

Predicting Perceptual Similarity of French Vowels: The Influence of Phonology, Phonetics, and Frequency

Kathleen Currie Hall University of British Columbia kathleen.hall@ubc.ca

Elizabeth Hume University of Canterbury beth.hume@canterburv.ac.nz

1. Background:

- Perceived similarity can be influenced by:
- 1. inherent phonetic cues
- 2. phonological relationships (Trubetzkoy 1969, Boomershine et al. 2008)
- a. lexical contrastiveness
- b. distribution uncertainty
- 3. statistical patterns (Luce 1986; Pitt & McQueen 1998)
- · Current research question: What is the relative contribution of each of these factors on the perceptual confusability of French vowels?

2. Methods:

Overview: Predict perceptual confusability measures using measures of acoustics, phonological relations, and frequency.

Part I: Perception Experiment

- · Stimuli by a male native speaker of Continental French.
- Pseudo-words:[aC1VC2a], where C1, C2 = {b, d, g}, C1≠C2.
- Medial vowel: Null, or one of [i e ε y ø œ a u o ɔ ε̃ α̃ ɔ̃], or French "schwa"/e-muet, which varies in pronunciation between [ø] and [œ] and is written orthographically as 'e', e.g. le 'the.'
- 6 consonantal contexts x 16 yowels = 96 tokens per listener.
- 25 native speakers of continental French listened to the pseudo-words, presented one at a time, and identified the vowel, if any, they heard between the consonants using key words.

Part II: Quantifying Predictors

- · Acoustic measures of stimuli
 - Duration differences between vowel pairs (absolute value of the difference between the average percentages of word duration taken up by each vowel)
 - Euclidean formant distance between vowel pairs, using F1, F2, F3 (averaged over 1/3, 1/2, 3/3 measurement points)
- Phonological contrast from Lexique corpus (New et al. 2004) · Functional loads of pairs (# of minimal pairs and change in entropy; cf. Surendren & Niyogi 2006, Wedel et al. 2013)
- Uncertainty of distribution of pairs (cf. Hall 2009, 2012)
- Frequency (also from Lexique)
- Ratio of frequency of V1 to V2

PREDICTIONS:

- Symmetric predictors: LESS perceptual confusability due to greater acoustic difference between V1 and V2, greater functional load of V1 / V2, and greater uncertainty of distribution between V1 & V2.
- Asymmetric predictor: Greater frequency ratio of V1 / V2 should mean fewer misidentifications of V1 as V2.

3. Modeling:

		Given Response													
		'e'	[8]	[œ]	[e]	[8]	[0]	[c]	[u]	[y]	[i]	[a]	[ã]	[õ]	[ε]
Correct Response	'e'	36.7	38.0	24.7								0.7			
	[8]	26.7	28.7	44.7											
	[œ]	31.3	40.7	25.3											
	[e]	0.7		1.3	71.3	26.7									
	[3]	0.7	0.7	1.3	22.7	73.3									
	[o]	2.0	1.3	2.7			80.7	11.3	1.3			0.7			
S.	[၁]	5.3	3.3	4.0			32.0	52.0					2.0		
£	[u]	2.7	2.0	2.0			0.7		78.0	13.3					
Ĕ	[y]								0.7	99.3					
Ö	[i]										100				
	[a]	0.7										99.3			
	$[\tilde{\mathbf{a}}]$						0.7						86.7	12.0	0.7
	[õ]											0.7	4.7	94.7	
	[ε̃]											0.7	8.0		91.3

Table 1: Confusion data to be modeled: Percent accuracy of identification.

Table 2: Best-fit model, based on amount of variance accounted for: Cally Conference Control Contr

	Range of Measure	Estimate	Std. Error	t-value	p-value
	(Unit)				
(Intercept)		68.000	5.786	11.754	< 0.00
Formant dist.	47.74 - 651.62				
	(Hz)	-0.202	0.025	-8.060	< 0.00
Type FR	0.13 - 14.0				
	(ratio)	-3.029	1.124	-2.694	0.012
Type UD	0.01 - 0.95				
	(bits)	-104.900	11.720	-8.955	< 0.00
Delta-H FL	1.5 * 10-7 - 0.09				
	(bits)	-1420.000	293.200	-4.842	< 0.00
Formants : Type FR		0.011	0.003	3.799	0.00
Formants : Type UD		0.321	0.047	6.901	< 0.00
Formants : Delta-H FL		4.914	1.288	3.816	0.00
Type FR : Delta-H FL		207.100	77.000	2.690	0.012
Type UD : Delta-H FL		2279.000	393.600	5.790	< 0.00
Formant dist. : Type UD : Delta-H FL	-	-7.567	1.880	-4.025	< 0.00
Formant dist. : Type FR : Delta-H FL		-0.841	0.297	-2.833	0.009
	Resi	dual standard er	ror: 5 894 on	27 degrees	of freedon

Figures: Examples of high confusability, mid confusability, and low confusability pairs. Each figure shows percent confusion and then the values of the predictors.

High confusability pairs: All predictor factors tend to work together to predict that the vowels will be confusable.

Mid confusability pairs: In this case, the relatively high values of UD and FL seem to mitigate the effects of very similar acoustic values

Overall patterns to note:

- Of a total of 196 pairs of vowels, 143 pairs had no confusability, and 12 had exactly one instance of a misidentification.
- Fifteen pairs had confusability between 1% and 10% of the time ("low" confusability).
- . Four pairs had confusability between 10% and 25% of the time ("mid" confusability).
- Eight pairs had confusability more than 25% of the time ("high" confusability).
- · The remaining 14 pairs are correct identifications.

- · Linear regression models were created, using the predictor variables (formant distance, duration difference, functional load (FL), uncertainty of distribution (UD), and frequency ratio (FR)) to predict non-zero percent vowel confusions.
- · For functional load, two different options were compared across models (# minimal pairs vs. change in entropy (ΔH)).
- · For uncertainty of distribution and frequency ratio, both type and token frequency measures were compared across models.
- · A total of 8 unique models with all possible combinations were compared (though no single model contained both FL, both UD, or both FR measure), with up to 3-way interactions.
- . The maximum condition number, a measure of collinearity, was 7.5, which is typically thought
- Insignificant effects (determined by F-test) were dropped stepwise, if they were not involved in a significant interaction.

Low confusability pairs: The even higher UD value, combined with a high-ish FL value seems to suppress confusability.

4. Discussion:

- The confusability of French vowels is predicted by a range of interacting factors.
- · A model that uses only acoustic factors (formant distance and durational difference) to predict confusability is statistically significant, but accounts for only 28% of the variance in the data - phonological and frequency factors are extremely important when vowels are in fact confusable
- · All vowel pairs that had a Euclidean distance in formant space of more than 652 Hz (n = 26) had zero confusability. But if vowels are close acoustically, other factors emerge as important in determining the extent of confusability.
- The predictor variables all had the expected effects: that is, a greater degree of formant distance, a greater frequency ratio, a greater degree of uncertainty of distribution, and a greater functional load each decrease the percentage of confusions.
- Duration differences were never found to be a significant predictor in any model.
- The effect of all three non-acoustic independent variables seems to be most strongly tied to their lexical function - i.e., it is change in entropy overall in the lexicon that matters for FL, and type-based measures of UD and frequency that emerge as most
- · When there is an asymmetry in yowel confusions (V1 is misidentified as V2 more than vice versa), V2 is always more
- · The interactions indicate that these measures do indeed work together: an increase in one variable can lead to either an increase or a decrease in the predicted confusability of two vowels, depending on the values of the other variables.

5. References: