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ABSTRACT

Traditional wireless networks are regulated by a fixed spectrum assignment policy. This results

in situations where most of the allocated radio spectrum is not utilized. In order to address this

spectrum underutilization, cognitive radio (CR) has emerged as a promising solution. Spectrum

sensing is an essential component in CR networks to discover spectrum opportunities. The most

common spectrum sensing techniques are energy detection, matched filtering or cyclostationary

feature detection, which aim to maximize the probability of detection subject to a certain false

alarm rate. Besides probability of detection, detection delay is also a crucial criterion in spectrum

sensing. In an interweave CR network, quick detection of the absence of primary user (PU),

which is the owner of the licensed spectrum, allows good utilization of unused spectrum, while

quick detection of PU transmission is important to avoid any harmful interference.

This thesis consider quickest spectrum sensing, where the aim is to detect the PU with minimal

detection delay subject to a certain false alarm rate. In the earlier chapters of this thesis, a single

antenna cognitive user (CU) is considered and we study quickest spectrum sensing performance in

Gaussian channel and classical fading channel models, including Rayleigh, Rician, Nakagami-m

and a long-tailed channel. We prove that the power of the complex received signal is a sufficient

statistic and derive the probability density function (pdf) of the received signal amplitude for

all of the fading cases. The novel derivation of the pdfs of the amplitude of the received signal

for the Rayleigh, Rician and Nakagami-m channels uses an approach which avoids numerical

integration. We also consider the event of a mis-matched channel, where the cumulative sum

(CUSUM) detector is designed for a specific channel, but a different channel is experienced. This

scenario could occur in CR network as the channel may not be known and hence the CUSUM

detector may be experiencing a different channel. Simulations results illustrate that the average

detection delay depends greatly on the channel but very little on the nature of the detector.
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Hence, the simplest time-invariant detector can be employed with minimal performance loss.

Theoretical expressions for the distribution of detection delay for the time-invariant CUSUM

detector, with single antenna CU are developed. These are useful for a more detailed analysis

of the quickest spectrum sensing performance. We present several techniques to approximate

the distribution of detection delay, including deriving a novel closed-form expression for the

detection delay distribution when the received signal experiences a Gaussian channel. We also

derive novel approximations for the distribution of detection delay for the general case due to

the absence of a general framework. Most of the techniques are general and can be applied to

any independent and identically distributed (i.i.d) channel. Results show that different signal-to-

noise ratio (SNR) and detection delay conditions require different methods in order to achieve

good approximations of the detection delay distributions. The remarkably simple Brownian

motion approach gives the best approximation for longer detection delays. In addition, results

show that the type of fading channel has very little impact on long detection delays.

In later chapters of this thesis, we employ multiple receive antennas at the CU. In particular,

we study the performance of multi-antenna quickest spectrum sensing when the received signal

experiences Gaussian, independent and correlated Rayleigh and Rician channels. The pdfs of the

received signals required to form the CUSUM detector are derived for each of the scenarios. The

extension into multiple antennas allows us to gain some insight into the reduction in detection

delay that multiple antennas can provide. Results show that the sensing performance increases

with an increasing Rician K-factor. In addition, channel correlation has little impact on the

sensing performance at high SNR, whereas at low SNR, increasing correlation between channels

improves the quickest spectrum sensing performance. We also consider mis-matched channel

conditions and show that the quickest spectrum sensing performance at a particular correlation

coefficient or Rician K-factor depends heavily on the true channel irrespective of the number

of antennas at the CU and is relatively insensitive to the channel used to design the CUSUM

detector. Hence, a simple multi-antenna time-invariant detector can be employed. Based on

the results obtained in the earlier chapters, we derive theoretical expressions for the detection

delay distribution when multiple receive antennas are employed at the CU. In particular, the

approximation of the detection delay distribution is based on the Brownian motion approach.
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Chapter 1

INTRODUCTION

The explosive growth in the use of wireless devices and applications over recent years illustrates

the huge and growing demand for high data rates. One of the most important resources required

for wireless communications is spectrum. Currently, wireless networks are characterized by

a fixed spectrum allocation policy, in which national regulatory bodies, such as the Federal

Communications Commission (FCC) in the United States, exclusively allocate spectrum bands

to specific licensed users on a long-term basis for large geographical regions and no violation

from unlicensed users is allowed [6, 7]. Although the fixed spectrum allocation policy ensures

licensed users do not interfere with each other, it cannot accommodate the dramatic increase

in spectrum access required by high data rate devices and mobile services [8, 9]. Therefore, the

limited wireless spectrum has traditionally been viewed as a scarce resource in high demand [10].

In addition to the limited available spectrum, the current policy suffers from inefficient spectrum

utilization. Several studies and reports have shown that most of the allocated spectrum is not

utilized and is sitting idle (i.e there are spectrum holes) [1, 7, 11]. Further, the FCC shows that

the spectrum utilization for licensed frequency bands ranges from 15% to 85% depending on

the temporal and geographic situation [1, 2, 12]. In addition, spectrum measurements are also

conducted in Europe [13,14], in particular France, Czech Republic and Spain. In general, results

show that spectrum occupancy is moderate below 1 GHz and very low above 1 GHz.

The limited spectrum availability and the inefficient usage of the spectrum necessitate a new

communication paradigm which would improve the efficiency of the utilization of the licensed

spectrum while keeping up with growing demand in the wireless communication industry [6,15].

Dynamic spectrum access (DSA) or opportunistic spectrum access (OSA) is proposed by the FCC
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as an alternative policy to solve these spectrum shortage and inefficiency problems [1,3,7,9]. In

this thesis, the term DSA will be used to refer to this new communications paradigm. DSA is

based on the concept that a portion of the licensed spectrum can be accessed opportunistically

by a given radio when the spectrum is unused and hence this leads to an improved spectrum

utilization [6, 16]. The key enabling technology for implementing efficient DSA is cognitive

radio [6, 7, 9].

1.1 OVERVIEW OF THE COGNITIVE RADIO CONCEPT

Cognitive radio, originally proposed in [17], is a promising technology to avoid the under uti-

lization of the wireless spectrum by dynamic access of available spectral opportunities [3]. In

cognitive radio terminology, primary user is defined as the licensed or authorized owners of a

given frequency band, which has a higher priority of using the spectrum band [8, 18]. On the

other hand, cognitive user is defined as the unlicensed or secondary user that is allowed to op-

portunistically use the spectrum band when the primary user is absent and has a lower priority

on the usage of the spectrum [8, 18]. According to the FCC, the term cognitive radio can be

defined as follows [19]:

“A radio or system that senses its operational electromagnetic environment and can

dynamically and autonomously adjust its radio operating parameters to modify system

operation, such as maximize throughput, mitigate interference, facilitate interoper-

ability, access secondary markets.”

Based on this definition, the two main characteristics of a cognitive radio that distinguish it

from conventional radio devices are cognitive capability and reconfigurability [1,6,7,20–23]. The

cognitive capability of a cognitive radio refers to the cognitive radio’s ability to sense and capture

the information from the surrounding radio environment [1, 6, 7, 20]. This allows the cognitive

user to be aware of the transmitted waveform, radio frequency (RF) spectrum, geographical

information and subsequently analyze the gathered information to identify any unused spectrum

at a specific time and location that could be exploited [6, 7]. With this capability, the cognitive

radio can then determine the appropriate operating parameters, the best transmission strategy to
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Figure 1.1 Cognitive cycle [1].

employ and the best available spectrum [3,6]. The cognitive radio tasks as well as its interaction

with the radio environment are illustrated in Figure 1.1. As can be seen from Figure 1.1, the

cognitive cycle consists of three major components which are spectrum sensing, spectrum analysis

and spectrum decision. A brief overview of each of these components is given as follows [1, 6]:

1. Spectrum sensing: In spectrum sensing, a cognitive radio observes the frequency band

and gathers necessary information regarding its surrounding radio environment. Based on

the information captured, the cognitive radio is then able to detect any spectrum holes.

2. Spectrum analysis: Once spectrum holes are detected using spectrum sensing, each of

the spectrum bands is characterized based on the local observation of the cognitive radio

as well as the statistical information of the primary user network. The spectrum holes

characteristics are then analyzed and estimated.

3. Spectrum decision: Based on the spectrum analysis, the cognitive radio determines the

operating parameters such as the data rate, the transmission mode and the bandwidth

available for the transmission. The most appropriate spectrum band is selected based on

the spectrum band characterization and the user requirements.

As mentioned earlier, the second key feature of a cognitive radio that distinguishes it from a

traditional radio is reconfigurability. Reconfigurability refers to the ability of a cognitive radio

to intelligently adapt to the radio environment by adjusting its operating parameters according
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to the sensed environment variations in order to achieve the optimal performance [1, 7, 21, 23].

For example, since the radio environment keeps changing due to the primary user starting

and completing transmissions, there are changes in the frequency of the spectrum holes [23].

Therefore, a cognitive user equipped with cognitive radio capabilities must be able to re-tune

its transmitting frequencies when the frequencies of the available spectrum band change. This

is important in order to exploit the unused part of the spectrum [23]. This thesis will focus on

one of the key cognitive capabilities of a cognitive radio which is spectrum sensing.

1.2 SPECTRUM SENSING FOR COGNITIVE RADIO

A cognitive radio is designed to measure, learn, sense, be aware of the changes in its surround-

ing and adapt itself to the radio’s operating environment, which makes spectrum sensing an

important component for the establishment of cognitive radio networks [2,3]. Spectrum sensing

enables a cognitive radio user to determine the spectrum availability in order to improve the

spectrum’s utilization without causing any harmful interference to the primary user [2, 3]. This

capability is required in two scenarios. The first scenario is when the cognitive users detect that

a certain frequency band is not being used by the primary user [3]. In this case, the primary user

has stopped transmission and there exists a spectrum opportunity. The second scenario is when

the cognitive users monitor the frequency band during its transmission to detect the existence

of the primary user in order to vacate the channel without causing any significant interference

to the primary user [3]. Generally, spectrum sensing techniques can be classified as primary

transmitter detection, primary receiver detection and interference temperature management [2].

This is illustrated in Figure 1.2.
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Primary transmitter detection is based on detecting the primary user transmission using local

observations at the cognitive user [2]. It is usually assumed that the cognitive user has no

real-time interactions with the primary user transmitter and receiver [2, 3]. Thus, as shown in

Figure 1.3, the cognitive user has no exact information on the current transmissions within the

primary user network. In order to determine the spectrum availability, the cognitive user needs

to detect the signal from the primary user transmitter based on its local observation through

the frequency band [1–3].

Another way of detecting any unused spectrum is by employing the primary receiver detection

techniques, which is shown in Figure 1.4. This technique aims at detecting the primary user

that is receiving data within the communication range of the cognitive radio user [1–3]. The

primary user’s receiver in Figure 1.4 contains an inevitable reverse leakage and hence, some of

the local oscillator (LO) power couples back through the input port and radiates out of the

antenna [24]. This is illustrated in Figure 1.4, where the primary user usually emits LO leakage

power from its RF front-end when it receives the signal from the primary transmitter [2, 3].

Therefore, in detecting the presence of the primary user by employing the primary receiver

detection approach, the cognitive user detects the LO leakage power, instead of the signal from

the primary transmitter. However, in practice, direct measurement of the channel between the

primary transmitter and receiver is difficult to obtain [1].

Interference temperature is an interference assessment metric proposed by the FCC which aims

to measure the interference experienced by the primary user [16]. Based on the interference

temperature concept, the FCC established an interference temperature limit, which is shown in
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Figure 1.5. The value of the interference temperature limit is set depending on the maximum

amount of interference the primary user can tolerate in its frequency band [7, 16]. Thus, based

on Figure 1.5, the cognitive user using the spectrum band must guarantee that its transmission

in addition to the existing noise and interference shall not exceed the interference temperature

limit at the primary receiver [2]. However, this model is difficult to employ since it requires

the cognitive user to accurately measure the interference temperature [2, 3]. This is challenging

because the cognitive user is not usually able to distinguish between the actual signals from the

primary user and noise or interference [2, 3].

Based on the difficulties that lie in employing primary receiver detection and interference temper-

ature management, most of the literature on spectrum sensing focuses on primary transmitter

detection to identify the presence or absence of the primary user signal transmission [1, 3, 7].

In [2,3,7,8,15,25,26], detailed surveys of various spectrum sensing techniques for primary trans-

mitter detection are presented. As shown in Figure 1.2, the most common spectrum sensing

techniques for the primary transmitter detection are energy detection, matched filter detection

and cyclostationary feature detector based sensing [1, 7, 27–29].

1.2.1 Energy detection

Energy detection is the most widely used sensing technique and it is the simplest form of sensing

because of its simplicity and low computational and implementation complexities [7, 8, 16, 18,

23, 30–32]. It does not require any information on the primary user signals and hence, it is

considered to be a blind detection technique [7,8,16,18,23,32]. In energy detection, the presence

or absence of the primary user is detected based on the energy in the signal received by the

cognitive user [2, 3, 26]. In particular, the detection statistic of the energy detector, which is

defined as the average or total energy of a certain number of observed samples, is compared

with a predetermined threshold in order to determine whether the primary user exists or is

absent [1, 2, 7, 8, 16, 18, 23, 26, 30, 33]. The performance of the energy detector is evaluated

in terms of the probability of detection and the probability of false alarm [1, 7, 8, 23]. The

probability of detection is defined as the probability that the energy detector correctly decides

on the primary user’s existence in the spectrum while the probability of false alarm denotes the
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probability that the energy detector decides that the primary user is present while it is actually

absent [8]. The goal of energy detection is to maximize the probability of detection subject to a

constrained/predefined probability of false alarm [7,23].

Although energy detector is easy to implement, there are some drawbacks to using it. Firstly,

the threshold used in energy detection to detect the primary user transmission depends on the

noise floor, which can change considerably over time [7, 8, 18, 26, 29, 31]. Thus, it is difficult

to set the threshold level correctly [8, 18, 26, 31]. Another shortcoming of energy detection

is that its performance is susceptible to uncertainty of the noise power which is due to the

dependency on the signal-to-noise ratio (SNR) of the received signal [1–3,16,30,33]. In addition,

the energy detector cannot distinguish between a primary user signal and other types of signals

(e.g. signals from cognitive users sharing the same channel with the primary user, noise and

interference) since the decision on the primary user’s existence is based on the received signal

energy [2, 3, 7, 8, 16, 18, 26, 29–31, 33]. Therefore, it is prone to a high false alarm probability as

the energy detector is triggered by signal sources other than the primary user [1–3, 7, 23, 33].

Moreover, energy detection has a poor performance in low SNR regimes, where the noise power

is very high [7,8, 18,23].

1.2.2 Matched filtering

Matched filtering is the optimal detection approach when the information of the primary user

transmission is known as it maximizes the received signal SNR [1–3,7,8,23,25,26,29,31,33–35].

The performance of matched filtering is optimal in an additive white Gaussian noise (AWGN)

channel [1, 33]. Existence of the primary user is detected by comparing the matched filter

output with a threshold [3,26]. The objective of matched filtering is to maximize the probability

of detection [32].

However, matched filtering suffers from a number of shortcomings. It has a high implementation

complexity because it requires receivers for all types of signal [3, 7, 8, 26, 29, 31]. Moreover, the

power consumption of the matched filter is too high as detection of the primary user transmission

requires various receiver algorithms to be executed [7,8]. Another disadvantage of using matched

filtering is that it requires perfect knowledge of the primary user signalling characteristics such
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as operating frequency, bandwidth, modulation type and order, pulse shaping and the packet

format [1, 2, 7, 8, 26, 29]. However, if the matched filter uses inaccurate information on the

primary user signal, this will result in poor sensing performance [1, 2, 7, 33, 34]. Thus, due to

these drawbacks, the matched filtering technique is not practical in the context of spectrum

sensing [31].

1.2.3 Cyclostationary feature detection

Another commonly used sensing technique is cyclostationary feature detection which exploits

the cyclostationary features of the received signals to detect the presence of the primary user

in a given spectrum [8, 16, 18, 33, 35]. Modulated signals exhibit cyclostationary properties due

to their statistical periodicity in mean and autocorrelation [1, 2, 8, 18, 29, 30]. In order to detect

the existence of the primary user, the spectral correlation of the received signal is averaged over

some interval and the result of this process is then compared with a test statistic to determine

the spectrum occupancy [3].

There are some advantages in using a cyclostationary feature detector such as its ability to

distinguish the primary user signal from the noise [1,2,7,8,18,23,26,33]. This is due to the fact

that the modulated signals are generally coupled with sine wave carriers, pulse trains, repeating

spreading, hoping sequences or cyclic prefixes, which result in embedded signal periodicity while

noise is a wide-sense stationary (WSS) signal without correlation [1, 2, 7, 8, 18, 26, 29, 32, 33]. In

addition, the cyclostationary feature detector is also able to distinguish between different types

of transmission and primary users since different primary user transmissions exhibit different

cyclostationary features [2,3,7,8,30]. Moreover, the cyclostationary feature detector is robust to

uncertainty in the value of the noise power and hence this leads to a better sensing performance

in low SNR regimes [1–3, 7, 23, 26, 29, 30, 33]. However, cyclostationary feature detectors have

a high implementation and computational complexity [1, 3, 16, 23, 26, 33]. Another drawback of

cyclostationary feature detection is that it requires a significantly longer observation period for

adequate detection performance [1–3,23,26,29,33].

The aforementioned spectrum sensing techniques are summarized and compared in Table 1.1.
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Table 1.1 Summary of most common spectrum sensing techniques

Type Advantages Disadvantages

Energy • Low computational and • Difficult to set threshold level
detection implementation complexities correctly

• Does not require information on • Performance susceptible to noise
primary user signals power uncertainty

• Cannot distinguish a primary
user from other signal sources
• Prone to high false alarm
probability
• Poor performance in low SNR

Matched • Optimal detection approach when • High implementation complexity
filtering primary user’s information is known • Power consumption is too high

• Optimal performance in AWGN • Requires perfect knowledge of
channel primary user signalling

characteristics

Cyclostationary • Able to distinguish primary user • High implementation and
feature signal from noise computational complexity

detection • Able to distinguish different types • Requires longer observation
of transmission and primary users period for adequate detection
• Robust to noise uncertainty and performance
better performance in low SNR

1.3 QUICKEST SPECTRUM SENSING

The spectrum sensing approaches that we discussed above are based on a classical detection

framework, which aim to maximize the probability of detection subject to a certain false alarm

rate [36, 37]. These approaches use a fixed length of data sequence or in other words, a fixed

number of required samples (i.e sensing time window) to make a decision on the presence or

absence of the primary user [30, 37, 38]. Based on this block-based detection feature, these

sensing techniques can be classified as block detection schemes, in which the secondary user

observes a block of samples, computes a test statistic from the block of observations and finally

makes a decision by comparing the test statistic with a threshold [36, 37, 39]. The difficulty of

the block detection scheme lies in determining the size of the block, where a small block size

may lead to an inaccurate and unreliable sensing decision [39]. Although sensing accuracy is

increased with a larger block size, it may yield a longer detection delay [39,40].
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Figure 1.6 Illustration of quickest detection problem.

Besides the probability of detection, detection delay is also a crucial criterion in spectrum sensing

[36,37]. When the primary user stops transmission, the cognitive user must be able to detect the

absence of the primary user as soon as possible. This enables the cognitive user to fully utilize

the unused spectrum for its transmission. In contrast, when the primary user starts using the

spectrum band again, the cognitive user needs to detect the existence of the primary user as

quickly as possible in order to vacate the channel without causing any significant interference to

the transmission of the primary user. Therefore, a detection framework which facilitates minimal

detection delay is of significant interest.

In quickest detection problems, samples are observed sequentially {Y [i] : i = 1, 2, ..} [30]. In the

standard quickest detection framework, the observations are initially independent and identically

distributed (i.i.d) according to distribution F0 and at some unknown sample number, τ , the

observation’s distribution changes abruptly to i.i.d F1 such that Y [i] ∼ F0 for i ≤ τ − 1 and

Y [i] ∼ F1 for i ≥ τ . This is illustrated in Figure 1.6. The distribution will change if the primary

user becomes operational (i.e primary user starts transmitting). As can be seen from Figure 1.6,

quickest detection refers to a detection framework which detects the abrupt change as soon as

possible after the change occurs, where an algorithm will raise an alarm to declare that a change

is detected [7,30,36,41–46]. The objective is to detect the occurrence of the change with minimal

detection delay, such that the delay between the point at which the change actually occurs and

the point at which the algorithm detects such a change is minimized, subject to a certain false

alarm rate [30, 36, 43–46]. Hence, the quickest detection framework suits the cognitive radio

scenario.
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In the context of spectrum sensing, primary user activity changes at some unknown point which

leads to a change in the distribution of the cognitive user’s received signal [36, 37]. Thus,

the quickest detection theory which detects abrupt changes in the observation distribution can

be applied to spectrum sensing in order to detect the change in spectrum occupancy based on

sequential observation [30,37,39,41–44]. The adoption of quickest detection theory into spectrum

sensing for cognitive radio systems is known as quickest spectrum sensing in the literature [37,

39, 41, 42]. The goal of quickest spectrum sensing is to detect the existence or absence of a

primary user based on the occurrence of a change in the cognitive user’s received signal, using

the fewest number of samples (i.e. with minimal detection delay) conditioned on the false alarm

constraint [36, 37, 39, 41, 42]. By using this approach, agile and robust spectrum sensing is

achieved [7,41]. Hence, it will be the focus of this thesis.

1.4 PROBLEM STATEMENT AND FOCUS

There have been a number of studies on quickest spectrum sensing considering different scenarios

[36,39,41,45–48]. In [36], various scenarios are considered depending on the prior information the

cognitive user has about the primary user. A successive refinement test is proposed in [41], where

it is assumed that the primary user signal is a sinusoid signal. In [39], cyclostationary features

of the primary user signal are exploited and incorporated into the quickest spectrum sensing.

Spectrum sensing based on the quickest detection framework over multiple frequency channels

is considered in [47], where the author studies the procedure of the cognitive user vacating

channels when the primary user starts transmitting as well as aiming to find the best channel(s)

to sense. Another quickest detection problem in multiple frequency channel is considered in

[45,46,48], where a Bayesian formulation of quickest change detection in multiple on-off processes

is proposed within a decision-theoretic framework. In [49], a throughput-sensing tradeoff for

quickest spectrum sensing is studied where the cognitive radio throughput is maximized with

respect to frame length. However, no studies on quickest spectrum sensing have appeared which

consider a range of fading channels. Furthermore, no studies have also given a theoretical

expression for the distribution of detection delay, which is beneficial in analyzing the quickest

spectrum sensing performance. In addition, all the studies mentioned above only consider single
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antenna cognitive users.

Therefore, this thesis contains an extensive investigation on the performance of quickest spec-

trum sensing for both single and multiple antenna cognitive users over a time-invariant channel

and several fading channels, including the classical fading channels such as Rayleigh, Rician,

Nakagami-m as well as a long-tailed channel, which models severe fading. Apart from inde-

pendent channels, temporally and spatially correlated channels are also being considered in this

thesis. Based on the result of these studies, novel theoretical expressions for the distribution

of detection delay are developed for both single and multiple antenna cases which are useful in

providing a more detailed analysis of the quickest spectrum sensing performance.

In this thesis, comparison with other existing algorithms, which are based on the classical de-

tection schemes such as energy detection, matched filtering, cyclostationary feature detection

and generalized likelihood ratio test (GLRT) is challenging. As mentioned in Section 1.3, the

classical detection framework has a different goal than quickest spectrum sensing. In particular,

the classical detection framework aims at maximizing the probability of detection subject to false

alarm constraints. On the other hand, the quickest spectrum sensing algorithm aims to detect

abrupt changes in the distribution of the received signals using the fewest received signals (i.e.

minimizing the detection delay) while maintaining a certain false alarm rate. In addition, the

classical detection schemes are based on a fixed block of samples, whereas the length of samples in

quickest spectrum sensing varies depending on the information received from the cognitive user

observations [30]. Thus, with very different objectives and requirements, it is hard to compare

quickest spectrum sensing with the classical detection framework.

1.5 THESIS OUTLINE AND CONTRIBUTIONS

The organization and contributions of this thesis are as follows:

Chapter 2

This chapter presents relevant background material required for the subsequent chapters.

Chapter 3
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This chapter investigates the performance of quickest spectrum sensing with single antenna

cognitive users when the received signal experiences a time-invariant channel or various fading

conditions, including Rayleigh, Rician, Nakagami-m and F channels. The received signal at the

cognitive user is considered to be the product of two complex variables (the primary user signal

and channel) with additive noise. We prove that the power of the complex received signal is a

sufficient statistic and hence the log likelihood ratio can be computed on the basis of the received

signal amplitude. This result allows us to derive a general form for the log likelihood ratio and

the quickest spectrum sensing technique for various channel models. We derive the probability

density function (pdf) of the received signal amplitude for the Rayleigh, Rician, Nakagami-m

and long-tailed F channel scenarios. We use an approach which avoids numerical integration to

derive the novel pdfs of the amplitude of the received signal for the most commonly used fading

channel models, including Rayleigh, Rician and Nakagami-m. This approach is particularly

useful in the Rician case where simple quadrature methods are unstable.

We also study the quickest spectrum sensing performance in the event of a mis-matched channel

condition, where the cumulative sum (CUSUM) detector is designed for a specific channel, but

experiences a different channel. This study allows us to gain some insights into the effects of

the channel on the sensing performance as well as the robustness of the detector. Furthermore,

we also consider the case of a temporally correlated Rayleigh channel. This study is useful for

gaining further insights into the impact of various fade rates on the quickest spectrum sensing

performance.

Chapter 4

This chapter presents several techniques to approximate the distribution of detection delay for

a time-invariant CUSUM detector with a single antenna cognitive user when the received signal

is transmitted over a Gaussian channel as well as over a mis-matched, Rayleigh channel. In

particular, we derive a novel approximate closed-form expression for the distribution of detection

delay for the Gaussian case. Furthermore, we derive novel approximations for the detection delay

distribution for the general case due to the absence of a general framework. We also apply a

simple random walk and Brownian motion theory with drift in deriving approximate expressions

for the distribution of detection delay for both Gaussian and Rayleigh cases. Approximate



1.5 THESIS OUTLINE AND CONTRIBUTIONS 15

methods are necessary since there is no exact solution available. Most of the methods discussed

in the chapter are general and can be applied to any independent and identically distributed

(i.i.d) channel. The validity of the approximate expressions for the detection delay distribution

is verified using simulations.

The approximation methods that we presented are based on the modified detection delay statis-

tic. Hence, we also analyze the accuracy of the modified detection delay statistic. This is

valuable in understanding the limitations of the approximations used. Furthermore, we also ap-

proximate the probability of missed detection and provide an analysis of long detection delays to

gain further insight into the factors that contribute to an increased probability of long detection

delays.

Chapter 5

This chapter extends the study of quickest spectrum sensing into multiple receive antennas at

the cognitive user when the received signal experiences Gaussian, Rayleigh and Rician fading

channels. Apart from i.i.d channels, we also consider the case of an insufficient separation

between multiple antennas on a cognitive user by looking at the effect of spatial-correlation

for Rayleigh channels. We prove that the sum of the complex received signal powers at each

antenna for the Gaussian and independent Rayleigh scenarios are sufficient statistics. Hence,

the log likelihood ratio for both cases can be evaluated based on the complex received signal

vector or the sum of the received signal powers. We derive the pdfs of the received signal for

both Gaussian and independent Rayleigh fading scenarios using the sum of the received signal

powers. The derivation of the pdf for the independent Rayleigh case uses an approach which

avoids numerical integration over an infinite region. This approach gives a negligible error and

performs better than numerical integration.

We also derive the joint pdfs of the received signal for the correlated Rayleigh and independent

Rician cases. We also study the performance of multi-antenna quickest spectrum sensing in

the event of mis-matched channel conditions. Furthermore, we analytically compute the upper

bound and asymptotic worst-case detection delay for both Gaussian and independent Rayleigh

cases. We also numerically evaluate the quickest spectrum sensing performance for the Rayleigh

(independent and correlated) and Rician (independent and correlated) cases. The extension to
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multiple antennas allows us to gain further insights into the reduction in detection delay that

multiple antennas can provide. In addition, this study allows us to explore the effects of the

Rician K-factor or channel correlation on the performance of multi-antenna quickest spectrum

sensing.

Chapter 6

Based on the results obtained from Chapters 4 and 5, in this chapter, we derive approximate ex-

pressions for the detection delay distribution for multi-antenna time-invariant CUSUM detector

when the received signal experiences Rayleigh (independent and correlated) and Rician (inde-

pendent and correlated) channels. In particular, we derive the expected value and variance of the

received signal, which is transmitted over a correlated Rician channel, where these derivations

are helpful in deriving the approximate expression for the distribution of detection delay The

received signal considered here is a product of two complex Gaussian variables (the primary user

signal and Rician channel) with additive noise. For all cases considered, the derivation of the

approximate expression for the detection delay distribution are based on the theory of Brownian

motion with drift. The validity of the approximate expressions for the distribution of detection

delay for each case considered is verified via simulations. Furthermore, we also investigate the

effects of multiple antennas at the cognitive user, channel correlation and line-of-sight (LOS)

strength on the probability of detection delay, particularly for long detection delays or at low

signal-to-noise ratios (SNRs).

Chapter 7

In this chapter, we summarize our novel contributions of the thesis and outline several possible

area for future works.

1.6 PUBLICATIONS

The following are the list of journal articles and conference proceedings produced during the

PhD study as well as an invited talk at an international conference.
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Chapter 2

BACKGROUND

This chapter provides the relevant background information required for the subsequent chapters.

Section 2.1 presents the statistical wireless channel models and a characterization of the channels

along with statistical measures to evaluate the severity of fading channels. The modelling of

the wireless channel is important in cognitive radio systems as it affects the performance of the

spectrum sensing techniques. In Section 2.2, a brief overview of multiple antenna wireless systems

is given. The concept of diversity, different methods of achieving diversity and the main diversity

combining techniques are also discussed. A classification of cognitive radio networks is presented

in Section 2.3. In Section 2.4, a brief outline of quickest detection theory is given followed by

a description of the cumulative sum (CUSUM) algorithm. Finally, Section 2.5 concludes this

chapter with a short summary.

2.1 WIRELESS CHANNEL

The various paths between a transmitter and a receiver in a wireless communications environment

characterize the wireless channel and these different paths (called multi-path) result in multiple

versions of the transmitted signal being received at the receiver [4]. Figure 2.1 illustrates some

different possible paths for the received signal. As shown in Figure 2.1, the three major radio

wave propagation mechanisms in a wireless channel are reflection, diffraction and scattering [4].

These three propagation mechanisms act simultaneously on the transmitted signal traveling

through the wireless channel and hence, the resulting received signal is a combination of reflected,

diffracted and scattered signals from various obstacles along the propagation path [50]. The

combined effect of these three propagation mechanisms leads to the received signal behaving like
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Figure 2.1 An example of different paths in a wireless channel [4].

a complex random process [50].

The communication path between transmitter and receiver is time and frequency variant [51,52].

The variations of the wireless channel can be classified into large-scale and small-scale fading

[51]. Large-scale fading is caused by path loss (or propagation loss) and shadowing, where the

variations of the received signal power due to these two phenomena occur over relatively large

distances [51–55]. Path loss is due to the signal power attenuation in the propagation path

when the distance between the transmitter and receiver is large [52]. Shadowing occurs when

the receiver is shadowed by the presence of large objects (e.g. buildings, trees, bridges and hills)

between the transmitter and receiver [51–53].

On the other hand, small-scale fading occurs over short distances, of the order of the carrier

wavelength, and is due to the constructive and destructive addition of multiple copies of the

transmitted signal traveling along multiple propagation paths before arriving at the receiver

[51–55]. In this thesis, small-scale fading is considered.

We now describe small-scale fading channel models in more detail. All fading channels considered

in this thesis are frequency-flat. If the transmitted signal occupies a bandwidth smaller than the

coherence bandwidth of the channel, then the fading channel is referred to as a frequency-flat

fading channel, or a frequency nonselective fading channel [5, 50, 53, 54, 56, 57]. The coherence

bandwidth is the frequency range over which the channel passes all spectral components with

approximately equal gain and linear phase [54]. In a flat-fading channel, all spectral components
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of the transmitted signal experience the same fading distortion [52, 53, 57] and the spectral

characteristics of the transmitted signal are preserved at the receiver [50,54]. However, due to the

variations of the channel gain caused by multipath, the received signal strength fluctuates in time

[50, 54]. The flat-fading channel is also known as a narrowband channel since the bandwidth of

the transmitted signal is narrow compared to the coherence bandwidth of the channel [50,54,57].

Let s denotes the transmitted signal. In general, the signal received at the output of a channel,

which is affected by the channel and the additive white Gaussian noise (AWGN), can be expressed

in the form

y = hs+ n, (2.1)

where h is the channel coefficient and n is the complex Gaussian noise [58]. If h = 1, then the

channel is known as Gaussian or AWGN channel, which is the simplest wireless communications

channel model [56]. In this thesis, we refer to the Gaussian channel as a time-invariant channel

and both of these terms will be used interchangeably. For the Gaussian channel model, the

received signal is given by

y = s+ n, (2.2)

where n ∼ CN (0, N0) is AWGN [5, 59]. This is illustrated in Figure 2.2. Here, the channel is

characterized by the power spectral density of the noise component, denoted by

SN (f) =
N0

2
W/Hz, −∞ ≤ f ≤ ∞, (2.3)

where N0 is the average noise power per unit bandwidth measured at the front end of the

receiver [55,58,60,61].

In the following subsections, we will discuss various wireless fading channel models, including

Rayleigh, Rician, Nakagami-m and F channel models. In this thesis, we normalize the amplitude

channel distributions so that the mean power is unity, E
[
|h|2
]

= 1, where E[.] denotes statistical

expectation.
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Figure 2.2 Model for the received signal passed through an AWGN channel [5].

2.1.1 Rayleigh fading

Multipath fading usually occurs when the transmitted signal arrives at the receiver via multiple

paths due to the presence of reflecting objects and scatterers in the channel [54]. A combination

of multiple delayed, reflected, scattered and diffracted versions of the transmitted signal are

received [50, 54]. This results in constructive and destructive interference of the transmitted

waves, which causes the signal to experience multipath fading [57].

The Rayleigh distribution is often used to model multipath fading when no direct line-of-sight

(LOS) path exists between the transmitter and receiver, such as in heavily built-up urban en-

vironments [50, 54, 56, 56, 57]. With this model, the amplitude of fading channel, Y , is Rayleigh

distributed with distribution, given by [53,57]

fY (y) = 2ye−y
2
, y ≥ 0. (2.4)

Here, E
[
Y 2
]

= 1, while the phase follows a uniform distribution defined over the interval

[0, 2π] [50]. As a result of (2.4), the channel fading power, Z = Y 2, is distributed according to

an exponential distribution defined as [53]

fZ(z) = e−z, z ≥ 0. (2.5)
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2.1.2 Rician fading

The Rician fading channel is often used to model a multipath fading environment when there

exists a LOS component along the propagation path together with other scattered components

[50,53,54,56]. In this case, the received signal is the superposition of the multipath components

which arrive at different angles, and a stationary LOS component [50,53,54]. The channel fading

amplitude for the Rician case, Y , follows the distribution given by [53,57]

fY (y) =
2y(K + 1)

ν
e−K−

(K+1)y2

ν I0

(
2y

√
K(K + 1)

ν

)
, y ≥ 0, (2.6)

whereK is the Rician K-factor, which measures the severity of the fading. The power distribution

for the Rician fading model can be obtained by a change of variables, which yields

fY 2(z) =
(K + 1)

ν
e
−
(
K+

(K+1)z
ν

)
I0

(
2

√
zK(K + 1)

ν

)
, z ≥ 0. (2.7)

In this thesis, it is assumed that ν = E
[
Y 2
]

= 1. Therefore, ν is normalized to unity. The

Rician K-factor ranges from 0 to ∞. For K = 0, the Rician distribution reduces to the Rayleigh

distribution whereas for K =∞, the Rician distribution degenerates (collapsing to a fixed value),

since the channel has no multipath and only consists of a LOS component [53,56].

2.1.3 Nakagami-m fading

The Rayleigh and Rician models are both motivated by physical arguments [53] and as a result

of their simplicity and physical motivation, they have become widely accepted. Nevertheless,

several other simple channel models are also popular, although they do not have the same level of

physical intuition. The Nakagami-m distribution is one such model as it has the ability to model a

wider class of fading channel distributions and to fit a variety of empirical measurements [50,53].

For this model, the channel fading amplitude, Y , is distributed according to the Nakagami-m

fading distribution, given by [53,57]

fY (y) =
2mmy2m−1

Γ(m)νm
e
−my2

ν , m ≥ 0.5, y ≥ 0, (2.8)
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where m is the Nakagami-m fading parameter, which determines the severity of the fading and

Γ(m) is the Gamma function defined as Γ(m) = (m− 1)! for an integer m. The distribution of

the channel fading power can be obtained by a change of variables, which gives [53]

fY 2(z) =
(m
ν

)m zm−1

Γ(m)
e
−mz
ν , z ≥ 0. (2.9)

In this thesis, ν = E
[
Y 2
]

is assumed to be normalized to unity. The Nakagami-m fading

parameter ranges from 1/2 to ∞. For m = 1/2, the Nakagami-m distribution reduces to the

one-sided Gaussian distribution and for m = 1, it reduces to the Rayleigh distribution. The

Nakagami-m distribution will be similar to a Rician distribution when 3
2 ≤ m ≤ 3. As m →

+∞, the Nakagami-m distributed fading channel will converge to a nonfading AWGN channel.

The Nakagami-m distribution can closely approximate the Rician distribution by a one-to-one

mapping between the m parameter and the Rician K-factor parameter, where the mapping is

given by [53]

m =
(K + 1)2

2K + 1
, m ≥ 1,K ≥ 0. (2.10)

2.1.4 F fading

Long-tailed distributions have been used in [62] as models for severe fading channels. In this

thesis, we use the F-distribution, which is a long-tailed distribution, as a severe fading channel

model in order to investigate the spectrum sensing performance under extreme fading conditions.

The F channel, which is based on the F-distribution, is selected due to its simplicity as compared

to other severe fading channel models such as the two-wave with diffuse power (TWDP) model

of [63]. The probability density function of the F-distribution with ν1 and ν2 degrees of freedom

is given by [64]

fX(x) =
(ν1/ν2)ν1/2

B
(

1
2ν1,

1
2ν2

) x(ν1/2)−1(
1 + ν1ν

−1
2 x

)(ν1+ν2)/2
, 0 < x, (2.11)

where B(a, b) is the Beta function with parameters a and b. The mean and variance of the

F-distribution are denoted respectively as [64]

E[X] =
ν2

ν2 − 2
, ν2 > 2, (2.12)
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Var(X) =
2ν2

2(ν1 + ν2 − 2)

ν1(ν2 − 2)2(ν2 − 4)
, ν2 > 4, (2.13)

where Var(.) denotes the variance. From [62], the F-distribution can be used to model the

power of a severely fading channel. Throughout this thesis, all the classical fading channel

models discussed in Sections 2.1.1 - 2.1.3 have channel powers normalized to unity and hence,

for consistency, we set the power of the F channel to unity. One way to model a severely fading

channel is with an F-distribution with ν1 = 1 and ν2 = 3. Here, the distribution is so long-tailed

that the variance does not exist, hence providing an extreme case for spectrum sensing. The

distribution of the channel fading power with 1 and 3 degrees of freedom can be written as

fZ(z) =
2

π
√
z(1 + z)2

. (2.14)

2.1.5 Fast and slow fading

The wireless channel can also be categorized as a fast or slow fading channel depending on how

fast the transmitted signal changes as compared to the rate of change of the channel [54]. Thus,

this classification is related to the channel coherence time, Tc, which is a statistical measure

of the period of time over which the impulse response of the channel is invariant [54, 57]. The

coherence time of the channel is also related to the channel Doppler spread, fd, by [53,54,57]

Tc '
1

fd
. (2.15)

A channel is referred to as a fast fading channel if the coherence time of the channel is smaller

than the symbol period of the transmitted signal [50, 54, 57]. Therefore, the channel impulse

response changes rapidly at approximately the symbol rate of the communication system [54].

On the other hand, the channel is classified as a slow fading channel if the symbol time duration

of the transmitted signal is small as compared to the coherence time of the channel [50, 54, 57].

Therefore, in a slow fading channel, the channel stays unchanged for several symbols and a

certain fade level will affect many consecutive symbols [50,54,57].



26 CHAPTER 2 BACKGROUND

2.1.6 Coefficient of variation for fading channels

Coefficient of variation (CV) is a simple measure of the severity of the wireless fading channels

[62,65]. Generally, the CV is defined as the ratio of the standard deviation to the mean [66,67].

The evaluation of fading severity using the CV can therefore be obtained from the moments of

the channel fading distribution. Therefore, the CV can be defined in terms of the channel fading

amplitude, Y as

CV =

√
Var(Y )

E[Y ]

=

√
1

E [Y ]2
− 1.

(2.16)

Equation (2.16) follows since the fading channels are normalized to have unit power, E
[
Y 2
]

= 1.

Another measure that can be used to quantify the severity of the fading experienced by a

particular channel model is the amount of fading (AF), introduced by Charash in [68], where

AF is defined as [68,69]

AF =
Var(Y )

(E[Y ])2

= CV2.

(2.17)

Therefore, as can be seen from (2.17), AF is closely related to CV and hence, in this thesis, we

will be using CV to measure the fading severity.

2.2 OVERVIEW OF THE MULTI-ANTENNA SYSTEM

In wireless communications, different antenna configurations are used in space-time systems.

The most well-known and simplest wireless configuration is single-input single-output (SISO),

which contains a single antenna at both transmitter and receiver [52, 70]. On the other hand,

when multiple antennas are used at the receiver with a single transmitting antenna, the wireless

system is known as single-input multiple-output (SIMO) [52, 70, 71]. In this thesis, we adopt

both the SISO and SIMO systems into the cognitive radio network, which is illustrated in Figure
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Figure 2.3 SISO and SIMO structures.

2.3, where single or multiple antennas may be employed at the cognitive user.

2.2.1 Diversity

Diversity can be achieved when the receiver receives multiple copies of the transmitted signal

which travel through different wireless channels [52,53,71–73]. These multiple copies arrive at the

receiver through different subchannels and experience different amplitudes and phases depending

on the wireless channel [52, 74]. As a result of this, some copies of the transmitted signal may

be deeply faded while others can be less attenuated [52]. Therefore, the probability that all

copies of the transmitted signal simultaneously experience deep fades can be reduced significantly

[53, 71, 72]. In addition, diversity can be used to mitigate the effect of multipath fading as well

as improving both the instantaneous and average signal-to-noise ratio (SNR) at the receiver

[53, 54, 72]. There are various ways of realizing diversity gain and the most common methods

include temporal diversity, frequency diversity and spatial diversity [22,53,54,70,72,73,75].

In Chapters 5 and 6, the concept of spatial diversity will be used to investigate the performance

of quickest spectrum sensing with multiple receive antennas at the cognitive user. However, for

completeness, we discuss all the methods of achieving diversity in the following subsections.

2.2.1.1 Temporal diversity

Time diversity is one of the techniques that can be used to achieve multiple independently faded

replicas of the transmitted signal. Time diversity involves transmission of the same transmit

signal at different times, where the time difference is larger than the coherence time of the

channel [53, 54, 72, 75]. This allows the multiple copies of the transmitted signal to undergo
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independent fading and as a result, the signals received at different time spacings are uncorrelated

[22, 54, 72]. Although temporal diversity does not require high transmit power, it results in

a lower data rate due to the repeated transmission of the same signal over time instead of

transmission of new data [53]. In addition, one of the drawbacks of temporal diversity is that

the transmission efficiency reduces based on the number of repeated signal transmissions [75].

Temporal diversity can be realized in various ways including repetition coding, which is the

simplest technique, automatic repeat request (ARQ), interleaving and forward error correction

(FEC) coding [22,53,72,73].

2.2.1.2 Frequency diversity

In frequency diversity, the same narrowband signal is transmitted simultaneously over multiple

channels at different carrier frequencies, where the carrier frequencies are separated by more

than the coherence bandwidth of the channel [22, 53, 54, 72, 75]. This ensures that the channels

are uncorrelated and hence, the multiple versions of the transmitted signal will experience in-

dependent fading [54, 70, 72]. As a result, the probability that multiple copies of the signal are

simultaneously in a deep fade is low [72]. However, in order to transmit the same signal over mul-

tiple frequency bands, the frequency diversity method requires additional transmit power [53].

Another shortcoming of frequency diversity is that the spectral efficiency of the system is greatly

reduced due to repeated transmissions of the same signal at multiple frequencies [72, 75]. As

a result, frequency diversity is rarely implemented in the traditional way [22, 72]. Instead, the

information is spread over a wide frequency band and hence, different frequency components

will carry small parts of the information [22, 72]. This spreading can be done by different tech-

niques such as time division multiple access (TDMA), frequency hoping in conjunction with

coding, code division multiple access (CDMA) and orthogonal frequency division multiplexing

(OFDM) [22,54,72].

2.2.1.3 Spatial diversity

Spatial diversity, also known as antenna diversity, is the oldest and simplest diversity tech-

nique [54, 70, 72]. Spatial diversity can be achieved by transmitting the same signal to several
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antenna elements so that multiple copies of the transmitted signal are received at different anten-

nas [70,72]. In order to ensure that the fading amplitudes corresponding to each antenna are ap-

proximately independent, the antennas need to be spaced by at least half a wavelength [53,54,75].

Spatial diversity can be categorized into two types, namely transmit and receive diversity, de-

pending on whether the diversity is realized at the transmitter or receiver [70]. In this thesis,

as illustrated in Figure 2.3, multiple receive antennas are used to achieve spatial diversity and

hence, this leads to receiver diversity. One of the advantages of receiver diversity is that mul-

tiple independent fading paths are realized without increasing the transmit signal power or

bandwidth [53].

There are three main diversity combining techniques: selection combining, maximal ratio com-

bining and equal gain combining [54, 70, 72, 76]. The combining techniques discussed in this

section will focus on the combination of signals from different antennas at the receiver. It is

assumed that the receiver is equipped with M sufficiently spaced antennas and hence, this leads

to M independently fading signal paths.

2.2.1.3.1 Selection combining

Selection combining technique selects branch with the signal that has the highest instantaneous

SNR among the M diversity branches for further processing [52,54,72,77]. Therefore, the output

of the combiner is equal to the strongest incoming signal, assuming that the noise power at each

branch is equally distributed [52, 53, 70, 77]. In practice, due to the difficulty in measuring the

SNR, the branch with the highest total power in the received signal is selected [53,54,70].

Selection combining does not require any channel state information and hence, it can be used

with either coherent or non-coherent signalling schemes [53,58]. However, since the receiver only

exploits one of the M independent copies of the transmitted signal, the energy of the other M−1

replicas of the signal is wasted [72].

2.2.1.3.2 Maximal ratio combining
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One of the techniques that employs a linear combination of the signals at the output of the

M diversity branches is maximal ratio combining (MRC). Multiple copies of the same signal

information are combined using the MRC method to achieve the maximum SNR at the com-

biner’s output [52, 53, 58, 71, 72, 74]. In this method, the signal replicas at different diversity

branches are weighted according to their individual SNRs and the resulting signals are then

summed [53,54,70,72]. The weights are chosen such that the output SNR is maximized, so that

the weights are proportional to the branch SNRs [53,72].

The MRC method produces an output SNR equal to the sum of the SNRs at the individual

diversity branches [53, 54, 70–72]. Therefore, MRC has the advantage of achieving a reasonable

SNR output even if the individual signals at each diversity branch are in a deep fade [54, 70].

However, MRC requires perfect knowledge of the channel state information at the receiver. This

corresponds to obtaining the complex channel gains of each diversity branch, in order to estimate

the phase of the received signal [52,58,70,71,77]. As a result, MRC can only be used for coherent

detection [58,78].

2.2.1.3.3 Equal gain combining

Equal gain combining (EGC) is the simplest linear combining technique [79]. In EGC, the

signal replicas of the transmitted signals on different diversity branches are combined with equal

weighting [53, 54, 70]. In particular, the gain or amplitude of the complex weights are all set to

unity [54,80]. Since multiple signals are combined simultaneously from all the diversity branches,

the combined signal at the output of the combiner can still have a reasonable SNR even if the

the branch SNRs are too low for signal detection [54]. The advantage of EGC over MRC lies in

its low implementation complexity as it does not require knowledge of the channel fading ampli-

tudes for signal combining [53, 70, 80, 81]. Also, EGC performs better than selection combining

and is often similar in performance to MRC [53,54,79]. In addition, as for selection combining,

EGC does not require any channel state information (CSI) [58]. In this thesis, we employ EGC

as it allows us to construct the correct CUSUM detector, which will be shown later in Chapter

5.
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2.3 COGNITIVE RADIO NETWORK PARADIGMS

Cognitive radio networks can be categorized into three classes: underlay, overlay and inter-

weave [30, 82–84]. The success of the cognitive radio paradigms in providing a communication

framework for the interoperability between primary and cognitive user networks depends several

factors. These include the regulatory constraints on spectrum usage, interference management

mechanism as well as the nature of the available side information [30,82,84]. The side informa-

tion available may include knowledge regarding the activity, channel, encoding strategies (i.e.

codebook) and/or transmitted data sequences of the primary users (i.e. primary user messages)

with which the cognitive user shares the spectrum. This information can be exploited by the

cognitive user to improve the spectrum utilization [30,82]. In this section, a description of each

of the cognitive radio paradigms will be given.

2.3.1 Underlay paradigm

In an underlay paradigm, simultaneous transmissions of the primary and cognitive users is

allowed as long as the interference generated by the cognitive user is kept well below some

acceptable threshold [21,30,34,82–88]. In order to ensure that the amount of interference caused

at the primary user is within tolerable limits, multiple antennas can be used for interference

nulling (i.e. using beamforming techniques [16]), as long as certain quality of service (QoS)

are met [82, 84]. However, the use of beamforming at the cognitive user requires knowledge

of the primary user channel in order to perform beamsteering [16]. Alternatively, the signals

transmitted by the cognitive user can be spread over a large bandwidth such that the interference

generated is below the noise floor [30, 82, 84, 86]. These spread signals can then be despread at

the cognitive receiver [30, 82]. This spreading technique is the basis of both spread spectrum

and ultra-wide-band (UWB) communication systems [30,34,82,84,88].

The main advantage of this paradigm is that the cognitive user does not need to monitor the

primary user activity [88]. However, the underlay paradigm is usually restricted to short-range

communications due to the strict transmission power limitations [21, 30, 82, 88]. Another draw-

back of the underlay paradigm is that information concerning the fading channel gains between
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the cognitive transmitter and primary receiver is required by the cognitive user in order to

perform the interference management task [84].

2.3.2 Overlay paradigm

The overlay paradigm is similar to the underlay paradigm in that it permits concurrent primary

and cognitive user transmissions [21,83,86–88]. In this paradigm, the cognitive user is assumed

to have sufficient knowledge of the channel gains, primary user codebooks and messages to

either cancel or mitigate the interference at the cognitive and primary receivers [30, 82–88]. In

particular, based on such information, the cognitive user can employ sophisticated adaptive signal

processing techniques such as dirty paper coding (DPC) or successive interference cancellation

(SIC) in order to remove the interference caused by the primary user’s signal at the cognitive

receiver [30,82,84,87,88]. In addition, knowledge of the primary user codebook and/or messages

can be utilized by the cognitive radio to split its transmission power between its own transmission

and relaying the primary user signal [30,82–84,86–88].

In order for the cognitive user to manage interference at the primary receiver, the choice of

the transmission power split needs to be chosen carefully such that the primary user signal-to-

interference-plus-noise ratio (SINR) remains the same regardless of the presence of the cognitive

user transmission [84, 88]. Therefore, a sophisticated power control mechanism is needed to

determine the allocation of the transmission power [88]. This paradigm also requires cooperation

between the primary and cognitive users [21,30].

2.3.3 Interweave paradigm

The interweave paradigm is the most popular paradigm adopted in cognitive radio research

[88]. It is the original motivation for cognitive radio and is based on the idea of opportunistic

communication [17], where there exists a transmission opportunity when the primary user is not

transmitting [30, 82, 83, 86, 88]. In other words, there exists a portion of the spectrum which is

unoccupied by the primary user, referred to as a spectrum hole or white space [16,30,88]. This

spectrum hole is empty (i.e. free of any interfering signals) except for noise due to natural and/or
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artificial sources and hence, the cognitive user could utilize this vacant spectrum [16,30,88].

In this paradigm, the cognitive user monitors the primary user’s frequency band, detects the

occupancy of the spectrum (i.e. the existence or absence of the primary user) and oppor-

tunistically communicates over the spectrum holes with minimal interference to the primary

user [30, 82, 84–87, 87]. Therefore, due to the opportunistic reuse of the spectrum holes, the

utilization of the spectrum is enhanced [30, 82, 82, 83]. In the interweave paradigm, an accurate

spectrum sensing mechanism is required to determine the spectrum holes so that the cognitive

user does not cause any harmful interference to the primary user [86,88].

Table 2.1 summarizes the differences among the underlay, overlay and interweave cognitive radio

paradigms. In some of the literature, including [2, 7, 16, 34, 89], cognitive radio is classified

into only underlay or overlay, where the overlay paradigm in this case refers to the interweave

paradigm [86, 90]. In this thesis, a cognitive radio network model based on the interweave

paradigm is presented.

Table 2.1 Comparison of underlay, overlay and interweave cognitive radio paradigms

Type Simultaneous Network side
transmission information

Underlay Cognitive user can transmits Cognitive user knows information
simultaneously with primary user on fading channel gains between
as long as interference caused is cognitive transmitter and primary
below an acceptable limit. receiver.

Overlay Permits concurrent primary and Cognitive user knows information
cognitive user transmission; on channel gains, primary user
interference due to cognitive user codebooks and messages.
transmission at primary receiver
can be offset by using part of
cognitive user’s power to relay
the primary user signal.

Interweave Cognitive user transmits Cognitive user identifies spectrum
simultaneously with a primary holes in space, time and/or
user only in the event of false frequency when primary user is
spectral hole detection. absent.



34 CHAPTER 2 BACKGROUND

2.4 OVERVIEW OF QUICKEST DETECTION THEORY

Recall from Section 1.3 that the quickest detection problem is the problem of detecting an

abrupt change in the observation distribution as quickly as possible. This can be illustrated

by the following example. Let Y [1], Y [2], ... be a sequence of independent random observations,

where i is the sample number. Initially, the sequence of observations, Y [1], Y [2]..., Y [τ − 1], are

i.i.d following a common distribution, F (0). At an unknown sample number, τ , referred to as a

change point, the subsequent observations Y [τ ], Y [τ + 1], ... are i.i.d with another distribution,

F (1). Let f
(0)
Y [i] and f

(1)
Y [i] denote the probability density functions corresponding to F (0) and F (1),

respectively. Therefore, there is a change in the distribution of the observations at τ and the

objective is to detect such changes with minimal detection delay subject to a certain false alarm

constraint.

The two standard formulations in the quickest detection literature are Bayesian and non-Bayesian

(or known as minimax formulations) [30,43,46,91,92]. The Bayesian quickest detection formula-

tion was proposed by Shiryaev [93], where the change point is assumed to be a random variable

with a known prior distribution, in particular a geometric distribution [30,43,45,46,91,92]. The

objective of this formulation is to minimize the expected detection delay subject to an upper

bound on the probability of false alarm [46, 46, 92]. On the other hand, the minimax formula-

tion, which was proposed by Lorden [94], models the change point as an unknown deterministic

quantity [30, 46, 91]. It was shown in [94] that the well-known Page’s CUSUM algorithm [95]

is asymptotically1 optimal in the sense of minimax (i.e. it minimizes the worst-case detection

delay while maintaining a certain level of false alarm) [30,37,43,46].

It is worth noting that the quickest detection problem is different to but has a close relationship

with the classical sequential detection problem, namely the sequential probability ratio test

(SPRT), formulated by Wald [96]. Sequential detection is based on the theory of solving a

hypothesis-testing problem, where the objective is to distinguish between two hypotheses from

a statistically homogeneous sequence of i.i.d random observations as quickly as possible given

a specified level of detection error [30, 36, 43, 43, 44]. Therefore, all the samples are drawn from

an identical distribution [36, 43]. However, in the quickest detection problem, the sequence of

1Asymptotic here means that the mean number of samples between false alarms goes to infinity.
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observations is not homogenous and the aim of the quickest detection is to detect the occurrence

of an inhomogeneity in the random observations [36]. The connection between the quickest and

sequential detection problem lies in the study of the CUSUM algorithm, where the algorithm

can be regarded as a repeated one-sided SPRT according to the renewal property of the stopping

rule [97].

As mentioned in Section 1.3, we apply quickest detection theory to spectrum sensing in a cogni-

tive radio system to detect any changes in spectrum occupancy and this application is referred

to as quickest spectrum sensing. In this thesis, we adopt the CUSUM algorithm as a detection

strategy for quickest spectrum sensing.

2.4.1 CUSUM algorithm

This section describes an application of the CUSUM algorithm to quickest spectrum sensing,

where we apply the general problem discussed in Section 2.4. Let the primary user be initially

inactive and at an unknown sample number, τ , the primary user commences transmission. The

cognitive user observes samples sequentially and employs the CUSUM algorithm to detect the

primary user via a change in the distribution of the received signal. The CUSUM algorithm

detects the abrupt change (i.e. the emergence of the primary user) at sample

T = inf(n : Cn ≥ γ), (2.18)

where γ is a threshold and Cn is the CUSUM statistic defined as [36]

Cn = max
k≤n

n∑
i=k+1

lY [i](y[i]). (2.19)

lY [i](y[i]) in (2.19) is the log likelihood ratio denoted by

lY [i](y[i]) = ln

f
(1)
Y [i](y[i])

f
(0)
Y [i](y[i])

 , (2.20)
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and f
(0)
Y [i](y[i]) and f

(1)
Y [i](y[i]) are the probability density functions of the received signal, Y [i],

when the primary user is absent and present, respectively. The CUSUM statistic, Cn can also

be expressed in a recursive form given by [36,41–43]

Cn+1 = max
k≤n+1

{
n+1∑
i=k+1

lY [i](y[i])

}

= max

{
max
k≤n

{
n+1∑
i=k+1

lY [i](y[i])

}
, 0

}

= max

{
max
k≤n

{
n∑

i=k+1

lY [i](y[i])

}
+ lY [n+1](y[n+ 1]), 0

}

= {Cn + lY [n+1](y[n+ 1])}+,

(2.21)

where x+ = max(x, 0). Therefore, the CUSUM statistic can be computed recursively for n ≥ 0

by setting C0 = 0. The Cn statistic is compared to a threshold, γ, after each sample and the

algorithm will raise an alarm when Cn ≥ γ, which indicates the existence of the primary user.

If T > τ , a detection delay, δ = T−τ will occur. On the other hand, if T < τ , a false alarm event

will occur, where the mean number of samples between false alarms is denoted by [36,37,41,43]

T f = E
f

(0)
Y [i]

[T ], (2.22)

where E
f

(0)
Y [i]

[.] denotes the expectation operator when there is no change in the distribution of

the observations. The false alarm rate (FAR) is defined as [98]

FAR(T ) =
1

E
f

(0)
Y [i]

[T ]
. (2.23)

Recall from Section 2.4 that the CUSUM algorithm is asymptotically minimax optimal with

respect to Lorden’s measure of the worst-case detection delay. Based on Lorden’s formulation,

the worst-case detection delay is denoted by [36,37,43,98]

T d = sup
τ≥1

ess sup E
f

(1)
Y [i]

[δ = T − τ |T ≥ τ, Y [1], ..., Y [τ ]] , (2.24)

where E
f

(1)
Y [i]

denotes the expectation under the distribution of F (1) with the corresponding pdf
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Figure 2.4 Illustration of the primary user (PU) detection based on the CUSUM algorithm, employed at the
cognitive user.

of f
(1)
Y [i]. It is worth noting that ess sup is used in (2.24) so that T d takes the worst-case value

of the expected detection delay over all possible realizations of the observations of the received

signals, Y , before the change occurs. The threshold, γ in (2.18) can be set based on the lower

bound of T f , where the bound can be expressed as [36,44].

T f ≥ eγ . (2.25)

Alternatively, the threshold values can be set in an arbitrary way to give a desired range of

average detection delay or false alarm rate. Based on the pre-determined threshold values, the

average detection delay and false alarm rate can be measured.

Figure 2.4 illustrates the primary user detection based on the CUSUM algorithm, employed at

the cognitive user. Here, it is assumed that the primary user is active at τ = 100. Based on

Figure 2.4, we can see that if the cognitive user detects the primary user in the first sample

when the primary user is active (i.e at T = 100), then, δ = 0. However, δ = 1 occurs when the

cognitive user detects the primary user using two samples (i.e at T = 101).

2.5 CHAPTER SUMMARY

This chapter has provided an overview of several concepts needed for the subsequent chapters

in this thesis. Firstly, statistical models for wireless channels, a characterization of the wireless
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channel as well as statistical measures of fading severity were introduced. Secondly, a brief

overview of multi-antenna wireless systems, a general concept of diversity along with various

approaches of realizing diversity gain including several spatial diversity combining techniques

were discussed. Furthermore, a classification of cognitive radio networks was given. Finally, an

overview of quickest detection theory and the CUSUM algorithm were presented.



Chapter 3

PERFORMANCE OF QUICKEST SPECTRUM SENSING OVER
VARIOUS FADING CHANNELS

3.1 INTRODUCTION

In this chapter, we employ a SISO system model, where both primary and cognitive users are

equipped with a single receive antenna. Existing quickest spectrum sensing studies [36, 37, 42]

usually assume that the received signal has a real, Gaussian distribution. Here, we assume that

the received signal consists of a Gaussian complex signal in the presence of multiplicative fading

and additive noise. For this general model, we prove that the power of the complex received

signal is a sufficient statistic. This result enables us to derive a general form for the log likelihood

ratio and the quickest spectrum sensing technique for a range of channel models.

