Load Balancing by Allocation of
User Login Sessions

Peter Smith and Paul Ashton

TR-COSC-05/92

Department of Computer Science
University of Canterbury
Private Bag 4800
Christchurch
New Zealand

Load Balancing by Allocation of User Login Sessions

Peter Smith and Paul Ashton
Department of Computer Science
University of Canterbury
Christchurch, New Zealand
email: paul@cosc.canterbury.ac.nz

Abstract

Most current load balancing systems are based on process placement or
process migration. We introduce placement of user login sessions as a load
balancing approach, and compare it to the process placement and process
migration approaches. A load balancing system based on user placement
is described, and some experimental results are given. We conclude that
user placement has several advantages over process placement and process
migration, and that user placement should provide good load balancing
for some types of workload.

1 Introduction

An important function of process management in a loosely-coupled distributed
system is the allocation of processes to processors. A major goal in this alloca-
tion is to achieve load balancing, that is to ensure that the system workload is
spread around the available processors so as to make full and balanced use of
the computing power available.

Although some experimental distributed operating systems (such as Amoeba
[14]) do perform load balancing automatically and transparently, most operat-
ing systems currently used on loosely-coupled distributed systems are network
operating systems that provide little if any support for load balancing. Several
systems designed to achieve some degree of load balancing for network operat-
ing systems have been developed, and these include Condor [3], Butler [12] and
Utopia [16].

We have developed c1b (Canterbury load balancer), a load balancing system
for use with the SunOS network operating system. c1b differs from other load
balancing systems in that it is based on allocating entire user login sessions
to machines, rather than on allocating processes to machines or on migration
of executing processes. We have also performed experiments to determine the
effectiveness of c1b. These experiments were done using a production workload,
and indicate that clb was reasonably effective in evening out the load in our
environment.

The rest of this paper is structured in the following way. Section 2 provides
background, in terms of: related work on load balancing; and the computing

environment for which we wanted to provide load balancing. Section 3 describes
the user placement approach to load balancing, and compares it to the process
placement and process migration approaches. Section 4 discusses clb, a load
balancing system that we have implemented based on the user placement ap-
proach. Section 5 gives some preliminary experimental results on the quality
of the load balancing achieved by clb. Finally, we present some conclusions in
Section 6.

2 Background

Two aspects of the background to our work are now discussed. First, other work
in the load balancing area is summarised. Second, we describe our computing
environment, and give our reasons for investigating load balancing.

2.1 Related work

The processor organisation used in a distributed system determines how load
balancing can be performed. The two principal models for the organisation of
processors in distributed systems are the workstation model and the processor
pool model [13].

In the workstation model, each user interacts with the distributed system
through a workstation. Each workstation has a screen and keyboard and can
run user processes. Typically, the computational resources of a workstation are
reserved for the exclusive use of the workstation “owner”—the person currently
sitting at the workstation. While a workstation can provide good response
for most of the workload generated by its owner, it is desirable to execute
compute-intensive tasks on a remote processor. As there are a substantial
number of workstations idle most of the time (for load balancing purposes a
workstation is idle if it does not have an owner), load balancing can be achieved
by off-loading compute-intensive tasks onto idle workstations. Load balancing
issues for work-station systems are: deciding which processes should be executed
remotely; finding idle workstations; achieving transparent remote execution of
processes; and handling the situation where a user begins using a formerly idle
workstation that is executing a “foreign” process.

Many load balancing systems are based on the workstation model. Condor
places batch jobs on available idle workstations [3]. If a workstation becomes
busy, any foreign process executing on the workstation is migrated to a currently
idle workstation. Several systems are able to execute interactive processes on
idle workstations, including Butler [12], Sprite [6] and V [15].

In the pure processor pool model, users interact with the system through
graphics terminals (such as X-terminals) which do not run user processes. All
user processes are executed on compute servers. The major goal of load balanc-
ing for such systems is to distribute the workload between the compute servers
so that performance is maximised. Amoeba [14] is a distributed operating sys-
tem based on the pure processor pool model. In Amoeba, load balancing is
performed when processes are assigned to processors.

Hybrid systems also exist, in which each user has his or her own worksta-
tion, and compute servers are available for running compute-intensive tasks.
Appropriate distribution of workload between the compute servers is a major
issue for load balancing in hybrid systems, as is the selection of the processes
that should be executed on the compute servers. Load balancing systems that
operate in this type of environment include NEST [1], MOS [2], the Process
Server [9] and Utopia [16].

Load balancing systems based on any of the three models discussed above
distribute load by initial process placement, that is by selecting the processor
on which a newly created process will run, and/or by process migration, that
is by moving a compute-intensive process from a heavily-loaded processor to a
lightly-loaded processor.

In process placement, a decision must be made when a new process is created
as to whether that process should be executed locally or remotely. Because of
the overhead involved in starting a process remotely, and because most processes
are too trivial to be worth executing remotely ([5], [11]), care has to be taken
to execute remotely only the relatively few processes that are likely to require
substantial processing resources. The three main methods for selecting the
processes that are to execute remotely are:

1. To require the user to specify which commands should be run remotely,
by providing some sort of remote command [1], [12], [15]. This approach
is not transparent, however.

2. To modify certain programs to enable them to make use of remote exe-
cution facilities [3], [4], [6], [9]. This approach requires programs to be at
least relinked, if not modified, before they can benefit from load balancing.

3. To have the command interpreter maintain a database of commands that
can be executed remotely [16]. This approach creates extra overhead for
the large majority of processes that are not executed remotely.

If process migration is available, then all newly created processes can be
started locally, with processes considered for migration only when they seem
likely to be compute-intensive. This approach is advocated by Cabrera [5] and
has been used in MOS, which considers processes for migration only after they
have consumed one second of CPU time [2].

Whether done by process placement or process migration, implementation
of a load balancing system requires considerable effort. Of the two, process
migration systems are much more complex because of the difficulty of transpar-
ently moving a process from one machine to another at some arbitrary time.

2.2 Our environment

The main computing system in the Department of Computer Science at the
University of Canterbury is a network of Suns, all of which run the SunOS
network operating system. For the most part, access to the Suns is gained in

one of three ways: from an X-terminal; through the keyboard and console of a
Sun; or through remote login, most often from a Macintosh.

Eleven Suns are available for use. Of these, six can be classified as workstations—
discless machines with limited memory used mainly by the single user currently
logged into the machine’s console. The remaining five machines can be classified
as servers—machines with local disc and a substantial amount of memory. File
sharing is provided by Sun NFS, with all machines seeing basically the same
file system, particularly with respect to user files.

Systems like the one just described are common, particularly in univer-
sity environments, and are best classified as following the hybrid model. For
the most part, users logged into a Sun workstation console run most of their
user processes on that workstation, whereas users accessing the Suns from X-
terminals or through a remote login run most processes on one of the compute
servers.

The major objective for clb was that it should balance the load placed on
the compute servers by students using the 40 or so X-terminals. A constraint
was that it was not possible to modify the SunOS kernel.

3 The user placement approach to load balancing

To achieve load balancing between our compute servers, we decided to imple-
ment a load balancing system based on allocation of user login sessions. The
basic approach is that whenever a user logs in to the system (through an X-
terminal, for example) their initial processes (their command interpreter process
in particular) are started on the most lightly-loaded compute server.

This user placement approach is quite different from the process placement
and process migration approaches used in nearly all other load balancing sys-
tems, and has several advantages over these other approaches:

e The user placement approach is considerably less complex than the other
two approaches. This means that implementing user placement is much
easier than implementing process placement and (in particular) process
migration.

e The overhead of the user placement approach is likely to be much lower
than that of either of the other approaches. First, although all approaches
involve the collection of information on machine loads, the frequency with
which load information is updated can be much lower for user placement
because of its coarser grain (user placement operates on entire user ses-
sions rather than on entire processes or less).

Second, the user placement approach uses the load information only when
a user logs in. In the process placement approach, every new process must
be considered as a candidate for remote execution, and in the process
migration approach a host must at regular intervals consider migrating
one of its processes elsewhere. The overhead of starting a process remotely
and of migrating a process must also be considered.

e In the user placement approach, the “best” machine can be selected trans-
parently for a user at login time. In some systems based on process place-
ment, users must use some sort of remote command if they want to have
a process created on a lightly-loaded machine.

The main potential disadvantage with the user placement approach is that
because it operates at a coarser grain than the other approaches the user place-
ment approach will be slower to adapt to changing workload conditions, result-
ing in poorer load balancing for some types of workload. If new users login
relatively frequently, then a load balancing system based on user placement
will assign users to lightly loaded systems and reasonable load balance should
be achieved. If, on the other hand, all users login at the start of the week and
remain logged in for the entire week then a load balancing system based on user
placement would be much less effective than load balancing systems based on
process placement or process migration.

We believe that many systems have high enough user turnover to make
user placement effective, particularly if “user logins” are taken to mean both
initial logins and the creation of new command interpreter processes. University
systems used by undergraduates (such as our own system) have this type of
workload as most undergraduates login for an hour or two at a time as their
timetables permit.

Also, results reported in [7] indicate that the load balancing achievable
by user placement may in many situations be close to that of the other two
approaches. In the work described in [7], analytical and simulation models
were used to compare the load balancing performance of the process placement
approach to that of the process migration approach, that is the performance
of a (relatively) coarser grain approach was compared to that of a finer grain
approach. Two of the major conclusions reached were: (i) “there are likely no
conditions under which migration could yield major performance improvements
beyond those offered by non-migratory load sharing,” and (ii) “under some
fairly extreme conditions, migration can offer modest additional performance
improvements.”

A limitation of the user placement approach is that it is not particularly
suitable for use on systems that follow the workstation model, as each user in
such systems logs into the workstation at which he or she sits. A way of using the
user placement approach in systems that follow the workstation model would
be to provide a facility for starting a new command interpreter process on an
idle workstation.

4 Implementation

We now describe clb, the load balancing system that we have developed.
The major components of clb are: a program that gathers load information;
clb_eval, a library function that uses the load information to rank machines;
and programs that call c1b_eval in performing user allocation.

Load balancing systems should preserve “process” transparency and “file”

transparency. Unlike many load balancing systems, c1b does not need to con-
tain any features aimed at providing transparency, because:

e As user placement operates on entire login sessions, related sets of pro-
cesses execute on the same machine thereby giving a high degree of process
transparency.

e The transparency provided by many distributed file systems is such that
load-balancing systems can rely on a process having the same view of the
file system on all machines. The assumption that the operating system
provides a (sufficiently) global file system is made in both c1b and Utopia
[16].

4.1 Gathering of load statistics

In all load balancing approaches, statistics on workload must be gathered and
distributed. In clb, load information is stored in a directory that is accessible to
all machines. Current load information for machine host is stored in a file called
host in that directory. A very similar method of gathering and distributing load
information is used in Butler [12], although it would be easy to use instead other
popular techniques such as using a “load server” to maintain the information,
as in Condor [3] and the Process Server [9], or having a process on each machine
responsible for maintaining load information, as in MOS [2] and Utopia [16].

Every compute server in our system runs a gather process, which updates
every 45 seconds the load information file for that machine. The load informa-
tion collected provides information on current system load, and includes:

e The 1, 5 and 15 minute load averages. The Unix “load average” is the
mean (over some period) of the total number of processes that are running
on the CPU, queued for the CPU, or waiting for an I/O operation to
complete [10].

e The CPU time spent in user mode, spent in the kernel and spent idling
during the previous 45 seconds.

e Rates of page in and page out operations during the previous 45 seconds.
e The amount of swap space available and the amount currently in use.

e The number of process table entries available and the number currently
in use.

e The number of file table entries available and the number currently in
use.

