standard cosmology is

tightly linked to the assumption of symmetries of the ‘background’ FLRW space-time,

and the ergodic assumptions on the density perturbation field on top of the background,

which leads to the modelling of the galaxy distribution as a stationary and ergodic point

process.

Thus if we revisit the ‘background’ cosmology, or do cosmology without imposing

a background, we should also revisit the theory underlying the 2-point correlation

function. Here we seek to provide a more general introduction to the 2-point correlation

function, valid for models with no exact symmetries in the pointwise ensemble average

of the galaxy counts.

Consider a spatial domain of a hypersurface D. We view the position of the galaxies

within this domain as random variables, and fix the total number of galaxies N within

the domain D. We use adapted coordinates xi on the hypersurface, and denote the

random position of the a’th particle xia. The scaled probability (ensemble average

number count) of finding two galaxies located in the infinitesimal volume elements
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dVX and dVY centred at the points xi = X i and xi = Y i can be written as

f(X, Y )dVX dVY ≡ 〈N(dVX)N(dVY )〉 , (5.63)

where f(X, Y ) is the number count density and where

N(dVX) ≡
N∑
a

1dVX (xia). (5.64)

is the number count in the volume element dVX in a given realisation, where

1dVX (xia) =

1, xia ∈ dVX ,
0, xia /∈ dVX ,

(5.65)

is the indicator function. (If the volume dVX is made small enough, this is zero or one

in practice.) The spatial volume elements dV are given by15 the adapted metric (5.1)

dV =
√

det(gij)dx
1 ∧ dx2 ∧ dx3. (5.66)

The integral of (5.63) over two arbitrary domains DX ∈ D and DY ∈ D is∫
X∈DX

∫
Y ∈DY

f(X, Y )dVX dVY = 〈N(DX)N(DY )〉 (5.67)

following from the property 1A∪B(y) = 1A(y) + 1B(y) of the indicator function, where

A and B are disjoint sets.

The scaled probability of finding a galaxy in the small volume dVX (ensemble av-

erage number count) can be expressed as an integral over (5.67)

f(X)dVX ≡ 〈N(dVX)〉 =
1

N

∫
Y ∈D

f(X, Y )dVX dVY . (5.68)

We shall be interested in writing the probability (5.63) in terms of the excess probability

15 We could alternatively absorb any non-zero function into the number count density f(X,Y ) and
make the redefinition f(X,Y ) → det(gij)f(X,Y ), dV → dV/

√
det(gij) = dx1 ∧ dx2 ∧ dx3 if we

prefer to work in terms of coordinate volumes instead of physical volumes.
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of the uncorrelated process

fPoisson(X, Y ) = f(X)f(Y ), X 6= Y. (5.69)

Assuming that f(X) 6= 0 over the domain D we can write

f(X, Y ) dVX dVY = f(X)f(Y ) (1 + ξ(X, Y )) dVX dVY (5.70)

where we have defined

ξ(X, Y ) =
f(X, Y )

f(X)f(Y )
− 1. (5.71)

This correlation function, ξ, is zero for X 6= Y for a Poisson point process per con-

struction, and measures the departure from an uncorrelated distribution of galaxies.

The correlation function (5.71) is a function of all 6 variables (X i, Y i) in a general

inhomogeneous universe. In practice, in BAO analysis, we are interested in integrating

out some of these degrees of freedom, to isolate a characteristic statistical scale. We

can make the substitution (X i, Y i)→ (X i, n̂iX , D) in (5.63), where n̂iX is a unit vector

at X i defining a geodesic starting at X i and intersecting Y i and D is the geodesic

distance from X i to Y i

f(X, Y ) dVX dVY = f(X, n̂X , D) dVX dn̂X dD = f(X, n̂X , D) J dVX dVY (5.72)

with

J ≡ det

(
∂(X, n̂X , D)

∂(X, Y )

)
(5.73)

being the Jacobian of the transformation. It follows that (5.71) reads

ξ(X, n̂X , D) =
f(X, n̂X , D)

fPoisson(X, n̂X , D)
− 1, (5.74)

where the Jacobian J of the transformation (X i, Y i) → (X i, n̂iX , D) cancels in (5.71),

since f and fPoisson have identical transformations. We denote the random process

underlying the ensemble homogeneous and isotropic if fHI(X+α) = fHI(X), fHI(X+

α,Rn̂X , D) = fHI(X, n̂X , D) are satisfied, where α is an arbitrary translation, R is
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an arbitrary rotation of the unit vector n̂X , and where the subscript HI stands for

homogenous and isotropic. In this case (5.74) becomes the so-called reduced 2-point

correlation function

ξHI(D) =
fHI(D)

fHI Poisson(D)
− 1. (5.75)

In the general case where the random process underlying the ensemble is not associated

with any exact symmetries, we can still create a reduced version of the correlation

function (5.74) by marginalising over the direction and position degrees of freedom

n̂X , X. This can be done as follows. We define the marginalised number count density

over a subdomain DS ∈ D as

f(D,DS) ≡
∫
X∈DS

dVX

∫
dnXf(X, n̂X , D). (5.76)

The marginalised ensemble number count in a small range of affine distance dD is given

by

f(D,DS)dD =

〈
N∑
a,b

1[D,D+dD](D(xia, x
i
b))1DS(xia)

〉
, (5.77)

where we have used the fact that we can rewrite the number count in terms of the new

coordinates X, n̂X , D,

N(dVX)N(dVY ) =
N∑
a,b

1dVX (xia)1dVY (xib)

=
N∑
a,b

1dVX (xia)1[n̂X ,n̂X+dn̂X ](n̂X(xia, x
i
b)) 1[D,D+dD](D(xia, x

i
b)), (5.78)

and that by (5.72) f(X, n̂X , D) dVX dn̂X dD = 〈N(dVX)N(dVY )〉. We can write (5.76)

in terms of fPoisson(D,DS) defined through the integral over fPoisson(X, n̂X , D) analogue

to (5.76).

f(D,DS) dD = fPoisson(D,DS) (1 + ξ(D,DS)) dD, (5.79)
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with

ξ(D,DS) =
f(D,DS)

fPoisson(D,DS)
− 1, (5.80)

which we denote the ‘marginalised’ two point correlation function.

Note that eq. (5.80) has the form of the conventional reduced 2-point correlation

function of a homogenous and isotropic cosmology. However, the interpretation is

different here, as the reduction does not follow from symmetry assumptions on the

probability distribution of the density field, but rather follows from marginalisation over

the position and direction degrees of freedom (and hence depends on scale through DS).

Eq. (5.80) coincides with the conventional 2-point correlation function (5.75) when the

galaxy distribution is assumed to be represented by a homogeneous and isotropic point

process. We can thus view eq. (5.80) as a generalisation of the 2-point correlation

function to inhomogeneous space-times.

For models of the form outlined in section 5.1.2 we can decompose n̂X into µ,

sgn(δz), and the normalised angular separation vector δΘ̂ = 1
|δΘ|(δθ, cos(θ)δφ). In this

case we can write

f(X, Y )dVX dVY = f(X,µ, sgn(δz), δΘ̂, D)dVX dµ dδΘ̂ dD (5.81)

and we can construct a marginalised number count density in D analogue to (5.76) by

marginalising over the remaining variables. We shall sometimes be interested in keeping

µ as a variable, and construct the following marginalised number count density

f(D,µ,DS) ≡
∑

sgn(δz)=±1

∫
X∈DS

dVX

∫
dδΘ̂ f(X,µ, sgn(δz), δΘ̂, D), (5.82)

for which we can define the marginalised µ-dependent 2-point correlation function

ξ(D,µ,DS) =
f(D,µ,DS)

fPoisson(D,µ,DS)
− 1. (5.83)

Integrating out the µ-dependence in (5.82) we arrive at the marginalised isotropic

number count density f(D,DS) from which we can construct the isotropic marginalised

2-point correlation function of (5.80).16

16 For the estimate of (5.83) or (5.80) based on number counts in a subdomain DS′ of a single realisa-
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We define the ‘wedge’ as the mean of eq. (5.83) over a given µ range [µ1, µ2].

ξ[µ1,µ2](D) ≡ 1

µ2 − µ1

∫ µ2

µ1

dµ ξ(D,µ), (5.84)

where the dependence on DS is implicit in (5.84) and in the following. It can be viewed

as the mean excess of probability of finding two galaxies a distance D apart over the

given µ range. We define the transverse and the radial wedge as respectively

ξ⊥(D) ≡ ξ[0,0.5](D), ξ‖(D) ≡ ξ[0.5,1](D). (5.85)

When f(D,µ) is mainly depending on D such that

f(D,µ) = f(D)(1 + h(D,µ)), h(D,µ)� 1 (5.86)

fPoisson(D,µ) = fPoisson(D)(1 + hPoisson(D,µ)), hPoisson(D,µ)� 1,

we have the useful approximation∫ 1

0

dµ ξ(D,µ) =

∫ 1

0

dµ
f(D)(1 + h(D,µ))

fPoisson(D)(1 + hPoisson(D,µ))
− 1 (5.87)

≈
∫ 1

0

dµ
f(D)

fPoisson(D)
(1 + h(D,µ)− hPoisson(D,µ))− 1

=
f(D)

fPoisson(D)
− 1 = ξ(D)

where we have used
∫ 1

0
dµ h(D,µ) = 0 and

∫ 1

0
dµ hPoisson(D,µ) = 0 by construction.

Note that corrections to eq. (5.87) are second order in h and hPoisson. A similar ap-

proximation can be formulated for the wedges (5.84)

ξ[µ1,µ2](D) ≈ ξ(D,µ1 ≤ µ ≤ µ2) ≡ f(D,µ1 ≤ µ ≤ µ2)

fPoisson(D,µ1 ≤ µ ≤ µ2)
− 1. (5.88)

tion of the ensemble to be representative for the ensemble average, we must invoke the approximate
convergence condition ξ̂(D,D′S)limV (DS′ )→∞ ≈ ξ(D,DS) for some choice of scale V (DS), with fast
enough convergence of the estimate. In practice DS′ will correspond to a given survey domain.
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CHAPTER 6

Quantifying the accuracy of the

Alcock-Paczyński scaling of baryon

acoustic oscillation measurements

Most work on the 2-point correlation function (theoretical and observational) has

been done assuming homogeneous spatially-flat FLRW models. While cosmological

data, when interpreted within the ΛCDM cosmology, suggests that the universe is

spatially flat on large scales, there is nothing preventing significant large-scale spatial

curvature if the universe is more accurately described by a model outside the class of

the conventionally studied FLRW models which may still be consistent with the data.

This is the case, e.g., in the timescape model [95, 96, 97] which is used as a test-case

in this analysis.

In large-scale structure analysis there are strong motivations for assuming a fiducial

cosmological model in data reduction such as the use of of N -body mocks to investigate

non-linear effects. In the context of BAOs, applying a fiducial cosmological model

allows the computation of an accurate template for the BAO peak and all galaxy

pairs to be binned by their estimated co-moving spatial separation. Reconstruction

methods [195] based on ΛCDM perturbation theory can further enhance the signal.

An obvious draw-back of imposing fiducial model cosmologies in data reduction is that

the assumptions of a model cosmology are then implicitly present in the conclusions

drawn. This may in some cases bias the results, lead to an underestimation of the error

budget, and will in a worst-case scenario lead to circular verification of the assumed

fiducial cosmological model.

Alcock and Paczyński [217] introduced a geometric test to compare radial and

transverse distance measures for a spherical region that is expanding with the Hubble

flow in a FLRW model. This provided the means to distinguish FLRW models with

a cosmological constant from those with Λ = 0. Recent analyses of the BAO scale
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build on the ideas of Alcock and Paczyński [217] and its early applications [218, 219],

and are now described as AP scaling methods. In modern analysis these methods are

applied to parametrise a FLRW trial cosmology in terms of a different fiducial FLRW

cosmology to ‘first order’ [220, 199].

The AP scaling used in BAO analysis, (see, e.g., [194, 193]), makes use of this

reparametrisation in order to test cosmological models different to the fiducial model.

The extent to which the AP scaling methods, which rely on the scaling of a fidu-

cial template-metric by two constant ‘AP scaling parameters’, can be thought of as

independent of the fiducial model cosmology has not been thoroughly tested in the

literature. This question is important for the range of validity of the distance mea-

surements inferred from such procedures, and for constraining alternative cosmological

models to that of the fiducial template-metric used to extract them.

While the systematic errors related to the AP-distortion of conventional BAO anal-

ysis have been quantified by some studies such as [208, 221], such analyses usually only

examine the cases of a few ΛCDM models which are close in terms of model param-

eters. In this chapter we will test the extent to which this underestimates the error

for constraining models which are outside the narrow space of cosmological models as-

sessed for systematics, using the framework developed in chapter 5 to study the 2-point

correlation function and the BAO feature in spherically-symmetric template metrics.

In section 6.1 we outline some theoretical results and definitions on which the

analysis of this work is built. In section 6.2 we provide general results for the effect of

the AP scaling on the 2-point correlation function as viewed in the fiducial cosmological

model as compared to the ‘true’ underlying cosmological model, and we propose a

new and improved AP scaling approximation. In section 6.3 we apply our results to

a concrete model of the 2-point correlation function, and investigate how the BAO

feature depends on the redshift-dependent AP scaling. In section 6.4 we test our

predictions by applying them to the 2-point correlation function based on ΛCDM

mock catalogues and formulated in a selection of fiducial model cosmologies, some of

which are ‘physical’ cosmological models built from general relativistic modelling and

some of which are ‘artificial’ models. We assess systematic errors associated with the

AP scaling approximations and additional systematic errors. We discuss our results in

section 6.5.
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6.1 The framework

6.1.1 Models under investigation

We follow chapter 5 and consider the observer-adapted spherically-symmetric template

metrics1

ds2 = −α(t, r)2c2dt2 + grr(t, r) dr
2 + gθθ(t, r)

(
dθ2 + cos2(θ)dφ2

)
, (6.1)

where θ and φ are angular coordinates on the observer’s sky, r is a radial coordinate,

and t is a time-coordinate labelling surfaces orthogonal to the ‘matter frame’ with

which the galaxies of the survey are (statistically) comoving. We shall further assume

that the model-redshift z of radially propagating null rays is monotonic in the radial

coordinate r, in which case the adapted metric on a given 3-surface selected by t = T

can be written

ds2
T = gzz(t = T, r)dz2 + gθθ(t = T, r)

(
dθ2 + cos2(θ)dφ2

)
, (6.2)

where

gzz(t = T, r) ≡ grr(t = T, r)

(
dr

dz

)2

. (6.3)

As outlined in appendix 5.A, for small separations of points P1 and P2 on the t = T

hypersurface as compared to variations of the adapted spatial metric (6.2), the geodesic

distanceDT (P1, P2) between the points P1 and P2 represented by coordinates (z1, θ1, φ1)

and (z2, θ2, φ2) is

D2
T (P1, P2) ≈ gzz(t = T, z̄)(δz)2 + gθθ(t = T, z̄)(δΘ)2, (6.4)

1 The metric considered might be an exact solution to the Einstein equations (e.g., a Lemâıtre-
Tolman-Bondi space-time metric), a solution to other specified field equations from modified gravity
theories, or an effective metric which is not necessarily a space-time metric substituted into the
Einstein equations or any set of local field equations. The spherically-symmetric metrics allow for
defining the Alcock-Paczyński (AP) scaling in section 6.1.2.
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where z̄ = (z1 + z2)/2 is the intermediate redshift, δz = z2 − z1 is the separation in

redshift, and δΘ is the separation in angle

δΘ = arccos [sin(θ1) sin(θ2) + cos(θ1) cos(θ2) cos(φ2 − φ1)] (6.5)

≈
√

(θ2 − θ1)2 + cos2(θ̄)(φ2 − φ1)2, θ̄ = (θ1 + θ2)/2

As an example, for the FLRW and timescape [97, 128, 98] models with reasonable model

parameters, we find that higher-order corrections to eq. (6.4) are of order <∼ 10−3 for

galaxy separations of order 100 Mpc/h.