Although there have been a number of studies evaluating the sensing performance of an energy

detector over different fading channels [99, 100], no studies on quickest spectrum sensing have

appeared which consider a range of fading channels. Thus, in this chapter, we investigate the

performance of quickest spectrum sensing over the time-invariant channel and several fading

channels, including Rayleigh, Rician, Nakagami-m and long-tailed channel models. As discussed

in Section 2.1.4, we employ the F-distribution, which is a long-tailed distribution, as a severe

fading channel model. We derive the probability density function (pdf) of the amplitude of the

received signal for all the fading cases that we consider, where these pdfs are required to form

the CUSUM detector. In deriving the pdfs for the most commonly used channel models, we

employ a technique which avoids numerical integration. This approach is effective, particularly

in the Rician case, where simple quadrature methods are found to be unstable. In addition,

this technique provides much faster computation compared to numerical integration. These
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advantages will be discussed in detail in Section 3.4.

Mis-matched channel conditions are also considered, in which we evaluate the performance of

different CUSUM detectors, where the each of the CUSUM detectors are designed for a specific

channel, but the true channel is different. This study is useful for gaining further insights into the

effects of the channel on sensing performance and the robustness of the detectors. In addition,

we also consider the case when the fading channels are temporally correlated. This allows us to

gain some insight into the quickest spectrum sensing performance in the presence of dependent

observations at the cognitive user. Parts of this chapter have been published in [101].

The remainder of this chapter is organized as follows. In Section 3.2, the system model is

described. Section 3.3 presents a proof that the power of the complex received signal is a

sufficient statistic. Derivations of the pdfs of the received signal amplitude and the log likelihood

ratios for the time-invariant as well as the fading channel scenarios that we considered are given

in Section 3.4. Numerical results are provided in Section 3.5 for the performance of quickest

spectrum sensing in the classical channel models, a severe fading model, mis-matched channels

and temporally correlated channel conditions. Finally, Section 3.6 ends the chapter with some

concluding remarks.

3.2 SYSTEM MODEL

An interweave cognitive radio network is considered, where a PU is initially inactive and a CU

attempts to detect the presence of the PU’s signal after it begins transmission. Once the PU is

detected, the CU needs to vacate the channel. A small detection delay is crucial in this case so

that the CU vacates the channel quickly. We focus on detection of the entrance of the PU to

the licensed channel. The detection of the departure of a PU can be approached similarly.

Let Y [i] denote the CU observation at sample number i. It is assumed that the CU observes

samples sequentially. If the PU is not transmitting, then Y [i] = N [i], where N [i] is the noise. If

the PU is active, Y [i] = H[i]× S[i] + N [i], where H[i] is the channel coefficient and S[i] is the

PU’s signal, which is assumed to be a narrowband complex Gaussian signal. We assume that S[i]

and N [i] are independent circularly symmetric complex Gaussian (CSCG) random variables such
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that S[i] ∼ CN (0,σ2
S) and N [i] ∼ CN (0,σ2

N ). The channel variance is defined as E[|H[i]|2] = σ2
H

so that the observed SNR at the CU is σ2
Hσ

2
S/σ

2
N . All channel models considered are assumed

to be independent and identically distributed (i.i.d) between samples, i, which corresponds to

fast fading channels. In Section 3.5.1, we consider temporally correlated fading channels with

more realistic fade rates.

3.3 PROOF THAT |Y [i]|2 IS A SUFFICIENT STATISTIC

Before deriving the pdfs of the received signal amplitude and the log likelihood ratio for each

channel models, we first need to prove that the power of the complex received signal, |Y [i]|2, is a

sufficient statistic. Sufficient statistic is a function of the data such that the log likelihood ratio

is only dependent on that function. In the presence of the PU signal, the conditional distribution

of the received signal, Y [i], given H[i] is CN (0,|H[i]|2σ2
S + σ2

N ). Hence, the pdf of the received

signal can be written as

f
(1)
Y [i](y[i]) =

∫
f

(1)
Y [i]|H[i](y[i])fH[i](h[i]) dh[i]

= E
[
f

(1)
Y [i]|H[i](y[i])

]
,

(3.1)

where

f
(1)
Y [i]|H[i](y[i]) =

e
−|y[i]|2

(|H[i]|2σ2
S

+σ2
N

)

π(|H[i]|2σ2
S + σ2

N )
. (3.2)

Let |H[i]|2 = σ2
HZ[i], where Z[i] is a normalized random variable that is unique for each channel

model. The particular models for Z[i] are provided in Section 3.4. Using the above notation

along with σ2
T = σ2

Hσ
2
S , (3.2) can be written as

f
(1)
Y [i]|H[i](y[i]) =

e
−|y[i]|2

(σ2
T
Z[i]+σ2

N
)

π(σ2
TZ[i] + σ2

N )
. (3.3)

Therefore, the expectation in (3.1) can be expressed as

f
(1)
Y [i](y[i]) =

∫ ∞
0

e
−|y[i]|2

(σ2
T
z[i]+σ2

N
)

π(σ2
T z[i] + σ2

N )
fZ[i](z[i]) dz[i],

(3.4)



42 CHAPTER 3 PERFORMANCE OF QUICKEST SPECTRUM SENSING OVER VARIOUS FADING CHANNELS

and the log likelihood ratio used in the CUSUM algorithm (discussed in Section 2.4.1), follows

as

lY [i](y[i]) = ln

σ2
Ne
|y[i]|2

σ2
N

∫ ∞
0

e
−|y[i]|2

(σ2
T
z[i]+σ2

N
)

(σ2
T z[i] + σ2

N )
fZ[i](z[i]) dz[i]

 . (3.5)

Since lY [i](y[i]) in (3.5) is solely a function of |y[i]|2, it follows that |Y [i]|2 is a sufficient statistic.

From [102], it follows that the log likelihood ratio is unchanged whether it is computed using

the original complex signal, Y [i], the amplitude of the observed signal, |Y [i]| or the power of

the observed signal, |Y [i]|2. This holds true, irrespective of the channel model. Hence, the

log likelihood ratio for various channel models can be computed based on the amplitude of the

received signals, which will be shown in Section 3.4.

3.4 PDFS AND LOG LIKELIHOOD RATIOS FOR DIFFERENT CHANNEL MODELS

As shown in Section 3.3, the log likelihood ratio can be evaluated based on the statistics of

|Y [i]|. Therefore, for the rest of the chapter, all the analysis will be based on |Y [i]|. In order to

derive the pdf of the amplitude of the received signal when the PU is inactive, we first derive

its cumulative distribution function (cdf). The received signal in the absence of the PU can be

expressed as

Y [i] = (σ2
N )1/2J [i], (3.6)

where J [i] ∼ CN (0, 1). Equation (3.6) can then be rewritten as

Y [i]†Y [i] = σ2
NJ [i]†J [i]. (3.7)
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Let V [i] = J [i]†J [i], where V [i] is an exponential random variable such that V [i] ∼ Exp(1).

With this notation, the cdf can be expressed as

P (|Y [i]| < k) = P (|Y [i]|2 < k2)

= P (σ2
NV [i] < k2)

= P (V [i] <
k2

σ2
N

)

= 1− e
− k2

σ2
N .

(3.8)

The pdf of the amplitude of the received signal when the PU is absent can be obtained by taking

the derivative of (3.8) to yield

f
(0)
|Y [i]|(|y[i]|) =

2|y[i]|
σ2
N

e
−|y[i]|2

σ2
N . (3.9)

When the PU starts transmitting, the pdf of the amplitude of the received signal, f
(1)
|Y [i]|(|y[i]|),

for a range of common channel models, can be expressed as

f
(1)
|Y [i]|(|y[i]|) =

∫ ∞
0

2|y[i]|e
−|y[i]|2

(σ2
T
z[i]+σ2

N
)

(σ2
T z[i] + σ2

N )
fZ[i](z[i]) dz[i],

(3.10)

using the same development as in (3.1)-(3.4). Hence, the log likelihood ratio, lY [i](y[i]), for

various channels can be derived using (3.9) and (3.10), which yields the same results as (3.5). The

only term in (3.10) which is not fixed is the pdf of Z[i] which depends on the channel model used.

Z[i] is a standard exponential random variable with parameter λ = 1 for a Rayleigh channel [53].

For a Rician channel, Z[i] is a non-central chi-square variable with 2 degrees of freedom. For a

Nakagami-m channel, Z[i] is a gamma distributed random variable, Z[i] ∼ G(m, 1/m), in which

m is the Nakagami-m fading parameter [72]. For an F channel, Z[i] is an F distributed random

variable with 1 and 3 degrees of freedom, Z[i] ∼ F(1, 3). Since Z[i] is the normalized channel

power, E[Z[i]] = 1. All the channel models have well-known pdfs for Z[i], fZ[i](z[i]), which are

tabulated in Table 3.1.
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Table 3.1 Pdf of Z[i] for all types of channel model

Channel model Pdf for Z[i], fZ[i](z[i])

Time-invariant δ(1)

Rayleigh e−z[i]

Rician (K + 1)e−(K+(K+1)z[i])I0(2
√
z[i]K(K + 1))

Nakagami-m mm

Γ(m)z[i]
m−1e−mz[i]

F1,3
2

π
√
z[i](1+z[i])2

In Table 3.1, δ(1) is the Dirac delta function and Γ(m) is the Gamma function defined as

Γ(m) =
∫∞

0 e−ttm−1 dt for R(m) > 0 [103]. Γ(m) can also be written in a simplified form in the

case of an integer m as Γ(m) = (m−1)! [103]. Also shown in Table 3.1 is the scaled F distribution,

F1,3, normalized to have unit mean. As discussed in Section 2.1.4, the F distribution considered

in this thesis is by no means a standard channel model. It is long-tailed [64] and has E[Z[i]] = 1

and variance, Var(Z[i]) =∞. Previous work [62] considered various long-tailed distributions as

models for severe fading channels. In this thesis, the F distribution is considered as an extreme

case. The standard channel models all have pdfs for Z[i] which decay exponentially fast. In

contrast, the F distribution, F1,3, has a very slow decay rate and as a result, the variance does

not exist.

In the following subsections, we derive the pdfs of the amplitude of the received signal in the

presence of the PU and the log likelihood ratios for the various channel models that we consider.

The derivation of the pdfs for the most commonly used channels, including Rayleigh, Rician

and Nakagami-m channels, uses an approach which avoids numerical integration. The benefits

of this approach will be discussed in Sections 3.4.2 and 3.4.3.

3.4.1 Time-invariant channel

In the case when the received signal is transmitted over a time-invariant channel, X[i] = H×S[i]

is a circularly symmetric complex Gaussian variable with variance, σ2
X , where for the time-

invariant channel, H = 1. The pdf of the amplitude of the received signal when the PU is

present is given by

f
(1)
G (|y[i]|) =

2|y[i]|e
−|y[i]|2

(σ2
N

+σ2
X

)

(σ2
N + σ2

X)
, (3.11)
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where the subscript, G, in (3.11) denotes the time-invariant or Gaussian channel. It is worth

noting that in later subsections, subscripts will be used to differentiate between various channel

models considered. The log likelihood ratio can then be written using (3.11) and (3.9) to yield

lG(|y[i]|) = ln

{
2|y[i]|e

−|y[i]|2

(σ2
N

+σ2
X

)

}
− ln

{
σ2
N + σ2

X

}
− ln

{
2|y[i]|e

−|y[i]|2

σ2
N

}
+ ln

{
σ2
N

}
=

|y[i]|2σ2
X

σ2
N (σ2

N + σ2
X)

+ ln

{
σ2
N

σ2
N + σ2

X

}
.

(3.12)

3.4.2 Rayleigh channel

The pdf of the amplitude of the received signal transmitted over a Rayleigh fading channel can

be derived using (3.10) and Table 3.1 which gives

f
(1)
Ray(|y[i]|) =

∫ ∞
0

2|y[i]|e
−|y[i]|2

(σ2
T
z[i]+σ2

N
)

(σ2
T z[i] + σ2

N )
e−z[i] dz[i]. (3.13)

Let t = σ2
T z[i] + σ2

N , then (3.13) becomes

f
(1)
Ray(|y[i]|) =

2|y[i]|e
σ2
N
σ2
T

σ2
T

∫ ∞
σ2
N

e
− |y[i]|2

t
− t

σ2
T

t
dt. (3.14)

The numerical integration over an infinite region can be avoided by rewriting (3.14) as the

difference between the integral from 0 to ∞ and the definite integral with interval [0, σ2
N ], which

gives

f
(1)
Ray(|y[i]|) =

2|y[i]|e
σ2
N
σ2
T

σ2
T

∫ ∞
0

e
− |y[i]|2

t
− t

σ2
T

t
dt−

∫ σ2
N

0

e
− |y[i]|2

t
− t

σ2
T

t
dt

 . (3.15)

With the aid of (3.471.9) in [103, p. 363] and the midpoint rule of the Riemann sum approxi-

mation [104], (3.15) can be expressed as

f
(1)
Ray(|y[i]|) =

2|y[i]|e
σ2
N
σ2
T

σ2
T

2K0

(
|y[i]|
σT /2

)
−
σ2
N

R

R∑
r=1

e
− |y[i]|2

sr
− sr
σ2
T

sr

 , (3.16)
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in which

sr =

(
r − 1

2

)(
σ2
N

R

)
, (3.17)

where R is the number of rectangles in the Riemann sum used to approximate the integral.

Numerical tests show that with R = 50, evaluation of this expression is much faster than

numerical integration and the error is negligible. The log likelihood ratio can therefore be

written using (3.16) and (3.9) to give

lRay(|y[i]|) = ln

σ
2
N

σ2
T

e

σ2
N
σ2
T

+
|y[i]|2

σ2
N

2K0

(
|y[i]|
σT /2

)
−
σ2
N

R

R∑
r=1

e
− |y[i]|2

sr
− sr
σ2
T

sr


 . (3.18)

3.4.3 Rician channel

In the case when the received signal experiences a Rician fading channel, the pdf of the amplitude

of the received signal can be written using (3.10) and Table 3.1 to yield

f
(1)
Ric(|y[i]|) =

∫ ∞
0

2|y[i]|e
−|y[i]|2

(σ2
T
z[i]+σ2

N
)

(σ2
T z[i] + σ2

N )
(K + 1)e−(K+(K+1)z[i])I0

(
2
√
z[i]K (K + 1)

)
dz[i]. (3.19)

Letting t = σ2
T z[i] + σ2

N , (3.19) can be rewritten as

f
(1)
Ric(|y[i]|) =

2|y[i]|(K + 1)e
−K+

σ2
N
σ2
T

(K+1)

σ2
T

× I, (3.20)

where

I =

∫ ∞
σ2
N

e
−|y[i]|2

t
− t

σ2
T

(K+1)

t
I0

(
2

√(
t− σ2

N

σ2
T

)
K(K + 1)

)
dt. (3.21)

Using the Taylor series expansion given in (8.447.1) of [103, p. 909], the Bessel function in (3.21)

can be expressed as

I0

(
2

√(
t− σ2

N

σ2
T

)
K(K + 1)

)
=

∞∑
a=0

(t− σ2
N )aKa(K + 1)a

(σ2
T )a(a!)2

. (3.22)
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In (3.22), convergence occurs everywhere and is rapid due to the double factorial in the domi-

nator. Substituting (3.22) into (3.21) yields

I =
∞∑
a=0

Ka(K + 1)a

(σ2
T )a(a!)2

∫ ∞
σ2
N

e
−|y[i]|2

t
− t

σ2
T

(K+1)
(t− σ2

N )a

t
dt. (3.23)

Then, applying the binomial expansion, we can write (3.23) as

I =
∞∑
a=0

Ka(K + 1)a

(σ2
T )a(a!)2

a∑
b=0

(
a

b

)
(−σ2

N )b
∫ ∞
σ2
N

e
−|y[i]|2

t
− t

σ2
T

(K+1)

t−a+b+1
dt. (3.24)

The integral in (3.24) can be rewritten using the same approach as in Section 3.4.2 and hence,

(3.24) becomes

I =

∞∑
a=0

Ka(K + 1)a

(σ2
T )a(a!)2

a∑
b=0

(
a

b

)
(−σ2

N )b

∫ ∞
0

e
−|y[i]|2

t
− t

σ2
T

(K+1)

t−a+b+1
dt−

∫ σ2
N

0

e
−|y[i]|2

t
− t

σ2
T

(K+1)

t−a+b+1
dt

 .
(3.25)

Using (3.471.9) in [103, p. 363] and the midpoint rule of the Riemann sum approximation [104],

(3.25) can be expressed as

I =

∞∑
a=0

Ka(K + 1)a

(σ2
T )a(a!)2

a∑
b=0

(
a

b

)
(−σ2

N )b

[
2

(
|y[i]|2σ2

T

(K + 1)

)(a−b)/2
Ka−b

(
|y[i]|
√
K + 1

σT /2

)
−

σ2
N

R

R∑
r=1

e
−|y[i]|2
sr

− sr
σ2
T

(K+1)

(sr)1+b−a

]
,

(3.26)

where sr is given in (3.17). The result for I in (3.26) can now be substituted into (3.20) and

hence, the pdf of the amplitude of the received signal for the Rician case can be written as

f
(1)
Ric(|y[i]|) =

2|y[i]|(K + 1)e
−K+

σ2
N
σ2
T

(K+1)

σ2
T

∞∑
a=0

Ka(K + 1)a

(σ2
T )a(a!)2

a∑
b=0

(
a

b

)
(−σ2

N )b×2

(
|y[i]|2σ2

T

(K + 1)

)(a−b)/2
Ka−b

(
|y[i]|
√
K + 1

σT /2

)
−
σ2
N

R

R∑
r=1

e
−|y[i]|2
sr

− sr
σ2
T

(K+1)

(sr)1+b−a

 .
(3.27)



48 CHAPTER 3 PERFORMANCE OF QUICKEST SPECTRUM SENSING OVER VARIOUS FADING CHANNELS

For K = 0, the pdf expression in (3.27) reduces to the pdf of the received signal on a Rayleigh

channel in (3.16). In (3.27), the number of terms required to evaluate the summation for a

specified numerical figure accuracy depends on the value of the Rician K-factor as well as the

SNR. For example, in order to achieve six significant figure accuracy at SNR=10 dB, we require

10 summation terms for K = 0 dB and 19 terms for K = 6 dB. The log likelihood ratio for a

Rician channel, lRic(y[i]) can be written using (3.27) and (3.9) to yield

lRic(|y[i]|) = ln

σ
2
N (K + 1)e

−K+
σ2
N
σ2
T

(K+1)+
|y[i]|2

σ2
N

σ2
T

∞∑
a=0

Ka(K + 1)a

(σ2
T )a(a!)2

a∑
b=0

(
a

b

)
(−σ2

N )b×

2

(
|y[i]|2σ2

T

(K + 1)

)(a−b)/2
Ka−b

(
|y[i]|
√
K + 1

σT /2

)
−
σ2
N

R

R∑
r=1

e
−|y[i]|2
sr

− sr
σ2
T

(K+1)

(sr)1+b−a


 .

(3.28)

The approach in (3.19)-(3.28), which avoids numerical integration, is particularly useful in the

Rician case where simple quadrature methods are problematic. The difficulty is in the integration

of I0(.) in (3.21) where the Bessel function grows as the argument tends to infinity. Without

special numerical treatment, the integral is not well-behaved and returns unstable results. A

solution is possible using a finite upper limit on the integral and an asymptotic formula for the

Bessel function. However, such numerical issues are conveniently handled by the approach in

(3.19)-(3.28).

3.4.4 Nakagami-m channel

If the received signal is transmitted over a Nakagami-m channel, the pdf of the amplitude of the

received signal can be written using (3.10) and Table 3.1 in the form

f
(1)
Nak(|y[i]|) =

mm

Γ(m)

∫ ∞
0

2|y[i]|e
−|y[i]|2

(σ2
T
z[i]+σ2

N
)

(σ2
T z[i] + σ2

N )
z[i]m−1e−mz[i] dz[i]. (3.29)
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Let t = σ2
T z[i] + σ2

N , then (3.29) can be written as

f
(1)
Nak(|y[i]|) =

2|y[i]|mme

mσ2
N

σ2
T

(σ2
T )mΓ(m)

∫ ∞
σ2
N

e
−|y[i]|2

t
−mt
σ2
T (t− σ2

N )m−1

t
dt. (3.30)

Applying the binomial expansion, (3.30) can be expressed as

f
(1)
Nak(|y[i]|) =

2|y[i]|mme

mσ2
N

σ2
T

(σ2
T )mΓ(m)

m−1∑
l=0

(
m− 1

l

)
(−σ2

N )l
∫ ∞
σ2
N

e
−|y[i]|2

t
−mt
σ2
T tm−2−l dt. (3.31)

The integral in (3.31) can be rewritten using the same approach taken in Section 3.4.2, which

gives

f
(1)
Nak(|y[i]|) =

2|y[i]|mme

mσ2
N

σ2
T

(σ2
T )mΓ(m)

m−1∑
l=0

(
m− 1

l

)
(−σ2

N )l×[∫ ∞
0

e
−|y[i]|2

t
−mt
σ2
T tm−2−l dt−

∫ σ2
N

0
e
−|y[i]|2

t
−mt
σ2
T tm−2−l dt

]
.

(3.32)

With the aid of (3.471.9) in [103, p. 363] and the midpoint rule of the Riemann sum approxi-

mation [104], the pdf of the amplitude of the received signal, f
(1)
Nak(|y[i]|), in (3.32) can then be

expressed as

f
(1)
Nak(|y[i]|) =

2|y[i]|mme

mσ2
N

σ2
T

(σ2
T )mΓ(m)

m−1∑
l=0

(
m− 1

l

)
(−σ2

N )l

[
2

(
|y[i]|2

m/σ2
T

)(m−1−l)/2
×

Km−1−l

(
|y[i]|
√
m

σT /2

)
−
σ2
N

R

R∑
r=1

e
−|y[i]|2
sr

−msr
σ2
T (sr)

m−2−l

]
,

(3.33)

where all terms in (3.33) have been defined previously. The log likelihood ratio, lNak(y[i]), can

be expressed using (3.9) along with (3.33) which gives

lNak(|y[i]|) = ln

{
σ2
Nm

me

mσ2
N

σ2
T

+
|y[i]|2

σ2
N

(σ2
T )mΓ(m)

m−1∑
l=0

(
m− 1

l

)
(−σ2

N )l

[
2

(
|y[i]|2

m/σ2
T

)(m−1−l)/2
×

Km−1−l

(
|y[i]|
√
m

σT /2

)
−
σ2
N

R

R∑
r=1

e
−|y[i]|2
sr

−msr
σ2
T (sr)

m−2−l

]}
.

(3.34)
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3.4.5 F channel

The F channel represents an extreme case, where the received signal experiences severe fading.

The amplitude of the received signal over the F channel can be derived using (3.10) and Table

3.1 to give

f
(1)
F (|y[i]|) =

∫ ∞
0

2|y[i]|e
−|y[i]|2

(σ2
T
z[i]+σ2

N
)

(σ2
T z[i] + σ2

N )

2

π
√
z[i](1 + z[i])2

dz[i]. (3.35)

The log likelihood ratio can then be written using (3.9) and (3.35) as

lF (|y[i]|) =
2σ2

Ne
|y[i]|2

σ2
N

π

∫ ∞
0

e
−|y[i]|2

(σ2
T
z[i]+σ2

N
)

(σ2
T z[i] + σ2

N )
√
z[i](1 + z[i])2

dz[i]. (3.36)

In order to detect the presence of the PU for a range of channel models, the log likelihood ratios,

lG, lRay, lRic, lNak and lF , can be substituted into the CUSUM algorithm in (2.21).

3.5 NUMERICAL RESULTS

In this section, the performance of quickest spectrum sensing in classical channel models as well

as in a severe fading model is presented. All simulation results used 20000 trials to generate

each point on the plot, with each trial consisting of 200 samples. It is worth noting that more

trials are used in the thesis to improve simulation accuracy compared to [101]. It is assumed

that the PU begins transmission at τ = 100. This is illustrated in Figure 3.1, where we see that

the PU could commence transmission at any time between sample 99 and sample 100. In terms

of the CU sample times, this is equivalent to the PU being active at the largest sample number

(i.e. τ = 100). In this chapter, the thresholds are set to γ = 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7 by trial

and error. These values were chosen to give a sensible range of average detection delay and false

alarm rate. Based on these pre-determined threshold values, we measure the average detection

delay and the false alarm rate.

Figures 3.2 and 3.3 illustrate the quickest spectrum sensing performance for SNR=5 dB and

10 dB, respectively, where the CUSUM detectors are designed specifically for the particular
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Y[1] Y[2] Y[3] Y[  -1] Y[100]  Y[101] Y[T]

i.i.d F(0) i.i.d F(1)

detection 

delay

PU is detected 

at sample T

i

=100

�
=T-

PU is active atSample points of

CUSUM detector

PU commences 

transmission

Figure 3.1 Illustration of the primary user (PU) detection based on the CUSUM algorithm, employed at the
cognitive user.

channels. Based on both figures, since the time-invariant channel has no fading and the long-

tailed F distribution can model severe fading, it is reasonable to suggest that detection delay

increases with increasing severity of the fading. The CV, discussed in Section 2.1.6, is often used

to measure the fading severity [62] and is defined as

CV =

√
1

E [|H[i]|]2
− 1, (3.37)

for channels normalized to have unit power, E
[
|H[i]|2

]
= 1. Since the CV is only a function of

the mean channel amplitude, standard results for the channel distributions can be used to obtain

the value of the CV, which results in Table 3.2. Based on Table 3.2, the order of fading severity

is given, from lowest to highest as, time-invariant, Nakagami-3, Rician (K=6 dB), Nakagami-2,

Rician (K=0 dB), Rayleigh and F.

Comparing this ranking based on CV values with Figures 3.2 and 3.3, it can be seen that the

ranking of the time-invariant, Nakagami-3, Rician (K=0 dB), Rayleigh, and F channels matches

the simulated results for SNR=5 dB. However, for SNR=10 dB, the order of the time-invariant,

Rayleigh, and the F channels matches the CV ranking. The slight variation in the ordering of the

Nakagami-3, Rician (K=6 dB), Nakagami-2 and Rician (K=0 dB) channels between the CV and

simulation results may be due to the fact that the expected values of the channel amplitude for
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Figure 3.2 The effect of various channel conditions on the sensing performance at SNR=5 dB.
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Figure 3.3 The effect of various channel conditions on the sensing performance at SNR=10 dB.
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Table 3.2 CV values for the channel models

Channel model E[|H[i]|] CV

Time-invariant 1 0

Rayleigh
√
π

2

√
4
π − 1 = 0.52

Rician(K)
√

π
4(K+1)e

−K
2 ×

√
πeK

4(K+1)

(
(1 +K)I0

(
K
2

)
+KI1

(
K
2

))2 − 1(
(1 +K)I0

(
K
2

)
+KI1

(
K
2

))
Rician(K=0 dB) 0.91 0.46
Rician(K=6 dB) 0.95 0.32

Nakagami-m Γ(m+1/2)
Γ(m)

√
m

√
mΓ2(m)

Γ2(m+1/2)
− 1

Nakagami-2 0.94 0.36
Nakagami-3 0.96 0.29

F1,3
2
π

√
π2

4 − 1 = 1.21

these channels are very close (0.96, 0.95, 0.94, 0.91). Hence, such a simple ranking approach does

not completely capture the full CUSUM behaviour. Nevertheless, we can see that the average

detection delay tends to increase with the severity of the fading channels according to the CV

metric.

In Figure 3.4, we present a comparison of the sensing performance when the CUSUM detector

is designed for the time-invariant or Rayleigh channels, but a different channel is experienced.

Based on Figure 3.4, we observe that in the event of such a channel mis-match, sensing perfor-

mance depends highly on the channel, but the detector has very little impact. For example, the

average detection delay when the received signal is transmitted over a Rayleigh channel is almost

identical when the signal is detected using either a Rayleigh or a time-invariant detector. The

same trends can be observed in Figure 3.5 for Rayleigh and Rician fading. Similar trends were

observed in [105] in the event of a channel mis-match, but [105] senses the PU in a wideband

spectrum using Bayesian sequential testing with dynamic update. A detailed description on the

insensitivity of the designed detector to the performance of quickest spectrum sensing is given

in Chapter 4.

Figure 3.6 shows the sensing performance of a Rayleigh detector under various mis-matched

channels. It can be seen that for a Rayleigh detector, the ranking of the channels is the same as

in Figure 3.3. We also observe that the duration of the detection delay depends on the fading

channel conditions.
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Figure 3.4 Performance comparison in the event of a mismatch between channel and detector (Rayleigh /
Time-invariant cases) at SNR=10 dB.
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Figure 3.5 Performance comparison in the event of a mismatch between channel and detector (Rayleigh /
Rician cases) at SNR=10 dB.
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Figure 3.6 Performance of a Rayleigh detector for various channels at SNR=10 dB.

Recall from Section 1.4 that a comparison of the quickest spectrum sensing performance with

energy detection in various fading channels is difficult as both approaches have different goals.

3.5.1 Temporally correlated channel

Since the classic quickest spectrum sensing approaches assume a sequence of independent obser-

vations at the CU, it is useful to investigate the sensing performance when this assumption is

violated. Hence, in this section, we consider a PU signal observed over a temporally correlated

channel. For simplicity, we consider Rayleigh fading channels in the correlated scenario. We

assume the classic temporal behaviour of a Rayleigh channel with Jakes correlation structure

defined as [106,107]

E[H(t)H(t+ α)∗] = J0(2πfDα), (3.38)

where J0(.) is the zeroth order Bessel function of the first kind, fD is the maximum Doppler

shift in Hertz and α is the time separation.

Simulation results in the case when the received signal experiences a temporally correlated

channel are illustrated in Figure 3.7. The signal is detected using either a time-invariant or
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Figure 3.7 The effect of sensing performance on a temporally correlated Rayleigh channel with different fade
rates, fDα at SNR=10 dB.

Rayleigh detector. In this case, a time-varying Rayleigh channel is assumed and the fade rate

is given by fDα. We consider the i.i.d Rayleigh channel (no correlation) as the extreme case.

Based on Figure 3.7, we observe that for both detectors, the average detection delay increases

with the level of temporal correlation. This is because when the correlated channels are in deep

fades, the received signals are weak over many sample periods and hence detection takes longer

for the CUSUM statistic, Cn to exceed the threshold, γ. This then creates a longer detection

delay.

3.6 CHAPTER SUMMARY

In this chapter, we studied the performance of quickest spectrum sensing over a time-invariant,

Rayleigh, Rician, Nakagami-m or F channel. The received signal at the CU is considered to

be the product of two complex Gaussian variables (the PU signal and channel) with additive

noise. We first proved that the power of the complex received signal is a sufficient statistic and

hence the log likelihood can be computed on the basis of the signal amplitude. This allows us to

derive a general log likelihood ratio for various channel conditions. We then derived the pdf of

the received signal amplitude for the Rayleigh, Rician, Nakagami-m and F channel scenarios. A
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technique which avoids numerical integration was used in the derivation of the pdf of the received

signal amplitude for the most commonly used fading channels, including Rayleigh, Rician and

Nakagami-m channels.

We showed that the average detection delay increases with fading severity and the level of tem-

poral correlation. Severe fading and highly temporally correlated channels cause high detection

delays because the PU signal can be weak for many samples even if the average SNR is reason-

able.

We also showed that in the event of a mis-matched channel, the average detection delay is

sensitive to the true channel conditions, but not on the channel used to design the CUSUM

detector. Thus, an appealing strategy is to employ the simplest time-invariant detector to

detect the PU existence since in a cognitive radio network, the channel is usually unknown

and the sensing performance in various channels is insensitive to the design of the detector.