4.2 Assessing machine load

To assess the current load on a machine, programs that perform user allocation
make use of the clb_eval library function. Given a host name, clb_eval re-
turns: an integer that roughly equates to expected response time for that host;
and an indication of any resource shortages that exist on the specified host.

The expected response time for a machine is calculated from the current
value of its five minute load average and a factor that represents the relative
power of the machine. The second parameter is necessary, as in determining
the machine that will give the lowest response times, machine capacity must
be taken into account as well as current machine load. For example, a 20 MIP
machine with 5 active processes will most likely give much lower response times
than a 5 MIP machine with 2 active processes. Also, all other things being
equal, a machine that has a user’s files on local disc will most likely give lower
response times than a machine that has to access the files remotely.

The relative power of a machine is represented by its power factor (P). The
value of P for each machine was calculated by running many times a script of
typical commands, and recording for each run the 5 minute load average (L)
and the response time (R) of the script. The value of P is taken as 1000L/R
averaged over many runs of the script of commands. Values for P are pre-
computed, and are stored in machine configuration files.

Intuitively, 1/P gives, for our script of commands, a number proportional to
the expected seconds of response time per unit of the 5 minute load average (the
more powerful a machine, the higher its power factor). Therefore, by dividing
the current 5 minute load average of a machine by the value of P calculated
for it, we get a number directly proportional to the expected response time for
the script of commands, had it been run on that machine at that time. The
machine with the lowest expected response time can be expected to provide the
best performance.

Estimated response times are based on load averages rather than instanta-
neous loads because of the rapid fluctuations in the instantaneous load [1], [8].
Response time estimates calculated in ways similar to ours are used in MOS [2]
and Utopia [16].

In addition to the expected response time, clb_eval reports any resource
shortages that might cause performance problems. For example, if a machine
has very little swap space remaining then there is no point placing a user on
that machine even if its load average is currently very low, as the lack of swap
space will make it difficult to run any programs. Checks are made by clb_eval
to ensure: that a machine has sufficient free swap space, process table entries
and file table entries; that the paging rate and the percentage of CPU time
spent in the kernel are sufficiently small; and that the machine’s load file has
been updated recently, to check that the machine is not down. These checks
are based on thresholds specified for each machine in its configuration file.

4.3 User placement

Two programs make use of clb_eval to perform user placement: chooser,
which is used in placement of users logging in through X-terminals, and choose,
which is used in placement of command interpreters.

chooser is used by xdm (the X Display Manager), the program responsible
for handling user logins from X-terminals. The standard version of chooser
presents the user with a list of machines from which the user selects the machine
to which they wish to login. The xdm process on the selected machine then

prompts the user for his or her user code and password. Upon a successful
login, a window manager process and a command interpreter process (in our
default configuration) are created on the selected machine.

We could have changed chooser so that it uses clb_eval to evaluate each
machine, and then automatically logs the user on to the best machine, that is
the machine that has the lowest expected response time amongst those machines
that have no resource shortages. Our system administration preferred to retain
the flexibility of the original chooser, so a different approach was taken. The
modified chooser still lists all of the available machines, but the machines are
ordered so that all machines with resource shortages appear at the bottom of
the list tagged with an appropriate message (such as “Out of swap space”),
and all other machines are at the top of the list in increasing order of expected
response time. The best machine is therefore at the top of the list. Users have
been advised to always select the machine at the top of the list.

To allow a user to run a process on the best machine, we wrote the command
line program choose. choose prints the name of the best machine, and it can be
used in conjunction with remote execution programs like rsh and xon to have
a program executed remotely on the best machine. If choose finds that the
machine with the lowest expected response time has a resource shortage then
it writes the details to a log file. This log file should be examined periodically
by a system administrator as it contains information on possible configuration
problems, such as machines that are underutilised because of insufficient swap
space. The logging of instances of resource exhaustion has turned out to be an
important and unexpected benefit of c1b. Examples of the usefulness of the log
are given in Subsection 5.4.

The xbest shell script uses xon to run the specified program on the best
machine as determined by choose. The standard X-terminal startup script was
changed to use xbest to start up an instance of the command interpreter on the
best machine. Also, the standard window manager menus now have a “Best”
option which starts a command interpreter on the best machine.

So far we have discussed user placement for users of X-terminals. Worksta-
tion users can also use the “Best” menu option and the xbest command. For
a user logging in from a Macintosh or a dumb terminal, we are in the process
of adding a new entry type to the DNS name server such that, when entries of
this type are looked up, the address of the best machine will be returned. Such
a user could then simply specify a machine called (say) “best”, and he or she
will end up logged into the best machine.

4.4 Implementation summary

Load information for each machine is recorded in a file by a gather process
on that machine. User placement is provided by the following methods, all of
which make use of the load information:

e The use of xbest to place the command interpreter started up when a
user at an X-terminal logs in.

e The use of a version of chooser that has been modified to encourage
people to login to the best machine. The user’s window manager process
is placed on the machine selected.

e The “Best” menu item for starting up a new command interpreter process.

e (In the future) a DNS entry type that evaluates to the address of the best
machine.

5 Evaluation

We performed an initial evaluation of the effectiveness of c1b by making “be-
fore” and “after” measurements on a production workload. Evaluation using
a production workload seems to be unusual, with most reported evaluations
of load balancing systems being based on analytical or simulation models ([7],
[11]), or on use of artificial workloads ([1], [2], [8]).

The major difficulty in using production workloads in evaluation studies is
that the variation in workload between measurement sessions must be taken into
account as a secondary factor. Nevertheless, the truest test of a load balancing
system is its performance for a production workload.

We describe first our evaluation method and difficulties encountered with it,
then give some preliminary results from the experiments that were performed.

5.1 Evaluation method

The basic evaluation method was to record each minute the current load infor-
mation for each compute server. Because gather is executed every 45 seconds,
one quarter of its updates were not recorded. Information was gathered be-
tween 9 a.m. and 6 p.m. on weekdays during term time. Data was collected on
thirteen days with c1b not running on the system, and on eleven days with clb
running. User placement was applied only to users logging in from X-terminals,
so some portion of the Computer Science workload was not under the control of
clb. Also, one machine (cantua) is operated by the Computer Services Centre
and is the only Sun available to many non-Computer Science users.

The four compute servers monitored were cantua, kahu, ruru and huia (the
fifth, whio, is not accessible to most students). Although only cantua, kahu and
ruru were considered as candidate machines for user placement by chooser and
xbest, huia was also monitored because it is an important file server that we
felt was being overused and would become less used with the addition of clb.
The power factors calculated for these machines were: 45 for cantua, 27 for
kahu, 12 for ruru, and 14 for huia.

One problem with the data collected was that it did not capture adequately
information on the characteristics of the workload given to the system by its
users. Nevertheless, we felt that the user workload was greater during the
period after c1b was added because: in that period students were working on
assignments that involved use of resource-intensive programs such as Smalltalk;
and the period of clb use that was monitored was at the end of a term and
contained several deadlines.

10

Table 1: Before and after average loads and load to P ratios

Before After
Machine | Load | Load / P | Load | Load / P
cantua 5.6 0.124 6.0 0.133
kahu 2.3 0.085 3.8 0.141
ruru 1.0 0.083 1.3 0.108
huia 2.2 0.157 2.2 0.157

Despite the lack of user workload information, preliminary analysis gives
reason to believe that c1b has had a positive effect on system performance.