From the approximation (6.4) it is natural to define the ‘radial fraction’ of the

separation as

µT (P1, P2) =

√
gzz(t = T, z̄)(δz)2

DT (P1, P2)
. (6.6)

It is conventional to take the surface of evaluation t = T to be that of the ‘present

epoch’. When we refer to evaluation at the present epoch we shall omit the T subscript

on eq. (6.4) and (6.6). We shall also sometimes omit the reference to the points P1,P2

for ease of notation, and refer to DT (P1, P2) and µT (P1, P2) as D and µ respectively.

6.1.2 Alcock-Paczyński scaling

The conventional Alcock-Paczyński (AP) scaling as outlined in [220, 199] exploits the

fact that a geodesic distance between two points in a spherically-symmetric large-scale

metric can be approximated by (6.4), as long as second-order metric variations within

the distance spanned between the points are negligible.

The geodesic distance between ‘closely separated’ points in a model cosmology of

the type described in section 6.1.1 can be parametrised in terms of an unknown ‘true’

model cosmology of the same type, by associating points of the same observational

coordinates (z, θ, φ), as

D2 ≈ gzz(t = T0, z)(δz)2 + gθθ(t = T0, z)(δΘ)2 (6.7)

=
1

α2
‖(z)

gtr
zz(t

tr = T tr
0 , z)(δz)2 +

1

α2
⊥(z)

gtr
θθ(t

tr = T tr
0 , z)(δΘ)2

where ‘tr’ stands for the ‘true’ cosmology, t = T0 and ttr = T tr
0 are the ‘present epoch’
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hypersurfaces of the trial model cosmology and the ‘true’ model cosmology respectively,

and the redshift of evaluation z is the mean redshift of the points. The AP scaling

functions

α‖(z) ≡
√
gtr
zz(t

tr = T tr
0 , z)

gzz(t = T0, z)
, α⊥(z) ≡

√
gtr
θθ(t

tr = T tr
0 , z)

gθθ(t = T0, z)
, (6.8)

describe the relative radial and transverse distortion between the ‘true’ cosmology and

the trial cosmology. We can re-express the information of α‖(z) and α⊥(z) in terms of

the isotropic scaling function α(z) and the anisotropic scaling function ε(z)

α(z) ≡ (α2
⊥(z)α‖(z))1/3, (1 + ε(z))3 ≡ α‖(z)

α⊥(z)
. (6.9)

The definitions (6.9) are analogous to those presented in [220], except that we keep the

redshift dependence instead of assuming α(z) and ε(z) to be constant. The function

α(z) describes how the volume measure of a small coordinate volume δz cos(θ) δθ δφ

centred at z differs between the ‘true’ and the model cosmology, while ε(z) quantifies

the relative scaling of the angular and transverse metric components between the ‘true’

and the model cosmologies.

Using the definitions (6.6) and (6.9), we can rewrite the approximation (6.7) for

points with mean redshift z as (see chapter 5)

(Dtr)2 ≈ α2(z)D2 1 + ψ(z)µ2

(1 + ε(z))2
, ψ(z) ≡ (1 + ε(z))6 − 1. (6.10)

Similarly, using the definitions (6.6) and (6.9), and the result (6.10), we have the

relation

(µtr)2 ≈ µ2 (1 + ε(z))6

1 + ψ(z)µ2
. (6.11)

When the AP scaling is applied in standard analysis it is assumed that α(z) and ε(z)

can be considered constant and equal to their evaluation at the effective redshift of

the survey, i.e., that the replacement α(z) 7→ α(z̄) , ε(z) 7→ ε(z̄) is accurate. This

replacement is expected to be a reasonable approximation if the survey volume has a

relatively narrow redshift distribution, and if both the ‘true’ and the model metric are

slowly changing in redshift.
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In the present analysis we will investigate the correction terms that arise when we

take into account the variation of α(z) and ε(z) over the survey volume, and quantify

the accuracy of the usual constant AP scaling approximation α(z) 7→ α(z̄) , ε(z) 7→ ε(z̄)

when applied in the 2-point correlation function to extract the parameters of the BAO

feature.

6.1.3 Empirical model for the correlation function

In this section we introduce the empirical fitting function we use for examining the BAO

feature of the two-point correlation function, its dependence on the fiducial cosmology,

and the accuracy of the constant AP scaling approximation. We could have used the

fiducial ΛCDM template fitting function outlined, e.g., in [193], where the BAO feature

is derived from a model power spectrum. However, we expect the conclusions about

the accuracy of the constant AP scaling approximation to be similar between the two

fitting functions. The advantage of considering the simple empirical fitting function is

that it does not assume a particular cosmological model. Specifically, for non-FLRW

models where no well-defined perturbation theory exists, but where we nevertheless

expect a statistical standard ruler to be present in form of a BAO scale, we must rely

on empirical extraction methods of the BAO characteristic scale. Furthermore, the

simple form of the empirical fitting function presented here allows us to obtain useful

analytical results.

We follow chapter 5 and consider the model for the 2-point correlation function

(6.57)

ξtr(Dtr, µtr, z) = (Dtr)2A(z) e
−(Dtr−r)

2

2σ2(z) +Ctr
0 (µtr, z) +

Ctr
1 (µtr, z)

Dtr
+
Ctr

2 (µtr, z)

(Dtr)2
, (6.12)

as formulated in the underlying ‘true’ cosmology, where r denotes the BAO scale or a

characteristic scale shifted with respect to the BAO scale. (See the discussion below

on calibration of the BAO scale.) The polynomial terms account for the ‘background’

shape of the correlation function without the BAO feature and are equivalent in form to

those of [193]. The scaled Gaussian models the BAO feature, and replaces the ΛCDM

power spectrum model of [193]. Empirical models of similar form to (6.12) have been

considered in, e.g., [209, 210, 211].

Note that in contrast to previous analyses we are modelling the redshift-dependent
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2-point correlation function ξtr(Dtr, µtr, z) (6.57). This is done to examine the impact

of the redshift dependence of the generalised AP-scaling functions (6.9). For simplicity

we assume a model where A and σ are constant for the numerical investigations in this

chapter, while no assumption is made on the redshift dependence of the polynomial

coefficients.

We assume the peak of the BAO feature r to be a ‘standard ruler’ independent of

redshift. This approximation is good in ΛCDM cosmology as confirmed with ΛCDM

mock catalogues in [212] using standard ΛCDM template procedures and in chapter

5 using the empirical model presented here. From the results in [212] and chapter 5

we can expect shifts of the BAO scale of <∼ 0.5% in a ΛCDM universe at redshifts

& 0.3. The approximation is less obviously good in non-ΛCDM cosmology, where

environmental dependence of the BAO peak is expected [197]. However, as long as:

(i) data is not binned according to environmental factors such as density, and (ii) each

redshift slice represents the volume average for the corresponding approximate cosmic

epoch, then we might make the ansatz that r is an approximate statistical standard

ruler for volume measures.

The scaling of the Gaussian part of the model 2-point correlation function in (6.12)

is an approximation that accounts for calibration issues in BAO physics: that the

local maximum of the 2-point correlation function does not in general correspond to

the BAO scale. (In ΛCDM cosmology these two scales differ by roughly ∼ 2 − 3%.)

The scaling by the factor (Dtr)2 of the Gaussian feature allows us to interpret the

mean of the Gaussian r as the BAO scale with a precision of < 1% within the ΛCDM

concordance cosmology, as verified with ΛCDM mock catalogues in chapter 5. Note

that the degree to which r can be interpreted as a BAO scale for other models must

be assessed for each particular case, or simply be posed as an ansatz of the analysis.2

2 For models where perturbation theory has yet to be developed, we cannot predict how the sound
horizon scale of the drag epoch will appear in the galaxy distribution, and an ansatz is needed in
order to constrain the sound horizon scale at the drag epoch with galaxy catalogues.
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6.2 Theoretical investigation of the redshift-dependent

Alcock-Paczyński scaling

In this section we investigate how the redshift-dependent Alcock-Paczyński scaling

enters in the 2-point correlation function. We quantify the accuracy of the conventional

constant Alcock-Paczyński (AP) scaling approximation α(z) 7→ α(z̄), ε(z) 7→ ε(z̄) over

the survey volume. Based on our investigations, we propose a new and improved

version of the constant Alcock-Paczyński (AP) scaling.

In standard BAO analysis, as described in, e.g., [220, 199] for ΛCDM cosmology, and

in the generalisation of such analyses to generic geometries (see chapter 5), the fitting

procedure is based on making an ansatz for the form of the 2-point correlation function

as formulated in the unknown ‘true’ cosmological model. Furthermore, the assumed

function is parameterised in a given fiducial cosmology using AP scaling methods as

outlined in section 6.1.2.

6.2.1 Re-parametrisation of the 2-point correlation function

Suppose that the 2-point correlation function (6.57) in D, µ, and z has the form

ξtr(Dtr, µtr, z) =
f tr(Dtr, µtr, z)

f tr
Poisson(Dtr, µtr, z)

− 1, (6.13)

in the ‘true’ spherically-symmetric cosmology, where f tr(Dtr, µtr, z) and f tr
Poisson(Dtr, µtr, z)

are the probability densities of finding a pair of galaxies separated by Dtr and µtr with

one of the galaxies centred at z, in the catalogue and random catalogue respectively.

We can express ξ(D,µ, z) of any other given spherically-symmetric model in terms of

ξtr(Dtr, µtr, z) in the following way

ξ(D,µ, z) =
f(D,µ, z)

fPoisson(D,µ, z)
− 1 =

J f tr (Dtr (D,µ, α(z), ε(z)) , µtr(µ, ε(z)), z)

J f tr
Poisson (Dtr(D,µ, α(z), ε(z)), µtr(µ, ε(z)), z)

− 1

= ξtr
(
Dtr(D,µ, α(z), ε(z)), µtr(µ, ε(z)), z

)
, (6.14)

where J is the determinant of the Jacobian of the transformation (Dtr, µtr) 7→ (D,µ)

which can be derived from (6.10) and (6.11). The first line follows from the transfor-

mation of a density under a change of variables by the determinant of the Jacobian of

the transformation, and the second line follows from the cancellation of J in the nu-
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merator and denominator of the expression. Note that Dtr and µtr introduce redshift

dependence in ξ(D,µ, z) through α(z) and ε(z). We shall sometimes be interested in

evaluating the right hand side of (6.14) for parameters α and ε which do not necessar-

ily correspond to the redshift dependent AP scaling functions α(z) and ε(z). In such

cases we simply write ξtr (Dtr(D,µ, α, ε), µtr(µ, ε), z) for evaluation for any given point

z, α, ε.

As outlined in appendix 6.A, ξ(D,µ) (6.59) can be obtained as a weighted integral

in redshift over ξ(D,µ, z) if the condition of almost multiplicative separability (6.63)

is satisfied. If this is the case the result in (6.66) holds, and to first order in the non-

multiplicatively separable functions δ(D,µ, z) and δPoisson(D,µ, z) defined in (6.63), we

have

ξ(D,µ) ≈
∫

dz P (z) ξ(D,µ, z), (6.15)

where P (z) is the normalised galaxy distribution in redshift (6.62). We might further

expand ξ(D,µ, z) = ξtr (Dtr(D,µ, α, ε), µtr(µ, ε), z) to first order in z, α, and ε, (leaving

α and ε as exact functions in z, rather than their approximations in terms of expansions

in z), around some appropriate point z =
◦
z to obtain

ξ(D,µ) ≈
∫

dz P (z) ξ(D,µ, z) =

≈
∫

dz P (z)

(
ξtr
∣∣◦
z,
◦
α,
◦
ε

+
∂ξtr

∂z

∣∣∣∣◦
z,
◦
α,
◦
ε

(z − ◦z) +
∂ξtr

∂α

∣∣∣∣◦
z,
◦
α,
◦
ε

(α− ◦
α) +

∂ξtr

∂ε

∣∣∣∣◦
z,
◦
α,
◦
ε

(ε− ◦ε)
)

= ξtr
∣∣◦
z,
◦
α,
◦
ε

+
∂ξtr

∂z

∣∣∣∣◦
z,
◦
α,
◦
ε

(z̄ − ◦z) +
∂ξtr

∂α

∣∣∣∣◦
z,
◦
α,
◦
ε

(ᾱ− ◦
α) +

∂ξtr

∂ε

∣∣∣∣◦
z,
◦
α,
◦
ε

(ε̄− ◦ε)

≈ ξtr
∣∣
z̄,ᾱ,ε̄

, (6.16)

where {◦z, ◦α, ◦ε} = {◦z, α(
◦
z), ε(

◦
z)}, and where we use the short hand notation ξtr|z,α,ε ≡

ξtr (Dtr(D,µ, α, ε), µtr(µ, ε), z) where the dependence on D,µ is implicit. In the third

line of (6.16) we have used the short-hand notation for the averages in redshift

z̄ ≡
∫

dz P (z) z , ᾱ ≡
∫

dz P (z)α(z) , ε̄ ≡
∫

dz P (z) ε(z) , (6.17)

which we use throughout this analysis. The accuracy of the expansion (6.16) depends
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on the magnitude of the deviations of z, α, ε over the survey and on the function

ξ(D,µ, z) = ξtr (Dtr(D,µ, α, ε), µtr(µ, ε), z).

The result in (6.16) suggests that the re-parametrising of a given physical 2-point

correlation function in terms of a distorted fiducial cosmology is more accurately de-

scribed by the survey averages ᾱ and ε̄ of the AP-scaling functions, rather than by the

same AP-scaling functions evaluated at the mean redshift of the survey α(z̄) and ε(z̄).

This conjecture is substantiated in appendix 6.B. We shall examine this hypothesis for a

set of concrete empirical models for the 2-point correlation function of mock catalogues

in section 6.4.

We will denote the replacement α(z) 7→ ᾱ, ε(z) 7→ ε̄ the modified constant AP scal-

ing approximation, in order to distinguish it from the standard constant AP scaling

approximation α(z) 7→ α(z̄), ε(z) 7→ ε(z̄). The modified constant AP scaling approxi-

mation is intuitive, and formalises that statistical estimators built from a survey probe

averaged distance scales over the survey volume.

6.2.2 Bounding the difference between the constant AP scal-

ing approximations

We now quantify the difference between the modified constant AP scaling approxi-

mation α(z) 7→ ᾱ, ε(z) 7→ ε̄ and the standard constant AP scaling approximation

α(z) 7→ α(z̄), ε(z) 7→ ε(z̄). In the ideal case, where the modified constant AP scaling

approximation α(z) 7→ ᾱ, ε(z) 7→ ε̄ can be made with no error in the approximation

(6.16), we can view the difference between the two AP approximations as quantifying

the error in the conventional AP approximation α(z) 7→ α(z̄), ε(z) 7→ ε(z̄).3

Assuming that α(z) and ε(z) are both twice differentiable over the redshift range

of the survey we can use the following approximations

α(z) = α(z̄) +
∂α

∂z
(z̄) (z − z̄) +Rα

1 (z) , ε(z) = ε(z̄) +
∂ε

∂z
(z̄) (z − z̄) +Rε

1(z) ,

(6.18)

where Rα
1 (z) and Rε

1(z) are the remainder terms of the first order expansions in α and

3 Indeed, the modified constant AP scaling approximation α(z) 7→ ᾱ, ε(z) 7→ ε̄ turns out to be very
accurate for the broad sample of tested models in section 6.4.
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ε respectively. Let us first consider the α parameter. Its integral reads

ᾱ =

∫
dz P (z)α(z) = α(z̄) (1 + ∆α) , (6.19)

where we define the ‘error term’ as

∆α ≡
1

α(z̄)

∫
dz P (z)Rα

1 (z) , (6.20)

where it has been used that the first order term in (6.18) vanishes by construction, since

(z − z̄) ≡
∫
dz P (z) (z − z̄) = 0 . We can bound the error term (6.20) by bounding

the remainder Rα
1 (z) of the first order expansion (6.18). The detailed derivations of

a bound on the error term (6.20) and the corresponding error term for ε are given in

appendix 6.C. We obtain the following bound, derived in appendix 6.C.1:

|∆α| ≤
1

2

Mmax
L 0

Mmin
L 0

(
βL 2ML 2 + 2β2

L 1ML 1

)
(z − z̄)2, (6.21)

where Mmin
L 0 , Mmax

L 0 , ML 1, ML 2, βL 1, and βL 2 are all positive dimensionless constants

bounding the metric combinations L ≡ (g2
θθgzz)

1
6 , Ltr ≡ ((gtr

θθ)
2gtr
zz)

1
6 and their deriva-

tives in the following way

Mmin
L 0 ≤

Ltr

L
≤Mmax

L 0 ,

∣∣∣∣∣∣
(
∂Ltr/∂z
Ltr

)
(
∂L/∂z
L

) − 1

∣∣∣∣∣∣ ≤ML 1 ,

∣∣∣∣∣∣
(
∂2Ltr/∂z2

Ltr

)
(
∂2L/∂z2

L

) − 1

∣∣∣∣∣∣ ≤ML 2 ,

(6.22)

∣∣∣∣∣ ∂L∂zL
∣∣∣∣∣ ≤ βL 1 ,

∣∣∣∣∣ ∂
2L
∂z2

L

∣∣∣∣∣ ≤ βL 2. (6.23)

We note that it is possible to have order of magnitude ∼ 1 deviations between the

models such that Mmax
L 0 ∼ 1/Mmin

L 0 ∼ 2 and ML 1 ∼ ML 2 ∼ 1 while still having ∆α <∼
a few percent, depending on the survey and of the first and second-order derivatives

of L. We shall investigate bounds for various choices of trial cosmologies in subsection
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6.2.3 below. Let us next consider the corresponding integral for ε,

ε̄ =

∫
dz P (z) ε(z) = ε(z̄) + ∆ε , (6.24)

where we define the error term,

∆ε ≡
∫

dz P (z)Rε
1(z) (6.25)

which is obtained in a similar way as the error term ∆α in (6.20). Note that, as opposed

to α which is strictly larger than zero since it describes the ratio of two positive distance

scales, ε can be zero, and thus, ∆ε is defined as an absolute error rather than a relative

error. We obtain the following bound on ∆ε, derived in appendix 6.C.2:

|∆ε| ≤
1

6
Mmax

R 0

(
βR 2MR 2 + 2β2

R 1

(
MR 1 +

1

3
M2

R 1

))
(z − z̄)2 , (6.26)

where Mmax
R 0 , MR 1, MR 2, βR 1, and βR 2 are all positive dimensionless constants bound-

ing the metric combinations R ≡ (gzz/gθθ)
1/2 and Rtr ≡ (gtr

zz/g
tr
θθ)

1/2 in the following

way

(
Rtr

R

) 1
3

≤Mmax
R 0 ,

∣∣∣∣∣∣
(
∂Rtr/∂z
Rtr

)
(
∂R/∂z
R

) − 1

∣∣∣∣∣∣ ≤MR 1 ,

∣∣∣∣∣∣
(
∂2Rtr/∂z2

Rtr

)
(
∂2R/∂z2

R

) − 1

∣∣∣∣∣∣ ≤MR 2 , (6.27)

∣∣∣∣∣ ∂R∂zR
∣∣∣∣∣ ≤ βR 1 ,

∣∣∣∣∣ ∂
2R
∂z2

R

∣∣∣∣∣ ≤ βR 2 . (6.28)

The bound in (6.26) shows that it is possible to have order of magnitude ∼ 1 deviations

between the models such that Mmax
R 0 ∼ 2 and MR 1 ∼ MR 2 ∼ 1 while still having ∆α

<∼ a few percent, depending on the survey and of the first and second-order derivatives

of R.

Assuming that the modified constant AP approximation is accurate – which is

indeed the case for the broad sample of tested models in section 6.4 – the bounds

in (6.21) and (6.26) are useful for quantifying which models are expected to be well-

approximated by the usual constant AP scaling approximation: α 7→ α(z̄), ε 7→ ε(z̄).
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For models that have metric combinations L and R with derivatives up to second order

within order ∼ 1 from the corresponding derivatives of the ‘true’ metric combinations

Ltr and Rtr, we expect the usual constant AP scaling approximation to be reasonable

for typical galaxy surveys.

For example, the CMASS NGC catalogue [204] has (z − z̄)2 = 4.0 × 10−3 when

including galaxies in the interval 0.43 < z < 0.7, and the LOWZ NGC catalogue has

(z − z̄)2 = 5.7 × 10−3 when including galaxies in the interval 0.15 < z < 0.43. Thus

the terms multiplying (6.21) and (6.26) must be larger than 1 in order to facilitate

a correction of more than 1% to the standard constant AP scaling approximation for

these surveys. Such large terms can only be obtained if one considers models with

large bounding coefficients in (6.22), (6.23), (6.27), and (6.28). This could for instance

happen for a ‘true’ model differing by more than order ∼ 1 from the fiducial model –

e.g., if the fiducial model is ‘smooth’ in its distance measures while the ‘true’ model is

rapidly oscillating.

6.2.3 Quantitative results for selected models

We now consider a few model cosmologies for which we will compute the error terms

∆α and ∆ε and their corresponding bounds as given by the results in section 6.2.2.

The models investigated are the spatially-flat ΛCDM model with ΩM = 0.99, the Milne

universe model, the spatially-flat FLRW model with4 ΩM = 0 and with phantom energy

equation of state w = −4/3, and the timescape cosmological model with ΩM = 0.3. In

addition we consider a class of unphysical models which are bounded with respect to

a fiducial ΛCDM model but which allows for large metric gradients.

We consider the typical redshift range used for the LOWZ catalogue 0.15 < z < 0.43

and the CMASS catalogue 0.43 < z < 0.7 respectively.

We imagine that the given model cosmology is the ‘true’ underlying cosmology,

and take the spatially-flat ΛCDM model with ΩM = 0.3, ΩΛ = 0.7 to be the fiducial

cosmological model. The derivations below could easily be reversed in terms of ‘true’

4 Here ΩM refers to the present epoch value of the “dressed matter density parameter” in the
timescape model. It is not related to the Friedmann equation in the usual way and is not a
fundamental parameter of the model. Rather it is defined for convenience to take numerical values
of similar order to those of the matter density parameter in the ΛCDM model. At late epochs
it is related to fundamental parameter of the model, the void fraction fv, according to ΩM =
1
2 (1− fv)(2 + fv).
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and fiducial cosmology, by making the replacements L ↔ Ltr and R ↔ Rtr in all

expressions of section 6.2.2.

For a given underlying ‘true’ cosmological model and for a given redshift distribution

of a survey, we can compute ∆α (6.20) and ∆ε (6.25). We might also compute the

associated bounds on |∆α| (6.21) and |∆ε| (6.26), assuming knowledge only on the

realised bounds (6.22), (6.23), (6.27), and (6.28), but no additional knowledge of the

functions α(z) and ε(z).

For convenience, we model the redshift distributions of the galaxy catalogues as

truncated Gaussian distributions

P (z) ≡

 1
N

1√
2πσ

e
−(z−µ)2

2σ2 z ∈ [z1, z2] ,

0 otherwise ,
N ≡

∫ z2

z1

1√
2πσ

e
−(z−µ)2

2σ2 , (6.29)

noting that using the exact redshift distributions produce nearly identical results. The

normalised redshift distributions of CMASS and LOWZ are shown with superimposed

Gaussian models with suitable parameters µ and σ in figure 6.1.

We compute ᾱ and ε̄ and compare these to α and ε evaluated at the mean redshifts

of the truncated artificial distributions P (z)CMASS and P (z)LOWZ in order to compute

∆α (6.20) and ∆ε (6.25).

The exact results for the error terms ∆α, ∆ε and their upper bounds – assuming

knowledge only of the bounds on the distance combinations (6.22), (6.23), (6.27), and

(6.28) over the surveys and using the inequalities (6.21) and (6.26) – are shown in table

6.1 for four cosmological test-models which are all far from the fiducial spatially-flat

ΛCDM model with ΩM = 0.3, ΩΛ = 0.7. All of these models have error terms ∆α

of order 0.2% or smaller when compared to the fiducial spatially-flat FLRW model

with ΩM = 0.3, ΩΛ = 0.7. The corresponding upper bounds on |∆α| are of order 5%

or smaller. The value of ∆ε for the models tested is of order 0.0005 or smaller. The

bounds on |∆ε| are of order 0.02 or smaller.

We note that even though the models investigated in table 6.1 are significantly

different to the spatially-flat ΛCDM model with ΩM = 0.3, ΩΛ = 0.7 used as an

example of a fiducial cosmological model, ∆α and ∆ε – of order <∼ 0.002 and <∼ 0.0005

respectively – are much smaller than typical statistical errors in α and ε of order ∼1%

and ∼0.02 respectively inferred from existing galaxy catalogues [194, 193].

The upper bounds on |∆α| and |∆ε| – valid for all models which obey the same
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Figure 6.1: Normalised redshift distributions of CMASS (red) and LOWZ (blue) along
with superimposed Gaussian probability density distributions f(z)CMASS and f(z)LOWZ

which roughly sample the redshift distributions. f(z)CMASS has mean µCMASS = 0.54
and standard deviation σCMASS = 0.075, and f(z)LOWZ has µLOWZ = 0.31 and standard
deviation σLOWZ = 0.10.

constraints (6.22) and (6.27) as the tested models over the redshift range – are of

order <∼ 0.04 and <∼ 0.01 respectively, and are in most cases comparable or smaller

than typical statistical errors in α and ε when inferred from existing galaxy catalogues.

Note that the bounds on |∆α| and |∆ε| quoted represent worst case scenarios, which

are never realised in practice.

We conclude that in order to have a large difference between the two constant AP

approximations, we must have models (‘true’ and fiducial) which differ more extremely

in their distance measures (and derivatives of these) than is the case for the models

presented in table 6.1. This can happen, for example, if the ‘true’ underlying cosmo-

logical model has structure on a hierarchy of scales, with resulting small/intermediate

scale wiggles in the distance-redshift relations gθθ(z) and gzz(z).

We now consider a simple class of model cosmologies which can illustrate what

might happen when gradients in the metric components become large. We consider a
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ΛCDMΩM=0.99 Milne FLRW
w=−4/3
ΩM=0.3 TimescapeΩM=0.3

LOWZ CMASS LOWZ CMASS LOWZ CMASS LOWZ CMASS

|∆α| bound 0.036 0.0028 0.010 0.0016 0.0059 0.00061 0.0071 0.00094
∆α 0.0022 0.00097 0.0015 0.00066 -0.00087 -0.00032 0.0010 0.00043

|∆ε| bound 0.010 0.00076 0.0032 0.00049 0.0021 0.00022 0.0022 0.00029
∆ε 0.00052 0.00022 0.00029 0.00012 -0.00029 -0.000067 0.00048 0.00019

Table 6.1: The AP scaling error terms ∆α and ∆ε computed from the artificial trun-
cated Gaussian distributions P (z)CMASS and P (z)LOWZ. The corresponding upper
bounds on |∆α| and |∆ε| obtained from (6.21) and (6.26) respectively are also shown.

simple three-parameter family of spatially flat unphysical models with metrics

ds2 = −c2dt2 + ã(t)2(dD̃2 + D̃2dΩ2) , (6.30)

in coordinates adapted to a central observer. The models are constructed by distort-

ing the comoving distance–redshift relation D(z) of a reference ΛCDM model with

ΩM = 0.3 in the following way

D̃(z̃) = D(z̃) (1 + A cos(f z̃ + Φ)) , (6.31)

where A, f, and Φ are the amplitude, frequency and phase of the trigonometric distor-

tion respectively. This form is chosen as a simple case of a bounded distance redshift

relation around the reference model relation D(z̃), but with the possibility of significant

gradients of D̃(z̃) in redshift. The Hubble distance function then reads

c

H̃
≡ − c

ã

dt

dz̃
=
dD̃(z̃)

dz̃
=
dD(z̃)

dz̃
(1 + A cos(f z̃ + Φ))−D(z̃) f A sin(f z̃ + Φ) , (6.32)

where z̃ ≡ 1/ã, and where the second equality follows from considering radially prop-

agating null rays in the metric (6.30). We note that even though differences in the

comoving distance scales D̃(z̃) and D(z̃) might be small, differences between the deriva-

tives of the comoving distance scales in redshift can be large, if the frequency f of the

perturbation (6.31) is large.

The results for the tested unphysical models are shown in table 6.2. The error

terms ∆α, ∆ε and their bounds are in general significantly larger than for the model

cosmologies in table 6.1 – especially for the large frequencies, f . The error terms ∆α
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are of order 1% for the two models with f = 30 and f = 50, and the error terms ∆ε

are of order 0.01 - which is similar in order to typical statistical errors in BAO analysis

with current galaxy surveys. The upper bounds on |∆α| and |∆ε| are as high as ∼30%

and ∼ 0.1 respectively.

These results are intuitive; the more rapidly the ‘true’ and fiducial models are

varying with respect to each other, the more we expect evaluation at a single redshift

and an average of α and ε to differ. We expect the same tendencies to be present in

models which are more complicated than the simple class of distorted models (6.30)–

(6.32), but which possess the same features in terms of allowed gradients of the relevant

metric components.

FLRW
A=0.01
f=10

Φ=−0.3
FLRW

A=0.005
f=15

Φ=−0.3
FLRW

A=0.005
f=30

Φ=−0.3
FLRW

A=0.001
f=50

Φ=−0.6

LOWZ CMASS LOWZ CMASS LOWZ CMASS LOWZ CMASS

|∆α| bound 0.037 0.014 0.054 0.018 0.32 0.21 0.31 0.15
∆α 0.0046 -0.0047 -0.0012 0.0064 0.016 -0.0085 0.0052 0.011

|∆ε| bound 0.012 0.0047 0.018 0.0061 0.11 0.070 0.10 0.049
∆ε 0.0026 -0.0039 -0.0024 0.0061 0.012 -0.013 0.0049 0.010

Table 6.2: The AP scaling error terms ∆α and ∆ε computed from the artificial trun-
cated Gaussian distributions P (z)CMASS and P (z)LOWZ. The corresponding upper
bounds on |∆α| and |∆ε| obtained from (6.21) and (6.26) respectively are also shown.