Since the time-invariant detector is robust and has general applicability, we will formulate novel

theoretical expressions for the distribution of detection delay for a time-invariant detector in the

next chapter.





Chapter 4

ON THE DISTRIBUTION OF DETECTION DELAY

4.1 INTRODUCTION

Several quickest spectrum sensing studies in the literature [37,39,42,101,108] evaluate the sensing

performance in terms of average detection delay and false alarm rate. However, no studies have

given a theoretical expression for the distribution of detection delay, which is useful for a more

detailed analysis of sensing performance, including an assessment of the likelihood of long delays.

In Chapter 3, we studied the performance of quickest spectrum sensing over time-invariant as

well as various fading channels, including Rayleigh, Rician, Nakagami-m and F channels. Results

in Chapter 3 show that in the event of a mis-matched channel (where the CUSUM detector is

designed for a specific channel, but the true channel is different), the quickest spectrum sensing

performance depends heavily on the true channel, but very little on the channel assumed by the

CUSUM detector. Hence, the simplest time-invariant detector can be employed with minimal

performance loss.

Therefore, motivated by the result in Chapter 3, in this chapter, we derive mathematical ex-

pressions for the distribution of detection delay for the time-invariant CUSUM detector when

the signal is transmitted over Gaussian and Rayleigh channels. Slowly varying channels can be

modelled by a Gaussian channel model. Hence, the theoretical expression on the distribution

of detection delay for the Gaussian scenario allows detailed analysis of the quickest spectrum

sensing performance in an ideal or optimal condition. For each of the scenarios considered, we

present several approximation methods based on a modified detection delay statistic. This is

discussed in detail in Section 4.3. Approximate methods are necessary since there is no exact so-
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lution available. We focus on Gaussian and Rayleigh fading channels although the approximate

methods can handle arbitrary channel models.

We also analyze the accuracy of the modified detection delay statistic. This is valuable in

understanding the limitations of the approximations used. We also approximate the probability

of missed detection and study the probability of long detection delays via analysis and simulation.

This analysis of long detection delays is useful to gain some insight into the factors that contribute

to an increased probability of long detection delays.

The rest of the chapter is organized as follows. Section 4.2 describes the system model and

briefly introduces the modified detection delay statistic. Several techniques for approximating

the distribution of detection delay are presented in Section 4.3. In Section 4.4, we analyze the

performance of the modified detection delay statistic, present some numerical results to validate

the approximate expressions, approximate the probability of missed detection and evaluate the

probability of long detection delays. Section 4.5 concludes the chapter.

4.2 SYSTEM MODEL

We consider the PU signal to be a narrowband complex Gaussian signal. The PU is initially

inactive, but subsequently commences transmission. Hence, the CU is attempting to detect the

appearance of the PU. Let Y [i] denote the received signal at the CU at sample number i. If

the PU is absent, then Y [i] = N [i], where N [i] is the noise. If the PU is transmitting, then

Y [i] = H[i] × S[i] + N [i], where H[i] is the channel coefficient and S[i] is the PU signal. We

let S[i] and N [i] be independent circularly symmetric complex Gaussian random variables such

that S[i] ∼ CN (0, σ2
S) and N [i] ∼ CN (0, σ2

N ). We define H[i] = H for the Gaussian case,

where H is the time-invariant channel gain. For the Rayleigh case, H[i] is the Rayleigh fading

channel, where H[i] ∼ CN (0, 1). For the Gaussian case, X[i] = H×S[i] is a circularly symmetric

complex Gaussian variable with variance σ2
X . For the Rayleigh case, X[i] = H[i] × S[i] has a

more complex distribution (as seen in Section 3.4.2) with variance also denoted by σ2
X .

Assume that the PU commences transmission at sample number τ and the CU uses the CUSUM

algorithm (discussed in Section 2.4.1) to detect the PU via a change in the distribution of the
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received signal. Recall from Section 2.4.1, that the CUSUM algorithm detects the PU at sample

T and the CUSUM statistic is given in (2.21) as

Cn+1 = {Cn + l(Y [n+ 1])}+, (4.1)

where x+ = max(x, 0) and l(Y [i]) is the log likelihood ratio, given in (2.20). If T > τ , a detection

delay of T − τ will occur. The probability that the detection delay is δ samples is denoted by

P (δ) and this defines the distribution of detection delay. As denoted in (3.12) of Section 3.4.1,

the log likelihood ratio, for a time-invariant CUSUM detector is given by

l(Y [i]) = l(|Y [i]|) =
|Y [i]|2σ2

X

σ2
N (σ2

N + σ2
X)

+ ln

{
σ2
N

σ2
N + σ2

X

}
, (4.2)

since |Y [i]|2 is a sufficient statistic. Hence, (4.2) is the time-invariant log likelihood ratio.

4.2.1 Modified detection delay statistic

The CUSUM statistic, Cn, is very difficult to handle analytically due to the max operation in

(4.1). This creates a complex dependence between the Cn values and the log likelihood ratios,

l(Y [i]), which makes exact analysis intractable in the general case. Hence, we approximate the

CUSUM process by the modified detection delay statistic, Dn, defined as

Dn =
n∑
i=1

l(Y [i])

=
n∑
i=1

(
|Y [i]|2σ2

X

σ2
N (σ2

N + σ2
X)

+ ln

{
σ2
N

σ2
N + σ2

X

})
.

(4.3)

Note that the exact CUSUM statistic defined in (4.1) and (4.2) is used for all simulated results in

this chapter. The modified process in (4.3) is simply used to provide analytical approximations.

In (4.3), Dn is the sum of a fixed number of terms, n. Let Z̃i = |Y [i]|2, ā =
σ2
X

σ2
N (σ2

N+σ2
X)

and

b = − ln
{

σ2
N

σ2
N+σ2

X

}
, then ā > 0, b > 0 and (4.3) can be rewritten as

Dn =
n∑
i=1

(āZ̃i − b), (4.4)
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which is identical to the CUSUM value when theDn process remains positive. The approximation

lies in the fact that Dn can go negative, whereas Cn ≥ 0. However, in the presence of a PU,

the log likelihood ratios have a positive mean and large negative values are unlikely. Hence, we

approximate Cn by the Dn process which has i.i.d increments of the form āZ̃i− b. At low signal-

to-noise ratio (SNR), it is more likely the Dn process will become negative since the Z̃i values

tend to be smaller. In contrast, the CUSUM process in (4.1) is restricted to Cn ≥ 0. Hence, the

approximate analysis is likely to be least accurate in the low SNR scenario. This is considered

analytically in Section 4.4.1 and via simulations in Section 4.4.2. These results demonstrate that

the approximation is useful in all cases except for short delays at low SNR, where improvements

are possible. However, this approach always provides useful approximations for the important

case of long delays.

Let ω be the sample number at which the approximate CUSUM process, Dn, detects the PU

transmission such that ω = inf(n : Dn ≥ γ), where γ is a threshold. Therefore,

Dω =

ω∑
i=1

(āZ̃i − b). (4.5)

Dω is then a random sum of random variables. We assume that the PU is inactive at i=0 and

becomes active at i=1. This corresponds to τ=1 and since ω is the sample number at which the

approximate CUSUM process, Dn, detects the PU, the detection delay is denoted by ω−1. There-

fore, we approximate the true detection delay probability, P (δ) = P (CUSUM detection delay =

δ), by the approximation P (ω = δ+1), where ω is defined based on the detection delay definition

given in Section 4.2.1.

The process, Dn, is a discrete time, continuous state space Markov process often referred to as

a random walk [109, 110]. Hence, for Dn, the detection delay problem is a classic first passage

time or hitting problem, where ω is the time at which Dn exceeds a threshold, γ, for the first

time [111]. For general problems of this kind, numerous steady state results are available, such

as expected hitting times [110, 112] and hitting probabilities [110, 111, 113]. However, results

on the distribution of hitting time are far more limited and are largely restricted to Brownian

motion and simple special cases of random walks [110,111,114,115]. Therefore, in this chapter,

we derive a novel approximate closed-form expression for the detection delay distribution for
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the Gaussian case. In addition, we derive novel approximations for the distribution of detection

delay for the general case due to the absence of a general framework. Known results based on

simple random walks and Brownian motion theory are also employed in deriving approximate

expressions for the detection delay distribution.

4.3 DISTRIBUTION OF DETECTION DELAY

In this section, we introduce some methods for constructing approximate expressions for the

distribution of detection delay for both Gaussian and Rayleigh channels.

4.3.1 Gaussian channel

The Gaussian channel considered in this section corresponds to a constant PU to CU channel,

H = 1, as discussed in Section 3.4.1. Normalizing Z̃i to have unit mean gives

Dn =
n∑
i=1

(
ā(σ2

N + σ2
X)Zi − b

)
= a

n∑
i=1

Zi − nb,
(4.6)

where a = σ2
X/σ

2
N and Zi denotes the normalized version of Z̃i, in which Zi is an exponential

random variable with parameter λ = 1. Hence, (4.5) can be rewritten as

Dω = a

ω∑
i=1

Zi − ωb. (4.7)

In all subsequent analysis of the approximate expression for the detection delay distribution for

the Gaussian case, we will be using Dn in (4.6) and Dω in (4.7).
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4.3.1.1 Closed-form expression

The approximate distribution of detection delay can be expressed as an integral of the joint pdf

of the detection delay statistics. This gives

P̃c(δ) = P (D1 < γ,D2 < γ, ...,Dδ+1 ≥ γ)

= P
(
aZ1 − b < γ, a(Z1 + Z2)− 2b < γ, ..., a(Z1 + Z2 + ...+ Zδ+1)− (δ + 1)b ≥ γ

)
= P

(
Z1 <

γ + b

a
, Z1 + Z2 <

γ + 2b

a
, ..., Z1 + Z2 + ...+ Zδ+1 ≥

γ + (δ + 1)b

a

)
,

(4.8)

where the subscript, c, in P̃c(δ) denotes the closed-form expression and tilde denotes an approx-

imation of P (δ). Let Vu = γ+ub
a , then (4.8) yields

P̃c(δ) = P (Z1 < V1, Z1 + Z2 < V2, ..., Z1 + Z2 + ...+ Zδ+1 ≥ Vδ+1)

=

∫ V1

z1=0

∫ V2−z1

z2=0
...

∫ Vδ−z1−z2−...−zδ−1

zδ=0
P
(
Zδ+1 ≥ Vδ+1 − z1 − z2 − ...− zδ

)
f(z1)f(z2)...

f(zδ) dzδ... dz2 dz1,

(4.9)

where f(zi) is the pdf of Zi. Substituting f(zi) = e−zi and P (Zδ+1 ≥ Vδ+1− z1− z2− ...− zδ) =

e−(Vδ+1−z1−z2−...−zδ) in (4.9) gives

P̃c(δ) = e−Vδ+1Iδ+1, (4.10)

where

Iδ+1 =

∫ V1

z1=0

∫ V2−z1

z2=0
...

∫ Vδ−z1−z2−...−zδ−1

zδ=0
1 dzδ... dz2 dz1. (4.11)

The following theorem provides a closed-form expression for P̃c(δ).

Theorem 1. Defining V = γ+b
a , Iδ+1 can be derived as

Iδ+1 = V

(
V δ−1
δ+1

Γ(δ + 1)

)
. (4.12)
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Substituting (4.12) into (4.10) gives

P̃c(δ) = e−Vδ+1V

(
V δ−1
δ+1

Γ(δ + 1)

)
. (4.13)

We will now prove (4.12) by induction. In order to prove (4.12), we let r = δ + 1.

Proof. We know that for r = 1, I1 = 1. Substituting r = 1 into (4.12) also yields I1 = 1. Now,

assume (4.12) is true for r = k, then for r = k + 1,

Ik+1 =

∫ V1

z1=0

∫ V2−z1

z2=0
...

∫ Vk−1−z1−z2−...−zk−2

zk−1=0

∫ Vk−z1−z2−...−zk−1

zk=0
1 dzk dzk−1... dz2 dz1. (4.14)

In (4.14), the inner k − 1 dimensional integral is given by

I =

∫ V1

z2=0

∫ V2−z2

z3=0
...

∫ Vk−1−z2−...−zk−1

zk=0
1 dzk... dz3 dz2, (4.15)

using the relabelling: V1 = V2−z1, V2 = V3−z1,...,Vk−1 = Vk−z1. From the induction hypothesis

and using ϕ = b/a, it can be seen that

I =
V (V + (k − 1)ϕ)k−2

(k − 1)!
, (4.16)

which follows from equating I in (4.15) to Iδ+1 in (4.11). Then, inserting expression (4.16) into

(4.14) and using the fact that V = V1 = V2 − z1, (4.14) can be expressed as

Ik+1 =
1

(k − 1)!

∫ V1

z1=0
(V2 − z1)× (V2 − z1 + (k − 1)ϕ)k−2 dz1. (4.17)

Evaluating (4.17) using integration by parts gives

Ik+1 =
1

(k − 1)!

[
1

k − 1

(
V2(V2 + (k − 1)ϕ)k−1 − (V2 − V1)(V2 − V1 + (k − 1)ϕ)k−1

)
+

1

k(k − 1)

(
(V2 − V1 + (k − 1)ϕ)k − (V2 + (k − 1)ϕ)k

)]
.

(4.18)
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Substituting V1 = V and V2 = V + ϕ into (4.17) yields

Ik+1 =
1

k(k − 1)(k − 1)!

[
k(V + ϕ)(V + kϕ)k−1−(V + kϕ)k

]
=
V (V + kϕ)k−1

k!

=
V (Vk+1)k−1

Γ(k + 1)
.

(4.19)

This completes the proof. Hence, (4.12) holds for all δ + 1.

4.3.1.2 Approximation

Although a closed-form expression for the approximate delay distribution in (4.13) has been

derived, it is only applicable to the Gaussian channel. Hence, in this section, as well as in

Sections 4.3.1.3 and 4.3.1.4, we also consider approximate delay distributions which have a

wider range of applicability. In deriving an approximate expression for P (δ), we consider Dω

in (4.7) just before and just after a threshold crossing. Hence, we focus on any crossing of the

threshold without requiring it to be the first crossing. This results in having an approximation

which tends to be an overestimate. P (δ) can then be approximated by

P̃aG(δ) = P (Dδ < γ,Dδ+1 ≥ γ)

= P

(
a

δ∑
i=1

Zi − δb < γ, a
δ+1∑
i=1

Zi − (δ + 1)b < γ

)

= P

(
δ∑
i=1

Zi <
γ + δb

a
,
δ∑
i=1

Zi + Zδ+1 ≥
γ + (δ + 1)b

a

)
.

(4.20)

The subscript, aG, in P̃aG(δ) denotes the approximation method for a Gaussian channel. Let

Sδ =
∑δ

i=1 Zi, then (4.20) becomes

P̃aG(δ) = P

(
Sδ <

γ + δb

a
, Zδ+1 ≥

γ + (δ + 1)b− aSδ
a

)

=

∫ γ+δb
a

0
fSδ(z)P

(
Zδ+1 ≥

γ + (δ + 1)b

a
− z
)
dz,

(4.21)
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where fSδ(z) is the pdf of a chi-square distribution with 2δ degrees of freedom, defined as [116]

fSδ(z) =
zδ−1e−z

Γ(δ)
, z ≥ 0. (4.22)

Using (4.22), the cumulative distribution function (cdf) of Zδ+1 and evaluating the resulting

simple integral in (4.21), we obtain

P̃aG(δ) =
e
−
(
γ+(δ+1)b

a

) (
γ+δb
a

)δ
Γ(δ + 1)

. (4.23)

4.3.1.3 Approximation based on a random walk approach

The classical random walk theory can also be applied in approximating P (δ). Recall that Dn in

(4.6) has i.i.d continuous increments of the form aZi − b. Here, we model the CUSUM process

{Cn}, via Dn in (4.6) by the highly simplified random walk with i.i.d jumps of fixed size, D, and

fixed probabilities of positive or negative jumps. Hence, the sensing delay becomes equivalent to

a first passage time for a simple random walk. To model {Cn} effectively, we select the random

walk parameters so that the jumps have the same mean and variance as the jumps in Dn. From

(4.6), the jumps in Dn are given by

JiG = aZi − b. (4.24)

Thus, the expected value and variance of each JiG in (4.24) can be expressed respectively as

E[JiG ] = a− b, (4.25)

Var(JiG) = a2. (4.26)

The equivalent random walk has jumps, Jeq, which are upward, +D, with probability q and

downward, −D, with probability p = 1 − q. Thus, the expected value and variance of Jeq can

be defined respectively as

E[Jeq] = D(2q − 1), (4.27)
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Var(Jeq) = E[J2
eq]− E[Jeq]

2

=
[
D2q + (−D)2(1− q)

]
−D2(2q − 1)2

= D2
(
1− (2q − 1)2

)
.

(4.28)

Equating the means and variances in (4.25), (4.26), (4.27) and (4.28) yields

D =
a− b
2q − 1

, (4.29)

and

q =
1

2
+

1

2

1√
η + 1

, (4.30)

where

η =
a2

(a− b)2
. (4.31)

Normalizing the sensing process to multiples of D, we define the number of steps needed by the

random walk to cross γ as K = γ/D. Thus, the approximate expression for P (δ) can be written

as [111,114]

P̃rwG(δ) =
KΓ(δ + 2)

(δ + 1)Γ( δ−K2 + 3
2)Γ( δ+K2 + 3

2)
p
δ+1−K

2 q
δ+1+K

2 , δ ≥ K − 1. (4.32)

The subscript, rwG, in P̃rwG(δ) denotes the random walk approximation for the Gaussian case.

4.3.1.4 Approximation based on a Brownian motion approach

We can also apply the theory of Brownian motion with drift in approximating P (δ). In this

scenario, the CUSUM process, {Cn}, can be modelled by re-scaling Dn in (4.6) to construct a

continuous Brownian motion process. This yields

Q(n) =
Dn√

Var(JiG)
, (4.33)

where Q(n) is the sum of the re-scaled independent increments, JiG , and hence, in continuous

time, Q(t) can be approximated by a Brownian motion process. Thus, the detection delay is

equivalent to the first passage time for Brownian motion with drift. The expected value and
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variance of Q(n) are given respectively as

E [Q(n)] =
nE[JiG ]√
Var(JiG)

, (4.34)

Var (Q(n)) = n. (4.35)

The re-scaling (division by
√

Var(JiG)) is chosen such that Q(t) has the same mean and variance

as the Brownian motion process with drift µ, W t, defined as [115]

W t = Wt + µt, (4.36)

where 0 ≤ t < ∞ and Wt ∼ N (0, t). For this process, the expected value and variance of W t

can be written respectively as

E[W t] = µt, (4.37)

Var(W t) = t. (4.38)

It can be observed from (4.34) and (4.37) that the drift, µ, can be expressed as

µ =
E[JiG ]√
Var(JiG)

. (4.39)

As a result of the re-scaling process, the threshold is changed to

ψ =
γ√

Var(JiG)
. (4.40)

We can then write the approximate expression for P (δ) as [115]

P̃bmG(δ) =
|ψ|√
2πq3

e
− (ψ−µq)2

2q dq, (4.41)

where q = δ + 1
2 and we set dq = 1. The subscript, bmG, in P̃bmG(δ) denotes the Brownian

motion approximation for the Gaussian channel.
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4.3.2 Rayleigh channel

In this section, we consider a mis-matched channel, in which the received signal detected using

a time-invariant detector is transmitted over a Rayleigh channel. For this Rayleigh scenario, Dn

in (4.4) and Dω in (4.5) will be used in deriving the approximate expressions for P (δ).

4.3.2.1 Approximation

In this case, Sδ in (4.21) becomes Sδ =
∑δ

i=1 Z̃i. The distribution of Z̃i is more complex than in

Section 4.3.1 (as shown in Section 3.4.2) and the distribution of Sδ is unknown. Hence, in order to

use (4.21) as an approximation method, we approximate Z̃i by a gamma variable and this leads

to a gamma approximation for Sδ also. The motivation for this approach lies in the fact that for

virtually all mis-matched channels, Z̃i, will remain positive, unimodal and positively skewed, as

is a gamma variable. Furthermore, as δ becomes large, both the gamma approximation and the

Sδ variable converge to a Gaussian limit. The gamma approximations are simply obtained by

the method of moments. Hence, we can approximate Z̃i by a gamma variable with mean, µ
Z̃i

and variance, σ2
Z̃i

defined respectively as

µ
Z̃i

= σ2
X + σ2

N , (4.42)

σ2
Z̃i

= E[Z̃2
i ]− E[Z̃i]

2

= (4σ4
X + 4σ2

Xσ
2
N + 2σ4

N )− (σ2
X + σ2

N )2

= 3σ4
X + 2σ2

Xσ
2
N + σ4

N .

(4.43)

Equations (4.42) and (4.43) follow by using known results on the moments of |H[i]|2, which

has a standard exponential distribution. Similarly, the summation term in (4.4) can also be

approximated by a gamma variable giving

δ+1∑
i=1

Z̃i ∼ G

(
(δ + 1)µ2

Z̃i

σ2
Z̃i

,
σ2
Z̃i

µ
Z̃i

)
, (4.44)

where G(k, θ) is a gamma distribution with shape parameter k and scale parameter θ. The

derivation of the approximate expression for P (δ) in the Rayleigh case follows the approach
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taken in Section 4.3.1.2 using (4.5) along with (4.44). Hence, P (δ) can be approximated by

P̃aRay(δ)=

∫ γ+δb
ā

0
fSδ(z)P

(
Z̃δ+1 ≥

γ + (δ + 1)b

ā
− z
)
dz, (4.45)

where

Sδ ∼ G

(
δµ2

Z̃i

σ2
Z̃i

,
σ2
Z̃i

µ
Z̃i

)
, (4.46)

and

Z̃δ+1 ∼ G

(
µ2
Z̃i

σ2
Z̃i

,
σ2
Z̃i

µ
Z̃i

)
. (4.47)

Let α1 =
δµ2
Z̃i

σ2
Z̃i

, α2 =
µ2
Z̃i

σ2
Z̃i

and β =
σ2
Z̃i
µ
Z̃i

, then fSδ(z) in (4.45) is the pdf of a gamma distribution

defined as

fSδ(z) =
zα1−1e−z/β

Γ(α1)βα1
. (4.48)

We first evaluate the second term in the integral expression in (4.45), which gives

P

(
Z̃δ+1 ≥

γ + (δ + 1)b

ā
− z
)

=

∫ ∞
γ+(δ+1)b

ā
−z
f
Z̃δ+1

(u) du

=
1

Γ(α2)βα2

∫ ∞
γ+(δ+1)b

ā
−z
uα2−1e−u/β du

=
1

Γ(α2)
Γ

(
α2,

γ+(δ+1)b
ā − z
β

)
,

(4.49)

where Γ(., .) is the incomplete Gamma function. Inserting (4.48) and (4.49) into (4.45) yields

P̃aRay(δ) =
1

βα1Γ(α1)Γ(α2)

∫ γ+δb
ā

0
zα1−1e−z/βΓ

(
α2,

γ+(δ+1)b
ā − z
β

)
dz. (4.50)

Thus, P̃aRay(δ) has a simple form which requires only a single numerical integration. To increase

accuracy, a reasonable approach would be to approximate Sδ by a generalized gamma random

variable and fit the generalized gamma approximation by using the method of moments. How-

ever, in order to approximate P (δ), we need to re-estimate all three parameters of the generalized

gamma for each δ. Since the method of moments requires an iterative solution and this must be

recomputed for every δ, this approach is computationally expensive. Preliminary results indicate

that the increased accuracy is not sufficient to justify the complexity.
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4.3.2.2 Approximation based on a random walk approach

Following the approach taken in Section 4.3.1.3, we can also approximate P (δ) for the Rayleigh

scenario using random walk theory. From (4.4), the jump in Dn can be defined as

JiRay = āZ̃i − b, (4.51)

where the expected value and variance of JiRay can be expressed respectively as

E[JiRay ] = āµ
Z̃i
− b, (4.52)

Var(JiRay) = ā2σ2
Z̃i
, (4.53)

in which µ
Z̃i

and σ2
Z̃i

are given in (4.42) and (4.43). Equating the means and variances of JiRay

in (4.52), (4.53) and Jeq in (4.27) and (4.28) gives

DRay =
āµ

Z̃i
− b

2q − 1
, (4.54)

qRay =
1

2
+

√
ϑ− 4ā2σ2

Z̃i

2
√
ϑ

, (4.55)

in which

ϑ = 4ā2σ2
Z̃i

+ 4ā2µ2
Z̃i
− 8āµ

Z̃i
b+ 4b2. (4.56)

It is worth noting that the subscripts in (4.54) and (4.56) are used to differentiate between

the Gaussian and Rayleigh case. The number of steps needed to reach γ can be written as

W = γ/DRay. Hence, we can express the approximate expression for the distribution of detection

delay for the Rayleigh case as [111,114]

P̃rwRay(δ) =
WΓ(δ + 2)

(δ + 1)Γ( δ−W2 + 3
2)Γ( δ+W2 + 3

2)
p
δ+1−W

2
Ray q

δ+1+W
2

Ray , δ ≥W − 1 (4.57)

where pRay = 1− qRay.
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4.3.2.3 Approximation based on a Brownian motion approach

We can also follow the approach taken in Section 4.3.1.4 to approximate P (δ) in the Rayleigh

scenario by employing the theory of Brownian motion with drift. In this case, we re-scale Dn in

(4.4) to yield

QRay(n) =
Dn√

Var(JiRay)
. (4.58)

The expected value and variance of QRay(n) can be written respectively as

E [QRay(n)] =
nE[JiRay ]√
Var(JiRay)

, (4.59)

Var (QRay(n)) = n. (4.60)

The drift, µRay, can be obtained by comparing the means in (4.59) and (4.37), which gives

µRay =
E[JiRay ]√
Var(JiRay)

. (4.61)

Due to the re-scaling of Dn, the threshold now becomes

ψRay =
γ√

Var(JiRay)
. (4.62)

Thus, the approximate expression for P (δ) can be expressed as [115]

P̃bmRay(δ) =
|ψRay|√

2πq3
e
−

(ψRay−µRayq)
2

2q dq, (4.63)

where q = δ + 1
2 and dq = 1.

4.4 NUMERICAL ANALYSIS AND RESULTS

In this section, we provide some further analysis of the modified detection delay statistic for the

Gaussian case and present some numerical results to validate the approximate expressions for the

distribution of detection delay for a time-invariant CUSUM detector when the received signals
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experience Gaussian and Rayleigh channels. We also theoretically approximate the probability of

missed detection and provide a detailed analysis of the likelihood of long detection delays. In all

simulations, the threshold is set to be γ=3, following from Section 3.5 and each point on the plots

is generated using 20000 trials, where each trial consists of 200 samples. For i < 100 samples,

the CUSUM detector receives only noise. However, at τ = 100, the PU starts transmitting and

the received signal at the detector consists of the faded signal plus noise. Detection delay is

measured from when the PU becomes active, at τ , until detection by the CUSUM detector.

4.4.1 Analysis of the Dn process: Gaussian case

The Dn process only differs from the true CUSUM process if it becomes negative before it crosses

the threshold, γ. The probability of this event occurring for the first time at sample n can be

defined as

P (0 < D1 < γ, 0 < D2 < γ, ..., 0 < Dn−1 < γ,Dn < 0)

≤ P (D1 > 0,D2 > 0, ...,Dn−1 > 0,Dn < 0) = Pneg(n).

(4.64)

The upper bound, Pneg(n), can be evaluated for small values of n using standard techniques.

This gives

Pneg(1) = P (D1 < 0)

= P (Z1 <
b

a
)

= 1− e−
b
a .

(4.65)

Pneg(2) = P (D1 > 0,D2 < 0)

= P

(
Z1 >

b

a
, Z2 <

2b

a
− Z1

)
=

∫ 2b
a

z1= b
a

e−z1P

(
Z2 <

2b

a
− z1

)
dz1

= e−
b
a −

(
1 +

b

a

)
e−

2b
a .

(4.66)
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Pneg(3) = P (D1 > 0,D2 > 0,D3 < 0)

= P

(
Z1 >

b

a
, Z2 >

2b

a
− Z1, Z3 <

3b

a
− Z1 − Z2

)
=

∫ 2b
a

z1= b
a

e−z1P

(
Z2 >

2b

a
− z1, Z3 <

3b

a
− z1 − z2

)
dz1 +

∫ 3b
a

z1= 2b
a

e−z1×

P

(
Z2 > 0, Z3 <

3b

a
− z1 − z2

)
dz1

=

(
1 +

b

a

)
e−

2b
a −

(
1 +

2b

a
+

3b2

2a2

)
e−

3b
a .

(4.67)

Pneg(4) = P (D1 > 0,D2 > 0,D3 > 0,D4 < 0)

= P

(
Z1 >

b

a
, Z2 >

2b

a
− Z1, Z3 >

3b

a
− Z1 − Z2, Z4 <

4b

a
− Z1 − Z2 − Z3

)
=

∫ 2b
a

z1= b
a

e−z1P

(
Z2 >

2b

a
− z1, Z3 >

3b

a
− z1 − z2, Z4 <

4b

a
− z1 − z2 − z3

)
dz1+

∫ 3b
a

z1= 2b
a

e−z1P

(
Z2 > 0, Z3 >

3b

a
− z1 − z2, Z4 <

4b

a
− z1 − z2 − z3

)
dz1+

∫ 4b
a

z1= 3b
a

e−z1P

(
Z2 > 0, Z3 > 0, Z4 <

4b

a
− z1 − z2 − z3

)
dz1

=

(
1 +

2b

a
+

3b2

2a2

)
e−

3b
a −

(
1 +

3b

a
+

4b2

a2
+

8b3

3a3

)
e−

4b
a .

(4.68)

There is a clear pattern in the Pneg(n) results in (4.65)-(4.68), but the precise form for the

polynomial terms in b/a appears to be difficult to obtain. Nevertheless, the values of Pneg(n) for

n = 1, 2, 3 and 4 give us some insight into the limitations of the approximation. In Table 4.1,

we compare the theoretical and simulation results for Pneg(n) at SNR=5, 0 and -5 dB. We can

see that the theoretical results are validated by the simulations. We also observe that the Dn

process has the highest probability of going negative in the first sample compared to the other

samples. Due to the small value of Pneg(n) for n ≥ 2, this indicates that the approximation

approaches are most likely to be in error in the first sample (i.e. δ=0).

Although Pneg(1) is substantial, the size of the negative jump tends to be small, so that the

approximation remains reasonable as shown in Figures 4.2 and 4.3. It is possible to adjust

for the probability of Dn becoming negative by using a re-scaled threshold. For example, the
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Table 4.1 Results for Pneg(n) at SNR=5, 0 and -5 dB

n Theoretical Simulation

5 dB 0 dB −5 dB 5 dB 0 dB −5 dB

1 0.3630 0.5 0.5806 0.3676 0.5031 0.5807
2 0.0482 0.0767 0.0907 0.0483 0.0761 0.0910
3 0.0183 0.0349 0.0432 0.0183 0.0347 0.0431
4 0.0088 0.0203 0.0264 0.0098 0.02 0.0255

threshold could be reduced by the mean negative excursion of the Dn process. Therefore, the

re-scaled threshold can be written as

h = γ + ς, ς < 0, (4.69)

where ς = Pneg(1)×E[aZi− b|aZi− b < 0], in which E[aZi− b|aZi− b < 0] is the mean negative

excursion of the Dn process, defined as

E[aZi − b|aZi − b < 0] = a

[∫ b
a

0

zif(zi)

P (Zi <
b
a)
dzi

]
− b

=
a

1− e−
b
a

∫ b
a

0
zie
−zi dzi − b

=
a
(

1−
(
1 + b

a

)
e−

b
a

)
1− e−

b
a

− b.