5.2 Overall effect on five minute load averages

Load information is summarised in Table 1. Overall load averages were greater
for the period in which ¢1b was running. Taking machine capacities into account
the load was 14% higher. Despite this overall increase in load, the peak loads
after clb was added to the system are in the main lower than before it was
added. Evaluation of the top 0.5% of load averages in the “before” and “after”
cases showed that: on cantua the peak loads were a little lower despite an
increase in average load; on huia and ruru the peak loads were much lower (18
to 27 before, 7 to 13 after; and 5 to 10 before, 5 to 6 after); and on kahu the
peak loads were higher (9 to 11 before, 11 to 19 after). A major reason for
kahu’s increased peaks was that a third year class could use only kahu for part
of a major project. Overall then, despite higher workload after c1b was added,
the workload peaks for most machines were lower.

The load to power ratios in Table 1 indicate that overall the distribution
of load became more balanced after the addition of clb. In the “before” case,
cantua carried a proportionally greater load than kahu or ruru. After clb was
added, kahu and cantua were carrying about the same load. The load on ruru
had increased, but it was still carrying less than its share. Part of the reason for
this was that some logins (about two per day) were being diverted from ruru
because of a shortage of swap space.

5.3 Comparison of two load profiles

Load profiles provide detailed information on the variation of the five minute
load average during a single day. Figure 1 is a load profile for a “before” day,
and Figure 2 is a load profile for an “after” day.

These figures highlight two observed differences between the “before” and
“after” load profiles. First, Figure 1 contains a big workload peak on cantua
without any corresponding increase in workload on the other machines. A
similar peak was observed on another “before” day, but none were observed for
“after” days, indicating that clb helped to avoid such peaks. Second, Figure

11

ing

Load levels during a day in which c1b was not operati

Figure 1

' cantua

" kahu’
‘rury’
"hui a’

16

14 -

12

10
8

600

ing

Load levels during a day in which c1b was operat

Figure 2

' cantua
" kahu’
‘rury’
"hui a’

16

14 +

12

600

500

400

300

200

100

12

2 shows a better distribution of load, with better use made of huia, kahu and
ruru. This trend was observed over many “before” and “after” load profiles.

5.4 Instances of resource exhaustion

Experiments have indicated that clb helps to avoid resource exhaustion and
that it also helps to detect poorly configured machines. During the “before”
period, on 10 occasions load information could not be recorded on ruru because
of a lack of swap space, whereas in the “after” period this happened only once
(despite an increase in average load on ruru), indicating that c1b was effective
in avoiding swap space exhaustion on ruru.

Also, during an earlier period of use, clb showed that ruru had too little
swap space. During that period, there were an average of 24 logins per day
that should have gone to ruru but did not because ruru was low on swap space.
During our experiments, which were performed after the swap space had been
increased, this average was 2 per day.

6 Conclusions

We have introduced user placement as an alternative to the well established
load balancing approaches of process placement and process migration. User
placement is much simpler to implement than either of the other two approaches
and has much lower overhead. Also, each major way of implementing process
placement has one of the following problems associated with it: lack of trans-
parency, limitation of scope, or overhead for every process created. The user
placement approach does not suffer from any of these problems.

The effectiveness of user placement as a load balancing technique depends on
the system workload. We have concluded that where there is a reasonable user
turnover, user placement should be very effective. Analytical and simulation
studies are needed to determine the types of workloads that are balanced well by
user placement, and how effective user placement is on such workloads compared
to process placement and process migration. Experiments using clb indicate
that a student workload is one which user placement can distribute in a well
balanced way.

Experience with clb has helped in verifying some of our expectations of
user placement. clb was not difficult to implement, compared to process place-
ment and process migration systems. Initial analysis of data from experiments
indicates the clb has improved load balance on our system. Further experi-
ments, where the workload is either artificial or a production workload whose
composition is recorded accurately, will help to confirm our initial results.