6.3 The Alcock-Paczyński scaling and the BAO fea-

ture

In order to quantify the impact of the redshift-dependent AP-scaling investigated in

section 6.2 on the BAO feature as viewed in a fiducial cosmology, we must specify a

model for the BAO feature.

Let us investigate the example of the empirical model for the correlation function

ξtr(Dtr, µtr, z) as proposed in section 6.1.3, with a Gaussian function describing the

BAO feature and polynomial terms describing the ‘background’ featureless correlation

function. Using the identity derived in (6.14) together with the form of the empirical
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model of the correlation function (6.12) we can write

ξ(D,µ, z) = ξtr
(
Dtr(D,µ, α, ε), µtr(µ, ε), z

)
≈ (D)2α2 1 + ψ(ε)µ2

(1 + ε)2
A e
−
(
Dα
√

1+ψ(ε)µ2/(1+ε)−r
)2
/ (2σ2)

+C0(µ) +
C1(µ)

D
+
C2(µ)

(D)2
,

(6.33)

where the redshift dependence of α, ε, A, σ, and the polynomial coefficients C0(µ),

C1(µ), and C2(µ) is implicit, and where ψ(ε) is given by the second equation of (6.10).

The approximation in (6.33) follows from the approximations (6.10) and (6.11) for

Dtr(D,µ, α, ε) and µtr(µ, ε) respectively. We note that (6.33) has the same form as

(6.12) (Gaussian in D plus a second-order polynomial function in 1/D for fixed µ and

z), but the coefficients for each value of µ, z are redefined by the AP-scaling.

We might further obtain ξ(D,µ) from (6.33) by applying the approximation (6.15),

neglecting the second-order corrections from the non-multiplicatively separable parts

δ(D,µ, z) and δPoisson(D,µ, z) of f(D,µ, z) and fPoisson(D,µ, z) respectively.

ξ(D,µ) ≈
∫

dzP (z)ξ(D,µ, z)

=

∫
dzP (z)

(
(D)2α2 1 + ψ(ε)µ2

(1 + ε)2
A e
−
(
Dα
√

1+ψ(ε)µ2/(1+ε)−r
)2
/ (2σ2)

)
+ C0(µ) +

C1(µ)

D
+
C2(µ)

(D)2
, (6.34)

where the overbar refers to the averaging operation in redshift S ≡
∫
dzP (z)S(z).

For α and ε for which deviations remain small (� 1) over the survey, we can use the

approximation (6.16), to simplify the Gaussian integral in (6.34)

ξ(D,µ) ≈
∫

dzP (z)ξ(D,µ, z)

≈ (D)2ᾱ2 1 + ψ(ε̄)µ2

(1 + ε̄)2
A e
−
(
Dᾱ
√

1+ψ(ε̄)µ2/(1+ε̄)−r
)2
/ (2σ2)

+C0(µ) +
C1(µ)

D
+
C2(µ)

(D)2
, (6.35)

where the Gaussian parameters A(z), σ(z) are now evaluated at the mean redshift

of the survey z̄. Note that the standard constant AP approximation α(z) 7→ α(z̄),

ε(z) 7→ ε(z̄) yields the same form as the expression in (6.35) but with ᾱ, ε̄ replaced by

α(z̄), ε(z̄).
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Assuming that the conditions are met for the form (6.35) to be accurate, we can

analyse the change of the Gaussian feature in the wedges (6.74) as a function of the

AP-scaling, by replacing the constant α, ε parameters in the results of section 5.3.1 by

ᾱ, ε̄.

From the definition of the wedge functions (6.60) we find that the wedges corre-

sponding to the 2-point correlation function (6.35) read

ξ[µ1,µ2](D) =
1

µ2 − µ1

∫ µ2

µ1

dµ ξ(D,µ) ≈

∫ µ2
µ1

dµ (D)2ᾱ2 1+ψ(ε̄)µ2

(1+ε̄)2
A e
−
(
Dᾱ
√

1+ψ(ε̄)µ2/(1+ε̄)−r
)2
/ (2σ2)

µ2 − µ1

+
µ1,µ2
C0 +

µ1,µ2
C1

D
+

µ1,µ2
C2

(D)2
, (6.36)

with

µ1,µ2
C0 ≡

∫ µ2
µ1

dµC0(µ)

µ2 − µ1

,
µ1,µ2
C1 ≡

∫ µ2
µ1

dµC1(µ)

µ2 − µ1

,
µ1,µ2
C2 ≡

∫ µ2
µ1

dµC2(µ)

µ2 − µ1

. (6.37)

For sufficiently small ε̄, the Gaussian part of (6.36) can be expanded in ψ � 1 and

ψ(ε̄)D/σ � 1 to first order for relevant distance scales D5, such that (6.36) reads

ξ[µ1,µ2](D) ≈ (D)2ᾱ2
1 + ψ(ε̄)κµ2µ1

(1 + ε̄)2
A e
−
(
Dᾱ
√

1+ψ(ε̄)κ
µ2
µ1
/(1+ε̄)−r

)2
/ (2σ2)

+
µ1,µ2
C0 +

µ1,µ2
C1

D
+

µ1,µ2
C2

(D)2

≈ (D)2Ã e−(D−r̃)2/ (2σ̃2) +
µ1,µ2
C0 +

µ1,µ2
C1

D
+

µ1,µ2
C2

(D)2
, (6.38)

where

κµ2µ1 ≡
1

µ2 − µ1

∫ µ2

µ1

dµµ2 =
1

3

µ3
2 − µ3

1

µ2 − µ1

, (6.39)

and where the Gaussian parameters in the final line are kept to first order in ψ(ε̄) are

given by

r̃ ≡ 1− 1
2
κµ2µ1ψ(ε̄)

ᾱ / (1 + ε̄)
r, σ̃ ≡ 1− 1

2
κµ2µ1ψ(ε̄)

ᾱ / (1 + ε̄)
σ, Ã ≡ ᾱ2

(1 + ε̄)2
(1 + κµ2µ1ψ(ε̄))A. (6.40)

5 See section 5.3.1 for details.
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This can be obtained from the first line of (6.38), by expanding to first order
√

1 + ψ(ε̄)κµ2µ1 ≈
1 + ψ(ε̄)κµ2µ1/2, and absorbing the coefficient multiplying D in the exponential into a

rescaling of r and σ.

For the isotropic, transverse, and radial wedges (6.61) we can thus compute the

scaled Gaussian parameters (r̃, σ̃, Ã) (6.40) relative to the undistorted parameters (r,

σ, A) as a function of ᾱ and ε̄ by substituting the value of κµ2µ1 corresponding to the

given wedge

κ1
0 =

1

3
, κ0.5

0 =
1

12
, κ1

0.5 =
7

12
. (6.41)

We note that for the ‘isotropic wedge’ (µ1 = 0, µ2 = 1), (6.40) reduces to r̃ =

r/ᾱ , σ/ᾱ , Ã = ᾱ2A, since from the definition of ψ (6.10) ψ(ε) ≈ 1 + 6ε to first

order in ε (or first order in ψ). Thus, to lowest order, the isotropic wedge contains

information on the isotropic scaling α only.

The exact result for the Gaussian parameter distortions (6.40) is useful for gaining

intuition about the appearance of the BAO feature in a cosmology which is distorted

from the true one according to AP-scaling factors α(z) and ε(z). If the conditions for

the expansions (6.38) and (6.36) are not met, then the exact integrals in µ over (6.34)

must be performed numerically.

6.4 Testing the predicted shift of the BAO feature

with mock catalogues

In this section we test the predictions of section 6.2 and section 6.3 for the reparametri-

sation effects on the BAO feature using CMASS NGC mock catalogues. The advantage

of using mock catalogues is that by averaging many mocks we can obtain arbitrarily

small statistical variance in our correlation function estimators, meaning that we can

detect small systematics which would otherwise be difficult to disentangle from noise.

A further advantage is that we know the true underlying cosmology of the mock cata-

logues.

By fitting the empirical Gaussian correlation function model described in section

6.3 to the mock data, we test the accuracy of the BAO scale recovered when using the

standard constant AP scaling approximation α(z) 7→ α(z̄), ε(z) 7→ ε(z̄), the modified
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constant AP scaling approximation α(z) 7→ ᾱ, ε(z) 7→ ε̄, and the exact AP redshift-

dependent scalings α(z) and ε(z) with no approximation respectively. We calibrate the

BAO scale against that measured in a reference cosmology in order to calibrate for any

systematic offsets that might occur between the peak of the empirical gaussian and the

BAO scale.

6.4.1 The mocks

In this analysis we use the Quick Particle Mesh (QPM) mock catalogues as described

in detail in [208]. The QPM mock catalogues are generated from ΛCDM N -body simu-

lations, and are designed for the BOSS clustering analysis. The number density in the

mock catalogues match the observed galaxy number density of the BOSS catalogues,

and follow the same radial and angular selection functions. The QPM simulations are

generated from the fiducial ΛCDM cosmology

ΩM0 = 0.29, ΩΛ0 = 0.71, Ωb0 = 0.048, σ8 = 0.8, h = 0.7, (6.42)

where ΩM0, ΩΛ0 and Ωb0 are the present epoch matter density parameter, dark energy

density parameter, and baryonic matter density parameter respectively, σ8 is the root

mean square of the linear mass fluctuations at the present epoch averaged at scales

8 Mpc/h given by the integral over the ΛCDM power spectrum, and H0 = 100h

km/s/Mpc is the Hubble parameter evaluated at the present epoch. The sound horizon

at the drag epoch within this model is rs = 103.05 Mpc/h.

In this analysis we focus on the CMASS NGC catalogue. There are 1000 QPM

mock catalogues available for the CMASS NGC catalogue. We use all 1000 QPM

mock catalogues in calculating the correlation function of our chosen ‘reference model’

used to calibrate the BAO peak position (see section 6.4.2). For the remaining trial

cosmologies we use 200 mock catalogues. We use these, along with the associated

random catalogues as described in [206], to construct the 2-point correlation in a

number of different trial cosmologies.
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6.4.2 The likelihood function and the fitting procedure

We assume the likelihood function L of data given the empirical fitting model (6.12)

ξFit

L
(

¯̂
ξ
∣∣∣ ξFit

)
∝ exp(−χ2/2), (6.43)

with

χ2 = Z
ᵀ
C−1

¯̂
ξ
Z, Z =

¯̂
ξ − ξFit, (6.44)

where ξ̂ is the binned estimate of the (isotropic or wedge) 2-point correlation func-

tion computed for each mock, and where
¯̂
ξ is the unweighted average over the mock

catalogues. In the anisotropic wedge analysis, the transverse and radial estimates are

combined into a single vector ξ̂ in order to perform a combined fit. ξFit is the fitting

function, which in this analysis is taken to be the model described in section 6.3. The

covariance matrix of
¯̂
ξ is given by the covariance of the individual measurements ξ̂

scaled by the inverse of the number of mock catalogues used, Nmocks

C ¯̂
ξ

=
1

Nmocks

C
ξ̂
, C

ξ̂
= (ξ̂ − ¯̂

ξ)(ξ̂ − ¯̂
ξ)ᵀ, (6.45)

where the overbar represents the averages over the mock catalogues.

As discussed in chapter 5 and in section 6.1.3 of this chapter, the calibration of

the BAO scale to the peak of the Gaussian model (6.12), r, is itself a source of error

in empirical BAO investigations. In order to account for the calibration issue, we

use the inferred peak position from the 2-point correlation function computed in the

spatially-flat ΛCDM reference model with ΩM = 0.3.

We use the fitting function (6.36) and the likelihood function (6.43) for estimating

the best fit of r̃isotropic = r/ᾱ and ε̄ for the spatially-flat ΛCDM reference model with

ΩM = 0.3 using 1000 CMASS NGC QPM mock catalogues (see section 6.4.1). The

fitting range is taken to be [50, 150] Mpc/h.

For the isotropic fit, µ1 = 0, µ2 = 1, we find a best fit value ˆ̃risotropic = 102.08 Mpc/h.

For the anisotropic analysis, consisting of a combined fit to the transverse wedge µ1 =

0, µ2 = 0.5 and the radial wedge µ1 = 0.5, µ2 = 1, we get best fit values ˆ̃risotropic =

102.16 Mpc/h and ˆ̄ε = 0.0006. The discrepancy between the best fit estimates of the
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isotropic peak positions are 0.08 Mpc/h, while the errors in the individual estimates are

of order 0.08 Mpc/h. Thus the isotropic and anisotropic peak positions are consistent

within the level of uncertainty on the best fit. The error in the best fit epsilon is 0.0007,

and ˆ̄ε is thus consistent with zero at the level of precision of 1000 mock catalogues.

These findings are consistent with the reference model (6.12) with r = 102.08 Mpc/h.

We thus use this empirical model as a reference, and consider reparametrisations (6.33)

with respect to the reference ΛCDM model with ΩM = 0.3.

We are now able to quantify the accuracy of the predictions of the constant AP

scaling approximations α(z) 7→ α(z̄), ε(z) 7→ ε(z̄) and α(z) 7→ ᾱ, ε(z) 7→ ε̄ respectively,

and the exact integral expression (6.34), under the assumptions of the empirical fitting

function. Let us first consider any constant AP-approximation α(z) 7→ Cα, ε(z) 7→ Cε,
where Cα and Cε are constants. With this approximation (6.34) reads

ξ(D,µ) ≈
∫

dzP (z)ξ(D,µ, z)

= (D)2C2
α

1 + ψ(Cε)µ2

(1 + Cε)2
A e
−
(
DCα
√

1+ψ(Cε)µ2/(1+Cε)−r
)2
/ (2σ2)

+C0(µ) +
C1(µ)

D
+
C2(µ)

(D)2
,

(6.46)

which can be substituted into the definition of the wedges (6.60) to obtain

ξ[µ1,µ2](D) ≡ 1

µ2 − µ1

∫ µ2

µ1

dµ ξ(D,µ)

≈ 1

µ2 − µ1

∫ µ2

µ1

dµ (D)2C2
α

1 + ψ(Cε)µ2

(1 + Cε)2
A e
−
(
DCα
√

1+ψ(Cε)µ2/(1+Cε)−r
)2
/ (2σ2)

+
µ1,µ2
C0 +

µ1,µ2
C1

D
+

µ1,µ2
C2

(D)2
, (6.47)

where the polynomial coefficients
µ1,µ2
C0 ,

µ1,µ2
C1 , and

µ1,µ2
C2 are given by (6.37). We perform

the exact numerical integral (6.47) for the three wedges ξ[0,1], ξ[0,0.5], ξ[0.5,1] and fit

for the independent parameters r/Cα, C2
αA, σ/Cα, Cε,

µ1,µ2
C0 ,

µ1,µ2
C1 ,

µ1,µ2
C2 for a given model

cosmology. Using the calibrated peak position r = 102.08 Mpc/h for the reference

spatially-flat ΛCDM model with ΩM = 0.3, we can compare the best fit estimates of

r/Cα and Cε with the standard constant AP scaling approximation Cα = α(z̄), Cε = ε(z̄),

and the modified constant AP scaling approximation Cα = ᾱ, Cε = ε̄.
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We define the fractional error in any given constant AP scaling approximation as

APerrorr =
r̂/Cα − (r/Cα)th

(r/Cα)th

, APerrorε = Ĉε − (Cε)th (const. AP approx.) ,

(6.48)

where r̂/Cα, Ĉε are the best fit estimates of the parameters r/Cα, Cε, and (r/Cα)th,

(Cε)th are the corresponding theoretical predictions obtained from the calibration scale

rth = 102.08 Mpc/h, and the choice of constant AP approximation Cα, Cε.
For Cα = α(z̄), Cε = ε(z̄), we can compute (Cα)th, (Cε)th from the metric components

gθθ, gzz of the tested model and the reference spatially-flat ΛCDM model with ΩM = 0.3

respectively evaluated at the mean redshift z of the CMASS NGC catalogue. For

Cα = ᾱ, Cε = ε̄, we can compute (Cα)th, (Cε)th from the metric components gθθ, gzz of

the tested model cosmology and the reference spatially-flat ΛCDM model with ΩM =

0.3 respectively and from the model redshift distribution P (z) of the CMASS NGC

catalogue.