(4.70)

Figure 4.1 compares the simulated results with the approximate expressions for P (δ) based on

the original threshold γ and the re-scaled threshold, h, when the received signals experience a

Gaussian channel at SNR=5 dB. As can be seen from Figure 4.1, results obtained using the

re-scaled threshold do not provide much improvement over the standard approximation using

γ. Hence, in Section 4.4.2, we present numerical results for the distribution of detection delay

based on the threshold γ, and do not consider the re-scaling method any further.

4.4.2 Results

Figure 4.2 compares simulated results with the approximate expressions for P (δ) when the

received signals experience a Gaussian channel at SNR=5, 0 and -5 dB. Based on Figure 4.2,

we observe that the closed-form expression for P̃c(δ) is close to the simulated results at SNR=5
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Figure 4.1 A comparison of the simulated results and the approximate distribution of detection delay based on
threshold γ and the re-scaled threshold, h, for the Gaussian scenario at SNR=5 dB.

and 0 dB. However, at SNR=-5 dB, P̃c(δ) is only accurate for long delays. We can see that at

all three SNRs considered, the approximate expression, P̃aG(δ) behaves as an upper bound on

the closed-form expression for P̃c(δ) and the approximation is reasonably good at SNR=5 and

0 dB. However, the estimation error is high at SNR=-5 dB. In Figure 4.2, we see that at all

SNRs, the approximate expression based on the random walk (RW) approach, P̃rwG(δ) provides

a slightly better approximation for long detection delays as compared to P̃aG(δ). At SNR=0

dB, the Brownian motion (BM) approximation, P̃bmG(δ) provides a good estimate of P (δ) for

long delays. At SNR=-5 dB, P̃bmG(δ) gives the best approximation for P (δ) among all the other

approximation methods.

Figure 4.3 shows a comparison of the simulated results and the approximate expressions for

P (δ) when a mis-matched channel occurs, i.e the received signal is transmitted over a Rayleigh

channel. We observe from Figure 4.3 that the approximate expression, P̃aRay(δ), provides a

good estimate of P (δ) at SNR=5 dB compared to the random walk approximation, P̃rwRay(δ)

and the Brownian motion approximation, P̃bmRay(δ). At SNR=0 dB, P̃aRay(δ) gives an accurate
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Figure 4.2 A comparison of the simulated results and the approximate distribution of detection delay for the
Gaussian scenario at SNR=5,0 and -5 dB
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Figure 4.3 A comparison of the simulated results and the approximate distribution of detection delay for the
Rayleigh scenario at SNR=5,0 and -5 dB. This is a mis-matched channel scenario.

approximation for short delays whereas P̃rwRay(δ) and P̃bmRay(δ) are close to the simulated results

at long delays. However, at SNR=-5 dB, P̃bmRay(δ) provides a good approximation, especially

at long delays, as compared to the other approximation methods.

In short, different SNR and detection delay conditions require different approaches in order to

achieve good approximations of the distribution of detection delay. Furthermore, the remarkably
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simple Brownian motion approach provides the best approximation for longer delays.

4.4.3 Probability of missed detection

It is known that the CUSUM detector will continuously sense the frequency spectrum until it

detects the PU’s transmission. In the event that the CU is sensing the existence of the PU, the

CU will declare that the PU is absent at sample r, if detection has not occurred after a certain

period of time, even if the PU is active. In other words, the CU fails to detect the existence of

the PU leading to a missed detection. We denote r as the number of samples taken during which

no PU is detected by the CU and after which the CU decides to transmit. We can approximate

the probability of missed detection based on P̃bmG(δ), since the Brownian motion approach gives

a good approximation of the distribution of detection delay for longer delays. We define the

approximate probability of missed detection by

P̃md(r) =
∑
δ≥r

P̃bmG(δ)

=
∑
δ≥r

|ψ|√
2πq3

e
− (ψ−µq)2

2q dq,

(4.71)

where r is the sample number at which the CU declares the absence of the PU. ψ, µ, q and dq

in (4.71) are defined in Section 4.3.1.4.

The results for P̃md(r) at various SNR are shown in Table 4.2. Based on Table 4.2, it can be

seen that there is a low probability of missed detection at SNR=5 dB as compared to the other

SNRs, with the highest P̃md(r) observed at SNR=-5 dB. This is because as the received signal

gets weaker, there is a higher probability that the detection delay will be longer and this leads to

a higher P̃md(r). The remarkably simple Brownian motion approximation enables a very rapid

quantification of these missed detection probabilities. It is worth noting that for small values

of r, P̃c(δ) in (4.13) or P̃a(δ) in (4.23) could be used in deriving the approximate expression

for the probability of missed detection as both of the approximate methods provide a good

approximation of the detection delay distribution for small detection delays.
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Table 4.2 Missed detection probabilities, P̃md(r) at SNR=5, 0 and -5 dB

r 5 dB 0 dB −5 dB

20 5.5062×10−4 0.1101 0.6817
40 0 0.0197 0.4143
60 0 0.0033 0.2169
80 0 0 0.0867
100 0 0 0

4.4.4 Analysis of long detection delays

Here, we extend our investigation to general i.i.d channels and analyze the likelihood of long

detection delays for the general case. In both Figures 4.2 and 4.3, the Brownian motion approach

gives a reasonably good estimate of P (δ) for longer detection delays. Therefore, the evaluation

of long detection delays will be based on the Brownian motion approach. In order to analyze the

likelihood of long detection delays, we derive a general approximate expression for P (δ) based

on the Brownian motion approach, where this general expression can be applied to any i.i.d

channel. For this general case, each jump in Dn can be written as

Ji = aKi − b, (4.72)

where Ki = |Y [i]|2
E[|Y [i]|2]

, a = σ2
X/σ

2
N and b = − ln

{
σ2
N

σ2
N+σ2

X

}
. The expected value and variance of

Ji can be written respectively as

E[Ji] = a− b, Var(Ji) = a2σ2
Ki , (4.73)

where

σ2
Ki = E[K2

i ]− E[Ki]
2

=

(
E
[
|X|4

]
− 2σ4

X

σ4
X + 2σ2

Xσ
2
N + σ4

N

+ 2

)
− (1)2

=
E
[
|X|4

]
− 2σ4

X

σ4
X + 2σ2

Xσ
2
N + σ4

N

+ 1.

(4.74)

Based on Section 4.3.1.4 and 4.3.2.3, we define a general approximate expression for P (δ), which

can be expressed as

P̃bmGen(δ) =
|ψGen|√

2πq3
e
− (ψGen−µGenq)

2

2q dq, (4.75)
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where q = δ + 1
2 and dq = 1. The general drift, µGen and new threshold, ψGen can be written

using (4.73) and (4.74) to yield

µGen =
E[Ji]√
Var(Ji)

=
1 + ξ ln

{
ξ

1+ξ

}
σKi

,

(4.76)

ψGen =
γ√

Var(Ji)

=
γξ

σKi
,

(4.77)

in which ξ = σ2
N/σ

2
X . Substituting (4.76) and (4.77) into (4.75), P̃bmGen(δ) can be re-written as

P̃bmGen(δ) =
| γξσKi |√
2πq3

e
−

(
γξ−Rq
σKi

)2

2q dq, (4.78)

where

R = 1 + ξ ln

{
ξ

1 + ξ

}
. (4.79)

Note that (4.78) is valid for an arbitrary channel. As δ →∞, q →∞ and hence, (4.78) becomes

P̃bmGen(δ) = γξ × e
− (R

√
q)2

2σ2
Ki√

2πσ2
Ki

× dq

q3/2
. (4.80)

The form of (4.80) allows us to consider the factors which lead to high probabilities of long

delays. The first term in (4.80) is γξ so that we have the simple conclusion that high thresholds

(large γ) or low SNR (high ξ) lead to longer delays. The second term is in the form of a Gaussian

density and for large q, this is increased by large values of σKi and small values of R. For R, it

is straight forward to show that low SNR (high ξ) leads to smaller R values, so again low SNR is

a factor. Hence, the only factor that relates to the actual channel is σKi . Using (4.74), in order

for σ2
Ki

to be large, we require

E[|X|4]� 3σ4
X . (4.81)
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Let M = |X|2, then (4.81) can be re-written as

E[M2]− E[M ]2

E[M ]2
� 2. (4.82)

The left-hand side of the inequality can be written in terms of the coefficient of variation (CV),

which is discussed in Section 2.1.6. CV is usually used to measure the severity of the fading [62].

This then yields

CV�
√

2. (4.83)

From Table 3.2 in Section 3.5, most of the classical channel models including Gaussian, Rayleigh,

Rician and Nakagami-m channels have a small value of CV, with the Rayleigh having the highest

CV value of 0.52. In contrast, the long-tailed F distribution, which models a severe fading

channel, has a CV of 1.21. Consider another type of long-tailed distribution, the log-normal

distribution, where the CV is defined as CV =
√
eσ2 − 1 [117]. In order to satisfy (4.83),

σ2 � loge 3. Therefore, we observe that in order for the channel to create long delays, it needs

an extremely high CV value that can result from severe fading channels (log-normal shadow

fading or the F channel), but does not occur with the traditional channel models (Rayleigh,

Rician and Nakagami-m fading channels). Hence, we conclude that the channel has very little

impact on long detection delays unless it experiences unusually severe fading.

It is worth noting that the detection delay is mainly a function of the first two moments of the

received signal (i.e. mean and variance). This is because the Brownian motion approach, which

works well in approximating the distribution of detection delay for long detection delay is based

on matching of two moments. In addition, our work on investigating the performance of quickest

spectrum sensing with a single receive antenna over various fading channels in Chapter 3 shows

that CV affects the sensing performance. Again, CV is a function of the first two moments

and these first two moments are not wildly different for most channel models. Furthermore, in

this thesis, we compare channel models with the same power and hence, one of the moments is

exactly the same. Therefore, the performance of the quickest spectrum sensing is insensitive to

the designed detector.
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4.5 CHAPTER SUMMARY

In this chapter, we derived approximate expressions for the detection delay distribution for a

time-invariant CUSUM detector when the received signal is transmitted over a Gaussian channel

as well as over a mis-matched, Rayleigh channel. In particular, for the Gaussian case, we derived

a novel approximate closed-form expression for the distribution of detection delay. In addition,

we also derived novel approximate expressions for the detection delay distribution for the general

case due to the absence of a general framework. We also applied the simple random walk and

Brownian motion theory with drift to derive the approximate expressions for the detection delay

distribution for both Gaussian and Rayleigh cases. Most of the approximate expressions that

we formulated are general and can be applied to any i.i.d channel.

Numerical results illustrate that in order to achieve good approximations, different approximate

methods are needed for different SNR and detection delay conditions. In particular, at high SNR,

the closed-form and approximation approaches provide good approximations for the Gaussian

and Rayleigh cases. At moderate SNR, both closed-form and approximation approaches provide

good approximation for short delays, but the random walk and Brownian motion approaches

give better approximations for long delays for both of the cases considered. In addition, at low

SNR, the Brownian motion approach gives the best approximation among all the other methods.

Furthermore, of all the approximations, the Brownian motion approach provides a remarkably

simple and accurate approximation for longer delays. The analysis of long detection delays shows

that an increased probability of a long detection delay can be obtained if the threshold value is

large or the received signal is weak due to low SNR. However, long detection delays are normally

insensitive to the type of fading channel. In the next chapter, we will investigate the quickest

spectrum sensing performance when multiple antennas are employed at the receiver.



Chapter 5

EXTENSION OF QUICKEST SPECTRUM SENSING TO
MULTIPLE ANTENNAS

5.1 INTRODUCTION

In Chapters 3 and 4, we studied and analyzed the performance of quickest spectrum sensing,

where the CU is equipped with a single antenna. There have been a number of studies on

spectrum sensing using an energy detector and a GLRT detector employing multiple receive

antennas [118–122]. However, no studies using quickest spectrum sensing consider CUs with

multiple antennas. Therefore, in this chapter, we investigate quickest spectrum sensing per-

formance with multiple antenna CUs when the received signal is transmitted over Gaussian,

Rayleigh and Rician channels.

Slowly varying channels are modeled by a time-invariant channel gain so that a Gaussian signal

in noise gives an overall Gaussian received signal. Fast fading channels are modeled by a Rayleigh

or a Rician channel so that the received signal is the product of two complex Gaussian variables

(channel and signal) with additive noise. We prove that the sum of the complex received signal

powers at each antenna for the independent Rayleigh scenario is a sufficient statistic. This result

allows us to derive the pdf of the received signal experiencing independent Rayleigh channel based

on the sum of the received signal powers. Hence, we can employ an EGC before applying standard

CUSUM sensing techniques (as discussed in Section 2.4.1). The pdf of the received signal is

required to form the optimal CUSUM detector. The derivation of the pdf for the independent

Rayleigh scenario uses a technique which avoids numerical integration. The benefits of using

this technique will be discussed in Section 5.5.2. Besides the independent Rayleigh scenario, we

also employ an EGC for the Gaussian case as the sum of the complex received signal powers at
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each antenna in this case is also a sufficient statistic.

We also consider the case of insufficient separation between multiple antennas on a CU by looking

at the effect of spatial-correlation for Rayleigh channels. Existing studies, including [123, 124],

show that the sensing performance of an energy detector degrades with antenna correlation.

However, correlation improves the sensing performance of a GLRT detector [125]. Therefore, in

this chapter, we also study quickest spectrum sensing performance with multiple antenna CUs

in correlated Rayleigh channels. We derive the joint pdf of the received signal for the correlated

Rayleigh case and analyze the effect of correlation on the quickest spectrum sensing performance.

We also consider the case when the received signal experiences a LOS condition, resulting in

a Rician channel. We derive the joint pdf of the received signal for the independent Rician

scenario. For the Rayleigh (independent and correlated) and the Rician (independent) cases, we

also study the quickest spectrum sensing performance in the event of a mis-matched channel,

where the CUSUM detector is designed for a specific channel, but experiences a different channel.

We analytically compute the upper bound and asymptotic worst-case detection delay for both

independent Rayleigh and Gaussian cases. We also numerically evaluate the sensing performance

for the Rayleigh (independent and correlated) and the Rician (independent) cases. The results in

this study provide us with new insights into the minimum detection delay that can be obtained

by adding more antennas at the CU in various types of channels. In addition, the results allow

us to gain further insights into the effects of channel correlation or the Rician K-factor on multi-

antenna quickest spectrum sensing.

The rest of the chapter is organized as follows. Section 5.2 describes the system model. Sec-

tions 5.4, 5.5, 5.6 and 5.7 study the Gaussian, independent Rayleigh, correlated Rayleigh and

independent Rician channel scenarios, respectively, where derivation of the pdfs of the received

signal and the log likelihood ratio are given for each of the scenarios. Analytical and numerical

results are presented in Sections 5.8 and 5.9. Finally, Section 5.10 provides some concluding

remarks.
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5.2 SYSTEM MODEL

In this chapter, we model the signal transmitted by the PU as a narrowband complex Gaussian

signal. An interweave cognitive radio network is considered where a CU, which is equipped with

multiple antennas, monitors the channel allocated to the PU based on its own observations at

each antenna. It is assumed that the PU is initially inactive and that the CU observes samples

sequentially and attempts to detect the PU signal. Therefore, this study focuses on the detection

of the entrance of the PU to the licensed channel. The detection of the departure of a PU can

be approached similarly.

The CU observation at antenna m is denoted by Ym[i] for m = 1, 2, ...,M , where i is the sample

number of the received signal and M is the number of antennas. If the PU is not active,

Ym[i] = Nm[i], where Nm[i] ∼ CN (0,σ2
N ) is an independent circularly symmetric complex white

Gaussian noise. If the PU is transmitting, Ym[i] = Hm[i]×S[i]+Nm[i], where Hm[i] is the channel

coefficient and the PU signal is S[i] ∼ CN (0,σ2
S), an independent circularly symmetric complex

Gaussian random variable with variance σ2
S . At an unknown sample, τ , the PU commences

transmission resulting in a change in the distribution of the received signal. The PU signal is

detected by the CUSUM algorithm (discussed in Section 2.4.1) at sample T .

5.3 CUSUM DETECTOR WITH VECTOR RECEIVED SIGNALS

We define Y[i] = [Y1[i], ..., YM [i]]T . Recall from Section 2.4.1 that the log likelihood ratio required

to construct the CUSUM statistic in (2.19) can be written as

lY[i](y[i]) = ln

f
(1)
Y[i](y1[i], y2[i], ..., yM [i])

f
(0)
Y[i](y1[i], y2[i], ..., yM [i])

 . (5.1)

Alternatively, if a single sufficient statistic, z[i], exists then z[i] is a scalar function of Y[i] and

(5.1) can be replaced by a simpler ratio, which can be expressed as

lz[i](z[i]) = ln

f
(1)
z[i](z[i])

f
(0)
z[i](z[i])

 . (5.2)



88 CHAPTER 5 EXTENSION OF QUICKEST SPECTRUM SENSING TO MULTIPLE ANTENNAS

Y1[i]

Y2[i]

YM[i]

| . |2

| . |2

| . |2

+

Pre-combining

z[i]
CUSUM

Algorithm

Spectrum Sensing

PU Detection

Figure 5.1 Block diagram of CUSUM detection with multiple receive antennas at the CU employing EGC for
pre-combining.

If a single sufficient statistic exists, the log likelihood ratio can also be computed using this

sufficient statistic, i.e. by using (5.2), which results in the same value as that computed based

on the joint pdfs of the received signal, as in (5.1). In this chapter, a single sufficient statistic can

be found in the Gaussian and independent Rayleigh cases (which will be discussed and shown

in Sections 5.4 and 5.5, respectively), where the sufficient statistic can be expressed as

z[i] = Y[i]†Y[i] =

M∑
m=1

|Ym[i]|2 . (5.3)

It can be observed from (5.3), that z[i] can be obtained from a linear combining technique.

As discussed in Section 2.2.1.3, there are various types of multi-antenna combining techniques

including selection combining, EGC and MRC [54, 70, 72, 76]. The sufficient statistic in (5.3)

can be produced by an EGC and so z[i] is the output of an EGC as shown in Figure 5.1.

5.4 MULTI-ANTENNA SENSING WITH GAUSSIAN CHANNELS

In this section, Hm[i] = Hm, where Hm is a time-invariant channel gain. Let Xm[i] = Hm×Sm[i],

where Xm[i] is a circularly symmetric complex Gaussian variable with variance σ2
X . Hence,

the received signal at antenna m when the PU is transmitting can be rewritten as Ym[i] =

Xm[i] +Nm[i]. As shown from Figure 5.1, at each sample, i, EGC is applied giving

z[i] =
M∑
m=1

|Ym[i]|2 . (5.4)
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Then, z[i] is processed by the CUSUM algorithm (discussed in Section 2.4.1) to determine the

PU’s existence.

5.4.1 Pdfs and log likelihood ratio

Whether or not the PU signal is present, z[i] has a chi-square distribution with 2M degrees of

freedom since Ym[i] is zero-mean Gaussian. Initially, the signal observed by the CU contains

only noise because of the absence of the PU. At an unknown sample number, τ , the PU becomes

active and the pdf of the combined signals switches instantaneously. The pdfs when the PU is

absent and present are, respectively,

f
(0)

Y[i]†Y[i]
(z[i]) =

z[i]M−1

(σ2
N )MΓ(M)

e
− z[i]
σ2
N , (5.5)

f
(1)

Y[i]†Y[i]
(z[i]) =

z[i]M−1

(σ2
N + σ2

X)MΓ(M)
e
− z[i]

σ2
N

+σ2
X . (5.6)

We can then derive the log likelihood ratio, lY[i]†Y[i](z[i]) used in the CUSUM algorithm as

lY[i]†Y[i](z[i]) = ln

f
(1)

Y[i]†Y[i]
(z[i])

f
(0)

Y[i]†Y[i]
(z[i])


= ln

{
z[i]M−1e

− z[i]

σ2
N

+σ2
X

}
− ln

{
(σ2
N + σ2

X)MΓ(M)
}
− ln

{
z[i]M−1e

− z[i]
σ2
N

}
+

ln
{

(σ2
N )MΓ(M)

}
=

z[i]σ2
X

σ2
N (σ2

N + σ2
X)

+M ln

{
σ2
N

σ2
N + σ2

X

}
.

(5.7)

It can be observed from (5.7) that lY[i]†Y[i](z[i]) is solely a function of z[i] and hence, it follows

that z[i] is a sufficient statistic. It is also comforting to see that for M = 1, (5.7) would result

in the same result as in (3.12), computed using the amplitude of the received signal, |Y [i]|.
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5.5 MULTI-ANTENNA SENSING WITH INDEPENDENT RAYLEIGH CHANNELS

Here, the Rayleigh channel coefficient is Hm[i] ∼ CN (0,σ2
H). It is assumed that the anten-

nas experience mutually uncorrelated channels and therefore, the Rayleigh fading channel is

independent and identically distributed (i.i.d) between samples i and across antennas.

5.5.1 Proof that
∑M

m=1 |Ym[i]|2 is a sufficient statistic

The joint pdf of the received signal when the PU is absent is denoted by

f
(0)
Y[i](y[i]) =

e−y[i]†y[i]/σ2
N(

πσ2
N

)M
=
e−
∑M
m=1 |ym[i]|2/σ2

N(
πσ2

N

)M .

(5.8)

In the presence of the PU, the distribution of Ym[i] conditioned on S[i], is CN (0, σ2
H |S[i]|2 +σ2

N ).

Therefore, the conditional joint pdf of Y1[i], Y2[i], ..., YM [i], given S[i] can be written as

f
(1)
Y[i]|S[i](y[i]) =

e−
∑M
m=1 |ym[i]|2/(σ2

H |S[i]|2+σ2
N)[

π
(
σ2
H |S[i]|2 + σ2

N

)]M . (5.9)

Let |S[i]|2 = σ2
SU [i], where U [i] is a standard exponential random variable such that U [i] ∼

Exp(1). Thus, (5.9) can be expressed as

f
(1)
Y[i]|S[i](y[i]) =

e−
∑M
m=1 |ym[i]|2/(σ2

Hσ
2
SU [i]+σ2

N)[
π
(
σ2
Hσ

2
SU [i] + σ2

N

)]M . (5.10)

The joint pdf of the received signal when the PU is present can be written using (5.10) as

f
(1)
Y[i](y[i]) =

∫
f

(1)
Y[i]|S[i](y[i])fU [i](u[i]) du[i]

=

∫ ∞
0

e−
∑M
m=1 |ym[i]|2/(σ2

Hσ
2
Su[i]+σ2

N)[
π
(
σ2
Hσ

2
Su[i] + σ2

N

)]M e−u[i] du[i].

(5.11)
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Therefore, using (5.8) and (5.11), the log likelihood ratio can be written as

lY[i](y[i]) = ln

{(
σ2
N

)M
e
∑M
m=1 |ym[i]|2/σ2

N

∫ ∞
0

e−
∑M
m=1 |ym[i]|2/(σ2

Hσ
2
Su[i]+σ2

N )

(σ2
Hσ

2
Su[i] + σ2

N )M
e−u[i] du[i]

}
. (5.12)

Based on (5.12), lY[i](y[i]) is solely a function of
∑M

m=1 |ym[i]|2 and hence, it follows that∑M
m=1 |Ym[i]|2 is a sufficient statistic. From Theorem 8.2.4 in [126], we conclude that a like-

lihood ratio test (LRT) based on
∑M

m=1 |Ym[i]|2 is equivalent to the LRT based on the vector

Y1[i], Y2[i], ..., YM [i]. Thus, the log likelihood ratio in (5.12) can also be computed using the pdf

of
∑M

m=1 |Ym[i]|2, which is based on a chi-square density and this will be shown in Section 5.5.2.

5.5.2 Pdfs and log likelihood ratio

As shown in Section 5.5.1, the log likelihood ratio can also be evaluated based on the statistics

of
∑M

m=1 |Ym[i]|2. Therefore, in this section, we will derive the pdf and subsequently the log

likelihood ratio based on
∑M

m=1 |Ym[i]|2. This then allows us to apply CUSUM detection, as in

Figure 5.1. As in Section 5.4, in the absence of the PU, the combined received signal, z[i] =∑M
m=1|Ym[i]|2, has a chi-square distribution with 2M degrees of freedom and the pdf can be

written as in (5.5).

In order to derive the pdf of the combined signal, when the PU signal is present, we first derive

its cdf. Conditioned on S[i], Y[i] = [Y1[i], ..., YM [i]]T has a complex Gaussian distribution and

can be written as

Y[i] =
(
σ2
H |S[i]|2 + σ2

N

)1/2
J[i], (5.13)

where J[i] is a M × 1 vector with independent CN (0, 1) entries. Using this representation,

z[i] = Y[i]†Y[i]

=
(
σ2
H |S[i]|2 + σ2

N

)
J[i]†J[i].

(5.14)

Defining Q[i] = J[i]†J[i] and |S[i]|2 = σ2
SU [i], (5.14) can be rewritten as

z[i] = (σ2
Hσ

2
SU [i] + σ2

N )Q[i], (5.15)
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where U [i] is a standard exponential random variable, such that U [i] ∼ Exp(1) and Q[i] is a

standard chi-square variable with 2M degrees of freedom. The densities of U [i] and Q[i] are

respectively fU [i](u[i]) and fQ[i](q[i]). We let f(q[i], u[i]) be the joint pdf of Q[i] and U [i]. Thus,

the cdf of the combined signal when the PU is present can be expressed as

P (z[i] < x) = P
((
σ2
Hσ

2
SU [i] + σ2

N

)
Q[i] < x

)
= P ((Q[i], U [i]) ∈ D) ,

(5.16)

where D = {Q[i], U [i] : z[i] < x}. Hence P (z[i] < x) can be expressed as

P (z[i] < x) =

∫∫
D
f(q[i], u[i]) dq[i] du[i]

=

∫∫
D
f(q[i]|u[i]) dq[i]fU [i](u[i]) du[i]

= E

[
P

(
Q[i] <

x

σ2
Hσ

2
SU [i] + σ2

N

)
|U [i]

]
= E

[
1−

∫ ∞
0

e
−x

σ2
H
σ2
S
U [i]+σ2

N

M−1∑
k=0

1

k!

(
x

σ2
Hσ

2
SU [i] + σ2

N

)k
|U [i]

]

= 1−
∫ ∞

0
e

−x
σ2
H
σ2
S
u[i]+σ2

N

M−1∑
k=0

1

k!

(
x

σ2
Hσ

2
Su[i] + σ2

N

)k
e−u[i] du[i].

(5.17)

Let t = σ2
Tu[i] + σ2

N , where σ2
T = σ2

Hσ
2
S , then

P (z[i] < x) = 1− e

σ2
N
σ2
T

σ2
T

M−1∑
k=0

xk

k!

∫ ∞
σ2
N

e
−x
t
− t

σ2
T

tk
dt. (5.18)

The pdf of the combined signal when the PU signal is present is obtained by taking the derivative

of (5.18) to yield

f
(1)

Y[i]†Y[i]
(z[i]) =

e

σ2
N
σ2
T

σ2
T

M−1∑
k=0

z[i]k

k!

∫ ∞
σ2
N

e
−z[i]
t
− t

σ2
T

tk+1
− k

z[i]
× e

−z[i]
t
− t

σ2
T

tk

 dt. (5.19)

Computation of (5.19) is assisted by avoiding numerical integration over an infinite region.

Hence, we rewrite (5.19) as the difference of the integral from 0 to∞ and the finite integral from
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0 to σ2
N , which yields

f
(1)

Y[i]†Y[i]
(z[i]) =

e

σ2
N
σ2
T

σ2
T

M−1∑
k=0

z[i]k

k!

∫ ∞
0

e
−z[i]
t
− t

σ2
T

tk+1
dt−

∫ σ2
N

0

e
−z[i]
t
− t

σ2
T

tk+1
dt

− k

z[i]

∫ ∞
0

e
−z[i]
t
− t

σ2
T

tk
dt−

∫ σ2
N

0

e
−z[i]
t
− t

σ2
T

tk
dt




=
e

σ2
N
σ2
T

σ2
T

M−1∑
k=0

z[i]k

k!

∫ ∞
0

e
−z[i]
t
− t

σ2
T

tk+1
dt− k

z[i]

∫ ∞
0

e
−z[i]
t
− t

σ2
T

tk
dt

+
k

z[i]

∫ σ2
N

0

e
−z[i]
t
− t

σ2
T

tk
dt−

∫ σ2
N

0

e
−z[i]
t
− t

σ2
T

tk+1
dt

 .

(5.20)

The integrals from 0 to ∞ in (5.20) can be evaluated with the aid of (3.471.9) in [103, p. 363].

Since σ2
N is never large, a simple Riemann sum approximation with the mid-point rule [104]

works well, where rectangles are used to approximate the area under the curve. With this

approach, the pdf in (5.20) can be written to any degree of approximation as

f
(1)

Y[i]†Y[i]
(z[i]) =

e

σ2
N
σ2
T

σ2
T

M−1∑
k=0

z[i]k

k!

[
2
(
z[i]σ2

T

)−k
2

(
K−k

(√
z[i]
σT
2

)
− kσT√

z[i]
K1−k

(√
z[i]
σT
2

))
+

σ2
N

R

R∑
r=1

e
−z[i]
sr
− sr
σ2
T

(sr)k

(
k

z[i]
− 1

sr

)]
,

(5.21)

where

sr =

(
r − 1

2

)(
σ2
N

R

)
, (5.22)

in which R is the number of rectangles. Numerical tests show that this approach gives a negligible

error and is much faster than numerical integration with R = 50.

The log likelihood ratio can now be calculated using the chi-square density in (5.5) along with
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(5.21), which gives

lY[i]†Y[i](z[i]) = ln

{
(σ2
N )MΓ(M)e

z[i]

σ2
N

+
σ2
N
σ2
T

σ2
T z[i]

M−1

M−1∑
k=0

z[i]k

k!

[
2
(
z[i]σ2

T

)−k
2

(
K−k

(√
z[i]
σT
2

)
−

kσT√
z[i]

K1−k

(√
z[i]
σT
2

))
+
σ2
N

R

R∑
r=1

e
−z[i]
sr
− sr
σ2
T

(sr)k

(
k

z[i]
− 1

sr

)]}
.

(5.23)

Therefore, this log likelihood ratio, lY[i]†Y[i](z[i]), can be substituted into (2.21) to detect the

presence of the PU.

5.6 MULTI-ANTENNA SENSING WITH CORRELATED RAYLEIGH CHANNELS

Here, we assume that Hm[i] is correlated between antennas, but independent between sam-

ples. The spatially correlated Rayleigh fading channel, H[i] = [H1[i], H2[i], ...,HM [i]]T , can be

modelled by

H[i] = R1/2Hw[i], (5.24)

where Hw[i] is a spatially white M × 1 vector with i.i.d CN (0, 1) entries and R is the M ×M

antenna correlation matrix denoted by

R = E
[
H[i]H[i]†

]
. (5.25)

We assume that

Rjk = ρ|j−k|, (5.26)

where j, k = 1, 2, ..,M and 0 ≤ ρ ≤ 1. This is the well-known exponential correlation model [127]

where ρ is the correlation coefficient between the channels on adjacent antennas.