A novel feature of clb is that the availability of resources of a fixed size
(such as swap space, process table entries and file table entries) is taken into
account when the best machine is selected. This feature ensures that users are
not placed on a machine that has a low load, but which has a severe shortage
of (say) swap space. Also, a log is maintained that records instances of the
best machine having a shortage of some fixed size resource. The information

13

in this log can be used in identifying machines that are poorly configured, and
has proved to be a valuable and unexpected benefit of running clb.

User placement may not have been explored in the past because of the

widespread use of systems that follow the workstation model. With X-terminals
becoming more common, however, interest in the user placement approach can
be expected to increase, primarily because user placement can be easily added
to existing systems that may not provide any other form of load balancing.

References

1]

R. Agrawal and A. K. Ezzat. Location independent remote execution in
NEST. IEEFE Transactions on Software Engineering, SE-13(8):905-912,
August 1987.

Amnon Barak and Amnon Shiloh. A distributed load-balancing policy
for a multicomputer. Software—Practice and Ezperience, 15(9):901-913,
September 1985.

Allan Bricker, Michael Litzkow, and Miron Livny. Condor technical sum-
mary. Technical Report 1069, Computer Sciences Department, University
of Wisconsin-Madison, January 1992.

David Butterfield and Gerald Popek. Network tasking in the Locus dis-
tributed system. In Proceedings of the 1984 Summer Useniz Technical
Conference, pages 62—71, Salt Lake City, Utah, USA, June 1984.

Luis-Felipe Cabrera. The influence of workload on load balancing strate-
gies. In Proceedings of the 1986 Summer Usenix Technical Conference,
pages 446-458, Atlanta, Georgia, USA, June 1986.

F. Douglis. Experience with process migration in Sprite. In Workshop on
Ezperiences with Building Distributed and Multiprocessor Systems, pages
59-72, October 1989.

D. L. Eager, E. D. Lazowska, and J. Zahorjan. The limited performance
benefits of migrating active processes for load sharing. In Proceedings of
the 1988 ACM SIGMETRICS Conference on Measurment and Modeling of
Computer Systems, pages 6372, Sante Fe, New Mexico, USA, May 1988.

Domenico Ferrari and Songnian Zhou. An empirical investigation of load
indices for load balancing applications. In Performance 87, pages 515-528.
North-Holland, 1988.

Robert Hagmann. Process Server: Sharing processing power in a work-
station environment. In Proceedings of the 6th International Conference
on Distributed Computing Systems, pages 260-267, Cambridge, MA, USA,
May 1986.

14

[10]

[11]

[12]

[13]

[14]

Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S.
Quarterman. The Design and Implemenation of the 4.3BSD UNIX Oper-
ating System. Addison-Wesley, 1988.

W. E. Leland and T. J. Ott. Load-balancing heuristics and process be-
haviour. In Proceedings of Performance ‘86 and ACM SIGMETRICS 1986,
pages 54-69, Raleigh, NC, USA, 1986.

D. A. Nichols. Using idle workstations in a shared computing environment.
In Proceedings of the Eleventh ACM Symposium on Operating Systems
Principles, pages 5-12, Austin, Texas, 1987.

A. S. Tanenbaum. Modern Operating Systems. Prentice-Hall, Englewood
Cliffs, New Jersey, 1992.

A. S. Tanenbaum, R. van Renesse, H. van Staveren, G. J. Sharp, S. J.
Mullender, J. Jansen, and G. van Rossum. Experiences with the Amoeba
distributed operating system. Communications of the ACM, 33(12):46-63,
December 1990.

M. M. Theimer, K. A. Lantz, and D. C. Cheriton. Preemptable remote
execution facilities for the V-system. Proceedings of the Tenth ACM Sym-
posium on Operating System Principles, pages 2—12, December 1985.

Songnian Zhou, Xiaohu Zheng, Jingwen Wang, and Pierre Delisle. Utopia:
A load sharing system for large, heterogeneous distributed computer sys-
tems. Technical Report CSRI-257, Computer Systems Research Institute,
University of Toronto, November 1991.

15