We also use this redshift distribution to evaluate the exact integral expression (6.34)

where no constant AP approximation is made, using the knowledge of the exact AP

scaling functions α(z), ε(z) between the tested model cosmology and the reference

spatially-flat ΛCDM model with ΩM = 0.3. Substituting the approximation (6.34) in

the definition of the wedge functions (6.60) we find

ξ[µ1,µ2](D) ≡ 1

µ2 − µ1

∫ µ2

µ1

dµ ξ(D,µ)

≈ 1

µ2 − µ1

∫ µ2

µ1

dµ

∫
dzP (z)

(
(D)2α2 1 + ψ(ε)µ2

(1 + ε)2
A e
−
(
Dα
√

1+ψ(ε)µ2/(1+ε)−r
)2
/ (2σ2)

)

+
µ1,µ2
C0 +

µ1,µ2
C1

D
+

µ1,µ2
C2

(D)2
, (6.49)

where the free parameters are r, A, σ,
µ1,µ2
C0 ,

µ1,µ2
C1 ,

µ1,µ2
C2 . Note that there is no ‘ε’ fitting

parameter describing the anisotropic warping as in the corresponding fitting function

(6.47), since the exact AP scaling functions α(z), ε(z) are integrated over in (6.49).

We can, however, artificially introduce a ‘warping’ fitting parameter Kε by making the

replacement ε(z)→ ε(z) +Kε in (6.49). Kε = 0 gives back the exact expression (6.49),

and a non-zero Kε quantifies constant warping not accounted for in the expression
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(6.49). We thus arrive at the 7 independent parameters r, A, σ, Kε,
µ1,µ2
C0 ,

µ1,µ2
C1 ,

µ1,µ2
C2 .

We define fractional errors analogous to those of the constant AP approximation

fitting function (6.48) for the ‘exact’ fitting function (6.49) as

APerrorr =
r̂ − rth

rth

, APerrorε = K̂ε (exact α(z) and ε(z)) (6.50)

where r̂ and K̂ε are best fit estimates of the parameters r and Kε, and where rth =

102.08 Mpc/h is the calibration scale of the reference spatially-flat ΛCDM model with

ΩM = 0.3.

6.4.3 Large-scale model cosmologies

First, we test the recovery of the BAO characteristic scale when using various large-

scale cosmological models which differ substantially from the reference spatially-flat

ΛCDM cosmological model with ΩM = 0.3. We are interested in testing models which

are far from the reference ΛCDM model, rather than necessarily being candidates for

accurately describing cosmological data.

We consider the two-parameter family of spatially-flat FLRW models parameterised

by the matter cosmological parameter ΩM and the constant dark energy equation of

state parameter w for which we consider the values {−0.333,−1,−1.333}. The dark

energy cosmological parameter is given by Ωd.e. = 1− ΩM , and all other cosmological

parameters are zero. In addition, we consider three curved models: the Milne universe,

the positively-curved ΛCDM universe with ΩM = 1 and ΩK = −1 and the timescape

model with ΩM = 0.3.

For each test model we compute the mean of the (isotropic and wedge) 2-point

correlation function of 200 mock catalogues
¯̂
ξ, and the associated covariance matrix

(6.45). For most models, the correlation function is calculated for the range of distances

[0, 150] Mpc/h, however for models with ᾱ < 1 the correlation function is calculated

out to values of 200 Mpc/h. This is done in order to ensure that the full BAO feature

lies within the calculated range, and to facilitate a broad enough physical fitting range.

The mean isotropic 2-point correlation function is shown in figure 6.2 for each

model. Each correlation function has been normalised by a constant in order to align

the local peaks of the correlation functions, to make the shift of the peak position more

visible. As expected, the isotropic BAO feature shifts according to the magnitude of
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the isotropic scaling of the distance measures relative to the reference model α. We

shall investigate the shift of the peak in detail below.
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Figure 6.2: The mean of the isotropic 2-point correlation function of 200 mock cata-
logues for each tested model. The reference spatially-flat ΛCDM cosmological model
with ΩM = 0.3 is shown in black. In order to visualise the shift of the acoustic scale,
the correlation function for each model has been normalised by a constant such that
the local maxima are aligned with that of the reference ΛCDM model.

For 200 mock catalogues, the 1σ error in the estimate of isotropic BAO scale r is

of order ∼ 0.2 Mpc/h corresponding to a 0.2% error, and the error in the estimate of

the warping parameter is of order ∼ 0.002.6 For perfect accuracy of any applied AP

approximation and for perfect modelling assumptions in general, we expect recovery

of the isotropic BAO scale and the warping parameter respectively at this level of

accuracy.

In order to minimise systematic errors involved with the choices made in the fitting

procedure, we fit to the range of distances [50/ᾱ, 150/ᾱ] Mpc/h, where α is the AP-

scaling between the reference ΛCDM model and the model tested. In this way, we

are approximately fitting to the same physical distance scale for all models involved,

irrespective of the ruler with which we measure the distance between galaxies.

For the isotropic fits, we fix the constant warping parameters Cε and Kε in (6.47)

and (6.49) respectively, in order to avoid the degeneracies introduced by the quadratic

6 The errors are reasonably robust between the test models and consistent within ∼ 0.1% for the
peak position and ∼ 0.001 for ε.
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contributions of ε to the isotropic wedge. We fix Cε = ε̄ in the constant AP scaling

approximation analysis 7 and Kε = 0 in the exact analysis.

The results of the isotropic analysis are shown in figure 6.3 for nine models with

different values of ΩM and w, and for the three curved models described above. The

figures show the fractional error in the recovery of the BAO scale for the various

models. The labels on the x-axes and y-axes indicate the model used, and under

which assumptions. The label ‘(Cα)th = α(z̄) | Cε = ε̄’ indicates that the constant

AP approximation (6.47) has been used in the wedge functions under the assumption

that Cα = α(z̄), and that Cε has been fixed to the theoretically computed value of ε̄.

‘(Cα)th = ᾱ | Cε = ε̄’ represents the same situation, only here it is assumed that Cα = ᾱ.

The label ‘Exact α(z), ε(z) | Kε = 0’ indicates that no constant AP approximation has

been used, resulting in the wedge fitting function (6.49). Kε = 0 in the isotropic

analysis,8 and Kε is only introduced as a free parameter in the anisotropic analysis.

In figure 6.3a, APerrorr (6.48) is shown for the standard constant AP scaling ap-

proximation analysis with (Cα)th = α(z̄) and the modified constant AP scaling ap-

proximation with (Cα)th = ᾱ. We see that the errors of both constant AP scaling

approximations are of order <∼ 1%. The accuracy of the predictions from (Cα)th = α(z̄)

and (Cα)th = ᾱ are very close as expected from the results of section 6.2.3. However,

the modified constant AP scaling approximation (Cα)th = ᾱ is marginally but system-

atically more accurate. For most models, the errors exceed the 0.2% level which is the

magnitude of the 1σ error bars of the individual best fit values of the peak positions.

Thus, the instability of the best fits cannot account for the errors, and we conclude

that systematic errors are dominating the error budget.

In figure 6.3b the accuracy of the modified constant AP scaling approximation

(Cα)th = ᾱ is compared to that of the exact AP scaling α(z), ε(z). The plot shows

no systematic improvements in accuracy when using the exact expression (6.49) as

compared to imposing the constant AP approximation (Cα)th = ᾱ. The errors thus

remain of order <∼ 1%, with most models exceeding 0.2%. The inaccuracies in the

recovery of the isotropic scale must thus be assigned to other systematic errors than

those of any AP scaling approximation.

One possible source of systematic error worth investigating is the decrease in the

7 Changing the fixed value to Cε = ε(z̄) does not significantly alter the results.

8 See the motivation for introducing this parameter for the anisotropic analysis in the text below
eq. (6.49)
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number of bins of the fit, since we are counting galaxy pairs in bins of a constant size

of 5 Mpc/h. Keeping the bin size constant in the reference cosmology, and scaling

the bin-sizes accordingly by 1/ᾱ for the test models did, however, not improve the

accuracy. Other possible sources of systematics might for instance include degeneracies

of parameters in the fit or inaccuracies in the approximate integral relation (6.15) used

in (6.34).

In order to examine whether the systematic error in the determination of the

isotropic scale is an artefact of our fitting procedure, we redid the analysis for the

ΛCDM power-spectrum template fitting procedure for a few ΛCDM models with signif-

icantly differing ΩM values. We used the conventionally employed 5-parameter ΛCDM

template for the isotropic wedge-function, see e.g., [193]. In each fit we kept the pa-

rameters ΩMh
2 and Ωbh

2 constant, in order to keep the template function fixed in each

case and isolate the distortion due to the AP-scaling9. We then measured the value of

the constant AP-scaling parameter α(z̄) - or interpreted via the modified constant AP

scaling approximation10 ᾱ.

In figure 6.5 the systematic error in the inferred best fit isotropic peak position

is shown for both the empirical fitting procedure and the ΛCDM template fitting

procedure. The squares represent measurements done within the ΛCDM template

fitting procedure, while the remaining measurements are the ones done within the

empirical fitting procedure depicted also in figures (6.3). The statistical errors of each

measurement are of order 0.2%. The order of magnitude of the errors are similar

between the fitting procedures, and are of order ∼ 1% for models with |ᾱ − 1| ∼ 0.1.

We also note that trends in systematics as a function of ᾱ are of the same sign between

the two fitting procedures. Our results indicate that the level of systematics is robust

to the exact choice of fitting procedure.

We now consider the anisotropic fits for the same models as for the isotropic anal-

ysis. The recovery of the isotropic peak positions in the anisotropic analysis closely

resembles the results for the isotropic analysis shown in figure 6.3, and consequently

we omit plots of these results. The recovery of the warping parameters is shown in

9 Note that the assumed value of h is varying with ΩM in this setting. However, the value of h
assumed does not affect the results of our analysis since distance scales are measured in units of
Mpc/h.

10 As noted several times in this chapter the difference between α(z̄) and ᾱ is negligible when the
transformation is between smooth model cosmologies. We thus use α(z̄) and ᾱ interchangeably for
the ΛCDM models tested here.
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figure 6.4.

The error in the constant AP scaling (6.48) APerrorε = Ĉε−(Cε)th is shown in figure

6.4a for the standard constant AP scaling approximation analysis with (Cε)th = ε(z̄)

and the modified constant AP scaling approximation with (Cε)th = ε̄. The errors for

both constant AP scaling approximations are of order <∼ 0.002. The statistical 1 σ error

bars on the best fit values of the warping parameters are of order 0.002. We conclude

that the level of inaccuracy in the recovery of the warping parameters is consistent with

the level of statistical noise expected for ∼ 200 mock catalogues. The accuracy of the

two constant AP approximations are very close for each model cosmology as expected

from the investigations in section 6.2.3. There is no systematic improvement of the

accuracy to be seen for the modified constant AP scaling approximation (Cε)th = ε̄ as

compared to the standard constant AP scaling approximation (Cε)th = ε(z̄).

In figure 6.4b the accuracy of the modified constant AP scaling approximation

(Cε)th = ε̄ is compared to that of the exact AP scaling α(z), ε(z). For each cosmo-

logical model, the recovery of the anisotropic warping parameter is almost identical

for the constant AP scaling approximation and the exact case. In conclusion, the

constant AP approximations tested work extremely well for the tested cosmological

models for recovering the anisotropic warping parameter. The more accurate recovery

of the warping parameter as compared to the isotropic peak position, suggests that the

systematics governing the peak shift are similar between the wedges.

6.4.4 Toy models with large metric gradients

Let us consider a class of unphysical model cosmologies, for which we can expect break-

down of the standard AP scaling approximation with respect to the reference ΛCDM

model with ΩM = 0.3.

As shown in general in section 6.2.2 and detailed for a selection of model cosmologies

in section 6.2.3, the standard constant AP approximation α(z) 7→ α(z̄), ε(z) 7→ ε(z̄) is

expected to be accurate between cosmologies which are of the same order of magnitude

for gradient terms of the adapted metric components {gθθ, gzz} up to second order.

This condition is fulfilled for essentially all cosmological metric theories designed for

modelling the largest scales of our Universe. However, taking into account gradients in

the geometry on smaller scales, we might arrive at physical models for which the usual

constant AP scaling approximation breaks down when the fiducial cosmology used to
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formulate the 2-point correlation function is a large-scale metric. In this section we

formulate some toy models which can illustrate how the usual constant AP scaling

approximation might break down on account of gradients in the metric components

{gθθ, gzz}.
In this analysis we consider the reference ΛCDM model with ΩM = 0.3 as the

‘true’ cosmological model, whereas the toy models with significant metric gradients are

fiducial models used to formulate the 2-point correlation function by the observer who

does not know about the true cosmological model. Our conclusions are expected to

hold for the reversed scenario where the reference ΛCDM model with ΩM = 0.3 plays

the role of the fiducial model.

We consider the simple three parameter family of spatially-flat toy model metrics

(6.30)–(6.32), which are perturbations around the spatially flat ΛCDM model with

ΩM = 0.3 with a trigonometric distortion parameterised by an amplitude A, frequency

f , and phase Φ.

We repeat the analysis of section 6.4.3 for eight test models of varying A, f , and Φ.

The mean isotropic 2-point correlation function is shown in figure 6.6 for each model.

The shifts of the BAO feature relative to the reference ΛCDM model are in general

much smaller than for the models tested in section 6.4.3. This can be assigned to the

fact, that ᾱ is close to the value 1 for all the models because of the cancellation of

the relatively large fluctuation of α(z) by the averaging operation. Even though the

mutual distance between many galaxy pairs are shifted significantly by changing from

one model to the other, the overall count in each distance bin is largely robust, and the

shape of the reference correlation function is largely preserved as seen in figure 6.6a.

The zoomed in version of the plot in figure 6.6b visualises the changes around the peak

location.

The results of the isotropic analysis are shown in figure 6.7. In figure 6.7a the

error in the recovery of the isotropic peak position APerrorr (6.48) is shown for the

standard constant AP scaling approximation analysis with (Cα)th = α(z̄) and the

modified constant AP scaling approximation with (Cα)th = ᾱ. The precision obtained

with the modified constant AP scaling approximation is generally higher, with typical

errors of order ∼ 0.5 times those of the standard constant AP scaling approximation.

The errors associated with the modified constant AP scaling approximation are <∼ 1%

and comparable to those of the spatially-flat FLRW models investigated in section

6.4.3. As in the case of the spatially-flat FLRW models, the statistical errors are not
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sufficient to account for the errors, and we conclude that systematic uncertainties are

dominating the error budget.

In figure 6.3b the accuracy of the modified constant AP scaling approximation

(Cα)th = ᾱ is compared to the accuracy of the exact AP scaling α(z), ε(z). As for the

spatially-flat FLRW models investigated in section 6.4.3, the plot shows no systematic

improvements in accuracy when using the ‘exact’ wedge function (6.49) as compared

to imposing the constant AP approximation (Cα)th = ᾱ.