5.6.1 Insufficient statistic

In Section 5.5.1, we prove that the sum of the complex received signal power at each antenna is

a sufficient statistic. This is true for the case when the received signal is transmitted over inde-

pendent Rayleigh channels. However, when there is an insufficient separation between multiple
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antennas, resulting in correlated Rayleigh channels, we will show in this section that a sufficient

statistic cannot be isolated from the log likelihood ratio.

Initially, the PU is inactive and hence, the joint pdf of the received signal when the PU is absent

has a complex Gaussian distribution which can be written as in (5.8). When the PU is active, the

distribution of the observed signal at the CU, Y[i], conditioned on S[i], has a complex Gaussian

distribution given by CN (0, |S[i]|2R + σ2
NI). Therefore, the joint pdf of the received signal can

be written as

f
(1)
Y[i](y[i]) =

∫
f

(1)
Y[i]|S[i](y[i])fS[i](s[i]) ds[i]

= E
[
f

(1)
Y[i]|S[i](y[i])

]
,

(5.27)

where the expectation is taken over S[i]. The joint pdf of Y[i] conditioned on S[i] which appears

in (5.27) is given by

f
(1)
Y[i]|S[i](y[i]) =

e−y[i]†(|S[i]|2R+σ2
N I)−1y[i]

πM det
(
|S[i]|2 R + σ2

NI
) , (5.28)

where det(A) is the determinant of a matrix A. Let |S[i]|2 = σ2
SU [i], where U [i] is a standard

exponential random variable. Therefore, (5.28) can be rewritten as

f
(1)
Y[i]|S[i](y[i]) =

e−y[i]†(σ2
SU [i]R+σ2

N I)−1y[i]

πM det
(
σ2
SU [i]R + σ2

NI
) . (5.29)

Using (5.29), the joint pdf of the received signal in (5.27) can be expressed as

f
(1)
Y[i](y[i]) =

1

πM

∫ ∞
0

e−y[i]†(σ2
Su[i]R+σ2

N I)−1y[i]

det
(
σ2
Su[i]R + σ2

NI
) e−u[i] du[i]. (5.30)

The log likelihood ratio can be written using (5.8) and (5.30) to give

lY[i](y[i]) = ln

{(
σ2
N

)M
ey[i]†y[i]/σ2

N

∫ ∞
0

e−y[i]†(σ2
Su[i]R+σ2

N I)−1y[i]

det
(
σ2
Su[i]R + σ2

NI
) e−u[i] du[i]

}
. (5.31)

It can be observed from (5.31) that Y[i] cannot be isolated from U [i] and so a single sufficient

statistic cannot be found. As a result of this, the rest of the analysis in this section will be based

on the pdfs and the log likelihood ratio of the vector Y[i]. In Section 5.6.2, we will present an

alternative method of deriving the joint pdf of the received signal in the presence of the PU.
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This result is useful as it is more suitable for numerical integration than the original result using

(5.30).

5.6.2 Pdfs and log likelihood ratio

In this subsection, we present an alternative form of the joint pdf of the received signal, f
(1)
Y[i](y[i]).

An eigendecomposition is performed on R in (5.29), which gives

R = φΛφ†, (5.32)

where φ is a unitary matrix, Λ = diag[λ1, λ2, .., λM ] and λm is the mth eigenvalue of R. Thus,

(5.29) becomes

f
(1)
Y[i]|S[i](y[i]) =

e−v[i]†(σ2
SU [i]Λ+σ2

N I)−1v[i]

πM
∏M
m=1(λmσ2

SU [i] + σ2
N )
, (5.33)

where v[i] = φ†y[i]. We can also rewrite (5.33) as

f
(1)
Y[i]|S[i](y[i]) =

e−
∑M
m=1 v

∗
mvm/(σ

2
SU [i]λm+σ2

N )

πM
∏M
m=1(λmσ2

SU [i] + σ2
N )
. (5.34)

Using (5.27) and (5.34), the joint pdf of the received signal can be written as

f
(1)
Y[i](y[i]) =

1

πM

∫ ∞
0

e−
∑M
m=1 v

∗
mvm/(σ

2
Su[i]λm+σ2

N )∏M
m=1(λmσ2

Su[i] + σ2
N )

e−u[i] du[i]. (5.35)

Note that no closed form solution for (5.35) exists, so a single numerical integration is necessary.

Furthermore, series expansions lead to multiple infinite summations and approximations are

complicated by the fact that the density is a multidimensional function of σ2
N and the elements

of R. Finally, note that the form given in (5.35) is more suitable for numerical integration than

the original using (5.30).

The log likelihood ratio can be expressed using (5.8) and (5.35), which gives

lY[i](y[i]) = ln

{(
σ2
N

)M
ey[i]†y[i]/σ2

N

∫ ∞
0

e−
∑M
m=1 v

∗
mvm/(σ

2
Su[i]λm+σ2

N )∏M
m=1(λmσ2

Su[i] + σ2
N )

e−u[i] du[i]

}
. (5.36)
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This log likelihood ratio, lY[i](y[i]), is then used in the CUSUM algorithm in (2.21) to detect

the existence of the PU.

5.7 MULTI-ANTENNA SENSING WITH INDEPENDENT RICIAN CHANNELS

In this section, it is assumed that the antennas experience mutually uncorrelated channels so

that Hm[i] is i.i.d between samples and across all antennas. The Rician channel can be modelled

by

Hm[i]=µm[i] + νm[i], (5.37)

where

µm[i] =

√
K

K + 1
HLOS
m [i], (5.38)

and

νm[i] =

√
1

K + 1
HSC
m [i]. (5.39)

In (5.38) and (5.39), HLOS
m [i] is the LOS component, satisfying

∣∣HLOS
m [i]

∣∣2 = 1 and HSC
m [i] is

the scattered component (SC), such that HSC
m [i] ∼ CN (0, 1) is a zero-mean circularly symmetric

complex Gaussian random variable.

5.7.1 Pdfs and log likelihood ratio

The joint pdf of the observed signal when the PU is absent can be written as in (5.8). Since

E
[
|Hm[i]|2

]
= 1, the distribution of Ym[i] in the presence of the PU, conditioned on S[i], is

CN
(
µm[i]S[i],

(
1− |µm[i]|2

)
|S[i]|2 + σ2

N

)
. Thus, the conditional joint pdf of Y1[i], Y2[i], ..., YM [i],

given S[i] can be expressed as

f
(1)
Y[i]|S[i](y[i]) =

1[
π
(
α|S[i]|2 + σ2

N

)]M × exp

(
−
∑M

m=1 |ym[i]− µm[i]S[i]|2

α |S[i]|2 + σ2
N

)
, (5.40)

where α = 1−|µm[i]|2 = 1
K+1 and exp(.) denotes the exponential function. We let S[i] = |S[i]|ejθ,

where θ = arg(S[i]) and θ is uniformly distributed over [0, 2π], θ ∼ U(0, 2π). Using (5.40) and
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the polar expression for S[i], the joint pdf of the received signal can be written as

f
(1)
Y[i](y[i]) =

1

2πM+1

∫ ∞
|s[i]|=0

∫ 2π

θ=0

1(
α|s[i]|2 + σ2

N

)M × exp

(
−
∑M

m=1

∣∣ym[i]− µm[i] |s[i]| ejθ
∣∣2

α |s[i]|2 + σ2
N

)

× f|S[i]| (|s[i]|) dθ d|s[i]|,

(5.41)

where f|S[i]| (|s[i]|) is the pdf of the amplitude of the PU signal. In order to derive f|S[i]| (|s[i]|),

we first derive its cdf. The PU signal can be expressed as

S[i] =
(
σ2
S

)1/2
J [i], (5.42)

where J [i] ∼ CN (0, 1). We can rewrite (5.42) as

S[i]†S[i] = σ2
SJ [i]†J [i]. (5.43)

Let Q[i] = J [i]†J [i], where Q[i] is an exponential random variable such that Q[i] ∼ Exp(1).

Therefore, the cdf can be written as

P (|S[i]| < c) = P
(
|S[i]|2 < c2

)
= P

(
σ2
SQ[i] < c2

)
= P

(
Q[i] <

c2

σ2
S

)
= 1− e

− c2

σ2
S .

(5.44)

The pdf of the amplitude of the PU signal can then be obtained by taking the derivative of

(5.44) to give

f|S[i]|(|s[i]|) =
2|s[i]|
σ2
S

e−|s[i]|
2/σ2

S . (5.45)
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The inner integral in (5.41) is given by

A =

∫ 2π

θ=0
exp

(
−
∑M

m=1

∣∣ym[i]− µm[i] |s[i]| ejθ
∣∣2

α |s[i]|2 + σ2
N

)
dθ

= exp

−∑M
m=1

(
|ym[i]|2 + |µm[i]|2 |s[i]|2

)
α |s[i]|2 + σ2

N

× I, (5.46)

where

I =

∫ 2π

θ=0
exp

(∑M
m=1 ym[i]†µm[i]|s[i]|ejθ

α |s[i]|2 + σ2
N

)
× exp

(∑M
m=1 ym[i]µm[i]†|s[i]|e−jθ

α |s[i]|2 + σ2
N

)
dθ. (5.47)

With the aid of Euler’s formula and (3.339) in [103, p. 336], I in (5.47) becomes

I = 2πI0

 2|s[i]|∣∣∣α |s[i]|2 + σ2
N

∣∣∣
∣∣∣∣∣
M∑
m=1

ym[i]†µm[i]

∣∣∣∣∣
 . (5.48)

Substituting (5.48) into (5.46) yields

A = exp

−∑M
m=1

(
|ym[i]|2 + |µm[i]|2 |s[i]|2

)
α |s[i]|2 + σ2

N

× 2πI0

 2|s[i]|∣∣∣α |s[i]|2 + σ2
N

∣∣∣
∣∣∣∣∣
M∑
m=1

ym[i]†µm[i]

∣∣∣∣∣
 .

(5.49)

The result for A in (5.49) can be substituted into (5.41) and hence, using (5.45), the joint pdf

of the received signal can be written as

f
(1)
Y[i](y[i]) =

2

σ2
Sπ

M

∫ ∞
|s[i]|=0

|s[i]|e−|s[i]|2/σ2
S(

α|s[i]|2 + σ2
N

)M exp

−∑M
m=1

(
|ym[i]|2 + |µm[i]|2 |s[i]|2

)
α |s[i]|2 + σ2

N

×
I0

(
2|s[i]|

∣∣∣∣∣
∑M

m=1 ym[i]†µm[i]

α |s[i]|2 + σ2
N

∣∣∣∣∣
)
d|s[i]|.

(5.50)

As in (5.35), the joint density in (5.50) cannot be given in a closed form. Also, the integrands in

(5.50) and (5.35) are non-oscillatory and decay rapidly to zero making them ideal for numerical

integration.
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The log likelihood ratio can then be written using (5.8) along with (5.50) to give

lY[i](y[i]) = ln

{
2
(
σ2
N

)M
σ2
S

e
∑M
m=1 |ym[i]|2/σ2

N

∫ ∞
|s[i]|=0

|s[i]|e−|s[i]|2/σ2
S(

α|s[i]|2 + σ2
N

)M×
exp

−∑M
m=1

(
|ym[i]|2 + |µm[i]|2 |s[i]|2

)
α |s[i]|2 + σ2

N

× I0

(
2|s[i]|

∣∣∣∣∣
∑M

m=1 ym[i]†µm[i]

α |s[i]|2 + σ2
N

∣∣∣∣∣
)
d|s[i]|

}
.

(5.51)

It is worth noting that the log likelihood ratio, lY[i](y[i]), does not contain a simple sufficient

statistic. Hence, lY[i](y[i]) is based on the vector Y[i] and it can be substituted into the CUSUM

algorithm in (2.21) to detect the PU transmission.

5.8 PERFORMANCE ANALYSIS

Recall from Section 2.4.1 that the threshold, γ in (2.21), can be set either theoretically, corre-

sponding to an approximate false alarm rate value or in an arbitrary manner, where γ is chosen

by trial and error to give a sensible range of average detection delay and false alarm rate. In this

section and the following section, we will investigate both of the threshold setting techniques.

In particular, in this section, we present a theoretical performance analysis of quickest spec-

trum sensing employing multiple receive antennas for the Gaussian and independent Rayleigh

scenarios. In particular, we analytically compute the upper bound and asymptotic worst-case

detection delay for both of the cases. The upper bound and asymptotic worst-case detection

delay could also be derived for the correlated Rayleigh and independent Rician cases, but these

derivations may be complicated to evaluate due to the existence of multiple integrals in the

Kullback-Leibler divergence (contained in both of the derivations). These multiple integrals are

caused by the pdfs of the received signals in the presence of the PU given in (5.35) and (5.50)

and the log likelihood ratios given in (5.36) and (5.51) for both correlated Rayleigh and indepen-

dent Rician cases, respectively, which involve numerical integration. Therefore, analyzing the

theoretical sensing performance for both correlated Rayleigh and independent Rician cases can

be considered for future work. However, the sensing performance for both of these cases will be

evaluated numerically in Section 5.9.
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Let T denote the sample number at which the change is detected and τ be the sample number

when the change actually occurs. If T > τ , then the detection delay is δ = T - τ . Recall

from Section 2.4 that the minimax formulation proposed by Lorden [94] models the change-

point as an unknown deterministic quantity. Lorden subsequently showed that the well-known

Page’s CUSUM algorithm [95] is asymptotically2 optimal in minimizing the worst-case detection

delay [37,43,44]. Based on Lorden’s formulation [94], the worst-case detection delay for Gaussian

and independent Rayleigh channels (described in Sections 5.4 and 5.5, respectively) are given by

T dG = sup
τ≥1

ess sup E
f

(1)

Y[i]†Y[i]

[δ = T − τ |T ≥ τ, z[1], ..., z[τ ]] , (5.52)

T dRay = sup
τ≥1

ess sup E
f

(1)

Y[i]†Y[i]

[δ = T − τ |T ≥ τ, z[1], ..., z[τ ]] , (5.53)

where E
f

(1)

Y[i]†Y[i]

[.] denote the expectation operators when the change occurs at sample number τ

and the pdf of f
(1)

Y[i]†Y[i]
is given in (5.6) for the Gaussian case and in (5.21) for the independent

Rayleigh case3. The subscript, dG, in (5.52) and dRay, in (5.53) denote the Gaussian and

independent Rayleigh cases, respectively.

Alternatively, if T < τ , a false alarm event will occur with the mean number of samples to false

alarm defined as T fG = E
f

(0)

Y[i]†Y[i]

[T ] for the Gaussian scenario and T fRay = E
f

(0)

Y[i]†Y[i]

[T ] for the

independent Rayleigh scenario [36,37]. E
f

(0)

Y[i]†Y[i]

[.] is the expectation operators when the change

never happens, where f
(0)

Y[i]†Y[i]
is given in (5.5) for both Gaussian and independent Rayleigh

scenarios. The false alarm rates are then defined as FARG(T ) = 1/T fG and FARRay(T ) =

1/T fRay [98].

The assumption of independence between the received signals allows us to express the lower

bound on the mean number of samples between false alarms as T fG ≥ eγ , and T fRay ≥ eγ

[36, 44, 94]. We now proceed to derive the upper bound for the worst-case detection delay for

the Gaussian channel, T dG . Using Wald’s equation, (Theorem 1 in [128]) and the fact that the

combined signal, z[i], follows a chi-square distribution, we can express the upper bound on T dG

2Asymptotic here means that the mean number of samples between false alarms goes to infinity.
3Essential supremum (ess sup) is used in (5.52) and (5.53) so that T dG and T dRay takes the worst-case value

over all possible realizations of the z’s before the change [43].
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as

T dG ≤
γ + ϕ

D
(
f

(1)

Y[i]†Y[i]
‖f (0)

Y[i]†Y[i]

) , (5.54)

where

ϕ =

∫∞
υ l2

Y[i]†Y[i]
(z[i])f

(1)

Y[i]†Y[i]
(z[i]) dz[i]

D
(
f

(1)

Y[i]†Y[i]
‖f (0)

Y[i]†Y[i]

) . (5.55)

In (5.55), υ is the zero of the log likelihood ratio function, lY[i]†Y[i](z[i]) in (5.7), f
(1)

Y[i]†Y[i]
(z[i])

is given in (5.6) and D
(
f

(1)

Y[i]†Y[i]
‖f (0)

Y[i]†Y[i]

)
is the Kullback-Leibler divergence of f

(1)

Y[i]†Y[i]
from

f
(0)

Y[i]†Y[i]
. Solving lY[i]†Y[i](z[i]) = 0 in (5.7) gives υ as

υ = −
σ2
N (σ2

N + σ2
X)

σ2
X

×M ln

{
σ2
N

σ2
N + σ2

X

}
. (5.56)

D
(
f

(1)

Y[i]†Y[i]
‖f (0)

Y[i]†Y[i]

)
in (5.54) and (5.55) can be written as

D
(
f

(1)

Y[i]†Y[i]
‖f (0)

Y[i]†Y[i]

)
=

∫ ∞
0

f
(1)

Y[i]†Y[i]
(z[i]) ln

f
(1)

Y[i]†Y[i]
(z[i])

f
(0)

Y[i]†Y[i]
(z[i])

 dz[i]

=

∫ ∞
0

f
(1)

Y[i]†Y[i]
(z[i]) ln

{
f

(1)

Y[i]†Y[i]
(z[i])

}
dz[i]−

∫ ∞
0

f
(1)

Y[i]†Y[i]
(z[i]) ln

{
f

(0)

Y[i]†Y[i]
(z[i])

}
dz[i].

(5.57)

Substituting f
(0)

Y[i]†Y[i]
(z[i]) of (5.5) and f

(1)

Y[i]†Y[i]
(z[i]) of (5.6) into (5.57) yields

D
(
f

(1)

Y[i]†Y[i]
‖f (0)

Y[i]†Y[i]

)
=

(
−M ln

{
σ2
N + σ2

X

}
− ln {Γ(M)} −M + (M − 1)×

∫ ∞
0

ln{z[i]} z[i]M−1

(σ2
N + σ2

X)MΓ(M)
e
− z[i]

σ2
N

+σ2
X dz[i]

)
−

(
− ln

{
(σ2
N )MΓ(M)

}
−
M(σ2

N + σ2
X)

σ2
N

+

(M − 1)×
∫ ∞

0
ln{z[i]} z[i]M−1

(σ2
N + σ2

X)MΓ(M)
e
− z[i]

σ2
N

+σ2
X dz[i]

)
.

(5.58)

In order to evaluate the integral in (5.58), we first take the derivative of the gamma function,
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which gives

Γ′(M) =
∂

∂M
Γ(M)

=
∂

∂M

∫ ∞
0

z[i]M−1

(σ2
N + σ2

X)M
e
− z[i]

σ2
N

+σ2
X dz[i]

=

∫ ∞
0

ln{z[i]}e
− z[i]

σ2
N

+σ2
X

z[i]M−1

(σ2
N + σ2

X)M
dz[i]− ln

{
σ2
N + σ2

X

}
Γ(M).

(5.59)

Dividing (5.59) with the gamma function, Γ(M) gives

Γ′(M)

Γ(M)
=

∫ ∞
0

ln{z[i]}e
− z[i]

σ2
N

+σ2
X

z[i]M−1

(σ2
N + σ2

X)MΓ(M)
dz[i]− ln

{
σ2
N + σ2

X

}
. (5.60)

Thus, (5.60) can be rewritten as

∫ ∞
0

ln{z[i]} z[i]M−1

(σ2
N + σ2

X)MΓ(M)
e
− z[i]

σ2
N

+σ2
X dz[i] =

Γ′(M)

Γ(M)
+ ln

{
σ2
N + σ2

X

}
. (5.61)

The result of the integral in (5.61) can be substituted in (5.58) to give the Kullback-Leibler

divergence, which can be expressed as

D
(
f

(1)

Y[i]†Y[i]
‖f (0)

Y[i]†Y[i]

)
= −M ln

{
σ2
N + σ2

X

}
− ln {Γ(M)} −M + (M − 1)×[

Γ′(M)

Γ(M)
+ ln

{
σ2
N + σ2

X

}]
−

(
− ln

{
(σ2
N )MΓ(M)

}
−
M(σ2

N + σ2
X)

σ2
N

+

(M − 1)×
[

Γ′(M)

Γ(M)
+ ln

{
σ2
N + σ2

X

}])

= −M ln{σ2
N + σ2

X}+
Mσ2

X

σ2
N

+M ln{σ2
N}.

(5.62)

Therefore, using (5.62), lY[i]†Y[i](z[i]) of (5.7) and f
(1)

Y[i]†Y[i]
(z[i]) of (5.6), we can re-write the

upper bound on T dG in (5.54) as

T dG ≤
γ + ϕ

−M ln{σ2
N + σ2

X}+
Mσ2

X

σ2
N

+M ln{σ2
N}

, (5.63)
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where

ϕ =

∫∞
υ

(
z[i]σ2

X

σ2
N (σ2

N+σ2
X)

+M ln
{

σ2
N

σ2
N+σ2

X

})2
× z[i]M−1

(σ2
N+σ2

X)MΓ(M)
e
− z[i]

σ2
N

+σ2
X dz[i]

−M ln{σ2
N + σ2

X}+
Mσ2

X

σ2
N

+M ln{σ2
N}

=
1

(σ2
N + σ2

X)MΓ(M)×
(
−M ln{σ2

N + σ2
X}+

Mσ2
X

σ2
N

+M ln{σ2
N}
)×

∫ ∞
υ

(
z[i]σ2

X

σ2
N (σ2

N + σ2
X)

+M ln

{
σ2
N

σ2
N + σ2

X

})2

× z[i]M−1e
− z[i]

σ2
N

+σ2
X dz[i],

(5.64)

in which υ is given by (5.56).

The upper bound for the worst-case detection delay for the independent Rayleigh channel, T dRay

can be written with the aid of Wald’s equation and Theorem 1 in [128] along with the fact that

the combined signal from each antenna, z[i], is chi-square distributed, which yields

T dRay ≤
γ + Φ

D
(
f

(1)

Y[i]†Y[i]
‖f (0)

Y[i]†Y[i]

) , (5.65)

where

Φ =

∫∞
η l2

Y[i]†Y[i]
(z[i])f

(1)

Y[i]†Y[i]
(z[i]) dz[i]

D
(
f

(1)

Y[i]†Y[i]
‖f (0)

Y[i]†Y[i]

) . (5.66)

In (5.66), η is the zero of lY[i]†Y[i](z[i]) in (5.23), f
(1)

Y[i]†Y[i]
(z[i]) is given by (5.21) and the

Kullback-Leibler divergence, D
(
f

(1)

Y[i]†Y[i]
‖f (0)

Y[i]†Y[i]

)
, can be expressed using (5.5) and (5.21) as

D
(
f

(1)

Y[i]†Y[i]
‖f (0)

Y[i]†Y[i]

)
=
e

σ2
N
σ2
T

σ2
T

∫ ∞
0

M−1∑
k=0

z[i]k

k!

[
2
(
z[i]σ2

T

)−k
2

(
K−k

(√
z[i]
σT
2

)
−

kσT√
z[i]

K1−k

(√
z[i]
σT
2

))
+
σ2
N

R

R∑
r=1

e
−z[i]
sr
− sr
σ2
T

(sr)k

(
k

z[i]
− 1

sr

)]
× ln

{
(σ2
N )MΓ(M)e

z[i]

σ2
N

+
σ2
N
σ2
T

σ2
T z[i]

M−1
×

M−1∑
k=0

z[i]k

k!

[
2
(
z[i]σ2

T

)−k
2

(
K−k

(√
z[i]
σT
2

)
− kσT√

z[i]
K1−k

(√
z[i]
σT
2

))
+

σ2
N

R

R∑
r=1

e
−z[i]
sr
− sr
σ2
T

(sr)k

(
k

z[i]
− 1

sr

)]}
dz[i],

(5.67)
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where sr is given by (5.22) and R is the number of rectangles. It is worth noting that η in (5.66)

is calculated numerically. The resulting Kullback-Leibler divergence in (5.67), lY[i]†Y[i](z[i]) of

(5.23) and f
(1)

Y[i]†Y[i]
(z[i]) of (5.21) can then be substituted into (5.65) and (5.66) to give

T dRay ≤
σ2
T e

−σ2
N

σ2
T (γ + Φ)∫∞

0 I
(

ln
{(

(σ2
N )MΓ(M) exp

(
z[i]
σ2
N

+
σ2
N

σ2
T

))
/
(
σ2
T z[i]

M−1
)}

+ ln {I}
)
dz[i]

, (5.68)

where

I =
M−1∑
k=0

z[i]k

k!

[
2
(
z[i]σ2

T

)−k
2

(
K−k

(√
z[i]
σT
2

)
− kσT√

z[i]
K1−k

(√
z[i]
σT
2

))
+

σ2
N

R

R∑
r=1

e
−z[i]
sr
− sr
σ2
T

(sr)k

(
k

z[i]
− 1

sr

)]
,

(5.69)

and

Φ =

∫∞
η I ×

(
ln
{(

(σ2
N )MΓ(M) exp

(
z[i]
σ2
N

+
σ2
N

σ2
T

))
/
(
σ2
T z[i]

M−1
)}

+ ln {I}
)2

dz[i]∫∞
0 I

(
ln
{(

(σ2
N )MΓ(M) exp

(
z[i]
σ2
N

+
σ2
N

σ2
T

))
/
(
σ2
T z[i]

M−1
)}

+ ln {I}
)
dz[i]

. (5.70)

As T fG , T fRay → ∞ , γ → ∞. Therefore, it is desirable in practice to analyze the detection

performance asymptotically as it will give a low false alarm rate [44]. With the aid of Theorem

1 in [94], the asymptotic worst-case detection delay can be approximated [43, 44]. Hence, the

asymptotic detection delay, for Gaussian and independent Rayleigh channels can be written

respectively using (5.62) and (5.67) as

T dG ∼
γ

D
(
f

(1)

Y[i]†Y[i]
‖f (0)

Y[i]†Y[i]

)
∼ γ

−M ln{σ2
N + σ2

X}+
Mσ2

X

σ2
N

+M ln{σ2
N}

,

(5.71)

T dRay ∼
γ

D
(
f

(1)

Y[i]†Y[i]
‖f (0)

Y[i]†Y[i]

)

∼
σ2
T e

−σ2
N

σ2
T γ∫∞

0 I
(

ln
{(

(σ2
N )MΓ(M) exp

(
z[i]
σ2
N

+
σ2
N

σ2
T

))
/
(
σ2
T z[i]

M−1
)}

+ ln {I}
)
dz[i]

,

(5.72)
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where I is given in (5.69).

Therefore, the upper bound for the worst-case detection delay given by (5.63) and (5.68) and

the asymptotic detection delay given by (5.71) and (5.72) for both Gaussian and independent

Rayleigh cases, respectively, can be used to evaluate the quickest spectrum sensing performance.

These are shown in Figures 5.2 and 5.3, which will be discussed in detail in Section 5.9.

5.9 ANALYTICAL AND NUMERICAL RESULTS

In this section, we present some analytical and simulated results to evaluate quickest spectrum

sensing performance in Gaussian and independent Rayleigh channels, employing multiple receive

antennas at the CU. The analytical results follow from the theoretical analysis of the sensing

performance discussed in Section 5.8. In addition, we also present some numerical results to

evaluate the sensing performance in Rayleigh (independent and correlated) and Rician (inde-

pendent) channels when the CU is equipped with multiple antennas. We assume that the PU

begins transmission at τ = 100. In all simulations, each point on the plot represents the average

values observed over 20000 trials, where each trial consists of 2500 samples. The number of

rectangles required for the Riemann sum in (5.21) is set to R = 50.

5.9.1 Analytical results

In order to analyze the theoretical sensing performance, the thresholds, γ, for both Gaussian and

independent Rayleigh cases that we consider (i.e. for Figures 5.2, 5.3 and 5.4) are set using the

respective lower bounds on the mean number of samples between false alarms, T fG and T fRay .

Figure 5.2 compares the simulated and analytical results for the case when the CU is equipped

with single and multiple antennas (M=3) and the Gaussian signal is observed over a time-

invariant channel at SNR = 4.77 dB4. We observe that with M=3 antennas at the CU, the

detection delay, T dG reduces substantially compared to M=1. The reduction in detection delay

is at least 6 samples which represents at least a 6-fold improvement.

4The SNR value of 4.77 dB is chosen to allow comparison with [36].
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Figure 5.2 Comparison between the performance of the CU equipped with single (M=1) and multiple (M=3)
antennas for a Gaussian channel with SNR=4.77 dB.

In Figure 5.3, we present a comparison between the simulated and analytical sensing perfor-

mance in Gaussian and independent Rayleigh channels at SNR=10 dB when the CU is equipped

with M=3 antennas. Comparing T dG with T dRay in Figure 5.3, we can see that the sensing

performance degrades in the Rayleigh fading channel as compared to a Gaussian channel due to

the faded received signals. However, the impact of the propagation conditions is small compared

to the effects of different numbers of antennas as shown from a comparison of Figures 5.2 and

5.3.

Figure 5.4 shows the performance improvements due to adding more antennas at the CU for

Gaussian and independent Rayleigh scenarios. The improvements are due to the increased spatial

diversity provided. In Figures 5.2 and 5.3, the simulation results are close to the asymptotic

analysis and the upper bound is very loose. Hence, the asymptotic result provides a good

indicator of sensing performance. Deviations of the asymptotic results from the simulations are

due to the fact that the theory involves a large threshold value and an asymptotically small false

alarm rate.
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Figure 5.3 Simulation and analytical sensing performance in (a) Gaussian and (b) independent Rayleigh chan-
nels at SNR=10 dB.
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Figure 5.4 The effect of different number of antennas on the simulated performance of sensing in (a) Gaussian
and (b) independent Rayleigh channels at SNR=10 dB.
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Figure 5.5 Comparison between the sensing performance in i.i.d Rayleigh (ρ = 0) and correlated Rayleigh
channels (ρ = 0.5 and 0.9) with multiple antenna CUs at SNR=5 dB in (a) and SNR=-5 dB in (b).

5.9.2 Numerical results

Here, we consider CUSUM threshold values of γ ∈ {3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7}, following the

threshold values in Chapter 3, for Figures 5.5, 5.7, 5.9 and 5.10, whereas for Figure 5.8, we

consider γ ∈ {0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}. The threshold is set in these ranges (chosen by

trial and error) so that a reasonable range of false alarm rate and average detection delay values

are achieved for the numerical results.

Figure 5.5 compares the sensing performance of a multiple antenna CU in i.i.d and correlated

Rayleigh channels for various values of ρ at SNR=5 dB and -5 dB. Results show that performance

improves as the number of antennas and SNR increases. In addition, results show that increased

channel correlation has little impact at SNR=5 dB, but helps to reduce the average detection

delay at SNR=-5 dB.

The effect of correlation on the sensing performance can be explained by looking at the moments

of the total power of the signal. Consider the extreme cases of i.i.d (ρ=0) and perfectly correlated

(ρ = 1) Rayleigh channels. Here, the total power of the signal for both of the cases can be
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expressed as

Piid =
M∑
m=1

|Hm[i]|2|S[i]|2, (5.73)

and

Pcorr =

M∑
m=1

|H[i]|2|S[i]|2, (5.74)

where E
[
|Hm[i]|2

]
= 1, H[i] = H1[i] = ... = HM [i] and the subscripts in (5.73) and (5.74)

denote the i.i.d and perfectly correlated cases respectively. Let |S[i]|2 = σ2
SU [i], where U [i] is a

standard exponential random variable. The mean and variance ofPiid andPcorr can be written

respectively as

E[Piid] = E

[
M∑
m=1

|Hm[i]|2|S[i]|2
]

= Mσ2
S ,

(5.75)

Var(Piid) = σ4
SVar

(
U [i]

M∑
m=1

|Hm[i]|2
)

= σ4
S

E [U [i]2
]
E

( M∑
m=1

|Hm[i]|2
)2
− (E[U [i]])2

(
E

[
M∑
m=1

|Hm[i]|2
])2


= σ4

S

(
2E

[
M∑
m=1

|Hm[i]|2
M∑
n=1

|Hn[i]|2
]
−M2

)

= σ4
S

(
2
[
M × E

[
|Hm[i]|4

]
+M(M − 1)E

[
|Hm|2

]
E
[
|Hn|2

]]
−M2

)
= σ4

S(M2 + 2M),

(5.76)

E[Pcorr] = E

[
M∑
m=1

|H[i]|2|S[i]|2
]

= Mσ2
S ,

(5.77)

Var(Pcorr) = M2σ4
SVar

(
U [i]|H[i]|2

)
= M2σ4

S

(
E
[
|H[i]|4

]
E
[
U [i]2

]
−
(
E
[
|H[i]|2

])2
(E(U [i]))2

)
= 3M2σ4

S .

(5.78)

It is worth noting that (5.75)-(5.78) are derived using the fact that |Hm[i]|2, |Hn[i]|2 and |S[i]|2

have exponential distributions. Based on these results, we observe that although Piid and Pcorr
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Figure 5.6 Simulated CUSUM statistic for i.i.d and correlated Rayleigh cases at SNR=5 dB and -5 dB when
threshold, γ = 4.

have the same mean, Pcorr has a higher variance than Piid. When the SNR is low, the CUSUM

detector has small average jumps and takes a long time to cross the threshold. In this situation,

a larger variance and, therefore the occasional larger jump is beneficial, which accelerates the

threshold crossing. This is illustrated by traces of the CUSUM process at SNR=-5 dB in Figure

5.6, which showed a few larger jumps dominating the threshold crossing. Hence, at low SNR,

correlation leading to a higher variance is beneficial. In contrast, at high SNR, the CUSUM

jumps are larger and a threshold crossing occurs rapidly even with average sized jumps. Hence,

the occasional large jump has little effect and correlation causing increased variance has little

effect. Again, this can also be seen by the traces of the CUSUM process at SNR=5 dB from

Figure 5.6, which did not show an important role being played by unusually large jumps.

Table 5.1 shows the minimum number of antennas needed to detect the PU transmission at

a given channel correlation, ρ, in less than a 2 sample average delay for a false alarm rate

of 0.05 at various SNR. The key conclusion is that multiple antennas can be used to reduce

detection delay for weaker PU signals. However, the need for antennas is much greater when

the spatial correlations are small. Note that sensing in the low SNR region is assisted by
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Table 5.1 Minimum number of antennas required for an average detection delay ≤ 2 samples with FAR = 0.05
at various SNR

ρ Minimum number of antennas

10 dB 5 dB 0 dB −5 dB

0 1 3 12 82
0.5 1 2 11 60
0.7 1 2 10 45
0.9 1 2 9 30

correlation, whereas data transmission traditionally prefers independent channels. Hence, there

are competing demands on the antenna array, which may be better met using a reconfigurable

antenna array.

Figure 5.7 compares performance of single, discussed in Chapter 3, and multiple antenna CUs

in independent Rician channels with K=0 dB and 6 dB at SNRs of 5 dB and -5 dB. We can

see that at high SNR, the performance gain achieved by employing multiple antennas gives a

reduction of at least 2 samples in the average delay. Also, at both SNRs, increased values of

K tend to improve sensing performance. As expected, a LOS component stabilizes the received

signal and makes it easier to detect. The M=1, SNR=-5 dB scenario is an exception to this

trend. Here, the received SNR is lowest (as there is no diversity gain for M=1) and the signal

is noise-limited. As a result, the detection results are insensitive to the type of channel and the

K=0 dB and K=6 dB results are indistinguishable. From Figures 5.5 and 5.7, we observe the

benefits of both correlation and LOS. This motivates correlated Rician channels as an area for

future research.

The same trends as in Figures 5.5 and 5.7 can be observed at SNR=-20 dB in Figure 5.8.

However, in order for a CUSUM detector to have a reasonable false alarm rate, lower threshold

values are required due to small increments in the CUSUM detector, resulting in long delays.

Thus, the average detection delay in this case is substantially longer than Figures 5.5 and 5.7.

This motivates cooperative quickest spectrum sensing with multiple receive antennas for future

work, which could possibly help the sensing performance at SNR=-20 dB, where the received

signal is very weak. This possible extension will be discussed in Section 7.2.

Figures 5.9 and 5.10 compare sensing performance for the correlated Rayleigh (ρ = 0.5) and

independent Rician case (K=0 dB) at SNR=10 dB and 5 dB, respectively, for mis-matched
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(a) SNR=5 dB Rician
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(b) SNR=−5 dB Rician

M=1: K=0 dB
M=1: K=6 dB
M=2: K=0 dB
M=2: K=6 dB
M=3: K=0 dB
M=3: K=6 dB
M=4: K=0 dB
M=4: K=6 dB

Figure 5.7 Simulated sensing performance for different numbers of antennas in independent Rician channels
with K=0 dB, 6 dB at (a) SNR=5 dB (b) SNR=-5 dB.
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(a) SNR=−20 dB Rician 
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(b) SNR=−20 dB Rayleigh 

 

 
M=2: ρ=0
M=2: ρ=0.5
M=2: ρ=0.9
M=3: ρ=0
M=3: ρ=0.5
M=3: ρ=0.9
M=4: ρ=0
M=4: ρ=0.5
M=4: ρ=0.9

M=1: K=0 dB
M=1: K=6 dB
M=2: K=0 dB
M=2: K=6 dB
M=3: K=0 dB
M=3: K=6 dB
M=4: K=0 dB
M=4: K=6 dB

Figure 5.8 Simulated sensing performance in (a) Rician and (b) i.i.d Rayleigh (ρ = 0) and correlated Rayleigh
channels (ρ = 0.5 and 0.9) with multiple antenna CUs at SNR=-20 dB.
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(a) SNR=10 dB Correlated Rayleigh
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(b) SNR=10 dB Rician

M=2: Ric C / Ric D
M=2: Ric C / T−Inv D
M=3: Ric C / Ric D
M=3: Ric C / T−Inv D
M=4: Ric C / Ric D
M=4: Ric C / T−Inv D

M=2: CRay C / T−Inv D
M=2: CRay C / CRay D
M=3: CRay C / T−Inv D
M=3: CRay C / CRay D
M=4: CRay C / T−Inv D
M=4: CRay C / CRay D

Figure 5.9 Performance comparison between correct and mis-matched detectors (D) in different channels (C) at
SNR=10 dB (correlated Rayleigh (CRay) with ρ = 0.5 / independent Rician (Ric) with K=0 dB / Time-invariant
(T-Inv) cases).

channels, in which the CUSUM detector is designed for one channel, but experiences another.

In both Figures 5.9 and 5.10, we observe that for both correlated Rayleigh and Rician cases, the

actual channel experienced by the PU signal has a greater impact on the sensing performance

than the channel used to design the detector. For example, the average detection delay for the

correlated Rayleigh detector is close to the time-invariant detector when the received signal is

transmitted over correlated Rayleigh channels at both SNRs. Similar trends at both SNRs can

be observed over independent Rician channels and as the number of antennas varies in both

scenarios. Hence, the detection technique is robust to errors in channel identification.

5.10 CHAPTER SUMMARY

In this chapter, we have studied quickest spectrum sensing for CUs equipped with multiple receive

antennas when the received signal is transmitted over Gaussian, independent and correlated

Rayleigh and independent Rician fading channels. We first showed and proved that for the

Gaussian and independent Rayleigh scenario, the sum of the complex received signal powers

at each antenna is a sufficient statistic. This allowed us to use a log likelihood ratio based

on the sum of the received signal powers. Hence, we derived the pdf of the power sum (the
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(b) SNR=5 dB Rician
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(a) SNR=5 dB Correlated Rayleigh

M=2: CRay C / CRay D
M=2: CRay C / T−Inv D
M=3: CRay C / CRay D
M=3: CRay C / T−Inv D
M=4: CRay C / CRay D
M=4: CRay C / T−Inv D

M=2: Ric C / Ric D
M=2: Ric C / T−Inv D
M=3: Ric C / Ric D
M=3: Ric C / T−Inv D
M=4: Ric C / Ric D
M=4: Ric C / T−Inv D

Figure 5.10 Performance comparison between correct and mis-matched detectors (D) in different channels (C)
at SNR=5 dB (correlated Rayleigh (CRay) with ρ = 0.5 / independent Rician (Ric) with K=0 dB / Time-invariant
(T-Inv) cases).

output of the EGC) in order to construct the log likelihood ratio. The derivation of the pdf

for the independent Rayleigh scenario uses a technique which avoids numerical integration. We

also derived the joint pdfs of the received signals for the correlated Rayleigh and independent

Rician fading scenarios. In addition, we derived an analytical performance analysis, including

the upper bound and asymptotic worst-case detection delay for both Gaussian and independent

Rayleigh scenarios. The sensing performance for the Rayleigh (independent and correlated) and

independent Rician cases were evaluated numerically.

The numerical analysis and simulation results illustrate the performance gains that can be

achieved in all cases by employing multiple antennas at the CU due to the spatial diversity

provided. Furthermore, channel correlation has little impact on the sensing performance at high

SNR, whereas at low SNR, increasing correlation between Rayleigh channels improves sensing

performance. In particular, the detection of weak signals is significantly assisted by spatial cor-

relation at the CU array. Simulation results show that the sensing performance increases with

an increasing Rician K-factor value. In the event of mis-matched channels, simulations demon-

strated that at a particular correlation coefficient or Rician K-factor, the sensing performance is

sensitive to the true channel condition irrespective of the number of CU antennas.





Chapter 6

DISTRIBUTION OF DETECTION DELAY FOR MULTI-ANTENNA
QUICKEST SENSING

6.1 INTRODUCTION

In Chapter 5, we studied quickest spectrum sensing performance for cognitive users with multiple

receive antennas when the received signal experiences Gaussian, Rayleigh (independent and spa-

tially correlated) and independent Rician channels. The quickest spectrum sensing performance

was evaluated theoretically and numerically in terms of detection delay and false alarm rate.

No studies have appeared which give a theoretical expression for the distribution of detection

delay for multi-antenna quickest spectrum sensing. Such an expression would be beneficial in

further analyzing the sensing performance with multiple receive antennas at the CU, especially

for longer delays or in the lower SNRs.

Results from Chapter 5 illustrated that in the event of a mis-matched channel, where the CUSUM

detector is designed for a specific channel, but experiences a different channel, the quickest

spectrum sensing performance at a particular correlation coefficient or Rician K-factor depends

greatly on the true channel and is relatively insensitive to the CUSUM detector. Since the

fading channel is usually unknown in the cognitive radio network, and quickest spectrum sensing

performance is insensitive to the designed detector, it is reasonable to employ a simple multi-

antenna time-invariant detector to detect the PU transmission. Recall from Chapter 4 that

the Brownian motion approach provides the best approximation of the distribution of detection

delay for longer delays.

Therefore, in this chapter, we derive theoretical expressions for the distribution of detection de-
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lay for a multiple antenna time-invariant CUSUM detector when the received signal experiences

Rayleigh (independent and spatially correlated) and Rician (independent and spatially corre-

lated) channels. In particular, we derive the expected value and variance of the received signal

transmitted over a correlated Rician channel, which is useful in deriving the approximate expres-

sion for the distribution of detection delay. The derivation of the approximate expressions for

the detection delay distribution for all of the cases are based on the Brownian motion approach.

We verify the validity of the approximate expressions for the distribution of detection delay for

each of the cases, employing multiple antennas at the CU, using simulations. In addition, we also

study the effects of channel correlation, LOS strength and the employment of multiple receive

antennas at the CU on the probability of detection delay, especially for long delays or at low

SNR.

The rest of the chapter is organized as follows. Section 6.2 describes the system model including

a brief description of the modified detection delay statistic. Section 6.3 presents the derivation

of the theoretical expressions for the distribution of detection delay for a multi-antenna time-

invariant CUSUM detector, when the received signal is transmitted over Rayleigh (independent

and spatially correlated) and Rician (independent and spatially correlated) channels. Numerical

results to validate the approximate expressions for each of the cases are given in Section 6.4.

Finally, Section 6.5 ends the chapter with some concluding remarks.

6.2 SYSTEM MODEL

It is assumed that the PU is initially inactive and a CU equipped with multiple receive antennas

attempts to detect the PU transmission. The PU signal is assumed to be a narrowband complex

Gaussian signal. Let Ym[i] denote the received signal at antenna m, where m = 1, 2, ...,M and

i is the sample number of the received signal. If the PU is inactive, then

Ym[i] = Nm[i], (6.1)
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whereNm[i] is independent circularly symmetric complex white Gaussian noise such thatNm[i] ∼

CN (0, σ2
N ). If the PU is active, then

Ym[i] = Hm[i]× S[i] +Nm[i], (6.2)

where Hm[i] is the channel coefficient and S[i] is the PU signal such that S[i] ∼ CN (0, σ2
S) is

an independent circularly symmetric complex Gaussian random variable with variance σ2
S . Let

Xm[i] = Hm[i] × S[i], where Xm[i] is a circularly symmetric complex Gaussian variable with

variance σ2
X .

We first consider the case when there is insufficient separation between the antennas at the

CU resulting in spatially correlated Rician fading channels. Hence, Hm[i] is correlated between

antennas, but independent between samples. The spatially correlated Rician fading channel,

H[i] = [H1[i], H2[i], ...,Hm[i]]T , can be modelled by

H[i] = βV[i] + αR1/2U[i], (6.3)

where

β =

√
K

K + 1
, V[i] = HLOS[i], (6.4)

and

α =

√
1

K + 1
, U[i] = HSC[i]. (6.5)

R in (6.3) is the M ×M antenna correlation matrix denoted by E
[
H[i]H[i]†

]
. It is assumed

that R follows an exponential correlation model such that Rqr = ρ|q−r|, where q, r = 1, 2, ...,M

and 0 ≤ ρ ≤ 1. Note that this model is most relevant to uniform linear arrays (ULAs). In (6.4),

HLOS[i] is the LOS component given by [129]

HLOS[i] =
[
1, ej∆, ..., ej(M−1)∆

]T
, (6.6)

where

∆ = 2πd cos θ, (6.7)

in which d is the antenna spacing in wavelengths and θ is the angle of the LOS component
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at the receiver. Here we are assuming a ULA is deployed. In (6.5), HSC[i] is the scattered

component (SC) which is a spatially white M × 1 vector such that HSC[i] ∼ CN (0, 1). When

ρ = 0, the correlated Rician channel, H[i] in (6.3) reduces to an independent and identically

distributed (i.i.d) Rician channel. When K = 0, H[i] in (6.3) reduces to a correlated Rayleigh

channel, whereas, when K = 0 and ρ = 0, it reduces to i.i.d Rayleigh. Therefore, in this chapter,

the derivation of the mathematical expression for the distribution of detection delay will be

conducted for the correlated Rician case and based on the corresponding result, the theoretical

expression for detection delay distribution for the other cases (i.e. i.i.d Rician, i.i.d Rayleigh and

correlated Rayleigh) can be obtained by changing the parameters K or ρ.

Let Y[i] = [Y1[i], Y2[i], ..., YM [i]]T and z[i] = Y[i]†Y[i]. It is assumed that the PU begins

transmission at some sample τ and the PU signal is detected by the CU using the CUSUM

algorithm. Recall from Section 2.4.1 that the PU signal is detected by the CUSUM algorithm

at sample T and the recursive form of the CUSUM statistic is denoted in (2.21) as

Cn+1 = {Cn + lY[i]†Y[i](z[n+ 1])}+, (6.8)

where x+ = max(x, 0) and lY[i]†Y[i](z[i]) is the log likelihood ratio, which can be expressed as

lY[i]†Y[i](z[i]) = ln
{
f

(1)

Y[i]†Y[i]
(z[i])/f

(0)

Y[i]†Y[i]
(z[i])

}
, where f

(1)

Y[i]†Y[i]
(z[i]) and f

(0)

Y[i]†Y[i]
(z[i]) are

the probability density function (pdf) of the received signal, Y[i], when the PU is present and

absent, respectively. Recall from Section 5.4 that the log likelihood ratio for a multi-antenna

time-invariant CUSUM detector can be written as in (5.7), which gives

lY[i]†Y[i](z[i]) =
z[i]σ2

X

σ2
N (σ2

N + σ2
X)

+M ln

{
σ2
N

σ2
N + σ2

X

}
. (6.9)

If T > τ , then a detection delay, δ = T − τ will occur. Let P (δ) denote the probability that

the detection delay is δ samples. Hence, this defines the distribution of detection delay for

multi-antenna quickest spectrum sensing.
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6.2.1 Modified detection delay statistic

As discussed earlier in Section 4.2.1, it is difficult to analytically handle the CUSUM statistic,

Cn, due to the max operation in (6.8). This is because the max operation causes a complex

dependence between Cn and the log likelihood ratio, lY[i]†Y[i](z[i]). Therefore, in general, no

exact analysis is possible. Following the approach taken in Section 4.2.1, we could approximate

the CUSUM process by the modified detection delay statistic, Dn, denoted by

Dn =
n∑
i=1

lY[i]†Y[i](z[i])

=
n∑
i=1

(
z[i]σ2

X

σ2
N (σ2

N + σ2
X)

+M ln

{
σ2
N

σ2
N + σ2

X

})
,

(6.10)

where Dn is a sum of a fixed number of terms. It is worth noting that the modified CUSUM

process in (6.10) is only used to analytically approximate the CUSUM process whereas the

exact CUSUM algorithm in (6.8) and (6.9) is used for all simulated results. Let zi = z[i],

a =
σ2
X

σ2
N (σ2

N+σ2
X)

and b = −M ln
{

σ2
N

σ2
N+σ2

X

}
. Hence, a > 0, b > 0 and we can rewrite (6.10) as

Dn =

n∑
i=1

(azi − b) . (6.11)

As can be seen from (6.11), the approximation of the CUSUM process based on Dn lies in the

fact that Dn can take negative values whereas Cn in (6.8) is restricted to Cn ≥ 0. However,

when Dn has positive values, it is the same as Cn. Recall that the validity of this approximation

has been discussed and shown in Section 4.2.1 and 4.4.1.

6.3 DISTRIBUTION OF DETECTION DELAY BASED ON THE BROWNIAN MOTION

APPROACH

As shown in Section 4.4, the Brownian approximation provides a remarkably simple and accurate

approximation for the distribution of detection delay for longer delays. Therefore, following the

approach taken in Section 4.3.1.4 and 4.3.2.3, we can also approximate P (δ) for multi-antenna

quickest spectrum sensing in correlated Rician channels by employing the theory of Brownian
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motion with drift. From (6.11), the Dn process has i.i.d increments of the form azi − b and we

denote each increment or jump as

Ji = azi − b. (6.12)

In order to find the expected value and variance of each Ji, we first need to find the expected

value and variance of zi. Let Y[i] = Hi × Si + Ni and thus, using this new notation, H[i] in

(6.3) can be expressed as Hi = βVi +αR1/2Ui. Since zi = z[i] = Y[i]†Y[i], we can rewrite zi as

zi = β2S†iV
†
iViSi + βαS†iV

†
iR

1/2UiSi + βαS†iU
†
iR

1/2ViSi + α2S†iU
†
iRUiSi+

βS†iV
†
iNi + αS†iU

†
iR

1/2Ni + βN†iViSi + αN†iR
1/2UiSi + N†iNi.

(6.13)

Taking the expectation of zi in (6.13) yields

E[zi] = E
[
β2S†iV

†
iViSi + βαS†iV

†
iR

1/2UiSi + βαS†iU
†
iR

1/2ViSi + α2S†iU
†
iRUiSi+

βS†iV
†
iNi + αS†iU

†
iR

1/2Ni + βN†iViSi + αN†iR
1/2UiSi + N†iNi

]
= E

[
β2S†iV

†
iViSi + α2S†iU

†
iRUiSi + N†iNi

]
.

(6.14)

Using the fact that E
[
|Vim |2

]
= 1 and using the notation Vi = [Vi1 , Vi2 , ..., ViM ]T , the term

E
[
V†iVi

]
in (6.14) can be expressed as

E
[
V†iVi

]
= E

[
M∑
m=1

|Vim |2
]

= M.

(6.15)

In order to evaluate E
[
U†iRUi

]
in (6.14), we perform an eigendecomposition of R, which gives

R = φΛφ†, (6.16)

where φ is a unitary matrix and Λ = diag[λ1, λ2, ..., λM ], where λm is the mth eigenvalue of R.
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Let U
†
i = U†iφ, where U

†
i ∼ CN (0, 1). Therefore, using the notation Ui =

[
U i1 , U i2 , ..., U iM

]T
,

E
[
U†iRUi

]
= E

[
U†iφΛφ†Ui

]
= E

[
M∑
m=1

|U im |2λm

]

=
M∑
m=1

λm

= M.

(6.17)

In (6.14), E
[
N†iNi

]
is given by

E
[
N†iNi

]
= Mσ2

N . (6.18)

Using (6.15), (6.17) and (6.18), the expected value of zi in (6.14) can be written as

E[zi] = E
[
β2S†iV

†
iViSi + α2S†iU

†
iRUiSi + N†iNi

]
= β2Mσ2

S + α2Mσ2
S +Mσ2

N .

(6.19)

The variance of zi is denoted by

Var(zi) = E
[
z2
i

]
− (E[zi])

2 , (6.20)

where E[zi] can be obtained from (6.19). Using (6.13), E
[
z2
i

]
in (6.20) can be expressed as

E
[
z2
i

]
= E

[(
β2S†iV

†
iViSi

)2
+ β2α2S†iV

†
iViSiS

†
iU
†
iRUiSi + β2S†iV

†
iViSiN

†
iNi

β2α2S†iV
†
iR

1/2UiSiS
†
iU
†
iR

1/2ViSi + β2α2S†iU
†
iR

1/2ViSiS
†
iV
†
iR

1/2UiSi+

β2α2S†iU
†
iRUiSiS

†
iV
†
iViSi + α4S†iU

†
iRUiSiS

†
iU
†
iRUiSi + α2S†iU

†
iRUiSiN

†
iNi+

β2S†iV
†
iNiN

†
iViSi + α2S†iU

†
iR

1/2NiN
†
iR

1/2UiSi + β2N†iViSiS
†
iV
†
iNi+

α2N†iR
1/2UiSiS

†
iU
†
iR

1/2Ni + β2N†iNiS
†
iV
†
iViSi + α2N†iNiS

†
iU
†
iRUiSi +

(
N†iNi

)2
]
,

(6.21)

where E
[
|Si|4

]
can be obtained by using known results on the moments of an exponential
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distribution, which yields

E
[
|Si|4

]
= 2σ4

S . (6.22)

In (6.21), E

[(
U†iRUi

)2
]

can be evaluated by performing an eigendecomposition of R as in

(6.16), which gives

E

[(
U†iRUi

)2
]

= E

[(
U†iφΛφ†Ui

)2
]
. (6.23)

Let U
†
i = U†iφ, where U

†
i ∼ CN (0, 1). Thus, (6.23) becomes

E

[(
U†iRUi

)2
]

= E

[
M∑
m=1

|U im |2λm
M∑
n=1

|U in |2λn

]

= E

 M∑
m=1

|U im |4λ2
m +

M∑
m 6=n
|U im |2|U in |2λmλn


= 2

M∑
m=1

λ2
m +

M∑
m 6=n

λmλn

=
M∑
m=1

λ2
m +

(
M∑
m=1

λm

)2

=
M∑
m=1

λ2
m +M2.

(6.24)

E
[
V†iRVi

]
in (6.21) can be written as

E
[
V†iRVi

]
= E

 M∑
q=1

|Viq |2 +

M−1∑
q=1

M∑
r 6=q

ρ|q−r|
(
V ∗iqVir + V ∗irViq

) . (6.25)

Since |Viq |2 = 1, (6.25) can be expressed with the aid of Euler’s formula as

E
[
V†iRVi

]
= E

 M∑
q=1

1 +

M−1∑
q=1

M∑
r 6=q

ρ|q−r|2 cos ((q − r)∆)


= E

 M∑
q=1

M∑
r=1

ρ|q−r| cos ((q − r)∆)

 .
(6.26)

Using (6.15), (6.17), (6.18), (6.22), (6.24), (6.26) and since E
[
UiU

†
i

]
= I and E

[
N†iNi

]
= σ2

NI,
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(6.21) can be rewritten as

E
[
z2
i

]
= 2β4M2σ4

S + 4β2α2M2σ4
S + 2β2M2σ2

Sσ
2
N + 4β2α2σ4

S

M∑
q=1

M∑
r=1

ρ|q−r|E [cos ((q − r)∆)]

+ 2α4σ4
S

(
M2 +

M∑
m=1

λ2
m

)
+ 2α2M2σ2

Sσ
2
N + 2β2Mσ2

Sσ
2
N + 2α2Mσ2

Sσ
2
N +M(M + 1)σ4

N .

(6.27)

Therefore, using (6.19) and (6.27), the variance of zi in (6.20) becomes

Var(zi) = E
[
z2
i

]
− (E[zi])

2

= 2β4M2σ4
S + 4β2α2M2σ4

S + 2β2M2σ2
Sσ

2
N + 4β2α2σ4

S

M∑
q=1

M∑
r=1

ρ|q−r|E [cos ((q − r)∆)]

+ 2α4σ4
S

(
M2 +

M∑
m=1

λ2
m

)
+ 2α2M2σ2

Sσ
2
N + 2β2Mσ2

Sσ
2
N + 2α2Mσ2

Sσ
2
N +M(M + 1)σ4

N

−
(
β4M2σ4

S + 2β2α2M2σ4
S + 2β2M2σ2

Sσ
2
N + α4M2σ4

S + 2α2M2σ2
Sσ

2
N +M2σ4

N

)
= σ4

SM
2 + 2Mσ2

Sσ
2
N +Mσ4

N + 4β2α2σ4
S

M∑
q=1

M∑
r=1

ρ|q−r|E [cos ((q − r)∆)] + 2α4σ4
S

M∑
m=1

λ2
m.

(6.28)

Having computed E[zi] and Var(zi), the expected value and variance of each Ji can now be

written respectively as

E[Ji] = aE [zi]− b

= aM
(
β2σ2

S + α2σ2
S + σ2

N

)
− b

= aM
(
σ2
S + σ2

N

)
− b,

(6.29)

Var(Ji) = a2Var(zi)

= a2

σ4
SM

2 + 2Mσ2
Sσ

2
N +Mσ4

N + 4β2α2σ4
S

M∑
q=1

M∑
r=1

ρ|q−r|E [cos ((q − r)∆)] +

2α4σ4
S

M∑
m=1

λ2
m

)
.

(6.30)
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Substituting β2α2 = K/(K + 1)2 and α4 = 1/(K + 1)2 into (6.30) yields

Var(Ji) = a2

ς +
σ4
S

(K + 1)2

4K

M∑
q=1

M∑
r=1

ρ|q−r|E [cos ((q − r)∆)] + 2

M∑
m=1

λ2
m

 , (6.31)

where

ς = σ4
SM

2 + 2Mσ2
Sσ

2
N +Mσ4

N . (6.32)

6.3.1 Application of Brownian motion with drift

In this subsection, we follow the approach taken in Sections 4.3.1.4 and 4.3.2.3 to approximate

P (δ) for all the cases that we consider by applying the theory of Brownian motion with drift.

6.3.1.1 Correlated Rician channel

In this case, Dn in (6.11) can be re-scaled to give

G(n) =
Dn√

Var(JicorrRice)
, (6.33)

where Var(JicorrRice) is the variance of the jump for the correlated Rician case which is given by

(6.31). It is worth noting that the subscript is introduced to differentiate between the different

scenarios that we consider. The expected value and variance of G(n) can be denoted respectively

by

E[G(n)] =
nE[Ji]√

Var(JicorrRice)
, (6.34)

Var(G(n)) = n. (6.35)

By comparing the means in (4.37) and (6.34), the drift, µ can be written as

µ =
E[Ji]√

Var(JicorrRice)

=
aM

(
σ2
S + σ2

N

)
− b

a

√
ς +

σ4
S

(K+1)2

[
4K

∑M
q=1

∑M
r=1 ρ

|q−r|E [cos ((q − r)∆)] + 2
∑M

m=1 λ
2
m

] , (6.36)
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where ς is given in (6.32). The re-scaling of Dn results into a re-scaled threshold, which is given

by

υ =
γ√

Var(JicorrRice)

=
γ

a

√
ς +

σ4
S

(K+1)2

[
4K

∑M
q=1

∑M
r=1 ρ

|q−r|E [cos ((q − r)∆)] + 2
∑M

m=1 λ
2
m

] . (6.37)

Therefore, the approximate expression for P (δ) for the correlated Rician case can be expressed

as

P̃bmcorrRice(δ) =
|υ|√
2πq3

e
− (υ−µq)2

2q dq, (6.38)

where q = δ + 1
2 and we set dq = 1. It is worth noting that tilde denotes an approximation of

P (δ) and the subscript, bmcorrRice in (6.38) denotes the Brownian motion approximation for the

correlated Rician case. As can be seen from (6.38), the only term in P̃bmcorrRice(δ) that depends

on the parameters K and ρ is
√

Var(JicorrRice), which is embedded in both µ and υ, given in

(6.36) and (6.37), respectively. Therefore, in order to obtain the approximate expression for

P (δ) for all the other cases, Var(JicorrRice) in (6.31) needs to be changed accordingly.

6.3.1.2 Independent Rician channel

For the special case of no correlation between the antennas (i.e. ρ = 0), the channel reduces to

an i.i.d Rician channel and the variance of each jump can be written using (6.31) as

Var(JiindRice) = a2

ς +
σ4
S

(K + 1)2

4K
M∑
q=1

M∑
r=1

1 + 2

M∑
m=1

λ2
m

 . (6.39)

In (6.39), for ρ = 0,
∑M

m=1 λ
2
m can be written as

M∑
m=1

λ2
m = tr(R2) = M, (6.40)
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where tr(A) is the trace of the matrix A. Using (6.40), Var(JiindRice) in (6.39) can be re-written

as

Var(JiindRice) = a2

ς +
σ4
S

(K + 1)2

4K
M∑
q=1

M∑
r=1

1 + 2M


= a2

(
ς +

2Mσ4
S

(K + 1)2
[2K + 1]

)
,

(6.41)

where ς is given in (6.32). Therefore, using (6.41), the drift, µ in (6.36) and the re-scaled

threshold, υ in (6.37) can then be re-written respectively as

µindRice =
E[Ji]√

Var(JiindRice)

=
aM

(
σ2
S + σ2

N

)
− b

a

√
ς +

2Mσ4
S

(K+1)2 [2K + 1]

,
(6.42)

υindRice =
γ√

Var(JiindRice)

=
γ

a

√
ς +

2Mσ4
S

(K+1)2 [2K + 1]

,
(6.43)

It is worth noting that the subscripts in (6.42) and (6.43) are used to differentiate between the

correlated and independent Rician cases. Hence, we can express the approximate expression for

P (δ) for the i.i.d Rician case as

P̃bmindRice(δ) =
|υindRice|√

2πq3
e
− (υindRice−µindRiceq)

2

2q dq, (6.44)

where q = δ + 1
2 , dq = 1, and µindRice and υindRice are given in (6.42) and (6.43) respectively.