The recovery of the warping parameters of the anisotropic wedge analysis is shown

in figure 6.8. The error term APerrorε = Ĉε−(Cε)th from (6.48) is shown in figure 6.8a for

the standard constant AP scaling approximation analysis (Cε)th = ε(z̄) and the modified

constant AP scaling approximation (Cε)th = ε̄. The precision of the modified constant

AP scaling approximation is in general higher than that of the standard constant AP

scaling approximation. For the modified constant AP scaling approximation, errors in

the inferred warping parameters are of order <∼ 0.005, and typical errors are roughly

a factor of two higher than for the spatially-flat FLRW models investigated in section

6.4.3. Typical errors are slightly higher than ∼ 0.002 for which we would expect most

points to lie within, for the errors to be consistent with statistical noise.

In figure 6.8b the accuracy of the modified constant AP scaling approximation

(Cε)th = ε̄ is compared to that of the exact AP scaling α(z), ε(z). The recovery of the

anisotropic warping parameter is almost the same between the modified constant AP

scaling approximation and the exact AP scaling.

In conclusion, the modified constant AP approximation works extremely well for the

toy models considered here – as well as for the models tested in section 6.4.3, where both

constant AP scaling approximations were accurate – and approximate the ‘exact’ case,

where no approximations are made for α(z), ε(z), extremely well. However, additional

systematic errors contribute to the error budget in the empirical fitting procedure, as

discussed in context of the spatially-flat FLRW models in section 6.4.3.

6.5 Discussion

Since the mid 2000’s when the first detections of the BAO scale were made [56, 57],

galaxy surveys have increased in terms of sample size and volume coverage, which has

led to an increased significance of the measured BAO peak in the concordance ΛCDM

cosmology [193, 194, 193] and precisely mapped out the distance-redshift relation.

179



The increase in data has also facilitated (semi-)model-independent analysis such as

[210] and the methods developed in chapter 5. Such analysis allows for determining

characteristic scales in the 2-point correlation function without assuming a ΛCDM

fiducial model. It is naturally of interest to what extent the measurements performed

under the assumptions of conventional ΛCDM BAO analysis can be expected to be

accurate for a Universe which might be far from the ΛCDM model in some respects.

In this analysis we have investigated the accuracy of the standard constant AP

scaling method, and a theoretically motivated modification of this, for applying BAO

distance measurements in different cosmologies. We have quantified the difference

between the two methods in section 6.2.2. The two methods agree well when the ‘true’

underlying cosmological model and the fiducial model have the same order of magnitude

metric gradients. However, when large differences in metric gradients emerge – which

can happen in the scenario where a smooth fiducial model metric is used to extract

information about the galaxy catalogue of a lumpy universe – the methods can differ

substantially.

In our mock-based tests in section 6.4 we investigated the BAO peak shifts between

different fiducial cosmologies. We avoid calibration issues in the extraction of the BAO

feature by considering the shift of the BAO feature relative to a reference model. We

find that the standard constant AP method works well for recovering the BAO scale

when the fiducial model and the reference (or ‘true’) cosmological model are close –

up to systematics which cannot be ascribed to the constant AP approximation. As

expected from the theoretical results of section 6.2.2, the modified constant AP method

gives very similar results to those of the standard constant AP method when the fiducial

and reference models are not differing substantially in terms of metric gradients. When

we introduce large differences in gradients between the fiducial model and the reference

cosmological model, the standard constant AP scaling method becomes inaccurate,

while our modified constant AP scaling method remains accurate. This is due to the

fact the modified constant AP scaling takes into account the volume statistical aspect

of the BAO feature, whereas the standard constant AP scaling method is based on

evaluation at a single redshift.

Our results can help understand the ‘effective distance scales’ that we infer in

BAO analysis. The conventionally ‘measured’ AP parameters are better understood

as averages α(z) and ε(z) over the survey. Thus, they do not represent the ratio

of the mean of the ‘true’ model and the fiducial model distance scales evaluated a
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particular redshift – but are more accurately thought of as the mean of the ratio of the

‘true’ model and the fiducial model distance scales, which vary over the galaxy survey.

This difference in interpretation might be important, depending on the exact lumpy

geometry that describes our universe.

We find additional systematics in the recovery of the BAO scale of order ∼ 1% for

|ᾱ−1| ∼ 0.1 in section 6.4 which cannot be assigned to the constant AP approximation.

These systematics persists when we use a ΛCDM template fitting procedure instead

of our empirical method, which indicate that the level of systematics is robust to the

exact choice of fitting procedure. The systematics are in general larger than what is

found in other examinations of systematic errors due to choice of fiducial cosmology,

see e.g., [208, 221], which we hypothesise is due to the fact that such analysis are

concerned with ΛCDM models which are close – typically within a few percent in

terms of cosmological parameters. Our analysis reveal that larger systematic errors

emerge when the fiducial and ‘true’ cosmological models are not close in all respects.11

Our analysis based on test cases indicate that the error budget in the standard lit-

erature is significantly underestimated when interpreting the herein measured distance

scales as ‘model-independent’ and using the results for constraining alternative models.

The additional systematics must be included for consistency even in cases where the

aim is to constrain the standard FLRW class of cosmologies, and where priors from the

cosmic microwave background are employed at a later step in the analysis. Implicit

priors in data-reduction must in general be avoided for self-consistency of a statistical

analysis and reliability of the error budget. Alternatively, if neglecting the systematic

errors associated with the choice of fiducial model, the assumption about closeness of

the ‘true’ cosmological model and the fiducial model |ᾱ − 1| � 0.1 must be stated

explicitly. However, in this case, the results of the given analysis are primarily useful

for consistency testing the fiducial model employed and not suitable for extrapolation

to other cosmological models.

Our conclusions are twofold. On one hand, the standard constant AP scaling

approximation works surprisingly well for a broad class of pairs of ‘true’ and fiducial

models. The fiducial model can be far from the ‘true’ model in terms of the relevant

11 We note that the systematics might be even larger if we omit the precaution of scaling the fitting
range by a factor 1/ᾱ in order to approximately fit the tested models over the same physical
distance range as the reference model. This is of course only possible to do since we know the ‘true’
underlying model with respect to which we define α, but is not possible when fitting to actual data
where the ‘true’ underlying model is unknown.
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distance measures – as long as these and their gradients are bounded to be of similar

order of magnitude to those of the ‘true’ cosmological model – while the constant AP

approximation remains accurate for the purposes of BAO analysis. By reinterpreting

the constant AP scaling parameters one can modify the standard constant AP scaling

approximation to be accurate for an even larger class of pairs of models. On the other

hand, there are systematic uncertainties which are not directly related to the constant

AP approximation. These systematic uncertainties of order ∼ 1% for |ᾱ − 1| ∼ 0.1 –

which are independent of the fitting procedure chosen – are comparable in size to the

statistical errors often reported in BAO analysis. Our results indicate that one must

re-assess the error budget of standard BAO analysis on account of systematics related

to the choice of fiducial cosmology.

A limitation of our analysis is that it applies to spherically-symmetric template

geometries only. Even though large-scale average template metrics are usually taken

as spherically symmetric, the symmetry is broken at scales below that of statistical

isotropy. Systematic effects of the anisotropy from smaller scales – which do not cancel

on average in all respects and might feed into the large-scale estimators of the two-point

correlation function – might be important for realistic lumpy space-times. One might

attempt to generalise our methods to more generic geometries. A challenge of this is

that the AP scaling is designed for spherical symmetry. For generic spatial 3-metrics,

one would need six generalised AP functions instead of two in order to account for the

degrees of freedom involved.
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Figure 6.3: The accuracy of the inferred isotropic peak position for the constant AP
scaling approximations and for the exact AP scaling. For points within the green
shaded region, the AP model on the vertical axis is more accurate, and for points
in the unshaded region, the AP model on the horizontal axis is more accurate. The
warping parameters are fixed such that Cε = ε̄ in (6.47) and Kε = 0 in (6.49). Flat test
models are represented by a dot, whereas curved models are represented by a cross.
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Figure 6.4: The accuracy of the inferred warping parameters of the constant AP scaling
approximations and for the exact AP scaling. For points within the green shaded
region, the AP model on the vertical axis is more accurate, and for points in the
unshaded region, the AP model on the horizontal axis is more accurate. Flat test
models are represented by a dot, whereas curved models are represented by a cross.
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template fitting procedure, the models are represented by squares. Statistical errors of
the individual measurements are of order 0.2%.
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Figure 6.6: The mean of the isotropic 2-point correlation function of 200 mock cat-
alogues for each tested toy model. The reference spatially-flat ΛCDM cosmological
model with ΩM = 0.3 is shown in black. In order to visualise the shift of the acoustic
scale, the correlation function for each model has been normalised by a constant such
that the local maxima are aligned with that of the reference ΛCDM model.
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Figure 6.7: The accuracy of the inferred isotropic peak position for the constant AP
scaling approximations and for the exact AP scaling. For points within the green
shaded region, the AP model on the vertical axis is more accurate, and for points
in the unshaded region, the AP model on the horizontal axis is more accurate. The
warping parameters are fixed such that Cε = ε̄ in (6.47) and Kε = 0 in (6.49).

186



−0.020−0.015−0.010−0.005 0.000 0.005 0.010 0.015 0.020
(Cε)th = ε(z̄)

−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

(C
ε)

th
=
ε̄

A0.005f15Φ-0.3

A0.01f10Φ-0.3

A0.001f50Φ-0.6

A0.01f12Φ-0.6

A0.005f20Φ0.0

A0.005f30Φ-0.3

A0.003f40Φ-0.3

A0.01f15Φ0.0

(a) The constant AP scaling approximation error
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(b) The constant AP scaling approximation error
APerrorε = Ĉε − (Cε)th with (Cε)th = ε̄ (horizontal axis)
and the error in the ‘exact’ AP scaling APerrorε = K̂ε
(vertical axis).

Figure 6.8: The accuracy of the inferred warping parameters of the constant AP scaling
approximations and for the exact AP scaling. For points within the green shaded
region, the AP model on the vertical axis is more accurate, and for points in the
unshaded region, the AP model on the horizontal axis is more accurate.
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Appendix 6.A The 2-point correlation function and

the Landy-Szalay estimators

The 2-point correlation function in cosmology [52] describes the clustering of matter

as a function of scale to lowest order. Here we give a review of the 2-point correlation

function, and define a useful ‘reduced’ form of the correlation function, relevant for

the present analysis, and we review the estimators of the 2-point correlation function

conventionally used.

6.A.1 The 2-point correlation

The definition of the 2-point correlation function relies on considering ensemble aver-

ages of model universes as generated from a random process specified within the given

cosmological model.

Let us consider a fixed spatial domain D. We consider the position of the galaxies

within this domain random variables, and keep the total number of galaxies N within

the domain D constant over the ensembles. We use adapted coordinates X i on the

spatial domain, and denote the random position of the a’th particle xia. We define the

ensemble averaged pair count density f(X, Y ) of galaxies as the ensemble average pair

count per unit volume squared:

f(X, Y )dVX dVY ≡ 〈N(dVX)N(dVY )〉 , (6.51)

where dVX and dVY are infinitesimal volume elements centred on coordinates X and

Y , and the indices on X and Y have been suppressed. (These volume elements need

not be ‘physical’ volume elements but might be conveniently defined as coordinate

volumes, absorbing any volume measure into f(X, Y ).) The brackets 〈〉 denote the
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average over realisations of the ensemble, and

N(dVX) ≡
N∑
a

1dVX (xia) , 1dVX (xia) =

1, xia ∈ dVX ,
0, xia /∈ dVX ,

(6.52)

is the number count in the volume element dVX in a given realisation, where 1dVX is the

indicator function of the volume dVX . The ensemble averaged galaxy density function

f(X) can be expressed as an integral over (6.51)

f(X)dVX ≡ 〈N(dVX)〉 =
1

N

(∫
f(X, Y )dVY

)
dVX , (6.53)

where integration without limits indicate integration over the entire domain D, and

where the normalisation N = N(D) is the ensemble-fixed total number of galaxies in

the domain D.

The spatial 2-point correlation function is defined as

ξ(X, Y ) ≡ f(X, Y )

fPoisson(X, Y )
− 1 =

f(X, Y )

f(X)f(Y )
− 1 , (6.54)

and describes the excess ensemble number count over the ensemble number count in

an artificial uncorrelated ensemble with factorising pair count density fPoisson(X, Y ) =

f(X)f(Y ).

We can define a number of ‘reduced’ 2-point correlation functions by integrating

over f(X, Y )dVX dVY and fPoisson(X, Y )dVX dVY subject to a given constraint.12

Typically we might consider the geodesic distance to be fixed in the integration. For

this purpose, it is useful to perform the change of variables (X i, Y i) 7→ (X i, n̂iX , D),

where n̂iX is a unit vector defined at X i representing a geodesic starting at X i and

12 It is conventional to assume that the galaxy distribution is described by a homogeneous and
isotropic point process, in which case the 2-point correlation function (6.54) automatically reduces
to a function of the geodesic distance D between the galaxy pairs, where D is defined within
the ‘true’ cosmological model. However, here we are relaxing the conventional assumptions of
homogeneity and isotropy to potentially allow for asymmetric random processes describing the
galaxy distribution, and to account for systematic observational effects, such as the redshift depth
of the survey or survey-coverage. (The survey might be limited in parts of the sky as compared
to others.) Even for the homogeneous and isotropic point process, this new formulation is relevant
when the ‘wrong’ fiducial cosmology is used for constructing the 2-point correlation function.
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intersecting Y i and D is the geodesic distance13 from X i to Y i. Using the Jacobian of

the transformation, we can then formulate the pair count density as a function of the

new variables f(X i, n̂iX , D).

For the type of spherically-symmetric models specified in section 6.1.1 we can

decompose n̂X into µ, sgn(δz), and the normalised angular separation vector Θ̂ =
1
|δΘ|(δθ, cos(θ)δφ). Furthermore for this class of models we can use the observer adapted

functions (z, θ, φ) as convenient coordinates on a spatial domain D on a hypersurface

defined by t = const., and take X = (z, θ, φ). We can then rewrite (6.51) in terms of

the new set of variables

f(X, Y )dVX dVY = f [z, θ, φ, µ, sgn(δz), Θ̂, D]dz dθ dφ dµ dΘ̂ dD . (6.55)

Let us now define the ‘reduced’ pair count density function in (D,µ, z) by integrating

(6.55) over the remaining variables (θ, φ, Θ̂, sgn(δz))

f(D,µ, z) ≡
∑

sgn(δz)=±1

∫
f(z, θ, φ, µ, sgn(δz), Θ̂, D)dθ dφ dΘ̂ , (6.56)

and analogously define fPoisson(D,µ, z). From the ‘reduced’ pair count density func-

tions, we can define the ‘reduced’ 2-point correlation function

ξ(D,µ, z) ≡ f(D,µ, z)

fPoisson(D,µ, z)
− 1 . (6.57)

We can further reduce the pair count density functions by defining

f(D,µ) ≡
∫
f(D,µ, z)dz , fPoisson(D,µ) ≡

∫
fPoisson(D,µ, z)dz , (6.58)

from which we can define the ‘reduced’ 2-point correlation function in D and µ as

ξ(D,µ) =
f(D,µ)

fPoisson(D,µ)
− 1 . (6.59)

13 The transformation (Xi, Y i) 7→ (Xi, n̂iX , D) is bijective if there is a unique geodesic between the
points Xi, Y i, or if some requirement is imposed to single out a unique geodesic. We assume
bijectivity in the following.
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From (6.59) we can construct the following ‘wedge’ 2-point correlation function

ξ[µ1,µ2](D) =
1

µ2 − µ1

∫ µ2

µ1

dµ ξ(D,µ), (6.60)

where we denote

ξ(D) ≡ ξ[0,1](D), ξ⊥(D) ≡ ξ[0,0.5](D), ξ‖(D) ≡ ξ[0.5,1](D) (6.61)

the isotropic wedge, the transverse wedge, and the radial wedge respectively.

It will be useful in the present analysis to approximate (6.59) as an integral over

(6.57). We do this by defining the normalised density function in z as

P (z) ≡
∫
f(z, θ, φ)dθ dφ∫

f(z′, θ′, φ′)dz′ dθ′ dφ′
=

∫
f(D,µ, z)dµ dD∫

f(D′, µ′, z′)dz′ dµ′ dD′
, (6.62)

where f(z, θ, φ)dz dθ dφ = f(X)dVX , and where the equality follows from (6.53) and

(6.56). Suppose that the pair count functions f(D,µ, z) and fPoisson(D,µ, z) are almost

of a multiplicatively separable form, such that

f(D,µ, z) = f(D,µ)P (z)(1 + δ(D,µ, z)) , δ(D,µ, z)� 1, (6.63)

fPoisson(D,µ, z) = fPoisson(D,µ)P (z)(1 + δ(D,µ, z)) , δPoisson(D,µ, z)� 1. (6.64)

Note that by the definitions (6.58) we have the constraints∫
P (z)δ(D,µ, z)dz =

∫
P (z)δPoisson(D,µ, z)dz = 0 ∀D,µ . (6.65)

We can now use the decomposition (6.63) to write the following integral over (6.57) in
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redshift as∫
ξ(D,µ, z)P (z)dz =

∫
f(D,µ, z)

fPoisson(D,µ, z)
P (z)dz − 1

≈ f(D,µ)

fPoisson(D,µ)

∫
[1 + δ − δPoisson − δPoisson(δ − δPoisson)]P (z)dz − 1

=
f(D,µ)

fPoisson(D,µ)

∫
[1− δPoisson(δ − δPoisson)]P (z)dz − 1

= ξ(D,µ)− (1 + ξ(D,µ))

∫
δPoisson(δ − δPoisson)P (z)dz , (6.66)

where the second line follows from substituting (6.63) and expanding around δ = 0

to second order, the third line follows from (6.65), and the last equality follows from

(6.59) and the condition that the integral of P (z) is normalised to 1. Thus, under the

assumptions (6.63),
∫
ξ(D,µ, z)P (z)dz = ξ(D,µ) to first order in δ and δPoisson.

6.A.2 The Landy-Szalay estimators

Estimators of the 2-point correlation function require (approximate) spatial ergodicity

to be satisfied [51]. To this end we write the theoretical 2-point correlation function

(6.59) as

ξ(D,µ) =
f(D,µ)

fPoisson(D,µ)
− 1 =

〈N(D ± δD, µ± δµ)〉
〈NPoisson(D ± δD, µ± δµ)〉 − 1 , (6.67)

where N(D± δD, µ± δµ) is the number pair count of galaxies separated by a distance

D±δD and ‘radial fraction of the separation’ µ±δµ, where δD and δµ are infinitesimal

displacements, and 〈〉 denotes the average over ensembles. Spatial ergodicity then

amounts to the assumption that ξ(D,µ) can be approximated within a single realisation

such that

lim
V (D)→∞

N(D ± δD, µ± δµ)

NPoisson(D ± δD, µ± δµ)
− 1 ≈ ξ(D,µ) . (6.68)

Furthermore, we must in practice assume fast enough convergence, such that a finite

volume of the size of a typical available catalogues approximates the left hand side of

(6.68).

Naturally, we can imagine performing pair counts of galaxies in a universe which is a
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realisation of an ensemble that does not satisfy (6.68). In this case, the pair count ratio

on the left hand side of (6.68) is merely a descriptive statistic of correlation between

structure for a single realisation and has no interpretation in terms of the ensemble

average.

Various estimators of the 2-point correlation function have been tested within

ΛCDM simulations [201]. The Landy-Szalay (LS) estimator [202] is found to have

small variance compared to other estimators of the 2-point correlation function and

reads

ξ̂(D,µ) =
DD(D,µ) +RR(D,µ)− 2DR(D,µ)

RR(D,µ)
, (6.69)

where DD is the normalised number count

DD(D,µ) =
1

ND(ND − 1)

ND∑
a,b

1D±∆D(D(xia, x
i
b))1µ±∆µ(µ(xia, x

i
b)) (6.70)

over galaxies in the survey, where ND is the total number of galaxies, and ∆D and

∆µ are bin sizes for the count. 1A(y) is the indicator function, having the value 1 for

y ∈ A and 0 for y /∈ A. RR is defined in the same way,

RR(D,µ) =
1

NR(NR − 1)

NR∑
a,b

1D±∆D(D(xia, x
i
b))1µ±∆µ(µ(xia, x

i
b)), (6.71)

except that the sum is now over NR artificial galaxies in a random Poisson catalogue,

designed to match the galaxy survey density in redshift and angular position. We also

define DR, as the normalised cross pair-count between the galaxy catalogue and the

random sample, by

DR(D,µ) =
1

NDNR

ND∑
a

NR∑
b

1D±∆D(D(xia, x
i
b))1µ±∆µ(µ(xia, x

i
b)) (6.72)

It is often useful to average (6.69) over µ to obtain the wedge LS estimator correspond-

ing to the ensemble wedge function (6.60)

ξ̂[µ1,µ2](D) =
1

µ2 − µ1

∫ µ2

µ1

dµ ξ̂(D,µ). (6.73)
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We define the estimators of the isotropic wedge ξ̂(D), the transverse wedge ξ̂⊥(D) and

radial wedge ξ̂‖(D) as respectively

ξ̂(D) ≡ ξ̂[0,1](D), ξ̂⊥(D) ≡ ξ̂[0,0.5](D), ξ̂‖(D) ≡ ξ̂[0.5,1](D). (6.74)

Appendix 6.B Conjecture of improved AP scaling

In this section we conjecture that the modified constant AP scaling α(z) 7→ ᾱ, ε(z) 7→ ε̄

is typically better for extracting characteristic features of a 2-point correlation function

as compared to the standard constant AP scaling approximation α(z) 7→ α(z̄), ε(z) 7→
ε(z̄).

Let us consider the function Ξ : X ⊂ IR5 → Y ⊂ IR, such that Ξ assigns a unique

real number

Ξ(D,µ, z, α, ε) = ξtr
(
Dtr(D,µ, α, ε), µtr(µ, ε), z

)
, (6.75)

to each point {D,µ, z, α, ε} ∈ X. ξtr is the 2-point correlation function as given in the

‘true’ underlying cosmology, and Dtr(D,µ, α, ε) and µtr(µ, ε) are given in (6.10) and

(6.11). The parameters α and ε might take any values, but we shall often be interested

in identifying α and ε with the AP scaling functions α(z) and ε(z), given by the ‘true’

cosmological model and the choice of fiducial model respectively. When identifying α

and ε with the AP scaling functions α(z) and ε(z), Ξ reduces to the redshift dependent

2-point correlation function ξ in (6.14)

Ξ(D,µ, z, α(z), ε(z)) = ξ(D,µ, z) = ξtr
(
Dtr(D,µ, α(z), ε(z)), µtr(µ, ε(z)), z

)
. (6.76)

Consider the situation where the condition of almost multiplicative separability (6.63)

is satisfied. Then the result (6.66) holds, and we might write

ξ(D,µ) = ξ(D,µ, z) = Ξ(D,µ, z, α(z), ε(z)) , (6.77)

to first order in the ‘non-separability terms’ δ, δPoisson defined in (6.63). The overbar

denotes the averaging operation f(z) ≡
∫
dz P (z)f(z) for an arbitrary function f(z),

and the second equality follows from the re-parametrisation (6.76). Let us for sim-

plicity suppose that separability is a good approximation, such that the second order
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correction terms are so small that we can for all practical purposes consider the first

order approximation in 6.77 exact.

We consider what we denote the standard constant AP approximation of ξ(D,µ)

by performing the mapping {z 7→ z̄, α 7→ α(z̄), ε 7→ ε(z̄)} in (6.75) to obtain

Istandard AP(D,µ) ≡ Ξ(D,µ, z̄, α(z̄), ε(z̄)) = ξ(D,µ, z̄) . (6.78)

In addition we consider the analogous modified constant AP approximation {z 7→
z̄, α 7→ ᾱ, ε 7→ ε̄} of ξ(D,µ)

Imodified AP(D,µ) ≡ Ξ(D,µ, z̄, ᾱ, ε̄) , (6.79)

where we use the short hand notation f̄ = f(z). We want to estimate which of the

functions (6.78) and (6.79) provide the better approximation of ξ(D,µ).

We assume that Ξ(D,µ, z, α, ε) is three times differentiable in z, α, ε and that α, ε

are twice differentiable in z. We consider the first order Taylor expansions around

{z = z̄, α = α(z̄), ε = ε(z̄)}

G(D,µ, z) ≡ ξ(D,µ, z̄) +
dξ(D,µ, z)

dz

∣∣∣∣
z̄

(z − z̄)

= ξ(D,µ, z̄) +

(
∂Ξ

∂z
+
dα

dz

∂Ξ

∂α
+
dε

dz

∂Ξ

∂ε

)∣∣∣∣
z̄

(z − z̄) , (6.80)

and

H(D,µ, z, α, ε) ≡ ξ(D,µ, z̄) +
∂Ξ

∂z

∣∣∣∣
z̄

(z − z̄) +
∂Ξ

∂α

∣∣∣∣
z̄

(α− α(z̄)) +
∂Ξ

∂ε

∣∣∣∣
z̄

(ε− ε(z̄)) .

(6.81)

Let us write the error term associated with (6.81) as an approximation of (6.75) as

Ξ(D,µ, z, α, ε)−H(D,µ, z, α, ε) = (2)Ξ(D,µ, z, α, ε) + (2)R(D,µ, z, α, ε) , (6.82)
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where

(2)Ξ(D,µ, z, α, ε) ≡ 1

2

∂2Ξ

∂z2

∣∣∣∣
z̄

(z − z̄)2 +
1

2

∂2Ξ

∂α2

∣∣∣∣
z̄

(α− α(z̄))2 +
1

2

∂2Ξ

∂ε2

∣∣∣∣
z̄

(ε− ε(z̄))2+

∂2Ξ

∂α∂z

∣∣∣∣
z̄

(z − z̄)(α− α(z̄)) +
∂2Ξ

∂ε∂z

∣∣∣∣
z̄

(z − z̄)(ε− ε(z̄)) +
∂2Ξ

∂α∂ε

∣∣∣∣
z̄

(ε− ε(z̄))(α− α(z̄)) ,

(6.83)

is the second order contribution and (2)R is the remainder at second order.14 Combining

(6.80) and (6.81) we have

G(D,µ, z)−H(D,µ, z, α(z), ε(z))

=

(
dα

dz
(z − z̄)

∣∣∣∣
z̄

− (α(z)− α(z̄))

)
∂Ξ

∂α

∣∣∣∣
z̄

+

(
dε

dz

∣∣∣∣
z̄

(z − z̄)− (ε(z)− ε(z̄))

)
∂Ξ

∂ε

∣∣∣∣
z̄

,

(6.84)

and taking the average we obtain

G(D,µ, z)−H(D,µ, z, α(z), ε(z)) = −(ᾱ− α(z̄))
∂Ξ

∂α

∣∣∣∣
z̄

− (ε̄− ε(z̄))
∂Ξ

∂ε

∣∣∣∣
z̄

. (6.85)

We might now conveniently rewrite (6.78) as

Istandard AP(D,µ) = G(D,µ, z)

= H(D,µ, z, α(z), ε(z))− (ᾱ− α(z̄))
∂Ξ

∂α

∣∣∣∣
z̄

− (ε̄− ε(z̄))
∂Ξ

∂ε

∣∣∣∣
z̄

,

(6.86)

where the first equality follows from the definition (6.80) and the last equality follows

from (6.85). Similarly we might express (6.79) in terms of the average of (6.81) and

its error terms as

Imodified AP(D,µ) = H(D,µ, z̄, ᾱ, ε̄) + (2)Ξ(D,µ, z̄, ᾱ, ε̄) + (2)R(D,µ, z̄, ᾱ, ε̄)

= H(D,µ, z, α(z), ε(z)) + (2)Ξ(D,µ, z̄, ᾱ, ε̄) + (2)R(D,µ, z̄, ᾱ, ε̄) .

(6.87)

14 Following Taylor’s theorem one might express (2)R as an integral-expression where the integrand
is a linear combination of third order derivatives of Ξ evaluated at {z = z̄, α = α(z̄), ε = ε(z̄)}.

196



Let us now quantify the accuracy of Istandard AP(D,µ) and Imodified AP(D,µ) as estimates

of ξ(D,µ). From (6.77), (6.82), and (6.86) we have

|ξ(D,µ)− Istandard AP(D,µ)|

=

∣∣∣∣(2)Ξ(D,µ, z, α(z), ε(z)) + (2)R(D,µ, z, α(z), ε(z)) + (ᾱ− α(z̄))
∂Ξ

∂α

∣∣∣∣
z̄

+ (ε̄− ε(z̄))
∂Ξ

∂ε

∣∣∣∣
z̄

∣∣∣∣ ,
(6.88)

and from (6.77), (6.82), and (6.87) we have

|ξ(D,µ)− Imodified AP(D,µ)|
=
∣∣∣(2)Ξ(D,µ, z, α(z), ε(z)) + (2)R(D,µ, z, α(z), ε(z))− (2)Ξ(D,µ, z̄, ᾱ, ε̄)− (2)R(D,µ, z̄, ᾱ, ε̄)

∣∣∣ .
(6.89)

We might note that (6.88) contains terms which are first order in α(z) − α(z̄) and

ε(z) − ε(z̄) respectively, while (6.89) contain only second and higher order terms in

these separations.

So far we have made no assumption on Ξ(D,µ, z, α, ε), α(z), and ε(z) as functions,

other than assuming regularity conditions to be fulfilled. Let us suppose that α(z)

and ε(z) are sufficiently bounded in terms of size of the variations α(z) − α(z̄) and

ε(z) − ε(z̄) respectively within this redshift interval. Further assume that the third

order derivatives of Ξ(D,µ, z, α, ε) in z, α, and ε can be sufficiently bounded within

the redshift interval Z of integration, in such a way that the error term (6.82) is

dominated by its second order contribution and that (2)R can be neglected. In this

case we have

|ξ(D,µ)− Istandard AP(D,µ)| =
∣∣∣∣(2)Ξ(D,µ, z, α(z), ε(z)) + (ᾱ− α(z̄))

∂Ξ

∂α

∣∣∣∣
z̄

+ (ε̄− ε(z̄))
∂Ξ

∂ε

∣∣∣∣
z̄

∣∣∣∣ ,
(6.90)

and from (6.77), 6.82, and (6.87) we have

|ξ(D,µ)− Imodified AP(D,µ)| =
∣∣∣(2)Ξ(D,µ, z, α(z), ε(z))− (2)Ξ(D,µ, z̄, ᾱ, ε̄)

∣∣∣ . (6.91)

If α(z) and ε(z) are varying sufficiently slowly that the remainder at second order

of their expansion can be ignored along with the remainder (2)R, then the first or-
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der term in α(z) − α(z̄) and ε(z) − ε(z̄) in (6.90) reduces to the second order term
1
2
∂2α
∂z2

∂Ξ
∂α

∣∣∣
z̄

(z − z̄)2 + ∂2ε
∂z2

∂Ξ
∂ε

∣∣∣
z̄

(z − z̄)2. In this case, the competing terms in (6.90) and

(6.91) can be considered to be of the same order. As long as there are no chance

cancellations we therefore expect the approximations to be accurate at the same order.