6.3.1.3 Correlated Rayleigh channel

When there is no LOS component (i.e. K=0), leading to a correlated Rayleigh channel, the

variance of each jump can be expressed using (6.31) to give

Var(JicorrRay) = a2

(
ς + 2σ4

S

M∑
m=1

λ2
m

)
, (6.45)
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where ς is given in (6.32). The drift, µ in (6.36) and the re-scaled threshold, υ in (6.37) can be

re-written respectively using (6.45) as

µcorrRay =
E[Ji]√

Var(JicorrRay)

=
aM

(
σ2
S + σ2

N

)
− b

a
√
ς + 2σ4

S

∑M
m=1 λ

2
m

,

(6.46)

υcorrRay =
γ√

Var(JicorrRay)

=
γ

a
√
ς + 2σ4

S

∑M
m=1 λ

2
m

.

(6.47)

Thus, the approximate expression for P (δ) for the correlated Rayleigh scenario can be expressed

as

P̃bmcorrRay(δ) =
|υcorrRay|√

2πq3
e
−

(υcorrRay−µcorrRayq)
2

2q dq, (6.48)

where q = δ + 1
2 , dq = 1 and µcorrRay and υcorrRay are given in (6.46) and (6.47) respectively.

6.3.1.4 Independent Rayleigh channel

In the case when there is no correlation between the antennas and no LOS component (i.e. when

ρ = 0 and K = 0), the correlated Rician channel reduces to an independent Rayleigh channel.

Here, the variance of each jump can be written using (6.45) and (6.40) to yield

Var(JiindRay) = a2
(
ς + 2Mσ4

S

)
, (6.49)

where ς is given in (6.32). Using (6.49), the drift, µ in (6.36) and the re-scaled threshold, υ in

(6.37) can be expressed respectively as

µindRay =
E[Ji]√

Var(JiindRay)

=
aM

(
σ2
S + σ2

N

)
− b

a
√
ς + 2Mσ4

S

,

(6.50)
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υindRay =
γ√

Var(JiindRay)

=
γ

a
√
ς + 2Mσ4

S

,

(6.51)

Therefore, the approximate expression for P (δ) for the independent Rayleigh scenario can be

written as

P̃bmindRay(δ) =
|υindRay|√

2πq3
e
−

(υindRay−µindRayq)
2

2q dq, (6.52)

where q = δ + 1
2 , dq = 1, and µindRay and υindRay are given in (6.50) and (6.51) respectively.

6.4 NUMERICAL RESULTS

In this section, we present some numerical results to validate the approximate expressions for

the distribution of detection delay based on the Brownian motion approach for a time-invariant

CUSUM detector when the received signal is transmitted over (independent and correlated)

Rayleigh and (independent and correlated) Rician channels. The threshold, γ, is set to be

γ = 3, following Chapter 4. Simulations use 20000 trials to generate each point, where each trial

has 200 samples. We consider the case when the PU starts transmitting at τ = 100. Therefore,

the CUSUM detector receives only noise when i < 100 whereas the faded PU signal and noise

will be received by the CUSUM detector when i ≥ 100. Detection delay is measured from when

the PU begins transmission, at τ , until the CU detects the PU signal using the CUSUM detector.

It is worth noting that δ = 0 means that the CU successfully detects the PU transmission in

the first sample from when the PU begins transmitting. For example, since in this case the PU

begins at τ = 100, if the CU detects the PU at T = 100 (i.e. i = 100), this means that the CU

successfully detects the PU existence in the first sample of the PU transmission. Hence, in this

case, no detection delay occurs.

Figures 6.1 and 6.2 compare the simulated and the approximate distribution of detection delay

based on the Brownian motion (BM) approach for all the cases at SNR=-5 dB when the CU

is equipped with M=2 and 4 antennas, respectively. It is worth noting that a K-factor of 6

dB is selected for the Rician (independent and correlated) case as it is a typical K-factor value

used [130]. It can be seen from both figures that for all of the cases, P̃bmindRay(δ), P̃bmcorrRay(δ),
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P̃bmindRice(δ) and P̃bmcorrRice(δ) provide accurate approximations of P (δ), especially for moderate

and longer detection delays. However, for short delays, a reasonably good approximation can

still be observed for all of the cases in both figures. Comparing both Figures 6.1 and 6.2, it can

be observed that as M increases, the detection delay distribution becomes narrower as a result

of increasing variance for the jumps. The increased variance can be observed from (6.31) for the

correlated Rician case, which gives

Var(JicorrRice) = a2

ς +
σ4
S

(K + 1)2

4K
M∑
q=1

M∑
r=1

ρ|q−r|E [cos ((q − r)∆)] + 2
M∑
m=1

λ2
m

 , (6.53)

where a =
σ2
X

σ2
N (σ2

N+σ2
X)

and ς = σ4
SM

2 + 2Mσ2
Sσ

2
N + Mσ4

N (which is given in (6.32)). It can

be observed from (6.53) that Var(JicorrRice) increases with M . From (6.38), we can see that

P̃bmcorrRice(δ) is inversely proportional to
√

Var(JicorrRice) and
√
q3, where q = δ+ 1

2 . Therefore,

as Var(JicorrRice) and δ increases, P̃bmcorrRice(δ) reduces. Hence, this suggest that employing

multiple antennas reduces the probability of longer detection delays due to the spatial diversity

provided.

Based on Figures 6.1 and 6.2, we can see that the effects of the correlation coefficient, ρ, and the

Rician K-factor are small at SNR=-5 dB. The size of these effects can be explained by looking

at the variance of each jump, Ji, for each of the scenarios. As discussed in Section 6.3.1.1, the

variance of each jump is the only term in the approximate expression for the detection delay

distribution that depends on the parameters ρ and K. The variance of each jump can be written

as

Var(Ji) = a2(ς + ξ), (6.54)

where we recall from Section 6.2.1 that a =
σ2
X

σ2
N (σ2

N+σ2
X)

and ς is given in (6.32). In (6.54),

both a and ς depend only on the SNR, whereas ξ varies for (independent and correlated)

Rayleigh and (independent and correlated) Rician cases. Hence, in order to differentiate be-

tween these cases, we introduced subscripts for ξ and Ji to denote each case. In particular,

we let ξindRay = 2Mσ4
S , ξcorrRay = 2σ4

S

∑M
m=1 λ

2
m, ξindRice =

2Mσ4
S

(K+1)2 [2K + 1] and ξcorrRice =

σ4
S

(K+1)2

[
4K

∑M
q=1

∑M
r=1 ρ

|q−r|E [cos ((q − r)∆)] + 2
∑M

m=1 λ
2
m

]
, where the subscripts indRay,

corrRay, indRice and corrRice denote the independent Rayleigh, correlated Rayleigh, indepen-
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Figure 6.1 A comparison of the simulated results and the approximate distribution of detection delay for (a)
independent Rayleigh (ρ = 0, K = 0), (b) correlated Rayleigh (ρ = 0.5, K = 0), (c) independent Rician (ρ = 0,
K=6 dB) and (d) correlated Rician (ρ = 0.5, K=6 dB) scenarios with M=2 antennas at SNR=-5 dB.
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(b) Correlated Rayleigh channel
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Figure 6.2 A comparison of the simulated results and the approximate distribution of detection delay for (a)
independent Rayleigh (ρ = 0, K = 0), (b) correlated Rayleigh (ρ = 0.5, K = 0), (c) independent Rician (ρ = 0,
K=6 dB) and (d) correlated Rician (ρ = 0.5, K=6 dB) scenarios with M=4 antennas at SNR=-5 dB.
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Table 6.1 Variance of each jump, Ji for different scenarios at SNR=5, 0 and -5 dB with M=4 antennas

SNR ρ K a2 ς ξ Var(.) = a2(ς + ξ)

0 0 0.5772 189.2982 ξindRay = 80 Var(JiindRay) = 155.4389

0.5 0 0.5772 189.2982 ξcorrRay = 115.6250 Var(JicorrRay) = 176.0017
0.9 0 0.5772 189.2982 ξcorrRay = 250.9456 Var(JicorrRay) = 254.1087
0 0 dB 0.5772 189.2982 ξindRice = 60 Var(JiindRice) = 143.8949

5 dB 0 6 dB 0.5772 189.2982 ξindRice = 28.8972 Var(JiindRice) = 125.9424
0.5 0 dB 0.5772 189.2982 ξcorrRice = 65.4434 Var(JicorrRice) = 147.0369
0.9 0 dB 0.5772 189.2982 ξcorrRice = 96.3440 Var(JicorrRice) = 164.8727
0.5 6 dB 0.5772 189.2982 ξcorrRice = 28.1600 Var(JicorrRice) = 125.5169
0.9 6 dB 0.5772 189.2982 ξcorrRice = 31.8423 Var(JicorrRice) = 127.6423

0 0 0.25 28 ξindRay = 8 Var(JiindRay) = 9

0.5 0 0.25 28 ξcorrRay = 11.5625 Var(JicorrRay) = 9.8906
0.9 0 0.25 28 ξcorrRay = 25 Var(JicorrRay) = 13.25
0 0 dB 0.25 28 ξindRice = 6 Var(JiindRice) = 8.5

0 dB 0 6 dB 0.25 28 ξindRice = 2.8897 Var(JiindRice) = 7.7224
0.5 0 dB 0.25 28 ξcorrRice = 6.5440 Var(JicorrRice) = 8.6360
0.9 0 dB 0.25 28 ξcorrRice = 9.6110 Var(JicorrRice) = 9.4028
0.5 6 dB 0.25 28 ξcorrRice = 2.8176 Var(JicorrRice) = 7.7044
0.9 6 dB 0.25 28 ξcorrRice = 3.1529 Var(JicorrRice) = 7.7882

0 0 0.0577 8.1298 ξindRay = 0.8 Var(JiindRay) = 0.5152

0.5 0 0.0577 8.1298 ξcorrRay = 1.1562 Var(JicorrRay) = 0.5358
0.9 0 0.0577 8.1298 ξcorrRay = 2.5095 Var(JicorrRay) = 0.6139
0 0 dB 0.0577 8.1298 ξindRice = 0.6 Var(JiindRice) = 0.5037

-5 dB 0 6 dB 0.0577 8.1298 ξindRice = 0.2890 Var(JiindRice) = 0.4858
0.5 0 dB 0.0577 8.1298 ξcorrRice = 0.6550 Var(JicorrRice) = 0.5069
0.9 0 dB 0.0577 8.1298 ξcorrRice = 0.9645 Var(JicorrRice) = 0.5247
0.5 6 dB 0.0577 8.1298 ξcorrRice = 0.2824 Var(JicorrRice) = 0.4854
0.9 6 dB 0.0577 8.1298 ξcorrRice = 0.3173 Var(JicorrRice) = 0.4874

dent Rician and correlated Rician cases, respectively.

Based on Section 6.3.1, we can measure the variance of each jump for all of the scenarios at

various SNR and this is illustrated in Table 6.1. The results in Table 6.1 give us further insights

into the effect of increasing or decreasing SNR, channel correlation, K-factor and variance on the

distribution of detection delay. Furthermore, Table 6.1 is also useful in providing some insights

into the relationship between a, ς, ξ and the variance of each jump for different cases.

Based on Table 6.1, it can be observed that at SNR=-5 dB, the variance of each jump is very

similar for all of the cases that we consider. This is because, the value of ξ for all of the cases are
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Figure 6.3 A comparison of the simulated results and the approximate distribution of detection delay for (a)
independent Rayleigh (ρ = 0, K = 0), (b) correlated Rayleigh (ρ = 0.5, K = 0), (c) independent Rician (ρ = 0,
K=6 dB) and (d) correlated Rician (ρ = 0.5, K=6 dB) scenarios with M=4 antennas at SNR=0 dB.

small and hence the constant term, ς dominates, where ς depends only on the SNR. Therefore,

channel correlation and LOS have little impact on the approximation of the distribution of

detection delay and this is shown in both Figures 6.1 and 6.2. Similar trends can also be

observed for SNR=0 dB shown in Table 6.1 and Figure 6.3.

In Figure 6.3, we can see that at SNR=0 dB, P̃bmindRay(δ), P̃bmcorrRay(δ), P̃bmindRice(δ) and

P̃bmcorrRice(δ) provide good approximations of P (δ) for longer delays. Recall from the analysis in
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Section 4.4.1, that the approximation approach of using the modified detection delay statistic,

Dn, in modelling the CUSUM process, Cn is most likely to be in error in the first sample (i.e.

δ = 0). This error is more likely to occur at lower SNR, since the values of the received signal,

zi, tend to be smaller, resulting in a higher probability of the Dn process becoming negative

whereas Cn ≥ 0. It can be seen from Figure 6.3 at δ = 0, that the approximate expression of the

distribution of detection delay differs by almost three times the true detection delay distribution.

Similar trends at δ = 0 can also be observed in Figures 6.1 and 6.2 for SNR=-5 dB, but with a

much smaller difference between the approximated and the true distribution of detection delay,

which may be caused by the fact that the Brownian motion approximation is a better fit at

SNR=-5 dB.

Figure 6.4 shows a comparison of the simulated results and the approximate distribution of

detection delay for all of the cases at SNR=5 dB when M=4 antennas are employed at the CU. It

can be observed from Figure 6.4 that P̃bmindRay(δ), P̃bmcorrRay(δ), P̃bmindRice(δ) and P̃bmcorrRice(δ)

are only accurate for long delays. In order to achieve a good approximation of P (δ) for short

delays at SNR=5 dB, a new approximate expression for the distribution of detection delay for

CU with multiple antennas could be derived based on the gamma approximation, following the

approach taken in Sections 4.3.1.2 and 4.3.2.1. This can be considered in future work.

Based on Table 6.1, we can see that at SNR=5 dB, the variance of the jumps differ from each

other and although ξ < ς, ξ is not negligible. Since the parameter ξ depends on the correlation

coefficient and the Rician K-factor, whereas ς only depends on the SNR, the distribution of

detection delay is dependent on the channel correlation and LOS strength. The highly correlated

Rayleigh case, with ρ = 0.9, is particularly notable since here, ξ > ς, and hence, the variance

of the jump is the highest amongst all the other cases. Figure 6.5 shows the approximate

distribution of detection delay for the independent and correlated Rayleigh cases, when ρ = 0 and

0.9, respectively. By comparing both of these cases in Figure 6.5, we can see the as the channel

correlation increases, P̃bmcorrRay(δ) reduces for short delays. However, for longer delays, channel

correlation has little impact on P̃bmcorrRay(δ). Therefore, based on this result, we conclude that

high channel correlation reduces the probability of detection delay for short delays although this

effect is not pronounced. Note that at such short delays, the approximations in Figures 6.4 and
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6.5 are not accurate.

In addition, at SNR=5 dB, it can also be observed from Table 6.1 that as the LOS strength

increases, the variance of the jump reduces. This effect can also be observed from Figure 6.5 by

comparing P̃bmindRay(δ) and P̃bmindRice(δ) for the independent Rayleigh and independent Rician

cases. We can see that when the value of the K-factor increases, P̃bmindRice(δ) > P̃bmindRay(δ).

However, LOS strength has little impact for long delays. Hence, despite the fact that ξ is

a function of both ρ and K, the correlation and K-factor values have only a minor effect on

detection delay distribution.

6.5 CHAPTER SUMMARY

In this chapter, we derived theoretical expressions to approximate the distribution of detection

delay for a multi-antenna time-invariant CUSUM detector when the received signal experiences

(independent and correlated) Rayleigh and (independent and correlated) Rician channels. This

was based on Brownian motion theory with drift. The validity of the approximate expressions

for the distribution of detection delay for each case considered was verified via simulations.

Numerical results illustrate that the Brownian motion approach provides a good approximation

for all channel models considered in the low SNR region, whereas at high SNR, the approximation

is only accurate for long delays. In addition, results show that channel correlation and LOS

strength have little impact on the distribution of detection delay at moderate and low SNR

region. However, for short delays at high SNR, there are minor effects caused by varying ρ

and K. However, for longer delays at high SNR, the channel correlation and LOS strength have

little impact on the distribution of detection delay. Furthermore, the likelihood of long detection

delays reduces as the number of receive antennas increases. In practical cognitive radio systems,

the limiting factor is not the rapid detection of strong PU signals but the more challenging

detection of weak PU signals. Hence, the most important case is when the received signal

experiences low SNR, where there is a higher possibility of long detection delay. Hence, our

method of approximating the distribution of detection delay is useful in analyzing the quickest

spectrum sensing performance at such a low SNR.
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Figure 6.4 A comparison of the simulated results and the approximate distribution of detection delay for (a)
independent Rayleigh (ρ = 0, K = 0), (b) correlated Rayleigh (ρ = 0.5, K = 0), (c) independent Rician (ρ = 0,
K=6 dB) and (d) correlated Rician (ρ = 0.5, K=6 dB) scenarios with M=4 antennas at SNR=5 dB.
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Figure 6.5 Approximate distribution of detection delay for independent Rayleigh (ρ = 0, K = 0), independent
Rician (ρ = 0, K=6 dB) and correlated Rayleigh (ρ = 0.9, K=0) scenarios with M=4 antennas at SNR=5 dB.





Chapter 7

CONCLUSIONS AND FUTURE WORK

This chapter summarizes the novel contributions of this thesis and highlights several potential

extensions and open problems for future work.

7.1 CONCLUSIONS

The demand for wireless spectrum is constantly increasing as new wireless communication ser-

vices appear and existing services grow. These trends have led to the existing spectrum scarcity.

Current spectrum allocation policies aggravate the spectrum scarcity in wireless communications

since particular spectrum bands are usually dedicated to licensed (primary) users for specific

services. This approach results in much of the allocated radio spectrum being underutilized or

sitting idle (i.e. spectrum holes). Therefore, cognitive radio has emerged as a potential solution

to improve the spectrum utilization efficiency, where unlicensed (cognitive) users attempt to

access the spectrum in such a way that the primary users are unaffected.

This thesis primarily considers interweave cognitive radio systems where the CU is allowed

to access the spectrum licensed to the PU only when the PU does not occupy the spectrum.

Therefore, the CU needs to monitor and subsequently detect the occupancy of the spectrum

in order to opportunistically communicate over the vacant spectrum without interfering with

the PU. Hence, spectrum sensing plays a crucial role in the deployment of a cognitive radio

system and many spectrum sensing techniques have been proposed in the literature. In spectrum

sensing, when the PU is absent, the CU needs to detect the spectrum holes as quickly as possible

to fully utilize the unused spectrum. When the PU starts transmitting, the CU needs to detect
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the existence of the PU in order to vacate the frequency band quickly to avoid any harmful

interference to the PU. Thus, detection delay is a crucial criterion in spectrum sensing.

In this thesis, we consider quickest spectrum sensing, which is based on the theory of quickest

detection, where the aim is to detect the PU with minimal detection delay (i.e. using the least

number of samples) subject to a certain false alarm rate. The main focus of this thesis is the

investigation of the quickest spectrum sensing performance for both single and multiple receive

antennas at the CU over Gaussian and several fading channels, including the classical fading

channels such as Rayleigh, Rician, Nakagami-m and a long tailed channel, which is based on the

F-distribution. Apart from independent channels, temporally and spatially correlated channels

are also being considered in this thesis. The results of this investigation has led us to develop

novel theoretical expressions for the distribution of detection delay for both single and multiple

antenna scenarios, which are beneficial in providing a more detailed analysis of the performance

of quickest spectrum sensing.

In particular, in Chapter 3, we studied the performance of quickest spectrum sensing with single

antenna CUs when the receive signal is transmitted over time-invariant as well as various fading

channel conditions, including Rayleigh, Rician, Nakagami-m and a more severe fading channel,

the F channel. The received signal at the CU is considered to be the product of two complex

variables (the PU signal and channel) with additive noise. In Chapter 3, we proved that the

power of the complex received signal is a sufficient statistic. Therefore, the log likelihood ratio

could be computed based on the amplitude of the received signal. The pdfs of the amplitude

of the received signal were derived for the Rayleigh, Rician, Nakagami-m and F channels. The

novel derivation of these pdfs (excluding F channel) used a technique which avoids numerical

integration.

Results in Chapter 3 show that the quickest spectrum sensing performance degrades with the

severity of the fading channels as well as the level of temporal correlation. In addition, results

also show that in the event of mis-matched channel condition (where the CUSUM detector is

designed for a specific channel, but the true channel is different), the quickest spectrum sensing

performance depends heavily on the true channel, but very little on the channel used to design

the CUSUM detector. Since in a cognitive radio network, the channel is usually unknown and the



7.1 CONCLUSIONS 143

sensing performance in various channels is insensitive to the designed detector, a time-invariant

detector can be employed with minimal performance loss.

Motivated by these results, in Chapter 4, we derived theoretical expressions for the distribution

of detection delay for a time-invariant CUSUM detector with single antenna CU when the

received signal experiences Gaussian and Rayleigh channels. In each of the cases considered,

several techniques to approximate the distribution of detection delay are presented, where these

approximate methods are necessary since there is no exact solution possible. In particular,

we derived a novel approximate closed-form expression for the detection delay distribution for

the Gaussian case. Furthermore, we also derived novel approximations for the distribution

of detection delay for the general case due to the absence of a general framework. For both

Gaussian and Rayleigh cases, we applied simple random walks and Brownian motion theory

with drift in deriving the approximate expressions for the distribution of detection delay. Most

of the approximate expressions that we formulated are general and can be applied to any i.i.d

channel.

Moreover, in Chapter 4, we analyzed the accuracy of the modified detection delay statistic and

derived an approximate expression for the probability of missed detection. The probability of

long detection delays is also investigated via analysis and simulation. Results show that in order

to achieve a good approximation of the distribution of detection delay, different approximate

approaches are required for different SNR and detection delay conditions. The Brownian motion

approach provides the best approximation for longer delays. In addition, the analysis of long

detection delays illustrate that the probability of a long detection delay is increased if the thresh-

old value is large or the received signal is weak due to low SNR. However, the type of fading

channel has very little impact on long detection delays. This is because in order for the channel

to create long detection delays, it needs an extremely high CV value that can result from severe

fading channels (e.g. log-normal shadow fading or the F channel), but does not occur with the

traditional channel models, such as Rayleigh, Rician and Nakagami-m fading channels.

We employed multiple receive antennas at the CU in Chapter 5 and studied the performance of

multi-antenna quickest spectrum sensing when the received signal is transmitted over Gaussian,

Rayleigh and Rician channels. Apart from i.i.d channels, we also considered the case of an insuf-
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ficient spatial separation between multiple antennas on a CU, resulting in a spatially correlated

channel. In particular, we considered a correlated Rayleigh channel. We proved that the sum of

the complex received signal powers at each antenna for the Gaussian and independent Rayleigh

cases are sufficient statistics. Based on this result, the log likelihood ratio can be computed on

the basis of the sum of the received signal powers. Therefore, we derived the pdfs of the received

signals experiencing both Gaussian and independent Rayleigh channels based on the sum of the

received signal powers, where the derivation of the pdfs for the independent Rayleigh case uses

an approach which avoids numerical integration. Furthermore, we derived the joint pdf of the

received signal for the correlated Rayleigh and independent Rician scenarios.

In Chapter 5, we also derived an analytical performance analysis, where the upper bound and

asymptotic worst-case detection delay are derived for both Gaussian and Rayleigh cases. The

sensing performance for the correlated Rayleigh and independent Rician cases were evaluated

numerically. Numerical analysis and simulation results show that a higher performance gain

can be achieved for all of the cases considered by employing multiple receive antennas at the

CU, where performance improvements are due to the spatial diversity provided. In addition,

results show that increased channel correlation has little impact on the sensing performance

at high SNR, but helps to improve the sensing performance at low SNR. Sensing performance

also increases as the Rician K-factor value increases. In the event of a mis-matched channel

condition, simulation results illustrate that the sensing performance at a particular correlation

coefficient or Rician K-factor depends heavily on the true channel and is relatively insensitive

to the detector irrespective of the number of antennas employed at the CU. Therefore, a simple

multi-antenna time-invariant detector could be employed to detect the PU transmission.

Based on the results obtained in Chapters 4 and 5, in Chapter 6, we derived theoretical expres-

sions for the distribution of detection delay for a multi-antenna time-invariant CUSUM detector

when the receive signal is transmitted over (independent and correlated) Rayleigh and (indepen-

dent and correlated) Rician channels. In particular, we derived the expected value and variance

of the received signal experiencing a correlated Rician channel, where the received signal is a

product of two complex variables (the PU signal and correlated Rician channel) with additive

noise. These are beneficial in deriving the approximate expression for the distribution of detec-
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tion delay. The derivation of the approximate expressions for the detection delay distribution

for all of the cases considered was based on the theory of Brownian motion with drift.

Results in Chapter 6 show that the Brownian motion approach provides a good approximation

of the distribution of detection delay for multi-antenna quickest spectrum sensing at low SNR

for all cases considered. In contrast, at high SNR, good approximations of the distribution

of detection delay for all cases are achieved for long detection delays. Furthermore, channel

correlation and LOS strength have little impact on the detection delay distribution at moderate

and low SNR region. However, at high SNR, there are minor effects caused by varying ρ and

K for short delays whereas for longer delays, the channel correlation and LOS strength have

little impact on the distribution of detection delay. In addition, the employment of multiple

receive antennas at the CU helps in reducing the likelihood of long detection delays. In practical

cognitive radio systems, the limiting factor is not the rapid detection of strong PU signals but

the more challenging detection of weak PU signals. Therefore, the most important case is when

the received signal experiences low SNR, where there is a higher possibility of long detection

delay. Hence, our method of approximating the distribution of detection delay is beneficial in

analyzing the quickest spectrum sensing performance at such a low SNR.

7.2 FUTURE WORK

This research study may be extended in numerous ways and there are numerous additional open

problems that are useful for future research work. Below are some suggestions of possible areas

for future research:

1. Further performance analysis

In Chapter 5, we derived a theoretical performance analysis for quickest spectrum sensing

with multiple antenna CUs when the received signal experiences Gaussian and independent

Rayleigh channels. These performance analyses could be further extended to the case

when the received signal is transmitted over correlated Rayleigh or independent Rician

channels. In particular, the upper bound and asymptotic worst-case detection delay could

be derived for both cases. However, these derivations may be complicated to evaluate due
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to the existence of multiple integrals in the Kullback-Leibler divergence. These multiple

integrals are caused by the pdfs of the received signals in the presence of the PU and the log

likelihood ratios for both correlated Rayleigh and Rician cases, which involve numerical

integration. Nevertheless, analyzing the theoretical sensing performance for both cases

is an interesting possibility as it would allow an investigation of the theoretical effect of

channel correlation or the Rician K-factor on quickest spectrum sensing performance.

2. Approximate density expressions

The pdfs of the received signal in the presence of the PU when the received signal experi-

ences correlated Rayleigh and independent Rician channels, derived in Chapter 5, cannot

be given in closed forms. Therefore, it would be helpful to explore methods to approximate

the pdf expressions, which avoid numerical integration. This will be beneficial in deriving

the theoretical performance analysis for the quickest spectrum sensing, discussed above in

1. However, finding approximate expressions for the pdfs is likely to be difficult and com-

plicated by the fact that the density is a multidimensional function of σ2
N and the elements

of the antenna correlation matrix, R. Hence, deriving approximate pdf expressions for the

correlated Rayleigh and independent Rician cases which avoid numerical integration would

be an interesting future direction.

3. Multi-antenna cooperative quickest spectrum sensing

The study of quickest spectrum sensing with multiple antennas in this thesis may be fur-

ther extended to cooperative quickest spectrum sensing with multiple receive antennas at

the CUs as a future research direction. This extension could possibly help the sensing

performance at very low SNR (i.e. SNR=-20 dB), where the receive signal is very weak.

Cooperative detection can be implemented in three different contexts based on the coop-

eration level: centralized, distributed and relay-assisted. Therefore, the extension of this

research into cooperative sensing would need to take into account which type of cooperative

sensing to employ.

4. Application to distributed antenna system

Another possible area for future work is to apply the multi-antenna quickest spectrum

sensing techniques, studied in this thesis, to distributed antenna systems (DASs). DASs
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have recently received considerable attention because they can enhance spectral efficiency

and provide high data rate services [131–133]. Spectrum sensing in the case when the

primary user is using a DAS has been studied in [134, 135], where the authors use energy

detectors in performing cooperative spectrum sensing in DAS. So far, there has not been

any research on quickest spectrum sensing in a DAS where the primary user is equipped

with remote antenna units (RAUs). Therefore, developing quickest spectrum sensing,

employing multiple antennas at the CU in the context of a mobile communication system

can be an interesting future work. This proposed research work can then be possibly

extended to cooperative sensing in DAS. Given that quickest spectrum sensing performs

better than energy detection in terms of maximum average throughput [49], the study of

non-cooperative/cooperative quickest spectrum sensing with multiple antennas in a DAS

will significantly improve the performance of the current results in the literature.

5. Reconfigurable antenna arrays

In Chapter 5, results show that sensing in the low SNR region is assisted by spatial cor-

relation. However, data transmission traditionally prefers independent channels. Hence,

there are competing demands on the antenna array and hence, developing a reconfigurable

antenna array is a possible solution. However, designing such a reconfigurable antenna

system poses a number of challenges. The antennas would need to be able to change the

direction of the main lobe on a real time basis and at different frequencies.

6. Multiuser MISO and MIMO cognitive radio network

In Chapter 5, we study the quickest spectrum performance when multiple receive anten-

nas are employed at the cognitive user. It will be an interesting area of future research

direction to study the quickest spectrum sensing performance in multiple sources or mul-

tiple antennas at the transmitter with one (MISO) or more (MIMO) antennas at the

cognitive user. In this MISO scenario, the received signal at the CU can be written as

Y [i] = (H1[i] × S1[i]) + (H2[i] × S2[i]) + ... + (HM [i] × SM [i]) + N [i], where M denotes

the number of antennas at the primary user or number of sources at the transmitter.

Hence, in order to detect any PU, the signal needs to be sum up at the CU, which gives

Y [i] = X[i] + N [i], where X[i] = (H1[i] × S1[i]) + (H2[i] × S2[i]) + ... + (HM [i] × SM [i]).

Therefore, in this MISO case, we have the same situation as in SISO case discussed in
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Chapter 3 but the received signal at the CU, Y [i] has more power compared to the SISO

case. This large received signal power could be beneficial in detecting the PU quicker as the

CUSUM statistic might take a small number of samples to cross the threshold. However,

the signal model for the MISO case will be different from the SISO case because of the

sum that appears in Y [i]. This work could also be extended to the MIMO case.
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