We will now consider cases where gradients of α(z) and ε(z) are not necessarily small.

Let us consider the case where
∣∣∣(2)Ξ(D,µ, z, α(z), ε(z))

∣∣∣ 6= 0. In this case we

can write
∣∣∣(2)Ξ(D,µ, z, α(z), ε(z))− (2)Ξ(D,µ, z̄, ᾱ, ε̄)

∣∣∣ ≤ KD,µ ∣∣∣(2)Ξ(D,µ, z, α(z), ε(z))
∣∣∣,

where KD,µ is some positive number which might be chosen differently for differ-

ent values of D,µ and for each test model. Then the modified AP scaling approx-

imation is guaranteed to be better if
∣∣(ᾱ− α(z̄)) ∂Ξ

∂α

∣∣
z̄

+ (ε̄− ε(z̄)) ∂Ξ
∂ε

∣∣
z̄

∣∣ > (KD,µ +

1)
∣∣∣(2)Ξ(D,µ, z, α(z), ε(z))

∣∣∣. The left and right hand side of this inequality are just the

averages of the first and second order term respectively in the expansion of Ξ (where

the latter is scaled by KD,µ + 1 ≥ 1). In general we expect the first order term to

dominate of a well behaved expansion. We expect KD,µ . 1 for most values of D,µ for

model 2-point correlation functions which do not have extreme variations with redshift

– i.e., where systematics such as galaxy evolution and the distortion due to the choice

of trial cosmology are not disturbing the 2-point correlation function by more than

order unity.

For a given test model with some set of specified AP functions α(z) and ε(z), we

expect that there will be values of D,µ in the physical range of interest for which the

second order term of the expansion of Ξ dominates over the first order term, and we

might even expect (6.90) to be zero for some region of the domain of negligible measure.

However, for most of the domain of D,µ we expect first order terms to dominate over

second order terms. In the special case where (2)Ξ(D,µ, z, α(z), ε(z)) = 0 the condition

for the modified constant AP scaling approximation to work better than the standard

constant AP scaling approximation reduces to
∣∣(ᾱ− α(z̄)) ∂Ξ

∂α

∣∣
z̄

+ (ε̄− ε(z̄)) ∂Ξ
∂ε

∣∣
z̄

∣∣ >∣∣(2)Ξ(D,µ, z̄, ᾱ, ε̄)
∣∣. This is a direct constraint on the relative size of the first and

second order term of the expansion of Ξ as evaluated at z̄, ᾱ, ε̄. Again we expect the

first order term to dominate except for cases where chance cancellations occur.

We conclude without rigorous proof that it is reasonable to assume that the modified

constant AP scaling α(z) 7→ ᾱ, ε(z) 7→ ε̄ approximation is in general better or – in

case of sufficiently slowly varying α(z) and ε(z) – equally good, as compared to the

standard constant AP scaling approximation α(z) 7→ α(z̄), ε(z) 7→ ε(z̄).
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Appendix 6.C Bounds on the AP error terms

In this appendix, we discuss bounds on the magnitude of the error terms ∆α and ∆ε

defined in (6.20) and (6.25) respectively.

6.C.1 Bounds on the magnitude of ∆α

We shall be interested in bounding ∆α from above for various situations. Obviously,

from its definition in (6.20), ∆α can be bounded if a bound on Rα
1 (z) of the first

order expansion (6.18) is obtained. From Taylor’s theorem the remainder term can be

written on the form

Rα
1 (z) =

1

2

∂2α

∂z2
(bz̄(z)) (z − z̄)2 (6.92)

for each value of z, where bz̄(z) is a real number between z̄ and z.

Bounding the remainder term Rα
1 (z), amounts to bounding the second derivative

of α

∂2α

∂z2
=
Ltr

L

[
∂2Ltr

∂z2

Ltr
−

∂2L
∂z2

L
− 2

∂L
∂z

L

(
∂Ltr

∂z

Ltr
−

∂L
∂z

L

)]
, L ≡

(
g2
θθgzz

) 1
6 , Ltr ≡

(
(gtr
θθ)

2gtr
zz

) 1
6

(6.93)

where α = Ltr/L which follows from the definition of α (6.9).

Constraints on L and its derivatives can now be turned into constraints on (6.93).

Let us for instance assume that we are considering a class of model cosmologies which

are bounded with respect to the ‘true’ cosmology over the redshift range of the survey

in the following sense

Mmin
L 0 ≤

Ltr

L
≤Mmax

L 0 ,

∣∣∣∣∣∣
(
∂Ltr/∂z
Ltr

)
(
∂L/∂z
L

) − 1

∣∣∣∣∣∣ ≤ML 1 ,

∣∣∣∣∣∣
(
∂2Ltr/∂z2

Ltr

)
(
∂2L/∂z2

L

) − 1

∣∣∣∣∣∣ ≤ML 2 ,

(6.94)

while L is bounded in its first and second derivatives∣∣∣∣∣ ∂L∂zL
∣∣∣∣∣ ≤ βL 1 ,

∣∣∣∣∣ ∂
2L
∂z2

L

∣∣∣∣∣ ≤ βL 2, (6.95)
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where Mmin
L 0 , Mmax

L 0 , ML 1, ML 2, βL 1, and βL 2 are all positive dimensionless constants.

We then obtain the following upper bound on (6.93) expressed in terms of these con-

stants

∣∣∣∣∂2α

∂z2

∣∣∣∣ ≤ Ltr

L

∣∣∣∣∣ ∂
2L
∂z2

L

(
∂2Ltr/∂z2

Ltr

∂2L/∂z2

L

− 1

)∣∣∣∣∣ + 2

(
∂L
∂z

L

)2 ∣∣∣∣∣ ∂L
tr/∂z
Ltr

∂L/∂z
L

− 1

∣∣∣∣∣


≤ Mmax
L 0

(
βL 2ML 2 + 2β2

L 1ML 1

)
. (6.96)

The first inequality follows from the triangle inequality and rearranging of the terms

of (6.93), and the second inequality follows from (6.94) and (6.95). The inequality in

(6.96) implies the following bound on the remainder Rα
1 (z) in (6.92)

|Rα
1 (z)| = 1

2

∣∣∣∣∂2α

∂z2
(bz̄(z))

∣∣∣∣ (z − z̄)2 ≤ 1

2
Mmax

L 0

(
βL 2ML 2 + 2β2

L 1ML 1

)
(z − z̄)2 . (6.97)

Finally we can use the bound (6.97) to obtain bounds on the error term in (6.20)

|∆α| =
1

α(z̄)

∣∣∣∣∫ dzP (z)Rα
1 (z)

∣∣∣∣ ≤ 1

α(z̄)

∫
dzP (z)|Rα

1 (z)|

≤ 1

2

Mmax
L 0

Mmin
L 0

(
βL 2ML 2 + 2β2

L 1ML 1

)
(z − z̄)2, (6.98)

where the lower bound on α = Ltr/L in (6.94) has been used in the final inequality.

6.C.2 Bounds on the magnitude of ∆ε

We shall now bound the magnitude of the error term ∆ε (6.25) in a similar fashion as

done for ∆α in appendix 6.C.1. We can write the remainder term Rε
1(z) (6.18) of the

first order expansion

Rε
1(z) =

1

2

∂2ε

∂z2
(cz̄(z)) (z − z̄)2 (6.99)

for each value of z, where cz̄(z) is a real number between z̄ and z.

In a similar way to (6.93) we write the second derivative of ε in terms of first and
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second derivatives of metric combinations of the models

∂2ε

∂z2
=

1

3

(
Rtr

R

) 1
3

 ∂2Rtr

∂z2

Rtr
−

∂2R
∂z2

R
− 2

∂R
∂z

R

(
∂Rtr

∂z

Rtr
−

∂R
∂z

R

)
− 2

3

(
∂Rtr

∂z

Rtr
−

∂R
∂z

R

)2
 ,

(6.100)

where R ≡ (gzz/gθθ)
1/2 and Rtr ≡ (gtr

zz/g
tr
θθ)

1/2 are relative distance scales of the models,

and where (1 + ε)3 = Rtr

R
from the definition of epsilon in (6.9).

Similarly to the case of α, the second derivative of ε can be bounded as a function

of bounds on the metric combination R and its first and second derivatives. Let us

consider a class of models which are bounded with respect to the ‘true’ cosmological

model within the redshift interval of the survey in the following way:

(
Rtr

R

) 1
3

≤Mmax
R 0 ,

∣∣∣∣∣∣
(
∂Rtr/∂z
Rtr

)
(
∂R/∂z
R

) − 1

∣∣∣∣∣∣ ≤MR 1 ,

∣∣∣∣∣∣
(
∂2Rtr/∂z2

Rtr

)
(
∂2R/∂z2

R

) − 1

∣∣∣∣∣∣ ≤MR 2 ,

(6.101)

and where R is bounded in its first and second derivative as∣∣∣∣∣ ∂R∂zR
∣∣∣∣∣ ≤ βR 1 ,

∣∣∣∣∣ ∂
2R
∂z2

R

∣∣∣∣∣ ≤ βR 2 . (6.102)

We can now bound the second derivative of ε (6.100) based on the above bounds as

follows∣∣∣∣∂2ε

∂z2

∣∣∣∣ ≤ 1

3

(
Rtr

R

) 1
3

∣∣∣∣∣ ∂
2R
∂z2

R

(
∂2Rtr/∂z2

Rtr

∂2R/∂z2

R

− 1

)∣∣∣∣∣
+

2

3

(
Rtr

R

) 1
3

(
∂R
∂z

R

)2
∣∣∣∣∣ ∂R

tr/∂z
Rtr

∂R/∂z
R

− 1

∣∣∣∣∣+
1

3

∣∣∣∣∣ ∂R
tr/∂z
Rtr

∂R/∂z
R

− 1

∣∣∣∣∣
2


≤ 1

3
Mmax

R 0

(
βR 2MR 2 + 2β2

R 1

(
MR 1 +

1

3
M2

R 1

))
, (6.103)

where the first inequality follows from the triangle inequality, and the second inequality

follows from (6.101) and (6.102). We can now bound the remainder Rε
1(z) (6.99) in

a similar manner to (6.97), and use the result for bounding the error term ∆ε. The
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result reads

|∆ε| ≤
∫

dzP (z)|Rε
1(z)| ≤ 1

6
Mmax

R 0

(
βR 2MR 2 + 2β2

R 1

(
MR 1 +

1

3
M2

R 1

))
(z − z̄)2 ,

(6.104)

which follows from the triangle inequality, the bound (6.103), and the definition of the

remainder term (6.99).
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CHAPTER 7

Conclusion

Inhomogeneities in our Universe are undoubtedly present. However, the significance

of inhomogenieties on our perception of overall properties of the Universe is a topic of

much controversy in modern cosmology. The main reasons for the inconclusiveness are

the richness of possible general relativistic theories which might serve as candidates for

modelling our Universe – and the ambiguity in applying general relativity on cosmolog-

ical scales in the first place – together with the limitation of cosmological data available

(and realistically obtainable in the future) to distinguish between various scenarios.

In this thesis we have discussed both theoretical and observational aspects of inho-

mogeneous cosmology. Common for the frameworks and models discussed is that they

are either formulated in Buchert’s scheme of averaging or in generalisations thereof.

In chapter 2 we have introduced a generalisation of the covariant scalar averag-

ing scheme of Gasperini, Marozzi and Veneziano (2010) [91], where the integration

measure need not coincide with the Riemannian volume element defined on the given

spatial hypersurface. The procedure facilitates choosing volume elements of integration

which might for some purposes be considered more physical than the usual Rieman-

nian volume element. The scheme makes explicit the role of the foliation scalar in

singling out hypersurfaces of integration, and it is thus useful for studying the func-

tional dependence of averaged quantities on the foliation. Such studies are important

for quantifying the significance of the choice of the foliation in which averages are de-

fined in Buchert’s scheme and its generalisations. Even though some foliation might

appear more fundamental or natural in a given space-time, the choice of foliation suit-

able for averaging is rarely uniquely prescribed or intuitively obvious. In future work

we will consider the foliation dependence of scalar averaging schemes [108].

In chapter 3 we have used the JLA SNIa catalogue of supernovae to test the

distance–redshift relation of the timescape cosmological model. We found that the

timescape model could account for the observed data with the same quality of fit as
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ΛCDM, whereas the Milne universe is weakly disfavoured with respect to both the

ΛCDM model and the timescape model by current data. We have discussed redshift-

dependent biases which have been argued to be present in supernovae analysis, and

discussed model-dependence in supernovae data reduction. The future of supernovae

analysis for precise cosmological analysis largely depends on being able to indepen-

dently model systematics in data such as host galaxy properties and observational

biases. The degree to which the understanding of such systematic effects can be im-

proved will largely determine the gain in precision for cosmological constraints which

can be achieved with future surveys.

In chapter 4 we carried out another analysis on the JLA sample. We examined the

fit of a class of scaling solutions formulated in Buchert’s averaging scheme combined

with a template hypothesis for interpreting observables within Buchert’s scheme. We

found that the dynamical curvature allowed by the scaling solutions can account for

the data of the JLA sample, and that the scaling solutions, the ΛCDM model, and

the timescape model are equally preferred from an information-criterion perspective.

Future analysis must be carried out to assess whether the scaling solutions can account

for complementary data-sets such as CMB and BAO surveys.

In chapter 5 we have developed methods for consistently investigating BAO features

in cosmological models with non-trivial curvature. The developed methods include for-

mulating generalisations of comoving distance separations of galaxies to generic space-

times, generalising the AP scaling methods used in BAO analysis to a non-FLRW

setting, and formulating an empirical model for extracting knowledge about charac-

teristic scales in a 2-point correlation function without the assumption of a fiducial

cosmological model. We applied our methods to the Baryon Oscillation Spectroscopic

Survey (BOSS) dataset, and investigated both the ΛCDM and timescape cosmological

models as case studies.

In chapter 6 we have investigated the AP scaling conventionally used in BAO anal-

ysis for extracting information about the BAO characteristic scale using a fiducial

ΛCDM model. We investigated to which extent such methods might be considered

model-independent. We found that the conventionally applied constant AP scaling

approximation works surprisingly well for a broad class of pairs of ‘true’ and fidu-

cial models. We also found that one can modify the standard constant AP scaling

approximation to be accurate for an even larger class of pairs of models through a

reinterpretation of the constant AP scaling parameters. However, there are systematic
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uncertainties which are not caused by the constant AP approximation, which we find

to be largely independent of the exact fitting procedure chosen. These systematic un-

certainties – which are of order 1% when the fiducial model differs substantially from

the ‘true’ cosmological model – are comparable in size to the statistical errors often

reported in BAO analysis. Our results indicate that the error budget of standard BAO

analysis must be re-assessed to accurately account for the systematic errors related to

the choice of fiducial cosmology, if the results are to be used to consistently test models

which are not close to the concordance ΛCDM model in all respects.
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